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Preface

Experiments are run for many purposes and are prevalent in a wide range of applica-
tion areas. Examples of experimental contexts include engineering for the design and
improvement of complex systems, pharmaceutical industry efforts to discover and develop
new drugs, and the improvement of crop yield and sustainability in agriculture. Recent
improvements in computer speed and memory have led to important developments in the
computational aspects of the statistical challenges associated with the various components
of experimentation. This handbook provides a description of many of the recent advances
in the field, as well as a detailed, comprehensive overview of the basic tools required for
the optimal design of experiments and their analyses.

Although there are textbooks available that deal with the traditional areas of design
of experiments such as block designs and factorial experiments and a few textbooks that
discuss individual specialized areas, this handbook is a comprehensive book that gives a
careful treatment of the latest developments of a wide range of topics in a unified whole.
It consists of a carefully edited collection of 25 chapters that synthesize the state of the
art in the theory and applications of designed experiments and their analyses. The chap-
ters present a good blend of methodology and application and are written by leading
researchers in the field.

The chapters have been arranged into “sections” to bring focus to the work. However,
they can all be read independently, and cross-references to other chapters are given where
helpful. Section I begins with a historical look at experimental design (Chapter 1), from its
beginnings in agriculture for controlling the effects of environmental and soil variation to
more modern uses in industry, medicine, marketing, and beyond. In particular, the chapter
serves as an introduction to the material in Sections II and III. The history is followed in
Chapter 2 with a detailed look at the theory of estimation of parameters in linear models
and the specification of optimality criteria by which to judge the efficiency of a design. This
fundamental theory is referenced by many other chapters in their discussion of optimal
design.

Section II deals with a number of different settings in which the response is modeled
by a linear model. An account is given of the current state of knowledge in block designs
(Chapter 3), crossover and repeated measurement designs (Chapter 4), designs for estimat-
ing response surfaces (Chapter 5), and a look at optimal designs for linear models in which
the error terms are correlated (Chapter 6).

In Section III, more attention is given to designs with multiple factors (both treatment
and blocking factors). Factorial experiments are considered in several of these chapters. In
particular, the construction of fractional factorial designs is discussed in Chapter 7, and
the art of arranging factorial experiments in blocks, split plots, and split lots is covered in
Chapter 8. A recent area of growth in the design of experiments lies in the need to handle
large numbers of factors within a physical experiment. This has led to the development of a
new methodology for screening, which is the process of searching for the most active vari-
ables. Small “nonregular” designs for screening are discussed in Chapter 9. Section III ends
with two chapters (Chapters 10 and 11) that discuss the structure of multifactor designs,
models, and analysis.

xi



xii Preface

Another area of research emphasis that has become important in recent years is that of
optimal designs for generalized linear models, other nonlinear models, and spatial mod-
els; these form the topic of Section IV. Such models are used extensively in many fields,
including medical sciences, social sciences, marketing, and agriculture. There is an exten-
sive machinery for analyzing data under such models, but while there are results that go
back more than two decades, research on designs for nonlinear models, in particular, is still
very much in its developmental stage. Chapters 12 through 15 give details of the current
knowledge in these important areas.

Another area that has seen enormous growth in the past 20 years is that of com-
puter experiments, which is discussed in Section V. Introduced in Chapter 16, computer
experiments are performed on large-scale simulators of physical systems. Frequently, a sat-
isfactory mathematical description of the system is computationally intensive, and thus, a
careful selection of design points (simulator trials) is critical. Section V addresses general
classes of experimental designs that have proven to be useful in computer experiments
(Chapter 17), input sensitivity analysis (Chapter 18), and experiments designed for the
more specific goals of function optimization (Chapter 19).

Two chapters (Chapters 20 and 21) deal with some “cross-cutting” issues that are rele-
vant to all of experimental design (Section VI). Chapter 20 focuses on how experimental
design can be made robust to errors in modeling assumptions. Chapter 21 reviews some
standard computer algorithms that are associated with designs for linear models and other,
more recent algorithms that are applicable to a wider variety of design problems.

