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Preface

The market for interest rate swaps and their derivatives has experienced
tremendous growth since its beginning in the early 1980s, and swaps are

now a key component of capital markets. While trading in swaps and their
derivatives was initially the domain of major money-center banks, most
investment and commercial banks these days run a swaps and options desk
alongside their cash and repo desks.

“RATES” MARKET

The “rates” market consists of swaps, flow options (caps/floors, European
swaptions), Bermudan swaptions, some semi-exotics (CMS/CMT products),
and exotics (structured notes, . . .). While at some point, Bermudan swap-
tions were considered exotics, their popularity and volume has made them
into an integral part of the interest-rate options market.

While a newcomer to a typical broker-dealer trading floor can find ample
background material on the bond and repo markets, he is often overwhelmed
by the instruments and the technical requirements to understand swaps and
their derivatives. For bonds and repos, a typical analyst can use a Bloomberg
terminal or the financial toolkit in Excel, or even an HP-12 calculator to get
up and running. However, for swaps and options, he has to typically master
the in-house derivatives system with many moving parts and nonstandard
terms. The analyst can quickly become discouraged, and think of swaps
and options to be the domain of quants and tech-savvy individuals who
can handle such seeming complexity. Some of this complexity is merely
the terms used in the swaps market: receiving/paying in swap lingo instead
of buying/selling cash bonds—economically the same things—while for the
options and exotics markets the complexity is real. The goal of this book is
to break down some of this complexity.

BACKGROUND

This book came about over the past 15 years as alongside my day time Wall
Street job, I periodically taught an evening course on interest-rate swaps
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x PREFACE

and options at NYU’s School of Continuing and Professional Studies. Each
semester, I was asked what a good book would be to accompany the course.
My answer has always been, “I have yet to find a book,” and instead I
would use notes gathered from various sources that I would pass out in
the class. Moreover, in my last trading job, I was assigned to mentor the
entry-level analyst class in their rotation on the fixed income (repo, treasury,
swaps, options) desks, and was asked to assemble a required reading list for
them. Again, I would have liked to recommend one book that would most
directly and expeditiously get the analysts up to speed both in theory and
more important the practice—so that we could extract the most work out of
them!—but I still could not find such a book or training manual, and would
end up recommending various chapters from a selection of books.

The final straw, so to speak, came when the head of trading asked me to
organize a couple of lectures to educate and familiarize our “cash” traders
(treasury, swap, repo, agency) and generalist sales force on the workings
of options and exotics desk, where I was a trader. These lectures and their
orientation to front-line staff on a trading floor finalized the orientation of
this book, where the goal is to demystify in the quickest way what actually
happens on the trading floor, and help people understand the concepts.

While there are many books on fixed-income and interest-rate deriva-
tives, they generally suffer from being either too elementary and bond-
centric, mentioning swaps in passing, or too technical and focused on exotics
and the myriad implementation issues and algorithms used to tackle them.
The exotics area is the most challenging part of the market, and holds an
understandable pull for quants, academics, and technically-oriented indi-
viduals. Their pricing and risk issues remain challenging, although most
of the challenge is not in the theory, but in the efficient implementation
of the theory. Rather than focusing on exotics, the goal of this book is
the more mundane task of adequately and thoroughly covering the main-
stream products—swaps, flow options, Bermudans, semi-exotics—as they
are traded by showing the common pricing techniques, while showing how
to generalize the concepts to other nuanced products.

The main audience for this book is the current or aspiring practitioners
in interest-rate products. These would be traders, salespeople, marketers,
structurers, and operations, finance, risk management, and IT profession-
als involved in rates products. Indeed, this mix has usually been the main
audience of my class at NYU, where people who are already involved in
some aspect of interest-rate products want to have the theory and practice
demystified for them.

With this broad target audience in mind, the level of mathematics is kept
to only what is needed, and special effort is made to not lose the audience
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with overly technical discussions. Still, this being a book on rates deriva-
tives, it requires a college-level of math with some calculus and probability,
although most concepts are broken down as much as possible into their
intuitive and pictorial elements. Fundamental results are motivated and ex-
pressed in simple settings, illustrated in examples for actively traded prod-
ucts, and their generalized versions are simply stated without proof. As much
as possible, technical discussions are avoided and delayed. For example, Ito’s
Lemma is only introduced in the final two chapters when discussing HJM-
type models. Even at this level, in Appendix A, we show how to think of
Ito’s Lemma as a simple extension of Taylor Series with a quirky (but easy to
remember) multiplication rule. This in my experience is the most productive
way of understanding rates products for the target audience.

BOOK STRUCTURE

The book is organized in three parts, following closely the layout of different
trading desks on a typical USD fixed income trading floor: repo and cash
(treasury) desks, swaps desk, options desk, with the exotics and structured
products desk alongside or part of the options desk.

Part 1. Cash, Repo, and Swap Markets

Part 1 deals with cash, repo, and swap products, namely all instruments
that are not volatility-based (Euro-dollar convexity adjustment being an
exception) and do not require the options machinery. The techniques for
pricing these instruments are quite similar, and are pretty much the idea of
financing cost, discount factors, and projection of forward curves.

Chapter 1 begins by a quick review of fixed-income basics: time value of
money, future and present value, price-yield formula, forward prices, and
sensitivity measures such as PV01, PVBP, and convexity. This chapter can
be considered as “all you need to know about bonds” to proceed to swaps
and options. The U.S. Treasury bond market is the main example used to
illustrate these concepts, and many of its quote conventions and nuances
are explained in detail. As financing is the main driver of all fixed-income
products, the repo market as it pertains to the U.S. treasuries is discussed
in detail. We present popular trades such as Curve (slope of the treasury
curve), Curvature (weighted butterfly), and Carry trades.
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Chapter 2 covers the pricing of plain-vanilla interest-rate swaps. The main
pricing difference between bonds and swaps is that swaps require the whole
term structure of interest rates, while for bonds there is a single yield-to-
maturity. We present the contractual cash flow structure of a typical swap,
and show that pricing interest-rate swap requires access to a discount factor
and projected forward curve. As long as the swap counterparties’ funding is
the same as the swap’s floating index, one can use the same discount curve for
both projection and discounting. Using this setup, we show how to extract
a discount factor curve from the variety of quoted market instruments, and
discuss the nuances of curve construction methods while highlighting the
main tradeoff between smooth forwards versus having reasonable prescribed
hedges.

Chapter 3 delves into actual swap market instruments (cash rates, futures,
par-swap rates) using U.S. swap market as its prime example. USD swaps are
usually quoted and traded as spreads to treasuries, and we present typical
broker screens, trading mechanisms (rates/spreads), and different ways of
trading spreads: headline spread, matched-maturity spread, and asset-swap
spreads. As swaps are priced off of a curve built from a blend of input
instruments, we show how the bond sensitivity measures such as PV01
and convexity have to get extended to bucket-PV01 and gamma-ladder in
Swap-Land. An advantage of swaps is they are bilateral OTC contracts,
with the ability to customize their cash flows, requiring the counterparties
to negotiate and agree on all the cash flow details. We present some of these
date minutiae and considerations when constructing a swap’s cash flows.

Chapter 4 discusses Basis Swaps and the need for the separate extraction
of a forward curve distinct from the discount curve for their pricing and
risk management. In particular, one needs to first extract a discount curve
from swaps keyed to one’s funding index, and then use this discount curve
to extract the forward curve for other indices, from which one arrives at
the discount curve based on them. Historically, Libor rates have been used
synonymously as risk-free rates, but with the recent banking turmoil, careful
attention is being paid on Libors of different tenors (1m, 3m, 6m). We discuss
the issues related to Libor-Libor basis swaps, and show why this basis is not
merely driven by supply and demand dynamics.

We present OIS swaps in the final section and discuss their growing
importance and relevance to swap markets. Most credit support agreements
(CSA) for swaps specify OIS rather than Libor rates for margining any
mark-to-market value. We present the view that OIS rates should then be
considered the funding index for plain-vanilla swaps, and swaps are in reality
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basis swaps. This view is still being debated in the markets, and has yet to
be universally adopted.

Part 2. Interest-Rate F low Opt ions

With the cash and swap products out of the way, Part 2 covers the options
markets for flow products. These include options on futures (Euro-dollar)
contracts, caps and floors, and European swaptions. As with any option
product, the pricing and risk management of these requires dealing with
volatility as the main risk factor.

Option trading in general has been delegated to the more technically
oriented staff, and has enjoyed a mystique of being understood only by
whiz-kids and sophisticated traders who are able to understand the plethora
of the associated Greek letters. We will show that one does not need to have
a Ph.D. in math, or be fully proficient in stochastic calculus and Ito’s Lemma
to understand options. While the original Black-Scholes option pricing for-
mula was derived using these advanced techniques, the modern approach is
Risk-Neutral Valuation, which can be easily explained in a simple binomial
setting.

Chapter 5 introduces the basic concept of option replication in a simple
binomial setting suggested by Cox-Ross-Rubinstein, and follows its simple
extension into a two-period setting to illustrate the concept of dynamic
replication. This is surprisingly the main idea of option pricing, and it is
said (and shown in Chapter 5) that the binomial model is all you really
need to understand the theory of derivatives. The binomial model naturally
leads to the framework that has become known as risk-neutral valuation,
which can be summarized as follows: Option prices are the prices of their
self-financing dynamic replicating portfolios, and can be obtained as the risk-
neutral expected discounted value of their payoffs. This framework applies
to all options, be it equity, FX, or interest rates, and all option models are
(simple or elaborate) specialized applications of it. Risk-neutral valuation
remains the main option pricing framework for the rest of the book.

Chapter 6 presents Black-Scholes-Merton and Black’s Formulae, the main
pricing models used for European-style options. These formulae are shown
to be the result of risk-neutral valuation when the uncertainty about the
underlying asset changes (absolute or percentage) are modeled via a Normal
distribution. For interest rate flow options, the main pricing model is Black’s
Formula; originally the Log-Normal version, and in recent years supplanted
by the Normal version. Black’s Formula is obtained by evaluating an integral
(through some tedious algebra), and without resorting to stochastic calculus
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or the dreaded Ito’s Lemma. We present the standard formulas for calls/puts
and digital options, and their sensitivities (Greeks) for both Normal and
Log-Normal dynamics, and review general option concepts such as put-call
parity, gamma versus theta, and the far reach of the call-formula.

Chapter 7 shows how Black’s formulae as used for interest-rate flow op-
tions such as ED options, cap/floors, and European swaptions. We use the
liquid instruments in USD options markets and present in detail how these
are traded in practice. As most option quotes imply different volatilities
for different strikes, we present the SABR model, which is the most com-
monly used model for capturing skews and smiles. Most flow options desks
also make markets in Constant-Maturity-Swap (CMS) products: CMSs,
cap/floors, and curve cap/floors. While these products should properly be
priced within a term-structure model, one usually tries to resort to simple
analytical approximation formulae for them, and we present the commonly
used analytical formulae and techniques. We discuss popular trades such as
conditional curve trades using a pair of swaptions, and contingent spread
trades implemented as a bond option and a swaption pair.

Part 3. Interest-Rate Exot ics

Black’s Formula and simple analytical formulas are all one needs to price
and risk-manage interest-rate flow options. For the next class of products—
Bermudan options serving as a poster child—there are no simple analytical
formulae, and one has to resort to more complex computational algorithms.
As these products depend on a variety of interest rates, one has to use models
that capture the dynamics of the whole term structure. The framework for
pricing these options remains risk-neutral valuation, but applied to the whole
term structure, and with multiple underlyings spanning the full maturity
spectrum.

The first attempts to develop models for exotics were based on the
evolution of the short rate as the state variable in a risk-neutral setting, and
have become known as short-rate models, with Hull-White and BDT/BK
models the most commonly deployed ones. As the short rate spans the term
of any longer rate, the dynamics of all rates could be related back to the
future evolution of the short rates. The typical implementation of short-rate
models admits a recombining tree (lattice) format, which lends itself easily
to the pricing of Bermudan options.

Chapter 8 introduces the common short-rate models used in practice and
highlights the main features of their dynamics. Using the BDT model—not
the most commonly used model in practice any more, but a good conduit to
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expose the common ideas and techniques—we show the typical discretiza-
tion of the process dynamics into a discrete-time setting, and how to satisfy
the no-arbitrage requirement imposed in a risk-neutral setting, namely in-
verting the yield curve. While brute-force trial and error works for inverting
the yield curve, we discuss the more computationally efficient Forward In-
duction technique using Arrow-Debreu prices. Having inverted the yield
curve, we can at each future node extract discount factors to compute op-
tion payoffs that depend on par-swap rates, swap values, forward rates,
and so on, and discount these back to today to arrive at option values. Most
short-rate models have free parameters (local volatility, mean-reversion) that
can be tweaked so that the market price of liquid options can be recovered.
This process of tweaking the free parameters is called calibration, and in
general is a computationally hard problem. No matter, having constructed
a calibrated arbitrage-free short-rate lattice, we are well on our way to price
any complex payoff.

The previous steps are common to all short-rate lattice models, and
are particularly suited for non-path-dependent options. For Asian (path-
dependent) options, we need to keep track of the evolution of interest rates
from today up to the time of its terminal payoff. While this can conceptu-
ally be done in a lattice implementation, the computational burden quickly
becomes exorbitant, and one instead resorts to simulation methods, which
unfortunately suffer from run-to-run variability (simulation noise). There
are many techniques for reducing simulation noise, and variance reduction
is a specialized discipline with many implementation tricks. We present the
simplest such technique (antithetic) to provide a taste.

Chapter 9 presents Bermudan-style options, which confer to the holder
the option to choose an exercise time within an exercise window. We show
that this exercise option can still be handled within the risk-neutral valuation
framework, but one has to search for the optimal exercise policy. As this class
of problems has been studied in dynamic programming disciplines, there
exists an algorithmic way—backward induction—of extracting the option
value under this optimal exercise policy. We discuss the common Bermudan
cancelable swap structures and show how to use backward induction in a
lattice model to price them.

As there are models that don’t admit a lattice implementation due to
their non-Markovian dynamics—an up-down move does not end up in the
same state as a down-up move—and are usually implemented as a simulation
model, we discuss the challenges of pricing Bermudan options for these
models. This is still an active area of research, and while certain algorithms
have become the standard (LSM, boundary extraction), there is still room
for further improvement.
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Chapter 10 introduces the full term-structure models of HJM, which ex-
plicitly evolve the full term-structure in a risk-neutral setting. We recall that
a short-rate model implicitly evolves the full term-structure, but with HJM
models, the term-structure is the explicit evolved quantity. We present the
discrete-time, discrete-tenor version of the HJM models, and show how to
ensure that they are arbitrage-free in a risk-neutral setting. This version,
despite the seemingly complex notation, is relatively simple to understand
and renders itself to algorithmic implementation as a computer program
(simulation model). HJM models also offer an intuitive and flexible way
of modeling volatilities via the forward-forward volatility surface, and can
easily be extended to multifactor settings to drive the correlations of vari-
ous forward rates. We show the volatility signature of flow products on the
forward-forward volatility surface, and present approximations for swap-
tion vols and correlations that can aid in calibration.

We show the continuous-time version of the HJM model for instan-
taneous forward rates in Appendix C. While an elegant framework for
interest-rate products, HJM models are generally non-Markovian and need
to get implemented as a simulation model, making them challenged for
Bermudan options.

Chapter 11 revisits the issue of numeraires, and shows in a simple binomial
setting how to change them. The technique of changing numeraires has been
invoked to provide new insights (and justification) for using Black’s model
for interest-rate flow options, the main objection to it being that it ignores
the required stochastic discounting, and that it treats forward rates as assets
(they are not). By switching numeraires to a discount bond with maturity
coinciding with the option payout, one arrives at the forward measure,
under which both common practices are justified. Furthermore, by assuming
Normal/Log-Normal terminal distribution under this forward measure, one
can fully recover Black’s formula as used for interest-rate flow options.

The forward measure lens provides theoretical justification—albeit a
tortured one—of market practice, and has given rise to the subclass of HJM
models which focus on the evolution of discrete-tenor forward rates through
this lens. These Brace-Gartarek-Musiela (BGM) Market models have gained
popularity since they initially provided the hope for easy calibration to
the readily available cap or swaption vols. We discuss how these hopes
were somewhat premature, since when one needs to price the usual multi-
rate exotics, the elegant forward-measure structure of various forward rates
breaks down when considered under any unified measure, and the Market
model becomes non-Markovian, requiring simulation implementation with
the associated Bermudan pricing issues. In this way, they share the same
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gains and pains of a typical discrete-tenor HJM model viewed through the
more intuitive money-market measure.

At this point, a typical reader should realize that modeling topics are
becoming more nuanced, and are best handled in other books that do proper
technical justice to them. At the same time, the discussions in this chapter
should allow one to become somewhat conversant and gain a working
knowledge and appreciation of the main features of these models and their
related issues.
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List of Symbols and Abbreviations

α(T1, T2) accrual fraction for calculation period [T1, T2] according
to some day-count

w generic random future path
σ, σN log-volatility, normal volatility
bp 1% of 1%, 0.0001
CT[n] U.S. current n-year Treasury
d, d1,2 moneyness, d = F−K

σ
√

te
, d1,2 = ln(F/K)

σ
√

te
± 1/2σ

√
te

D(T), D(t, T) discount factor at time t (today, if omitted) for maturity T
f (t, [T1, T2]) simple forward rate at time t (today if omitted) for the

forward deposit period [T1, T2]
f (t, T) instantaneous forward rate at time t (today if omitted)

for the forward deposit period starting at T
FA(t, T), F forward price of asset A at time t (today, if omitted) for

forward delivery date T > t
fc(t, [T1, T2]) continuously-compounded forward rate at time t (today

if omitted) for the forward deposit period [T1, T2]
FV, PV future value, present value
LN(μ, σ 2) Log-Normal random variable
M(t, w) money market (unit currency rolled over at successive

short rates) account numeraire, M(t, w) = e
∫ t

0 r (u,w)du

N(μ, σ 2) A Normal random variable with mean μ, and standard
deviation σ

N(x) cumulative distribution function of a standard (N(0, 1))
Normal random variable

N′(x) 1√
2π

e−x2/2

P(C, y, N, m), P price of a bond with coupon rate C, paid m times/year,
with N remaining coupons, with yield y

PClean, PDirty clean, dirty price of a coupon bond
PV01 present value change due to an “01” (1 bp) change in

yield
PVBP present value change due to a 1 bp change in coupon,

present value of a 1 bp annuity
Var(X) variance of a random variable X

xxi



xxii LIST OF SYMBOLS AND ABBREVIATIONS

w accrued fraction (according to some daycount) of the
periodic coupon for bond calculation

y(T) zero rate (according to some payment frequency and day-
count) for a zero-coupon bond maturing at T

yc(T) continuously-compounded zero rate for a zero-coupon
bond maturing at T

ATMF at the money forward option, K = FA

CDF cumulative distribution function
DF (probability) density function
MF modified following roll convention
P&L, P+L profit and loss
r.v. random variable
RMS root-mean-square average
RTP, RTR right-to-pay (payer), right-to-receive (receiver) swaption
YTM yield to maturity
100M 100 million, sometimes written as 100MM, where M

stands for 1000’s
100-nnm price quote convention for U.S. treasuries, 100 + nn/32 +

(m/8)/32 in percentage points. A ‘+’ for ‘m’ stands for 4.
f ′(x), f ′′(x) first, second derivative of f with respect to x
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CHAPTER 1
Bonds: It’s All About Discounting

Before we delve into all the good stuff (swaps and options), let us review
some fixed income basics.

TIME VALUE OF MONEY: FUTURE VALUE,
PRESENT VALUE

Following the classical fixed income gospels, we remember that the Future
Value, FV, on a horizon date of an investment PV at an annual interest rate
of r , compounded m times a year, for N whole compounding periods is

FV = PV(1 + r/m)N

For example, if m = 1, we have annual compounding FV = PV(1 + r )N,
and N is the number of years until the future horizon date. If m = 2, we
have semiannual compounding (standard for U.S. Treasury securities) FV =
PV(1 + r/2)N, and N = 2T is the number of whole semiannual periods until
the horizon date (T years from now).

The above formula can be easily generalized to incorporate horizon
dates that are not a whole number of compounding periods away. We
compute T as the number of years between the investment date and the
horizon date, according to some day count basis, and come up with:

FV = PV(1 + r/m)Tm

From college math courses, we recall that as you increase the compounding
frequency, the above, in the limit, becomes

lim
m→∞ FV = PVerT

and r is then referred to as the continuous compounding rate.

3

Interest Rate Swaps and Their Derivatives: A Practitioner’s Guide 
by Amir Sadr 

Copyright © 2009 Amir Sadr 
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An alternative to using compounded rates is to use simple or noncom-
pounding interest rates:

FV = PV(1 + rT)

where T is the number of years (can be fractional) to the horizon date.
Simple interest rates are usually used for Money Market instruments, that
is, with maturity less than 1 year.

In order to compute how much money needs to be invested today at
interest rate r , compounded m times a year, for T years to get FV at maturity,
one simply inverts the above equation to come up with Present Value, PV:

PV = FV
(1 + r/m)Tm

and in the limit:

lim
m→∞ PV = FVe−rT

By setting FV to 1, PV becomes today’s price of unit currency to be
received at time T, that is, present value of $1, and we will denote it by
Discount Factor, D:

D(T) = 1
(1 + r/m)Tm

→ e−rT

This would be price of a security that returns unit dollar at maturity
(T years from now), that is, the price of a T-maturity zero-coupon bond,
and provides an (implicit) yield r , compounded m times a year.

Note that while interest rates r can be quoted in different ways, the
actual investment (PV dollars in, FV dollars out) remains the same. In order
to compare different investments, one would need to compare them using
the same metric, that is, interest rates with the same quote convention.
However, in order to value investments, all we need are discount factors.

Discount factors are the fundamental building blocks for valuing fixed
income securities. Given a series of known cash flows (C1, . . . , CN) to be
received at various times (T1, . . . , TN) in the future, if we know the discount
factor D(Ti ) for each payment date Ti , then today’s value of this package is:

PV(Portfolio of Cash flows) =
N∑

i=1

Ci D(Ti )
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PRICE-Y IELD FORMULA

For example, today’s price P of a T-year bond paying an annualized coupon
rate C, m times a year (so N = T × m payments left) is

P =
N∑

i=1

C
m

D(Ti ) + D(TN)

The standard bond pricing formula is based on Flat Yield assumption: it
assumes that there is a single interest rate called Yield-to-Maturity (YTM) y
applicable for all cash flows of the bond, regardless of how far the payment
date is. With this assumption, D(Ti ) = 1/(1 + y/m)i , and we get the classical
bond pricing formula:

P(C, y, N, m) = P =
N∑

i=1

C/m
(1 + y/m)i

+ 1
(1 + y/m)N

= C
y

(
1 − 1

(1 + y/m)N

)
+ 1

(1 + y/m)N

The above formula is for when there are N = T × m whole future coupon
periods left. For a bond in the middle of a coupon period, the discount fac-
tors get modified as D(Ti ) = 1/(1 + y/m)i−w where w measures the accrued
fraction (measured using some day-count convention: Act/Act, Act/365, . . .)
of the current coupon period:

P =
N∑

i=1

C/m
(1 + y/m)i−w

+ 1
(1 + y/m)N−w

= 1
(1 + y/m)−w

[
N∑

i=1

C/m
(1 + y/m)i

+ 1
(1 + y/m)N

]

= (1 + y/m)w
[

C
y

(
1 − 1

(1 + y/m)N

)
+ 1

(1 + y/m)N

]

The above formula is the Dirty Price of a bond, that is, how much cash is
needed in order to purchase this bond. One needs to always remember that
dirty price of a bond is the discounted value of its remaining cash flows. The
standard price/yield formulae simply express this via assuming a flat yield
and expressing all discount factors as a function of this (hypothetical) yield
y. Figure 1.1 shows the graph of Price as a function of YTM. As can be seen,
when yield equals the coupon rate, the price of the bond is Par (100%).
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F IGURE 1.1 Price-Yield Graph for a 5% Semiannual Coupon Bond

Also, longer-maturity bonds exhibit a higher curvature (convexity) in their
price-yield relationship.

The graph of a dirty price of a bond versus time to maturity T is discon-
tinuous, with drops (equal to paid coupon) on coupon payment dates. This
makes sense, since the present value of remaining cash flows should drop
when there is one less coupon. For bond traders focused on quoted price
of a bond, this drop in price (while real in terms of PV of remaining cash
flows) is artificial in terms of worthiness/value of a bond, and they prefer
a smoother measure. By subtracting the accrued interest, wC/m from the
dirty price, one arrives at the Clean/Quoted Price:

PClean = PDirty − w
C
m

= (1 + y/m)w
[

C
y

(
1 − 1

(1 + y/m)N

)
+ 1

(1 + y/m)N

]
− w

C
m
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Note that when coupon rate equals yield, C = y, the term in the square
brackets becomes 1, and the formula simplifies to

PClean = (1 + y/m)w − w
y
m

On coupon payment dates the accrued fraction w equals zero, and the price
is par: P = 1 = 100%. In between coupon payment dates, even when C = y,
the price is not exactly par. This is because the above formula is based on the
Street Convention where fractional periods are adjusted using the formula
suggested by compounded interest rates: 1/(1 + y/m)−w = (1 + y/m)w. If
instead, we had used simple interest rates for first period, we would get the
clean price using the Treasury Convention (TC):

PClean,TC = PDirty,TC − w
C
m

= (1 + wy/m)
[

C
y

(
1 − 1

(1 + y/m)N

)
+ 1

(1 + y/m)N

]
− w

C
m

and then the price of a bond when C = y would be par (100%) at all times.
Figure 1.2 shows the evolution of the clean and dirty prices for a 2y

5% semiannual coupon bond as we get closer to maturity while holding
yields constant for 3 yield scenarios: y = 7.5% leading to a Premium bond
(C < y), y = 2.5% leading to a Discount bond (C > y), and y = 5% leading
to a par (C = y) bond. Notice the Pull-To-Par Effect for the bond regardless
of the assumed yield scenario: A discount bond gets pulled up to par, while
a premium bond gets pulled down to par.

In order to flesh out the calculation details, for the remainder of the
chapter, we will focus on the 2y U.S. Treasury note issued on 1-Oct-2007,
with CUSIP (Committee on Uniform Security Identification Procedures)
number 912828HD5, shown in Table 1.1. From Announcement date till
Auction date, these 2-year notes will be considered When-Issued (WI) and
trade based on yield since the coupon rate is only known at Auction time.
After the auction they start trading based on price, and become the current
2y-notes, replacing the old 2y-note. Until the Issue Date, they will have a
forward settlement date of Mon 1-Oct-2007, and thereafter they will have a
T + 1 settlement date. The 4 coupon dates are: 31-Mar-2008, 30-Sep-2008,
31-Mar-2009, and final coupon and redemption on 30-Sep-2009. Note that
U.S. treasury securities follow month-end convention, so if the maturity
is at month-end, then the (assumed) coupon dates are also at month-end
(March-31st, rather than March-30th).
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F IGURE 1.2 Clean/Dirty Price Evolution for a 2y 5% Semiannual Coupon
Bond in Unchanging Yield Scenarios

Example 1. On Tue, 2-Oct-2007, the current 2y U.S. Treasury (CT2 from
now on) is trading at clean price of 100-02+ for (T+1) settlement date of
Wed 3-Oct-2007:

PClean = (100 + 2.5/32)/100 = 100.078125% = 1.00078125

TABLE 1.1 Current U.S. 2y Treasury Note for Oct 2007

CUSIP 912828 HD 5
Announcement Time Mon, 24-Sep-2007, 11 a.m.
Auction Size $18 Billion
Auction Date Wed, 26-Sep-2007, 1 p.m.
Maturity Date 30-Sep-2009
Issue Date Mon 1-Oct-2007
Dated Date (Interest starts accruing) Sun 30-Sep-2007
Coupon Rate (Determined at Auction Time) 4% Semiannual
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Although this bond’s issue date is Mon, 1-Oct-2007, it starts accruing in-
terest (dated date) on Sun, 30-Sep-2007, and hence has 3 days of accrued
interest on settlement date. U.S. Treasury securities use the “Actual/Actual”
convention for fractional first periods and accrued interest:

w = Actual number of days from LastCpn/DatedDate to Settlement Date
Actual number of days in current coupon period

= 3-Oct-2007 − 30-Sep-2007
31-Mar-2008 − 30-Sep-2007

= 3
183

Its accrued interest is then (.04/2) × (3/183) and the dirty price is:

PDirty = PClean + w × C/2 = 1.00078125 + (3/183) × .04/2 = 1.001109119

Its semiannual yield (3.95866%) is computed by backing out (trial and error,
or Newton-Raphson root-search method) the y that solves:

1.001109119 = .04/2
(1 + y/2)1−w

+ .04/2
(1 + y/2)2−w

+ .04/2
(1 + y/2)3−w

+ .04/2
(1 + y/2)4−w

+ 1
(1 + y/2)4−w

= (1 + y/2)
3

183

[
.04
y

(
1 − 1

(1 + y/2)4

)
+ 1

(1 + y/2)4

]

If you bought $50M face/principal of this treasury on 2-Oct-2007, then you
need to pay $50,055,455.94 (= 50,000,000 × 1.001109119) to seller on
3-Oct-2007 by 3 p.m. (before the Fed-Wire closes).

True Yie ld

The standard bond price formula assumes that coupons are paid on spe-
cific dates, even if they are holidays. In reality, a coupon is paid on the
next good business day after the assumed coupon date. Since one is pay-
ing the same amount up front, but getting the coupons later, the stan-
dard yield backed out from the bond equation potentially overstates the
yield. This overstatement is more relevant for short-term bonds (sometimes
referred to as short coupons), say with maturity less than 2 years, and
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especially when the maturity date falls on a holiday, and can be as high
as a few basis points. True yield (sometimes referred to as yield adjusted
for bad days) is the typically lowered yield when actual payment dates
are taken into consideration. The usual formula used to back out the true
yield is:

PClean =
N∑

i=1

C/m
(1 + y/m)ti

+ 1
(1 + y/m)tN

− wC/m

where

ti = Number of Days from Settlement Date to Ti

365/m

and Ti is the i-th true (holiday-adjusted) future payment date. Note that this
replaces the exponent term for the i-th cash flow from i − w to ti , and can
lead to a potentially different yield, even if all nominal payment dates are
good business days. For example, for the CT2 in Example 1, even though all
its nominal coupon dates fall on good business days, the True Yield using
the above formula gives 3.95316% versus 3.95866% using the standard
formula. As such, the above formula should mainly be used to back out the
true yield adjustment.

Zero-Coupon Bonds

Treasuries can be stripped into principal (P-strip) and coupon strips
(C-strip) to come up with single cash flows. One can buy these as zero-
coupon bonds by paying an up-front fee (quoted price) and receiving the
principal at maturity. Their yield is quoted using the standard bond equa-
tion, but with the coupon set to zero:

PZero = 1

1 + y/mN−w

where N is the number of hypothetical coupon periods left if the bond was
paying periodic (m coupons per year) coupons, and w is the hypothetical
accrued fraction. Similar to coupon bonds, we can also compute the true
yield of zeros.
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PV01, PVBP, CONVEXITY

Much space is wasted in the bond gospels on Macaulay Duration (some-
times abbreviated to Duration): “In 1938, Frederick Macaulay constructed
a measure. . . . In practice, nobody cares about Macaulay Duration! All we
care about is the price sensitivity to changes in interest rates, that is, the
derivative of the PV to yields/rates. It is the standard to consider price
changes due to 1 basis-point (bp, 0.0001 = 1% of 1%) move in yields/rates,
giving rise to PV01: present value of 1 basis-point increase in interest rates,
sometimes called risk, or DV01 for dollar-centric folks. For a bond,

PV01 = dP
dy

× 0.0001

In Bond-land, PV01 is defined as the negative of the previous equation, so
that a positive PV01 signifies a long position in the bond. We will stay with
the true definition for the rest of the book, so a positive PV01 implies one is
short the market.

Since accrued interest does not depend on yield y, the P in the above
can either be the dirty or the clean price of a bond. A little bit of algebra
gets us

P ′(y) = (1 + y/m)w
[

C
y2

(
1

(1 + y/m)N
− 1

)
+ N

m

(
C
y

− 1
)

1
(1 + y/m)N+1

]

+ w

m + y
PDirty(y)

Modified Duration is defined as the percentage change in bond price,
that is,

Modified Duration = − 1
PDirty

dP
dy

and has unit of years. While it makes sense for bonds, since swaps can have
zero PV, it does not extend to swaps, swaptions, . . . , and that’s why we will
stay with PV01.

A concept similar to PV01, but not identical to it is PVBP : Present value
of 1 bp. This is the change in the price due to changing the coupon rate by
1 bp:

PVBP = 0.0001 × dPDirty

dC
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Since PVBP is the change in price, it is equivalent to PV’ing a 1 bp per annum
annuity, paid m times a year, it is also called the Annuity Formula:

PVBP = 0.0001 × (1 + y/m)w

y

(
1 − 1

(1 + y/m)N

)

For par bonds (C = y), receiving 1 bp extra in coupon is almost equivalent
to yields dropping by 1 bp, and that’s why PV01 and PVBP are (wrongly)
used interchangeably in practice. For nonpar bonds, the difference can be
significant, see Figure 1.3, and the appropriate formula should be used
depending on the application.

3.75

4

4.25

4.5

4.75

5

5.25

-PV01 (-dP/dy) PVBP (dP/dC) Mod Dur (-1/P dP/dy)

2.00% 3.00% 4.00% 5.00% 6.00% 7.00% 8.00%

F IGURE 1.3 PV01, PVBP, Modified Duration for a 5y, 5% Semiannual
Coupon Bond



Bonds: It’s All About Discounting 13

The convexity of a bond is a measure of the curvature of the price-yield
graph, and is defined as d2 P

dy2 , that is, the rate of change of PV01:

Convexity = d2 P

dy2 = −w

(m + y)2
PDirty + w

m + y
dP
dy

+ N(N + 1 − w)
m2

1 − C/y
(1 + y/m)N+2−w

− 2CN/(my2)
(1 + y/m)N+1−w

+ C
(1 + y/m)w

y3

(
1 − 1

(1 + y/m)N

) (
2 − wy

m + y

)

PV01 and convexity can be used via a Taylor Series expansion (see Ap-
pendix A) to estimate the price change due to a small change (�y) in yields:

P(y + �y) − P(y) = ∂ P
∂y

(y)�y + 1/2
∂2 P
∂y2

(y)(�y)2 + Higher Order Terms

≈ PV01 × �y
0.0001

+ 1/2 × Convexity × (�y)2

In practice, one is primarily interested in the PV01, ignoring the con-
vexity effect except for long maturity bonds, or for large rate movements.
Using only the first order term in the Taylor series expansion, one gets

�P = P(y + �y) − P(y) ≈ PV01 × �y

where �y is expressed in basis points. The change in price, �P, is usually
expressed in cents, that is, units of 1/10,000, or for a principal of $100 =
10,000 cents. For example, when holding a $1,000,000 face of a secu-
rity, and the price changes by 5 cents, one has made $1,000,000 × 5 ×
0.0001 = $500.

For U.S. Treasuries, units of 1/32 of 1% (1/3200) (also called treasury
ticks, or ticks for short) are usually used. In this case, when holding a
$1,000,000 face of a bond, and the price moves by 1 tick, one has made
$1,000,000 × 1 × (1/3200) = $312.50 = 3.125 cents. Therefore, each U.S.
Treasury tick (1/32 of 1%) equals 3.125 cents.

Since we will be dealing with interest rate derivatives later, we will
stay with cents, sometimes called bp’s upfront, or just bp’s. Using the pre-
vious first order approximation, one can relate the changes in yields to
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TABLE 1.2 U.S. Treasury Currents for 3-Oct-2007 Settlement

U.S. Mat. Cpn Clean PV01 Mod.
Treasury Date Rate Price Yield (cents) Dur (yrs) Conv.

CT2 30-Sep-2009 4% 100-02+ 3.95866% 1.898 1.90 4.59
CT3 15-May-2010 4.5% 100-10 3.96541% 2.483 2.41 7.47
CT5 30-Sep-2012 4.25% 100-24 4.08233% 4.495 4.46 23.43
CT10 15-Aug-2017 4.75% 102-19 4.42213% 8.050 7.80 75.76
CT30 15-May-2037 5% 109-05 4.44093% 17.457 15.72 401.58

P&L: Each 1 bp change in yields translates to approximately PV01 cents
change in value.

Table 1.2 shows an example of PV01s and convexities of benchmark
U.S. Treasuries.

Example 2. Continuing with Example 1, let us compute the above sensitivity
measures for U.S. CT2 trading at 100-02+ (y = 3.95866%) for settlement
on 3-Oct-2007 with dirty price of 100.1109119%. Using the previous for-
mulae (N = 4, w = 3/183, C = .04), we get:

dP
dy

= −1.89834

PV01 = 0.0001 × dP
dy

= −0.0189834%

= −1.89834 cents

Modified Duration = −dP/dy
PDirty

= 1.89624 years

PVBP = 0.0001 × dP
dC

= 0.01905432% = 1.90543 cents

Convexity = d2 P
dy2

= 4.592691

We can estimate the price change due to a small, say 10 bp, change in yields:

P(y + 10 bp) − P(y) ≈ PV01 × 10 + 1/2 × Convexity × (0.10%)2

= −0.0189834% × 10 + 1/2(4.592691)(0.10%)2

= −0.18960%
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leading to an estimate of P(y + 10 bp) = 99.88852049%. Compared to
actual P(y + 10 bp) = 99.88852026%, we see that the difference is quite
small (0.0007% of 1/32nd, or $0.22 for $100M face!).

PV01 is the basic measure of market risk, either for outright purchase
and sale of U.S. treasuries, or for trades based on the slope of the yield curve.

Example 3. Yield Curve Trade Using prices in Table 1.2, we observe that
the 2’s-10’s curve is trading at 46.35 bp (= 4.42213% − 3.95866%), which
a trader might feel is too flat compared to their historical relationship.
The trader can express a yield curve steepening view by buying CT2 and
selling CT10 in PV01-equal amounts, that is, 4.2413 (= 8.050/1.898) units
of CT2 for each unit of CT10. For example, if one buys $424.13M CT2
versus selling $100M of CT10, one is long a spread-PV01 risk of $80,500
(= $100M × 8.050 × 0.0001) per each 1 bp steepening of 2’s-10’s treasury
yield curve.

Another common trade is a butterfly trade which is a way of expressing
a view on the difference between slopes of the yield curve at different points,
that is, on the curvature of the yield curve. For example, if one feels that
2’s/5’s is too flat compared to 5’s/10’s (5-year yields are too low in relation-
ship to 2y, 10y yields), one can buy a 2-5-10 butterfly by buying CT2, selling
CT5, and buying CT10 so that each spread leg (CT2-CT5, CT5-CT10) is
PV01-equivalent.

Example 4. Butterfly Trade Using prices in Table 1.2, the 2-5-10 butterfly
is trading at

−21.6 bp = (4.42213% − 4.08233%) − (4.08233% − 3.95866%)

which a trader might think is too low compared to history. A simple trade
would be to buy the butterfly by buying the 2’s-5’s curve and selling 5’s-10’s
curve in equal spread-PV01 amounts: buy N1 CT2 versus selling N2 CT5
(2’s-5’s curve), while simultaneously buying N2 CT5 versus buying N3 CT10
(5’s-10’s curve), so that

N2/N1 = PV01(2y)/PV01(5y)

N2/N3 = PV01(10y)/PV01(5y)

For example, for a $100M sale of CT5, one has to buy $118.38M CT2 and
$27.92M CT10 for an equal-weight butterfly trade.
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A more common trade is to volatility-weight each curve leg. For exam-
ple, if a regression analysis shows that for each 1 bp movement in 2’s-5’s,
there is typically a 0.8p movement in 5’s-10’s, then one would weight the
butterfly so that

PV01(2’s − 5’s)/PV01(5’s − 10’s) = 0.8

that is, one has to overweight the 5’s-10’s leg due to its lower volatility,
resulting in purchase of $105.23M CT2 and $31.02M CT10 for a sale of
$100M CT5.

In general, a regression-weighted butterfly between 3 points of yield
curve is expressed as

m
1 + m

× (y2 − y1) − 1
1 + m

× (y3 − y2)

where m is the regression slope of y3 − y2 versus y2 − y1:

(y3 − y2) = m(y2 − y1) + b + Error

with the principals satisfying:

N1 = PV012

PV011
× m

1 + m
N2

N3 = PV012

PV013
× 1

1 + m
N2

REPO, REVERSE REPO

While real-money investors buy/sell bonds by tendering/receiving the requi-
site funds on settlement date, most trading desks will instead borrow/lend
the requisite funds by entering into a repo, reverse repo transaction, that is,
a collateralized loan. A typical purchase of a bond is then followed by selling
it in repo: lending the bond, and borrowing funds in a loan collateralized
by that bond. A typical short sale of a bond is followed by buying it in a
reverse repo: borrowing the bond and lending funds in a loan collateralized
by that bond.

Let us consider a typical overnight repo transaction for a 1-day hold-
ing (buy at T/sell at T + 1) of a UST bond; longer holding periods can
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conceptually be reduced to this case via a series of 1-day holding periods,
where the bond position is closed out and reopened at same price on each
intermediate date. Of course, if the plan is to hold the bond for a period
longer than one day, then one can finance it in a term repo transaction.

On trade date T, a dealer buys a UST bond from Bank A for the gross
price of P(T) for settlement T1 = T + 1, which means that the transaction
has to be settled by 3 p.m. (when the Fed-Wire closes) on T1. On the morning
of T1—typically before noon for cash/same-day settle to secure funds by that
day’s 3 p.m.—the repo desk will fund this position by selling/delivering the
bond as collateral for an overnight [T1, T2 = T1 + 1] loan for P(T∗

1 ) to a
repo counterparty, while simultaneously agreeing to buy the bond back on
T2 for P(T∗

1 ) × (1 + r/360). The repo rate r is the financing cost of this
bond and follows the money market convention in each currency, Act/360
in USD. Notice that the amount owed to Bank A P(T) on T1-settlement
does not necessarily equate the amount of funds secured by the repo desk
P(T∗

1 ) for that time, resulting in residual cash balance, P(T∗
1 ) − P(T), which

is typically funded at some rate rCash different than the repo rate r . After a
1-day holding period, on T1 the dealer closes out the position by selling it to
Bank B for the gross sale price of P(T1), to be settled at T2.

The sequence of cash flows on the opening leg, settled on T1 by 3 p.m.
are as follows: Receive bond from Bank A, Deliver cash P(T) to Bank A,
Receive cash P(T∗

1 ) from repo counterparty in exchange for delivering bond
as collateral. The sequence of cash flows on the closing leg, settled on T2 by
3 p.m. are as follows: Pay P(T∗

1 ) × (1 + r/360) to repo counterparty, receive
bond (collateral) back, deliver bond for P(T1) to bond-buyer (Bank B), and
clear the residual cash balance

[P(T∗
1 ) − P(T)] × rCash/360

resulting in a net P&L of:

Daily P&L = [P(T1) − P(T)] − P(T∗
1 ) × r/360

+ (P(T∗
1 ) − P(T)) × rCash/360

If only the purchase price is financed, P(T) = P(T∗
1 ), then the daily P&L

becomes

Daily P&L = [P(T1) − P(T)] − P(T) × r/360

that is, the net of the capital gains, P(T1) − P(T), versus the (repo) financing
cost. In practice, since the residual cash term—even if the amount borrowed
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is not exactly the purchase price—is very small compared to the other terms,
it is usually ignored, and the previous simplified equation is considered as
the daily P&L of a bond.

In a repo transaction, the terms seller, buyer, lending, borrowing can
be confusing. The best way to remember is to follow the security (bond) at
the opening leg of the transaction. After buying a bond, it is funded in a
repo transaction by selling, lending it, and receiving cash. As such, the bond
buyer becomes the repo-seller. Conversely, after a short sale of a bond, one
has to buy, borrow, reverse-in the bond from a bond-lender in exchange
for lending them cash. Hence, the expression “Lend Low, Borrow High”:
When lending the bond and receiving cash, the lower the repo rate, the
better; when borrowing (reversing-in) the bond and lending cash, the higher
(reverse-)repo rate, the better.

Example 5. Continuing with U.S. Treasury CT2, let a leveraged investor buy
$100M face of the bond at a clean price of P = 100 − 02+, on trade date
Tue, 2-Oct-2007, so he owes $100,110,911.89 to the seller by 3 p.m. on
settlement date Wed, 3-Oct-2007. On Wed morning, when the repo trader
is looking to fund this position, let us assume that the bond has increased in
value and is trading at clean price of 100-05, and the repo trader funds the
$100M position overnight (Wed night) in a cash (same day) settlement repo
agreement at a repo rate of 3.4%. The gross price based on Wed clean price
100-05 for Wed settlement (not Thu, since cash-settlement on repo) is:

$100M × [(1 + 0.05/32) + 3/183 × .04/2] = $100,189,036.89

By 3 p.m. on Wed, $100M face of the bonds are received for payment
of P(T) = $100,110,911.89, and then delivered to repo counterparty in
exchange for a loan of P(T∗

1 ) = $100,189,036.89, incurring a positive cash
balance (overborrowing) of $78,125. Let the overnight cash rate applied to
this balance be the Fed-Funds rate, say 3.50%.

During the trading day on Wed, assume the bond is increasing in price,
and the leveraged investor decides to sell the $100M face of the bond at
clean price of 100-08, for Thu, 4-Oct-2007 settlement. The gross price to
be received on Thu 4-Oct-2007, by 3 p.m., is

$100M × [(1 + .08/32) + 4/183 × .04/2] = $100,293,715.85

On Thu by 3 p.m., the repo counterparty delivers the bonds back, receives

$100,198,499.18 = $100,189,036.89 × (1 + .034/360)
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and the bonds are then delivered to the buyer after receiving
$100,293.715.85. The capital gains are:

$100,293,715.85 − $100,110,911.89 = $182,803.96

while the repo financing cost is $9,462.30, and the interest on positive cash
balance is $7.60, resulting in 1-day P&L of $173,349.26 = $182,803.96 −
$9,462.30 + $7.60.

FORWARD PRICE/Y IELD, CARRY, ROLL-DOWN

The price-yield formulae were based on spot (T + 1 for U.S.) transactions. If
instead one wants to agree on a Forward Price today, but take ownership of
a bond at a later (forward) date, one is entering into a forward transaction.
Since the forward price has to be set today, one resorts to a cash-and-carry
argument to arrive at the fair forward price.

The forward seller can conceptually buy the bond today, finance it to the
forward delivery date, and deliver the bond to buyer, receive the previous
agreed-upon forward price, settle the financing cost, and be free. Also, if
there are any coupon payments before the forward date, then a (fair) seller
needs to future-value these coupon payments to the forward date. Hence the
fair forward price, FP, of a bond is:

FPDirty = PDirty + Financing cost − FV(Coupon Income)

As bonds are usually financed via repo markets, the future value of any
coupon income is calculated using the repo rate, r . Hence, for UST bonds,
we have:

FPDirty(TFwd) = PDirty × (1 + r
TFwd − Ts

360
) −

M∑
i=1

C
2

(1 + r
TFwd − Ti

360
)

where T1, . . . , TM are the payment dates of the intermediate coupons (if any)
from the settlement date Ts to the forward date TFwd.

The forward yield is the implied YTM of the forward price using the
forward settlement date.

The price carry (sometimes called dollar-carry, or just carry), is the
difference between the current (spot) clean price and the forward clean
price:

Price Carry = PClean − FPClean(TFwd)
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while the yield carry (again sometimes just called carry), is the difference
between the forward and spot yields:

Yield Carry = Forward Yield − Spot Yield

Example 6. Continuing with UST CT2 with P = 100 − 02+, y = 3.95866%
with gross price of 100.11091% as of the spot settlement date 3-Oct-2007,
let us compute its forward price/yield 6 months forward, for forward set-
tlement date 3-Apr-2008, using an Act/360 repo rate of 3.75%. Note that
there is a coupon payment on 31-Mar-2008 between the spot and forward
settlement dates. We have

FPDirty(3-Apr-2008) = 1.001109119 ×
(
1 + 3.75%

N1

360

)
− 4%

2

(
1 + 3.75%

N2

360

)

= 100.018651%

where N1 = 183 is the number of days from spot to forward settlement
dates, and N2 = 3 is the number of days from next coupon date to for-
ward date. On the forward date, the accrued interest would be for 3 days
(31-Mar-2008 to 3-Apr-2008), out of 183 days (31-Mar-2008 to 30-Sep-
2008) and is computed as

w f = 4%
2

3
183

= 0.032787%

leading to the forward clean price of

FPClean(3 − Apr − 2008) = FPDirty(3 − Apr − 2008) − w f = 99.985864%

and forward yield of 4.00963%.

If there are no intermediate coupon payments between settlement date
and forward date, we can simplify the general forward price formula as:

FPClean(TFwd) = PClean + r
TFwd − Ts

360
− C

m
TFwd − Ts

D

where D is the actual number of days in the current coupon period.
If the yield carry is positive, then one can buy the bond spot, finance it

in repo to forward date, and as long as its actual yield on the forward date
is lower than the forward yield, one can close out the position by selling the
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bond for a net profit. Hence, the yield carry is a measure of the cushion in
yield movements (from spot) for a long position in this bond to be profitable.
A high positive carry is a signal that yields have to move by a lot from their
spot (today’s) values before a long position in a bond loses money. Note
that when analyzing carry strategies, one should focus on yield rather than
price carry as the latter ignores the pull-to-par effect.

In general, for a positively sloped yield curve where spot yields are higher
than repo rates (after adjusting for the difference in their quote convention,
Act/Act vs. Act/360), purchasing a bond and earning the higher yield while
financing it via the lower repo rate leads to positive carry. This investment
strategy is sometimes called “riding the yield curve” which in essence is
equivalent to betting against the forward yields: the ride is profitable if
future yields turn out to be lower than what was implied by the forwards.

Yield carry is sometimes called the amount of unfavorable parallel shift
in the yield curve before one loses money. This is not exactly correct, since it
ignores the roll-down effect, that is, it ignores the fact that the bond on the
forward date has a shorter maturity than when bought today. Therefore one
is comparing the spot yield of a longer bond to the forward yield of a shorter
bond. To compare apples to apples, one then computes the yield roll-down
(sometimes just called roll-down) as the difference between spot yield of the
bond, to the spot yield of another bond whose maturity is shorter by the
length of the investment horizon (Forward Date - Spot Date):

“n” − Month Roll-Down = y(T) − y(T − “n”-Months)

where T is the maturity of the bond under consideration, and y(T) its YTM.
The amount of parallel shift protection is the sum of yield carry and yield
roll-down.

Example 7. Continuing with U.S. Treasury CT2 with clean price quoted at
P = 100 − 02+, y = 3.95866% on trade date 2-Oct-2007, and settlement
date 3-Oct-2007, let us compute its forward price/yield 3 months forward,
for forward settlement date 3-Jan-2008, using a repo rate of 3.5%, quoted
Act/360. Since there is no intermediate coupon between settlement date and
forward date, we can compute the forward clean price as

FPClean(3-Jan-2008) = PClean + 3.5%
N

360
− 4%

2
N
D

where N is the actual number of holding days (3-Oct-2007 to 3-Jan-2008),
and D is the number of days in the current coupon period (30-Sep-2007 to
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31-Mar-2007). We get N = 92, D = 183, and

FPClean(3-Jan-2008) = 1.00078125 + 3.5%
92

360
− 4%

2
92

183
= 0.99967105

leading to a forward yield of 4.01678%. The price carry is 0.11102% or
3.55 ticks, and the yield carry is 5.81 bp’s. If there was a bond today with
maturity 30-Jun-2009, with a yield of 3.92866% (3 bp’s lower), then the
3m-roll-down would be computed as 3 bp, for a total of 8.81 bp parallel
shift (carry + roll-down) protection.

A quick formula to estimate yield carry is

Forward Yield − Spot Yield ≈
(

Spot Yield − Repo Rate × 365
360

)
× �T

PV01 − �T
,

where �T is the length of holding period in years, and 365/360 is to convert
the Act/360 repo rate to Act/365 which is an approximation for Act/Act.
Applying this formula to Example 7, we estimate yield carry as

(
3.95866% − 3.5% × 365

360

)
× 0.25

1.898 − 0.25
= 6.22 bp

which is not that far from the correct value (5.81 bp’s). Note that in this
approximate formula, we need to use yields rather than coupon rates to
incorporate the pull-to-par effect.