Section VII explores the application of experimental design in areas that have devel-
oped more recently, and which have unique and interesting characteristics. Included are
discrete choice experiments that are used in many fields of study for understanding con-
sumer decisions (Chapter 22); high-throughput screening experiments that search among
huge numbers of chemical compounds for those molecules that can be used in the next gen-
eration of drugs (Chapter 23); dose-finding designs for finding the median effective dose of
a drug or, for example, determining a failure threshold in engineering (Chapter 24); fMRI
experiments that are widely used in research fields such as cognitive neuroscience, medical
science, and psychology for studying the functions of the brain (Chapter 25). Each of these
applications presents new challenges and opens up entirely new directions of research to
which not many researchers have yet been exposed in a substantial way.

Not every topic can be covered in great detail in a book such as this one. Indeed, much
more could be said on the important topics of screening designs, Bayesian designs, and
clinical trials, for example, as well as specialized topics in the design and analysis of com-
puter experiments, such as the calibration of models to physical data. And of course,
Section VII contains the discussion of only a small sampling of the unique design issues
that arise in specific application areas, and interesting modern topics such as designs for
web-based experiments and networks are not included. Nevertheless, this handbook gives
a taste of the broad range of uses of experimental design, the current knowledge in these
areas, and some indications for further reading on related topics. It provides a compre-
hensive overview of many techniques and applications that a new researcher in the area
of design and analysis of experiments needs to know. In addition, the book provides a
valuable reference tool for research statisticians working in engineering and manufac-
turing, the basic sciences, and any discipline that depends on controlled experimental
investigation.

All of the chapters in this handbook are written by experts in the field and contain not
only considerable detail on the state of the art in the respective areas but also numerous
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examples for illustration. We thank each and every author for their willingness to share
their expertise and knowledge, for their patience with our editing, and for their enthusiasm
in joining this project. We also thank Rob Calver, senior acquisitions editor at Taylor &
Francis Group, for inviting us to prepare this book and for his guidance throughout the
process.
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1.1 Introduction

“An experiment is simply a question put to nature in the hope of discovering some secret”
(Russell 1926, p. 989). With this in mind, there is obviously no question that experimen-
tation has played a major role in human life and human endeavors over centuries and
that inquiring minds have thought about proper designing of experiments. We can, of
course, only speculate as to what extent experimentation has taken place early on, since
no records of the earliest such attempts are available. One of the earliest descriptions of
a scientific, controlled experiment is of an experiment on the treatment of scurvy as car-
ried out by James Lind on board the HM Bark Salisbury in 1747 (Lind 1753). This can be
regarded as one of the first recorded experiments with a medical or biological application.
The beginning of agricultural experimentation can be traced back to the long-term field
experiments started by John Lawes and Henry Gilbert at Rothamsted, United Kingdom,
25 miles north of London, between 1843 and 1856, among them the famous Broadbalk
winter wheat experiment investigating the effects on crop yields of inorganic compounds
(Rothamsted Research 2006). Even though these experiments were not laid out according to
modern design principles, they provided inspiration later to R.A. Fisher and Frank Yates
to develop just these principles and many of today’s well-known experimental designs
through their pioneering work at Rothamsted Experimental Station, beginning in the 1920s.
We shall trace these historic developments and extensions thereof in this chapter, from
both a theoretical and an applications-oriented perspective.

In Section 1.2, we describe the famous long-term field experiments at Rothamsted, which
later became the Rothamsted Experimental Station. It is here that Fisher and Yates started
their pioneering work. In Section 1.3, we discuss the cornerstones of modern experimental
design, namely, the notions of replication, randomization, and blocking. We trace further
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developments in the form of the Latin square principle (Section 1.4), factorial experiments
(Section 1.5), incomplete block designs (IBDs) (Section 1.6), fractional factorial designs
(Section 1.7), and response surface and mixture designs (Section 1.8). Considerations of
efficiency and optimality are taken up in Section 1.9 and matters of analysis and computa-
tion in Section 1.10. We conclude this chapter with a brief discussion of areas of application
(Section 1.11), with emphasis on extensions and modifications of familiar designs discussed
earlier.

The field of experimental design is very large, and not all areas and developments can
be covered or covered completely in one chapter. The reader, however, should get the gen-
eral picture of how the area developed from its very beginnings to the most recent times.
Details about more recent research on many topics in experimental design will be given in
subsequent chapters of this handbook, and we shall make references to them throughout.
In addition to articles and books cited in this chapter, a useful source of further references,
particularly for pre-1950 publications, is the bibliography collected by Federer and Balaam
(1973).

1.2 Rothamsted Experiments

Between 1843 and 1856, Lawes and Gilbert started nine long-term field experiments at
Rothamsted. Their objective was to investigate the effects of various inorganic compounds,
individually and in combination, on several agricultural crops. Of the nine experiments,
they abandoned only one and changed the treatments in others during the first years based
on the results they observed. The eight experiments were then continued more or less as
originally planned. They are known as the classical experiments and represent the oldest,
continuous agronomic experiments in the world. In the following, we shall consider the
essential features of two of these experiments; for more details, see Rothamsted Research
(2006).

1.2.1 Broadbalk Experiment

The Broadbalk winter wheat experiment was begun in 1843. The objective was to compare
the effects of inorganic fertilizers supplying the elements of nitrogen (N), phosphate (P),
potash (a nutrient containing potassium) (K), soda (a nutrient containing sodium) (Na),
and magnesium (Mg) in various combinations with the effects of organic manures. The
experiment was put on a permanent basis in 1852, consisting of a series of long, narrow
plots across the entire field (for a picture of the layout, see Rothamsted Research 2006). The
essential features of the scheme of the fertilizer (treatment) assignments are given in Table
1.1 as presented by Yates (1935). This clearly shows the beginning of an incomplete factorial
arrangement (as discussed in Section 1.5).

Inspection of Table 1.1 indicates that the effects of the various compounds can be
estimated—for the most part—from the difference of a single pair of plots. The same is true
for comparing the effect of different combinations of compounds versus the effect of farm
manure. In addition, the effect of increasing the level of nitrogen can be estimated from the
plots using different levels of nitrogen, represented by Yates as 0, 1/2 , 1, 11/2, and 2.
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TABLE 1.1

Fertilizer Assignment for Broadbalk Wheat Experiment

Plot No. Treatment

2.2 Farmyard manure
3–4 No manure

5 — P K Na Mg
6 1/2 N P K Na Mg

7 N P K Na Mg
8 11/2 N P K Na Mg

16 2 N P K Na Mg

10 N — — — —
11 N P — — —

13 N P K — —
12 N P — 32/3 Na —

14 N P — — 23/4 Mg
2.1 — — K Na Mg

The experiment was modified in 1968, with one important change being the introduc-
tion of short-strawed cultivars of wheat and another being the subdivision of some sections
in order to compare the yield of wheat grown continuously versus that of wheat grown in
rotation after a 2-year break. Results from the experiment provide important information
concerning the problem of food production for a growing world population, as illustrated
in an article The Economist (Parker 2011). It shows that the Broadbalk experiment is a micro-
cosm of the world’s current growing conditions, from the very poor in parts of Africa to
the best in the developed parts of the world, represented by the plots that had no fertilizer
or pesticides applied and those plots that received the best plants, fertilizers, fungicides,
and best agronomic practices, respectively.

1.2.2 Hoosfield Experiment

The Hoosfield experiment on Spring Barley has been conducted (with some modifications)
since 1852. This experiment, too, is, in the words of Yates (1935), a complex experiment as it
uses a factorial structure for its fertilizer treatments but in a design that is quite different
from the Broadbalk experiment: in four strips, it uses the nutrients/nutrient combinations
0 (nothing), P, KMgNa, and PKMgNa, and these are crossed with four forms of N (no nitro-
gen, ammonium sulfate [N1], sodium nitrate [N2], rape cake [N3]) as shown in Figure 1.1
(adapted from Rothamsted Research 2006; see also Yates 1935).