Repo-Adjust ing Specia ls

When the repo rate for a certain treasury issue is different (typically lower)
than other treasury issues, it is said to be trading special. This is usually due
to high demand for a particular issue that has been shorted and needs to be
borrowed in a reverse-repo. Since the lender of the issue is borrowing money,
the extra demand for the particular treasury drives down the repo rate, and
he can pay a lower interest for temporarily availing the scarce treasury issue.
For all nonspecial treasury issues, their repo rate is the general collateral
(GC) rate.

Many investors demand to be invested in current treasuries (2y, 5y,
10y, . . .) and roll their holdings into a new current after each auction. There-
fore, current treasuries usually trade special until they are replaced by a new
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current, when they become the old issue. For example, since new 2y treasury
notes are issued every month, the current CT2 is replaced by a new issue in
1 month, and becomes the Old 2, and after another month becomes the Old
Old 2, double-old, and so on.

Issues trading special are generally bid up, and hence their yields are
lower than comparable nonspecial issues. For relative-value strategies, when
comparing yields of a special issue versus comparable non-special issues, the
yield can artificially appear to be lower. A common method to adjust for
its specialness is to repo-adjust its yield as follows: One first assumes that
after passage of some time, the issue will not trade special any more and
will join the GC pool. For example, it is plausible to assume that the current
CT2 will not trade special in 3 months when it has become the triple-old
2y. With this assumption, one computes the 3m-forward price of CT2 using
its 3m special term repo rate, and then backs out an implied price today if
instead one had used the 3m GC term repo rate. The resulting price is then
converted to yield, and is called its repo-adjusted yield.

Example 8. Continuing with U.S. Treasury CT2 with clean price of P =
100 − 02+, y = 3.95866% for settlement date 3-Oct-2007, its forward
price for forward settlement date 3-Jan-2008, using a repo rate of 3.5%
is 0.99967105 (y = 4.01678%). If the 3m GC rate is 3.75%, we can back
out its today’s clean price that would give the same forward price:

PClean = 0.99967105 − 3.75%
92

360
− 4%

2
92
183

= 1.000142

resulting in repo-adjusted yield of 3.99233%, which is 3.37 bp higher than
its unadjusted yield (3.95866%). A quick and dirty way of getting a ball-
park estimate for the adjustment is

Yield Adj. ≈ (GC Rate − Special Rate) × 365
360

× Holding Period (yrs)
PV01

= (3.75% − 3.50%) × 365
360

× 0.25
1.898

= 3.43 bp



CHAPTER 2
Swaps: It’s Still

About Discounting

Aplain-vanilla fixed-for-floating Interest Rate Swap (IRS) is an over-the-
counter (OTC) agreement between 2 counterparties to periodically ex-

change interest payments on a hypothetical loan, where one counterparty,
the fixed-rate payer, pays a periodic fixed coupon, while the other counter-
party, the floating rate payer, pays a variable amount that periodically resets
on a benchmark interest rate index, for example, 3-month London Interbank
Offered Rate (Libor) for USD, which is considered to be the funding index
for banks. As opposed to a bond, each counterparty only pays the interest
payments on the hypothetical loan, and no principal payment is made either
at the beginning or end of the swap, hence the name interest rate swap.
Figure 2.1 shows the cash flows of a simple 1-year USD swap with
fixed-rate C.

When talking about plain-vanilla fixed-for-floating swaps—swaps from
now on—the point of reference is the fixed rate. If one is receiving the fixed
rate (floating-rate payer), one is said to be receiving in a swap or simply
receiving. Similarly if one is the fixed-rate payer, then one is paying in a
swap, or simply paying. Receiving in a swap is akin to being long a bond,
since one is receiving a coupon and paying periodic financing (3m-Libor
rather than overnight or term repo). Similarly, paying in a swap is akin to
being short a bond.

The stream of cash flows made by each counterparty (fixed/floating
payer) is referred to as a leg, and a swap’s cash flows are considered to be
made up of a fixed leg and a floating leg. For each leg of a swap, the first/last
date that interest begins/ends accruing is called the effective date and
maturity date respectively. Commonly both legs of a swap have the same
Effective and Maturity dates, and these are then referred to as the swap’s
effective/maturity dates. Also the interest payments are based on hypothet-
ical loans with same principal, referred to as the notional of the swap.
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F IGURE 2.1 Simplified Cash Flows of a 1y USD Swap

Each leg of a swap is comprised of contiguous calculation periods, so
a 1y USD swap has 2 semiannual calculation periods on the fixed leg, and
4 quarterly calculation periods on the floating leg. To value an IRS, one
needs to compute the net PV of the fixed and floating legs. While this is
straightforward for the fixed leg as it is a series of known cash flows, pricing
the floating leg seems to require forecasting the unknown payment, and then
discounting it to today. We shall soon see that this is not the case, and an
IRS can be priced without resorting to forecasting future interest rates.

DISCOUNT FACTOR CURVE, ZERO CURVE

As in any other fixed-income product, pricing a swap boils down to dis-
counting the series of future cash flows for each leg. As opposed to a bond
where the PV of all cash flows are related to a single yield by making a
flat yield assumption, in Swap-land the term structure of interest rates is
respected, that is, it is recognized that deposits for different terms/maturities
earn different interest rates, and there is no single interest rate or yield-to-
maturity that is applicable to all cash flows. The collection of interest rates
for all different terms is referred to as the term structure of interest rates,
and is typically represented as a curve, showing the dependence (graph) of
interest rates versus maturity.

The purest way of representing the term structure of interest rate is via
a discount factor curve that reflects the counterparties’ funding. Let D(T)
denote the present value of a dollar to be received in time T ≥ 0 based on
our financing. Then D(0) = 1, and as long as interest rates cannot become
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negative, D(·) is a nonincreasing function—a dollar earlier is better than a
dollar later—that is, dD(T)/dT ≤ 0

(0 ≤ T1 ≤ T2) 1 = D(0) ≥ D(T1) ≥ D(T2)

Other names for this curve are zero-coupon bond price (ZCBP) curve,
discount curve, and discount function. Once we have this curve, we could
in principle price any stream of known (and some unknown!) future
cash flows.

While quite useful and necessary for pricing future cash flows, a specifi-
cation (or a graph) of the discount curve does not reveal much to the naked
eye. For example, knowing that the price of a 1-year dollar is 95 cents
(D(1y) = 0.95), and D(2y) = 0.90, does not say much about the relative
attractiveness of these prices. Consequently, we measure the rate of return
of these 2 investments by computing their yield-to-maturity. The price of
a T-dollar is D(T), or equivalently, a dollar invested today will be worth
1/D(T) at future time T. Assuming periodic compounding of m times a year
(semiannual m = 2 for U.S.) at a constant reinvestment yield y(T), we have:

(1 + y(T)/m)mT = 1/D(T)

The yields y(T) are called the zero rates. Massaging the previous equation
gives

D(T) = 1
(1 + y(T)/m)mT

⇔ y(T) = m(D(T)
−1
mT − 1)

Therefore, for USD (m = 2), D(1y) = 0.95 is equivalent to y(1) =
5.19567% and D(2y) = 0.90 implies y(2) = 5.33802%, so a 2-year invest-
ment has a higher return than a 1-year investment. A graph of y(T) versus
the maturity T is called the zero curve.

As we increase the compounding frequency, we get continuously com-
pounded zero rates:

D(T) = lim
m→∞

1
(1 + y(T)/m)mT

= e−Tyc(T) ⇔ yc(T) = − 1
T

ln D(T)

FORWARD RATE CURVE

While the zero curve gives good information about the market average rates
from today to any future date, one can extract even more information from
it (or the equivalent of the discount curve) via forward rates. A forward
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rate-lock agreement is an agreement for a loan starting in the future, but
with the interest rate of the loan agreed upon today. If both counterparties to
the loan agree on some rate, and shake hands on the loan with no exchange
of money today, that rate is called the break-even or forward rate. One
might think that in order to come up with it, we ought to have a good idea
as to what the future interest rates would be. After all, if we agreed to some
rate today and in future the prevailing interest rates were very different,
one side would be very happy, while the other side would feel foolish, and
unemployed.

Before losing all hope though, we can appeal to a simple replication
argument to compute forward rates. Specifically, assume that the underlying
future loan is for the period [T1, T2] in the future, and the interest is computed
on a simple basis. Starting with $1 today, it will be worth F V(T1) = 1/D(T1)
at T1, which can then be reinvested at the locked rate f ([T1, T2]) until T2, so
the terminal value of $1 investment is

1/D(T1) × (1 + f ([T1, T2]) × �T)

at T2, where �T is the duration of the loan period in years according to
the rate’s day-count. Alternatively, a $1 investment can be guaranteed to be
worth F V(T2) = 1/D(T2) at T2. Lack of arbitrage requires that these should
be worth the same amount in the future:

1
D(T1)

× (1 + f ([T1, T2]) × �T) = 1
D(T2)

or equivalently,

D(T2) = D(T1) × 1
1 + f ([T1, T2]) × �T

leading to the following formula for simple forward rates:

f ([T1, T2]) = D(T1)/D(T2) − 1
�T

A similar argument leads to

fc([T1, T2]) = ln(D(T1)/D(T2))
�T

if the rate fc is quoted with continuous compounding.
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For a given tenor/term, �T, say 3 months, a graph of f ([T, T + �T])
versus T, is called the forward-�T rate curve.

If there is no uncertainty about future interest rates, say if God came
and told us what the 3-month financing rates would be in 3 months and
every 3 months thereafter, then the forward-3m rates have to equal these
God-given known rates. If not, for any quarterly period, one would borrow
at the lower rate (whichever one: locked rate or God-given rate), and lend
at the other (higher) rate, creating a sure profit. The forward rate curve then
is the implied path of short-term rates if interest rates are deterministic.

In the presence of uncertainty, the realized future interest rates can differ
from the previously-locked forward rates. For realistic (random) interest
rates, the forward rate curve can still be interpreted as the expected future
interest rates; however, this interpretation is only a first-order understanding
of them, and further qualifications need to be made.

Forward Rates and Discount Factors

We saw that knowledge of the discount factor curve determines all forward
rates. Conversely, given a sequence of forward rates spanning a series of
dates 0 = T0 < T1 < T2 < . . . , one can iteratively use the above relationship
to compute discount factors: D(T0) = D(0) = 1,

D(Tn+1) = 1 × 1
1 + f ([T0, T1])�T0

× · · · × 1
1 + f ([Tn, Tn+1])�Tn

=
n∏

i=0

1
1 + f ([Ti , Ti+1])�Ti

�Ti = Ti+1 − Ti

using simple rates, or

D(Tn+1) = e

−
n∑

i=0

fc([Ti , Ti+1])�Ti

for continuously compounded forward rates. Once again, the Forward Rate
curve and the discount factor curve are interchangeable, and knowledge of
one completely determines the other.

Instantaneous Forward Rates

If we let the period of a forward loan go to zero, we can compute the
instantaneous forward rate, f (T). Starting from simple forward rates,
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we have

f (T) ≡ lim
�T→0

f ([T, T + �T])

= lim
�T→0

D(T)/D(T + �T) − 1
�T

= − lim
�T→0

1
D(T + �T)

× D(T + �T) − D(T)
�T

= − 1
D(T)

dD(T)
dT

= − d
dT

ln D(T)

We could get the same result if we started from continuously compounded
forward rates:

f (T) ≡ lim
�T→0

fc([T, T + �T])

= lim
�T→0

ln(D(T)/D(T + �T))
�T

= − lim
�T→0

ln D(T + �T) − ln D(T)
�T

= − d
dT

ln D(T)

Discount factors can be recovered from instantaneous forward rates via:

D(T) = e− ∫ T
0 f (u)du

Using this, we can relate instantaneous forward rates to continuously com-
pounded zero rates, since D(T) = e−Tyc(T):

f (T) = − d
dT

ln D(T)

= d
dT

(Ty(T))

= y(T) + T
dyc(T)

dT
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or equivalently,

yc(T) = 1
T

∫ T

0
f (u)du

From the above, we observe that zero rates are the average of forward rates.

PAR-SWAP CURVE

With the forward rates in place, we are now ready to tackle swap valuation.
Focusing on the 1y swap shown in Figure 2.1, we can easily price the fixed
leg, as the fixed-payer makes 2 known semiannual payments C/2 with per
unit notional with payments in 6 months, and 1 year’s time. Armed with a
discount function D(T), it is easy to evaluate the fixed leg per unit notional
(T2 = 6m, T4 = 1y):

PV(F ixedLeg) = C/2 × (D(T2) + D(T4))

The obligation of the float-payer and its valuation are more complex. The
1-year duration of the swap is divided into four quarterly calculation peri-
ods, {[Ti , Ti+1]}3

i=0 where 0 = T0 < T1 = 3m < T2 = 6m < · · · < T4 = 1y. At
the beginning of each calculation period, [Ti , Ti+1], the prevailing 3-month
floating index L3m(Ti ), is determined (rate-fixing), accrued for 3 months,
and paid at the end of that period (Ti+1). Specifically, at Ti+1, the float-payer
pays L3m(Ti )/4 which we recognize as the interest component of 3-month
forward loan at rate L3m(Ti ).

If the floating index reflects the swap counterparties’ funding rate, one
can replicate this interest-only portion by ensuring that one owns unit cur-
rency at Ti , and owes unit currency at Ti+1. In this case, one can invest the
unit currency at Ti at the prevailing 3-month rate, L3m(Ti ), and use the pro-
ceeds, 1 + L3m(Ti )/4, as follows: pay L3m/4 to settle the floating obligation,
and pay the unit principal to whom he owed unit at Ti+1. Therefore, the
economic value of the floating payment is D(Ti ) − D(Ti+1), and the value of
the floating leg can be computed as:

PV(F loatLeg) =
3∑

i=0

(D(Ti ) − D(Ti+1))

= D(T0) − D(T4)

per unit notional. Note that with this static replication, we do not need to
know (or care) what the future interest rates will be!
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Putting it all together, the value to the receiver of a 1-year swap is

PV(Swap) =
[

2∑
i=1

C/2 × D(T2i )

]
− (D(T0) − D(T4))

per unit notional, while the value to the payer is the negative of the above.
In general, the value of the fixed leg of N-year swap with annual fixed-

rate C paid m times per year, with effective date T0, maturity date TNm and
payment dates T1 < · · · < TNm is:

C ×
Nm∑
i=1

αi D(Ti )

where αi = α(Ti , Ti+1) is the length of each calculation period in years, ac-
cording to the specified day-count for the fixed leg (for USD swaps (SA,
30/360), αi = 1/2). The value of the floating leg is D(T0) − D(TNm), giving
the following formula for the value of a receiver swap:

[
C ×

Nm∑
i=1

αi D(Ti )

]
− (D(T0) − D(TNm))

per unit notional.

Par-Swap Rates

A par-swap is a swap whose value today is zero, and the par-swap rate
is the fixed rate of this swap. For a swap with effective date T0, maturity
date T, since the value of the floating leg is simply D(T0) − D(T), we form
the calculation periods for the fixed leg, {T0, . . . , TM = T} to compute the
par-swap rate, S(T0, T), as the fixed rate that makes the value of the swap
zero:

S(T0, T) = D(T0) − D(T)∑M
i=1 αi × D(Ti )

A graph of S(0, T) versus maturity T is called the par-swap curve.
A typical swap is spot-starting: (T0 = 0). If its effective date is in the

future, T0 > 0, then it is a forward swap, and its par-swap rate is called the
forward (par) swap rate.
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By letting the fixed frequency go to infinity, in the limit, we get

lim
m→∞ S(T0, T) = D(T0) − D(T)∫ T

T0
D(u)du

Swap = Bond–Par Floater

The reason for calling a swap with zero value a “par swap” is as follows:
For a spot starting (T0 = 0) par swap, note that by rearranging the preceding
equation, we have

1 =
M∑

i=1

S(0, T) × αi × D(Ti ) + D(T)

The right-hand side is the value of a T-maturity coupon bond with coupon
rate S(0, T), where the cash flows are discounted by a series of differ-
ent spot/zero rates—D(Ti ) = 1/(1 + y(Ti )/2)2Ti for semiannual zero rates—
rather than assuming a single constant yield-to-maturity y. So, S(0, T) is the
coupon rate of a par-bond, that is, par-coupon rate, with discounting along
the curve rather than flat.

The receiver in a swap is therefore economically long a fixed-coupon
bond at par. Hence, an N-year swap is similar to an N-year bond, with
similar duration characteristics. When a swaps’s fixed rate is the same as
market par swap rates, its value is zero, similar to the bond being worth par
if its coupon rate is the same as market yields. Par-swap rates are analogous
to bond YTMs.

Swap Leg’s F loat ing Payment

As long as the floating index is the same as swap counterparties’ funding
index, since the funding index can be locked at the forward rate, we can
replace its unknown future value by its locked forward value. Simple algebra
shows that

PV(FloatPayment) = D(Ti ) − D(Ti+1)

= (D(Ti )/D(Ti+1) − 1) × D(Ti+1)

= D(Ti )/D(Ti+1) − 1
−�Ti

× (�Ti ) × D(Ti+1)

= f ([Ti , Ti+1]) × (�Ti ) × D(Ti+1)
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Therefore, in order to value the floating leg’s payments, it mathematically
suffices to assume that its unknown floating rate is equal to the forward rate,
accruing it for �Ti , and discounting this assumed cash flow by D(Ti+1).
This is the usual practice, and is referred to as discounting the forwards.
For this method to work, one has to ensure that the floating index’s tenor
and day-count exactly match the floating payment’s—true for plain-vanilla
swaps. For other swaps, this method fails and only provides a first-order
approximation, requiring further adjustment to arrive at the correct value.

CONSTRUCTION OF THE SWAP/L IBOR CURVE

We have seen that as long as the floating index is the same as our funding
index (driving our discount function), all we need is the discount curve D(T)
to price swaps and calculate swap rates. It would be nice if the market quoted
D(T) directly, saving market participants a lot of grief. Sadly, it is not the
case. Note that we would like to have the daily discount factors for a good
number of years, say 30 years, amounting to about 10,000 daily prices. In
reality, at each point of time, there are active and liquid markets for at most
40 to 50 instruments that provide information about our funding index:
cash and forward rates (FRAs), futures contracts, par-swap rates. From
these input instruments keyed to our funding index, we need to extract their
associated 10,000 discount factors! Obviously, the solution is not unique,
and there are many ways of skinning this cat.

Bootstrap Method

A standard method of constructing the curve is to bootstrap: Arrange the
traded instruments into increasing maturity, and starting with the shortest
maturity, derive the discount curve up to its maturity, and move on to the
next instrument. Since the next instrument may have cash flows that precede
the prior instruments’s maturities, we will use the already-constructed curve
for these, and estimate the remaining discount factors.

A simple example will be useful. Assume we are quoted the market rates
appearing in Table 2.1.

Starting with D(0) = 1, since the 3-month cash rate is quoted as 5%,
this implies:

D(3m) = 1
1 + 5%/4

= 0.98765
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TABLE 2.1 Inputs for Bootstrap Method

3m Cash Rate 5%

f ([3m, 6m]) 5.1%
f ([6m, 9m]) 5.2%
f ([9m, 1y]) 5.3%

2y Swap Rate 5.4%
3y Swap Rate 5.5%

Recalling the relationship between discount factors and simple forward
rates, we can recursively generate D(6m), D(6m), D(1y):

D(6m) = D(3m)/(1 + 5.1%/4) = 0.97522

D(9m) = D(6m)/(1 + 5.2%/4) = 0.96271

D(1y) = D(9m)/(1 + 5.3%/4) = 0.95012

The 2-year semiannual par-swap rate is quoted as 5.4%. Relating this
to discount factors we have:

5.4% = 1 − D(2y)
0.5(D(6m) + D(1y) + D(18m) + D(2y))

At this point, it might seem that we are stumped, since we have one equation
and 2 unknowns: D(18m), D(2y). In a sense we are, since as we pointed out,
we are trying to estimate daily discount factors (in this case for 3 years,
so about 1000 of them) from a handful (6) of quoted rates. Invariably, we
have to use some interpolation scheme. A simple interpolation candidate
would be linear interpolation in discount factors. In this case, D(18m) =
1/2(D(1y) + D(2y)), resulting in a single equation and a single unknown
D(2y):

5.4% = 1 − D(2y)
0.5(0.975 + 0.950 + 0.5(0.950 + D(2y)) + D(2y))

which after a little algebra gets us D(2y) = 0.89879, and D(18m) =
1/2(D(1y) + D(2y)) = 0.92445.

Continuing along in the same vein, we have

S(3y) = 5.5%

= 1 − D(3y)
0.5(0.975 + 0.950 + 0.924 + 0.898 + 0.5(0.898 + D(3y)) + D(3y))
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TABLE 2.2 Resulting DFs, Zero Rates, Swap Rates, and Forward-6m Rates for
Bootstrap Method

Maturity Discount Factor Zero Rate Par-Swap Rate Fwd-6m Rate
T (years) D(T) SA, y(T) SA, S(T) f([T,T+6m])

0 1.00000 5.08187%
0.25 (3m) 0.98765 5.03125% 5.18315%
0.5 (6m) 0.97522 5.08187% 5.08188% 5.28445%
0.75 (9m) 0.96271 5.13250% 5.42438%
1 0.95012 5.18314% 5.18184% 5.55222%
1.5 0.92445 5.30609% 5.30199% 5.71076%
2 0.89879 5.40718% 5.40000% 5.63691%
2.5 0.87415 5.45311% 5.44480% 5.80039%
3 0.84951 5.51095% 5.50000%

which gets us D(3y) = 0.84951, and D(2.5y) = 1/2(D(2y) + D(3y)) =
0.87415. Table 2.2 summarizes the resulting discount factors, and zero,
par-swap, and forward-6m rates.

Interpolat ion Methods

The above interpolation method (linear in discount factors), while simple,
is one of the worst interpolation methods. The metric used to make this
assessment is to look at the graph of implied 1-day or 3-month forwards.
This graph is discontinuous, and highly jagged, forcing one to forecast ex-
cessively high implied rates, followed by excessively low implied rates (see
Figure 2.3).

There are other simple methods that somewhat alleviate this problem.
One such method is linear interpolation in Tyc(T) = ln D(T), sometimes
referred to as log-linear or piece wise constant forwards or constant-daily-
forwards (CDF) method. This method is also minimum height, as it results
in the lowest short-term forward rates.

For any given T1 < T < T2, if we linearly interpolate in the Tyc(T) space,
we have:

(T1 < T < T2) Tyc(T) = T2 − T
T2 − T1

T1yc(T1) + T − T1

T2 − T1
T2yc(T2)

which, since D(T) = e−Tyc(T), implies

(T1 < T < T2) D(T) = D(T1)
(

D(T2)
D(T1)

) T−T1
T2−T1
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Since over each segment, Tyc(T) is linear, its derivative, the instantaneous
forward rate, f (T), becomes constant, and a graph of it versus T looks
like a staircase (with discontinuity at segment points). Forward rates of
longer tenor are averages of instantaneous forward rates, and also exhibit
this staircase behavior, albeit slightly smoother. Other methods are linear
interpolation in zero rates (yc(T)-space), which looks similar to log-linear
interpolation, or cubic spline interpolation in zero rates, which results in
short-term forwards that are smooth (3rd-order polynomials), since they
are derivatives of Tyc(T) where yc(T) is a cubic polynomial.

While the bootstrap method combined with an interpolation scheme
is the usual method to construct a discount factor curve, there are other
(global) methods that would fit a curve satisfying all the input constraints,
and fall into the category of constrained optimization methods. Among
these are minimum length methods that minimize the total variation of the
instantaneous forward curve and lead to a smooth curve. Another approach
is to posit a parametric shape for the forward, zero, or par-swap curve, and
optimize the free parameters according to some metric while satisfying the
input constraints either exactly, or within user-specified tolerances for each
constraint.

F low or Prop: Descript ive or Normat ive

The question usually arises as to which one is the “best” curve build method.
While it might seem that we should insist on a continuous and smooth
forward curve when building a curve and discard any discontinuous method,
it turns out that smooth methods result in nonintuitive hedges (see discussion
of partial PV01s in Chapter 3). Therefore, when selecting a method, one has
to decide on the right tradeoff between smoothness and the sensibility of
the prescribed hedges. Because each trader may have a different opinion on
where the right tradeoff is, there has yet not emerged a universally accepted
curve build method.

Another consideration in the choice of curve building is its target appli-
cation. For a market-maker or a flow-trading desk at a broker/dealer, the
source of profit is usually the bid-offer of traded instruments. For this group,
the market is always right, and the constructed curve has to completely fit
all traded instruments, even if one thinks that certain instruments trade rich
or cheap. This is also the requirement imposed by control groups within a
broker/dealer, so that each book is marked-to-market, so that the proper
liquidation value of a book can be ascertained (at least in theory). With this
constraint, the constructed curve has to be descriptive and perfectly fit the
market, whether rational or irrational.
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Another motivation when building a curve can be to determine the rel-
ative fair value of traded instruments. In this paradigm, not all instruments
need to fit exactly, and one requires an exact fit for a subset, while using the
difference between the modeled versus the market value as a rich/cheap trad-
ing signal. This normative view of curve construction is used by proprietary
traders because it aids in determining where an instrument should trade in
contrast to where it does trade relative to some benchmark instruments.

Which Curve to Focus On?

We have seen that the discount-factor curves, zero curves, forward rate
curves, and par-swap curves are all inter related, and knowledge of one
allows us to construct the other ones (with some interpolation if necessary).
Since a par-swap rate is effectively a weighted average of the forward rates
that cover the swap period, when constructing Libor curves, it is best to keep
the smoothness requirements on the forward rate curve: A smooth forward
rate curve implies an even smoother par-swap curve. At the extreme, one can
focus on a daily or continuous graph of instantaneous forward rates, and
require these to be smooth, or without implausible jaggedness or breaks.
More practically, one can set the smoothness criteria on the daily graph
of overnight forward rates, that is on the daily/daily forward rate curve.
As forward rates drive zero rates, which in turn drive swap rates, if the
daily/daily curve is smooth, then zero-rates are also smooth, and par-swap
rates even smoother.

A graph of, say daily-daily, forward rates provides good information
about other forward rates. As shown in Figure 2.2, if we want to consider
various rates, say as of 1y forward, then all we need to do is to focus on
today’s forward curve from 1y onward. By shifting today’s forward curve 1y
to the left, we arrive at 1y-forward curve. Starting from that curve, we can
then compute various (forward) swap rates. As shown—and this happens
quite often in practice—the forward curve as of any forward date is flatter
than today’s forward curve, which explains why curve steepeners are usually
implemented via forward swaps, as they provide better entry points.

A Comparison of Bootstrap Interpolat ion Methods

Regardless of curve build method, once we have the discount factor curve,
we can then calculate any forward simple and swap rates, zero rates, and so
on. As many of these (forward) rates are not directly quoted in the market,
each dealer can end up with a different rate depending on their curve build
method. This is illustrated in Table 2.3, where starting with the same market
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TABLE 2.3 Calculated Rates Due to Different Curve Build Methods

Linear Linear Cubic Spline
Rate Fwd Start DFs Log-Linear Zero Rates Zero Rates

3m Libor Spot 5.34003%
1m 5.32988% 5.33499% 5.33595% 5.33679%
3m 5.28472% 5.29691% 5.30549% 5.30320%
1y 5.03734% 5.03753% 5.03520% 5.03108%
5y 5.50086% 5.61922% 5.57882% 5.59013%
10y 5.60586% 5.90029% 5.84643% 5.90156%

1y Par-Swap Rate 1m 5.33041% 5.33289% 5.33524% 5.33350%
3m 5.27603% 5.27901% 5.28152% 5.27819%
1y 5.16746% 5.16460% 5.16121% 5.16331%
5y 5.73883% 5.73885% 5.73884% 5.73928%
10y 5.85160% 6.02845% 5.99703% 6.02457%

5y Par-Swap Rate Spot 5.40001%
1m 5.44203% 5.44490% 5.44389% 5.45123%
3m 5.40624% 5.41197% 5.41000% 5.41047%
1y 5.47118% 5.47065% 5.46985% 5.47044%
5y 5.87379% 5.87381% 5.87380% 5.87388%

10y 6.02774% 6.02823% 6.02818% 6.02835%
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inputs for the USD swap curve, we calculate different forward 3m-Libor and
swap rates depending on the interpolation method.

For example, note that “1y par-swap rate, 10y forward” can be cal-
culated to be anywhere between 5.85160% and 6.02845%—a variance of
almost 18 bp—depending on which interpolation method is used in boot-
strapping the curve.

The implied forward-3m rates due to different interpolation methods are
shown in Figure 2.3. As alluded to before, the forward rates can loosely be
considered as the expected value of future short-term interest rates. The U-
shaped forward-3m curve in the front end illustrates the market expectation
of declining interest rates (central bank easings) in the near future.



CHAPTER 3
Interest Rate Swaps in Practice

The previous chapter laid out the basic theory of pricing plain-vanilla
interest rate swaps. As we saw, swap valuation boils down to extracting

discount factors and using this discount factor curve to project and discount
the cash flows. In this chapter, we consider the details of swap markets in
practice using the USD market as our prime example.

In the United States, almost every major financial institution and cor-
poration uses interest rate swaps. Like any other market instrument, swaps
can be used for hedging or speculation. Commercial banks can use swaps to
match the duration of their assets (long-term fixed rate loans) to their lia-
bilities (short-rate deposits, CDs). Agencies use swaps and swap derivatives
to fine-tune and hedge the duration of their mortgage portfolios in response
to expected or realized prepayments, and for funding. Corporates typically
follow a debt issuance (typically fixed-rate bonds) by swapping these to float-
ing rates at opportune times (steep yield curves). Finally, speculators such
as hedge funds and proprietary trading desks use swaps to express views or
take advantage of level/slope/curvature of interest rate curves. Since swaps
are over-the-counter (OTC) instruments, they are quite flexible and can be
tailor-made to address one’s needs.

MARKET INSTRUMENTS

For the USD swap market, the benchmark floating index is the 3-month
London Inter-Bank Offered Rate (LIBOR), which is the prevailing 3-month
interest rate for dollar-deposits between London banks. The default settle-
ment date, also known as the Spot Date, is 2 London business days after
trade date, rolled forward if necessary to be a good New York and London
business day.

In order to construct a Libor discount factor curve (Libor curve), a
collection of the following input instruments are used.

43

Interest Rate Swaps and Their Derivatives: A Practitioner’s Guide 
by Amir Sadr 

Copyright © 2009 Amir Sadr 



44 CASH, REPO, AND SWAP MARKETS

Cash Deposit Rates, L ibor F ix ings

Every day, at 11:00 a.m. London time, the British Bankers Association
(BBA) polls various dealers for cash deposit rates for various terms:
Overnight (O/N), Tomorrow Next (T/N) (although no longer quoted),
1 week, 2 week, 1M, 2M, 3M, . . . , 12M, and publishes the resulting av-
erages for various currencies. When USD swaps are traded during the day,
these Libor fixings (rather than their live quoted values) are used to construct
the front end of the Libor curve.

For USD, all these rates are quoted simple (no compounding) Act/360.
The O/N rate is for a deposit starting on trade date to the next London
business day, while T/N (use O/N if not available) is for an overnight forward
deposit starting on the next London business day and ending 2 London
business days from trade date. These 2 rates provide the discount factor for
spot date.

The other deposit rates, 1wk, 2wk, 1m, . . . , 12m are for deposits starting
on the spot date for the corresponding term.

The typical BBA fixings used are O/N, T/N, and 3m, and to a lesser
degree 1m, 2m, 6m, rates. Other rates are rarely used.

FRAs

An n × m forward rate agreement (pronounced n-by-m FRA \’frä\) is an
agreement based on the economic value of a forward deposit starting n
months from today, and maturing m months from today, with the payoff
based on the difference between the actual “m − n”-month rate versus the
agreed-upon deposit rate K. So a 2 × 5 FRA is based on the 3m (forward)
rate, starting in 2m. At inception, the rate K is chosen so that the FRA has
zero value, that is, K is equated to the forward rate. A seasoned FRA has
positive or negative value, depending on how the fixed rate K compares to
the current market forward rate. The payoff of n × m FRA occurs at rate
fixing date—n-months from now—and uses the actual rate for fixing and
discounting (called “FRA discounting”). For example, if one owns a 2 × 5
FRA struck at K, the payment in 2 months is:

α × (L3m(2m) − K)
1 + α × L3m(2m)

per unit of notional, where α ≈ 1/4 is the length (Act/360) of the [2m,5m]
period.

While not as liquid as ED futures, FRAs are quoted and can be used as in-
put instruments to a Libor curve. One can think of FRAs as the basic building
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block for swaps. A swap is just a portfolio of FRAs, with the difference that
floating payments are paid at the end of each calculation period, while FRAs
pay the discounted value of this floating payment at the beginning: These
would be economically equivalent as long as the floating index matches the
funding cost. Another difference is that swaps typically have 1 fixed flow
for each 2 floating flows, for example, USD swaps are semiannual/quarterly
on fixed/floating legs. Modulo these differences, a swap is simply a portfolio
of FRAs, or equivalently a FRA can be considered as a single-period/reset
swap. The quote convention for FRAs is sometimes in reference to the float-
ing index: buying, selling a FRA is same as paying/receiving in the single
period swap.

Euro-Dol lar Futures

Euro-dollar contracts are exchange-traded derivative contracts traded in the
International Money Market (IMM) pit of the Chicago Mercantile Exchange
(CME, or “Merc”). Each contract settles on 2 London business days prior
to the third Wednesday of the contract month based on that day’s BBA
Libor fixing.

3m-Euro-dollar contracts settling on the last month of each quarter
(March, June, September, December) are actively traded and fairly liquid
for the first 3y of contracts (12 of them). Later contracts (up to 40, 10y out)
can be traded, but have diminishing liquidity. There are also 6 monthly 3m-
Euro-dollar contracts for the first 6 months, and also 12 monthly 1m-Euro-
dollar contracts, but these are not as liquid as “Quarterly 3m-Euro-dollar
Futures Contracts” (ED futures from now on).

Each ED is based on the interest payment of a hypothetical $1M
90-day deposit starting on the third Wednesday of quarter-end. A Euro-
dollar “tick” is the change in value of the contract due to a 1 bp change in
the implied interest rate:

1 tick = $25 = $1, 000, 000 × 0.0001 × 90
360

ED futures trade based on price, and have an implied futures rate (100-
Price). They are forward contracts and have 0 value at trade time. Other than
opening a futures (margin) account and posting initial margin, and paying
brokerage (about $1 per contract), no money is exchanged when trading
them. So if ED1 is trading at 95.00 (implied futures rate 5%), and you buy
100 contracts, you pay no money (except $100 for brokerage). However,
unlike true forward contracts (FRAs) which require no cash exchange until
expiration, ED contracts are cash-settled daily.
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At each day’s end, the Merc computes that day’s final settlement value
based on the markets at the close, 2 p.m. Chicago time. Every open position
will get cash-settled, akin to closing your ED position at settlement price,
and immediately initiating an identical new position. For example, having
bought 100 ED1 for 95.00, if that day’s settlement value is 95.10 (implied
rate of 4.90%), you have made 10 ticks, or $25, 000 = 100 × 10 × $25,
and this amount will be posted to your margin account. Until you close out
the position (sell 100 ED1), each day an amount equal to the daily move
(in ticks) times the number of contracts in your account is posted or taken
from your futures account. When you close out the position (sell 100 ED1),
the difference between the sale price and prior day’s settlement value is used
and posted/taken from your futures account.

ED futures are also referred to in colors. The first 4 contracts are called
whites, the next 4 reds, followed by 4 greens, 4 blues, 4 golds, 4 purples,
4 oranges, 4 pinks, 4 silvers, and 4 coppers. So ED5 is sometimes referred
to as first red, ED6 as the second red, ED9 as the first green, and so on.

A common trade is to buy/sell an ED pack: 1 contract in each series of a
specific color. Buying/selling 1 red pack means buying/selling 1 ED5, 1 ED6,
1 ED7, and 1 ED8. The PV01 of a pack is $100.

Trading an n-year ED bundle is the trading of the first 4 × n EDs. For
example buying/selling 1 2y bundle is buying/selling of 1 ED1, 1 ED2, . . . ,
1 ED8 contract. The PV01 of an n-year bundle has n × $100.

Packs and bundles are quoted based on change on day. For example,
“+3 (up 3) on day” means each contract in the pack is priced at prior day’s
close plus 3 ticks.

Future/Forward Convexity Adjustment

As stated, ED futures are not exactly forward rate contracts, as they
have daily mark-to-market settlement, while true FRAs do not. For FRAs
the P&L of the contract (the difference between the contracted value and
the realized value) is only paid at the final settlement date, and hence its
value today is the properly discounted value of this future settlement value.
In contrast, the P&L of the future contract, while based on the same for-
ward interest rate, is broken out into a series of daily P&Ls and paid daily
without discounting. Since interest rates are highly correlated (overnight
rates versus forward rates in our case), this daily settlement confers an ad-
vantage to a short position in the ED future contract, as he earns money
and gets to reinvest it daily at overnight rates when interest rates are high,
and loses money and hence has to borrow overnight money when interest
rates are low. This systematic advantage for a short position does not go
unnoticed by the market. The short is charged for this free lunch in the
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form of being required to sell the contract at a cheaper level than would
have otherwise been if it was a true FRA. Therefore, the implied rate in the
future contract (100 − price) is higher than the true forward rate, and this
difference is known as the future-forward convexity adjustment. The size
of convexity adjustment depends on the expected extra P&L of the short
position over the life of the contract, which in turn depends on the volatil-
ity of the rates, and requires a model to calculate it. In general, it can be
shown that the implied future rate is the expected rate at future’s settlement
(see Appendix B). A commonly used formula based on the Ho-Lee model is
as follows:

Implied Futures Rate − Forward Rate = 1/2σ 2
Nt2

for a future contract that settles in t-years, and has Normalized volatility
of σN. As can be seen, the effect of the convexity adjustment gets larger (t2

order) for later settlements, and this is one of the reasons that later contracts
(3-years and out) are less liquid, as their value depends on the proper model-
ing of the convexity adjustment. Armed with a convexity adjustment model,
one can construct a Libor curve purely based on a strip of ED futures, and
calculate par-swap rate from this curve. The resulting par-swap rate is called
the strip rate, and can be compared to quoted par-swap rates to potentially
take advantage of differences.

Stub Rate, Interpolated L ibor

The first ED future’s settlement is rarely 1m or 3m away. One usually needs
to obtain the discount factor for the ED1’s settlement, and some brokers
quote a stub rate, which is for a deposit starting on Spot Date, and maturing
on the ED1’s settlement date (2 London business days prior to the third Wed
of the contract month).

An alternative is to interpolate BBA’s Libor fixings to come up with the
stub rate. Assume that ED1 settles 45 days from Spot Date. In this case, we
can linearly interpolate 1M Libor and 2M Libor to come up with a plausible
stub rate.

Par-Swap Rates

Par-swap rates for various maturities are quoted and are used to construct
a Libor curve. In USD, the following maturities are quoted: 2y-10y, 12y,
15y, 20y, 25y, 30y. Longer par-swap rates (40y, 50y, 60y) are quoted
as spreads to 30y rates. Also, USD par-swap rates are typically quoted
as (swap) spreads to current treasuries with similarly quoted maturity
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(CT2, CT3, CT5, CT10, CT30), or interpolated treasury yields for other
maturities, though 12y spread is usually quoted as a spread to CT10. In
most other currencies, the swap rates are directly quoted, and not as spreads
to government yields. For 1y maturity, the swap rate is derived and cal-
culated from the money market futures (ED for USD). As the 1y point is
the cross over point between money market and capital markets, it is often
quoted with a different frequency and/or day-count basis than other rates,
so care needs to be taken when trading 1y swaps.

Regardless of the quote mechanics, one arrives at a series of par-swap
rates.

SWAP TRADING—RATES OR SPREADS

USD par-swap rates are quoted as spreads to benchmark current (on-the-
run) treasuries, and a typical broker swap screen is shown in Table 3.1, and
the graph of the swap rates or spread versus maturity is known as the Swap
and Spread curves, Figure 3.1. For example, a 2y spread market of 55-55.5
means that the dealer is willing to pay the yield of CT2 treasury, y2, plus
55 bp, and receive y2 plus 55.5 bp.

USD swaps can trade either as rates or spreads.

TABLE 3.1 A Typical USD Swap Broker Screen

Treasury Treasury Treasury Swap Swap
Cpn/Mat Price Yield (%) Spd (bp) Rate (%)

2y 4% 30-Sep-09 100-09/092 3.84235/3.84657 55/55.5 4.39235/4.40157
3y 4.5% 15-May-10 101-12/12+ 3.92275/3.92917 58/58.5 4.50275/4.51417
4y 3.99967/4.00376 60/60.5 4.59967/4.60876
5y 4.25% 30-Sep-12 100-242/24+ 4.07659/4.07835 65/65.5 4.72659/4.73335

6y 4.14498/4.14678 66/66.5 4.80498/4.81178
7y 4.21337/4.21521 67/67.5 4.88337/4.89021
8y 4.28176/4.28364 68/68.5 4.96176/4.96864
9y 4.35015/4.35207 69/69.5 5.04015/5.04707

10y 4.75% 15-Aug-17 102-19/19+ 4.41855/4.42050 70/70.5 5.11855/5.12550

12y 4.41855/4.42050 71.5/72 5.13355/5.14050
15y 4.42360/4.42551 74/74.5 5.16360/5.17051
20y 4.42865/4.43052 75/75.5 5.17865/5.18552
25y 4.43370/4.43554 77/77.5 5.20370/5.21054
30y 5% 15-May-37 109-05/06 4.43876/4.44055 80/80.5 5.23876/5.24555
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F IGURE 3.1 USD On-the-Run Treasury, Par-Swap, and Swap-Spread Curves

Trading in Rates

When one is trading rates, one is taking duration risk. For example, receiving
in $100M 2y-swap has similar risk of buying $100M 2y treasuries. In this
case, the inquiry should specify that swap rates are needed: “My client
wants to receive in $100M 2y swaps. Rates! Where will you pay?” Dealer
response: “Spreads are 55-55.5. With 2y treasury trading at 100-09/100-
092 (3.84235%-3.84657%), I will pay 4.39235% (=3.84235% + 55 bp).”
The reason that the dealer is using the offered side of the treasury (100-092
price, 3.84235% yield) is that he is paying in the swap, so he has short
duration risk. U.S. swap traders are not in the business of taking duration
risk (that belongs to the cash/treasury desk), only spread risk. As soon as
the trade is done, the trader will cover his short and buy treasuries, that
is, lift the offer of 100-092. This will leave him with spread risk, where
he is paying the bid side (55 bp) of the swap-spread market. With enough
2-way flows, he will try to pay the bid side of the swap-spread market, and
receive the offered side, and make a living out of the bid-offer spread (of the
swap-spread market).

Trading in Spreads

On the other hand, one can directly enter into a spread trade by entering
into a swap and simultaneously providing the treasury hedge.

Buying a spread is the simultaneous purchase of treasuries (called cash),
and paying in swaps. This is also called paying in spreads. Selling a spread
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is the simultaneous sale of treasuries, and receiving in swaps. This is called
receiving in spreads. To remember it, always recall that in a spread trade,
whatever you are doing to the treasury (buy/sell), you are doing to the spread
(buy/sell).

The amount of treasuries is adjusted so that the PV01 of the treasury
position (using the PV01 formula in Chapter 1) matches the PV01 of the
swaps. For example, let the 2y treasury trade at 100-09/100-092, with PV01
of $185.10 per $1M face. Also assume that PV01 of 2y swap is $189 per
$1M notional. A spread inquiry goes as follows: “My client wants to receive
in $100M 2y spreads. Where is your bid?” Dealer response: “2y spreads
are 55-55.5, this is a good client, I’ll bid/pay 55.1!” If the trade is done,
one agrees on the price of the treasury, let’s say 100-08+, compute the yield
(3.85501%) and compute the swap rate 4.40601%(= 3.85501% + 55.1bp).
One then calculates the PV01-equivalent amount of treasuries: $100M ×
189/185.10 = $102.107M face. The trade ticket will state that the client
sold $102.107M face of 2y treasury at the clean price of 100-08+, and
simultaneously the client is receiving 4.40601% in $100M 2y swaps.

Note that since the dealer is being provided with the treasury hedge, he
does not have duration risk, and the exact price of the passed-on treasuries
is not as critical as when trading rates. However, he does have spread risk,
expressed as Spread-PV01: $100M 2y-spread risk, or $18,900 (2y) Spread
PV01.

Interpolated Spreads

For swap maturities where an equivalent-maturity Current Treasury does
not exist, one uses an interpolated treasury yield, and quotes swap spread
relative to this interpolated yield. For example, a quoted 7y swap-spread
market of 67-67.5 bp is relative to 3/5y5 + 2/5y10 where y5, y10 are the
yields of the current 5y, 10y treasuries (CT5, CT10).

Let’s assume that the CT5 is trading at 100-242/100-24+ (4.07835%-
4.07659%) with a PV01 of $444.90 per $1M face. Also, let CT10 trade at
102-19/102-19+ (4.42050%-4.41855%) with a PV01 of $801.30 per $1M
face. Finally, let the PV01 of a 7y par swap be $589.70 per $1M notional.

A dealer will compute the 7y interpolated treasury yield market as
4.21337%-4.21521%. With 7y spreads trading at 67-67.5 bp, his mar-
ket when trading rates would be 4.88337%-4.89021%. If receiving in
$100M 7y rates, he will receive 4.89021% = 3/5 × 4.07835% + 2/5 ×
4.42050% + 67.5 bp = 4.21521% + 67.5 bp. In order to hedge himself,
he will then compute how much 5y and 10y treasuries he needs to
sell: $79.528M = $100M × 3/5 × 589.70/444.90 of CT5 at 100-242, and
$29.437M = $100M × 2/5 × 589.70/810.30 of CT10 at 102-19.
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If receiving in spreads, the dealer will quote 67.5 bp as his offer. When
the spread trade is done, one then fixes the 5y and 10y treasury prices that
will be sold to the client as the hedge, and computes the interpolated yield
from these prices. Let’s assume we use the offers: 100-24+ (4.07659% yield)
for CT5, and 102-19+ (4.41855% yield) for CT10. The interpolated yield
is then 4.21337% = 3/5 × 4.07659% + 2/5 × 4.41855%, and the dealer
will be receiving in 4.88837% = 4.21337% + 67.5 bp in $100M 7y swaps.
Simultaneously, he sells $79.528M CT5 at 100-24+ and $29.437M CT10
at 102-19+ to the client.

Swap Curve Trading

Similar to the treasury curve, one can express views or hedge exposure to
the slope (longer rate - shorter rate) of the swap curve via curve trades. For
2 given swap maturities, one can put on a steepener by buying the curve,
that is, receiving in the shorter-maturity swap and paying in the longer-
maturity, with the notional of each swap chosen so that each swap has the
same PV01. Similarly, one can put on a flattener by selling the curve: paying
in the shorter-maturity and receiving in PV01-equivalent amount of the
longer swap. For example, one can buy the 2’s/10’s swap curve by receiving
in $100M 2y swap and paying in $24.54M (= $100M × 7.62/1.87) 10y
swaps, where PV01(2y) = 1.87, PV01(10y) = 7.62 cents. In this trade, one is
immune to parallel moves in the swap curve, but is carrying $18,700-per-01
2’s/10’s curve risk. For each 1 bp steepening/flattening of the 2’s/10’s curve,
one makes/loses $18,700.

One can also trade curves forward. A forward swap curve steepener
trade consists of receiving in shorter-maturity forward swap while paying in
PV01-equivalent longer forward swap. For example a 1y-forward 2’s/10’s
steepener consists of receiving in a 2y swap, 1y forward, while paying in a
PV01-equivalent 10y swap, 1y forward.

SWAP SPREADS

In the USD swap market, swap traders are primarily trading swap spreads,
and hedge most of their duration risk, either with other swaps or with U.S.
treasuries. As such, they are mostly focused on swap spreads, and manage
that risk. To understand swap spreads, one has to remember that they pri-
marily represent the average credit spread of the Libor Panel—consisting
of the banks polled by BBA to determine its estimate of Libor—generally
thought to be equivalent to AA-, versus U.S. government credit. While many
explanations have been offered as to what drives swap spreads, they all come
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back to relative supply/demand of bank versus government credit. For ex-
ample, in the early 1990s government-sponsored agencies like Fannie-Mae,
Freddie-Mac, would hedge the duration mismatch in their mortgage port-
folios with U.S. treasuries, resulting in tightening swap spreads. When later
in the decade, they switched to use swaps, swap spreads in general widened.
Similarly, in a steep curve environment, corporates will swap their fixed-rate
debt (either existing or new issue) by receiving in swaps to take advantage
of lower short-term funding costs. This increased demand for receiving in
swaps results in tightening swap spreads. Another supply/demand driver
occurs when the government is running a deficit and issuing more debt via
U.S. treasuries: this results in the tightening of swap spreads. On the flip
side, during periods of economic turmoil and flight-to-safety, there is high
demand for U.S. treasuries, resulting in widening swap spreads. As noted,
all of these drivers boil down to relative supply/demand.

Another way to understand swap spreads is as the financing spread
between U.S. treasuries versus swaps, that is, Libor versus repo. The 2y
swap spread is the market’s expectation of the average UST repo versus
Libor rates for the next 2 years. This is the basic understanding of quoted
swap spreads, sometimes called headline spreads as they are the difference in
the yields of the current treasuries versus par-swap rates. As a given current
treasury, say CT10, is issued quarterly, it will remain current for 3 months,
while the 10-year par-swap rate is for a swap that matures in exactly 10 years
from trade date, headline swap spreads suffer from calendar roll-down and
abrupt shift on auction dates.

Matched-Maturity Spread

A similar measure of swap spreads is the Matched-Maturity (sometimes
called Yield-Yield) swap spreads, which measure the yield of a given treasury
security to the par-swap rate of a swap maturing on the same date as the given
treasury. When one buys/sells a matched-maturity spread, one buys/sell a
given treasury and pays/receives in PV01-equivalent amount of a swap with
the same maturity date. Therefore it is 2 trades, done as a package. When
dealing with short-term treasuries, say treasury bills or treasuries less than
2 years remaining maturity, instead of swaps, one can buy/sell a strip of ED
futures versus selling/buying the treasury. This yield spread is referred to as
the Treasury-ED (TED) spread, expressed usually as the semi-annual yield
of both (Treasury, ED) components.

Asset-Swap Spread

Another way of trading swap spreads is via asset-swaps where the swap
fixed leg’s payment and dates are required to match exactly those of a given
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bond, and an asset-swap spread is added to the Libor leg of the swap, with
either the notional of the floating leg matching the principal amount of the
bond, par-par asset swap, or the initial dirty price of the bond, Market Value
asset swap. In either case, the asset-swap spread is primarily the difference
between the funding level for the treasury, that is, its repo rate, versus Libor
until the maturity of swap/bond.

For example, if on trade date 2-Oct-2007, the U.S. CT2 with coupon rate
C = 4%, maturity 30-Sep-2009 is trading at clean price of P = 100 − 02+,
y = 3.95866%, with gross price of 100.11091% for settlement date 3-Oct-
2007, the cash flows of $100M CT2 on a asset swap are as follows:

1. On 3-Oct-2007, the buyer buys $100M CT2 from seller for either
$100M in Par-Par, or $100,110,910 in Market-Value asset swap.

2. The buyer passes on all received payments of the bond. On every
coupon date, 31-Mar-2008, 30-Sep-2008, 31-Mar-2009, 30-Sep-2009,
the buyer pays the received coupon ($2M = $100M × 0.04/2) to the
seller (receiver in swap), and also the principal $100M at maturity.

3. For each quarterly calculation period until maturity, the buyer re-
ceives “3m-Libor minus Spread” on $100M notional for par-par, or
$100,110,910 notional for market-value, with Libor fixed at beginning
of each calculation period and paid at end.