In modern terminology, this is a 2 × 2 × 4 factorial arranged in a split-block design (see
Hinkelmann and Kempthorne 2008) without replication, to which were added plots with
farmyard manure and no manure (as indicated in Figure 1.1). Even though all 16 nutrient
plots can be used for the estimation of the various effects of the nutrients, it is doubtful that
they actually were. Also, a serious drawback to the arrangement is the possible fertility
gradient along the length of the field. If the northernmost part of the field has the highest
soil fertility, then the effect of rape cake (N3) may turn out to be falsely declared significant.
This problem does not arise in the Broadbalk experiment as each treatment there is applied
over the entire length of the field.
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manure No N   

PKMgNa KMgNa P No mineral

FIGURE 1.1
Hoosfield experimental layout. (Adapted from Rothamsted Research, Guide to the Classical and Other Long-Term
Experiments, Datasets and Sample Archives, Rothamsted Research, Harpenden, Herts, 2006.)

1.3 Statistical Foundations of Scientific Experimentation: Three Principles

The Rothamsted long-term experiments, of which we have described two earlier, have
proved to be very important, not only for agricultural research but also for the develop-
ment of the statistical principles of experimental design. This development, in the context
of agronomic experimentation, is closely connected with the statisticians who worked at
Rothamsted, foremost among are them R.A. Fisher and Frank Yates. Efforts to analyze
the data from the experiments with a statistical point of view in mind illustrated several
flaws in the original layouts and led Fisher to the introduction of important principles for
designing experiments. In her biography of Fisher, Fisher Box (1978) described how her
father started his work at Rothamsted in 1919 and studied and analyzed the data from the
Broadbalk experiment. From the articles “Studies in Crop Variation,” “…we may see how,
concurrently with work on estimation, Fisher was led to the analysis of variance proce-
dure and to the principles of experimental design. Within 7 years he had solved all major
problems and placed in the hands of the experimenter both the techniques for conducting
experiments and the mathematical and arithmetical procedures for making sense of the
results” (Fisher Box 1978, p. 100).

1.3.1 Replication

It had long been recognized that the variation in soil fertility presented great difficulties
for making valid comparisons between the various manuring treatments using designs as
advocated in the early experiments. One way out of this dilemma was the introduction
of uniformity trials, that is, trials without treatments, a year or even several years prior
to the real experiment. This provided some measures of experimental error but was, in
most cases, not a feasible method in practice. Then, the idea of replication was introduced,



8 Handbook of Design and Analysis of Experiments

typically two or three replications, in the form of either replicating the same experiment at
a different location or replicating each treatment on the same field. In the latter case, the
recommendation was to use a balanced or systematic plan (Russell 1926). For more than two
replicates and the case of two treatments, say A and B, in strips, Russell wrote that “the
arrangement

ABABABAB

is not sufficient because A is always left to B and will always come out better if the fertility
of the land is falling off from the left to the right of the plots,” rather the arrangement
should be

ABBAABBA

so that “each treatment is compared with itself on one side and the other treatment on the
other side and the plots are balanced about the centre. Whichever way the fertility may
be varying the comparisons can still be made” (Russell 1926, p. 996) (see also Section 1.3.5
for trend-free designs). Russell, who was the Director of Rothamsted Experimental Station,
provided other examples of balanced designs for more complex experiments.