4. At maturity, the buyer receives the notional of the Libor leg: $100M for
Par-Par, or $100,110,910 for Market-Value in exchange for passing the
bond principal payment ($100M).

Note that in a par-par asset swap, the seller has to initially deliver the
bond for par, so she is making a loan of $110,910 to the buyer, while in
a market-value asset swap, the seller’s loan ($110,910) is shifted from up-
front to the maturity date of the swap. In either case, the asset swap spread
is solved for such that the PV of all these cash flows—including the up-front
or back-end loan—is zero when discounted off the swap discount curve.

For the duration of the swap, a leveraged investor has to finance $100M
CT2 at the prevailing overnight or term repo rate (plus variation margin)
versus receiving Libor-Spread. Therefore, an asset swap’s ongoing payment
are Libor-Spread versus repo. Said in another way, a leveraged buyer has
locked in Libor-Repo spread at the asset swap level, and benefits if the
realized spread payments turn out to be higher during the life of the swap.

Zero-Coupon Swap Spreads

The purest expression of swap spreads is the swap rate for a zero-coupon
swap versus the yield of a similar-maturity zero-coupon treasury bond, as
each instrument has a single cash flow, and hence their yield spread is just
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a measure of credit quality for the maturity point. A Zero-Coupon Swap
consists of a fixed and a floating leg, with both legs having a single (net)
payment at maturity. The floating leg is usually based on the benchmark
swap index, Libor-3m for USD, and the final payment is based on the
compounded interest of current and future Libor settings:

N0 × [(1 + L3m(0)/4) × (1 + L3m(3m)) × · · · × (1 + L3m(T − 3m)/4) − 1]

where T is the maturity of the swap, and N0 is the initial notional of the swap.
Similarly, the fixed leg’s single payment is based on the compounded interest
based on the quoted zero-coupon rate. For example, the fixed payment of
an N-year swap with semi-annual zero-coupon rate of Z is

N0 × [
(1 + Z/2)2N − 1

]

In practice, one has to specify the initial notional (N0) or final notional
(NF inal ) of the swap, related by

N0 × (1 + Z/2)2N = NFinal

The fixed leg’s single payment is then NF inal − N0 and is called the fixed
payment, paid at swap maturity (T).

Note that as long as our financing cost equals Libor-3m, then the present
value of the floating leg is

N0 − PV(N0 Paid at T)

In this case, since the par zero-Coupon rate is quoted so that the value of the
swap at inception is zero, it is simply a way of expressing the Libor discount
factor for T:

PV(Float Leg) = PV(Fixed Leg)

⇒ N0 = PV(NF inal paid at T) = NF inal × D(T)

⇒ 1
(1 + Z/2)2N

= D(T)

Z-Spread

Finally, another measure of swap spreads is the zero rate spread, most often
called z-spread. The idea is to apply a parallel shift to the Libor discount
curve so that the market (dirty) price of the bond is recovered if all the
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remaining cash flows are discounted using this shifted curve. The size of the
required parallel shift applied to the zero rates is the z-spread. Note that
to be precise, one has to pin down the quote convention of the zero rates
(compounding frequency, if any, and treatment of fractional years), so there
is no universal z-spread. Moreover, while popular with quants, z-spreads are
not traded: they are merely a (and yet another) measure of swap spreads,
and often provide pretty much the same information or cheap/rich signals
as other (traded) spreads (matched-maturity, asset swap).

Swap Spread Curve

A graphical representation of any of the above spreads (headline, matched-
maturity, asset swap, z, zero-coupon) versus maturity is referred to as the
swap spread curve, or simply the spread curve. One can express views or
hedge exposures to different points of the spread curve. When engaging in 2
simultaneous spread trades of different maturities, one is said to be trading
spread of spreads or alternatively since each spread trade consists of two
trades, one cash (treasury), and one swap, it is also referred to as a box
trade. For example, when taking views on the slope of spread curve, say
between 2y point and 5y point, buying a “2’s-5’s spread of spreads” means
buying the 5y spreads (buying 5y cash, paying in 5y swaps), and selling the
2y spread (selling 2y cash, receiving in 2y swaps), thereby profiting from
steepening of spread curve between the 2-year and 5-year maturities. The
amount of treasuries (and hence swaps) on each leg is adjusted so that each
will have the same spread PV01. In this way, the trade is immune to parallel
moves in the spread curve.

Spread-Locks

A future headline swap spread can be locked via spread-lock trades, which
come in 2 varieties: discrete-setting (also called European) spread-lock,
or rolling spread-lock. In a discrete-setting spread-lock agreement for the
N-year spread, the N-year headline swap spread is locked at a fixed level
K for a future date, and at expiry, one enters into a N-year spread trade.
If long a spread-lock, one pays in N-year swap with fixed rate set to expiry
date’s par-swap rate S (as published by ISDAFIX 11:00 a.m. New York)
and buying PV01-equivalent amount of US CT[N] at a yield of S − K, that
is buying the headline spread at K. If one is short the spread-lock, then
one receives in swaps at S and sells PV01-equivalent amount of CT[N] at
S − K yield. Instead of physical settlement, one could instead opt for cash-
settlement with cash value set to the difference between the N-year headline
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spread (as published by ISDAFIX 11:00 a.m. New York) versus the locked
spread K, multiplied by PV01 of an N-year swap.

A rolling spread-lock is the periodic fixing and payments of the ISDAFIX
headline spread versus the locked rate, accrued for the length of each cal-
culation period. For example, in a 1-year quarterly rolling 10y spread-lock
struck at K, there are 4 periodic payments of

(S(Ti ) − K) × α(Ti , Ti+1)

per unit notional for each calculation period [Ti , Ti+1], where α(Ti , Ti+1) is
the accrual fraction according to some day-count (typically 30/360) with
payment at Ti+1.

Spread-locks are typically quoted as a spread to the current headline
spread.

RISK, PV01, GAMMA LADDER

As opposed to bonds where we are dealing with a single yield-to-maturity,
in swap-land we are dealing with a series of interest rates that are aggregated
to construct a discount factor curve. This discount factor curve is then used
to discount swap cash flows and calculate par-swap rates and forward rates.
Therefore the value of a swap depends on all the input instruments used to
construct the discount factor curve.

In order to compute the sensitivity of a swap-related instrument to
changes in interest rates, 2 procedures are commonly used:

1. Parallel PV01: Bump up all input rates (cash, futures, par-swaps) by
1 bp, and revalue the instrument. The change in the value of the swap
is called parallel PV01 (also called delta). A variation is to compensate
for different input quote conventions (Act/360 for simple cash, futures
rates; SA 30/360 for swaps), and either convert all quotes to a single
convention, or reconstruct a new discount factor curve by bumping all
the implied zero rates.

2. Partial PV01: For each input instrument, bump up its rate by 1 bp
while holding all other inputs constant, and revalue the instrument.
This gives rise to a series of sensitivities—one for each input—called
bucket or partial PV01/Delta. The sum of partial PV01s should be close
to parallel PV01, the difference due to instrument’s convexity and higher
order effects.



Interest Rate Swaps in Practice 57

Admittedly, interest rates do not move in either fashion: it is rare that
only one rate changes while the others do not. Also, even when they move
together, interest rates do not move by the same amount: short-term rates
(say 2y) typically move more than longer (say 30y) rates. In order to hedge
under a real-life rate movement scenario, we can compute the change in
value due to a curve shift scenario. The assumed scenario is usually derived
from a statistical analysis of historical curve movements using methods such
principal component analysis (PCA).

Armed with Partial PV01s, and the PV01 of each input instrument, we
can then compute the amount of each input instrument needed to hedge. An
example is shown in Table 3.2.

As alluded to before, the choice of curve build method greatly affects
the prescribed hedge. For example, when hedging a $100M 5.5-year receiver
swap, the log-linear interpolation method, while discontinuous in forward
rates, prescribes paying in $48.8M 5y swaps, and $51.2M 6y swaps. This
is intuitive, and close to what a trader expects. On the other hand, using
cubic splines results in a smooth forward curve, but the prescribed hedge
for a 5.5-year receiver swap is to receive in $18.6M 2y swap, pay in $21M
3y swap, receive in $39.7M 4y swap, pay in $93.6M 5y swap, and pay in
$32.7M 6y swap! This tradeoff between smoothness in forward rates versus
reasonable (local) hedge behavior affects any curve build method, and needs
to be considered when choosing one.

Convexity , Gamma Ladder

Swap and option traders are not only interested in the parallel/partial deltas,
but also how their deltas change when the market moves, that is, convexity
which in swap-land is also referred to as gamma. When the market moves, a
completely hedged book can gain/lose duration, and needs to be rebalanced.
Often when there is a large market movement (market gap), there is not
enough time to recompute partial deltas for a large book. In order to be
prepared for such movements, traders precompute parallel and partial deltas
for a variety of scenarios (typically a series of parallel shifts) to come up with
a gamma ladder. This allows them to quickly rebalance their books under
fast market conditions.

Reset Risk, IMM Swaps

Another risk that swap traders pay attention to is exposure of the floating leg
to upcoming Libor fixings. Swap curves are usually constructed out of O/N,
1m, 2m, 3m, money-market futures, and par-swap quotes, and the bucketed
risk to these rates are calculated. However, for the very front end, say the
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first 3 months, the difference between derived forward-3m rates versus their
actual fixings, called reset risk, has to be monitored and hedged. The hedging
is usually done via FRAs that start on the same date as the upcoming resets,
and interdealer brokers routinely quote a strip of daily FRAs for, say, any
day from today to 3 months from now.

If the reset dates coincided with those of ED futures, loosely called IMM
dates, then one could use ED futures to mitigate reset risk. Indeed, there is a

TABLE 3.2 Parallel and Partial PV01s for a $100M 5.5y Swap

Log-Linear Cubic Spline

Needed Needed
PV01 PV01 Hedge PV01 Hedge

Rate $/$M-Face ($) ($M) ($) ($M)

Cash Rate O/N 5.33011% −1 −398
T/N 5.33011% −1 457
1m 5.32025% 8 −7 −185
3m 5.34003% 25 16 −41

ED Rate Sep 07 5.33250% 25 −29 −1.2 −286 −11.4
Dec 07 5.25250% 25 −1 0.0 −285 −11.4
Mar 08 5.13650% 25 −1 0.0 −254 −10.2
Jun 08 5.04950% 25 14 0.6 −290 −11.6
Sep 08 5.02250% 25 0.0 −190 −7.6
Dec 08 5.03550% 25 −1 0.0 −421 −16.8

Swap Rate 2y 5.26402% 187 −1 0.0 3,488 18.6
3y 5.29601% 274 −2 0.0 −5,747 −21.0
4y 5.34502% 356 −3 0.0 14,147 39.7
5y 5.40001% 434 −21,181 −48.8 −40,582 −93.6
6y 5.44904% 507 −25,939 −51.2 −16,596 −32.7
7y 5.49401% 576
8y 5.53401% 642
9y 5.57103% 704

10y 5.60402% 762
12y 5.65604% 868
15y 5.70701% 1,006
20y 5.75452% 1,188
30y 5.79801% 1,423
40y 5.79791% 1,554

Sum of Partial PV01 ($) −47,137 −47,183
Parallel PV01 ($) −47,123 −47,178
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variant of swaps, called IMM swaps, whose reset dates by design fall exactly
on IMM dates. For IMM swaps, the fixed leg’s calculation periods are also
required to fall on IMM dates. For example, 1-year USD IMM swap start-
ing on March-2009 has 4 quarterly calculation periods book marked by
[18-Mar-2009, 17-Jun-2009, 16-Sep-2009, 16-Dec-2009, 15-Mar-2010],
and 2 semiannual calculation periods book marked by [18-Mar-2009,
16-Sep-2009, 15-Mar-2010]. Note that each calculation period starts/ends
on 3rd Wednesday of each quarter end (IMM date), with reset date 2 London
days prior to it.

CALENDAR RULES, DATE MINUTIAE

When trading swaps and their derivatives, they are generally quoted and
traded based on terms, for example, a “2-year” swap, since the specification
of all the relevant dates is cumbersome and time-consuming. Each swap
market has a series of standard conventions used as default to generate most
of the relevant dates (see Table 3.3). Therefore, only the most salient terms of
a swap are communicated at trade time, and any remaining date ambiguity
is generally resolved at the trade confirmation level, and if not captured at
that stage, ultimately resolved (usually not amicably!) on payment dates.
Note that each day of missed interest for a typical level of interest rates, say
5%, will cost 1.3889 cents, or $13,889.89 for a $100M swap, a typical size.
A missed day here, and a missed day there, and pretty soon. . . .

Calculat ion Periods, Rol l Convent ions

Each swap leg is based on a series of contiguous calculation periods, book
marked by the effective and the maturity dates. For each typical calculation
period, there are 4 salient dates. Calculation start/end dates: the first/last day
for the calculation period where interest accrues. These dates do not need
to be, but often are, adjusted to be good business days; payment date: the
date where the interest payment is made, which needs to be a good business
day; index reset date: for floating payments, the date where the index, say
3m-Libor, is observed/reset.

All of the above dates are usually adjusted or rolled to be good business
days according to some specified banking center(s), for example, New York
and London for USD swaps. The two prevalent roll conventions are fol-
lowing and modified following. In the Following roll convention, if the date
falls on a holiday, it is rolled to the next good (nonholiday) business day.
In the modified following (MF) roll convention, a holiday date is adjusted
to the next good business day, unless it rolls into the next month, in which
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TABLE 3.3 Typical Swap Conventions

Fixed Leg Float Leg Roll
Currency Freq/Basis Freq/Basis Cals Float Index Spot Date

USD SA, 30/360 Q, A/360 MF USD 3m Libor 2d LON, Adjusted
NY+LON Foll NY+LON

EUR A, 30/360 SA, A/360 MF, Target EUR 6m Libor 2d Target
EUR 1y Q, A/360 Eur 3m Libor

JPY SA, A/365 SA, A/360 MF, Tokyo JPY 6m Libor 2d TOK

CAD SA, A/365 Q, A/365 MF, Toronto CAD 3m CDOR Same Day
CAD 1y A, A/365

Floating Leg, compounded Q at CDOR Flat, Paid SA (A for 1y)

GBP SA, A/365 SA, A/365 MF, London GBP 6m Libor Same Day
GBP 1y Q, Act/365 Q, A/365 GBP 3m Libor

AUD SA, A/365 Q, A/365 MF, Sydney AUD 3m Bill Same Day
AUD 1y, Q, A/365

2y, 3y

CHF A, 30/360 S, A/360 MF, Zurich AUD 3m Bill 2d ZUR

case, the date is instead adjusted backwards to the last good business day.
Similarly a previous and modified previous roll convention can be defined,
but these are rarely used in practice.

To highlight the date issues, assume that it is Wednesday 27-Feb-2008,
and we have just traded a standard 1-year USD swap. By standard, we mean
the following default (see Table 3.3) attributes of USD swaps:

Fixed Leg: Semiannual, 30/360, Modified Following (MF), New York
and London

Floating Leg: Quarterly reset and payment, Act/360, MF, New York and
London, based on 3-month Libor (quoted Act/360, MF, London)

The above convention is sometimes abbreviated to Semi-Bond vs 3’s,
which denotes semiannual, 30/360 (sometimes referred to as “Bond”) con-
vention for the fixed leg, versus 3-month Libor.

Ef fect ive, Maturity Dates

The first step is to resolve the effective and maturity dates of the swap, as
these control the total number of interest-accrual days for each leg. Unless
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otherwise specified, swaps are spot-starting, so the Effective date is the same
as the spot date. The spot date, or the default settlement date is market-
specific: for USD market, it is 2 London business days after the trade date,
adjusted forward if necessary to be a good NY+LON business day. In our
example, the trade date is Wed 27-Feb-2008, and the spot date and hence
the effective date is Fri, 29-Feb-2008 (2008 is a leap year). Maturity date is
“1-year” after the effective date, which gets us to Sat, 28-Feb-2009. Since
USD swaps are adjusted MFOL, this means that the adjusted maturity date
is Fri, 27-Feb-2009. So we have a swap from 29-Feb-2008 to 27-Feb-2009.

F ixed Leg’s Calcu lat ion Dates

The fixed leg of USD swaps is paid semiannually, so we need to break
the swap term into two calculation periods, [29-Feb-2008, X], [X, 27-Feb-
2009]. To determine the X, we have to first generate the date, and then
adjust it according to the specified rule, MF—if “unadjusted” was specified,
then we would leave it be even if it is a holiday.

The choice for the unadjusted intermediate date X can be:

Option 1. “28-th rolls” 6 months prior to unadjusted maturity date,
Sat, 28-Feb-2009. This is the most common choice, where the in-
termediate unadjusted dates are generated backwards starting from
unadjusted maturity date, and specified to fall on a particular day
of the month (“roll day = 28th”, or “28-th rolls”). In this case,
the unadjusted intermediate date is Thu 28-Aug-2008, which is a
good New York and London business day, so we do not need to
adjust it.

Option 2. “Month-end rolls” 6 months prior to unadjusted maturity
date, Sat, 28-Feb-2009. Since the unadjusted maturity date falls on
the last day of the month, another option is to require X to also
fall on the last day of the month, 6 months prior to it. In this case,
the unadjusted intermediate date becomes Sun 31-Aug-2008, which
gets adjusted (modified following) to Fri 29-Aug-2008.

Option 3. “29-th rolls” 6 months after the effective date, leading to
Fri 29-Aug-2008, which is a good New York and London business
day. This is rarely used in practice.

Option 4. 6 months prior to the adjusted Maturity Date, Fri, 27-Feb-
2009. This choice is rare, but if chosen it leads to Wed 27-Aug-2008,
a good New York and London business day, and can be specified
as “27-th rolls.”
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F loat ing Leg’s Calcu lat ion Dates

The floating leg of USD swaps is based on the 3-month Libor index, and is
reset, accrued Act/360, and paid quarterly, so we need to generate 3 new
quarterly intermediate dates between the effective and maturity dates: [29-
Feb-2008, X1], [X1, X2], [X2,X3],[X3, 27-Feb-2009]. A new wrinkle that
arises is whether these dates are generated recursively, or with respect to
the effective/maturity dates. For example, assume that we are generating
the dates backwards starting from the maturity date. Having generated the
intermediate date 3 months prior to the maturity date, X3, do we use X3 to
generate a date 3 months prior to it, X2, or do we generate a date 6 months
prior to the maturity date? The latter choice is the most common. A similar
approach applies if generating dates forward from the effective date.

Similar to the preceding discussion for fixed leg, there are different
choices on generating the calculation dates. We consider only Options 1
and 2, which are the most common:

Option 1. “28-th rolls” Generate dates backwards with reference to
the unadjusted maturity date. The unadjusted intermediate dates
following 28-th rolls are Wed 28-May-2008, Thu 28-Aug-2008,
Fri 28-Nov-2008, which all happen to be good New York and
London business days. If not, they would have to be adjusted MF,
New York and London.

Option 2. “Month-End rolls” The unadjusted dates are required to fall
on the last day of each month: Sat 31-May-2008, Sun 31-Aug-2008,
Sun 30-Nov-2008, which are then adjusted MF to Fri 30-May-2008,
Fri 29-Aug-2008, Fri 28-Nov-2008.

Payment Dates

Having generated the calculation periods, the next step is to generate the
payment dates corresponding to each calculation period Since calculation
dates are usually adjusted to be good business days, payment dates equate
the calculation end date for each period (as long as the payment/calcuation
periodicity and holiday calendars match), however for unadjusted calcula-
tion periods, the calculation end date (if a holiday) needs to be adjusted to
be a good business day so that payments can actually be made and settled.

Index Dates: Reset , Start , End

Finally, for each calculation period of the floating leg, the rate reset date
for the floating index needs to be generated. For USD swaps, the index is
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3m-Libor and is observed/reset 2 London days prior to the beginning of each
calculation period. On each calculation period’s index reset date, the mar-
ket rate for a 3-month Libor deposit starting on the calculation start date,
as published by BBA, is observed. These start/end dates of this underlying
deposit are sometimes called rate effective/maturity dates or index start/end
dates. While by construction, the rate effective date coincides with calcu-
lation start date, the rate end date does not necessarily coincide with the
calculation end date, and these dates can be off by a few days. This is due to
the way the swap calculation periods are generated (multiple months from
the anchored unadjusted maturity date) and then rolled (MF, New York,
and London) versus how the rate end date is generated (3 months after the
calculation/rate start date) and rolled (MF, London only). Another way that
this mismatch can arise is for IMM Swaps, where calculation periods are
not 3 months apart, but cover inter-IMM intervals—sometimes called IMM
gaps—that is, they run through 3rd Wednesdays of each quarter-end, and
usually have 13 weeks (91 days), but occasionally 14 weeks (98 days). This
date mismatch—while small, a few days for regular swaps, but as long as
6 days for IMM swaps—somewhat invalidates the perfect replication needed
to establish the value of a floating leg as D(Effective Date) − D(Maturity
Date), but is usually ignored in practice, or compensated for via a delay-of-
payment convexity adjustment.

Day Count Basis

The actual cash flows of the swap for each calculation period consist of the
interest rate—either fixed rate or the floating index—accrued for the length
of the calculation period according to the specified day-count basis, and
paid on the corresponding payment date. For a given calculation period, the
day-count basis specifies the length of year for which the interest accrues.
The most common type of bases are 30/360 (or any of its variants), Act/365,
Act/360, and to a much lesser degree, Act/Act which is different and not to
be confused with the Act/Act convention used to calculate accrued interest
for bonds. The value of a swap is the PV of these cash flows, FV’ed to the set-
tlement date—sometimes called the as-of date—which usually corresponds
to the spot date.

Calculating the day-count fraction for Act/360 or Act/365 is simple.
Count the actual number of calendar days in the calculation period, and
divide by 360 or 365. The Act/Act ISDA method, while not common, is not
the same as act/act method used to calculate the accrued interest for bonds.
The latter is called Act/Act ISMA (now ICMA), or act/act bond convention,
and is defined as the actual number of days for the partial coupon period
divided by the “number of days in the full calculation period multiplied by
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the number of coupons per year.” The act/act ISDA method (also called
act/act swap, or act/act historical) on the other hand, is calculated as the
sum of the number of days falling in a non-leap-year divided by 365, plus
number of accrual days falling in a leap-year divided by 366.

The 30/360 basis is based on each year having 12 30-day months, and
is computed as 360(y2 − y1) + 12(m2 − m1) + (d2 − d1) divided by 360 for
calculation period [y1/m1/d1, y2/m2/d2]. While this might seem a straight-
forward process, it turns out to introduce nuances when month-ends are
considered, and has led to different variants to tackle them. All variants use
the above formula, but require first adjusting the original dates as follows:

30/360 ISDA, bond basis, 30/360: If d2 = 31 and d1 = 30, 31, change
d2 to 30. If d1 = 31, change d1 to 30.

30E/360 ICMA (formerly ISMA), Eurobond basis: If d1,2 = 31, change
d1,2 to 30.

30E/360 ISDA: If d1 is last day of month, change d1 to 30. If d2 = 31,
change d2 to 30. If d2 is not the maturity date and is last day of Feb,
change d2 to 30.

There do exist other variants: SIA 30/360, SIFMA (formerly PSA, BMA)
30/360, 30E + 360, German 30/360, but these are not that common for
swaps.

Worked-Out Example

The cash flows for a standard 1y USD swap with 28-th rolls traded on Wed
27-Oct-2008 are presented in Tables 3.4 and 3.5. Note that if the fixed
leg’s basis was 30E/360 ISDA instead of 30/360, the first calculation period
(29-Feb-08 to 28-Aug-08) would have 178 days rather than 179, and would
result in a different par-swap rate or swap value.

TABLE 3.4 Fixed Leg for 1y USD Swap

Calc Start Calc End Acc Days Accrual Payment
Date Date (30/360) Fraction Date

29-Feb-08 28-Aug-08 179 0.497222 28-Aug-08
28-Aug-08 27-Feb-09 179 0.497222 27-Feb-09
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TABLE 3.5 Floating Leg of a 1y USD Swap

Rate Reset Calc Start Calc End Acc Days Accrual Payment
Date Date Date (Act/360) Fraction Date

27-Feb-08 29-Feb-08 28-May-08 89 0.24722 28-May-08
26-May-08 28-May-08 28-Aug-08 92 0.25556 28-Aug-08
26-Aug-08 28-Aug-08 28-Nov-08 92 0.25556 28-Nov-08
26-Nov-08 28-Nov-09 27-Feb-09 91 0.25278 27-Feb-09



CHAPTER 4
Separating Forward Curve

from Discount Curve

The previous two chapters presented the standard treatment of building
swap curves from traded instruments. Alongside plain-vanilla swaps,

there is another class of floating-for-floating swaps, referred to as money-
market basis swaps or simply basis swaps, where both legs of the swap
are floating, but based on different short term (money-market) interest-rate
indices.

Pricing and risk management of basis swaps is more nuanced than plain-
vanillas. For one reason, the primary risk captured by them is the credit risk
between the indices, say Government (Fed-Funds) versus Bank (Libor) credit.
They also at times represent supply-demand dynamics of one index versus
another one, independent of the inherent credit risk in each index. In or-
der to provide a consistent framework to price them, one has to step back
from the previous setup, where a single discount factor curve captured both
discounting and calculation of forward rates, as basis swaps provide inde-
pendent information about the forward/locking curve of an index, separate
from the discount (funding) curve.

FORWARD CURVES FOR ASSETS

We have so far presented forward prices and rates in specialized instances. It
will help to step back, and provide a generic definition of a forward contract.
At a given time t, the value of an asset A for spot (cash) delivery is obviously
A(t). However, if we need the asset only at some future time T > t, then
we can enter into a forward contract. Such a forward contract for some
specified delivery price, K, has a value today. From a buyer’s point of view,
if K is too large, then the forward contract is an agreement to buy an asset
in the future at an inflated price, and hence has negative value. Similarly,
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if K is too small, then one is buying an asset in the future on the cheap,
and the value of the forward contract is positive. The delivery price K that
would make the contract have zero value today is called the forward price
of the asset, and is denoted by FA(t, T), T ≥ t.

Notice that there are two dates here: trading date t, and forward delivery
date T > t. On any given trading date t, we can graph FA(t, ·) as a function
of forward dates T, and come up with forward curve of the asset at t.
Obviously, if T = t, then we have the spot/cash price of the asset: FA(t, t) =
A(t). We can think of the forward curve as the indifference curve of the
asset: Given all the information today, we are indifferent between paying
A(t) for the asset today, or agreeing to pay FA(t, T) at some future delivery
date T.

For a fixed forward delivery date T, the forward price at any trading day
t ≤ T will fluctuate depending on market conditions. At the delivery date, of
course, the forward price will coincide with the spot price: A(T) = F (T, T).
Since the forward price fluctuates at any trading day, the value of a given
(seasoned) forward contract with a fixed delivery price K will also fluctuate.
For example, assume it is January 1, and an asset is trading at 100, and its
forward value for delivery on March 31 is 101. We might enter into this
contract at 101 with no exchange of money (just a handshake). For the next
3 months, the value of this contract will fluctuate, depending on each day’s
market perception of the March-31 (forward) delivery price of the asset. At
the maturity of the contract, if the spot price of the asset is higher than 101,
then the contract has positive value, since it enables a long to gain the asset
for lower than its market value. Similarly, if the spot price is lower than 101,
then the contract has negative value, since it obligates the long to buy an
asset for higher than its market value. Depending on the contract, one can
either cash-settle, or take/make physical delivery of the asset at the agreed
rather than the actual spot price.

One might think that determining the T-forward value would involve
forecasting of the T-realized price of the asset. However, a simple cash-and-
carry argument shows that we can determine the forward value of an asset
without resorting to forecasting at the inception of the contract, t, he has to
deliver the asset at time T in exchange for the (to be determined) forward
value K = FA(t, T). He can conceptually buy that asset today t at A(t) by
taking a loan—potentially collateralized by the asset—with maturity T and
hold on to the asset till maturity. At maturity, he will deliver the asset,
receive the K (agreed upon at time t and fixed thereafter), and repay the
A(t) loan plus the interest. As long as K equals the loan and interest, he will
have no risk. So the forward price, K, must equal loan plus its interest. If
the asset can only be carried via an uncollateralized risk-free loan, then the
forward prices can be related to risk-free interest rates or, equivalently, their
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implied discount factors:

FA(t, T) = A(t)/D(t, T)

A similar expression can be derived for collateralized loans: for treasury
bonds one should use their financing (repo) rate to arrive at the discount
factor.

In general, the cash-and-carry argument shows that the forward value of
an asset is the spot value plus the cost of carrying the asset minus any income
that accrues to the holder of the asset, properly future valued to the forward
date. For example, the forward gross value of a bond is its spot gross value
plus the repo (carry cost) minus the future value of any intermediate coupon
income. For dividend-paying stocks with known discrete dividends we need
to subtract the future-value of the dividends from the carrying cost.

IMPLIED FORWARD RATES

When talking about forward rates, we need to distinguish between two ways
that they can arise. If the underlying forward contract is an actual forward
loan, requiring actual movement of cash, then the agreed-upon forward rate
must express one’s indifference between spot and forward-start loans. The
underlying asset, the loan, can be considered as a package of two simple
cash flows: unit currency at inception and unit plus interest at maturity.
As discount factors are today’s prices of future moneys, if available, they
completely characterize each of these cash flows: To replicate a forward loan
[T, T + �T] at a given loan lock rate K, one needs:

D(T) − (1 + K�T)D(T + �T)

today, and the implied forward rate is the loan lock rate K that makes
today’s value of this loan 0:

K = f ([T, T + �T]) = [D(T)/D(T + �T) − 1]/�T

As such, it is just a derived (implied) rate from an already known discount
factor curve.

The second way that forward rates arise is as a contract based on only
the interest component of a hypothetical loan, with the future interest rate
locked at some level K. For example, a USD FRA—equivalent to a single-
period forward swap—is simply the interest component of a nominal loan
at the future setting of the specified index, r�T(T) (read Libor-3m), versus
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that of a locked (fixed) level K:

[r�T(T) − K)] × �T

paid at T + �T, with K chosen so that this contract has zero value today.
We previously argued that as long as we can invest future moneys at the same
index, that is, our funding is based on r�T, we can replicate the unknown
future cash flow by owning/owing unit currency at start/end of the loan.
Hence the value of floating payment paid at T + �T equals

PV[r�T(T) × �T paid at T + �T] = D(T) − D(T + �T)

= f ([T, T + �T]) × �T × D(T + �T)

which means that the rate K of a zero-cost FRA is the same as the implied
forward rate. Therefore, if we already have our funding/discount curve, we
can use it to calculate forward locking rates for the index. Alternatively,
and more commonly, given a series of forward locking rates for our funding
index, we can extract our funding/discount curve. For example, if we fund
ourselves at some index Xperiodically, our funding/discount curve becomes:

DX(Tn+1) = 1 × 1
1 + KX([T0, T1])�T0

× · · · × 1
1 + KX([Tn, Tn+1])�Tn

where KX([Ti , Ti+1]) is the locking (FRA) rate for the forward period
[Ti , Ti+1] with 0 = T0 < T1 < . . . , and �Tn = Tn+1 − Tn.

FLOAT/FLOAT SWAPS

The above relationship between discount/funding curve, and forward lock
rates is no longer valid for rate-lock agreements based on indexes different
than our funding index. For example, if one funds at Libor-3m, and is asked
to quote a rate-lock agreement where the floating index is another index
X, say commercial paper (CP), then having money at the beginning of the
hypothetical forward loan period is not sufficient to get to the desired final
amount (initial + CP-based interest) as one cannot invest the funds at CP. As
such, there is no arbitrage argument that will provide the fair locking level
for X.

Still, one can focus on the expected difference between the index X(T)
and the lockable funding index r (T). The payment of an FRA based on an
index X is X(T) − KX properly accrued for the duration of the hypothetical
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loan, �T, and paid at T + �T. This can be reexpressed as:

[X(T) − KX] × �T = [(X(T) − r (T)) − KX−r ] × �T + (r (T) − Kr ) × �T

where KX = KX−r + Kr . To determine the KX that will make the value
of this rate-lock agreement zero, since we fund ourselves at r , we know
how to calculate Kr so that the value of the second term becomes zero.
Therefore, we just need to focus on selecting KX−r , that is, the locking level
for our basis risk: the exposure to the difference between X and our funding
index, r .

Basis swaps are locking levels for forward basis risks, and their market
quotes are based on expected future difference (spread) between the indexes.
These market consensus levels are primarily based on market’s forecast
of future credit spreads—usually projected forward from their historical
levels—modulated by supply-demand dynamics. For example, the difference
between Fed-Funds rate versus Libor is primarily U.S. Government credit
versus banking credit. In times of good financial health for banking, this
spread runs around 15 bp, and as such will be the expected spread as
captured in Fed-Fund-Libor basis swaps. In times of turmoil, however, it
can easily blow out.

USD Basis Swaps

The following are typical basis swaps traded in USD:
Fed-Funds versus 3M-Libor: Weighted arithmetic average of overnight

Fed-Funds effective rate plus spread versus 3m-Libor, both legs paid Q,
Act/360.

Prime versus 3M-Libor: Weighted average of daily resets of prime rates
taken from the Fed statistical release H.15 minus spread versus 3m-Libor,
both legs paid Q, Act/360.

Commercial-Paper (CP) versus 3M-Libor: Unweighted monthly average
of daily resets of 1-month CP rate taken from the Fed statistical release H.15,
converted from discount basis to Act/360, compounded monthly at CP flat,
minus spread versus 3m-Libor, both legs paid Q, Act/360.

T-Bills versus 3M-Libor: Average of the bond-equivalent yield of the
weekly auction average of the 3-month U.S. T-Bills taken from the Fed sta-
tistical release H.15 plus spread versus 3m-Libor, both legs paid Q, Act/360.

Basis swap based on constant-maturity-treasury (CMT) indexes pub-
lished in H.15 used to be quoted, but these are now backed out from CMS
swap level and spread-locks, although care has to be taken to adjust for the
difference between a CMT index versus the U.S. current (CT) yields.

Table 4.1 shows sample quote sheets for a few of these swaps.
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TABLE 4.1 Sample Mid-Market USD Basis Swap Quotes

Maturity Fed-Fund CP Prime T-Bills

6m 15 7 −280 20
1y 17 8 −275 22
2y 20 9 −270 25
5y 22 10 −265 30

10y 25 15 −260 32

Extract ing Forward Rate Lock Curves

As seen from Table 4.1, each market quote for a basis swap refers to the
average locking level for the basis risk for the relevant period. For example,
the 1-year T-Bill/Libor basis swap quote of 22 bp refers to 4 quarterly resets
of T-Bill index versus Libor-3m. In order to extract the individual locking
level for each locking date (today, 3m, 6m, 9m), a de-averaging (bootstrap)
method is needed. A simple way to proceed is to start from the spot level
of the spread, say for Libor-3m versus T-Bills, and assume that the locking
level for this spread is piecewise linear between quoted maturities. The end
point of each linear segment is adjusted so that when we extract the locking
spread level—and hence the locking level for the index—as the projected
index, the basis swap for that maturity prices to zero at the quoted spread.
The discounting of projected cash flows for both indices are off of our already
extracted discount curve. This gives us a bootstrapped forward spread curve.

A consistent framework for capturing, pricing, and risk management of
plain-vanilla and basis swaps emerges as follows:

1. Decide on our benchmark funding index L, say Libor-3m for a U.S.
broker/dealer.

2. Using rate-lock instruments (FRAs, ED futures, par-swap rates) keyed to
our funding index, via bootstrapping or other methods, simultaneously
extract the locking curve for our index, fL(T), and our funding curve,
DL(T).

3. For any other index X, extract its locking curve fX(T) so that the mar-
ket basis swaps price to 0. To price the basis swap, we use fX(T) and
fL(T) curves to replace future (unknown) floating resets with their lock-
ing rates, and discount the cash flows on both legs using our funding
curve DL(T). Alternatively and equivalently, one can extract and use the
forward spread curve, fX−L(T) = fX(T) − fL(T).

4. Having extracted the locking curve, fX(T), extract the funding/discount
curve DX(T) for an X-funded entity.
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TABLE 4.2 Sample Mid-Market USD Libor/Libor
Basis Swap Quotes

Maturity 1m vs. 3m 1m vs. 6m 3m vs. 6m

3m 36
6m 28 77 49
1y 19 49 30
2y 12 30 18
5y 4 11 7

10y 0 2 2
30y −4 −3 1

L IBOR/L IBOR BASIS SWAPS

In addition to basis swaps based on different indexes, there exist basis swaps
between Libors of different maturities. For example, in USD, there is market
for pairs of 1m, 3m, and 6m Libor, referred to as Libor/Libor basis swaps.
A sample quote screen appears in Table 4.2.

It might seem strange that these swaps exist, since by prior arbitrage
arguments, the compounded shorter-term rate must equal the longer rate,
and the arbitrage-free spread should be zero. For example, the periodic
payoff of a 3’s/6’s with a spread of s for each calculation period [T, T + 6m]
is the net payment at T + 6m of

[(1 + L3m(T)/4)(1 + L3m(T + 3m)/4) + s/2] − 1

versus

(1 + L6m(T)/2) − 1

or equivalently

[
L3m(T)

4

(
1 + L3m(T + 3m)

4

)
+ L3m(T + 3m)

4
+ s/2

]
− L6m(T)

2

Prior arbitrage arguments suggest that the spread s above should be zero.
However, we need to remember that our arbitrage arguments only hold for
risk-free interest rates. If there is no potential for counterparty default, then
any deviation of quoted forward rates from their arbitrage-free values can
be arbitraged by entering into offsetting loans. For example, let us assume
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that there are risk-free interest rates quoted by default-free banks for 3m
and 6m at r3m(0), r6m(0). What should the 3x6 FRA rate be? If there is no
potential for the banks to default, then one can buy a 3x6 FRA struck at
X, borrow at r3m(0) for the first 3 months, pay the principal and interest
((1 + r3m(0)/4)) in 3m, with the principal and interest financed by a new
loan at the prevalent 3m rate, r3m(3m). In 6 months, one needs to pay

(1 + r3m(0)/4) × (1 + r3m(3m)/4)

while one receives

(r3m(3m) − X)/4

as the reinvested payoff of the FRA, and also receives 1 + r6m(0)/2 as the
6m loan matures. Since it cost us nothing to enter these transactions, no-
arbitrage requires the final moneys in 6m be the same and X to satisfy:

(1 + r3m(0)/4) × (1 + X/4) = 1 + r6m/2

Since there is no net exchange of cash until maturity, the above
relationship—being just a mathematical identity—must still hold even if
all transactions were with a single risky bank. However, if we are borrow-
ing, lending, and buying FRAs from different risky banks, it could happen
that we lend money to a bank that subsequently defaults, while our other
counterparties remain solvent, and we have to pay them. If we are dealing
with counterparties of the same credit worthiness, the riskiest transaction is
the longest loan as it has the longest default exposure window. Therefore,
whoever is going to lend for 6m will quote/require a rate higher than what
is implied by shorter-term (3m-rate, 3x6 FRA) rates.

(1 + r3m(0)/4) × (1 + X/4) = 1 + (r6m + Spread)/2

This is the main reason that two successive 3m FRAs do not equate to a
6m FRA even after adjusting for compounding, and why Libor-6m versus
Libor-3m trades at a (usually) positive spread. In practice, this credit spread
is further adjusted for liquidity of one tenor versus another tenor—which
can make the spreads trade negative—and in consideration of particulars of
Libor-fixing (BBA’s polling and averaging of bank’s estimate of what 3m
interbank lending rates are).

To properly handle these basis swaps, we have to decide what our
funding index is, say Libor-3m, and treat the other Libors (1m, 6m) just
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like other basis swaps, that is, extract a rate-lock curve for them so that the
Libor-Libor basis swaps at market spreads price back to 0.

OVERNIGHT INDEXED SWAPS (OIS)

While most plain-vanilla swaps are indexed to unsecured interbank (Libor)
rates with tenor of 3m or 6m, there is another variety of swaps indexed to
overnight rates. The index is usually based on the policy rate of central banks
for each currency, and are based on actual traded deposits. For example,
in USD, the benchmark is daily Fed-Fund effective rate, which is a volume-
weighted average of rates on Fed-Fund trades arranged by major brokers,
and calculated and published next day by the Federal Reserve.

An overnight indexed swap (OIS) is a fixed-for-floating swap where the
floating leg is based on an overnight index. The floating payment is typically
the daily compounded interest at each overnight rate (weekends/holidays
use previous business day’s fixing) over the calculation period,

[1 + α1 × r1] × [1 + α2 × r2] × · · · × [1 + αN × rN] − 1

where αi is the length of each compounding day according to some day-
count basis (for example, αi = 1/360 or 3/360 for Fridays in USD), while
the fixed payment is the fixed rate accrued for the same calculation period,
resulting in a single net cash flow for each calculation period. OIS swaps
of maturity less than 1-year have one calculation period, while longer-term
swaps are broken into annual calculation periods. Below is a list of OIS
swaps and their benchmark index for different currencies:

USD: FFER (Fed-Funds effective rate) as calculated by the New York
Fed, Act/360.

EUR: EONIA (Euro overnight index average), the effective overnight
rate computed as a weighted average of all overnight unsecured lending
transactions in the interbank market, calculated by European Central Bank
(ECB) and published by the European Bank Federation, Act/360.

GBP: SONIA (Sterling overnight index average), the weighted average
rate of all unsecured overnight cash transactions brokered in London by the
Wholesale Markets Brokers’ Association (WMBA). SONIA closely follows
the Bank of England’s (BOE) policy rate, Act/365.

JPY: TONAR (Tokyo overnight average rate), based on uncollateralized
overnight average call rates for lending among financial institutions, pub-
lished by the Bank of Japan (BOJ). BOJ affects TONAR using open market
operations to keep it in line with its policy rate (called Mutan), Act/365.
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CAD: CORRA (Canadian overnight repo rate average) released by the
Bank of Canada, Act/365.

OIS versus L ibor Discount ing

With the recent market turmoil affecting banks, and concern over reliability
of Libor as a benchmark index, there has been an increased focus on OIS
swaps, as these are keyed to actual traded effective policy rates by central
banks. Another reason for renewed focus is that most swaps are traded
under the Credit Support Annex (CSA) to the ISDA Master Agreement,
which requires counterparties to post collateral as the mark-to-market value
of the swap changes. Of special attention is the interest rate paid on posted
collateral: Most CSAs specify overnight effective rates (for example, Fed-
Funds effective rate for USD) to be paid on the posted collateral (cash
or cash-equivalent like government securities). This means that the actual
funding cost for a swap is not Libor, but the overnight effective rate. As
such, one should use OIS swaps to extract the funding/discount curve for
swaps and their derivatives, and use this OIS discount curve to extract rate
lock (projection) curves for other indexes.

While this idea is gaining traction and acceptance among market par-
ticipants, the market practice is to still use Libor rather than OIS discount-
ing when creating projection curves out of quoted market swaps. At the
same time—and inconsistently—when offering unwind prices for existing/
seasoned swaps with large mark-to-market value, the actual funding curve
is conveniently remembered/invoked, usually (and not surprisingly) by the
benefiting party!

As OIS swaps gain more liquidity and are traded for longer terms—
there are currently liquid points for at most a few years—a more consistent
framework for building Libor curves and pricing swaps should emerge. Until
then, most at-market swaps would be priced and discounted off of the Libor
curve, while off-market swaps with large mark-to-market value would use
OIS or similar discount curves.



PART

Two
Interest-Rate
Flow Options

Interest Rate Swaps and Their Derivatives: A Practitioner’s Guide 
by Amir Sadr 

Copyright © 2009 Amir Sadr 



CHAPTER 5
Derivatives Pricing:

Risk-Neutral Valuation

While derivatives (forwards, options) have been around for a long time,
and many attempts were made to value them, the first successful pricing

formula was derived by Fisher Black, Myron Scholes, and Robert Merton.1

The resulting formula is the celebrated Black-Scholes-Merton Formula, and
was derived via an application of stochastic calculus by setting up and
solving a partial differential equation relating the price of a derivative to
the underlying. While the techniques used are rather daunting, the basic
idea is simple and powerful: You can replicate an option payoff by taking
a position in the underlying asset and financing this position. Therefore the
value of an option is the value of its replicating portfolio. The only nuance
is that the portfolio is not static, and needs to be dynamically rebalanced
(delta-hedged) in response to changes in the underlying.

The original derivation of Black-Scholes-Merton Formula and its vari-
ants (Black’s Formula) somewhat obscured this dynamic. In a 1979 paper,2

Cox, Ross, and Rubenstein (CRR) distilled the replication argument to a
simple binomial tree model, and showed that the Black-Scholes-Merton
Formula can be obtained as the number of time steps in the tree tends to
infinity. This constructive algorithm did away with the stochastic calculus
machinery and highlighted the dynamic replicating portfolio.

Extensions of the CRR binomial tree model to more general settings
were swift. While the original CRR paper was for single tradeable as-
sets (stocks, FX, commodities) under deterministic interest rates, Harrison
and Kreps3 (in discrete-time setting) followed by Harrison and Pliska4

(continuous-time) generalized the CRR insights to cover multiple assets.
Since interest rate options depend on multiple underlyings (zero coupon
bonds, or discount factors as their prices), this allowed for a consistent
framework for their pricing and risk management. Moreover, Harrison and
colleagues’ papers formalized and generalized the principles in CRR, and
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showed the price of an option—which is the price of its dynamically repli-
cated portfolio—can also be obtained by taking expected discounted value
of the option payoff in a risk-neutral world. This valuation framework
has become known as Risk-Neutral Valuation, and has introduced terms
as martingales, numeraires, market completeness, change-of-measure, . . .
into option pricing. Their result can be tersely summarized as follows: In
an arbitrage-free market, there exists an equivalent market measure where
assets’ prices relative to some numeraire are martingales. If the market is
complete, this martingale measure is unique, and option prices are expected
relative (to the numeraire) prices! While a mouthful, we will show that
each component of this statement has a direct counterpart in CRR’s simple
binomial model.

The works of Harrison et al. were further extended by Geman and
colleagues5 who highlighted the flexibility in choosing the numeraire. This
gave rise to a slew of new insights and extensions, the most famous being
risk-neutral valuation under forward measures, and the ability to inter-
change discounting and taking expectation for interest-rate options. This
interchange ability somewhat validated the long-term market practice of
misapplying Black’s formula for interest-rate options.

EUROPEAN-STYLE CONTINGENT CLAIMS

Given an underlying asset, derivatives or contingent claims are contracts
with specified payoffs based on the value of the underlying. The simplest
contingent claim—after a forward contract—is a European-style exercise
option that has a specified payoff at a single exercise time te in the future. For
example, a call, C(t), with strike K on an asset A(t) has the following payoff:
C(te) = max(0, A(te) − K), while a put, P(t), has payoff P(te) = max(0, K −
A(te)). While the value of the contingent claim is known at expiration, the
goal of contingent-claim pricing is to determine its value prior to expiry.

Risk-neutral valuation is the modern framework for contingent claim
valuation. As most of the core concepts of risk-neutral valuation have a direct
counterpart in the CRR binomial model, we will present their model with a
slight adaptation to allow for nondeterministic (random) interest rates.

ONE-STEP BINOMIAL MODEL

Given today’s t = t0 price of an underlying asset A(t), consider a European-
style contingent claim C(t) with a single expiration time te in the future.
Assume that the underlying asset has no cash flows over the period [t0, te],
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0t t1 = te

A0, r0

C0 = ?

Au

Ad

Cu

Cd

pu

pd =1−pu

F IGURE 5.1 A One-Step Binomial Model

and let us consider the simplest case where the underlying asset at expiration
can only take on two values Au, Ad, as shown in Figure 5.1. Let Cu and Cd

denote the corresponding then-known values of the contingent claim in each
state at expiration.

Our goal is to construct a portfolio today (t = t0) so that its value at
expiration, te, replicates the value of the contingent claim. Therefore if we
are the seller of the option, we can replicate the option’s contingent cash
flows at expiration via this replicating portfolio. The fair price of the option
today, C0, would be the cost of setting up the portfolio.

Our portfolio consists of taking a position in the asset, � units of it,
by financing it via a risk-free loan of size L at the prevalent risk-free rate
r until expiration date te, so the value of the loan at expiration would be
L(1 + r × (te − t0)) = L/D(t0, te) regardless of the state of the world.

At expiry, te, if we are in Au state of the world, we want this portfolio
to be worth Cu:

� × Au + L/D(t0, te) = Cu

Similarly, if we are in Ad state of the world, we want the portfolio to be
worth Cd:

� × Ad + L/D(t0, te) = Cd
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We have two equations and two unknowns (�, L). Solving for these,
we get:

� = Cu − Cd

Au − Ad

L = D(t0, te)
(

Cu − Cu − Cd

Au − Ad
Au

)

Therefore, today’s value of the contingent claim is:

C0 = � × A0 + L

= Cu − Cd

Au − Ad
A0 + D(t0, te)

(
Cu − Cu − Cd

Au − Ad
Au

)

The seller of the option can charge C0 as above, make a loan of size L as
above, and use these proceeds to buy � units of the asset at spot price A0. At
expiration, in either state of the world, Au or Ad, the value of his holdings
(� units of the asset) exactly offsets his liabilities: repayment of loan plus
interest, and cash-settlement value of the option (Cu or Cd).

Note that in the preceding setup, we did not have to consider the prob-
ability of either state happening! As long as Au, Ad can happen and are the
only two possibilities, we are golden!

A bit of algebra allows us to rewrite the formula for C0 as follows:

C0 = D(t0, te) [puCu + (1 − pu)Cd]

where

pu = A0/D(t0, te) − Ad

Au − Ad

No Arbitrage

Lack of arbitrage is equivalent to pu being a probability,

0 ≤ pu ≤ 1

Consider the case pu > 1, which means that A(0)/D(t0, te) > Au > Ad. We
can sell the asset short today, and lend the proceeds, A0, until expiration.
At expiration, we receive A0/D(t0, te), and need to pay either Au or Ad to
cover our short. Regardless, we have made money with no risk!
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Similarly, if pu < 0, then A0/D(t0, te) < Ad < Au. In this case, we take a
loan of A0 to buy the asset today. At expiration, we owe A0/D(t0, te) while
we own an asset that is worth Ad or Au. Regardless, we can sell the asset
and pay off the loan for positive profit and no risk! Therefore, if there is no
arbitrage in the above simple economy, pu can be considered as a probability,
and today’s value of the option is simply the expected discounted value of
the option payoff under this probability.

Risk-Neutral i ty

We obtained C0 by constructing a portfolio that replicates the option payoff,
regardless of the probability of each state. We then showed that we can get
the same value by taking the expected value under a probability pu. Other
than a mathematical identity—pu is the probability that gets you the correct
option value, as long as you know the option value!—is there another way
of interpreting pu? The answer is in the affirmative: pu is the probability
that a risk-neutral investor would apply to the above setting.

Most people are risk-averse: between a guaranteed return and a risky
investment with identical expected returns, they would opt for the former.
That is why risky investments (stocks, real-estate, . . . ) need to have higher-
than-average expected returns. Otherwise, one could simply put one’s money
in the bank and have the same return with no volatility.

On the other hand, most of us have bought a lottery ticket or played
in casinos, investments whose expected gain is less than what we paid for.
These types of investing are examples of risk-taking, where although risky,
we are batting for the fences.

In between, there is an investment behavior that considers any invest-
ments with the same expected return as equivalent, and does not require a
risk premium for risky bets. Consider such an investor given a choice be-
tween two investments: (1) invest A0 at the bank, and get A0/D(t0, te) at te,
or (2) buy an asset at A0 and either get Au or Ad at te. For a risk-neutral
investor, these two investments would be equivalent if

pu Au + (1 − pu)Ad = A0/D(t0, te)

or equivalently, when

pu = A0/D(t0, te) − Ad

Au − Ad
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t0 t1 = te

A0, r0

Au

Ad

Au − Ad

FA(t0,t1) − Adpu =

A0 × (1 + r0 × (t1 − t0))  FA(t0,t1) =

F IGURE 5.2 No-Arbitrage Requirement

Therefore, rather than setting up a replicating portfolio and computing its
value today, we can simply take the expected discounted value of the option
payoff using risk-neutral probabilities.

Relat ionship to Forwards

Recall that for an asset with no interim cash flows, its forward price on t0 for
te-delivery, FA(t0, te), equals A(t0)/D(t0, te). Therefore, a geometric way to
interpret lack of arbitrage is that future states must bracket forward prices,
that is, lack of arbitrage is equivalent to

Ad ≤ FA(t0, te) ≤ Au)

(see Figure 5.2).
Similarly, we observe that in our simple risk-neutral world, one-step

expected future prices must equal forward prices:

Et0 [A(te)] = FA(t0, te)

FROM ONE TIME-STEP TO TWO

The two-state setup is obviously too simplistic. Assets can take a variety of
values at expiration. However, using the previous setup as a building block,
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t1t0 t2 = te

A0+ L0C0 = Δ0

A0, r0 

Au + LuCu = Δu

Au, ru

Ad + LdCd = Δd

Ad, rd

Cuu

Auu

Cud

Aud

Cdu

Adu

Cdd

Add

pu

puu

pdu

F IGURE 5.3 A Two-Step Binomial Model

we can arrive at more complex cases. The trick is to subdivide the time
from now till expiration into multiple intervals, and for each state in each
interval, generate two new arbitrage-free future states. With enough subdi-
visions, we can arrive at a richer and more real-life terminal distribution for
the asset.

Consider the two-step model shown in Figure 5.3. If we have moved to
the up state (Au, ru) by time t1, we have:

Cu = �u × Au + Lu

�u = Cuu − Cud

Auu − Aud

Lu = D(t1, t2, u)
(

Cuu − Cuu − Cud

Auu − Aud
Auu

)

where D(t1, t2, u) is derived from the financing rate ru of the asset in the
up-state for [t1, t2]:

D(t1, t2, u) = 1
1 + ru × (t2 − t1)
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We can get the same value via risk-neutral probabilities:

Cu = D(t1, t2, u) [puuCuu + (1 − puu)Cud]

puu = Au/D(t1, t2, u) − Aud

Auu − Aud

Similar equations hold if we have moved to the down state (Ad, rd) by
time t1:

Cd = �d × Ad + Ld

�d = Cdu − Cdd

Adu − Add

Ld = D(t1, t2, d)
(

Cdu − Cdu − Cdd

Adu − Add
Adu

)

or expressed via risk-neutral probabilities:

Cd = D(t1, t2, d) [pduCdu + (1 − pdu)Cdd]

pdu = Ad/D(t1, t2, d) − Add

Adu − Add

where

D(t1, t2, d) = 1
1 + rd × (t2 − t1)

Having obtained Cu, Cd at time t1, we are back in familiar territory, and can
solve for C0:

C0 = �0 A0 + L0

�0 = Cu − Cd

Au − Ad

L0 = D(t0, t1)
(

Cu − Cu − Cd

Au − Ad
Au

)

or equivalently,

C0 = D(t0, t1) [puCu + (1 − pu)Cd]

pu = A0/D(t0, t1) − Ad

Au − Ad
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where

D(t0, t1) = 1
1 + r0 × (t1 − t0)

Rewriting the above equations, we have that risk-neutral probabilities must
satisfy:

Au = D(t1, t2, u)[puu Auu + pud Aud]

Ad = D(t1, t2, d[pdu Adu + pdd Add]

A0 = D(t0, t1)[pu Au + pd Ad]

= pu puu D(t0, t1)D(t1, t2, u)Auu

+ pu pud D(t0, t1)D(t1, t2, u)Aud

+ pd pdu D(t0, t1)D(t1, t2, d)Adu

+ pu pdd D(t0, t1)D(t1, t2, d)Add

The above equations are written in short hand as:

A(t1, ω) = Et1 [D(t1, t2, ω)A(t2, ω)]

A(t0) = Et0 [D(t0, t1, ω)D(t1, t2, ω)A(t2, ω)]

where ω denotes the generic random future path (uu, ud, du, dd).
Once we have computed risk-neutral probabilities satisfying the preced-

ing, today’s and future’s price of any contingent claim is

C(t1, ω) = Et1 [D(t1, t2, ω)C(t2, ω)]

C(t0) = Et0 [D(t0, t1, ω)D(t1, t2, ω)C(t2, ω)]

Notice the similarity in the form of these equations for the underlying as-
set and contingent claims. As the asset itself can be considered as a triv-
ial contingent claim—a claim whose payoff equals the underlying asset,
C(t, ω) = A(t, ω)—the equations for the contingent claim are all we need
to both characterize risk-neutral probabilities, and to value all contingent
claims.
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Path Discount ing

Note that the preceding terms D(t1, t2, ω) are state-dependent, and reflect
the short-term financing rates (expressed as discount factors) in each state:

D(t1, t2, ω) = 1
1 + r (t1, ω) × (t2 − t1)

This means that each final payoff C(t2, ω) has to get discounted back to
today along the path of short-term financing rates (or discount factors) that
lead to that final state. This is referred to as stochastic discounting or path
discounting. We arrive at the core idea of risk-neutral valuation: The value of
any contingent claim at any time, state, (t, ω), is the risk-neutral expectation
of its stochastically discounted future cash flows.

Sel f -F inancing, Dynamic Hedging

As we subdivide the time to expiration into finer partitions, we have to
ensure that the original portfolio can be dynamically managed to replicate
the option value. At each state, we can change the amount of asset we hold
by securing requisite funds at the prevailing financing rates. As we do this
dynamic rebalancing (changing �s), we have to ensure that the value of the
portfolio entering into each state equals the value of the portfolio leaving
the state, that is, the replicating portfolio should be self-financing.

Consider the up state (Au, ru). As we enter it, we hold a portfolio that
consists of �0 units of the asset (now worth Au at t1), and a loan of size L0

plus its interest (worth L0/D(t0, t1) at time t1). Therefore the value of the
portfolio value is:

Cu = �0 Au + L0/D(t0, t1)

On the other hand, Cu = �u Au + Lu, since (�u, Lu) is the required portfolio
to replicate the option payoffs (Cuu, Cud) at the next time step t2. Therefore,
we need to change our holding of the asset from �0 to �u only by changing
the size of our loan from L0/D(t0, t1) to Lu, that is, the change in the
underlying holding should only be financed by the loan:

(�u − �0)Au = Lu − L0/D(t0, t1)

ensuring that the portfolio is self-financing.
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Example in Two-Period Sett ing

To make the previous ideas clear, we consider a 2-month call option on
$100M 2-year 5% semi-annual bond struck at par (K = 100%), where the
time to expiration has been broken into two 1-month periods, Figure 5.4.

The seller of the option can replicate the option cash flows as follows:

(A0, r0) - Receive the option premium $0.945M today, borrow (in repo)
$53.527M at 1-month repo rate of 4%, and use the proceeds,
$54.472M (= $0.945M + $53.527M), to buy $54.472M face of
the bond trading at full price of 100%. In 1 month, he will owe
(repo) financing of $53.705M (= $53.527M × (1 + 0.04/12)), and
will own $54.472M face of the bond.

(Au, ru) - If we end up in the (101%, 3.75%)-state, the incoming
value of our replicating portfolio is $1.312M = $54.472M ×
101% − $54.472M. To replicate the option payoffs for the next
period, we need to adjust our holding of the bond and the (repo)
loan to (�u, Lu) = (100%,−$99.688M), that is, we buy an ad-
ditional $45.528M face of the bond at full price of 101% and

C0 = $0.9452M

(54.472%,−$53.52M)

(100%,5.000%),4.00%

Cu = $1.3115M

(100%,−$99.688M)

(101%,4.676%),3.75%

Cd = $0.2221M

(25%,−$24.528M)

(99%,5.789%),4.75%

Cuu = $3M

(103%,3.763%),3.25%

Cud = $1M

(101%,4.900%),4.00%

Cdu = $0.5M

(100.5%,5.189%),4.25%

(98.5%,6.363%),5.25%

Cdd = $0

puu = 15.78%

= 44.59%dup

pu = 66.67%

1m 1m

(Gross Price(P), Yield(y)), RepoRate(r)

OptionValue(C)

(Δ, L)

F IGURE 5.4 Example of Option Pricing in a Two-Period Setting
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finance $99.688M at 1-month repo rate of 3.75% to owe $100M =
$99.688M × (1 + 3.75%/12) while owning $100M face of the
bond in 1 month. In either future state, (Auu, Aud), the value of
our bond ($103M, $101M), minus the financing cost $100M, is
exactly what we owe the option buyer: $3M, or $1M. Notice that
while we rebalanced the portfolio, the outgoing value $1.312M
(= $100M × 101% − $99.688M) is the same as incoming value,
that is, the portfolio is self-financing.

(Ad, rd) - If instead, we end up in the (99%, 4.75%)-state, we need
to reduce our bond position to �d = $25M face, and change the
repo borrowing to Ld = −$24.528M. Regardless of what happens
1 month later, the option seller will owe the (repo) financing of
$24.625M (= $24.528M × (1 + 0.0475/12)), and own $25M face
of the bond. If we end up in Adu = 100.5%, the option will be
exercised for cash value of $0.5M, while we can sell the bond for
$25.125M (= $25M × 100.5%), and pay $24.625M for financ-
ing, a wash. If instead, we end up in Add = 98.5% state, the op-
tion will not get exercised. The seller liquidates his $25M face
of bond trading at 98.5% for $24.625M (= $25M × 98.5%), and
uses these proceeds to settle exactly the financing cost ($24.625M).
Again note that the incoming value, $0.222M (= $54.472M ×
99% − $54.472M) is the same as outgoing portfolio value $0.222M
(= $25M × 99% − $24.528M).

FROM TWO TIME-STEPS TO . . .

We can continue to subdivide the interval [t0, te] into smaller short intervals.
Let {ti }N

i=0 be partition of [t0, te] into N intervals, with 0 = t0 < t1 < · · · <

tN = te, and let ri (ω) denote the financing rate at ti for [ti , ti+1], along ω, the
random future state/path of the world. Then sitting at today t = 0, we only
know r0, and if interest rates are nondeterministic, r1(ω), r2(ω), . . . , rN−1(ω)
are all random. The generalized version of risk-neutral formula becomes

C(t0, ω) = Et0

[
1

1 + r0(ω)dt0
× · · · × 1

1 + rN−1(ω)dtN−1
C(tN, ω)

]

C(t0, ω) = Et0 [D(t0, t1, ω) × · · · × D(tN−1, tN, ω) × C(tN, ω)]

where

D(ti , ti+1, ω) = 1
1 + ri (ω)dti

dti = ti+1 − ti
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Hence, each random payoff at expiration, C(tN, ω), has to get discounted
along the series of random short-term financing rates that lead to that state
of the world. Once we collect all these random payoffs and their corre-
sponding random PVs, we can average over all possible states ω to arrive at
today’s value.

RELATIVE PRICES

Focusing on the term multiplying the final payoff, we observe that the term

D(t0, t1, ω) × · · · D(tN−1, tN, ω)

can be interpreted as the stochastic discount factor over the interval [t0, tN],
while its inverse, M(t0, tN, ω), is the stochastic future value:

M(t0, tN, ω) = 1
D(t0, t1, ω) × · · · D(tN−1, tN, ω)

= [1 + r0(ω)dt0][1 + r1(ω)dt1] . . . [1 + rN−1(ω)dtN−1]

As M(t0, tN, ω) is simply the value of unit currency reinvested at successive
short term rates ri (ω), it is usually called the money-market account. Since
M(t0, t0, ω) = 1, the risk-neutral formula can be rewritten as:

C(t0, ω)
M(t0, t0, ω)

= Et0

[
C(tN, ω)

M(t0, tN, ω)

]

Expressed this way, we observe that the risk-neutral formula is just a simple
condition on relative prices, that is, the value of any contingent claim relative
to the money-market account, C(t, ω)/M(t0, t, ω).

No Expected Change in Relat ive Prices

In terms of relative prices, a characterization of risk-neutral probabili-
ties is that at any point of time t0, the expected future relative prices,
Et0 [C(tN)/M(t0, tN)], are the same as the current relative prices, C(t0)/
M(t0, t0). Relative prices have no expected profit/loss in a risk-neutral
world.

This characterization evokes fair games from probability theory. For
example, if we continually toss a fair coin with payoff of ±1 if heads/tails,
then at any point, our expected future stake is whatever our current stake is,
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since the expected gain from each coin toss is 0. In probability theory, this
is called the martingale property. In general, martingales are an abstraction
of fair games, that is, processes that have zero expected change. In this
language, relative prices are martingales under risk-neutral probabilities.

RISK-NEUTRAL VALUATION:
ALL RELATIVE PRICES MUST BE MARTINGALES

We now have all the concepts for risk-neutral valuation. While the above
discussion has been focused on a single risky asset, the arguments can be
generalized to multiple risky assets, as established in papers by Harrison
et al., and we refer the interested reader to them. We will be content with
the following variant of their results: In a risk-neutral setting with multiple
risky assets, all relative prices relative to the money-market account must be
martingales. The all in the previous statement includes both the underlyings
and contingent claims on them.

Focusing on the underlying tradeable assets in fixed income, that is,
zero-coupon bonds, and their prices expressed as discount factors, since a
te-expiry zero-coupon bond has unit value at te, the risk-neutral probabilities
must satisfy

D(t0, te, ω)
M(t0, t0)

= Et0

[
D(te, te, ω)
M(t0, te, ω)

]

⇒ D(t0, te, ω) = Et0

[
1

M(t0, te, ω)

]

With this setup, risk-neutral valuation reduces to ensuring that the above is
satisfied for all te ≥ t0 ≥ 0, and valuing contingent claims via:

C(t0) = Et0

[
C(te, ω)

M(t0, te, ω)

]

Cont inuous-T ime

By letting the number of time intervals N go to infinity, we arrive at the
continuous-time version of risk-neutral formula. We let M(t, ω) denote the
money-market account:

M(t, ω) = e
∫ t

0 r (u,ω)du
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started today (t = 0) with unit currency: M(0) = 1, where r (u, ω) denotes
the instantaneous financing rate over [u, u + du] along the future random
path ω. The martingale condition becomes

(0 ≤ t ≤ T)
C(t, ω)
M(t, ω)

= Et

[
C(T, ω)
M(T, ω)

]

for all futures dates t and maturities T, including any particular expiry
T = te. This can also be expressed as

(0 ≤ t ≤ T) C(t, ω) = Et[e− ∫ T
t r (u,ω)duC(T, ω)]

The above applies to all contingent claims. In particular, since discount
factors at any time t are prices of unit currency at future dates T ≥ t, we have

(0 ≤ t ≤ T) D(t, T, ω) = Et[e− ∫ T
t r (u,ω)du]

and today’s (t = 0) discount factors must satisfy

(0 ≤ T) D(0, T, ω) = E0[e− ∫ T
o r (u,ω)du]

INTEREST-RATE OPTIONS ARE INHERENTLY
DIFF ICULT TO VALUE

Notice that as we were laying out scenarios for the future states of the world,
for each state we had to specify both the underlying tradeable asset value and
the short-term financing rates in that same state, that is, we had to consider
the co-evolution of financing rates and the underlying tradeable asset. For
example, for the 2-month bond call option, at each state we had to consider
the bond price/yield and the repo rate. If instead we were looking to price an
option on a swap, we would have to consider the underlying (forward) swap
value and the financing (Libor) rate. As the value of a swap depends on the
discount factor curve at each state, we would have to consider the evolution
of the whole discount factor curve, a multidimensional problem. Of course,
we can collapse all the information from the discount curve to the relevant
underlying instrument (swap rate, swap value, bond price/yield), but still we
would have to co-evolve this information with the financing rates.

This is in sharp contrast to pricing options on single stocks, FX, com-
modities, where the underlying is a single asset (1-dimensional), and since
most of the risk is in the underlying, interest rates are conveniently assumed
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to be deterministic. For deterministic (nonrandom) interest rates, the
stochastic discount factor can be replaced by its nonstochastic counterpart:

1/M(te, ω) = e− ∫ te
0 r (u,ω)du = D(0, te)

In this case, the discount factor can be taken outside the expectation, sim-
plifying risk-neutral formula to:

C(0) = E0[e− ∫ te
0 r (u,ω)C(te, ω)]

= D(0, te) × E0[C(te, ω)]

For deterministic interest rates, contingent claim valuation then reduces
to computing discounted expected payoffs, an easier feat than calculating
expected discounted payoffs, which would require co-evolution of assets
and interest rates. As we will in later chapters, by assuming certain terminal
distributions (Normal, Log-Normal) for the underlying asset, we can get
closed-form formulae (Black) for simple European options such as calls,
puts, digitals. Due to their relatively simple structure and ease of quoting—
much like flat yield-to-maturity for quoting bonds—these Black formulae
and their variants are commonly used even for interest-rate options, despite
the inconsistency of simultaneously assuming deterministic discounting and
nondeterministic interest rates at expiration.

FROM BINOMIAL MODEL TO EQUIVALENT
MARTINGALE MEASURES

We stated, “In an arbitrage-free market, there exists an equivalent measure
where assets’ prices relative to some numeraire are martingales. If the mar-
ket is complete, this martingale measure is unique, and option prices are
expected relative (to the numeraire) prices.”

Let us try to see if we can now parse the above and see their primordial
counterparts in our simple CRR binomial model:

“Arbitrage-Free”: We showed that lack of arbitrage is equivalent to pu

being a probability, 0 ≤ pu ≤ 1.
“Equivalent”: The asset possibility-space Au, Ad was fixed. We ignored

the real probabilities, and focused on new (risk-neutral) probabilities. Note
that we can only do this as long as we are interested in pricing contingent
claims. The risk-neutral probabilities are not true-world probabilities, and
should not be used to forecast future expected outcomes (although many
people do!).
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“Complete”: The assumption that option payoffs can be replicated via
underlyings.

“Unique”: We set up two equations and two unknowns, and we could
solve for �, L. If we had more unknowns than equations, the solution would
be indeterminate, and hence not unique.

“Numeraire”: The currency relative to which asset prices are expressed.
We selected the rolled-over money-market account, M(0, t, ω), as our choice
of numeraire.

“Relative prices are martingales”: Et[C(T, ω)/M(T, ω)] = C(t)/M(t).
This compact formula completely characterizes the risk-neutral probabil-
ities, relating them to the assumed underlying asset value evolution, and
also is the pricing operator for contingent claims.

Indeed, the two-step binomial model captures all the key ingredients
of option pricing, and is all one really needs to understand the concept of
risk-neutral valuation.

A final note is that the money-market account choice of numeraire,
although common, is not required, and any positive-valued process can serve
as the numeraire. For interest rate options, we chose the money-market
account as this is the most common and intuitive numeraire. Chapter 11
picks up the discussion on the choice of other numeraires.



CHAPTER 6
Black’s World

The Black-Scholes-Merton formula, and its Black variant for futures was
historically derived for non-interest-rate-related underlying assets (equi-

ties, FX, commodities), and under the assumption that interest rates are
nonrandom. When interest rate options (cap/floors, swaptions) were intro-
duced, traders co-opted these formulas and applied them to interest rates.
While everyone recognized that the formulae need to be adjusted since inter-
est rates are not traded assets, and are random, nevertheless, in the absence
of any other simple alternatives, Black’s formula became (and still continues
to be) the standard option pricing formula for interest-rate flow products.

Therefore, we will suspend disbelief for a while and derive the Black-
Scholes-Merton formula in a world where interest rates are deterministic,
and then turn around and apply these to interest rate options!

Before we get there, however, a bit of probability review is in order.

A LITTLE BIT OF RANDOMNESS

A random variable (r.v.) X is said to have a Normal distribution with mean
μ and standard deviation σ , if the probability that it lies in some region
[x, x + dx] is approximately

1√
2πσ 2

e − (x − μ)2

2σ 2
dx

We will use the shorthand X ∼ N(μ, σ 2). More precisely, the cumulative
distribution function (CDF) of an N(μ, σ 2) random variable X is

FX(x) ≡ P[X ≤ x] =
∫ x

−∞

1√
2πσ 2

e
− (z − μ)2

2σ 2 dz
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F IGURE 6.1 Distribution Function of a Normal N(μ, σ 2) Random Variable

and its density function (DF) is

fX(x) ≡ d
dx

F (x) = 1√
2πσ 2

e − (x − μ)2

2σ 2

The density fX(·) looks like a bell-shaped curve, centered around the mean
μ, and symmetric around it. The fatness of the bell is directly proportional
to the standard deviation σ , Figure 6.1.

The Normal distribution is a stable distribution, that is, closed under
scaling and shifting: If X ∼ N(μ, σ 2), then any linear function Y = aX + b
is also Normally distributed and Y ∼ N(μ + a, b2σ 2). That is why we can
always start with a Standard Normal, N(0, 1), and get another Normal r.v.
with any desired mean and variance:

N(μ, σ 2) ∼ μ + σ N(0, 1)

The CDF of a standard normal, N(x) ≡ P[N(0, 1) ≤ x] is widely available in
tabulated form, or from numerical recipes with varying degree of precision.



Black’s World 99

N(·) is symmetric: N(x) = N(−x), and satisfies

P[N(0, 1) ≥ x] = 1 − P[N(0, 1) ≤ −x] = 1 − N(−x)

Moreover,

P[N(μ, σ 2) ≤ x] = P[μ + σ N(0, 1) ≤ x]

= P
[

N(0, 1) ≤ x − μ

σ

]

= N
(

x − μ

σ

)

Expected Values, Moments

The mean or expected value of a random variable X with density fX(·) is
defined as:

E[X] ≡
∫

xfX(x)dx

For an N(0, 1) r.v., E[X] = 0 and since Expectation is a linear operator

E[N(μ, σ 2)] = E[μ + σ N(0, 1)]

= μ + σ E[N(0, 1)]

= μ

The variance or the second central moment of a random variable is defined as

Var (X) ≡ E(X − EX)2 = E[X2] − (EX)2

and its square root is called the standard deviation. For an N(μ, σ 2) r.v., its
variance is σ 2, and its standard deviation is σ .

In general, for any function g(·) of an r.v. X, its mean is defined as

E[g(X)] ≡
∫

g(x) fX(x)dx

Finally, two r.v.’s X, Y are said to be independent, if

E[ f (X) × g(Y)] = E[ f (X)] × E[g(Y)]

for any arbitrary functions f, g. For independent r.v.’s, their variances
add up:

Var (X + Y) = Var (X) + Var (Y)
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The covariance of two r.v.’s X, Y is defined as

Cov(X, Y) = E[(X − EX)(Y − EY)]

while the correlation is the covariance normalized by the standard
deviations:

ρ = Corr (X, Y) = E[(X − EX)(Y − EY)]√
Var (X)

√
Var (Y)

Independence is a stronger condition than uncorrelatedness (ρ = 0),
although for jointly Normal r.v.’s, they coincide.

Log-Normal Distr ibut ion

A random variable Y is said to have a Log-Normal distribution, Y ∼
LN(μ, σ 2), if its natural log is an N(μ, σ 2) r.v., or in other words,
Y ∼ eN(μ,σ 2). Its CDF is

FY(y) = P[LN(μ, σ 2) ≤ y]

= P[N(μ, σ 2) ≤ ln(y)]

= P[μ + σ N(0, 1) ≤ ln(y)]

= N
(

ln(y) − μ

σ

)

and its density function (DF) can be obtained as

fY(y) = d
dy

P[LN(μ, σ 2) ≤ y]

= d
dy

P[N(μ, σ 2) ≤ ln(y)]

= d
dy

FX(ln(y))

= 1
y

fX(ln(y))

= 1

y
√

2πσ 2
e
− (ln(y) − μ)2

2σ 2

where FX and fX denote the CDF and DF of an N(μ, σ 2) r.v.
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TABLE 6.1 Properties of Normal and Log-Normal Random
Variables

Normal Log-Normal
N(μ, σ 2) LN(μ, σ 2)

Density Function 1√
2πσ 2

e− (x−μ)2

2σ2 1√
2πσ 2x

e− (ln(x)−μ)2

2σ2

Mean μ eμ+σ2/2

Variance σ 2 e2μ+σ2
(eσ2 − 1)

Mode μ eμ−σ2

A LN(μ, σ 2) r.v. can only take positive values, and its mean is

E[LN(μ, σ 2)] = eμ+σ 2/2

Note that for a Log-Normal LN(μ, σ 2) r.v., the parameters μ, σ 2) are
not its mean and variance. A Log-Normal LN(ln(μ2/

√
μ2 + σ 2), ln(1 +

μ2σ 2)) r.v. will have mean μ and variance σ 2, and can be compared to
a Normal N(μ, σ 2) r.v., as shown in Figure 6.2.

Central L imit Theorem

Why is the Normal distribution so important? For one thing, it is analyti-
cally tractable, and many functionals of it can be evaluated in closed form.
More important, it is the limiting distribution of many sequences of r.v.s.
Specifically, let Xi be independent, identically distributed r.v.’s with mean μ

and variance σ 2 with some distribution. Then

lim
n→∞

1√
n

n∑
i=1

Xi − μ

σ
∼ N(0, 1)

This is one version of the Central Limit Theorem, which essentially states the
distribution of an average tends to be Normal, even when the distribution
from which the average is computed is decidedly not Normal.

Random Walk → Brownian Mot ion

An example of Central Limit Theorem is the random walk. Imagine a particle
starting at some origin 0, and for each interval �t takes a positive or negative
step of size �x with equal probability of 1/2. On average, the particle is not
moving since at each point, the expected movement is zero.
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Normal Log-Normal

0

σ

μ

σ

F IGURE 6.2 Comparison of Normal versus Log-Normal Distribution Functions
with Same Mean, Variance (μ, σ 2)

However our uncertainty (read variance) about its location increases
over time. While initially we were quite certain that it is within a small
distance of the origin, over time it will have had more chances to drift away,
and we need to assign higher probabilities of further distances from the
origin.

If we let the time interval and step size go to zero, while maintaining
�x = σ

√
�t for some average step size per unit time σ , we arrive at Brown-

ian motion with diffusion coefficient σ . When σ = 1, the Brownian motion
is called a standard Brownian motion.

Brownian motion is a deep mathematical subject and has many proper-
ties: Markov, Martingale, Independent Increments, everywhere continuous,
but nowhere differentiable, . . . It has been said that one is not a great prob-
abilist unless one proves a yet new property of the Brownian motion.
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For our purposes, we will just use the fact that the increments of a
Brownian motion B(t) are independent and Normal:

(t1 < t2 < t3) B(t2) − B(t1) ∼ N(0, σ 2(t2 − t1))

and B(t3) − B(t2) is independent of B(t2) − B(t1). Due to the additive prop-
erty of Normal distributions, this means that the distribution function of a
Brownian motion is Normal: B(t) ∼ N(B(0), σ 2t).

We have so far focused on Brownian motion with no drift. If instead,
B(t) ∼ N(B(0) + μt, σ 2t), then B(t) is called a Brownian motion with drift
μ. It can be thought of as the limit of a random walk with a constant drift
μ.

MODELING ASSET CHANGES

Normal distributions, random walks, and Brownian motions are commonly
used to model the underlying asset value at option expiration. The focus is
on the change in asset value from today until the expiration, with the change
expressed either in percentage/proportional or absolute terms. Specifically,
starting with asset value today, A(t0), a European-style option depends on
the unknown/random asset value at expiration, A(te, ω).

Proport ional Change

One way to model the asset at expiration is to consider its changes over
time via:

A(te, ω) = A(t0)er ([t0,te],ω)×(te−t0)

where r ([t0, te], ω) is the random return over investment period [t0, te] for
the generic unknown future state of the world ω:

r ([t0, te], ω) = 1
te − t0

ln
A(te, ω)
A(t0)

This measure is also referred to as proportional return, percentage return, or
log return. Its standard deviation is referred to as percentage, proportional,
or log volatility, or just volatility:

σ =
√

Var
[

1
te − t0

ln
A(te, ω)
A(t0)

]
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Assuming that the percentage return is Normal

r ([t0, te], ω) ∼ N(μ × (te − t0), σ 2 × (te − t0))

implies that the asset value at expiration will be Log-Normal:

A(te)/A(t0) ∼ LN(μ × (te − t0), σ 2 × (te − t0))

This Log-Normal distribution is somewhat close to the empirical distribu-
tions observed for equities—although the empirical/realized distributions
tend to have fatter tails than Log-Normal—and is commonly used for
equity/FX/commodity options. The original Black-Scholes-Merton formula
was derived assuming this dynamic for the evolution of asset prices, written
in differential shorthand as

dA(t, ω)
A(t, ω)

= μdt + σdB(t, ω)

with the interpretation that over a small period dt, the proportional/
percentage change, dA/A, has a known drift μ, and a random component
modeled as increments of a Brownian motion with diffusion coefficient σ .

Absolute Change

Another way to model changes is to focus on the absolute change, A(te, ω) −
A(t0), and to model this random change as a Normal r.v.

A(te) − A(t0) ∼ N(μ × (te − t0), σ 2
N × (te − t0))

Under this model, the underlying can take on negative values at expiration,
and while inappropriate for equities/FX/commodities, it turns out to be the
lesser of the two evils for interest rates, and has become the dominant base-
case model for interest rate derivatives. The differential shorthand for the
Normal dynamic is

dA(t, ω) = μdt + σNdB(t, ω)

where σN is referred to as the absolute or Normal volatility.

BLACK-SCHOLES-MERTON/BLACK FORMULAE

We are now ready to derive the Black-Scholes-Merton formula. We will
assume that interest rates are deterministic, and consider an asset A(·) with
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no interim cash flows whose return, ln A(t)/A(0), can be modeled as the
limit of a random walk with drift, that is, a Brownian motion. We have

(t ≥ 0) ln
A(t)
A(0)

∼ N(μt, σ 2t)

Fixing our attention on the expiration date te, according to the Risk-Neutral
Formula for deterministic interest rates, we must have

A(0) = D(0, te)E0[A(te)]

or equivalently,

E0[A(te)] = FA(0, te)

where F = FA(0, te) is the forward value of the asset for te-delivery. Now
since A(te)/A(0) is LN(μte, σ 2te), we must also have

E0[A(te)] = A(0)eμte+1/2σ 2te

Therefore, under the risk-neutral probabilities, μ must satisfy:

eμte = 1
D(0, te)

e−1/2σ 2te

which implies

A(te)/FA(0, te) ∼ LN(−1/2σ 2te, σ 2te)

As can be seen, risk neutrality forces the drift μ to be implied by choice
of volatility, and in a risk-neutral world, the drift is not an independent
parameter. We have seen this before in our binomial model, where we
replaced actual probabilities with risk-neutral probabilities once we laid out
the possible outcomes. The volatility parameter has the same role in this
version as it lays out the possibility space, while μ has to get adjusted so that
we are operating in a risk-neutral world. This elimination of μ is referred to
as drift correction or change of measure.

For a call option with strike K, the payoff at expiration is C(te) =
max(0, A(te) − K). According to Risk-Neutral Formula when interest rates
are deterministic, its value today is C(0) = D(0, te)E0[max(0, A(te) − K)].
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Letting F = FA(0, te) for notational ease, we have:

C(0) = D(0, te)E0[max(0, A(te) − K)]

= D(0, te) × F × E0

[
max

(
0,

A(te)
F

− K
F

)]

= D(0, te) × F ×
∫ ∞

−∞
max

(
0, x − K

F

)
fX(x)dx

= D(0, te) × F ×
∫ ∞

K/F

(
x − K

F

)
fX(x)dx

= D(0, te) × F ×
∫ ∞

K/F
xfX(x)dx − D(0, te) × K ×

∫ ∞

K/F
fX(x)dx

where fX(·) is the distribution function of A(te)/F ∼ LN(−1/2σ 2te, σ 2te):

fX(x) = 1√
2πσ 2tex

e
− (ln x + 1/2σ 2te)2

2σ 2te

The integral in the second term is simply the area under the distribution
function of a LN(−1/2σ 2te, σ 2te) r.v., which is just the probability of falling
in that region:

∫ ∞

K/F
fX(x)dx = P[LN(−1/2σ 2te, σ 2te) ≥ K/F ]

= P[N(−1/2σ 2te, σ 2te) ≥ ln K/F ]

= N
(

ln F/K
σ
√

te
− 1/2σ

√
te

)

In order to compute the first term, we do a change of variable:

z = ln x + 1/2σ 2te
σ
√

te

hence,

dx = σ
√

teeσ
√

tez − 1/2σ 2tedz
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and

∫ ∞

K/F
xfX(x)dx =

∫ ∞

K/F

1√
2πσ 2te

e
− (ln x + 1/2σ 2te)2

2σ 2te dx

=
∫ ∞

ln K/F
σ
√

te
+1/2σ

√
te

1√
2π

e
−

(z − σ
√

te)2

2 dz

= P
[

N(σ
√

te, 1) >
ln K/F
σ
√

te
+ 1/2σ

√
te

]

= P
[

N(0, 1) >
ln K/F
σ
√

te
− 1/2σ

√
te

]

= N
(

ln F/K
σ
√

te
+ 1/2σ

√
te

)

Putting it all together, we have the celebrated Black-Scholes formula for
calls:

C(0) = D(0, te) × [FA(0, te)N(d1) − K N(d2)]

d1,2 = ln(FA(0, te)/K)
σ
√

te
± 1

2
σ
√

te

Put-Cal l Pari ty

Rather than going through the previous procedure to derive the value of a
put, we would appeal to another argument. Consider two portfolios:

1. A te-expiry call option with strike K, and cash holding equal to the
present value of K, that is, K D(0, te).

2. A te-expiry put option with strike K, and the underlying asset, A(0).

If the underlying asset has no interim cash flows until te, then the two
portfolios will have the same value, max(A(te), K), at expiration te. There-
fore, they must have the same value today (t = 0), and we must have:

P(0) + A(0) = C(0) + K D(0, te)

This identity is called put-call parity, and holds for European-style options
on underlyings with no interim cash flows. Using Black-Scholes-Merton call
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formula, we get

P(0) = C(0) + K D(0, te) − A(0)

= D(0, te)[C(0)/D(0, te) + K − FA(0, te)]

= D(0, te)[FA(0, te)N(d1) − K N(d2) + K − FA(0,e )]

= D(0, te)[K(1 − N(d2)) − FA(0, te)(1 − N(d1))]

= D(0, te)[K N(−d2) − FA(0, te)N(−d1)]

In particular, when the strike equals the at-the-money-forward (ATMF)
value of the asset, K = FA(0, te), then the call and put prices coincide:
P(0) = C(0).

Black’s Formula

Continuing with the assumption that interest rates are deterministic, con-
sider the T-forward value of an asset with no interim cash flows. In this
case, FA(t, T) = A(t)/D(t, T), and an option on the forward can be related
to the option on the underlying. For example, a te-expiration call on the
T-forward with strike K can be valued as

D(0, te)E0[max(0, FA(te, T) − K)] = D(0, te)E0

[
max

(
0,

A(te)
D(te, T)

− K
)]

= D(0, te)
D(te, T)

E0[max(0, A(te) − K D(te, T))]

= D(0, te)
D(te, T)

[FA(0, te)N(d1) − K D(te, T)N(d2)]

= D(0, te) × [FA(0, T)N(d1) − K N(d2)]

where

d1,2 = ln(FA(0, T)/K)

σ
√

te
± 1/2σ

√
te

since D(0, te)D(te, T) = D(0, T) where interest rates are deterministic.
If the settlement date of the forward contract coincides with the option

expiration, that is, te = T, then the above equation reduces to the Black-
Scholes formula expressed in terms of te-forwards.
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While derived using different methods, this formula, derived by Black,1

is the most commonly used (and abused) formula to price interest rate
derivatives.

Black’s Normal Cal l /Put Formulae

The Black formulae were derived by assuming that asset returns have a
Normal Distribution. This would imply that future asset prices are Log-
Normally distributed.

Alternatively, one can assume that the future underlyings themselves,
rather than their returns, are Normally distributed. While unrealistic for
equities, and semirealistic for interest rates, it focuses the attention on
absolute changes in the underlying rather than percent changes. This seems
to be a better way to think about interest rates, as they themselves are related
to asset returns. Moreover, similar to the Log-Normal case, one can derive
analytical formulas for calls and puts.

For the Normal model, we will assume that

(t ≥ 0) A(t) − A(0) ∼ N(μt, σ 2
Nt)

Risk neutrality implies that

(t ≥ 0) A(t) ∼ N(FA(0, t), σ 2
Nt)

For a te-expiry call option with strike K, we have:

C(0) = D(0, te)E0[max(0, A(te) − K)]

= D(0, te)
∫ ∞

−∞
max(0, x − K) fX(x)dx

= D(0, te)
∫ ∞

K
(x − K) fX(x)dx

= D(0, te)
[∫ ∞

K
(x − FA(0, te)) fX(x)dx + (FA(0, te) − K)

∫ ∞

K
fX(x)dx

]

where fX(·) is the DF of A(te):

fX(x) = 1√
2πσ 2

Nte
e
− (x−FA(0,te ))2

2σ2
Nte
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The integral in the second term is simply the area under the DF of a
N(FA(0, te), σ 2

Nte) r.v., which is just the probability of falling in that region:

∫ ∞

K
fX(x)dx = P[N(FA(0, te), σ 2

Nte) ≥ K]

= P[FA(0, te) + σN
√

te N(0, 1) ≥ K]

= P
[

N(0, 1) ≥ K − FA(0, te)
σN

√
te

]

= N
(

FA(0, te) − K
σN

√
te

)

The first integral can be reduced:

∫ ∞

K
(x − FA(0, te)) fX(x)dx = −σN

√
te√

2π

∫ ∞

K

d
dx

(
e
− (x−FA(0,te ))2

2σ2
Nte

)
dx

= 1√
2π

σN
√

tee
− (FA(0,te )−K)2

2σ2
Nte

Therefore,

C(0) = D(0, te)σN
√

te
[
N′(d) + dN(d)

]
d = FA(0, te) − K

σN
√

te

Note that d (actually −d) is a measure of the moneyness of the option as
it expresses the distance between the forward versus the strike, FA − K,
expressed in units of standard deviation, σN

√
te. A similar interpretation

can be given to d1 for Log-Normal dynamics.
By put-call parity, the value of a put, P(0), becomes

P(0) = C(0) + (K − FA(0, te))D(0, te)

= D(0, te)
[
σN

√
te

(
N′(d) + dN(d)

) + (K − FA(0, te))
]

= D(0, te)σN
√

te
[
N′(d) + dN(d) − d

]
= D(0, te)σN

√
te

[
N′(d) − dN(−d)

]
Similar to the Log-Normal case when interest rates are deterministic,

options on forwards with delivery date T later than expiration date te
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using Normal dynamics can be valued using above formulae with FA(0, te)
replaced FA(0, T).

Impl ied Volat i l i t ies

In practice, one has to back out the implied volatility from the quoted
market prices of options. When using Log-Normal formulae, one arrives at
the implied Log-Normal volatility, or log-vol, while Normal formulae give
implied normal volatility, sometimes called basis-point volatility (BPVol), or
normalized, normal volatility.

For interest rate options, ATMF (K = F ) straddle prices are typically
quoted. Since for ATMF options, call and put prices are equal, a straddle
price is simply twice the call: S(0) = C(0) + P(0) = 2C(0). Since K = F ,
d1,2 = ±1/2σ

√
te, and

S(0) = 2F
[

N
(

σ
√

te
2

)
− N

(
−σ

√
te

2

)]

for Log-Normal dynamics, while d = 0, and

S(0) = 2σN
√

te N′(0)

for Normal dynamics. Therefore,

F
[

N
(

σ
√

te
2

)
− N

(
−σ

√
te

2

)]
= σN

√
te N′(0)

By using a Taylor series approximation around 0, we have

N
(

σ
√

te
2

)
− N

(
−σ

√
te

2

)
≈ N′(0)σ

√
te

which results in the following approximation for converting between ATMF
Normal and Log-Normal implied vols:

σN ≈ σ × F

A similar expression can be derived to relate the implied Normal and
Log-Normal vols for different strikes:

σN(K) ≈ σ (K) ×
√

FK

reducing to the preceding when K = F .
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GREEKS

Recall that Black’s formulae were obtained as special instances of risk-
neutral valuation under the assumed dynamics for proportional or absolute
returns. We should not forget that risk-neutral valuation gives the same
value as a self-financing replicating portfolio. The question arises as to what
happened to the replicating portfolio, and how do we replicate an option’s
payoff? The answer lies in the Greeks.

Recall that in our binomial setting, the replicating portfolio was � units
of the underlying asset financed via a risk-free loan. The � amount had to
be (dynamically) changed in response to market movements. In the simple
1-step binomial model, we computed

� = Cu − Cd

Au − Ad

which can be interpreted as the sensitivity of the option price with respect
to the underlying asset.

In the limit, � → ∂C
∂F , and the replicating portfolio consists of ∂C

∂F units
of a forward contract on the asset. This is called the delta of the option. The
delta is a number between 0 and 1, and expresses how much of the forward
asset is needed to replicate the option payoff. For Log-Normal dynamics, it
is measured as N(d1), while for Normal it is N(d).

As we saw in the 2-step binomial model, the delta changes. The rate
of change of delta with respect to the underlying is called gamma and is
defined as ∂2C

∂F 2 . Gamma measures the curvature of the option payoff, and is
also called the convexity.

The intrinsic value of an option is its value at expiration, and the time
value of an option is the difference between the option value and its intrinsic
value. Time value tends to 0 as one gets closer to expiration. Theta or time-
decay is defined as the rate of change of option value due to time ∂C

∂te
. An

option holder typically loses time value as one gets closer to expiry.
Finally, the sensitivity of an option with respect to volatility ∂C

∂σ
is called

Vega.

Black-Scholes PDE

The original Black-Scholes-Merton formula was derived by considering the
inter relationship of gamma, theta, delta, of a generic contingent claim
C(t, A(t)) in relationship to the underlying A(t), expressed as a partial
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differential equation (PDE). While this PDE approach and the associated
numerical algorithms are used for single-dimensional underlyings (equities,
FX, . . . ), it is less common for interest rate derivatives. We will simply state
the Black-Scholes-Merton PDE, and refer the interested reader to other
sources for this approach. Under deterministic interest rates, for underlyings
with no interim cash flows evolving according to

dA(t, ω) = μ(t, ω)dt + σ (t, ω)dB(t, ω)

the Black-Scholes PDE for any European-style contingent claim C(t, A(t, ω))
must satisfy:

∂C
∂t

(t) + r (t)A(t)
∂C
∂ A

(t) + 1
2

∂2C

∂ A2 (t)σ 2(t) = r (t)C(t, A(t))

where r (t) is the instantaneous risk-free financing rate. The PDE applies to
any contingent claim. In particular, for a te-expiry call with strike K, we
have C(te) = max(0, A(te) − K), and with this terminal condition, the PDE
can be solved backwards to arrive at C(0):

C(0) = e− ∫ te
0 r (t)dt[FA(0, te)N(d1) − K N(d2)]

Gamma versus Theta

As seen in Figure 6.3, the Black’s call value is a convex function of the
underlying, and its delta changes when the underlying moves. The dynamic
rebalancing of the replicating portfolio is primarily the result of this convex-
ity, and it confers a systematic edge to the replicating portfolio. Loosely said,
a delta-hedged replicating portfolio consisting of a financed position of ∂C

∂F
units of the underlying will need to get rebalanced as forwards move. For the
option holder, be it call or put, it requires reducing/increasing the position if
the underlying appreciates/depreciates, that is, the option holder will have to
buy-low, sell-high to replicate the option payoff! The amount of this excess
P&L of a delta-hedged option is predominantly 1/2 × Gamma × (�F )2,
similar to the convexity P&L of a duration-neutral portfolio of bonds.

A delta-hedged long option position experiences 2 dominant P&Ls: it
loses time value every day, and it gains a gamma P&L as the position is re-
balanced (delta has changed). Note that the gamma P&L is incurred whether
the asset moves up or down. This is shown in Figure 6.3 for a call option.
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Forward (F)

Call Intrinsic Delta Hedge

Gam
m

a 
P&L

Gamma P&L

Time Decay
(Theta P&L)

F IGURE 6.3 Gamma P&L versus Time Decay for a European Call Option

The typical (expected) movement of the forward asset over a short
interval time dt is prescribed by volatility as dF ≈ σ F

√
dt or dF ≈ σN

√
dt.

Hence for a delta-hedged option, we have:

∂C
∂te

dte + 1
2

∂2C
∂F 2

σ 2 F 2dte = 0

or

∂C
∂te

dte + 1
2

∂2C
∂F 2

σ 2
Ndte = 0

Black’s formula is the correct computation of the expected value of the sum
of these P&L’s over the life of the option.
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TABLE 6.2 Black Log-Normal Greeks

Call Put ATMF Straddle

Premium F N(d1) − K N(d2) K N(−d2) − F N(−d1) 2F (N(σ
√

t/2) −
N(−σ

√
t/2))

Delta
(

∂
∂F

)
N(d1) N(d1) − 1 2N(σ

√
t/2) − 1

Gamma
(

∂2

∂F 2

)
N′(d1)
Fσ

√
t

N′(d1)
Fσ

√
t

2 N′(σ
√

t/2)
Fσ

√
t

Vega
(

∂
∂σ

)
F

√
tN′(d1) F

√
tN′(d1) 2F

√
tN′(σ

√
t/2)

Cheat Sheet

The following tables summarize various Black formulae and their Greeks,
although in practice Greeks are usually computed numerically (bump-and-
revalue). All of these are for European options without the discounting from
payment date to today. Recall that

d1,2 = ln(F/K)

σ
√

t
± 1

2
σ
√

t d = F − K

σN
√

t

N(d) =
∫ d

−∞

1√
2π

e−x2/2dx N′(x) = 1√
2π

e−x2/2

TABLE 6.3 Black Normal Greeks

ATMF
Call Put Straddle

Premium σN
√

t [N′(d) + dN(d)] σN
√

t [N′(d) − dN(−d)] 2√
2π

σN
√

t

Delta
(

∂
∂F

)
N(d) N(d) − 1 0

Gamma
(

∂2

∂F 2

)
N′(d)
σN

√
t

N′(d)
σN

√
t

2√
2π

1
σN

√
t

BPVega
(

∂
∂σN

) √
tN′(d)

√
tN′(d) 2√

2π

√
t

Theta
(

∂
∂t

)
σN

2
√

t
N′(d) σN

2
√

t
N′(d) 1√

2π

σN√
t
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DIG ITALS

In deriving Black’s formula, we had to evaluate the integral

∫ ∞

K/F
fX(x)dx = P[A(te)/F > K/F ]

= P[A(te) > K]

= N(d2)

where fX denotes the distribution function of LN((r − σ 2/2)te, σ 2te) r.v.
Therefore, N(d2) can be interpreted as the risk-neutral probability that the
call finishes in-the-money, and can also be used to evaluate digitals. A digital
call option C(te) has unit payoff if the asset A(te) at expiration te is above
the strike K:

DigiCall(te) =
{

1 if A(te) > K
0 otherwise

To evaluate a te-expiry/tp-pay digi-call on an asset when interest rates are
deterministic, we calculate

DigiCall(0) = D(0, tp)E0[C(te)]

= D(0, tp)E0[C(te)]

= D(0, tp)P[A(te) > K]

= D(0, tp)N(d2)

Valuation of digi-puts is similar, since Digi Put(te) = 1 − DigiCall(te),
hence

DigiPut(0) = D(0, tp)(1 − N(d2)) = D(0, tp)N(−d2)

giving us

DigiCall/Put(0) = D(0, tp)N(±d2) d2 = ln(FA(0, te)/K)
σ
√

te
− σ

√
te/2

for Log-Normal dynamics. For Normal dynamics, the value of te-expiry/tp-
pay digital is

DigiCall/Put(0) = D(0, tp)N(±d) d = FA(0, te) − K
σN

√
te
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TABLE 6.4 Black Log-Normal Formulae
for Digitals

Digi-Call Digi-Put

Premium N(d2) N(−d2)

Delta 1
Fσ

√
t

N′(d2) −1
Fσ

√
t

N′(d2)

CALL IS ALL YOU NEED

One can continue along the above lines to derive analytical formulae for
European style options with more complicated payoffs. In practice, however,
the call and digi-call formulae are all one really needs to evaluate European-
style options. Indeed, a functional analysis result states that functions with
call or digi-call payoffs form a total basis for continuous functions, which
means that any real-world option payoff is economically equal to—or can be
approximated arbitrarily closely—via a portfolio of calls and/or digi-calls.
Hence calls and digi-calls serve as the salient building blocks of European-
style options.

The following is a list of some common European-style (single-exercise)
payoffs encountered in practice:

1. Straddle: A put and call with same strike K
2. Strangle: A put and call with different strikes (K1, K2)
3. Collar: Being long a collar is being long a K2-call, and short a K1-put

with K1 < K2. The strikes K1, K2 are usually chosen around the forward
rates, so that the package is worth 0, that is, a costless-collar.

4. Risk-Reversal: Long a call at ATMF + d and short a put at ATMF − d
is called a 2d-total-width (or d on each side) risk-reversal. Under Normal
dynamics with no skews, a risk-reversal should be worth zero. Traders
track the price of various-width risk-reversals to discover the implied
skews in the market.

TABLE 6.5 Black Normal Formulae for Digitals

Dig-Call Digi-Put

Premium N(d) N(−d)

Delta 1
σN

√
t

N′(d) − 1
σN

√
t

N′(d)

Gamma − d
σ 2

Nt
N′(d) d

σ 2
Nt

N′(d)
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5. Call/Put Spread - Being long a call-spread is being long a K1-call, and
short a K2-call, with K1 < K2.

6. Ratio - Most common is a 1x2 (1 by 2) ratio. Being long a 1x2 call ratio
means being long one K1-call, and short two K2-calls. Some traders
track the implied market skews by setting K1 = ATMF , K2 = K1 + d,
and solving for d that would make the ratio costless, the higher the
call-skew, the higher the solved d.

7. Fly - Being long a call-fly is being long one K1-call, short 2 K2-calls, and
long one K3-calls, with K1 < K2 < K3, and K2 − K1 = K3 − K2. This
is usually used to pin down and express strong views on the setting of
Libor at expiration, leading to pin risk for the option seller.

8. Digitals - Digi-calls, Digi-puts. Due to their high gamma, these are usu-
ally sold as a conservative (from seller’s point of view) call or put spreads,
with the strikes chosen to be 10-20 basis point apart (called the “width
of the ramp”).

9. Knock-in Caplet/Floorlet - A K1-strike call with K2-knock-in (K1 < K2)
has the same payoff as a K1-call, but only if the underlying is above K2 at
expiration. The payoff is zero if the underlying is below K2 at expiration.
This can easily be priced as a K2-call plus a K2-Digi-Call with payoff
K2 − K1. A periodic knock-in cap/floor is a portfolio of different expiry
Knock-in caplets/floorlets.

These are shown in Figure 6.4. All of the above products can be priced
via Black’s Normal/Log-Normal formulae, as the payoffs are simple portfo-
lios of different-strike calls/puts and digi-calls/puts.

Market- Impl ied Risk-Neutral D istr ibut ion

Under assumed simple dynamics (Normal/Log-Normal), we can derive for-
mulae for various payoffs. In practice, it is observed that neither dynamic
recovers market-quoted option prices for all strikes, and for each strike,
one has to adjust the implied volatility driving the dynamics. This varia-
tion of volatility versus strike is referred to as the volatility smile/skew. The
existence of smiles/skews begs the question as to whether there is a true
market-implied distribution that will recover all option prices. It turns out
that one could potentially recover all market quoted option prices if one had
access to price of calls for all strikes.