1.3.2 Randomization

The question about valid estimation of error was carried further by R.A. Fisher, who had
joined Rothamsted Experimental Station in 1919. He was critical of the systematic arrange-
ments and provided arguments that these arrangements might lead to wrongly estimated
standard errors. He instead proposed what was then a revolutionary idea, namely, that of
randomization: “One way of making sure that a valid estimate of error will be obtained is
to arrange the plots deliberately at random, so that no distinction can creep in between
pairs of plots treated alike and pairs treated differently; in such a case an estimate of error,
derived in the usual way from the variations of plots treated alike, may be applied to test the
significance of the observed difference between the averages of plots treated differently”
(Fisher 1926, p. 506). Moreover he claimed that this estimate of error could be used in test-
ing hypotheses about the treatment effects: “The estimate of error is valid, because, if we
imagine a large number of different results obtained by different random arrangements,
the ratio of the real to the estimated error, calculated afresh for each of these arrangements,
will be actually distributed in the theoretical distribution by which the significance of the
result is tested” (Fisher 1926, p. 507). The theoretical distribution refers, of course, to the
normal distribution. Thus, Fisher suggested that randomized experiments could be ana-
lyzed as if the observations were independent and normally distributed (see Fisher Box,
1978), a result that was justified theoretically by Kempthorne (1952, 1955), who showed
that the randomization test for testing hypotheses about treatment effects can be approx-
imated by the F-test (see also Hinkelmann and Kempthorne 2008). This result is still not
widely appreciated today as most textbooks postulate that the errors have to be normally
distributed.

The role played by randomization in experimental design is still a topic of great interest
and current research (see, e.g., Calinski and Kageyama 2000, 2003, and Chapter 3). Impor-
tant advances, in particular in the context of multiple and structured randomizations, were
made by, for example, Brien and Payne (1999) and Brien and Bailey (2006). Extensions
of the Kempthorne approach to various forms of block designs (Section 1.3.3) were given
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by Hinkelmann and Alcorn (1998). Applications of randomization in medical trials (see
Section 1.11.3) are discussed by Rosenberger and Lachin (2002).

1.3.3 Blocking

In the context of various forms of replication of treatments (varieties), Fisher (1926) also
considered different components of error when he alluded to errors that arise in the course
of experimentation, which should be eliminated as much as possible through careful exper-
imental practices, and errors that arise because of experimental conditions, which should
be controlled through careful arrangement of the treatments. He illustrated this in terms
of what he called the most flexible and useful type of arrangement, namely, the arrange-
ment in randomized blocks (see Chapter 3). Even though the use of blocks, containing more
or less uniform plots, was already part of agricultural experimentation, this nevertheless
represented a formal statement of the reduction of error through blocking, or as Fisher (1925,
1970, p. 265) put it: “…it is still possible to eliminate much of the effect of soil heterogene-
ity, and so increase the accuracy of our observations, by laying restrictions on the order in
which the strips are arranged.” He then showed how—through the use of analysis of vari-
ance (ANOVA)—the total variation can be separated into three parts representing (1) local
differences between blocks, (2) differences due to treatment, and (3) experimental errors
(with variance σ2

e ), based upon independent randomizations in each block, contrary to the
common practice at the time. This is illustrated in Table 1.2 for the randomized complete block
design (RCBD) with t treatments in b blocks, such that each treatment occurs exactly once in
each block, showing the three sources of variation and indicating how differences among
the treatment effects (τj, j = 1, 2, . . . , t, with �τj = 0) can be tested. This ANOVA table is
based on the linear model (see Chapter 2)

observation = mean + block effect + treatment effect + error,

or, more formally,

yij = μ + βi + τj + εij.

These three principles—replication, randomization, and blocking—represent the foundation
of all of experimental design and upon which all subsequent developments are based, not
just in agronomy but in all fields of experimentation including engineering, medicine,
and marketing. These principles ensure the validity of estimating experimental error,
provide a method of reducing experimental error, and establish a procedure for testing

TABLE 1.2

ANOVA for RCBD

Degrees of Sums of Mean Expected Mean

Source Freedom (d.f.) Squares (SS) Squares (MS) Squares (E(MS))

Blocks (B) b − 1 SS(B) MS(B) —
Treatments (T) t − 1 SS(T) MS(T) σ2

e + b�τ2
j /(t − 1)

Error (E) (b − 1) (t − 1) SS(E) MS(E) σ2
e

Total bt−1 SS(Total)



10 Handbook of Design and Analysis of Experiments

hypotheses about treatment effects. And they lay the foundation for the development of
other experimental designs.