Recall that in the Black-Scholes setting, today’s price of a K-strike call is

C(K) = D(0, tp)E0[max(0, C(te) − K)]

= D(0, tp)
∫

max(0, x − K) fX(x)dx
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Straddle Strangle Collar

Spread

Digital Knock-in

Ratio Fly

×2 ×2

F IGURE 6.4 Common European-Style Payoffs

where fX is the assumed distribution function of the asset at expiration.
This distribution function can be recovered as the second derivative of C(K)
with respect to the strike K:

1
D(0, tp)

∂2

∂K2
C(K) = ∂2

∂K2

∫
max(0, x − K) fX(x)dx

=
∫

∂2

∂K2
max(0, x − K) fX(x)dx

=
∫

δ(x − K) fX(x)dx

= fX(K)

where δ(x) is the delta function (derivative of a step function) commonly
used in engineering and physics, and satisfies the following convolution
integral property:

g(K) =
∫

δ(x − K)g(x)dx

for any function g.
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CALENDAR/BUSINESS DAYS, EVENT VOLS

Black’s formulae only depend on average volatility. Indeed, these formulae
were derived by assuming that the underlying asset or its return follows a
Brownian motion with constant diffusion parameter (σ, σN), leading to ei-
ther a Log-Normal or Normal distribution at expiry. The various formulae
are simply the evaluation of the payoff integral under this terminal distri-
bution. The main driver of these formulae is the terminal variance σ 2te. If
instead we let the driver be a Brownian motion with a time-varying but
deterministic diffusion function, σ (t), because of the additive property of
Normal r.v.’s—the infinitesimal building-blocks of Brownian motions—the
terminal distribution is still Normal/Log-Normal, with terminal variance:

∫ te

0
σ 2(t)dt

Defining the average volatility, sometimes called root-mean-square (RMS)
vol, or integrated vol, as

σ =
√

1
te

∫ te

0
σ 2(t)dt

all previous formulae hold with σ, σN replaced by their averages: σ , σN.
This observation allows one to fine-tune the timing of volatility, control-

ling for days where there is anticipated above-average uncertainty/volatility
(major economic releases, central bank rate announcement), and days with
below-average market volatility (weekend, holidays, . . . ). This event-vol
volatility is essential and critical for pricing and risk management of short-
dated options.

In practice, a daily resolution with constant volatility for each day is
usually adopted. This allows for easy implementation and calculation of the
integrals, as they become sums:

∫ te

0
σ 2(t)dt = 1

365

N∑
i=1

σ 2
i

where N is the number of days to expiry te, and σi denotes the annualized
volatility for i-th day.

A common practice is to assume that there is no volatility σi = 0 on
weekends/holidays, and that volatility is constant for other business days
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until the expiry under consideration. In this case, the market-quoted
calendar-day-based volatility σ will get converted to business-day volatil-
ity σB as follows:

Cσ 2 = Bσ 2
B ⇒ σB =

√
C
B

σ

where B, C refer to the number of Business, Calendar days till expiry. The
computed σB (multiplied by the appropriate number of business days) can
then be used for pricing shorter-dated options.

A related concept is the notion of daily vol, interpreted as the average
daily movement for a delta-hedged option to break-even. Volatilities are
quoted in annualized terms, so for a constant Normal volatility σN over a
1-year period with B business days, the final variance is

365∑
i=1

σ 2
N

365
=

B∑
i=1

(Daily-Vol)2 = B × (Daily-Vol)2

implying

Daily-Vol = σN√
B

≈ σN

16

since it is usually assumed that a typical calendar year has B = 252 (52
weeks × 5–8 holidays) business days, although other numbers (256 = 162,
250, . . . ) are also used. For example, a swaption trading at an implied vol
of 100bp/annum, σN = 1%, implies an average move of 6.3 = 100/

√
252

bp’s 1 day until expiry.
Since an ATMF straddle undiscounted price is 2√

2π
σN

√
te, knowledge of

the price of a 1-day expiry option allows us to quickly backout the implied
daily move:

1-day Straddle Price = 2√
2π

Daily Vol ≈ 0.8 Daily Vol

These options are sometimes quoted in the form of forward option agree-
ment (FOA), where the strike is set in the morning of an event-full day
(major announcements, releases), and settle at day-end. The time until the
expiry (afternoon of strike-setting date) is usually small (at most a week or
2), and that’s why we can ignore the discounting.



CHAPTER 7
European-Style

Interest-Rate Derivatives

Recall that the correct price (coming from a self-financing replicating port-
folio) for European-style interest rate options is the risk-neutral expecta-

tion of the stochastically discounted option payoff:

C(t0) = E0[e− ∫ te
t0

r (u,ω)duC(te, ω)]

where in a risk-neutral world, prices of underlying assets (zero-coupon
bonds) must satisfy

E0[e− ∫ te
t0

r (u,ω)du] = D(t0, te)

While the preceding is the right framework for pricing interest rate options,
market practice is to try to use Black’s Formula as much as possible, resorting
to the above framework only when it cannot be co-opted in any reasonable
shape or form!

The common misapplication is to approximate

E0[e− ∫ te
0 r (u,ω)duC(te, ω)] ≈ E0[e− ∫ te

0 r (u,ω)du]E0[C(te, ω)]

= D(0, te)E0[C(te, ω)]

and to further assume that rates are tradeable assets, and evaluate
E0[C(te, ω)] by using Black’s Formula with forward rates rather than for-
ward asset values. Chapter 11 shows how using Black’s formula as used in
practice can be justified using the forward measure lens, but for this chapter,
we will simply illustrate the market practice for common products.
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MARKET PRACTICE

Market practice is to use Black’s Formulae for pricing and hedging flow
products despite the theoretical inconsistency of treating discounting as de-
terministic, while interest rates as random. For most market practitioners,
Black’s formula is mostly a quoting mechanism, and also a guide on cal-
culating deltas needed to replicate the option payoff under the assumed
(often too simplistic) dynamics. Just like bonds, ultimately all interest-rate
options trade on price. And just like bonds where implied yields are calcu-
lated, implied vols are calculated to help assess the fairness of the quoted
option prices.

Extracting implied vols is more involved than extracting yields via the
commonly accepted simple price-yield formula. For rate options, we first
need to build a Libor discount factor curve, calculate the relevant forward
rate(s), and discount factors to the payment dates, and then apply Black’s
formula in conjunction with these to back out the implied vol. The calculated
implied vol is then not only a function of the quoted price, but also of how
the Libor curve is constructed. Every trading shop on the street has their
own curve building mechanism, with enough minor variations and nuances
so that starting from the same option price, each will get a similar—but not
exactly identical—implied vol.

For interest rate options, since At-The-Money-Forward (ATMF) strad-
dles have little duration risk, and are predominantly a function of the volatil-
ity, ATMF straddle prices are actively quoted and traded. Option traders
are in the business of taking and managing volatility risk, not duration or
spread risk, as each option desk will try to maintain a delta-neutral position
and takes only volatility risk. By monitoring and trading ATMF straddles,
they are then trading volatility itself.

Initially, Black’s Log-Normal formulae were co-opted for interest rate
products. In recent years, however, most traders have switched to the Nor-
mal dynamics as the base case, and brokers quite often quote Normal vols
alongside prices in preference to Log-Normal vols.

INTEREST-RATE OPTION TRADES

As with any other derivative, interest-rate options can be used as a hedging
or speculation tool.

Hedging, Protect ion

Mortgage servicing companies often buy swaptions to hedge the negative
convexity of their servicing portfolios. Insurance companies typically buy
cap/floors to hedge their guaranteed-payoff annuity products.
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Speculat ion, Penny Opt ions, Lottery Tickets

Hedge funds typically utilize interest-rate options to express a view on the
terminal setting of interest rates at expiration. Rather than entering into a
forward agreement, they usually buy cheap out-of-the-money options to cap
the down-side (premium paid) while benefitting handsomely if their view
is borne out. These buyers do not hedge the interest-rate options, except
sometimes under a favorable outcome before expiration to lock in profit, or
by rolling the strike.

Gamma Trading, Real i zed versus Impl ied Vol

The dominant P&L of short-dated (6m and under) options when delta-
hedged is due to their gamma. If the actual realized volatility turns out to
be higher/lower than the implied volatility (paid/received through the up-
front premium), then delta-hedging can be a source of profit for long/short
position in an option.

Vega Trading, Supply/Demand

For longer-dated options (1y and longer expiries), the dominant P&L is due
to changes in implied volatility, that is, their vega. These changes in implied
vols are primarily due to supply and demand of volatility. For example, a
large hedging program by a servicing company can drive up volatilities in one
sector, while the hedging needs of exotics desks can pressure a specific sector
of the volatility surface. An astute anticipation of these flows allows one to
take a position—usually via straddles in order to minimize delta-hedging
needs—in vega pieces, and then unwinding the position for profit/loss after
a favorable/unfavorable outcome. As these trades can span a few months
for the flows to be realized, one needs to consider the volatility carry (loss
of time-value) and roll-down (slope of the volatility surface along expiry).

CAPLETS/FLOORLETS:
OPTIONS ON FORWARD RATES

A caplet/floorlet is a European option on a rate, typically the benchmark
interest rate, say 3m Libor. A typical caplet/floorlet on 3m Libor is based on
a single calculation period: [te, te + 3m]. At expiration te the market rate is
compared to the strike K, and the option payoff is accrued for the duration
of the calculation period, and paid at the end of the calculation period
te + 3m. For example, a 6m-expiry caplet on 3m Libor has the following
payoff 9m from today:

max(0, L3m(6m) − 0.05) × α(te, te + 3m)

per unit notional, where α is the accrual fraction.
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Market practice is to use Black’s formula (Log-Normal or Normal ver-
sions) to price options on futures. For a given calculation period [T1, T2], the
risk-neutral formula for a caplet on a rate R is approximated as:

C(0) = E0

[
e− ∫ T2

0 r (u,ω)du max(0, R(T1, ω) − K)
]

× α(T1, T2)

≈ D(0, T2)E [max(0, R(T1, ω) − K)] × α(T1, T2)

and further assuming that a forward rate is a tradeable asset, hence the
appropriate (Log-Normal or Normal) Black’s call formula is used to evaluate
the E[.] term. Similarly, for floorlets, the payoff E [max(0, K − R(T1, ω))] is
evaluated using Black’s put formula.

Example 1. A 6-month 5.5% caplet on 3m Libor is quoted as 5 cents ($500
for $1M notional) when D(0, 6m) = 0.975, D(0, 9m) = 0.9625. In this case,
the calculation period is [6m, 9m], and we observe 3m-Libor in 6m, compare
it with the strike 5.5%, and on payment date (9m from today), the payoff
is max(0, L3m(6m) − 0.05) × 1/4, where 1/4 is the length of the calculation
period in years (we are ignoring day-counts here). For instance, if 3m-Libor
in 6m is 5.25%, then there is no payoff in 9m, while if it is 5.70%, the
payoff per unit notional is 4 cents: 0.04% = 0.0020%/4 in 9m.

In order to analyze this price, we can use Black’s formula, say Normal
version, to back out the implied vol of the quoted price. We compute the
6m-forward 3m-Libor:

F = (D(0, 6m)/D(0, 9m) − 1)/0.25 = 5.19481%

and with K = 5.5%, te = 0.5, and the implied Normal Vol must be backed
out of

0.0005 = E[max(0, L3m(6m) − 5.5%)] × 0.25 × D(0, 9m)

= σN
√

te[N′(d) + dN(d)] × 0.25 × 0.9625

where

d = F − K
σN

√
te

= 5.19481% − 5.5%

σN
√

0.5

Trial and error gives us σN = 1.20% or 120 bp/year. Depending on our view
of volatility of interest rates for the next 6m, the “5-cent” price might be
cheap, fair, or rich.
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Example 2. From the previous example, having backed out the implied
vol σN = 1.20%, we can compute the value of a 6-month 5.5% floorlet on
3m-Libor. We compute

Floorlet = E[max(0, 5.5% − L3m(6m))] × 0.25 × D(0, 9m)

= σN
√

te[N′(d) − dN(−d)] × 0.25 × 0.9625

= 0.1234%

or 12.34 cents. Note that put-call parity is satisfied:

max(0, F − K) − max(0, K − F ) = F − K

or

Caplet − Floorlet = (F − K) × 0.25 × D(0, 9m)

Caps/F loors

A cap/floor is simply a portfolio of caplets/floorlets, all having the same
strike. For example, a 2y 5% quarterly cap on 3m Libor is a collection of
8 caplets based on 8 calculation periods: [0, 3m], [3m, 6m], . . . , [21m, 2y],
where each caplet’s strike is 5%. Each caplet/floorlet is valued using Black’s
formula using its own (depending on its expiration date) volatility, and the
value of the cap/floor is simply the sum of all these values.

An m × n (pronounced m by n) forward cap/floor is a cap/floor starting
m years from today, and maturing n years from today. So a 1x2 cap is a 1y
cap, starting in 1y; a 3x5 cap is a 2y cap, starting in 3y.

In practice, only prices of a few caps/floors are actively quoted in the
form of cap-floor straddles. Typical maturities are 1y, 1x2, 2x3, 3x5, 5x7,
7x10 for USD cap/floors. For example a 1x2 USD “cap-floor straddle”
quoted as 25 cents denotes a price of $250,000 for a package consisting
of one $100M 1x2 quarterly cap (4 caplets) and one $100M 1x2 quar-
terly floor (4 floorlets). The common strike for all caplets/floorlets is chosen
so that all caplet+floorlets pairs (one pair for each expiration) are close
to ATMF.

A final note is that for spot-start caps/floors, the first caplet/floorlet is
ignored, so a 1y quarterly cap is really a 3mx1y cap, and actually has 3
caplets: [3m, 6m], [6m, 9m], [9m, 1y]. A forward quarterly cap, say 1x2, has
4 caplets.
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Opt ions on Euro-Dol lar Futures

Options on Euro-dollar futures trade at the Chicago Mercantile Exchange
(CME), and they are quoted in Euro-dollar ticks ($25 per contract). Options
on Euro-dollar futures are treated as caplets/floorlets, using Black’s formula
to evaluate them.

Example 3. Assume the first ED contract expires in 60 days, and is trading
at 95.10. Also assume that D(0, 60d) = 0.97. (Euro-dollar options cash-
settle on expiration date, not 3m later.) A 95.50 call (called a “55” call) is
trading at 5 ticks, so $125 per contract. Although all ED prices and strikes
are quoted in price, we are always thinking of the implied rate/strike, so we
compute the forward rate F = (100 − 95.10)/100 = 4.90%, and the strike
K = (100 − 95.50)/100 = 4.5%. Also a call on the price is a floor on the
implied rate, so to analyze a ED call, we have to use Black’s put formula.
The implied Normal vol σN must be backed out from the following:

$125 = 0.97 × $1M × σN

√
60/365

[
N′(d) − dN(−d)

] × (90/360)

where

d = 4.95% − 4.5%

σN
√

60/365

Trial and error gives us σN = 1.15% or 115 bp’s/annum.
Buying a naked (unhedged) 60-day ED 95.50 call is a bet that rates will

fall through 4.50% in 60 days. If at expiration, 3m Libor sets at 4.25%
(so ED settles at 95.75), then we have made 25 ticks, so $625 per option
contract, a 5-to-1 return.

Caplet Curve = ED Opt ions+Cap/F loors

Options on the first few ED contracts are fairly liquid, and can be used
to back out the implied volatilities of 3m-Libor rates for the relevant ex-
pirations. Since a dealer cap/floor book consists of many expiration dates,
with each expiry having its own volatility, a caplet curve is needed to mark
this book. The caplet curve is a graph of implied-vols of options on the
benchmark floating index versus expiration.

For USD, the instruments used to construct this curve are ATMF op-
tions (or strikes as close to forwards as possible) on ED1, ED2, . . . , and a
series of cap/floor straddles: 1x2, 2x3, 3x5, 5x7, 7x10. Since each cap/floor
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TABLE 7.1 A 1x2 5.5% Cap

Calc Forward Normal Expected Caplet
Period Rate Vol N(d) DF(PayDate) Cash Flow Price

(1y,1y3m) 5% 1.00% 0.30854 0.939413 0.1978% 0.1858%
(1y3m,1y6m) 5.25% 1.10% 0.41946 0.927743 0.3757% 0.3486%
(1y6m,1y9m) 5.5% 1.20% 0.50000 0.916219 0.5863% 0.5372%
(1y9m,2y) 5.75% 1.30% 0.55779 0.904837 0.8183% 0.7404%

Total 1.812%

straddle consists of multi-expiration caplet+floorlet pairs, with each expira-
tion requiring its own volatility, a bootstrap+interpolation routine is typ-
ically used to back out the implied vol for each expiration. A common
procedure is to use implied vols from ED futures options for the first few
expiries, and use the following parametric shape for the rest of the curve:

σCaplet(T) = α1 + α2 × T × e−α3T

Example 4. Let a USD 1x2 cap with strike 5% be shown in Table 7.1.
The value of the cap 1.812% is the sum of the values of the four quarterly
caplets. We can also back out the common Normal vol (116.3 bp/annum)
that applied to all caplets would recover the same price.

EUROPEAN-STYLE SWAPTIONS

An m-year into n-year receiver/payer swaption with strike K is an m-year
European option to receive/pay the fixed rate K in an n-year swap. Let us
focus on a right-to-pay (RTP) or payer swaption. At the option expiry, only
if the n-year par swap rate S(te) is above the strike K, then it is advantageous
to exercise the option and pay K (below market). Otherwise, if S(te) < K,
the option holder will not exercise the option, as it is cheaper to pay S(te) as
a market swap rather than the higher rate K.

Considering when S(te) > K, the option will get exercised and the option
owner will pay K for the next n years. He could also (conceptually) receive
fixed in a par swap (worth 0), that is, receiving S(te) and pay floating for
n-years. Netting these two swaps, the floating legs cancel out, and effectively
one is paying K and receiving S(te) for the next n-years. Since this is just a
series of known cash flows at expiration, one could cash-settle by receiving
the PV of these cash flows. Assuming that the underlying swap is semiannual,
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let {T1, . . . , T2n} be the payment dates for the fixed leg of the swap. The
economic value of the payer swaption at expiration te then is

max(0, S(te, ω) − K)
1
2

2n∑
i=1

D(te, Ti , ω)

where D(te, ·, ω) is the random discount-factor curve at te.
Notice that the sum term is simply the value of a semiannual annuity

with unit payoff at expiration. Let us denote this factor by A(te, ω):

A(te, {T1, . . . , T2n}, ω) = 1
2

2n∑
i=1

D(te, Ti , ω)

According to risk-neutral valuation, today’s price of this option is simply
the expected stochastically discounted value of the above payoff. This is
approximated as follows:

P(0) = E
[
e− ∫ te

0 r (u,ω)du max(0, S(te, ω) − K)A(te, . . . , ω)
]

≈ E
[
e− ∫ te

0 r (u,ω)du A(te, . . . , ω)
]

E[max(0, S(te, ω) − K)]

=
(

1
2

2n∑
i=1

E
[
e− ∫ te

0 r (u,ω)du D(te, Ti , ω)
])

E[max(0, S(te, ω) − K)]

=
(

1
2

2n∑
i=1

D(0, Ti )

)
E[max(0, S(te, ω) − K)]

= A(0, {T1, . . . , T2n}, ω)E[max(0, S(te, ω) − K)]

and further assuming that swap rates are tradeable assets, hence the last
term is evaluated using Black’s call formula. Similarly, the formula for a
receiver swaption is

R(0) = E
[
e− ∫ te

0 r (u,ω)du max(0, K − S(te, ω))A(te, {T1, . . . , T2n}, ω)
]

≈ A(0, {T1, . . . , T2n}, ω)E[max(0, K − S(te, ω))]

where the last term is evaluated using Black’s put formula using forward
swap rates.
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Example 5. Let the following discount factors be given: D(0, 1y) =
0.95, D(0, 1.5y) = 0.925, D(0, 2y) = 0.90, D(0, 2.5y) = 0.875, D(0, 3y) =
0.85, and let the implied log vol of a 1y into 2y swaption ATMF swaption be
quoted as 18.5%. In order to price a $100M 1y into 2y ATMF right-to-pay
(RTP, Payer) swaption, we first need to calculate the 2y-par swap rate, 1y
forward:

F = D(0, 1y) − D(0, 3y)
1/2[D(0, 1.5y) + D(0, 2y) + D(0, 2.5y) + D(0, 3y)]

= 5.63380%

Since the swaption is ATMF, the strike K equals the forward: K = F =
5.63380%. The time to expiration te is 1y, te = 1.0, and σ = 0.185. Using
Black’s Log-Normal call formula, we form:

d1,2 = ln(F/K)
σ
√

te
± 1

2
σ
√

te

= ln(0.056338/0.056338)

0.185
√

1.0
± 1

2
(0.185)

√
1.0

= ±0.0925

Using Black’s call formula,

E[max(0, S(te, ω) − K)] = F N(d1) − K N(d2)

= 0.056338N(0.0925) − 0.056338N(−0.0925)

= 0.004152068

Finally, the price of an ATMF payer RTP swaption is obtained as 73.7 cents:

P(0) = 1/2 [D(0, 1.5y) + D(0, 2y) + D(0, 2.5y) + D(0, 3y)]

×E[max(0, S(te, ω) − K)]

= 1/2 [0.925 + 0.90 + 0.875 + 0.85] × (0.004152068)

= 0.737%

Example 6. Using the same discount factors as in the previous example, let us
consider a right-to-receive (RTR, receiver) 1y-into-2y swaption with strike
25 bp lower than ATMF rate. This is called “25-low 1-into-2 receiver.”
Let the Normal Vol be quoted as 110 bp/annum. In this case, the strike
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K = 5.38380% = F − 0.0025, and σN = 0.0110. Since this is a receiver,
we have to use Black’s put formula under Normal distribution.

d = F − K
σN

√
te

= 0.056338 − 0.053838

0.0110
√

1.0

= 0.227273

and

E[max(0,K− S(te,ω))] = σN
√

te
[
N′(d) − dN(−d)

]
= 0.0110

√
1.0

[
1√
2π

e−0.2272732/2 − (0.227273)N(−0.227273)
]

= 0.003595728

Finally, the price of 25-low receiver swaption is obtained as 63.82 cents:

P(0) = 1/2 [D(0, 1.5y) + D(0, 2y) + D(0, 2.5y) + D(0, 3y)]

×E[max(0, K − S(te, ω))]

= 1/2 [0.925 + 0.90 + 0.875 + 0.85] × (0.003595728)

= 0.6382%

Swapt ions in Pract ice

Interdealer brokers maintain ATMF straddle prices for various expirations
and maturities, and communicate bids/offer prices for specific straddles be-
tween dealers. They also maintain a general swaption price grid for all
expiries and maturities in electronic format (broker screens), and update
them periodically during the day, and send a final settlement grid at end of
day. Alongside the price, they might also quote the implied Log-Normal or
Normal vol, but that is mostly for informational purposes, as at the end of
the day, price is king (see Tables 7.2 through 7.4). So a 1m-into-2y swap-
tion straddle is trading at 29 cents ($290,000 per $100M notional), and this
price is equivalent to Black Log-Normal vol of 13.0%, or Black Normal vol
of 68.3 bp/annum.

When trading ATMF straddles, a price is agreed on, and the next step
is to agree on the forward swap rate. Due to their curve differences, each
side might set the ATMF rate at slightly different values. However, since
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TABLE 7.2 A Swaption Straddle Price Grid (cents)

Underlying Swap Term

1y 2y 3y 4y 5y 7y 10y 15y 30y

1m 9 29 43 60 78 103 134 175 242
3m 22 57 87 115 144 188 245 324 446

“Gamma”
Expiries

6m 34 80 123 162 199 262 339 443 608

1y 60 119 174 227 276 363 469 608 837
2y 86 169 246 318 385 502 645 833 1,124

“Vega” 3y 103 201 291 376 454 594 760 975 1,316
Expiries 5y 120 232 337 434 524 680 876 1,118 1,500

7y 124 238 347 448 542 704 897 1,136 1,497
10y 120 230 333 428 516 669 855 1,075 1,401

TABLE 7.3 Implied Black Log-Normal Vols (%)

1y 2y 3y 4y 5y 7y 10y 15y 30y

1m 8.1 13.0 13.3 14.1 14.9 14.5 14.0 13.7 13.1
3m 10.8 14.8 15.2 15.3 15.5 15.0 14.5 14.3 13.7
6m 12.5 14.8 15.4 15.4 15.4 15.0 14.4 14.0 13.4

1y 15.9 15.9 15.7 15.6 15.4 15.0 14.4 14.0 13.4
2y 16.5 16.4 16.1 15.9 15.7 15.2 14.6 14.2 13.4
3y 16.6 16.4 16.1 15.9 15.7 15.3 14.7 14.2 13.5
5y 16.0 15.8 15.7 15.5 15.3 14.9 14.5 14.0 13.3
7y 15.4 15.1 15.0 14.9 14.8 14.5 14.0 13.5 12.6

10y 14.5 14.3 14.2 14.1 14.0 13.7 13.3 12.7 11.8

TABLE 7.4 Implied Black Normal Vols (bp)

1y 2y 3y 4y 5y 7y 10y 15y 30y

1m 43.2 68.3 70.4 75.5 80.5 79.9 78.7 77.8 75.8
3m 57.0 77.6 80.4 81.9 83.8 82.5 81.4 81.1 79.0
6m 65.0 77.4 81.6 82.6 83.5 82.8 81.1 79.8 77.4

1y 81.9 83.6 83.9 84.4 84.3 83.5 81.6 79.9 77.7
2y 88.5 89.2 88.6 88.4 88.0 86.4 84.1 82.1 78.3
3y 91.6 91.4 90.7 90.2 89.7 88.4 85.8 83.3 79.3
5y 92.2 91.4 91.3 90.6 89.9 88.0 86.1 83.2 78.6
7y 90.7 89.4 89.2 88.8 88.4 86.8 84.0 80.5 74.6

10y 87.1 86.0 85.5 84.9 84.4 82.6 80.2 76.2 69.7
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straddles will have little PV01, both sides agree on a rate (perhaps aided by
the broker). Here is a typical transaction: . . . “Okay, I just bought $100M
1y-into-2y ATMF straddles for 124 cents ($1,240,000). I see the forward
rate as 5.256%, is that where you see it, too?” “I see it as 5.242%. Let’s set
it in the middle: 5.249%. Works for you?” “Okay. Done.” The reason that
both parties amicably agree is that straddles have little PV01: The buyer who
agreed to pay 124 cents for a straddle struck at 5.256% (his forward rate),
would pay almost the same amount if the market moved and the ATMF
rate became 5.242% (seller’s forward rate). The seller sees the situation in
the same way, so they both easily agree to meet in the middle.

If instead of straddles, a receiver or payer swaption is traded, one needs
to specify whether the hedge/delta is exchanged or not. The standard hedge,
regardless of the option strike, consists of a delta-weighted amount of a
forward swap (struck at the forward swap rate, so with 0 value).

If the trade is with the delta/hedge, then one first sets the option price,
and the forward rate and the size of the hedge are agreed upon later. In
this case, similar to trading straddles, since the PV01 of the combined
position (option+hedge) are small, minor rate or delta differences as seen
by different sides are amicably settled. A typical transaction might go
as follows: . . . “Okay. I bought $100M 25-high 3m-into-10y payers for
110 bp ($1,100,000). I see the forward rate at 5.10% and the delta as
42%. Agreed?” “Agreed on rate, I am using a blah-blah model, and see the
delta as 39%. How about 40%?” “Okay. I pay 110 bp for $100M 3m-into-
10y payer struck at 5.35% (25 bp higher than forward). I will also receive
in $40M 3m-into-10y forward swap with fixed rate at 5.10%. Thanks.”

If the trade is done without the delta/hedge, then a sufficient extra
(hedging) premium is built into the option price to cover the subsequent
hedging bid/offer cost. The natural preference of an option trader is to
transact options with delta, thereby just trading volatility.

For swaption expiries and maturities that do not fall on the grid, one
typically uses linear interpolation in square root of time-to-expiry on the
expiry axis, and linear interpolation on the maturity axis.

Swapt ion Sett lement

At expiration, swaptions can be either physical or cash-settled. For physical
settlement, the owner of an in-the-money receiver/payer swaption will enter
into a plain-vanilla swap where she will receive/pay the strike as the fixed
rate. Physical settlement is the preferred method for swaptions that are
sufficiently (say more than 10 bp) in the money, even if the originally agreed-
upon settlement method is cash.
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Cash settlement involves determining the market par-swap rate at expi-
ration time, and then agreeing upon the value of a swap with fixed rate equal
to the strike instead of the par-swap rate. As we saw before, the economic
value of an in-the-money swaption struck at K when par-swap rate is S is
an annuity of S − K bp’s for RTP (K − S for RTR) for the length of the
swap. Therefore, both parties must agree upon the size (|S − K|) and the
present-value of this annuity.

Since the strike K is by contract, the swaption counterparties first have
to agree on the par-swap rate S at expiration time. This can be by mu-
tual agreement, or polling dealers, or some other method as specified in
the option confirm. For generic USD swaptions, the standard is to use the
11:00 a.m. ISDA fixing of swap rates. Once the size of the annuity (|S − K|)
is known, the counterparties have to then agree on its PV.

There are two methods to calculate the PV of the annuity. The first
method (the standard for USD swaptions) is to use a discount factor curve
to PV the annuity. For example for an n-year swap with m coupons per year,
with payment dates {T1, . . . , Tnm}, each party needs to compute:

|S − K| × 1
m

nm∑
i=1

D(Ti )

As each counterparty can have a different discount curve (even using the
same rate S as the n-year par-swap rate), a bit of horse trading precedes
an amicable cash settlement of the swaption. This method does not have a
standard name, and can be referred to as “cash-settlement off the curve” or
cash-settlement “USD-style.”

The second cash-settlement method is to PV the annuity using the an-
nuity formula from bonds, using the agreed-upon swap rate as the yield.
This method is the standard for European currencies, and is referred to as
“cash-settlement via annuity (or IRR) method.” For an n-year swap with m
coupons per year, the payoff is

|S − K| × 1
m

nm∑
i=1

1
(1 + S/m)i

= |S − K|
S

(
1 − 1

(1 + S/m)nm

)

Swapt ion Vols for Nonstandard Swaps

Occasionally, one needs to provide a swaption price for a swap with a non-
standard frequency or day-count on the fixed leg. For example, in USD, 1y
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swaps are quoted SA, 30/360, but one is sometimes asked to price an option
on a 1y swap quotes Quarterly, Act/360. The daycount difference can be
managed by assuming that 30/360 is equivalent to Act/365, and by multi-
plying the vol of the standard (30/360) swap by 360/365. This is justified by
considering the relationship between a simple rate quoted Act/365 (RAct/365)
versus quoted Act/360 (RAct/360), via their common discount factors for the
start Ts and end dates Te of the rates:

RAct/365 = D(Ts)/D(Te) − 1
(Te − Ts)/365

RAct/360 = D(Ts)/D(Te) − 1
(Te − Ts)/360

⇒ RAct/360 = 360
365

× RAct365

⇒ σN(RAct/360) = 360
365

× σN(RAct365)

To adjust for different frequencies, one can use the following approxi-
mation to relate quarterly rates (R4) to semiannual (R2) rates:

(1 + R4/4)4 = (1 + R2/2)2 ⇒ dR2

dR4
= (1 + R4/4)

Using this heuristic, we can set

σN(R4) ≈ 1
1 + R4/4

× σN(R2)

Putting it together, we have

σN(RQ,Act360) ≈ 360/365
1 + RQ,Act360/4

σN(RS A,30360)

which means that we should be happy to use the standard (SA,30360) vols
when selling swaptions on (Q, Act/360) swaps!

For more complicated swaps (amortizing, zero-coupon), the vol adjust-
ment has to be carefully calculated using more advanced techniques (see
HJM swaption vol approximation in Chapter 10).
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SKEWS, SMILES

In the perfect Black world, asset prices evolve (Normally, Log-Normally)
according to a Brownian motion with a single volatility parameter. The price
of options then can be obtained once we know this volatility, or alternatively,
given a price, we can back out the implied volatility. In practice, it is observed
that option prices with same expiration date, but different strikes give rise to
different implied Black volatilities. Typically, for options with strikes lower
than ATMF, the implied volatility goes up, and this effect is called skew. Also
out-of-the-money options in either direction (high or low strikes) generally
have higher implied Black volatilities than ATMF options. This effect is
called volatility smile.

The existence of skews and smiles means that the implied distribu-
tion of the assets is more complicated than what is posited by Black
(Normal, Log-Normal) model, and has given rise to a cottage industry of
searching for the right model for skew and smile. Among the models pro-
posed are mixture models, constant elasticity of variance (CEV) models,
Stochastic volatility models (SABR among them), jump-diffusion models,
and fractional Brownian motion models. While each of these models has
its merits, they collectively suffer from the fact that they are modeling the
wrong thing!

Skews and smiles are predominantly driven by supply and demand. If
a majority of clients are worried about higher rates, and are buying high-
strike payers to protect themselves, payer swaptions go up in price (and
hence in implied vol). Alternatively, if the fear is for low rates, then low-
strike receivers go up in premium/vol. On a day-to-day basis, vol traders
perceive the skew/smile as a measure of liquidity rather than the implied
distribution of rates. Supply/demand patterns change quickly in response
to market sentiments/news, and it is implausible to ascribe these changes
to the market’s view on a meaningful distribution of rates for the life of
the option!

Mainta in ing/Populat ing Volat i l i ty Surface, Cubes

For swaptions, it is customary to maintain a Black volatility cube, that is, a
volatility for each expiration, swap maturity, and strike. Some desks main-
tain vols for a series of absolute (1%, 1.25%, 1.5%, . . . , 9.75%, 10%, . . . )
strikes, while most desks maintain vols for a series of relative (ATMF,
ATMF±25 bp, ATMF±50 bp, ATMF±100 bp, . . . ) strikes. A similar pro-
cedure is used for caplet vol curves.
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As one might imagine, the task of maintaining ATMF volatility sur-
faces (expiration, swap maturity) and cubes (expiration, maturity, strike)
is arduous. Depending on the market, there are 10 to 20 expirations, 10
to 20 maturities, and 10 to 20 strike levels (absolute or relative), hence
a rates option trader needs to maintain on the order of 1000 live prices!
Given that on a typical trading day, only a few (10 to 20) swaptions and
cap/floors trade, most desks keep active watch on certain anchor vols, and
derive other neighboring vols via linear/ratio interpolation/extrapolation.
For example, in USD, 1m2y, 1m5y, 1m10y, 3m10y, 1y1y, and 5y5y can
serve as the anchor vols. Once we know these vols, the vol of 1m3y, 1m4y,
or 2m10y can plausibly (in the absence of actual markets) be backed out via
interpolation.

The market for skews is less active than ATMF options. Most desks
select a skew model (SABR, CEV, . . . ) and calibrate the few model pa-
rameters to any observed skew markets, quoted commonly through risk-
reversals: the difference between the price an out-of-the-money payer swap-
tion versus an equally out-of-the-money receiver. For Normal dynamics, in
the absence of any skew these prices should be the same, as the Normal
distribution is symmetric. Hence, when a difference exists, it is indicative
of non-Normality or skew. Using these skews markets, volatility traders
then populate the cube using these few parameters. Hence the role of skew
models is primarily to reduce the dimension of the problem from 1000s to
100s (potentially each expiration/swap-term pair can have its own set of
parameters).

SABR Skew Model

The current skew model of choice is the SABR (stochastic alpha, beta, rho)
model,1 as it provides enough, yet not too excessive, number of parameters
for each expiration/swap-term pair to fit a variety of smile/skew profiles. It
is a combination CEV+stochastic volatility model, and has relatively simple
formulae for Black skews based on three parameters: CEV (β) parameter,
allowing one to smoothly go from Log-Normal dynamics (β = 1) to Nor-
mal dynamics (β = 0); vol-of-vol (ν) parameter, allowing one to control/fit
the smile (see Figure 7.1); and rate/vol correlation (ρ) parameter, allow-
ing one to control/fit the skew (see Figure 7.2). The “α” term must be
backed out via iteration so that ATMF vols are recovered, a good initial
guess is

α ≈ σLN(ATMF )/(1 + ν2(2 − 3ρ2)te/24)
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The SABR formulae are presented below:

s = α

(F K)(1−β)/2
φ = 1

2
ln(F/K)

ζ = ν

s
ln(F/K) x(ζ ) = ln

√
1 − 2ρζ + ζ 2 + ζ − ρ

1 − ρ

σ (K) = s
1 + [(1 − β)φ]2/3! + [(1 − β)φ]4/5!

× ζ

x(ζ )

×
(

1 + te

[
(β − 1)2 + (s/2)2

6
+ ρβνs

4
+ (2 − 3ρ2)

6
(ν/2)2 + · · ·

])

σN(K) =
√

F K × s × (
1 + φ2/3! + φ4/5!

)
1 + [(1 − β)φ]2/3! + [(1 − β)φ]4/5!

× ζ

x(ζ )

×
(
1 + te

[
(β2 − 2β) + (s/2)2

6
+ ρβνs

4
+ (2 − 3ρ2)

6
(ν/2)2 + · · ·

])

CMS PRODUCTS

A constant maturity swap (CMS) rate is simply the par-swap rate for a given
tenor, and a CMS swap is the periodic exchange of a CMS rate versus either a
fixed rate, or more typically versus Libor. For example, a USD 2-year CMS-
10y versus Libor consists of a standard quarterly, Act/360 floating leg based
on 3m Libor, versus the quarterly fixing and payment (accrued 30/360) of
10-year par-swap rate on the CMS leg, with both legs spanning 2 years. Since
the tenor of the underlying CMS rate does not coincide with the length of
the calculation period, the replication argument for plain-vanilla Libor legs
does not hold, and one cannot simply discount the forward par-swap rates.
Still, there is a strong temptation to do this, and one typically values CMS
resets by first calculating the forward swap rate, and then adjusting them
by a CMS convexity adjustment. The term convexity adjustment arises in
different contexts in interest rate derivatives, and is usually a red flag that a
certain level of fudging is going on. Specifically, convexity adjustments are
a quick and dirty way of getting the right answer by applying the wrong
method, for example discounting the forward rates, for CMS products. This
obviously presupposes that we have the right answer, or at least an idea of
what the right answer should be!

For CMS-based payoffs, it is first recognized that while the payoff is
linear in the underlying CMS rate, a replicating portfolio would consist of
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forward swap positions. Recalling that receiving in a swap is economically
equivalent to paying par for a forward bond, the graph of the forward
swap value is a convex function of the underlying swap rate, analogous
to the price/yield graph for bonds. For a CMS-based swap, we therefore
are hedging a linear payoff (CMS rate) with a nonlinear/convex payoff
(forward swap). The hedge for receiving the CMS-rate is to pay in a PV01-
equivalent amount of a forward swap. This hedge, however, confers a sys-
tematic advantage to the CMS-receiver, the size of which depends on the
curvature/convexity of the forward swap versus the swap rate, and the ex-
pected size of the deviation of the realized swap rate at reset date versus its
forward value. As no free lunch goes untaxed in markets, the CMS-payer
will charge the receiver for this free lunch by adjusting the forward swap
rate upwards by the convexity adjustment. Note that this adjustment is only
used to calculate the PV of future payments, the actual payment on payment
date is simply the CMS rate observed at the fixing date (with no adjustment).

The fair level of this CMS convexity adjustment will require a model
of the distribution of future swap rates at each reset date in a risk-neutral
setting. In lieu of this, the following heuristic argument is invoked to obtain
a quick and dirty formula. Using bonds as proxies for swaps, we start with
the following Taylor series expansion:

P(y) − P(F ) = (y − F )P ′(y) + 1/2(y − F )2 P ′′(y)

where F is the forward par-swap rate, and P(y) is the standard bond price-
yield formula. It will be recalled that as long as we can ignore stochastic
discounting, forward prices must equal expected prices in a risk-neutral
world, hence EP(y) = P(F ), and

0 = (E[y] − F )P ′(F ) + 1/2P ′′(F )E[(y − F )2]

Finally, we approximate

E[(y − F )2] ≈ σ 2
Ndt

to arrive at the following CMS Convexity Adjustment Formula:

E[y] − F = −1
2

P ′′(F )
P ′(F )

σ 2
Ndt

=
[

1
F

− N/m
(1 + F/m)N+1 − (1 + F/m)

]
σ 2

Nte



142 INTEREST-RATE FLOW OPTIONS

where N, m are the number and frequency of coupon payments for the
underlying forward (C = y = F ) bond/swap, and te is the time to its reset.
While very heuristic and approximate, the previous formula due to its simple
structure is widely used and in preference to more elaborate models.

CMS Cap/F loors

A CMS cap/floor is similar to Libor cap/floors, but with the payment based
on a CMS rate. Traditionally, each caplet has been priced using Black’s for-
mula, where the forward swap rate is adjusted by the convexity adjustment,
and the stochastic discounting replaced by today’s discount factors:

E0[e− ∫ te
0 r (u,ω)du max(0, S(te, ω) − K)] ≈ D(0, te)E0[max(0, S(te, ω) − K)]

where E0[max(0, S(te, ω) − K)] is evaluated using Black’s formula with ap-
propriate skew-adjusted swaption volatility for the strike, and using the
convexity adjusted CMS rate (using ATMF swaption volatility!). As can be
seen, while the preceding method gives a quick answer, it leaves one with the
uneasy feeling that there are too many approximations/heuristics being used.

Stat ic Repl icat ion

As an alternative, we can approximate the CMS caplet payoff max(0, S − K)
as a static portfolio of payer swaptions with different strikes.2 Specifically,
let K = K0 < K1 < · · · < KN, be a sequence of prechosen strikes, and let
Pi (S) be the payoff at expiration of an IRR-settled payer swaption with
strike Ki :

Pi (S) = max(0, S − Ki )
S

(
1 − 1

(1 + S/m)nm

)

The idea is to approximate the CMS caplet’s payoff as

max(0, S − K)+ ≈
L∑

i=0

wi Pi (S)

by choosing the weight sequence {w0, . . . , wN} so that the difference is small.
The price of a CMS caplet is then the weighted sum of the payer swaption
prices. This method makes fewer heuristic approximations, as it only re-
quires swaption volatilities and smiles/skews, which are relatively easy to
obtain or divine from the market.
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Let C(S) = ∑N
i=0 wi Pi (S) denote the payoff of the replicating portfolio.

One way to define the weights is to ensure that the replicating portfolio
exactly matches the CMS caplet on the strikes, that is

(1 ≤ j ≤ N) C(Kj ) = max(0, Kj − K0)

The w j ’s satisfying the previous can be recursively defined as:

(0 ≤ j < N) w j =
(Kj+1 − K0) −

j−1∑
i=0

wi Pi (Kj+1)

Pj (Kj+1)

The resulting portfolio will upper bound the CMS payoff: C(S) ≥
max(0, S − K). The graph (not to scale) of this approximation is shown
in Figure 7.3. A similar procedure can be used to replicate CMS floors via a
series of receiver swaptions.
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Having statically replicated a CMS caplet/floorlet via payer/receiver
swaptions, we can then invoke put-call parity to value a CMS swap reset:

D(0, te) × E0[S(te) − K] = D(0, te)E0[max(0, S(te) − K) − max(0, K − S(te))]

=
∑

i

wi Pi −
∑

j

w′
j Rj

where Pi , Ri ’s are values of IRR-settled payer/receiver swaptions at different
strikes.

A final note is that the payoff of the swaption is immediately paid on
expiration, while for the CMS products, it is usually paid at the end of the
calculation period (typically 3 months later). A simple remedy would be to
apply additional discounting to the value of the replicating portfolio(s).

CMS Curve Opt ions

In the past couple of years, options on the slope of swap curve have become
popular. These are referred to as CMS curve options, as they are simple
cap/floors on the diffrence between 2 CMS rates. For example, a CMS 2y-
10y curve caplet with strike K is based on the following payoff

max(0, S10y(te) − S2y(te) − K)

The simplest method of evaluating CMS curve products is to use Black’s
Normal model—Log-Normal would be inappropriate since spreads can go
negative, and zero or negative strikes are not uncommon—for the spread:
S1,2(te) = S2(te) − S1(te), and extract the Normal vol of the spread from the
swaption Normal volatilities via:

σN(S1,2) =
√

σ 2
N(S1) + σ 2

N(S2) − 2ρσN(S1)σN(S2)

where σN(S1), σN(S2) are the swaption normal vols for the CMS rates, and
ρ is the correlation between them.

Example 7. Consider a 6m caplet on USD CMS-2y/CMS-10y, where the
forward 2y, 10y swap rates are 5%, 5.5%, and the 6m-into-2y, 6m-into-
10y ATMF swaption Normal volatilities are trading at 120, 100 bp/annum
respectively. Using the convexity adjustment formula for the CMS resets,
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we have

E[S2y(2y)] − 5% =
[

1
5%

− 4/2
(1 + 5%/2)4+1 − (1 + 5%/2)

]
(1.20%)2 × 0.5

= 0.87 bp

E[S10y(2y)] − 5.5% =
[

1
5.5%

− 20/2
(1 + 5.5%/2)20+1 − (1 + 5.5%/2)

]
(1.00%)2 × 0.5

= 2.34 bp

to arrive at the convexity adjusted forward spread

E[S10y(2y)] − E[S2y(2y)] = 0.5147%

Using a correlation ρ = 90%, we compute the Normal volatility of the
spread:

√
(1.20%)2 + (1.00%)2 − 2(90%)(1.20%)(1.00%) = 0.529%

For a caplet with strike K equal to the nonadjusted forward spread K =
50bp, we can price it as

0.1567% = (0.529%)
√

0.5
[

1√
2π

e−d2/2 + dN(d)
]

d = 0.5588% − 0.50%

(0.529%)
√

0.5

The above value, 15.67 cents, has to get discounted by D(6m) to arrive at
its today’s value.

Cont ingent Curve Trades

While CMS curve options are the most direct way of taking a view on the
slope of the swap curve, one may put on a conditional curve trade using
European swaptions, since curve trades are usually directional: The front
end of the swap curve is more volatile than the long end as it is more
sensitive to central bank policies, and the front end typically leads the long
end in either increasing or decreasing rate environments. Therefore, in a
tightening (rising rate) environment, the short-term swap rates move more
than longer-term swap rates, leading to flattening of the swap curve. This
is referred to as bear-flattening–“bear” since bond prices are dropping in
rising rate environments. Similarly, in an easing (falling rate) environment,
short-term rates fall more than long-term rates, leading to bull-steepening.
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As such, one would want to be in a flattener in bearish environments, while
steepeners are preferred in bullish environments.

To be long a steepener, one can either be long the curve via swaps (long
the front end, short the back end), using either spot or forward swaps, or
own a CMS curve caplet. Instead, one can be in a conditional steepener
by buying a swaption receiver into the shorter maturity, while selling a
swaption receiver into the longer maturity. The size of each swaption is
chosen so that if they are both in the money at expiration, each swap will
have the same PV01, while the strikes of the swaptions are chosen so that the
package is zero-cost: zero-cost bull-steepener (sometimes called conditional
or contingent call-call). Similarly, a zero-cost bear-flattener consists of a pair
of (in-the-money) PV01-equivalent payer swaptions with strikes chosen to
make the package zero-cost.

Example 8. Continuing with the previous example, let us consider a 6m into
2y/10y zero-cost bull-steepener, where the strike of the 6m-into-2y receiver
is chosen to be ATMF-25bp (25-low receiver). Ignoring skews, we have
F2y = 5%, F10y = 5.5%, σ2y = 120bp, σ10y = 100bp, K2y = 4.75%, and
we need to solve for K10y to make the package costless. Since each receiver
price is computed as

Receiver = PVBP(Swap, 6m forward) × Black’s put formula

and the receiver notionals must satisfy

N2y

N10y
= PV01(10y Swap, 6m Forward)

PV01(2y Swap, 6m Forward)

since the underlying forward swaps are close to ATMF, we can assume that

PV01(Forward Swap) ≈ PVBP(Forward Swap)

In this case, we need to solve for K10y so that

σ2y

√
0.5[N′(d2y) − d2yN(−d2y)] = σ10y

√
0.5[N′(d10y) − d10yN(−d10y)]

where

d2y = F2y − K2y

σ2y
√

0.5
d10y = F10y − K10y

σ10y
√

0.5
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Trial and error gives K10y = 5.3845%, which means that we can get into
a bull-steepener at a spread of 63.45 bp, that is, 13.45 bp steeper than the
forward spread (50bp), which is due to vol of 2y (120) (we are buying)
being higher than that of 10y (100bp), which we are selling. This is the
typical situation where the market charges one for directionality. If instead
the swaption market priced the 2y vol lower than 10y vol, then one could
get into a costless bull-steepener at flatter level than forwards.

BOND OPTIONS

While not strictly a “rates” product, bond options are sometimes quoted by
flow options desks. The typical expiration for these options is relatively short
(a few days or weeks), and are usually priced and hedged using Black’s Log-
Normal formula, driven by price volatility. As the market for bond options
is relatively thin, this price volatility is backed out from yield volatility
using the following heuristic argument: Yield log-volatility σy measures a 1
standard deviation percentage change in yields:

σy ≈ E
[
�y
y

]

while price log-volatility σP measures a 1 standard deviation percentage
change in prices:

σP ≈ E
[
�P
P

]

One can use Taylor series to relate change in prices due to change in yields:

�P ≈ dP
dy

�y

therefore

σP = 1
P

dP
dy

yσy

A common approach is to derive the yield volatility from a similar-maturity
swaption volatility using simple regression analysis. For example, when
asked to quote a 1m option on the current U.S. treasury 10y bond (CT10),
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one can perform a regression analysis on the relationship between 10y trea-
sury yields versus 10y swap rates, and multiply the 1m-into-10y swaption
volatility by the slope coefficient to arrive at a plausible yield volatility for
CT10. By converting this yield vol into price vol, one can then price bond
options using Black’s Log-Normal formula using clean forward and strike
prices. Note that as option prices are based on replication using the under-
lying, the specific bond’s financing (repo) rate rather than a generic risk-free
rate should be used in Black’s formula.

Condit ional Swap-Spread Trades

While a swap spread trade involves a cash bond versus a swap, one can also
enter into a conditional swap spread trade using swaptions and bond op-
tions. It is observed that swap spreads are typically directional. In falling rate
environments, spreads generally “come in” (decrease), while they “go out”
in increasing rate environments. To take advantage of this directionality,
one would then like to be in a swap-spread widening trade (long cash, pay
in swaps) when interest rates are increasing, that is, a bearish-widener. For
a given cash bond, this can be achieved by selling a put option on the bond,
while buying a PV01-equivalent amount of a payer swaption with maturity
identical to a bond: If both options finish in the money, the bond is put to
us while we are paying in a matched-maturity swap, that is, we are long the
matched-maturity swap spread of the bond when rates are increasing. The
strikes of the put and swaption are usually chosen so that the package is
costless, typically by selecting one strike higher (in yield) than ATMF, and
then solving for the other strike.

To take advantage of directionality in decreasing rate environments,
one implements a bullish-tightener by selling a call option on the bond and
buying a PV01-equivalent (if both options finish in the money) receiver swap-
tion for a matched-maturity swap, with strikes chosen so that the package
is costless, resulting in a zero-cost call/receiver or bullish-tightener.

A final note that due to relative low liquidity of bond options, most
contingent swap-spread trades are implemented using options on treasury
futures contracts traded on the Chicago Board of Trade (CBOT), with the
future contract equated to cheapest-to-deliver (CTD) issue divided by its
conversion factor.
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CHAPTER 8
Short-Rate Models

Having milked Black’s formula dry for flow products, we need models
to price more complicated interest-rate options, prominent among them

Bermudan (flexible exercise time) and Asian (path-dependent) options. For
non-rate-based assets like equities, closed-form formulae (some exact, and
some approximations) exist for some of these options. However, since
interest-rate options depend on multiple underlyings (zero-coupon bonds),
these formulae are hard to adapt to rate options.

For more complicated interest-rate options, we have to go back to our
original framework: risk-neutral valuation, where all prices (underlyings and
contingent claims) must satisfy:

(0 ≤ t ≤ T) C(t) = Et[e− ∫ T
t r (u,ω)duC(t, ω)]

This compact formula is surprisingly all we need for contingent claim val-
uation, and is the basis of all interest-rate option models. When applied
to interest-rate underlyings, it imposes the following constraint on today’s
(t = 0) discount factors:

(0 ≤ T) E0[e− ∫ T
0 r (u,ω)du] = D(0, T)

which is loosely called “ensuring no-arbitrage.” At all future times t > 0,
and specifically at option expiry te, discount factors can be recovered as

(0 ≤ te ≤ T) Ete [e
− ∫ T

te
r (u,ω)du] = D(te, T, ω)

from which we can compute the payoffs of the contingent claim, C(te, ω), as
it is a function of the discount curve at that time. Finally, by computing the
expected stochastically discounted value of the contingent claim’s payoffs,
we arrive at its present value:

C(0) = E0[e− ∫ te
0 r (u,ω)duC(te, ω)]
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All interest-rate models fall within the above framework, and primarily
differ in their explicit state space (short rate, or full term structure), and the
computational algorithms (tree-based or simulation) used to evaluate it.

A QUICK TOUR

Short-rate models take their state-space as the short-term rate r , as all other
quantities can be evaluated from it. The first short-rate models were based on
the basic Black-Scholes-Merton dynamics with the underlying asset replaced
by the short rate. Specifically, the following dynamics were posited for the
short rate:

dr (t, ω)
r (t, ω)

= μ(t)dt + σ (t)dB(t, ω)

with the interpretation that percentage changes in the short rate are driven by
a deterministic drift μ(t) used to ensure the no-arb condition, and driven by
increments of a Brownian motion (dB(t, ω)) multiplied by a time-dependent
volatility curve σ (t), used for recovering the market price of flow options.
For the above dynamics, rates are Log-Normally distributed, and while
positive (a desirable effect), are boundless. Moreover, there are no closed-
form formulas for zero-coupon prices and options.

If instead we assume Normal dynamics

dr (t, ω) = μ(t)dt + σN(t)dB(t, ω)

then interest rates are Normally distributed (a better fit to reality), some
closed-form formulas can be derived, but interest rates can go negative
(a potential undesirable) and are still unbounded.

Interest rates are not unbounded and exhibit mean-reversion. The first
simple model to alleviate unboundedness by introducing mean-reversion
was proposed by Vasicek,1 later extended by Hull and White2 (Hull-White
model, Extended-Vasicek model). In this setup, two new parametric curves
were introduced: a positive-valued mean-reversion speed, a(t), and level b(t):

dr (t, ω) = a(t)[b(t) − r (t, ω)]dt + σ (t)dB(t, ω)

When rates are below mean reversion level, r (t) < b(t), the drift a(t)[b(t) −
r (t)] is positive, and interest rates get pulled up. When interest rates are
above mean-reversion level, r (t) > b(t), the drift a(t)[b(t) − r (t)] is neg-
ative, pushing rates down. When rates are around their mean-reversion
levels r (t) ≈ b(t), the drift becomes zero, and interest-rates meander around
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TABLE 8.1 Common Short-Rate Models

Model Process Equation

Vasicek dr (t, ω) = a[b − r (t, ω)]dt + σNdB(t, ω)
Hull-White (Original) dr (t, ω) = a[b(t) − r (t, ω)]dt + σNdB(t, ω)
Hull-White dr (t, ω) = a(t)[b(t) − r (t, ω)]dt + σN(t)dB(t, ω)
Ho-Lee dr (t, ω) = a(t)dt + σNdB(t, ω)
Cox-Ingersoll-Ross (CIR) dr (t, ω) = a[b − r (t, ω)]dt + s

√
r (t, ω)dB(t, ω)

Black-Derman-Toy (BDT) d ln r (t, ω) = − σ ′(t)
σ (t) [b(t) − ln r (t, ω)]dt + σ (t)dB(t, ω)

Black-Karasinski (BK) d ln r (t, ω) = a(t)[b(t) − ln r (t, ω)]dt + σ (t)dB(t, ω)

randomly according to the white noise term dB. While not guaranteeing that
interest rates remain positive (interest rates are still Normally distributed),
mean-reversion addresses the problem of unbounded interest rates.

A simple extension of Vasicek’s model to ensure positive, yet mean-
reverting interest rates is to model the logarithm of interest rates rather than
the rates themselves:

d ln r (t, ω) = a(t)[b(t) − ln r (t, ω)]dt + σ (t)dB(t, ω)

The above dynamic leads to Log-Normal (hence positive), mean-reverting
interest rates, and is the basis of Black-Derman-Toy (BDT),3 and Black-
Karasinski (BK)4,5 models.

Attempts were also made to break away from the Normal/Log-Normal
paradigm. Combining the equations for each dynamics, the following con-
stant elasticity of variance (CEV) models were introduced:

dr (t, ω) = a(t)[b(t) − r (t, ω)]dt + σ (t)r (t, ω)αdB(t, ω)

reducing to Normal (HW-Vasicek) dynamics when CEV parameter α = 0,
and Log-Normal dynamics when α = 1. The Cox-Ingersoll-Ross (CIR)
model6 has the above dynamics with α = 1/2, and is also called the square
root model. For CIR model, closed-form expressions can be derived for
zero-coupon bonds and some options on them. Table 8.1 summarizes the
process dynamics for these short-rate models.

DYNAMICS TO IMPLEMENTATION

Positing continuous-time dynamics for short rates is all good and fine to gain
an understanding of what is being assumed, and to analyze the behavior of
interest rates. In some cases, one can derive closed-form expressions for
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discount factors, and simple European options. However, in order to price
more complicated options, one needs to implement them as a computer
program and numerically calculate option prices. For this, the process is
discretized, and discrete-time analogs of instantaneous rates, drifts, and vols
are used. The process of implementing a discrete-time version of a short-
rate model introduces a series of implementation choices and techniques.
The process is more of an art, and involves the judicious use of a variety of
techniques. The desire is to implement a discretized model that is easy to use,
is flexible to handle a variety of instruments, and can recover market prices
for liquid flow options, and provides quick Greeks to guide the selection of
the replicating portfolio. This is a tall order!

In principle, a multiperiod tree-model is all we need to price interest-
rate options. However, since even in the simplest binomial case, the number
of nodes doubles after each time step, the computational burden increases
exponentially. Instead, we can focus on recombining-tree (lattice) imple-
mentation, where the number of nodes increases linearly with each time
step. While this implementation is quite efficient, due to recombination, we
lose most of the path information, and cannot use these models for path-
dependent options. For path-dependent options, the natural implementation
is a simulation algorithm, where the risk-neutral integral is evaluated as an
approximate sum. Bermudan options, however, are difficult to value in sim-
ulation models. Herein lies the main quandary of interest-rate models: The
nonrecombining tree is computationally too onerous, while path-dependent
options cannot easily be priced in lattices, and Bermudan options cannot
easily be priced in simulation models!

In practice, one ends up developing a suite of model implementations,
each designed to address a particular class of products. For example, for
Bermudan options, one develops a lattice/tree implementation calibrated to
European swaptions and (hopefully) their skews, while for path-dependent
products a simulation implementation is best suited. As much as possible,
one should implement models with consistent dynamics, although each type
of implementation embeds various techniques/assumptions that may be dif-
ferent from implementation to implementation.

LATTICE/TREE IMPLEMENTATION

A short-rate tree model is very similar to a binomial model, where at each
time step, each node can lead to new states for short-term interest rates. The
number of branches is usually selected to be two (binomial) or three (trino-
mial). For binomial trees, the number of nodes doubles at each time step,
so after n time steps, there are 2n number of nodes/states. Since the desire
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is to let the number of time steps get progressively larger, a tree model can
quickly (exponentially) outgrow available computational resources.

A lattice is a tree where the nodes recombine, so an up-move followed by
a down-move ends up at the same state/node as a down-move followed by
an up-move. For lattices, the number of nodes grows linearly as the number
of time steps, allowing one to easily increase the number of time steps to
achieve better precision.

Starting from a discount factor curve, a typical short-rate lattice imple-
mentation proceeds as follows:

1. Time is discretized into lattice-dates: 0 = t0 < t1 < · · · < tN+1, where
usually (but not necessary) the lattice-dates are of equal length, say
daily, monthly. The lattice is started by the initial short rate r (t0) for a
deposit over [t0, t1]:

r (t0) = (1/D(0, t1) − 1)/(t1 − t0)

2. At each time ti , a set of recombining new short rates ri+1(ω) for deposit
period [ti+1, ti+2] are selected for the next time step ti+1, and probabilities
are assigned to each branch. The new states and probabilities must
jointly ensure the discrete-time no-arb condition required by risk-neutral
valuation:

D(0, ti+2) = E
[

1
1 + r (t0)dt0

1
1 + r1(ω)dt1

· · · 1
1 + ri+1(ω)dti+1

]

dti = ti+1 − ti and preserve the posited dynamics (volatility σ (t), mean-
reversion a(t), b(t), . . . ) of the short-rate process according to the
model. Note that knowing ti+1’s interest rates completely determines
ti+2’s discount factor, since ri+1 is the interest rate for deposit period
[ti+1, ti+2]. That’s why when generating new ri+1’s, we have a constraint
on D(0, ti+2). This step is referred to as inverting the yield curve.

3. At each node, the implicit discount-factor curve is computed by navi-
gating the sub-lattice emanating from that node. This discount-factor
curve can then be used to compute swap values, swap rates, forward
rates, and so on.

4. The model parameters are then progressively tweaked, and for each new
set of parameters, a new arb-free lattice is reconstructed until the lattice
is not only arb-free, but also the lattice price of a set of benchmark flow
options (swaptions, cap/floors) match their market prices. This step is
called calibration and is typically the hardest step.
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A calibrated arb-free lattice can then be used to price more exotic interest
rate options.

BDT LATTICE MODEL

To make the above concepts concrete, we will show how to construct the
Black-Derman-Toy (BDT) lattice model. The basic dynamic for the BDT
model is that at each time step, interest rates moves are Log-Normal, ac-
cording to the time-dependent local volatility curve, σ (t). (See Figure 8.1.)

Starting with a discount-factor curve, we discretize time into lattice
dates, 0 = t0 < t1 < · · · < tN+1, and also discretize the local volatility curve:
σi = σ (ti ), 0 ≤ i < N. Starting the lattice with

r0 = r (t0) = (D(0, t0)/D(0, t1) − 1)/dt0

let ri j = r (ti , ω j ) denote the j-th state at the i-th time ti . At each time ti , each
node ri j leads to 2 nodes ri+1, j , ri+1, j+1 at the next time ti+1 with risk-neutral
probability of 1/2.

1/2

1/2

…

…

r0

r1,1

r1,0

r2,2

r2,1

r2,0

r3,0

r3,1

r3,2

r3,3

ri, j

ri+1, j+1

ri+1, j

dt0 dt1
dt2 dti

t0 = 0 t1 t2 t3 ti ti+1

F IGURE 8.1 Black-Derman-Toy (BDT) Lattice for Short Rate
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The main dynamic of the BDT lattice is that it is Log-Normal, that is,
over each time interval [ti , ti+1] the log volatility (percent change) of rates is
prescribed by the time-dependent volatility σi = σ (ti ). Mathematically, this
means

Varti

[
1

dti
ln(

r (ti+1, ω)
r (ti , ω)

)
]

= σ 2
i

where

dti = ti+1 − ti 0 ≤ i ≤ N

Hence for each node, we must have

σ 2
i dti = 1

2
ln2

(
ri+1, j+1

ri j

)
+ 1

2
ln2

(
ri+1, j

ri j

)

−
[

1
2

ln
(

ri+1, j+1

ri j

)
+ 1

2
ln

(
ri+1, j+1

ri j

)]2

which after a bit of algebra reduces to the following ratio constraint:

ri+1, j+1

ri+1, j
= e2σi

√
dti = si

Putting all these ratio constraints together, we can express all the new tree
nodes (ri+1,.) in terms of the bottom-most node ri+1,0:

(0 ≤ i < N)(0 ≤ j ≤ i + 1) ri+1, j = ri+1,0e2 jσi
√

dti = ri+1,0s j
i

Therefore at each time interval [ti , ti+1], fixing the local volatility σi , we have
one degree of freedom, ri+1,0, and one new arb-free constraint:

D(0, ti+2) = E
[

1
1 + r0dt0

1
1 + r1,.dt1

· · · 1
1 + ri+1,.dti+1

]

For example, r1,0 must satisfy

D(0, t2) = 1/2
(1 + r0dt0)(1 + r1,0dt1)

+ 1/2
(1 + r0dt0)(1 + r1,1dt1)

= 1/2
(1 + r0dt0)(1 + r1,0dt1)

+ 1/2
(1 + r0dt0)(1 + r1,0s1dt1)
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while r2,0 must satisfy

D(0, t3) = (1/2)(1/2)
(1 + r0dt0)(1 + r1,0dt1)(1 + r2,0dt2)

+ (1/2)(1/2)
(1 + r0dt0)(1 + r1,0dt1)(1 + r2,1dt2)

+ (1/2)(1/2)
(1 + r0dt0)(1 + r1,1dt1)(1 + r2,1dt2)

+ (1/2)(1/2)
(1 + r0dt0)(1 + r1,1dt1)(1 + r2,2dt2)

= (1/2)(1/2)
(1 + r0dt0)(1 + r1,0dt1)(1 + r2,0dt2)

+ (1/2)(1/2)
(1 + r0dt0)(1 + r1,0dt1)(1 + r2,0s2dt2)

+ (1/2)(1/2)
(1 + r0dt0)(1 + r1,1dt1)(1 + r2,0s2dt2)

+ (1/2)(1/2)

(1 + r0dt0)(1 + r1,1dt1)(1 + r2,0s2
2dt2)

and so on. Notice that the arb-free constraints are nonlinear and a solving
routine needs to be used to compute ri,0’s.

Arrow-Debreu Prices

As can be seen, the equations and computations quickly become cumbersome
after a few time steps. A big part of this complexity is due to repeated
calculation of stochastic discounting

E
[

1
(1 + r0dt0)

1
(1 + r1(ω)dt1)

· · · 1
(1 + ri−1(ω)dti−1)

]

to ensure that today’s discount factors are recovered.
This computation can be simplified by appealing to Arrow-Debreu

securities. A (ti , ω) Arrow-Debreu security has unit payoff at time ti if and
only if a particular state ω is realized. For example, a (t2, r2,1) AD-security
has a payoff of 1 if we get to state r2,1 (the middle state) at time t2, and zero
otherwise. The Arrow-Debreu Price, ADi, j = AD(tj , ω j ) is today’s price of
a (ti , ω j ) AD-security, that is, today’s value of unit payoff at time ti if and
only if the j-th state (corresponding to ri j ) happens.
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Any contingent claim with payoff C(te, ω) can be considered to be a
portfolio of Arrow-Debreu securities, with C(te, ω) units of (te, ω) AD secu-
rity for each state. Therefore, today’s value of the security is the weighted
(by C(te, ω)) sum of AD prices:

C(0) = E
[

1
1 + r0dt0

× · · · × 1
1 + ri−1,.dti−1

C(ti , .)
]

=
i∑

j=0

ADi jCi j

where Ci j is the option payoff at time ti if the j-th state (corresponding to ri j )
happens. In particular, if the contingent claim is a ti -maturity zero-coupon
bond (with unit payoff in any state), its price today (D(0, t0)) must satisfy:

i∑
j=0

ADi j = D(0, ti )

Arrow-Debreu prices are related to path integrals and Green’s Function.
In interest-rate modeling, Jamshidian7 popularized their use when building
interest-rate lattices via a method he coined as Forward Induction. His main
observation was that for each tree date ti , if we compute and keep track of
A(ti , ω), we can easily update it for next period ti+1, and utilize it to ensure
that our new interest rates satisfy the no-arb condition. The technique can
be summarized as follows: To compute each state’s AD price, consider all
the one-time-prior nodes that lead to it, and multiply each such node’s AD
price by probability that it leads to this node, and further multiply it by the
prior node’s 1-period discount factor (see Figure 8.2). The sum of these gives
you the desired AD price:

AD(ti+1, j) =
∑

k

AD(ti , k)
P[(ti , k) → (ti+1, j)]

1 + r (tj , k)dti

Computation of AD prices, while not necessary, greatly simplifies the
construction of lattice models and valuation of contingent claims.

Extract ing a Discount Factor Curve

This being a short-rate model, we seem to only have access to the short rate
at each node. At the same time, we might be interested in valuing a swap,
or calculating a swap rate, which would mean that we need a full discount
factor curve at each node.
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(ri, jn
, ADi, jn

)

(ri, j1
, ADi, j1

)

(ri, j2
, ADi, j2

)

∑=
n

k=1 dti

pk
ADi, jk

ADi+1, j
1+ri, jk

ti ti+1

dti

p1

p2

pn

F IGURE 8.2 Updating Arrow-Debreu Prices from One
Time-Step to Next

Recall that a risk-neutral model must satisfy

(0 ≤ t0 ≤ te) Et0 [e
− ∫ te

t0
r (u,ω)] = D(t0, te)

for all times t0. The analogous version for a discretized lattice model is

(0 ≤ ti ≤ tj ) Eti

[
1

1 + ridti

1
1 + ri+1dti+1

· · · 1
1 + r j−1dtj−1

]
= D(ti , tj )

Having constructed the lattice, we can therefore compute a discount
factor curve at each node. Let Di j (k) denote the discount factor at the j-th
node at time ti (corresponding to short-rate ri j ) for a dollar to be received
at time ti+k. Obviously, Di j (0) = 1, and we have:

Di j (1) = 1
1 + ri jdti

Di j (2) = 1/2
(1 + ri jdti )(1 + ri+1, j dti+1)

+ 1/2
(1 + ri jdti )(1 + ri+1, j+1dti+1)
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Di j (3) = (1/2)(1/2)
(1 + ri jdti )(1 + ri+1, j dti+1)(1 + ri+2, j dti+2)

+ (1/2)(1/2)
(1 + ri jdti )(1 + ri+1, j dti+1)(1 + ri+2, j+1dti+2)

+ (1/2)(1/2)
(1 + ri jdti )(1 + ri+1, j+1dti+1)(1 + ri+2, j+1dti+2)

+ (1/2)(1/2)
(1 + ri jdti )(1 + ri+1, j+1dti+1)(1 + ri+2, j+2dti+2)

and so on.
To reduce the computational burden of computing the above, we can

instead use the following algorithm to relate ti ’s discount factor curves to
ti+1’s:

1. Given lattice-dates 0 = t0 < t1 < · · · < tN+1, start at the last lattice-date
(tN) for which we have short rates, rN,., covering the last deposit period
[tN, tN+1]:

(0 ≤ j ≤ N) DN, j (0) = 1

DN, j (1) = 1
1 + rN, j dtN

2. Having extracted the discount factor curve Di+1, j (.) for each j-th state
at ti+1, move one step back in lattice to ti , and compute ti ’s discount
factor curve Di j (.) as follows:

(0 ≤ j ≤ i) Di j (0) = 1

(0 ≤ k ≤ N − i) Di j (k + 1) = 1/2Di+1, j (k) + 1/2Di+1, j+1(k)
1 + ri jdti

Since at each node, the short rate can be extracted from the discount
factor curve, we can just keep Di j (·) curves at each node alongside the Arrow-
Debreu price ADi j for that node. Our lattice then embeds the evolution of
the (implicit) discount factor curves rather than just the short rates. Armed
with a discount factor curve at each node, we can then compute swap
rates, forward rates, swap values, and contingent payoffs on them. For
example, pricing a swaption amounts to valuing the underlying swap payoff
at each node on the expiration date, and then discounting this (exercised)
value to today along each path leading to that node (path-discounting), and
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averaging over all these paths. Alternatively, we can simply multiply the
swaption payoff at each node at expiry by that node’s AD price.

Cal ibrat ion: The Deal -Breaker!

Before we declare victory, and rush off to program the previous algorithms,
we need to worry about calibration. So far, the choice of local volatility
parameters (σi ) has been left as arbitrary. Calibration involves selecting
these parameters so that the lattice price of a selected group of instruments
(cap/floors, swaptions) match their market prices. It is of course desirable to
have an arb-free lattice that is calibrated to all flow instruments: cap/floors,
ATMF, and out-of-the-money swaptions, that is, global calibration. How-
ever, this is almost nearly impossible in practice, and the calibration instru-
ments are judiciously chosen to fit the problem at hand, leading to local
calibration. For example, for a Libor-in-Arrear swap, the best choice is to
calibrate to cap/floors, while for pricing Bermudan swaptions, we need to
calibrate to a set of European swaptions.

Calibration is difficult. Indeed, the common experience of many shops
is that they get their lattice models up and running in a short time, but spend
a long time (or eternity in some cases) to tame the lattice calibration beast.
A common practice with varying degree of success is to use nonlinear multi-
dimensional optimization methods such as the Levenberg-Marquardt algo-
rithm. However, these methods can easily become unstable, or lead to unre-
alistic parameters and behavior of short rates. One can help these routines
by providing good initial guesses for parameters, at times helped by insights
gathered from analyzing the underlying process dynamics (see Appendix B).

One-Year Quarterly Latt ice Cal ibrated to Caplets

To make the previous concepts clear, let us build a 1y quarterly BDT lat-
tice calibrated to quarterly caplets. The inputs to the model are quarterly
cash and forward-3m rates, and quarterly ATMF caplet prices, as shown in
Table 8.2. We ignore all calendar-related and day-count issues. The resulting
arb-free and calibrated BDT lattice is presented in Figure 8.3.

It is helpful to verify that the arb-free condition is satisfied at each
time step, and that the lattice is calibrated to each caplet. For example, the
parameters (ri,1, σ0) = (4.84587%, 9.980%) jointly ensure that the lattice is
arb-free:

D(0, 6m) = 1
1 + 5%/4

1
1 + 5.1%/4

= 0.9752203

= 1
1 + 5%/4

[
1/2

1 + 4.84587%/4
+ 1/2

1 + 4.84587%/4e2(9.980%)
√

0.25

]
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TABLE 8.2 BDT Lattice Inputs and Parameters

Calc Period [0,3m] [3m,6m] [6m,9m] [9m,1y] [1y,15m]
Fwd Rate 5% 5.1% 5.2% 5.3% 5.4%
Caplet Price

(cents)
3.1 6.17 8.69 11.34

Discount Factor 0.9876543 0.9752203 0.9627051 0.9501161 0.9374603
ATMF Caplet

LogVol
12.5% 17.5% 20% 22.5%

BDT ri0 5% 4.84587% 4.26620% 3.96676% 3.33522%
BDT σi 9.980% 18.928% 18.504% 22.862%

0.987654
0.975220
0.962075
0.950116
0.937460

5.00000%

1.000000

0.986791
0.972947
0.959063
0.944850

5.35444%

0.493827

0.988030
0.976531
0.964922
0.953507

4.84587%

0.493827

0.984665
0.969335
0.953354

6.22942%

0.243652

0.987276
0.974468
0.961641

5.15519%

0.487610

0.989447
0.978755
0.968477

4.26220%

0.243958

0.983017
0.964994

6.91062%

0.119958

0.985845
0.971409

5.74324%

0.360661

0.988208
0.976660

4.77305%

0.361395

0.990180
0.980952

3.96676%

0.120692

0.979616

8.32313%

0.058960

0.983714

6.62211%

0.236738

0.986999

5.26873%

0.356344

0.989629

4.19194%

0.238320

0.991731

3.33522%

0.059753

Rate

AD Price

DF’s

m3 m3 m3 m31t 2t 3t 4t0t

F IGURE 8.3 Example of a Quarterly 1-year BDT Lattice



164 INTEREST-RATE EXOTICS

and the lattice price of [3m, 6m] ATMF (K = F = 5.1%) caplet matches its
market price (3.1 cents, 12.5% implied logvol):

[3m,6m] Caplet Price = C1,0 AD1,0 + C1,1 AD1,1

= (1/4) max(0, r1,0 − K)
1 + r1,0/4

× AD1,0

+ (1/4) max(0, r1,0 − K)
1 + r1,1/4

× AD1,1

= (1/4) max(0, 4.84587% − 5.1%)
1 + 4.84587%/4

× 1/2
1 + 5%/4

+ (1/4) max(0, 4.84587%e2(9.980%)
√

0.25 − 5.1%)

1 + 4.84587%e2(9.980%)
√

0.25/4

× 1/2
1 + 5%/4

The reason that the caplet payoff C1,. is written as

1/4 max(0, r1,. − K)
1 + r1,./4

is that each caplet is determined at the beginning of the calculation pe-
riod, accrued for the length of the calculation period (1/4 in this case), but
paid at the end (3m later in this case), so its value at determination date
1
4 max(0, ri,. − K) needs to be appropriately discounted by 1/(1 + ri,./4).

In this setup, since the lattice dates are regular (quarterly) and match
the calibration instruments’ dates (quarterly caplets), we can combine the
arb-free and calibration constraints into a series of 1-period 2-dimensional
searches for BDT parameter pairs (ri,0, σi ). Moreover, it can be shown that
the BDT local volatility σ (t) parameter approaches short-term caplet Black
logvol as the lattice time-steps get progressively smaller. Hence, a good initial
choice for σi is the ATMF caplet Black logvol. That is why BDT calibration
to caplets is relatively easy, and can (almost) be done by inspection of the
caplet curve (see Appendix B).

European Swapt ion

In general, the constraints of arb-free and calibration cannot so easily be
combined. For example, if we want the lattice calibrated to a 3m-into-1y
semiannual ATMF receiver swaption, at each expiration node (r1,0, r1,1), we
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need to compute the value of the underlying 1y-swap from the corresponding
implied discount factor curves D1,0(.), D1,1(.) at those nodes. Each of these
discount factor curves depends on the future evolution of the short rates,
and hence is a function of current (r1,0, σ0) and future (ri,0, σi ) pairs (4 of
them for a 1-y swap).

Let’s go through the steps of valuing this swaption. We first need to
calculate the strike, the ATMF 1y-swap rate in 3 months:

K = ATMF = D(0, 3m) − D(0, 15m)
0.5[D(0, 9m) + D(0, 15m)]

= 0.98765432 − 0.9374603
0.5(0.9627051 + 0.9374603)

= 5.28312%

For each node at expiration (r1,0, r1,1), we need to evaluate the value of 1y
semi-annual 5.28312% receiver swap:

R1,. = K/2[D1,.(2) + D1,.(4)] − [D1,.(0) − D1,.(4)]

giving us R1,0 = 0.449048% (44.9 cents), R1,1 = −0.44905% (44.91 cents
against). Today’s value of this receiver swaption is

R(0) = max(0, R1,0) × AD1,0 + max(0, R1,1) × AD1,1 = 0.22175%

or 22.175 cents, corresponding to Black implied LogVol of 22.16% or
Normal vol of 117 bp/annum.

Note that once we have built the lattice and its implied discount factor
curves at each node, pricing swaptions (and other instruments) is easy (anal-
ysis step). However, building the lattice so that a given swaption has a given
price via choice of BDT parameters (ri,0, σi ) (synthesis step, calibration) is
difficult.

L ibor in Arrears

Continuing along with our example lattice, we will now consider our first
exotic, a Libor-in-Arrears swap. This is quite similar to a plain-vanilla swap,
except that the floating leg both resets and pays at the end of each calculation
period (instead of resetting at the beginning and paying at the end). For
example, for a 1-year USD arrears swap, the fixed leg is paid semi-annually
(6m, 1y), but the quarterly floating leg is reset based on 3m-Libor in 3m,
6m, 9m, 1y, and paid at the same time (accrued for 3m). Ignoring day-count
details, the floating leg has the following 4 cash flows whose today’s value
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can be obtained from the lattice:

CF1(0) = r1,0/4 × AD1,0 + r1,1/4 × AD1,1

= (1/4)[4.84587% × 0.49382716 + 5.35444% × 0.49382716]

= 1.25930%

CF2(0) = r2,0/4 × AD2,0 + r2,1/4 × AD2,1 + r2,2/4 × AD2,2

= 1.26808%

CF3(0) = r3,0/4 × AD3,0 + · · · + r3,3/4 × AD3,3

= 1.27601%

CF4(0) = r4,0/4 × AD4,0 + · · · + r4,4/4 × AD4,4

= 1.28356%

which is the value of the Libor-in-Arrear leg.
While we can use our caplet-calibrated BDT lattice to price arrears

swaps, in practice one often resorts to analytical formulae to price them.
For example, given the close similarity of an arrears swap to a regular swap,
it is often desired to use the same methodology as pricing plain-vanilla
swaps (discounting the forward rate), but adjust the forward rate by a small
amount to get to the correct value. This adjustment is called the delay of
payment convexity adjustment. For a Libor-arrears swap, the usual formula
used for calculation period [T1, T2] is

Convexity Adjustment = F 2σ 2T1(T2 − T1)
1 + F × (T2 − T1)

Table 8.3 compares the lattice’s value of the Libor-in-arrears leg versus its
value using the above. As we can see, the difference is quite small, and that

TABLE 8.3 Libor in Arrears Swap via BDT Lattice

ConvxAdj
CalcPeriod Fwd (F) LogVol (δ) (bp) (F + δ)/4 × DF BDT Price

[3m, 6m] 5.1% 12.5% 0.025 1.25932% 1.25930%
[6m, 9m] 5.2% 17.5% 0.102 1.26804% 1.26808%
[6m, 9m] 5.3% 20.0% 0.208 1.27608% 1.27601%
[6m, 9m] 5.4% 22.5% 0.364 1.28352% 1.28356%

Total 5.08693% 5.08695%
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is why people use simple convexity adjustment formulae instead of invoking
the lattice machinery for Libor-in-arrears swaps. We note however that the
difference increases as the reset dates extend further into the future.

CMS-Based Payof fs

While CMS products are usually priced via analytical expressions, we can
also price them in a lattice model. Let us consider a 3m-expiration USD
ATMF CMS-1y caplet, based on the calculation period [3m, 6m]. We first
need to calculate the ATMF strike, the 1y semiannual par-swap rate, 3m
forward:

K = ATMF = D(0, 3m) − D(0, 15m)
0.5[D(0, 9m) + D(0, 15m)]

= 5.28312%

At expiration (3m), for each node, we need to calculate the CMS-1y
(semiannual par-swap) rate using the discount factor curve at that node:

S1. = Di.(0) − Di.(4)
0.5(Di.(2) + Di.(4))

giving us S10 = 4.87199%, S11 = 5.75141%. The caplet payoff max(0, S1.−
K) will get accrued for 3m and paid 3m later, so today’s value of this caplet
is 5.705 cents:

C(0) = (1/4) max(0, S10 − K)
1 + r10/4

× AD10 + (1/4) max(0, S11 − K)
1 + r11/4

× AD11

= 0.057051%

We can also use the lattice to price resets of CMS-n-year swap. In this
case, the payoff for each calculation period [T1, T2] is simply the CMS-n-
year swap rate observed at T1, accrued for T2 − T1, and paid at T2. For
example, today’s value of CMS-1y swap for calculation period [3m, 6m] can
be computed as

(1/4)S10

1 + r10/4
× AD10 + (1/4)S11

1 + r11/4
× AD11 = 1.288341%

As can be seen, once we have a lattice, we can price any variety of
complex payoffs.
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HULL-WHITE, BLACK-KARASINSKI MODELS

We have so far focused on the BDT model for expositional purposes, and to
highlight the general steps required in building a one-factor short-rate model.
BDT/BK models and their multifactor extensions were originally widely used
and implemented due to their Log-Normal dynamics, the market’s then
focus and preference. In the past few years, the default dynamics for interest
rates has shifted to Normal, and Hull-White/Vasicek models have regained
popularity.

Following original papers by Hull-White, the HW model is usually im-
plemented as a trinomial rather than a binomial lattice. Another difference
is that while the BDT implementation fixed up/down probabilities at 1/2,
and solved for the states, in most implementations of HW model, both the
probabilities and states have to be computed to jointly satisfy the arb-free
constraints.

A typical implementation of HW model is as follows.

1. Similar to BDT implementation, we discretize the HW process equation,

dr (t, ω) = a(t)[b(t) − r (t, ω)]dt + σ (t)dB(t, ω)

for lattice dates, 0 = t0 < t1 < · · · < tN+1, to arrive at discretized mean-
reversion speeds, levels, and local volatilities: ai = a(ti ), bi = b(ti ), σi =
σ (ti ), dti = ti+1 − ti , 0 ≤ i < N. The mean reversion levels bi ’s are used
to make the lattice arb-free, while the mean reversion speeds and local
volatilities ai , σi are used to calibrate the lattice.

2. Starting from r0 = r (t0) = (D(0, t0)/D(0, t1) − 1)/(t1 − t0), let ri j =
r (ti , ω j ) denote the j-th state at the i-th time ti . At each time ti , each
node ri j leads to three nodes as shown in Figure 8.4, with the middle
node ri+1, j chosen to ensure that the lattice recombines by setting k to
be the closest integer to ri j (1 − αi dti )/σi

√
3dti , and setting

ri+1, j = aibidti + kσi

√
3dti

The choice of spacing dri = σi
√

3dti is motivated by lattice stability
issues as dti → 0, coming from insights of finite-difference disciplines.
With this choice, the transition probabilities defined as:

pm = 2
3

− (ri j (1 − aidti ) − kσi
√

3dti )2

3σ 2
i dti

pu,d = 1 − pm

2
± ri j (1 − aidti ) − kσi

√
3dti

2σi
√

3dti
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dri = σi 3dti

ri+1, j+1 = ri+1, j + dri

ii+1, ji+1, j−1r −dr=r

rij

ti ti+1

dti

ri+1, j ≈ aibidti + rij (1−ai dti)

pu

pm

pd

F IGURE 8.4 An Trinomial Lattice Implementation of the
Hull-White Model

are all non-negative, and ensure that the process dynamics (local means
and volatilities) are respected.

3. Compute AD-prices ADi+2, and solve for bi so that the arb-free condi-
tion is satisfied: ∑

j

ADi+2, j = D(0, ti+2)

4. Calibrate to volatility instruments (cap/floors, swaptions) by tuning the
local volatility (σi ) and mean-reversion speed (ai ) parameters.

Black-Karasinski Model

The Black-Karasinski (BK) model is a generalization of the BDT model,
where the mean-reversion speed is allowed to be an arbitrary function—in
BDT, it is required to equal −σ ′(t)/σ (t). There is also a close resemblance
between the process equation for BK and Hull-White, where ln r instead of
r is diffused. This close resemblance allows one to implement the BK model
just like the preceding HW model as a trinomial lattice, with ri j ’s replaced
by ln ri j ’s, and this is usually the approach taken in practice.

SIMULATION IMPLEMENTATION

In a lattice implementation, at each node we have full information as to the
short rate and the implied discount factor curve at that state. A contingent
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claim whose payoff depends only on this information can be valued at that
node, and this payoff can be valued today using the node’s AD price.

Another class of contingent claims are path-dependent options (also
called Asian options), whose payoff at each node is not only a function
of that node’s state, but also the behavior of interest rates for prior nodes
that lead to it. For example, the payoff might be the moving average of
a particular index, say 3m-Libor, or the running maximum of the index.
Life-time knock-in/knock-out options are another variety of path-dependent
options, where the payoff at expiration is contingent upon an index (or
indices) staying within a prescribed range at all times from today to option
expiration.

While some analytical formulae or approximations exist for Asian op-
tions on simple (one-dimensional) assets such equities, FX, . . . , for path-
dependent interest rate options, one resorts to simulation for pricing. This
means that we approximate the price

C(0) ≈ 1
N

N∑
i=1

1
1 + r (t0, ωi )dt0

× · · · 1
1 + r (tk, ωi )dtk

× · · · × C(te, ωi )

for N randomly selected paths (ω1, . . . , ωN). This is called an N-path simu-
lation, and the idea is that as we increase N, the approximation tends to the
correct value.

Direct Simulat ion

There are two main approaches to simulation implementation. The first is
to start from the process equation, discretize it for some chosen simulation
dates, and simulate this discretized process. A common procedure is to apply
Euler’s discretization for the Brownian motion component of the process
equation:

dr (t, ω) = μ(t, ω)dt + σ (t, ω)dB(t, ω)

is implemented as

r (t + �t, ω) − r (t, ω) = μ(t, ω) × �t + σ (t, ω)X(t, ω)
√

�t

where X(t, ω) ∼ N(0, 1), although more elaborate discretizations exist. Re-
gardless, the main concern with this procedure is that there are parame-
ters of the discretized process that are not known a priori, and need to be
solved for so that the discretized process is arbitrage-free. We saw this in the
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lattice implementation of the BDT/BK models, where as we try to respect the
process equation, we use some of the parameters to ensure that the lattice
is arb-free. For simulation implementation, this step is problematic, as it
assumes that we know all the parameters and are just generating random
paths from the process. The usual remedy is to first simulate the paths, and
then shift these simulated paths so that the arb-free conditions are satisfied
for these realized paths.

Latt ice-Sampl ing

The second method is sampling a lattice/tree. For a given model, we first
construct an arb-free lattice/tree, and then randomly sample it. Specifically,
at each node, only one of its outgoing branches is selected according to the
risk-neutral probability of that branch. For example, in a BDT lattice, we
flip a fair coin to decide whether we make an up-move or a down-move.
For each such randomly selected path, we keep track of the path-dependent
option’s payoff(s), and whenever there is a payment, we discount it back to
today along the short rates on that path. Averaging these path-discounted
payoffs gives us the simulation price:

C(0) ≈ 1
N

N∑
i=1

1
1 + r (t0, ωi )dt0

× · · · 1
1 + r (tk, ωi )dtk

× · · · × C(te, ωi )

Even in this method, the collection of chosen random paths does not neces-
sarily satisfy the no-arbitrage condition, and one might still have to apply a
shift to the simulated paths to ensure no-arbitrage.

Variance Reduct ion

Simulation pricing suffers from simulation noise: It only gives an approxi-
mate price, and each simulation run can give a different price. There are a
few techniques to reduce simulation noise: antithetic, control variate, impor-
tance sampling, low-discrepancy (Sobol, Halton, . . . ) sequences, and so on.
The easiest to implement is antithetic: For an N-path simulation, randomly
select the first N/2 paths, and generate the remaining paths as the mirror-
image of them; whenever you randomly select an up-move for the original
path, select a down-move for the mirror-image path. For trinomial branch-
ing, the middle branch remains the same for both original and mirror-image
paths. (See Figures 8.5 and 8.6.)
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1ω

2ω

3ω

F IGURE 8.5 Three Random Paths in a
Binomial Lattice Sampled for Simulation

L i fet ime Knock-Out Opt ion

Consider a single-exercise 1-year 5%-caplet on Libor-3m, with payoff
max(0, L3m(1y) − 5%), reset and paid in 1-year, but only if Libor-3m has
not exceeded the knock-out level of 6% from now until the reset date.
The calculation of this caplet based on a 10-path simulation is shown in

F IGURE 8.6 A Random Path and its Antithetic
Mirror-Image Path
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TABLE 8.4 Value of Caplet, max(0, L3m(1y) − 5%), Reset and Paid in 1-Year, With and
Without Knock-Out Level of 6%

Path Caplet With
No. L3m(0) L3m(3m) L3m(6m) L3m(9m) L3m(1y) ADi Caplet Knock-Out

1 5.00% 4.27% 2.93% 2.91% 2.65% 0.09631 0.00% 0.00%
2 5.00% 5.38% 5.28% 4.21% 4.34% 0.09518 0.00% 0.00%
3 5.00% 4.95% 5.02% 4.98% 5.64% 0.09516 0.64% 0.64%
4 5.00% 5.84% 5.84% 6.81% 6.79% 0.09434 1.79% 0.00%
5 5.00% 3.81% 4.09% 3.35% 3.78% 0.09604 0.00% 0.00%
6 5.00% 5.35% 6.05% 5.54% 5.58% 0.09470 0.58% 0.00%
7 5.00% 5.77% 5.39% 5.93% 5.28% 0.09466 0.28% 0.28%
8 5.00% 5.39% 5.14% 5.13% 5.13% 0.09500 0.13% 0.13%
9 5.00% 4.59% 5.37% 5.92% 5.85% 0.09494 0.85% 0.85%

10 5.00% 5.92% 5.39% 6.09% 5.83% 0.09459 0.83% 0.00%

0.48% 0.18%

Table 8.4. Without the knock-out, the value of the caplet is 48 cents:

0.48% =
10∑

i=1

max(0, L3m(1y, ωi ) − 5%) × ADi

where

ADi = 1
10

1
(1 + L3m(0)/4) × · · · × (1 + L3m(9m)/4)

However, with the knock-out, the payoff is reduced to 0 for paths 4, 6, 10,
reducing the value of the cap to 18 cents.



CHAPTER 9
Bermudan-Style Options

Aprominent class of derivatives is the class of American-style exercise op-
tions, in which the owner of the option has flexibility in choosing the

time to exercise. A true American-style option allows the owner to exercise
the option over any time during the exercise window. In interest-rate deriva-
tives, true American-style options are rare, and the flexible-exercise feature
is limited to a finite number of dates, typically reset/coupon dates (quarterly,
semiannual) of the underlying instrument (bond, swap, . . . ), for example,
a 30-year callable bond, callable at par after 10 years, and semiannually
thereafter. This class of interest-rate options is known as Bermudan-style
options.

The general pricing framework for Bermudan-style options is still risk-
neutral valuation with t-prices provided as

(0 ≤ t ≤ T) C(t, ω) = Et[e− ∫ T
t r (u,ω)duC(T, ω)]

but augmented to include the owner’s option to choose the exercise time.
The fixed exercise date T = te is replaced by a random exercise time chosen
by the owner, T(ω). The exercise-time decision can be any rule/strategy
chosen by the owner, and can depend on the current and history of the
asset evolution, but not on the future, that is, it should be non-anticipative.
In probability theory, the technical term for a nonanticipative strategy is a
stopping time.

Given such a nonanticipative exercise strategy T(·), we evaluate the op-
tion value as follows: For any future random path ω, determine the exercise
time T(ω), evaluate the option payoff at that exercise time and for that
path C(T(ω), ω), stochastically discount this back to valuation date (t), and
average over all paths. This gives the t-value of the option under the given
exercise strategy:

Et[e− ∫ T(ω)
t r (u,ω)duC(T(ω), ω)]
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The Bermudan option value is the value of the option under the optimal
exercise strategy, found by searching over all such nonanticipative strategies:

Bermudan C(t) = max
T

Et[e− ∫ T(ω)
t r (u,ω)duC(T(ω), ω)]

BELLMAN’S EQUATION—BACKWARD INDUCTION

Performing the search for the optimal strategy is a daunting task. We first
have to enumerate all permissible (nonanticipative) exercise strategies (way
too many of them, and quite hard to enumerate), evaluate the option payoff
under each such strategy, and calculate the maximum. This is a tall order!

Fortunately, this class of problems has been studied in optimal control
theory and dynamic programming disciplines. The most important result
from this field is Bellman’s equation and its solution, characterizing the
optimal strategy and the optimal value achieved by it.

In a discrete-time setting, the solution to Bellman’s equation (optimal
value) can be found via a recursive updating algorithm called backward
induction. The algorithm goes as follows:

1. For Bermudan exercise dates t0 < t1 < · · · < tN, compute immediate ex-
ercise values C(ti , ω) for each time ti and state ω. At the last exercise
date tN, compute option value B(tN, ω) = C(tN, ω).

2. For each prior exercise date, recursively compute B(ti , ω):

B(ti , ω) = max(C(ti , ω), H(ti , ti+1, ω))

where H(ti , ti+1, ω) is the holding value, the expected discounted value
of the option if held until next exercise date ti+1:

H(ti , ti+1, ω) = Eti [e
− ∫ ti+1

ti
r (u,ω)du B(ti+1, ω)]

3. Continue updating B(ti , ω) from B(ti+1, ω) until you get the optimal
value at the earliest exercise date, B(t0, ω). The t-value of the Bermudan
option is then

Et[e− ∫ t0
t r (u,ω)du B(t0, ω)] = max

T
Et[e− ∫ T(ω)

t r (u,ω)duC(T(ω), ω)]

Notice that backward-induction does not explicitly provide the opti-
mal strategy, just the value of Bermudan option at each node under this
(implicit) optimal strategy. Calculation of the hold value, H(ti , ti+1, ω)—a
conditional expectation—is quite easy to implement in lattice/tree models.
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That is why most implementations of an interest-rate model are lattice/tree
implementations, enabling one to readily tackle Bermudan-exercise options.

Backward Induct ion in Latt ice/Trees

For lattices with tree/lattice-dates 0 = t0 < t1 < · · · < tN+1, as long as we
ensure that the lattice dates include the exercise dates, we can simplify the

backward-induction algorithm to obviate the need to calculate e− ∫ ti+1
ti

r (u,ω)du

when computing the hold value. This is accomplished by setting the
immediate-exercise values C(ti , ω) to −∞ for lattice-dates where exercise
is not allowed. In this way, we start backward induction at the last lat-
tice date, and apply it to all lattice dates (including ones that are not
exercise dates) all the way back to today t0 = 0, using the recursive up-
dating formula:

H(ti , ti+1, ω j ) = 1
1 + r (ti , ω j )dti

n∑

k=1

P[(ti , ω j ) → (ti+1, ω jk)]B(ti+1, ω jk)

The value B(0, 0) is today’s value of the Bermudan option.

BERMUDAN SWAPTIONS

A Bermudan swaption is the option to enter into a fixed-maturity (from
today) plain-vanilla swap at various points in the future. For example a
“1-into-2 5% Berm receiver with semiannual exercise” provides the option
holder to enter into a 5% receiver swap maturing 3y from today at any one
(and only one) of the following exercise dates:

� 1y from today (entering into a 2y semiannual swap)
� 1y6m from today (entering into 1y6m semiannual swap)
� 2y from today (entering into a 1y semiannual swap)
� 2y6m from today (entering into a 6m semiannual swap)

The exercise frequency (semiannual in this case) usually matches the
coupon frequency of the fixed leg. Similarly, a 1-into-2 Bermudan payer
swaption (“Berm Payer”) provides the option holder to enter into a payer
swap at any of the preceding exercise dates.

Example 1. 1y-into-2y Bermudan Receiver. To show backward induc-
tion in practice, assume that starting with the discount factors shown in
Table 9.1, we have built an arb-free calibrated 3y semiannual lattice for
6m-rates shown in Figure 9.1, and we want to price a 1-into-2 Bermudan
K = 5.68038% (semiannual) receiver with semiannual exercise.



178 INTEREST-RATE EXOTICS

TABLE 9.1 Input Curve for Bermudan Pricing via
Backward Induction

T Fwd 6m-Rate D(0, T)

0 5% 1.0000000
6m 5.1% 0.9756098
1y 5.2% 0.9513503
1y6m 5.3% 0.9272420
2y 5.4% 0.9033045
2y6m 5.5% 0.8795564
3y 0.8560160

To simplify the picture, at each node we are only presenting the 6m-
short rate, and the value of underlying, that is, receiving K = 5.68038% for
the remaining swap (computed from the node’s discount factor curve). As
usual, we are ignoring date minutiae and day-count issues.

Bij=max(Cij,Hij)

rij

Sij

Short (6m) Rate

Underlying (Swap)

Berm

t0=0 t1 t2 t3 t4

6m 6m 6m 6m 6m

t5

iijdtr+1
Cij = max(0, Sij), Hij = jiji BB + +++ 2/2/ 1,1,1 0.00000%

9.83026%

-1.97773%

0.00000%

7.69718%

-0.97103%

0.00000%

6.02696%

-0.16822%

0.46953%

4.71917%

0.46953%

0.97461%

3.69515%

0.97461%

1.37365%

2.89334%

1.37365%

0.00000%

9.23478%

-3.10807%

0.00000%

6.93726%

-0.15791%

0.37539%

5.21135%

0.37539%

1.57404%

3.91482%

1.57404%

2.50703%

2.94086%

2.50703%

0.00000%

8.02278%
-3.17676%

0.18226%

5.96643%

-0.51881%

1.56168%

4.43715%

1.56168%

3.17836%

3.29985%

3.17836%

0.08810%

6.87387%

-2.36311%

0.85032%

5.09208%

0.79533%

3.26260%

3.77215%

3.26260%

0.45658%

5.53231%

2.00954%

4.66950%

−∞

−∞
1.20298%

5.00000%

−∞

F IGURE 9.1 Pricing a 1y-into-2y Bermudan Receiver Swaption via Backward Induction
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Starting at the last exercise date t5 = 2y6m, we compute the value of
receiving K = 5.68038% semiannually for the next 6 months. Therefore,
the value of the underlying swap at each node is

S(t5, ω j ) = K/2D(t5, t5 + 6m, ω j ) − [D(t5, t5, ω j ) − D(t5, t5 + 6m, ω j )]

and we set the Bermudan option value B(t5, ω j ) equal to immediate exercise
value C(t5, ω j ) = max(0, S(t5, ω j )).

Stepping back to t4 = 2y, we compute the value of receiving K =
5.68038% semiannually for the next 1y:

S(t4, ω j ) = K/2[D(t4, t4 + 6m, ω j ) + D(t4, t4 + 1y, ω j )

− [D(t4, t4, ω j ) − D(t4, t4 + 1y, ω j )]

and the immediate exercise value C(t4, ω j ) = max(0, S(t4, ω j )). The
Bermudan option value is the higher of the immediate exercise value and the
hold value

B(t4, ω j ) = max(C(t4, ω j ), H(t4, ω))

where the hold value is computed as

H(t4, ω j ) = B(t5, ω j )/2 + B(t5, ω j+1)/2
1 + r (t4, ω)dt4

Continuing similar steps back to today gives us today’s value of
B(0, 0) = 1.20298%, or 1.20298 points.

It is instructive to compare the value of the above Bermudan receiver
to the corresponding (1y-into-2y, 1.5y-into-1.5y, 2y-into-1y, 2.5y-into-6m)
European receiver swaptions. Since a European swaption can be considered
to be a Bermudan with a single-exercise date, we can use the same backward-
induction algorithm to price European swaptions, setting the immediate
exercise values to −∞ for all lattice dates other than the European single-
exercise date. Alternatively, we could price it using Arrow-Debreu prices for
each node at expiration date. Regardless, both methods give the same value.

Table 9.2 shows the value of the 1-into-2 receiver computed using AD
prices, while Table 9.3 compares the Bermudan receiver to the European
receivers. As expected, the value of the Bermudan option is higher than any
of the corresponding European swaptions.
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TABLE 9.2 Valuing European Swaption Using AD-Prices

State 6m-Rate Rcvr Swap Option Value AD Price
j ri j Si j Ci j = max(0, Si j ) ADi j Ci j × ADi j

2 6.87378% −2.6331% 0.00000% 0.237337 0.00000%
1 5.09208% 0.79533% 0.79533% 0.475675 0.37832%
0 3.77215% 3.26260% 3.26260% 0.238338 0.77760%

1-into-2 1.1559%

TABLE 9.3 Comparison of Bermudan vs
European Swaptions

1y-into-2y 1.1559%
1y6m-into-1y6m 0.9166%
2y-into-1y 0.6307%
2y6m-into-6m 0.3057%

Berm 1.20298%

BERMUDAN CANCELABLE SWAPS,
CALLABLE/PUTTABLE BONDS

A Bermudan cancelable swap is a plain-vanilla swap that can be canceled
after some time, and periodically thereafter. For example, a “3-non-call-1y
with semiannual exercise” (3nc1, Semi) is a 3-year plain-vanilla swap, where
one party has the Bermudan right to cancel the swap at one (and only one)
of the following times: 1y, 1y6m, 2y, 2y6m. The Bermudan cancelation right
is economically equivalent to a Bermudan option to enter into an offsetting
swap, and is modeled and priced as such. Specifically, the following two
types of cancelable swaps arise depending on the original position of the
owner of the (cancelation) option:

1. Callable: Pay fixed in swap, Own option to cancel = Payer Swap + Own
Bermudan Receiver swaption

2. Puttable: Receive fixed in swap, Own option to cancel = Receiver Swap
+ Own Bermudan Payer swaption

The terminology callable/puttable comes from bonds, where the issuer
of a callable bond is paying fixed coupons, but can call the bond (usually
at par) on coupon payment dates after an initial lock-out (noncall) period.
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Similarly, a puttable bond is one where the owner/investor/lender is receiving
fixed coupons, but can put the bond (usually at par) back to the issuer after
an initial lock-out (non-put) period.

For callables, since the owner of the cancelation option is paying fixed,
he needs to compensate the receiver for the option, that is, he has to pay
higher than in an otherwise noncallable plain-vanilla swap. The fixed rate
K that will make the value of the callable swap (Payer K swap + Bermudan
receiver with strike K) zero is called the callable rate. The callable rate is
therefore higher than the par-swap rate. Similarly, for puttables, since the
option-owner has to compensate the payer by receiving below an otherwise
nonputtable swap. The puttable rate is the fixed rate that will make the value
of puttable swap (Receiver K swap + Bermudan payer with strike K) zero,
and is lower than the par-swap rate.

Example 2. Using the setup in Example 1, we have calculated the 1y-into-
2y K = 5.68038% Bermudan receiver with semiannual exercise as 1.20298
points. Using today’s discount factor curve, let us compute the value of
paying the same fixed rate, K = 5.68308%, in a 3y (semiannual) swap:

Pay K for 3y = − K
2

[D(0, 6m) + D(0, 1y) + · · · + D(0, 3y)]

+ [D(0, 0y) − D(0, 3y)]

= −5.68038%
2

[0.9756098 + · · · + 0.8560160]

+ (1 − 0.8560160)

= −1.20998%

which exactly offsets the value of the cancelation option (1-into-2 Berm
receiver). Therefore the callable rate is 5.68038%. The callable rate is usually
quoted as a spread to the par-swap rate (3y in this case):

S3y = D(0, 0y) − D(0, 3y)
0.5(D(0, 6m) + · · · + D(0, 3y))

= 5.24238%

so the 3y-nc-1y callable rate is quoted as 43.8 bp (= 5.68038% −
5.24238%). The broker market for a “3-nc-1” (with semiannual exercise)
might then be 43.3-44.3 bp’s, implying 43.3 bp bid: I pay S3y + 43.3 bp’s
and I can cancel; and 44.3 bp offer: I receive S3y + 44.3 bp’s and you
can cancel.
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One-T ime (European) Cancelab le Swaps

A one-time cancelable swap is simply a package of a swap and a European
cancelation swaption (option to enter into offsetting swap). This is simply
a Bermudan cancelable swap where the exercise window is reduced to a
single date.

European cancelable swaps can be thought of in two ways: a swap plus
a cancelation option or a swap with an extension option. For example a
3y-nc-1y one-time callable is equivalent to either of the following:

� Pay for 3y, Own a 1y-into-2y European receiver swaption (cancelation
option)

� Pay for 1y, Own a 1y-into-2y European payer swaption (extension
option)

In either case, the cancelable is a swap+swaption package, and priced
as such.

Cancelab le Swap—Variat ions

Armed with a methodology (backward induction for lattices) to price Bermu-
dan cancelation rights, one can price a variety of swaps with different fea-
tures. For example, a common structure is a cancelable swap where the fixed
rate steps up according to some schedule (5% for first year, 5.5% for second
year, and so on). These structures are generically called step-up callables,
and can include step-up or step-down features.

Callable bonds sometimes have an exercise fee schedule. For exam-
ple a 10y callable bond might be callable after 5y at 105%, after 6y at
104%, and so on. The exercise fee is the amount above par (5 points,
4 points, . . . ), and can have a schedule. It is easy to price cancelable swaps
with similar exercise fees, by just replacing the immediate exercise value
C(ti , ω) = max(0, S(ti , ω)) with

C(ti , ω) = max(0, S(ti , ω) − Fee(ti ))

Another common feature is notice days, where the cancelation decision
has to be announced a specified number of notice days prior to the coupon
payment date. This feature can also easily be priced by ensuring the lattice
dates include the notice dates, and pricing a forward (offsetting) swap on
those notice dates.
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BERMUDAN-STYLE OPTIONS IN
SIMULATION IMPLEMENTATION

There are situations where a lattice implementation does not exist or is not
suited, and we have to resort to an alternate (typically simulation) implemen-
tation. For example, the posited dynamics for interest rates might not lend
themselves to a lattice (recombining) implementation. This is usually the case
when one wants to implement a full term-structure model in the HJM frame-
work. The typical HJM model is non-Markov: an up-move followed by a
down-move does not get you to the same place as a down-move followed
by an up-move, and hence a tree implementation leads to a nonrecombin-
ing tree. A nonrecombining tree implementation will grow exponentially in
computation needs as we decrease the time-step size, defeating our desire to
achieve good accuracy.

Another instance where a lattice is not suited is for Bermudan-style path-
dependent options. For these options, we need to not only know where we
are at each state, but how we got there, and a simulation implementation is
more natural for their pricing. Of course, we could keep track of each node
and its history, but then again we are dealing with an exponentially growing
number of paths, with its forbidding computational requirement.

For simulation implementation of an interest-rate model, pricing
Bermudan-style options is a challenge. This is due to the difficulty of comput-
ing the hold value, a conditional expectation, at each node. For a simulation
implementation, each node has only one path entering and exiting it, there-
fore we cannot compute the expected holding value. This is a general prob-
lem for any simulation model where computing conditional expectations is
quite difficult.

We seem to be at a quandary: In lattice implementations, at each
node, we know the full potential future and hence can compute hold
value, but do not know how we got to the node (no path information),
that is, we know the future, but not the past. For simulation implementa-
tions, we know the full path leading to each node, but do not know the
node’s full potential evolution into the future: We know the past, but not
the future! Path-dependent Bermudan-style options bring this quandary to
the fore.

To tackle Bermudan-style options in simulation implementation, one
can stay with backward induction framework, and try to approximate the
hold value. A variety of methods (bundling, stochastic tree/mesh, . . . ) have
been proposed, the most widely implemented being Longstaff/Schwartz’s
least-squares in Monte Carlo (LSM) method.1 In the LSM method, the hold
value is approximated via regression analysis at each node.
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Another approach is to abandon backward induction altogether, and
directly search for the optimal strategy. For example, we may plausibly
assume that the optimal strategy takes the form of a threshold strategy: Ex-
ercise at time ti if the option is sufficiently in the money, that is, C(ti ) > Li

for a given sequence of boundary values {Li }s. By following this class of
strategies, we can compute the option value, and optimize the value by
finding the optimal boundary {L∗

i }s. A commonly used algorithm is to re-
duce this multidimensional search to a series of recursive one-dimensional
searches: Given exercise dates t1 < · · · < tN, for a set of simulated paths,
start with L∗

i = ∞ to ensure that the option is alive until the terminal ex-
ercise date. For tN, find the exercise threshold L∗

N, and fix this threshold
as the optimal exercise level if the option is still alive at tN. Move to the
previous exercise date and again find the optimal exercise threshold, sub-
ject to the previously found optimal thresholds for future exercise dates.
Continue along to the first exercise date, and compute the Bermudan value
under these recursively found thresholds.



CHAPTER 10
Full Term-Structure

Interest-Rate Models

Short-rate models were the first systematic attempt to break away from
Black’s formula for pricing interest-rate derivatives. The basic setup was

to posit some dynamic for the short rate, r (t, ω) as

(t > 0) dr (t, ω) = μ(t, ω)dt + σ (t, ω)dB(t, ω)

and then price derivatives C(t, ω) with a terminal payoff at T using risk-
neutral expectation:

(0 < t < T) C(t, ω) = Et[e− ∫ T
t r (u,ω)duC(T, ω)]

which results from the martingale condition

(0 < t < T)
C(t, ω)
M(t, ω)

= Et

[
C(T, ω)
M(T, ω)

]

using rolled-over money-market account

M(t, ω) = e
∫ t

0 r (u,ω)du

as numeraire.
While serving as a consistent arbitrage-free, risk-neutral framework,

short-rate models were lacking in providing a clear picture as to the dynamics
of the implied discount factors, forward rates, and swap rates. For example,
considering the instantaneous forward rate f (t, T, ω), that is, the forward
rate at time t for a forward deposit over [T, T + dT], what can be said about
its dynamics? Recalling that

(t < T) f (t, T, ω) = − ∂

∂T
ln D(t, T, ω)
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the above question boils down to computing the dynamics of

− ∂

∂T
ln Et[e− ∫ T

t r (u,ω)du]

which is quite an arduous task and analytically intractable except for very
few specialized dynamics for r (t, ω). Given that f (t, T, ω) is a (short-term)
proxy for traded instruments such as FRAs and ED futures, the ability to
answer this question was of paramount interest to traders and practitioners.

SHIFT ING FOCUS FROM SHORT RATE
TO FULL CURVE: HO-LEE MODEL

The first known model to tackle the above problem was introduced by Ho
and Lee (HL).1 In their model, rather than starting with the short rate, they
started directly by the discount factor curve. For this, they discretized today’s
discount factor curve, and posited a discrete-time dynamic for the discretized
curve. Specifically, they considered a series of dates 0 < T1 < T2 < . . . , and
provided the following model:

(Ti < Tj ) D(Ti+1, Tj , ω) − D(Ti , Tj , ω) = μ(Ti , Tj )dt

+ σ (Ti , Tj , ω)�(B(Ti , ω)

in a binomial tree setting, and solved for the drift curve μ(Ti ,.) for each time
Ti to ensure that the tree recombines.

Continuous-time limits of the HL model were soon derived,2 and chal-
lenged by some to be unrealistic. No matter, the important insight of the HL
model was that we can directly start with the full discount factor curve, and
evolve the full curve while ensuring no-arbitrage in a risk-neutral setting.
This is in contrast to short-rate models, where the discount factor curve is
implicitly derived from the risk-neutral dynamics of the short rate. This shift
in focus from short-rate modeling to full curve modeling gave rise to a new
paradigm of full term structure models.

HEATH-JARROW-MORTON (HJM) FULL
TERM-STRUCTURE FRAMEWORK

Following HL’s innovation, Heath, Jarrow, and Morton (HJM)3 considered
the dynamics of the full interest-rate curve in a risk-neutral world under
general dynamics. Instead of working with the discount factor curve, they
chose the equivalent forward rate curve. Note that these two curves are
interchangeable, and knowledge of one completely determines the other. In
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discretized format, we have:

fc(t, [T1, T2], ω) = 1
T2 − T1

ln(D(t, T1, ω)/D(t, T2, ω))

for continuously-compounded rates. On the other hand, given a series of
contiguous forward rates { fc(t, [Ti , Ti+1], ω)}i with t = T0 < T1 < . . . , we
can compute discount factors:

D(t, Tn, ω) = e

−
n−1∑
i=0

fc(t, [Ti , Ti+1], ω)(Ti+1 − Ti )

Therefore, the discount factor curve fully determines the forward-rate curve,
and vice-versa. In either case, by letting the deposit periods [Ti , Ti+1] shrink
to zero, we get instantaneous forward rates, satisfying:

D(t, T, ω) = e
−

∫ T

t
f (t, u, ω)du

f (t, T, ω) = − ∂

∂T
ln D(t, T, ω)

In this framework, the short rate r (t, ω) can readily be recovered as r (t, ω) =
f (t, t, ω), hence as we model the forward rate curve, we are already modeling
the short rate. On the other hand, we saw that as we were modeling the short
rate, we could compute an implied discount factor curve, or its equivalent
implied forward rate curve. Therefore a short-rate model is an implicit term-
structure model, and a term-structure model is an implicit short-rate model.
The difference between these modeling paradigms is their state-space: short
rate, or the full discount-factor/forward-rate curve.

In the HJM framework, similar to the HL model, we model the evolution
of the full term structure of interest rates, that is, we evolve a curve. The HJM
framework takes the forward curve f (t, ., ω) at each time t, and considers its
evolution as time t evolves, where ω is the generic random future evolution
of the curve. Note that this is a doubly indexed system consisting of the
valuation/calendar time t, and the forward time T. At each point of time t,
and for each potential future state ω, the forward curve f (t, ., ω) represents
the series of (contiguous) forward rates, one for each forward date T > t.

For instantaneous forward rates f (t, T, ω), the general HJM framework
posits the following process:

df (t, T, ω) = μ(t, T, ω)dt + σ (t, T, ω)dB(t, ω)

for a 1-factor dynamic where dB(t, ω) are interpreted as increments of in-
dependent Brownian motions. At each time t, we have a system of process
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equations (one for each forward date T), and these series of systems have to
be solved by μ(t, T, ω) to ensure risk neutrality.

DISCRETE-T IME, D ISCRETE-TENOR
HJM FRAMEWORK

As in short-rate models, any computer implementation of the HJM-based
model will be based on discretized versions of the continuous time-evolution
of the instantaneous forward rates. While each discretization (one for t, one
for T) can be arbitrary, for the sake of notational brevity, we will present the
discretized version of HJM by letting {0 = τ0 < τ1 < · · · < τn} be a common
discretization of the t and T axes. Let fi j denote the discretized continuously
compounded forwards:

(0 ≤ i ≤ j) fi j (ω) = fc(τi , [τ j , τ j+1], ω)

that is, the continuously compounded forward rate at calendar time τi for
a deposit over the forward period [τ j , τ j+1]. The continuously compounded
short rate ri (ω) = r (τi , ω) can easily be recovered from the forward rate:
ri (ω) = fii (ω).

Focusing on a one-factor model, the discretized version of the process
equation for forwards becomes

(0 ≤ i < j) fi+1, j (ω) = fi j (ω) + μi j (ω)dτi + σi j (ω)Xi (ω)
√

dτi

where dτi = τi+1 − τi , and Xi ’s form a white noise (independent, mean
0, variance 1) sequence, that is, a discretization of the term dB(t, ω)
(continuous-time white noise).

We have left σi j as a general and potentially random sequence. For Log-
Normal dynamics, we can let σi j (ω) = si j × fi j (ω) for some deterministic
sequence {si j }, with the interpretation that si j is the Log-Normal volatility
over the interval [τi , τi+1] of the forward rate fi j . Similarly, for Normal
dynamics, we can let σi j (ω) = si j for some deterministic sequence of Normal
(BPVol) volatilities. The doubly indexed surface σ (t, T, .) or its discretized
version si j is called the forward-forward volatility surface.

The discretized zero-coupon bond prices (discount factors) are denoted
by Dik, where Dik denotes the τi -price of the τk-maturity zero-coupon bond.
We have

(0 ≤ i ≤ k) Dik(ω) = e

−
k−1∑
j=i

fi j (ω)dτ j
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Similarly, the discretized money-market numeraire becomes:

(0 ≤ i ≤ k) Mi (ω) = e

i−1∑
j=0

r j (ω)dτ j

= e

i−1∑
j=0

f j j (ω)dτ j

where Mi (ω) = M(τi , ω) denotes the τi -value of value of unit investment in a
money-market account initiated today, τ0 = 0, and periodically rolled over
at the prevalent short-term rates.

The risk-neutrality constraint is that bond prices for all maturities rel-
ative to the numeraire are martingales, that is, their expected value in the
future is their current value. This constraint can be expressed as 1-period
conditional expectation as follows:

(0 ≤ i < k) Eτi

[
Di+1,k(ω)
Mi+1(ω)

]
= Dik(ω)

Mi (ω)

Expressing discount factors in terms of forward rates, and noting that

(0 ≤ i) Mi+1(ω) = Mi (ω)e fii (ω)dτi

the above becomes

Eτi

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

e

−
k−1∑

j=i+1

fi+1, j (ω)dτ j

Mi (ω)e fii (ω)dτi

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= e

−
k−1∑
j=i

fi j (ω)dτ j

Mi (ω)

Canceling the Mi terms from both sides, and invoking the process equation
for the forward rates ( fi+1, j = fi j + · · ·), we get

Eτi

⎡
⎢⎢⎢⎢⎣e

−
k−1∑

j=i+1

[
fi j (ω) + μi j (ω)dτi + σi j (ω)Xi (ω)

√
dτi

]
dτ j

⎤
⎥⎥⎥⎥⎦ = e fii (ω)dτi × e

−
k−1∑
j=i

fi j (ω)dτ j

= e

−
k−1∑

j=i+1

fi j (ω)dτ j
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which after cancelation of e− ∑
fi j terms from both sides, gives us

Eτi

⎡
⎢⎢⎢⎢⎣e

−
k−1∑

j=i+1

[
μi j (ω)dτi + σi j (ω)Xi (ω)

√
dτi

]
dτ j

⎤
⎥⎥⎥⎥⎦ = 1

⇒ e

dτi

k−1∑
j=i+1

μi j (ω)dτ j

= Eτi

⎡
⎢⎢⎢⎢⎣e

−Xi (ω)
√

dτi

k−1∑
j=i+1

σi j (ω)dτ j

⎤
⎥⎥⎥⎥⎦

or equivalently,

dτi

k−1∑
j=i+1

μi j (ω)dτ j = ln Eτi

⎡
⎢⎢⎢⎢⎣e

−Xi (ω)
√

dτi

k−1∑
j=i+1

σi j (ω)dτ j

⎤
⎥⎥⎥⎥⎦

The drifts can now be solved for:

(0 ≤ i < k) μik(ω) = 1
dτi dτk

ln

Eτi

⎡
⎢⎢⎢⎢⎣e

−Xi (ω)
√

dτi

k∑
j=i+1

σi j (ω)dτ j

⎤
⎥⎥⎥⎥⎦

Eτi

⎡
⎢⎢⎢⎢⎣e

−Xi (ω)
√

dτi

k−1∑
j=i+1

σi j (ω)dτ j

⎤
⎥⎥⎥⎥⎦

Note that the preceding hold for any white noise sequence. For example,
if we recall the random-walk origin of Brownian motion, Xi becomes a
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binomial r.v., Xi = ±1 with probability 1/2. In this case, we get

μik(ω) = 1
dτi dτk

ln
cosh(

√
dτi

∑k
j = i+1 σi j (ω)dτ j )

cosh(
√

dτi
∑k−1

j = i+1 σi j (ω)dτ j )

where cosh(x) = (ex + e−x)/2. On the other hand, if we let the Xi to be stan-
dard Normal, Xi ∼ N(0, 1), then the terms in the numerator and denomi-
nator are LN r.v.’s, and we can compute the expectation (E[LN(μ, σ 2)] =
eμ+σ 2/2) to get

μik(ω) = 1
2

1
dτk

⎡
⎢⎣

⎛
⎝ k∑

j=i+1

σi j (ω)dτ j

⎞
⎠

2

−
⎛
⎝ k−1∑

j=i+1

σi j (ω)dτ j

⎞
⎠

2
⎤
⎥⎦

By letting maxi |dτi | → 0, the above converges to

μ(t, T, ω) = 1
2

∂

∂T

(∫ T

t
σ (t, u, ω)du

)2

= σ (t, T, ω)
∫ T

t
σ (t, u, ω)du

which is the HJM drift in continuous time (see Appendix C).
This explicit expression for the required drifts for posited volatilities of

the forward rate curve was missing (hard to get) in the short-rate paradigm.
Armed with this result, we can start from today’s forward curve, f (0, T),
posit some volatility structure σ (t, T, ω) for calibration to option markets,
and go ahead and construct models for the evolution of the forward/discount
curve in a risk-neutral setting. Today’s price of any derivative with payoff
at T can then be computed as the expected discounted value of its future
payoff(s):

C(0) = E
[
e− ∫ T

0 f (u,u,ω)duC(T, ω)
]

FORWARD-FORWARD VOLATIL ITY

Other than having the full term structure as its state-space, the HJM frame-
work allows direct access to the volatilities of each forward rate. Recall
that σ (t, T) is interpreted as the volatility over time (t, t + dt) of a forward
rate with term (T, T + dT). In practice, the volatility surface σ (t, T, ω) or its
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discretized version is parameterized as

σ (t, T, ω) = σN(t, T)

for Normal dynamics, and

σ (t, T, ω) = σ (t, T) × f α(t, T, ω)

for CEV dynamics with parameter α, reducing to Log-Normal dynamics
when α = 1.

One plausible parameterization is to require forward-forward vol
σ (t, T) to be a function of remaining maturity T − t, leading to so-called
homogeneous volatility surface. This parameterization in practice does not
recover caplet vols, and instead is often modified to a semihomogeneous
format:

σ (t, T) = A(t)B(T − t)

with B(T − t) set to the calibrated caplet curve, and A(t) used for calibration.
No matter what the particular parameterization (if any), the determin-

istic forward-forward volatility surface σ (t, T), σN(t, T) are then used to
calibrate the HJM model to liquid volatility instruments. This is aided by
the fact that most simple instruments have a distinct volatility signature. For
example, we can identify the T-expiry caplet volatility for the forward rate
spanning [T, T + dT] as

√
1
T

∫ T

0
σ 2(t, T)dt

while for a midcurve option, that is, an option on a forward rate with expiry
strictly before the effective date of the forward rate, the relevant volatility is

√
1
te

∫ te

0
σ 2(t, T)dt te < T

Figure 10.1 shows the volatility signature of a few simple products. For a
given set of calibration instruments, we can calibrate our model to their
market prices by the judicious tweaking of their volatility signature. This is
usually done by discretizing the forward-forward surface into piecewise flat
levels, and using the collection of these forward-forward volatility buckets as
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6m Caplet

6mx6mx1y Forward Swaption

2y-into-1y Swaption

3m Caplet on 12x15 FRA

t

T

(t,T)σ

F IGURE 10.1 Volatility Signature of Instruments on a
Quarterly/Quarterly Forward-Forward Volatility Surface

implicit free parameters for calibration. Alternatively, one can parameterize
the surface via a functional form driven by a few parameters, and apply
more formal optimization techniques for calibration.

Forward Vol and Bermudans

A forward swaption straddle is a swaption straddle whose strike is set to the
ATMF swap rate at a future strike-setting date. For example, a 6mx6mx1y
forward swaption is a 6m-into-1y swaption straddle whose strike is set in
6m. Note that 6m expiry of the underlying swaption is from the strike date,
so 1y from today. Since until the strike setting, the floating strike remains
ATMF, the value of a forward swaption is directly a function of the implied
forward volatility, and these are also referred to as forward vol contracts.
We have shown the volatility signature of 6mx6mx1y forward swaption in
Figure 10.1.

These forward swaption volatilities are of particular interest for pricing
Bermudan cancelable swaps, as the hold versus immediate-exercise deci-
sion is directly affected by the implied forward vol. As an example, con-
sider a 1-year into 1-year Bermudan swaption with semi-annual (1y, 1y6m)
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1yx6mx6m Forward Vol

t

T

1y

1y

6m

1y6m

2A

1A

3A

σ(t,T )

F IGURE 10.2 Relationship Between European, Bermudan,
and Forward Volatilities

exercise. The underlying European swaptions are 1y-into-1y and 1y6m-into-
6m, and we will require that our model be calibrated to these swaptions.
We know that the Bermudan option has to be higher than these two Euro-
pean swaptions, with the excess value coming from delaying exercise at first
opportunity (1-year) to the later one (1y6m), but only if the expected hold
value is greater than the immediate exercise value. This expected hold value
is directly a function of the 1yx6mx6m forward vol (area A3), as shown
in Figure 10.2. If most of the 1y1y volatility (A1 + A2) is assigned to its
first two quarterly forward rates (A1), then to maintain 1y6m-6m volatility
(A2 + A3) would require back-loading the volatility into 1yx6mx6m bucket
(A3), thereby increasing the value of the Bermudan. The forward-forward
volatility surface then allows us to relate European and Bermudan swaption
prices via forward vols, and can serve as a rich/cheap signal if their prices
result in implausible forward vols.

Swapt ion Cal ibrat ion

While caplet volatilities can easily be computed from the volatility surface,
swaption volatilities, while having a clear signature, are harder to com-
pute. There do exist however good analytical approximations that relate
swaption volatilities to forward-forward vols. Starting with a generic HJM
framework,

df (t, T, ω) = μ(t, T, ω)dt + σ (t, T, ω)dB(t, ω)

let us discretize the T axis: 0 = T0 < T1 < T2 < . . . and write the
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continuous-time process equations for these discretized forward rates
fi (t, ω) = f (t, [Ti , Ti+1], ω):

dfi (t, ω) = μi (t, ω)dt + σi (t, ω)dB(t, ω)

We can relate other rates to these forward rates. For example, if we have
used a semiannual discretization, then a semiannual forward swap rate, with
effective date τ1=2-years from now, and maturity date τ3=3-years from now
(a 1-year par swap rate, 2-years forward) can be written as

S(t, [2y, 3y], ω) = D(t, 2y, ω) − D(t, 3y, ω)
1/2(D(t, 2y6m, ω) + D(t, 3y, ω))

=
1 − 1

(1 + f4(t, ω)/2)(1 + f5(t, ω)/2)

1/2
[

1
(1 + f4(t, ω)/2)

+ 1
(1 + f4(t, ω)/2)(1 + f5(t, ω)/2)

]

For a given rate, S(t, [τ1, τ2], ω) with effective/maturity dates τ1, τ2, let us
summarize its relationship to our discretized rates via a function g:

S(t, [τ1, τ2], ω) = g( f0(t, ω), f1(t, ω), . . .)

To compute the Normal volatility of S over a period [t1, t2], we must
calculate:

σN(t1, t2) =
√

1
t2 − t1

Var[S(t2, [τ1, τ2], ω) − S(t2, [τ1, τ2], ω)]

while its Log volatility is

σ (t1, t2) =
√

1
t2 − t1

Var ln
S(t2, [τ1, τ2], ω)
S(t2, [τ1, τ2], ω)

In either case, we need the dynamics for S. Using Ito’s Lemma (see
Appendix A), we have:

dS(t, ω) = ∂g
∂t

dt +
∑

i

∂g
∂ fi

d fi + 1
2

∑
i, j

∂2g
∂ fi∂ f j

d fi d f j

= μS(t, ω)dt +
∑

i

∂g
∂ fi

σi (t, ω)dB(t, ω)
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We will first assume that we can ignore the effects of the drift μS. With
this assumption, we can focus on the second term to compute the Normal
volatility:

Var[S(t2, [τ1, τ2], ω) − S(t2, [τ1, τ2], ω)] = Var
∫ t2

t1

∑
i

∂g
∂ fi

(t, ω)σi (t, ω)dB(t, ω)

= E
∫ t2

t1

[∑
i

∂g
∂ fi

(t, ω)σi (t, ω)

]2

dt

=
∫ t2

t1
E

[∑
i

∂g
∂ fi

(t, ω)σi (t, ω)

]2

dt

where the second equality follows from Ito’s isometry and the fact that Ito
integrals are martingales (mean 0).4

In order to evaluate the preceding equation, we assume that we can
freeze-forward the pesky stochastic terms, that is, replace the stochastic
terms inside the expectation with their (today’s) forward values. For exam-
ple, if we are using Normal dynamics for the forwards, we can let σi ’s be
deterministic functions of time:

σi (t, ω) = σi (t)

and all that remains are ∂g
∂ fi

(t, ω) random terms. In this case, the freeze-
forward method gives

(t2 − t1)σ 2
N(t1, t2) =

∫ t2

t1

[∑
i

∂g
∂ fi

(0)σi (t)

]2

dt

=
∑
i, j

∂g
∂ fi

(0)
∂g
∂ f j

(0)
∫ t2

t1
σi (t)σ j (t)dt

The above integral can now be computed numerically, or if we have dis-
cretized the forward-forward vols are piecewise flat, computed as sums.

Similarly, we can let each forward have deterministic log volatility

σ(t, ω) = σi (t) fi (t, ω)
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to come up with the following approximate formula for swaption log
volatility

Var ln
S(t2, [τ1, τ2], ω)
S(t1, [τ1, τ2], ω)

=
∑
i, j

∂g
∂ fi

(0)
∂g
∂ f j

(0)
fi (0) f j (0)

S2(0, [τ1, τ2])

∫ t2

t1
σi (t)σ j (t)dt

The above formulas provide a good first-order approximation for swaption
volatilities, greatly aiding in calibration of HJM models.

MULTIFACTOR MODELS

The HJM framework can easily be extended to be multifactor. For this, we
allow the evolution of the forward curve to be driven by multiple indepen-
dent Brownian drivers, dBi (t, ω), each affecting the evolution by its own
volatility impact σi (t, T, ω):

df (t, T, ω) = μ(t, T, ω)dt +
∑

i

σi (t, T, ω)dBi (t, ω)

We can rewrite the dynamics as

df (t, T, ω) = μ(t, T, ω)dt + σ (t, T, ω)
∑

i

ρi (t, T, ω)dBi (t, ω)

where

σ (t, T, ω) =
√∑

i

σ 2
i (t, T, ω)

ρi (t, T, ω) = σi (t, T, ω)
σ 2(t, T, ω)

and satisfy

∑
i

ρ2
i (t, T, ω) = 1

Reexpressing the multifactor dynamics in this way allows us to separate
the volatility σ (t, T, ω) from the factor/correlation structure ρi (t, T, ω). A
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common way of extracting the factor structure is based on a historical study
of movements of the term structure using principal component analysis
(PCA).

Model Correlat ions

Similar to swaption vols, we can derive approximations for the correlation of
different swap rates. Starting with the multifactor dynamics of the discretized
forwards,

dfi (t, ω) = μi (t, ω)dt +
N∑

l=1

σl,i (t, ω)dBl (t, ω)

we can derive approximate expressions for the correlation between their
changes (percent, absolute) during some time window [t1, t2]. For example,
given two swap rates S1, S2, let us summarize the quote mechanics of each
swap rate in two functions g1,2.

Using Log-Normal vols for the forwards:

σl,i (t, ω) = σl,i (t) × fi (t, ω)

we can compute the correlation of percentage changes (sometimes called
log-correlation) of S1, S2:

ρS1,S2 (t1, t2) =
Cov

[
ln S1(t2)

S1(t1) , ln S2(t2)
S2(t1)

]
σS1 (t1, t2)σS2 (t1, t2)

by forward-freezing the stochastic terms to get:

Cov
[
ln

S1(t2)
S1(t1)

, ln
S2(t2)
S2(t1)

]
=

∑
i, j

∂g1

∂ fi
(0)

∂g2

∂ f j
(0)

fi (0) f j (0)
S1(0)S2(0)

∫ t2

t1

N∑
l=1

σl,i (t)σl, j (t)dt

Similarly, using Normal vols for the forwards

σl,i (t, ω) = σl,i (t)
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provides the following approximation for the correlation on the absolute
changes of two swap rates:

ρS1,S2 (t1, t2) = Cov [S1(t2) − S1(t1), S2(t2) − S2(t1)]
σS1 (t1, t2)σS2 (t1, t2)

where

Cov [S1(t2) − S1(t1), S2(t2) − S2(t1)] =
∑
i, j

∂g1

∂ fi
(0)

∂g2

∂ f j
(0)

∫ t2

t1

N∑
l=1

σl,i (t)σl, j (t)dt

While the previous expressions might look formidable, they are relatively
easy to compute, especially if the forward-forward vol buckets are piecewise
flat, where the integrals can be replaced by summations.

The ability to investigate the implied correlations between various rates
as an explicit function of the assumed dynamics is one of the features of
the HJM models. Of course, one could always calculate the model-implied
correlations for any model, but for HJM-based models, these calculations
are more explicit and in terms of more intuitive quantities such as forward-
forward vol buckets, and factor structures.

HJM FRAMEWORK TYPICALLY LEADS
TO NONRECOMBINING TREES

HJM models in general do not admit a lattice implementation, that is, an
up-move followed by a down-move does not lead to the same state as a
down-move followed by an up-move. This is usually referred to the typical
HJM model being non-Markovian, and is the consequence of the drifts
having stochastic terms in them.

HJM models are hence typically implemented via simulation models,
with simulation noise controlled through a variety of variance reduction
techniques. The simulation implementation can then easily be used to price
European-style and path-dependent interest-rate derivatives, can easily be
augmented to handle multifactor dynamics for richer dynamics of interest
rates or to incorporate stochastic volatility for skews/smiles. As simulation
renders itself easily to parallel processing and distribution among idle work-
stations, and its accuracy improves as 1/

√
N for an N-path simulation, it

has become the method of choice for general HJM models. Bermudan op-
tions, however, are difficult in simulation models, and one has to resort to
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approximation techniques like LSM method in Chapter 9 to compute the
hold value.

Alternatively, in order to avoid simulation, one can focus on the subclass
of HJM models that are Markovian, or can be made Markovian through
the addition of a few state variables. The former approach typically leads
to Normal models (similar in dynamics to Hull-White) and were introduced
by Cheyette5 and Ritchken and colleagues,6 while the second approach has
been investigated by Ritchken7 among others.

Log-Normal Instantaneous-Forwards Lead
to Explos ive Behavior

All is not well in HJM-land: The first volatility structure considered by HJM
was for Log-Normal dynamics. For this, they considered the simplest Log-
Normal model where all instantaneous forward rates at all times have the
same constant volatility σ :

(0 ≤ t ≤ T) df (t, T, ω) = μ(t, T, ω)dt + σ × f (t, T, ω)dB(t, ω)

To their chagrin, HJM could prove that even for this simple Log-Normal
model, forward rates can explode, that is, there is a positive probability that
forward rates can diverge to +∞!

It turns out that the main reason for this behavior is that we are assum-
ing that the instantaneous forward rates are Log-Normally distributed. If
instead, we focus on discretized forward rates, they remain bounded. This
result was established by Sandman and colleagues,8 where they showed
that discretized rates remained bounded even under Log-Normal dynamics.
Sandman and colleagues’ result allayed some of the “explosive” fears, and
led to wider implementation of HJM framework, under what has become
known as market models, where the term market is meant to emphasize that
the discretized rather than the instantaneous forward rates are modeled.
We will discuss these models and their specification through the forward-
measure lens in the next chapter.



CHAPTER 11
Forward-Measure Lens

We have so far focused on risk-neutral valuation using the intuitive “money-
market” numeraire. In this framework, the main pricing operator is

(0 < t < T) C(t, ω) = Et[e− ∫ T
t r (u,ω)duC(T, ω)]

which we have interpreted as the expected value of terminal option payoff,
when stochastically discounted back to valuation date. Written another way,

(0 < t < T)
C(t, ω)

M(t, t, ω)
= Et

[
C(T, ω)

M(t, T, ω)

]

where M(t, T, ω) = e
∫ T

t r (u,ω)du is the value of a money-market account with
initial unit deposit at time t, and continually rolled over until T along the
series of instantaneous short rates r (u, ω). Since M(t, t, ω) = 1, the above
two formulae are equivalent. However, the second formula highlights the
required martingale property: It states that having chosen the money-market
account as the currency (numeraire), then all relative prices in the future
should have 0 expected P&L. This requirement pins down the risk-neutral
probabilities used when taking expected values.

NUMERAIRES ARE ARBITRARY

Derivatives prices being relative prices, it turns out that a more general
result holds, stating that no matter what the chosen currency/numeraire,
then relative prices of all assets (underlyings and derivatives) with respect
to that numeraire should have 0 expected P&L, that is, relative prices
should be martingales. Of course, different numeraires give rise to differ-
ent risk-neutral probabilities, and one has to use the one consistent with the
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p

(A0, B0)

A0 + βB0C0 = α

Cu

(Au , Bu)

Cd

(Ad , Bd )1− p

F IGURE 11.1 Binomial Model for Two
Random Assets

chosen numeraire. However, this arbitrariness of the numeraire allows one
to choose it judiciously for the problem at hand to simplify or justify pricing
formulae.

Change of Numeraires and L ike l ihood Rat ios

To motivate and clarify the change of numeraires, let us go back to our basic
building-block model: A 1-period binomial setting. Instead of a loan and the
underlying, let us replace the loan with a general asset, so that there are two
traded assets, A, B, and a te-expiry European-style contingent claim C that
can depend on these two assets, as shown in Figure 11.1.

Our goal is to set up a replicating portfolio consisting of (α, β) units of
(A, B) that replicate the option payoff at expiration te:

αA{u,d} + βB{u,d} = C{u,d}

The preceding is two equations and two unknown portfolio holdings (α, β),
so we can solve for them to get

α = Bd

Au Bd − Ad Bu
Cu + −Bu

Au Bd − Ad Bu
Cd

β = −Ad

Au Bd − Ad Bu
Cu + Au

Au Bd − Ad Bu
Cd
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to arrive at today’s price of contingent claim:

C(0) = αA0 + βB0

= A0 Bd − Ad B0

Au Bd − Ad Bu
Cu + Au B0 − A0 Bu

Au Bd − Ad Bu
Cd

A bit of algebra reexpresses the above in our desired format:

C(0)
A(0)

= pA
Cu

Au
+ (1 − pA)

Cd

Ad
pA = Au(A0 Bd − Ad B0)

A0(Au Bd − Ad Bu)

which looks like a martingale constraint: If we choose asset A as the nu-
meraire, then all relative prices have zero expected P&L. All that remains is
to show that pA is a probability: 0 ≤ pA ≤ 1.

Note that the above formula holds for any contingent claim, in partic-
ular, when it (trivially) replicates the asset B, C{u,d} = B{u,d}. In this case,
we get

B(0)
A(0)

= pA
Bu

Au
+ (1 − pA)

Bd

Ad

or equivalently,

1 = pA
Bu/Au

B0/A0
+ (1 − pA)

Bd/Ad

B0/A0

We will use the preceding equation to characterize when pA is a probability.
An arbitrage opportunity exists if one can create positive gain with no

risk. Existence of arbitrage can be reduced to the following prototypical
situation: Create a costless portfolio at time 0 by selling short A0 units of
asset B and buying B0 units of asset A for zero up front cost: −A0 B0 + B0 A0.
At expiration te, own B0 units of asset A which can trade at Au or Ad

depending on which state is realized, and simultaneously owe A0 units of
asset B, which can trade at Bu or Bd, respectively. The value of the portfolio
is either B0 Au − A0 Bu in the (Au, Bu)-state, or B0 Ad − A0 Bd in the (Ad, Bd)-
state. Since it cost 0 up front to construct this portfolio, the portfolio value
at each up/down-state is the P&L.

If both of these are nonnegative, with at least one positive, then the P&L
is never negative and sometimes positive. Existence of arbitrage opportunity
is then equivalent to

B0 Au − A0 Bu ≥ 0 ⇔ Bu/Au

B0/A0
≤ 1
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and

B0 Ad − A0 Bd ≥ 0 ⇔ Bd/Ad

B0/A0
≤ 1

with strict inequality (< instead of ≤) in at least one of them. Now if pA is
a probability, 0 ≤ pA ≤ 1, we arrive at a contradiction:

1 = pA
Bu/Au

B0/A0
+ (1 − pA)

Bd/Ad

B0/A0

< pA + (1 − pA) = 1!

We have just shown that existence of arbitrage implies that pA cannot be
a probability, or stated otherwise, if pA is a probability, then there is no
arbitrage. The converse also holds: If there is no arbitrage, then pA is a
probability, but its proof requires a deep result from functional analysis
(Hahn-Banach Theorem leading to Separating Hyperplane Theorem) and is
beyond the scope of this text.1 In summary, Lack of arbitrage is equivalent
to pA being a probability.

What would happen if we chose the asset B as the numeraire? In this
case, we have

C(0)
B(0)

= pB
Cu

Bu
+ (1 − pB)

Cd

Bd
pB = Bu(B0 Ad − Bd A0)

B0(Bu Ad − Bd Au)

and lack of arbitrage is equivalent to pB being a probability. In either case,
the value of the contingent claim is the same, equal to its replicating portfolio.
The choice of numeraire does not change the option value; it simply is a way
of getting to the same result via different—but equivalent—ways.

A bit of algebra shows that

pA/pB = (Au/A0)/(Bu/B0)

(1 − pA)/(1 − pB) = (Ad/A0)/(Bd/B0)

that is, for each future state, the ratio of the two probabilities—their likeli-
hood ratio—is related to the corresponding relative asset values. This prop-
erty on the likelihood-ratio can be formalized as follows: Let PA(t, ω) denote
the probability measure induced by numeraire A for the future date t:

PA(t, ω) =
{

pA ω is “u” (up-state)
1 − pA ω is “d” (down-state)
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Similarly, let PB(t, ω) denote the probability measure induced by
numeraire B:

PB(t, ω) =
{

pB ω is “u” (up-state)
1 − pB ω is “d” (down-state)

We have the following relationship on their likelihood ratio:

PA(t, ω)
PB(t, ω)

= A(t, ω)/A(0)
B(t, ω)/B(0)

As was done in Chapter 5, we can extend the above setup to multiple
periods, using the binomial model as the building block. For an N-period
setup {t0 = 0 < t1 < · · · < tN}, the replicating portfolio has to be rebalanced,
but will be self-financing, and all our previous results hold with the slight
modification to keep track and identify the numeraire:

(0 ≤ ti ≤ tN)
C(ti , ω)

Num(ti , ω)
= ENum

ti

[
C(tN, ω)

Num(tN, ω)

]

which in the limit leads to the following continuous-time version:

(0 ≤ t ≤ T)
C(t, ω)

Num(t, ω)
= ENum

t

[
C(T, ω)

Num(T, ω)

]

Moreover, the likelihood ratio property remains and can be used to
identify and compute the probabilities when switching from one numeraire
to other. In a discrete-state setting, we have

(0 ≤ t)
PA(t, ω)
PB(t, ω)

= A(t, ω)/A(0)
B(t, ω)/B(0)

while for a continuous-state setting, probability measures are expressed in
terms of their density functions: PA = ∫

fA, and the condition above is
written as

(0 ≤ t ≤ T)
fA

fB
(t, ω) = dPA

dPB
(t, ω) = A(t, ω)/A(0)

B(t, ω)/B(0)

where the term dPA
dPB

is the generalized version of the likelihood ratio, called
the Radon-Nikodym derivative. It is easy to see dPA

dPB
(t, ω) is itself a martingale
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under PB, and the change of numeraire formula2 is usually written as:

(0 ≤ t ≤ T)
dPA

dPB
(t, ω) = A(t, ω)/A(0)

B(t, ω)/B(0)
= Et

[
A(T, ω)/A(0)
B(T, ω)/B(0)

]

where the expectation is taken under PB probability.

FORWARD MEASURES

Other than interesting mathematical identities, how do the above results help
us? The answer is forward measures. Recall that using the money-market
account as the numeraire leads to the following formula:

(0 ≤ T) C(0) = EM
0 [e− ∫ T

0 r (u,ω)duC(T, ω)]

which requires computing the expected value of the stochastically discounted
payoffs.

Let us now consider a claim C(t, ω) that has a single payoff at a fixed
future date T∗. For example, a te-expiration caplet on 3m-Libor has a final
payoff on T∗ = te + 3m. Instead of the money-market account, let us choose
as numeraire the price of a T∗-maturity zero-coupon bond D(t, T∗, ω). Cor-
responding to this numeraire, we have to ensure risk neutrality, that is, we
have to make sure that relative prices are martingales:

(0 ≤ t ≤ T ≤ T∗) ET∗
t

[
C(T, ω)

D(T, T∗, ω)

]
= C(t, ω)

D(t, T∗, ω)

where the superscript in ET∗
shows the dependence of the probability set

used on this particular numeraire. In particular, by setting t = 0, and T = T∗,
we have

ET∗
0

[
C(T∗, ω)

D(T∗, T∗, ω)

]
= C(0)

D(0, T∗)

where since D(T∗, T∗, ω) = 1, gives us:

C(0) = D(0, T∗)ET∗
0 [C(T∗, ω)]

which is the expected value of the option payoff discounted using today’s dis-
count factors. This validates part of the common market practice of pulling
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the stochastic discounting outside the expectation, and simply calculating
the expected value of the option payoff, and then multiplying it by today’s
discount factor to the payment date as is done in Black’s Formula for caplets
and European swaptions.

The probability set PT∗ used in computing E∗ is called the T∗-forward
measure to distinguish it from the probability set P M used when using the
money-market account as the numeraire, the latter loosely called risk-neutral
measure. The name forward-measure comes from the following observation:
For any tradeable asset A with no interim cash flows, the T∗-forward value
of an asset at time t, FA(t, T∗) satisfies:

FA(t, T∗, ω) = A(t, ω)
D(t, T∗, ω)

= ET∗

[
A(T∗, ω)

D(T∗, T∗, ω)

]
= ET∗ [A(T∗, ω)]

since D(T∗, T∗, ω) = 1. Hence, under PT∗
the expected value at T∗ is the

T∗-forward value of the asset.
This result also extends to any T∗-maturity simple rate. Let

f (t, [Ts, T∗], ω) be the simple forward rate for deposit period [Ts, T∗]. At
its settlement date Ts , this is simply the cash rate for a deposit from Ts to
T∗. Recall the relationship between forward rates and discount factors:

f (t, [Ts, T∗], ω) = D(t, Ts, ω)/D(t, T∗, ω) − 1
T∗ − Ts

For any chosen numeraire, all tradeable assets (including any T-maturity
zero-coupon bond) relative to it must have no expected P&L. For our par-
ticular D(t, T∗) numeraire, this martingale constraint requires:

(0 ≤ u ≤ t) ET∗
u

[
D(t, T, ω)
D(t, T∗, ω)

]
= D(u, T, ω)

D(u, T∗, ω)

Applying the above constraint to the Ts-maturity zero, we have:

ET∗
u f (t, [Ts, T∗, ω) = Eu

[
1

T∗ − Ts

(
D(t, Ts, ω)
D(t, T∗, ω)

− 1
)]

= 1
T∗ − Ts

(
Eu

[
D(t, Ts, ω)
D(t, T∗, ω)

]
− 1

)

= 1
T∗ − Ts

(
D(u, Ts, ω)
D(u, T∗, ω)

− 1
)

= f (u, [Ts, T∗], ω)
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In particular, setting u = 0, this means that from today until its settle-
ment Ts , the expected value of the [Ts, T∗]-rate is its today’s forward value
f (0, [Ts, T∗]), that is, the distribution remains centered at today’s value, and
is driftless. In particular, the expected settlement value (at time Ts) of any
[Ts, T∗] rate is today’s forward rate for that period:

f (0, [Ts, T∗]) = ET∗
Ts

[ f (Ts, [Ts, T∗], ω)]

Considering the diffusion dynamics for f (t, [Ts, Tw], ω) under the PT∗
mea-

sure,

df (t, [Ts, T∗], ω) = μ(t, ω)dt + σ (t, [Ts, T∗], ω)dBT∗
(t, ω)

the above argument shows that the drift term μ(t, ω) is zero, that is,

df (t, [Ts, T∗], ω) = σ (t, [Ts, T∗], ω)dBT∗
(t, ω)

BGM/JAMSHIDIAN RESULTS

All that remains to justify Black’s Normal/Log-Normal caplet formula is to
ensure that under this T∗-forward measure, the driftless (centered at today’s
forwards) distribution of the f (Ts, [Ts, T∗], ω) is Normal/Log-Normal. A
sufficient condition is to assume that volatility parameters are nonrandom.
Specifically, to attain Log-Normal dynamics, it suffices to have

df (t, [Ts, T∗], ω)
f (t, [Ts, T∗], ω)

= σ (t, Ts)dBT∗
(t, ω)

for a nonrandom/deterministic log volatility curve σ (., Ts). In this case, the
distribution of the rate at any expiration date te ≤ Ts is Log-Normal:

f (te, [Ts, T∗], ω)
f (0, [Ts, T∗])

∼ LN
(

−1
2

σ 2te, σ 2te

)

where

σ =
√

1/te

∫ te

0
σ 2(t, Ts)dt
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leading to Black’s Log-Normal formula for caplets:

C(0) = D(0, T∗)ET∗
0 [max(0, f (te, [Ts, T∗], ω) − K)]

= D(0, T∗)[ f (0, [Ts, T∗])N(d1) − K N(d2)]

d1,2 = ln( f (0, [Ts, T∗])/K)
σ
√

te
± 1/2σ

√
te

Similarly, to attain Normal dynamics, it suffices to have

df (t, [Ts, T∗], ω) = σN(t, Ts)dBT∗
(t, ω)

for a nonrandom/deterministic Normal volatility curve σN(., Ts). In this case,
the distribution of the rate at any expiration date te ≤ Ts is Normal:

f (te, [Ts, T∗], ω) ∼ N( f (0, [Ts, T∗]), σ 2
Nte)

where

σ N =
√

1/te

∫ te

0
σ 2

N(t, Ts)dt

which leads to the familiar Black’s Normal formula for caplets:

C(0) = D(0, T∗)ET∗
0 [max(0, f (te, [Ts, T∗], ω) − K)]

= D(0, T∗)σ N
√

te[N′(d) + dN(d)]

d = f (0, [Ts, T∗]) − K
σ N

√
te

The conditions to recover Black’s Log-Normal formula for caplets were
presented and popularized in a series of papers by Brace-Gartarek-Musiela
(BGM)3 (see Appendix C).

A similar procedure can be used to justify Black-type formula for pricing
swaptions. Jamshidian4 used the forward annuity price as the numeraire,
and showed that pricing a swaption under the probabilities induced by this
numeraire (called the forward-swap measure, or swap measure) is equivalent
to evaluating the expected option payoff under this measure, and multiplying
it by today’s value of this forward annuity, identical to how Black’s formula
is used in practice. With the additional assumption that the swap rate under
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this swap measure is Normal/Log-Normal, we recover exactly the market-
standard Black’s Normal/Log-Normal formula for European swaptions.

DIFFERENT MEASURES FOR DIFFERENT RATES

The BGM result applied to a series of contiguous forward rates naturally
leads to the BGM term-structure model: Having discretized the forward
curve into a series of maturity dates 0 < T1 < · · · < TN+1, the contiguous
forward rates f ([Ti , Ti+1]—each considered under its own forward-Ti+1-
measure—are easy to calibrate to caplets, as the root-mean-square (RMS)
average of model parameter σ (t, Ti ) or σN(t, Ti ) must equal the implied Black
Log-Normal or Normal caplet vol bootstrapped from ED/Cap prices in the
market. Therefore, for each Ti , one can come up with a deterministic curve
σ (., Ti ) and ensure the RMS average equals the bootstrapped caplet curve.
Trivially, setting σ (t, Ti ) to bootstrapped caplet vol for all t satisfies the
condition, but one can (and typically does) use a piecewise constant (where
the

∫
σ (t, Ts) becomes

∑
σi (Ts) for a sequence of volatility levels), or an

easily-integrable parametric shape. This flexibility in the timing of volatilities
can be used to calibrate to other instruments (European swaptions). This
model was proposed by BGM, dubbed the Libor-market-model (LMM) to
distinguish it from forward-measure models based on swap rates, the latter
called the swap market model (SMM). Strictly speaking, BGM—taking its
state variables as a series of forward rates rather than the short rate—is a
subclass of HJM models, with a specific volatility structure that would lead to
Log-Normal dynamics for each rate when viewed under that rate’s associated
forward-measure.

Forward Measures Are Interrelated

The joint relation between different forward measures can be characterized
via the numeraire change formula by their likelihood ratios. For example,
let us consider 2 successive forward rates: f (t, [Tk−2, Tk−1], ω) and the next
contiguous rate f (t, [Tk−1, Tk], ω). Under BGM,

df (t, [Tk−2, Tk−1], ω)
df (t, [Tk−2, Tk−1], ω)

= σ (t, Tk−2)dBTk−1 (t, ω) under PTk−1

df (t, [Tk−1, Tk], ω)
df (t, [Tk−1, Tk], ω)

= σ (t, Tk−1)dBTk(t, ω) under PTk
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The change of numeraire formula gives us:

dPTk−1

dPTk
(t, ω) = Et

[
D(Tk−1, Tk−1, ω)/D(0, Tk−1)

D(Tk−1, Tk, ω)/D(0, Tk)

]

= 1 + (Tk − Tk−1) f (t, [Tk−1, Tk], ω)
1 + (Tk − Tk−1) f (0, [Tk−1, Tk])

An application of Girsanov’s Theorem (see Appendix C) uses the preceding
likelihood ratio to relate the Brownian motions dBTk−1 , dBTk associated with
the forward measures:

dBTk−1 (t, ω) = dBTk(t, ω) − (Tk − Tk−1) f (t, [Tk−1, Tk], ω)
1 + (Tk − Tk−1) f (0, [Tk−1, Tk])

under PTk

The above recurrence relationship suggests a way of tackling multirate ex-
otics:

1. Having discretized the forward curve into 0 = T0 < T1 < · · · < TN+1,
start with the last Brownian driver dBTN+1, and evolve it.

2. Evolve the forward rate f (t, [Tk, Tk+1], ω) according to its dynamics
σ (t, Tk) under the driver dBTk+1.

3. Use the already obtained evolution for the Brownian driver BTk+1 (t, ω)
and f [t, [Tk, Tk+1], ω) to compute (not evolve) the previous Brownian
driver dBTk.

4. Repeat steps 2 and 3 until you get to the first forward rate.
5. Price each cash flow of any multirate exotic by computing the expected

value of the each cash flow at its payment date, and multiplying it by
today’s discount factor to the payment date.

This formulation of the BGM model is known as BGM under the ter-
minal measure. An alternative formulation of BGM is to consider the evo-
lution of a discretized money-market account and relate the evolution of
all forward rates to it using the previous recurrence equation. This can
be done and is referred to as BGM under spot measure.5 Regardless of
which measure (terminal, spot) we use in BGM, the evolution of the Brow-
nian drivers affecting the individual forwards is not Markovian due to the
stochastic terms in their drifts, and a tree implementation is nonrecombin-
ing. Hence, the BGM model is most commonly implemented via a simula-
tion model, with the spot measure chosen due to its numerically more stable
behavior.
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“CLASSIC” OR “NEW IMPROVED”:
P ICK YOUR POISON!

The relative ease of calibration in the BGM term-structure model initially
raised the hope of ability to price complex interest-rate exotics in a single
arbitrage-free framework that renders itself to easy calibration. However,
this relative ease of calibration is exactly the Achilles’ heel of the model.
The key concept is that each forward rate under its own forward measure is
easy to calibrate, and hence complex derivatives that solely depend on that
particular rate can easily be priced. However, as most exotics depend on
multiple forward rates, this gain is limited. To price multirate exotics, we
need to simultaneously evolve all the interrelated Brownian drivers under
their own interrelated measures, and compute the expected value of the
payoff. The problem could still be tackled if the Brownian drivers were
independent, or followed a given correlation structure; however, for BGM,
these Brownian motions are interrelated, and their correlation structure
depends on the realized path of the forward rates. Hence, no analytical
solution exists for their dynamics, and need to be numerically calculated,
typically via a simulation implementation.

To wit, by considering each forward rate under its own measure, the
thorny arbitrage-free dynamics of each forward rate is transferred to its
own measure: For single-rate derivatives, this is a gain, but for multirate
derivatives, the thorny dynamics come back to the fore, as we have to
consider the joint relationship of these forward measures. Hence, as far as
multirate derivatives are concerned, we have simply delayed or transferred
the computational task.

As stated before, BGM and associated Market models are a subclass
of HJM models, with their term structure dynamics specified through the
forward-measure lens. The choice of BGM or discretized HJM is mostly
academic. To see this, let us consider BGM under spot measure. The dis-
cretized forward rates have elegant properties under each rate’s forward
measure, but complicated stochastic drifts under any single measure. The
general BGM model is non-Markovian, and hence it is best implemented as
a simulation model. In any finite-sample simulation run, all arbitrage-free
conditions, calibration constraints, and derivatives prices are approximate.
Hence when simulated, BGM loses almost all the beauty of exact cap cal-
ibration under the forward measure. Braving on, the realized simulation
paths can be jiggled/tuned to exactly satisfy the arbitrage-free conditions,
and calibration constraints can either exactly or approximately be satisfied.
Even with this, we still end up with an approximate price for the derivative,
clouded by simulation noise. Further ingenuity (variance reduction) allows
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us to reduce the remaining simulation noise, but not eliminate it. Moreover,
we still have to grapple with pricing early exercise for Bermudan options in
a simulation model, using heuristic algorithms such as LSM. Compare this
with the simulation implementation of a discrete-time, discrete-tenor HJM
model under the money-market measure, and all the previous remarks and
challenges hold.

On the other hand, because BGM is a subclass of HJM models, it shares
many of its strengths: Choice of the more intuitive discretized forward curve
rather than the short rate as its state-space; access to a flexible and relatively
intuitive forward-forward volatility surface for volatility calibration; ability
to posit more general dynamics than Log Normal, say Normal or CEV,
to aid in skew/smile calibration; and easy adaptation to multifactor and
stochastic vol dynamics, especially in simulation implementation.



CHAPTER 12
In Search of “The” Model

The rates markets have experienced explosive growth over the last 25 years,
starting with the first interest-rate swaps in the 1980s to the introduction

of swaptions in mid-1980s and structured note programs in the early 1990s.
While in the early days, swaps were thought and explained via comparative
advantage theories, these were soon replaced by the current arbitrage-free
arguments relating them to discount and forward curves. As such, other
than the date-related minutiae and shifting of focus from prices to rates,
the pricing of swaps are not that different from bonds. For simple interest-
rate derivatives, many option pricing formulae and concepts were borrowed
from equities and co-opted to interest rates. However, callable bonds and
the evolving structured note programs in the early 1990s necessitated a more
thorough approach, leading to various term structure models based on either
the short-rate or the full-term structure.

MIGRATION TO FULL-TERM STRUCTURE MODELS

In the early days, with the large margins associated with newfangled prod-
ucts, it was sufficient to have some model—however rudimentary—that
could price complex payoffs. Most firms in the early 1990s started with
a short-rate model, either BDT/BK with multifactor extensions, or a Hull-
White model. These models were adequate for pricing simple interest-rate
products and Bermudans in the tree implementation, and path-dependent
options in simulation implementation, although the underlying dynamics
and parameterizations were not optimal. It was understood that the em-
bedded dynamics in a short-rate model were limited, since the short-rate
determines the full term structure at each time, and hence payoffs that de-
pend on multiple parts of the yield curve are not adequately represented
in these models. In the early 1990s, the HJM framework started to get
adopted, but this framework generally required a simulation implementation
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and therefore was not optimal for pricing Bermudans. With the migra-
tion of the structured products from the United States to Europe and then
Asia, European banks became the dominant players in structured products,
and research staff and quants in these firms utilized the newly developed
BGM/LMM framework as their modeling platforms. As discussed, these
models are a subclass of the HJM framework and share the advantages and
disadvantages (non-Markovian) of these models.

IMPLEMENTATION ERA

By the late 1980s, most of the theoretical work for interest-rate modeling
was done, and since then, we have mostly been in the implementation stage.
Indeed, most of the new work in interest-rate modeling is on implementation
tricks and ideas rather than a rethinking or reformulation of the basic risk-
neutral valuation paradigm. As we have shown, despite the ever-increasing
complexity of interest-rate models, they are simply instances of risk-neutral
valuation, the core elements of which—dynamic replication—can be under-
stood in a simple two-step binomial model.

As interest-rate modeling requires the evolution of the full term struc-
ture, there are few analytical results, and most models need to get imple-
mented via computer programs. The problem of implementing a reasonable
and consistent model that can handle a variety of products while calibrated
to observed market prices has been and remains challenging. While in the
early 1990s, many of the implementation tricks for interest-rate models were
regarded as company secrets, and people in the know were loathe to dis-
cuss or publish them, most of these techniques have by now made it into
public domain. With the rotation of the same cast of quants within vari-
ous firms, this tribal knowledge has almost become universally known and
deployed. Nowadays, the competitive advantage of a firm’s pricing and risk-
management capabilities for interest rates is not in their underlying model
per se, but in the efficient implementation and speed of obtaining prices and
intuitive risk measures.

MODEL VERSUS MARKET:
L IQUID ITY AND CONCENTRATION RISK

As we have seen, most interest-rate models are based on arbitrage arguments
in idealized settings. These arbitrage arguments are in a sense extrapola-
tion guides: A contingent claim’s payoffs can be replicated via dynamically
rehedged financed positions in the underlyings, and hence the price of a
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derivative is the value of its replicating portfolio. Of course, the onus for
the seller of a contingent claim is to construct and maintain the replicat-
ing portfolio, and rebalance it in real-world dynamics, which often differ
significantly from the simple assumed dynamics. Moreover, even if one is
truly invested in a replicating portfolio, the price of the option versus that
of the replicating portfolio can diverge in response to changing market liq-
uidity. Regardless of the true worth of the replicating portfolio, the whole
can differ significantly from the sum of the parts, and one can end up in “In
Philadelphia, it is worth 50 bucks!” situation.

With this in mind, one should take the model price of any instrument
with a grain of salt, and take provisions for the period of time that one is
on the hook for them. This, however, is easier said than done: With the
increased competition for any high-margin product, the impetus for trading
them at ever-decreasing margins to stay in business is too large to ignore,
and the reserve cushion quickly evaporates. Moreover, the compensation
structure for many traders incentivizes them to book and extract up front
as much mark-to-model profit as possible.

For most rates products, the flows are typically one-way, and there is
no natural or meaningful way of laying off the risk. This results in large
one-way inventories of risks that are held in trading books, with the only
valuation available being the model price. Risk and control groups should
be vigilant in putting concentration limits on risks, although these groups
are generally viewed as cost centers, and despite much touting of their au-
tonomy and expertise, their oversight is unfortunately usually inadequate
and perfunctory.

COMPLEXITY RISK

Another problem with derivatives and especially interest-rate derivatives is
their increasing complexity. While an argument can be made that derivatives
allow for the fair distribution of risk to those able to understand and willing
to take it, the distribution can also result in complexity not appreciated by
the end users, with each intermediating party assuming that due diligence
has been performed by other links in the transmission chain. The common
wisdom of “If you don’t understand it, don’t buy it” is too often ignored
by end-users of interest-rate derivatives, as there is too much temptation
of picking up deceptively easy extra yield in exchange for knowing or un-
knowing selling of volatility, which is the core tradeoff embedded in most
structured products.

The sell-side is not immune to complexity, as most senior management
of broker-dealer firms have little understanding of the risks in their trading
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books, be it simple time decay of their options book to the more complicated
volatility or correlation risk. Keeping it simple is easier said than done
though, as the lure of high margin products and bragging ability to be a
“full-service” shop tempts many firms to delve into financial products and
risks for which they are not adequately resourced, usually resulting in loss a
couple of years down the road.

REMAINING CHALLENGES

As far as interest-rate models are concerned, the challenge continues to
remain in the implementation arena. To date, no single model has emerged
as “the” model, and most firms rely on a suite of models, each perfected to
handle a class of products (Bermudans, Asians), with the potential danger
of inconsistent dynamics between models. While cognizant of the potential
for intermodel arbitrage, in the absence of any convincing alternatives, most
firms still deploy multiple models.

The full-term structure paradigm of HJM can in principle serve as “the”
framework for the consistent pricing and risk management of all interest-
rate products. However, due to its general non-Markovian nature, its most
natural implementation is via a nonrecombining tree. This implementation,
however, suffers from the curse of dimensionality, and will persist even as
computational horsepower becomes cheaper, since there is a commensurate
need for more pricing accuracy due to falling margins. The other common
implementation is simulation, but as discussed, pricing early-exercise fea-
tures remains a challenge for simulation. While much progress has been
made in applying new techniques for the implementation of these models,
there is still room for improvement, as the pricing, risk-management, and cal-
ibration issues of models for multiasset, path-dependent with Bermudan ex-
ercise features will continue to require ever more implementation ingenuity.



APPENDIX A
Taylor Series Expansion

In this appendix, we review the Taylor Series expansion formula from
ordinary analysis. This expansion is commonly used to relate sensitivities

(risk, PV01, convexity) to profit and loss (P&L) for financial instruments
(bonds, swaps, . . . ), as shown in Chapters 1 and 6. The much-dreaded Ito’s
Lemma used in Chapters 10 and 11 is basically Taylor Series expansion in
a stochastic setting, and can be easily used in practice via a multiplication
table.

FUNCTION OF ONE VARIABLE

For a function of one variable, f (x), the Taylor Series formula is:

f (x + �x) = f (x) + f ′(x)�x + 1/2 f ′′(x)(�x)2 + . . . + 1/n! f (n)(x)(�x)n + . . . .

where f ′(x) is the first derivative, f ′′(x) the second derivative, f (n)(x) the
n-th derivative, and so on. In practice, we usually just use the first two
derivatives, and ignore the effect of the remaining higher-order terms:

f (x + �x) − f (x) = f ′(x)�x + 1/2 f ′′(x)(�x)2 + Higher Order Terms

For example, considering the Price-Yield formula for bonds, we have:

P(y + �y) − P(y) ≈ P ′(y)�y + 1/2P ′′(y)(�y)2

= PV01 × �y
0.0001

+ 1/2 × Convexity × (�y)2
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FUNCTION OF SEVERAL VARIABLES

A similar formula holds for functions of several variables f (x1, . . . , xn). This
is usually written as

f (x1 + �x1, . . . , xn + �xn) = f (x1, . . . , xn)

+
n∑

i=1

∂ f
∂xi

(x1, . . . , xn)�xi

+ 1/2
n∑

i=1

n∑
j=1

∂ f
∂xi

(x1, . . . , xn)
∂ f
∂xj

(x1, . . . , xn)�xi�xj

+ Higher Order Terms

For example, using Black’s Formula, the expected P&L of an option is
usually computed by considering the first-order terms and only one second-
order term (gamma), ignoring all others:

C(F + �F, σ + �σ, t + �t) − C(F, σ, t) ≈ ∂C
∂F

�F + ∂C
∂σ

�σ + ∂C
∂t

�t + 1/2
∂2C

∂F 2 (�F )2

= Delta × �F + 1/2 × Gamma × (�F )2

+ Vega × �σ + Theta × �t

ITO ’S LEMMA: TAYLOR SERIES FOR DIFFUSIONS

Ito’s Lemma is basically Taylor series expansions for stochastic diffusions.
For a given diffusion X(t, ω) driven by

dX(t, ω) = μ(t, ω)dt + σ (t, ω)dB(t, ω)

consider a function f (t, X(t, ω). Ito’s Lemma allows one to compute the
diffusion for f (t, X) by following Taylor series expansion for two variables,
and employing the following simple multiplication rule:1

× dt dB(t, ω)
dt 0 0

dB(t, ω) 0 dt
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In particular, it means that we only need to keep first-order terms and only
one second-order term (dB × dB = dt), ignoring all other terms.

Starting with

dX(t, ω) = μ(t, ω)dt + σ (t, ω)dB(t, ω)

we proceed formally with Taylor Series for a function of two variables
f (t, X), and ignore all terms with order higher than 2, or any term with
(dt)2 or dt × dB:

df (t, X(t, ω)) = ∂ f
∂t

dt + ∂ f
∂ X

dX(t, ω) + 1/2
∂2 f
∂ X2

(dX(t, ω))2

= ∂ f
∂t

dt + ∂ f
∂ X

[μ(t, ω)dt + σ (t, ω)dB(t, ω)] + 1/2
∂2 f
∂ X2

σ 2(t, ω)dt

=
[

∂ f
∂t

+ ∂ f
∂ X

μ(t, ω) + 1/2
∂2 f
∂ X2

σ 2(t, ω)
]

dt + ∂ f
∂ X

σ (t, ω)dB(t, ω)

The most common application of Ito’s Lemma in finance is to start with
the following dynamics for proportional (percent changes) of an asset:

dA(t, ω)
A(t, ω)

= μdt + σdB(t, ω)

where the drift μ and volatility σ are constant numbers. Therefore,

dA(t, ω) = μ(t, ω)dt + σ (t, ω)dB(t, ω)

where

μ(t, ω) = μ × A(t, ω)

σ (t, ω) = σ × A(t, ω)

Considering f (t, A(t, ω)) = ln A(t, ω), we notice ∂
∂t f = 0 since f is not a

direct function of t, and recalling

d
dx

ln(x) = 1/x,
d2

dx2
ln(x) = −1/x2
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from ordinary calculus, Ito’s Lemma gives us:

d ln(A(t, ω)) = df (t, ω)

=
[

1
A(t, ω)

× μ × A(t, ω) − 1/2
1

A2(t, ω)
× σ 2 × A2(t, ω)

]
dt

+
[

1
A(t, ω)

× σ × A(t, ω)
]

dB(t, ω)

= (μ − σ 2/2)dt + σdB(t, ω)

Integrating both sides, we have

ln A(t, ω) − ln A(0, ω) = (μ − σ 2/2)t + σ

∫ t

0
dB(t, ω)

= (μ − σ 2/2)t + σ (B(t, ω) − B(0, ω))

= (μ − σ 2/2)t + σ B(t, ω)

since a Brownian motion is started at 0, B(0, ω) = 0. Recalling that a stan-
dard Brownian motion is Normally distributed, B(t, ω) ∼ N(0, t), we get:

A(t, ω) = A(0, ω)e(μ−1/2σ 2)t+σ N(0,t)

that is, A(t, ω)/A(0) is Log-Normal: A(t, ω)/A(0) ∼ LN((μ − σ 2/2)t, σ 2t),
EA(t, ω) = A(0)eμt. Note that if the process for A is drift less, that is, μ = 0,
then dA(t, ω) = σ A(t, ω)dB(t, ω), and EA(t, ω) = A(0). In this case, A(t) has
zero expected change and is a martingale.



APPENDIX B
Mean-Reverting Processes

The process equation for the Hull-White, BDT/BK models in Chapter 8,
and the Ho-Lee model in Chapter 10 can be expressed as a generalized

Ornstein-Uhlenbeck process:

dx(t, ω) = [μ(t) − a(t)x(t, ω)]dt + σ (t)dB(t, ω)

⇒ dx(t, ω) + a(t)x(t, ω)dt = μ(t)dt + σ (t)dB(t, ω)

where for the Hull-White/Ho-Lee models x(t, ω) = r (t, ω), while for the
BDT/BK models x(t, ω) = ln r (t, ω). Multiplying both sides by the integrat-
ing factor

A(t) = e
∫

a(u)du

we get

A(t)dx(t, ω) + a(t)A(t)x(t, ω)dt = μ(t)A(t)dt + σ (t)A(t)dB(t, ω)

⇒ d[A(t)x(t, ω)] = μ(t)A(t)dt + σ (t)A(t)dB(t, ω)

⇒ A(s)x(s, ω) − A(t)x(t, ω) =
∫ s

t
μ(u)A(u)du +

∫ s

t
σ (u)A(u)dB(u, ω)

⇒ x(s, ω) = x(t, ω)A(t)
A(s)

+ 1
A(s)

∫ s

t
μ(u)A(u)du + 1

A(s)

∫ s

t
σ (u)A(u)dB(u, ω)

Since the increments of Brownian motion, dB(t, ω), are independent and
Normal, x(s, ω) is conditionally Normal (conditioned on x(t, ω)):

x(s, ω) ∼ N
(

x(t, ω)A(t)
A(s)

+ 1
A(s)

∫ s

t
μ(u)A(u)du,

1
A2(s)

∫ s

t
σ 2(u)A2(u)du

)
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Moreover,
∫ T

t x(s, ω)ds is also conditionally normal:1

∫ T

t
x(s, ω)ds ∼ N

(
x(t, ω)A(t)

∫ T

t

ds
A(s)

+
∫ T

t

(∫ s

t
μ(u)

A(u)
A(s)

du
)

ds, V(t, T)
)

where

V(t, T) = Et

[∫ T

t

∫ T

t

1
A(s)

1
A(r )

∫ s

t
σ (u)A(u)dB(u, ω)

∫ r

t
σ (ν)A(ν)dB(ν, ω)drds

]

=
∫ T

t

∫ T

t

1
A(s)

1
A(r )

(∫ s

t

∫ r

t
σ (u)σ (ν)A(u)A(ν)Et[dB(u, ω)dB(ν, ω)]

)
drds

=
∫ T

t

∫ T

t

1
A(s)

1
A(r )

(∫ min(r,s)

t
σ 2(u)A2(u)du

)
drds

where we have used the following property of Ito differentials:

Et[dB(u, ω)dB(ν, ω)] =
{

du if u = ν

0 otherwise

NORMAL DYNAMICS

For the Vasicek/Hull-White/Ho-Lee models, r (t, ω) = x(t, ω), this means
that the short rate is Normally distributed, and that discount factors are
Log-Normally distributed. In particular,

D(t, T, ω) = Et[e− ∫ T
t r (s,ω)ds]

= e−r (t,ω)A(t)
∫ T

t
ds

A(s) −
∫ T

t

(∫ s
t μ(u) A(u)

A(s) du
)
ds+ 1

2 V(t,T)

Recall that instantaneous forward rates are related to discount factors as

f (t, T, ω) = − ∂

∂T
ln D(t, T, ω)

therefore,

f (t, T, ω) = r (t, ω)A(t)
A(T)

+ 1
A(T)

∫ T

t
μ(u)A(u)du − 1

2
∂

∂T
V(t, T)
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Rearranging the previous, we have

∫ T

t
μ(u)A(u)du = A(T) f (t, T, ω) − r (t, ω)A(t) + 1

2
A(T)

∂

∂T
V(t, T)

Setting t = 0, and differentiating both sides with respect to T, we obtain the
following expression for the arb-free drift:

μ(T) = ∂

∂T
f (0, T) + a(T) f (0, T) + 1

2
a(T)

∂

∂T
V(0, T) + 1

2
∂2

∂T2
V(0, T)

The above expression can be further simplified when the mean-reversions
and volatilities are constant. In particular, for Hull-White with constant
mean-reversion speed and volatilities, a(t) = a, σ (t) = σ , we have

μHW(T) = ab(T) = ∂

∂T
f (0, T) + a f (0, T) + σ 2

2a
(1 − e−2aT)

while for the Ho-Lee model (a(t) = 0, σ (t) = σ ), we have

μHL(T) = ∂

∂T
f (0, T) + σ 2T

Note that since A(.), μ(.), V(.) are all deterministic functions of time, the
short rate r (t, ω) at each time t completely determines the full-forward curve
f (t, ., ω)!

Euro-Dol lar Convexity Adjustment

As discussed in Chapter 3, due to the daily settlement, the implied rate in
the ED future contract is not the same as the forward rate, and dominates
it by an amount called the ED convexity adjustment. In order to compute
this convexity adjustment, we observe that the implied futures rate is the
expected value of the short rate at contract expiry. This can be shown by
observing that at any time t, its payoff on the next period is F (t + dt) − F (t),
hence the value of the future contract at t is

Et

[
F (t + dt, ω) − F (t, ω)

1 + r (t, ω)dt

]
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Since at each time, the futures price is chosen so that the contract has zero
value, F (t) must satisfy

F (t, ω) = Et[F (t + dt, ω)]

Since at expiry te, F (te, ω) = r (te, ω), using law of iterated expectation, we
have

F (0) = E0[r (te, ω)]

Using the Ho-Lee Model, we have

dr (t, ω) =
[

∂

∂t
f (0, t) + σ 2t

]
dt + σV × dB(t, ω)

⇒ r (t, ω) ∼ f (0, t) + 1/2σ 2
Nt2 + N(0, σ 2

Nt)

leading to the convexity adjustment formula

E0[r (t, ω)] − f (0, t) = 1/2σ 2
Nt2

LOG-NORMAL DYNAMICS

For BDT/BK models, x(t, ω) = ln r (t, ω), which means that short rates are
Log-Normal, and discount factors are “log-log-normal” or “doubly expo-
nential.” In this case, we cannot derive explicit analytical expressions for
discount factors and/or forward rates, and the arb-free drift μ(.)—while
deterministic—cannot be analytically solved for and is left as an implicit
function.

However, we can still derive some analytical expressions for the Log-
Volatility of the short rate:

σ[t,T] =
√

1
T − t

Vart

[
ln

(
r (T, ω)
r (t, ω)

)]

=
√

1
T − t

∫ T

t
σ 2(u)e−2

∫ T
u a(ν)dνdu

Recall that for a BK model, the mean-reversion speed a(t) is an arbitrary
function of time, while for a BDT model, it is related to the local volatility
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curve:

a(t) = −σ ′(t)
σ (t)

= − d
dt

ln σ (t)

therefore,

σ[t,T] =
√

1
T − t

∫ T

t
σ 2(u)e−2

∫ T
u a(ν)dνdu

=
√

1
T − t

∫ T

t
σ 2(u)e2

∫ T
u ln′(σ (ν))dνdu

=
√

1
T − t

∫ T

t
σ 2(u)

σ 2(T)
σ 2(u)

du

= σ (T)

that is, for a BDT model, the local volatility is the same as the horizon/
average volatility! Since the caplet curve gives direct information on σ[t,T],
this implies that BDT models are relatively easy to calibrate to caplets.



APPENDIX C
Girsanov’s Theorem and

Change of Numeraire

The change of numeraire formula in Chapter 11 relates the risk-neutral
probability sets when switching numeraires via their likelihood ratios

(Radon-Nikodym derivative):

dPA

dPB
(t, ω) = A(t, ω)/A(0)

B(t, ω)/B(0)

When working with diffusions, Girsanov’s Theorem uses the same likelihood
ratios to relate Brownian motions under one probability to another. We will
use the following version of it.1

Girsanov’s Theorem

Let B1(t, ω) be a Brownian motion under a probability measure P1:
B1(t, ω) ∼ N(0, t) under P1. Define a new probability measure P2 related
to P1 through their likelihood ratios as follows:

dP2

dP1
(t, ω) = e− ∫ t

0 γ (s,ω)dB1(u,ω)−1/2
∫ t

0 γ 2(s,ω)ds

for a random process γ (s, ω). Then subject to some regularity conditions on
γ (s, ω), the process B2(t, ω) defined as

B2(t, ω) = B1(t, ω) +
∫ t

0
γ (s, ω)ds

(or dB2(t, ω) = dB1(t, ω) + γ (t, ω)dt in differential format) is a Brownian
motion under P2: B2(t, ω) ∼ N(0, t) under P2.
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CONTINUOUS-T IME, INSTANTANEOUS-FORWARDS
HJM FRAMEWORK

As for short-rate models, the original HJM formulation of their framework
was in continuous time and in terms of instantaneous forward rates, related
to discount factors as follows:

(0 ≤ t ≤ T) D(t, T, ω) = e− ∫ T
t f (t,u,ω)du

f (t, T, ω) = − ∂

∂T
ln D(t, T, ω)

We assume the following general dynamics for the 1-factor (can easily
be generalized to multifactor) evolution of the forward rate and discount
factors:

dD(t, T, ω) = μD(t, T, ω)dt + σD(t, T, ω)dBM(t, ω)

df (t, T, ω) = μ f (t, T, ω)dt + σ f (t, T, ω)dBM(t, ω)

where BM(t, ω) is a standard 1-dimensional Brownian motion under the
money-market measure.

Applying Ito’s Lemma to the discount factor process, and taking liberties
with the interchange of limits, we get

df = − ∂

∂T

[
dD
D

− 1
2

(
dD
D

)2
]

= − ∂

∂T
(μD − 1/2σ 2

D)dt − ∂

∂T
σDdBM

Matching terms, we have

μ f (t, T, ω) = − ∂

∂T

(
μD(t, T, ω) − 1/2σ 2

D(t, T, ω)
)

σ f (t, T, ω) = − ∂

∂T
σD(t, T, ω)

Expressing σD in terms of σ f , we have

σD(t, T, ω) = −
∫ T

t
σ f (t, u, ω)du

The risk-neutral martingale constraint is that the return on all tradeable
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assets (zero-coupon bonds) must equal the short rate, that is, μD(t, T, ω) =
r (t, ω). We get

μ f (t, T, ω) = − ∂

∂T

(
μD(t, T, ω) − 1/2σ 2

D(t, T, ω)
)

= 1/2
∂

∂T
σ 2

D(t, T, ω)

= σD(t, T, ω)
∂

∂T
σD(t, T, ω)

= σ f (t, T, ω)
∫ T

t
σ f (t, u, ω)du

We arrive at the continuous-time version of the HJM drifts:

df (t, T, ω) =
[
σ f (t, T, ω)

∫ T

t
σ f (t, u, ω)du

]
dt + σ f (t, T, ω)dBM(t, ω)

Forward and Money-Market Measures
in HJM Framework

A simple application of Girsanov’s Theorem is to relate the forward and
money-market measures in the HJM framework. Starting with HJM process
equations for discount factors under the money-market measure,

dD(t, T, ω)
D(t, T, ω)

= r (t, ω)dt + σD(t, T, ω)dBM(t, ω)

we have

D(t, T, ω)
D(0, T, ω)

= e
∫ t

0 (r (u,ω)−1/2σ 2
D(u,T,ω))du+∫ t

0 σD(u,T,ω)dBM(u,ω)

When switching numeraires from the money-market account to a T∗-
maturity zero-coupon bond, we are switching the measure from P M to PT∗

.
We have

dPT∗

dP M
(t, ω) = D(t, T∗, ω)/D(0, T, ω)

M(t, ω)/M(0)

= e−1/2
∫ t

0 σ 2
D(u,T∗,ω)du−∫ t

0 −σD(u,T∗,ω)dBM(u,ω)
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By Girsanov’s Theorem, the process BT∗
(t, ω) defined by

dBT∗
(t, ω) = −σD(t, T∗, ω)dt + dBM(t, ω)

is a Brownian motion under PT∗
.

BGM RESULT

Fixing a maturity T∗, the simple forward rate f (t, [Ts, T∗], ω) over [Ts, T∗]
is related to the instantaneous forwards f (t, T, ω) by

f (t, [Ts, T∗], ω) = 1
δ

[D(t, Ts, ω)/D(t, T∗, ω) − 1]

= 1
δ

(e
∫ T∗

Ts
f (t,T,ω)dT − 1)

where δ = T∗ − Ts .
Starting with the process equations for instantaneous forwards in the

HJM framework under the money-market measure:

df (t, T, ω) =
[

∂

∂T

(
1/2σ 2

D(t, T, ω)
)]

dt +
[
− ∂

∂T
σD(t, T, ω)

]
dBM(t, ω)

we apply Ito’s Lemma first to X = ∫ T∗

Ts
f (t, T, ω)dT:

d
∫ T∗

Ts

f (t, T, ω)dT =
∫ T∗

Ts

d f (t, T, ω)dT

=
∫ T∗

Ts

([
1/2

∂

∂T
σ 2

D(t, T, ω)
]

dt − ∂

∂T
σD(t, T, ω)dBM(t, T, ω)

)
dT

=
(∫ T∗

Ts

1/2
∂

∂T
σ 2

D(t, T, ω)dT
)

dt +
(∫ T∗

Ts

− ∂

∂T
σD(t, T, ω)dT

)
dBM(t, ω)

= 1/2[σ 2
D(t, T∗, ω) − σ 2

D(t, Ts, ω)]dt

−[σD(t, T∗, ω) − σD(t, Ts, ω)]dBM(t, ω)



Appendix C: Girsanov’s Theorem and Change of Numeraire 233

Having found dX, since f (t, [Ts, T∗], ω) = 1
δ
(eX − 1), another applica-

tion of Ito’s Lemma gets us:

df (t, [Ts, T∗], ω) = 1
δ

d(eX − 1)

= eX

δ
[d(X) + 1/2(dX)2]

= eX

δ
(σD(t, Ts, ω) − σD(t, T∗, ω))[−σD(t, T∗, ω)dt + dBM(t, ω)]

=
[(

1
δ

+ f (t, [Ts, T∗], ω)
)

(σD(t, Ts, ω) − σD(t, T∗, ω))
]

dBT∗
(t, ω)

where we used the relationship between the money market and forward
Brownian motions

dBT∗
(t, ω) = −σD(t, T∗, ω)dt + dBM(t, ω)

for the last equality. Notice that under the T∗-measure, the forward rate has
no drift.

The BGM result is to set the pesky term in square brackets to a deter-
ministic function of time multiplying the forward rate:[(

1
δ

+ f (t, [Ts, T∗], ω)
)

(σD(t, Ts, ω) − σD(t,T∗, ω))
]

= f (t, [Ts,T∗], ω) × σ (t,Ts)

In this case, we get

df (t, [Ts, T∗], ω)
f (t, [Ts, T∗], ω)

= σ (t, Ts)dBT∗
(t, ω)

resulting in Log-Normal distribution of the rate at any expiration date
te ≤ Ts .

Similarly, to attain Normal dynamics, it suffices to have[(
1
δ

+ f (t, [Ts, T∗], ω)
)

(σD(t, Ts, ω) − σD(t, T∗, ω))
]

= σN(t, Ts)

for a deterministic curve σN(t, Ts) to arrive at Normal dynamics. In this case,
we get

df (t, [Ts, T∗], ω) = σN(t, Ts)dBT∗
(t, ω)

resulting in the Normal distribution of the rate at any expiration date te ≤ Ts .



Notes

CHAPTER 5 Derivat ives Pric ing:
R isk-Neutral Valuat ion

1. F. Black and M. Scholes, “The Pricing of Options and Corporate Liabilities,”
Journal of Political Economy 81 (1973): 637–659.

2. J.C. Cox, S.A. Ross, and M. Rubinstein, “Option Pricing: A Simplified Ap-
proach,” Journal of Financial Economics 7 (1979): 229–263.

3. J.M. Harrison and D.M. Kreps, “Martingales and Arbitrage in Multi-Period
Securities Markets,” Journal of Economic Theory 20 (1979): 381–408.

4. J.M. Harrison and S.R. Pliska, “Martingales and Stochastic Integrals in the The-
ory of Continuous Trading,” Stochastic Processes and Their Applications 11
(1981): 215–260.

5. H. Geman, N. El Karoui, and J-C. Rochet, “Changes of Numeraire, Changes
of Probability Measure, and Option Pricing,” Journal of Applied Probability 32
(1995): 443–458.

CHAPTER 6 Black’s World

1. F. Black, “The Pricing of Commodity Contracts,” Journal of Financial Eco-
nomics, 31 (1976): 167–179.

CHAPTER 7 European-Sty le Interest-Rate
Derivat ives

1. P.S. Hagan, D. Kumar, A.S. Lesniewski, and D.E. Woodward, “Managing Smile
Risk,” Wilmott Magazine (2002); 84–108.

2. G. Amblard and J. Lebuchox, “Models for CMS Options,” Euro Derivatives/Risk
Magazine (September 2000): 68.

CHAPTER 8 Short-Rate Models

1. O. Vasicek, “An Equilibrium Characterization of the Term Structure,” Journal
of Financial Economics 5 (1977): 177–188.

2. J. Hull and A. White, “Bond Option Pricing Based on a Model for the Evolution
of Bond Prices,” Advances in Futures and Options Research 6 (1993): 1–13.

235

Interest Rate Swaps and Their Derivatives: A Practitioner’s Guide 
by Amir Sadr 

Copyright © 2009 Amir Sadr 



236 NOTES

3. F. Black, E. Derman, and W. Toy, “A One-Factor Model of Interest Rates and Its
Application to Treasury Bond Options,” Financial Analysts Journal 46 (1990):
33–39.

4. F. Black and P. Karasinski, “Bond and Option Pricing When Short Rates are
Log-Normal,” Financial Analysts Journal 47 (1991): 52–59.

5. K. Back. A Course in Derivative Securities: Introduction to Theory and Compu-
tation. (New York: Springer, 2005): 300–302.

6. J.C. Cox, J.E. Ingersoll, and S.A. Ross, “A Theory of the Term Stucture of Interest
Rates,” Econometrica 53 (1985): 385–407.

7. F. Jamshidian, “The One-Factor Gaussian Interest Rate Model: Theory and Im-
plementation,” Working Paper, Merrill Lynch Capital Markets 1988.

CHAPTER 9 Bermudan-Sty le Opt ions

1. F.A. Longstaff and E.S. Schwartz, “Valuing American Options by Simulation:
A Simple Least-Squares Approach,” Review of Financial Studies 14 (2001):
113–147.

CHAPTER 10 Ful l Term-Structure
Interest-Rate Models

1. T.S.Y. Lee and S.-B. Lee, “Term Structure Movements and the Pricing of Interest
Rate Contingent Claims,” Journal of Finance 41 (1986): 1011–1029.

2. Philip H. Dybvig, “Bond and Bond Option Pricing Based on the Current Term
Structure,” Mathematics of Derivative Securities, Cambridge University Press,
1997: 271–292.

3. D. Heath, R. Jarrow, and A. Morton, “Bond Pricing and the Term Structure of
Interest Rates: A New Methodology,” Econometrica 60 (1992): 77–105.

4. B. Oksendal. Stochastic Differential Equations, 3rd ed. (New York: Springer-
Verlag, 1992): 19.

5. O. Cheyette, “Markov Representation of the Heath-Jarrow-Morton Model,”
Presented at UCLA Workshop of the Future of Fixed Income Financial Theory
1992.

6. P. Ritchken and L. Sankarasubramanian, “Volatility Structures of Forward Rates
and Dynamics of the Term Structure,” Mathematical Finance 5 (1995): 55–72.

7. A. Li, P. Ritchken, and L. Sankarasubramanian, “Lattice Models for Pricing
American Interest Rate Options,” Journal of Finance 50 (1995): 719–737.

8. K. Sandmann and D. Sondermann, “A Note on the Stability of Log-Normal In-
terest Rate Models and the Pricing of Eurodollar Futures,” Mathematical Finance
7 (1997): 119–128.

CHAPTER 11 Forward-Measure Lens

1. N.H. Bingham and R. Kiesel, Risk-Neutral Valuation: Pricing and Hedging of
Financial Derivatives (New York: Springer, 2004): 19–20..



Notes 237

2. H. Geman, N. El Karoui, and J-C. Rochet, “Changes of Numeraire, Changes
of Probability Measure, and Option Pricing,” Journal of Applied Probability 32
(1995): 443–458.

3. A. Brace, D. Gartarek, and M. Musiela, “The Market Model of Interest Rate
Dynamics,” Mathematical Finance 7 (1997): 127–154.

4. F. Jamshidian, “Libor and Swap Market Models and Measures,” Finance and
Stochastics 1 (1997): 261–291.

5. N.H. Bingham and R. Kiesel, Risk-Neutral Valuation: Pricing and Hedging of
Financial Derivatives (New York: Springer, 2004): 361.

APPENDIX A Taylor Series Expansion

1. B. Oksendal, Stochastic Differential Equations, 3rd ed. (New York: Springer-
Verlag, 1992): 33.

APPENDIX B Mean-Revert ing Processes

1. S. Karlin and H. Taylor, A First Course in Stochastic Processes, 2nd ed.
(San Diego: Academic Press, 1975): 384.

APPENDIX C Girsanov’s Theorem and Change
of Numeraire

1. B. Oksendal, Stochastic Differential Equations, 3rd ed. (New York, Springer-
Veralg, 1992): 126.



Index

accrued
fraction, 5, 7, 10
interest, 6, 9, 11, 20

Act/Act bond, 5, 21, 22, 63–64
Act/Act ISMA, See Act/Act bond
AD. See Arrow-Debreu
American style options, 175
annuity, 12, 130, 135, 209

formula, 12, 135
antithetic, 171–172
arbitrage-free, 28, 70, 73–74,

82–84, 151, 170–171,
185–186, 203–204

Arrow-Debreu
price, 158–161, 179
security, 158–159

Asian options. See path-dependent
options

as-of date, 63
asset changes

absolute, 104
percentage, 103–104
proportional, 103–104

asset swap, 52–53
market value, 53
par-par, 53
spread, 53

ATMF. See at-the-money forward
at-the-money forward, 108, 111,

124

backward induction, 176–177
basis point, 10, 11

basis swap, 67
Libor/Libor, 73–75

BBA. See British Bankers
Association

BDT. See Black-Derman-Toy model
bear-flatten, 145–146
bear-widener, 148
Bermudan

option, 151, 154, 162, 175–184,
193–194

swaption, 177–180
BGM. See Brace-Gartarek-Musiela
BK. See Black-Karasinski model
Black-Derman-Toy model, 153,

156–167, 223, 226–227
Black-Karasinski model, 153,

168–169, 223, 226–227
Black’s formula, 79, 80, 94, 97,

108–111, 123–132
Normal, 109–110

Black-Scholes
formula, 79, 97, 104–107, 108
PDE, 112–113

bond option, 147–148
bond pricing formula, 5
bootstrap method, 34–37
box trade, 55
Brace-Gartarek-Musiela, 208–210,

212–213, 232–233
model, 210–213
result, 232–233
spot measure, 211
terminal measure, 211

239

Interest Rate Swaps and Their Derivatives: A Practitioner’s Guide 
by Amir Sadr 

Copyright © 2009 Amir Sadr 



240 INDEX

British Bankers Association, 44, 45,
47, 51, 63, 74

Brownian motion, 102–103, 104,
105, 120, 137, 152, 170, 187,
190, 211, 222, 223, 229

bullish tightener, 148
bull-steepen, 145–146
butterfly trade, 15–16

regression weighted, 16

calculation period, 26, 31, 32, 45,
59, 61–64

end date, 59, 62, 63
index end date, 62–63
index reset date, 62–63
index start date, 62–63
payment date, 32, 59, 62
start date, 59, 63

calibration, 155, 162, 164–165,
191–193, 194–197, 212

global, 162
local, 162
swaption, 194–197

call, 80
-fly, 118
-ratio, 118
-spread, 118

call/receiver, 148
callable

bond, 180
rate, 181
step-up/step-down, 182

cancelable swap, 180–182
Bermudan, 180–181
European, 182
one-time, 182

cap
CMS, 142
Libor, 127

cap/floor
forward, 127
straddle, 127–129

caplet, 125–127, 128–129, 193,
206, 208–209

CMS, 142–144, 146, 167
knock-in, 118

caplet curve, 128
carry, 19–22

dollar, 19
positive, 20–21
price, 19
yield, 20–22

cash and carry, 19, 68
CDF. See cumulative distribution

function
central limit theorem, 101
central moment, 99
cents. See upfront bp’s
CEV. See constant elasticity of

variance
change of numeraire, 202–206,

229
formula, 206

Cheyette model, 200
Chicago Mercantile Exchange

(CME, Merc), 45
CIR. See Cox-Ingersoll-Ross model
clean price, 6–7, 11, 19–20
CME. See Chicago Mercantile

Exchange
CMS. See constant maturity swap
CMT. See constant maturity

treasury
collar, 117, 119

zero-cost, 117, 119
compounding

continuous, 3, 28
simple, 4, 7, 28

conditional expectation, 183
constant elasticity of variance, 137,

153
constant maturity swap

cap, 142
caplet, 142–144, 146, 167
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convexity adjustment, 140–141
curve option, 144–145
floor, 142
floorlet, 142–144
rate, 140, 144
static replication, 142–144
swap, 140–141

constant maturity treasury, 71
contingent claim, 80

European-style exercise, 80
contingent curve trade, 146–147
contingent swap spread trade, 148
control variate, 171
convexity, 6, 13–14, 219
convexity adjustment

CMS, 140–141
delay of payment, 63, 166
future-forward, 46–47, 225–226

convolution integral, 119
correlation, 100

CMS rates, 144
log, 198
model, 198–199
rate/vol, 138

covariance, 100
Cox-Ingersoll-Ross model, 153
Cox-Ross-Rubenstein model,

79–84
CRR. See Cox-Ross-Rubenstein

model
C-strip, 10
cubic spline, 37
cumulative distribution function,

97–98
curve

caplet, 128
discount, 27
discount factor, 26, 29, 37–38
forward, 68
forward rate, 29
par swap, 32
swap spread, 55

zero, 27
zero coupon bond price (ZCBP),

27
curve construction

bootstrap, 34–37
constrained optimization, 37
descriptive, 37–38
flow versus prop, 37–38
minimum height, 36
minimum length, 37
normative, 37–38

curve trade, 51
contingent, 146–147
forward, 51

dated date, 8–9
day count basis, 3, 48, 63–64

30/360, 64
Act/356, 63
Act/360, 63
Act/Act ISDA, 63

delay of payment convexity
adjustment, 63, 166

delta, 112, 113, 124, 134, 220
density function, 98, 100, 101, 205
descriptive method, 37–38
diffusion coefficient, 102, 104, 120
digi-call. See digital call
digi-put. See digital put
digital, 94, 116–117, 118

call, 116
put, 116

directionality
curve, 145–146
swap spread, 148

dirty price, 5–6, 53, 54
discount bond, 7
discount factor, 4
discount function, 27
discounting

along the curve, 33, 135
FRA, 44
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discounting (Continued )
OIS versus Libor, 76
path, 88, 161, 171
stochastic, 88, 91, 141, 142, 158,

207
the forwards, 34, 140, 166

dollar value of 01, 11
doubly exponential, 226
drift correction, 105
duration, 11–14

modified, 11–14
dynamic hedging, 88–90

effective date, 25, 32, 59–63
Eurodollar, 45–47

bundle, 46
futures, 45–46
implied rate, 45
pack, 46
tick, 45

European option, 80
exercise strategy, 175
expected value, 99

factor structure, 199
flat yield, 5
float/float swap, 70–71
floater, 33
floor

CMS, 142
Libor, 127

floorlet, 125–127, 128–129
CMS, 142–144
knock-in, 118

FOA. See forward option agreement
forward contract, 67–69
forward induction, 159
forward measure, 201–213
forward option agreement, 121
forward price

asset, 67–68, 84, 141
bond, 19–22, 23

forward rate, 27–29, 33–34, 37–38,
47, 69–70

continuously compounded, 28
daily-daily, 38
implied, 69–70
instantaneous, 29–31, 37
simple, 28

forward rate agreement, 34, 44
discounting, 44

forward swaption, 193
forward volatility, 193–194

relationship between Europeans,
Bermudans, and, 193–194

forward yield, 19–22
forward-forward volatility surface,

188, 191–197, 199, 213
FRA. See forward rate agreement
freeze-forward technique, 196
full term structure model,

185–200
future value, 3

stochastic, 91

gamma, 112, 113–114, 118, 125,
133, 220

ladder, 57
Girsanov’s theorem, 211, 229,

231–232
Greeks, 112, 115

Halton sequence, 171
Heath-Jarrow-Morton model, 183,

186–200
continuous-time, instantaneous

forwards, 230–231
discrete-time, discrete tenor,

1881–19
swaption calibration, 194–197

HJM. See Heath-Jarrow-Morton
model

HL. See Ho-Lee model
hold value, 176
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Ho-Lee model, 47, 153, 186, 223,
224–225, 226

Hull-White model, 152, 153,
168–169, 200, 223–225

HW. See Hull-White model

IMM. See International Money
Market

immediate exercise, 176
implementation

lattice, 154–155, 177, 183, 199
simulation, 169–173, 183–184,

199, 212–213
tree, 79, 154

importance sampling, 171
independent random variables,

99
induction

backward, 176–177
forward, 159

integrating factor, 223
interest rate swap, 25–26
International Money Market

date gaps, 63
dates, 58–59
pit, 45
swap, 57–59, 63

interpolation method, 36–41
cubic spline, 37
log-linear, 36

intrinsic value, 112
inverting yield curve, 155
Ito

isometry, 196
lemma, 195, 220–222
multiplication rule, 220

Jamshidian, F., 159, 208–209
jump-diffusion, 137

knock-in, 118, 170
knock-out, 170, 172–173

lattice implementation, 154–155,
177, 183, 199

lattice sampling, 171
law of iterated expectation, 226
least square in Monte Carlo, 183
Levenberg-Marquardt algorithm,

162
Libor in arrears, 165–167
Libor market model, 210–213
Libor/Libor basis swap, 73–75
lifetime option, 170–173

knock-in, 170
knock-out, 170, 172–173

likelihood ratio, 204–205,
210–211, 229

LMM. See Libor market model
log-correlation, 198
log-linear, 36
log-log-normal, 226
log-Normal distribution, 100–101,

102
low discrepancy sequence, 171
LSM. See least squares in Monte

Carlo

market model, 200, 210–213
Libor, 210–213
swap, 210

Markovian, 199–200
martingale, 80, 92–93, 94–95, 185,

189, 196, 201, 203–207, 222,
230

maturity date, 25, 32, 52, 59–63
mean, 99
mean reversion, 152–153, 223–225

level, 152, 168, 169
speed, 152, 168, 169

measure
forward, 201–213
money market, 213, 230–232
spot, 211
terminal, 211
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modified duration, 11–14
money market

account, 91–92, 95, 185, 189,
201, 206–207, 211, 231

instrument, 4, 17, 48
measure, 213, 230–232

month-end convention, 7
multi-factor, 168, 197–198, 213,

230

Newton-Raphson method, 9
non-anticipative, 175
Normal distribution, 97–99

standard, 98, 191
normative method, 37–38
notice day, 182
numeraire, 80, 94–95, 185, 189,

201–207, 209, 210–211, 229,
231

OIS. See overnight index swap
optimal exercise strategy, 176,

184
option convexity, 112, 113–114,

118, 125, 133, 220
Ornstein-Uhlenbeck process,

223–224
overnight index swap, 75–77

par bond, 5, 12, 33
parallel PV01, 56–57
parallel shift, 21, 51, 54–55
partial PV01, 56–57
path discounting, 88, 161, 161
path-dependent options, 151, 154,

170–173, 183
payer swap, 177, 180
PCA. See principal component

analysis
pin risk, 118
premium bond, 7

present value, 4
present value of 01, 11–16, 22–23,

51–52, 55–56, 134, 146, 148
parallel, 56–57, 58
partial, 56–57, 58

present value of bp, 11–12, 14, 146
price volatility, 147
price-yield formula, 5, 219
principal component analysis, 57,

198
P-strip, 10
pull-to-par, 7, 21–22
put, 80

-fly, 118
-ratio, 188
-spread, 118

put/payer, 148
put-call parity, 107–108, 110, 127,

144
puttable

bond, 181
rate, 181

quoted price, 6–7, 11, 19–21

random walk, 101–103, 190
Radon-Nikodym derivative, 205,

229
receiver swap, 32, 57, 180
relative prices, 91–92
replicating portfolio, 79, 81–84,

112–113, 140–144, 202–205
replication

dynamic, 79–80, 88–90, 112–113
static, 28, 31, 63, 140, 142–144

repo, 16–19
buyer, 18
general collateral rate, 22
rate, 17–18, 19, 21, 22, 53, 69,

93, 148
-adjusted yield, 22–23
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reverse, 16–19
seller, 18
special, 22–23
term, 17

reset risk, 58–59
risk, 11
risk-averse investor, 83
risk-neutral

investor, 83
probabilities, 84, 86–87, 91–92,

105, 116, 201–206
valuation, 80–95

risk-reversal, 117
Ritchken, P., 200
roll, 61–62

dates, 61–62
month-end, 61–62

roll convention, 59–60
following, 59–60
modified following, 59–60
previous, 60

roll-down
volatility, 125
yield, 21

RTP. See swaption, right-to-pay
RTR. See swaption, right-to-receive

SABR model, 138–140
sampling

importance, 171
lattice, 171

self-financing, 88, 112, 123, 205
self-reference, 245
settlement date, 63
short coupons, 9
short rate model, 151–156
simulation implementation,

169–173, 183–184, 199,
212–213

simulation noise, 171, 199,
212–213

skew. See volatility skew
smile. See volatility smile
SMM. See market model, swap
Sobol sequence, 171
spot date, 43, 60, 61, 63
spot measure, 211
spread-lock, 55–56

discrete-setting, 55–56
European style, 55–56
rolling, 55–56

standard deviation, 99
steepener, 38, 51

contingent, 145–146
forward, 51

step-up callable, 182
stochastic discounting, 88, 91, 141,

142, 158, 208
stochastic future value, 91
stochastic volatility, 137, 138,

199
stopping time, 175
straddle, 111, 117, 125

cap/floor, 127–129
swaption, 124, 132–133, 193

strangle, 117, 119
street convention, 7
strip rate, 47
stub rate, 47
swap

basis, 67
float/float, 70–71
forward, 32
forward rate, 32
IMM, 57–59
par, 32–33
par rate, 32

swap spread, 47–48
asset, 52–53
box trade, 55
curve, 55
directionality, 148
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swap spread (Continued )
headline, 52
interpolated, 50–51
matched maturity, 52
spread of, 55
trade, 49
treasury-Eurodollar, 52
Z spread 54–55
zero coupon, 53–54
zero rate, 54–55

swap trading
rates, 49
spreads, 49–50

swaption
calibration, 194–197
European style, 129–132
forward, 193
grid, 132–134
payer, 129–131, 142, 146,

148
receiver, 130, 143, 148,

164–165, 179
right-to-pay, 120
right-to-receive, 129
straddle, 124, 132–133, 193
volatility cube, 137–138
volatility surface, 125, 137–138

swaption settlement, 134–135
annuity method, 135
cash-settlement, 129, 134–135
IRR method, 135
off the curve, 135
swap-settlement, 134–135
USD style, 135

swaption vol approximation,
194–197

Taylor series expansion, 13, 111,
141, 147, 219–222

higher order terms, 13, 56, 219,
220

term structure, 26
terminal measure, 211
theta, 112, 113–114
threshold strategy, 184
tick

Eurodollar, 45
treasury, 13

time decay. See theta
treasury convention, 7
tree implementation, 79, 154
trinomial, 168–169, 171
true yield, 9–10

upfront bp’s, 13

variance, 99
variance reduction, 171
Vasicek model, 152, 153, 168,

224
vega, 112, 125, 133, 220
volatility

average, 120, 227
basis point, 111
business day, 121
daily, 121
event, 120
implied, 111, 118, 124
integrated, 120
local, 156–157, 162, 164,

168–169, 226–227
log, 103
normal, 104
price, 147
price-yield relationship,

147–148
root-mean-square, 120
signature, 192–193, 194
skew, 118, 137–139
smile, 118, 137–138
stochastic, 137, 138, 199
yield, 147–148
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volatility surface
forward-forward, 188, 191–197,

199, 213

when-issued, 7
WI. See when-issued

yield curve
inverting, 155
trade, 15

yield to maturity, 5
yield volatility, 147–148

Z spread, 54–55
zero coupon bond, 4, 10
zero rate, 27

continuously compounded,
27

zero-coupon swap, 53–54
spread, 53–54