1.3.4 Analysis of Covariance

In addition to blocking, “there is a second means by which precision may, in appropriate
cases, be much increased by elimination of causes of variation which cannot be controlled”
(Fisher 1935, 1971, p. 163). This method requires additional measurements, referred to as
concomitant variables or covariates, on the experimental units, such as initial weight of the ani-
mals in a feeding trial, number of plants on an agronomic plot, and yield of orchard trees
in the previous year. These measurements will then be used to correct or adjust the effects of
the treatment. “The process of calculating the average apparent effect on the experimental
value of the increase of one unit of the concomitant measurement is, in principle, extremely
simple” (Fisher 1971, p. 171). Already in 1935, Fisher proposed to use regression methods
to perform this adjustment, and he introduced the analysis of covariance as the appropri-
ate procedure, showing that the extra variation accounts for one degree of freedom (d.f.)
that is separated from the experimental error. If the linear relationship between covariates
and final measurement is strong, this will lead then to a substantial reduction in the error
variance.

1.3.5 Systematic and Trend-Free Designs

Although randomization is the fundamental principle in experimental design, there may
be situations where other ways of arranging the treatments may be more appropriate (see
Section 1.3.1). Cox (1951), for example, described a situation where several lots of wool are
being treated by different treatments sequentially over several weeks. Because the wool
deteriorates over time, there will be, superimposed on any treatment differences, a smooth
trend due to aging. He then asked the question: “In what order should the treatments be
applied?”

One way might be to divide the entire time period of the experiment into several blocks
and use a RCBD. This would eliminate part of the trend. Another recommendation is to
use the time points as covariates and analyze the data via analysis of covariance for a com-
pletely randomized design (CRD). Yet another method might be to repeat the treatments
in the same order over the duration of the experiment and analyze the data as a CRD. The
method proposed by Cox (1951) assumes a polynomial trend and then assigns the treat-
ments so that their estimated effects are independent, or nearly independent of the trend.
We call this an assignment of treatments orthogonal or nearly orthogonal to trend. For
example, for t = 2 treatments, eight time periods, and a linear trend, the arrangement of
the treatments might look as follows, where the first row represents the coefficients for the
linear trend with equally spaced plots (time periods):

−7 −5 −3 −1 1 3 5 7
T2 T2 T1 T1 T1 T1 T2 T2

This shows that the coefficients for each treatment add up to zero, indicating the required
orthogonality. The preceding linear trend coefficients represent the coefficients of the first-
order orthogonal polynomial (see, e.g., Fisher and Yates 1938, 1957, or, e.g., Beyer 1991,
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TABLE 1.3

Trend-Free Block Design

Block Treatments

1 1 2 3 4 5 6 7
2 6 4 2 7 5 3 1

3 7 5 3 1 6 4 2

P1 −3 −2 −1 0 1 2 3

Draper and Smith 1998). In this connection, we should mention that Fisher (1921) intro-
duced the use of orthogonal polynomials in statistics to investigate the trends of the effects
from quantitative treatments.

The ideas exemplified above have been extended, leading to what are now called trend-
free designs. Bradley and Yeh (1980) and Yeh and Bradley (1983) consider trend-free block
designs and give necessary and sufficient conditions for their existence. An example is
given in Table 1.3 for t = 7 in b = 3 blocks assuming a linear trend (P1).

For further developments, see for example, Yeh et al. (1985); Jacroux et al. (1995); Jacroux
(1998); and Lin and Stufken (1999).

1.4 Latin Square Principle

1.4.1 Latin Square Design

The fact that soil fertility was quite variable over an experimental field or, more gener-
ally, that experimental material often exhibited great variability became a major concern
when designing experiments. Fisher (1926, p. 510) argued that, for variety trials and sim-
ple manurial trials, “the problem of designing economic and effective field experiments
reduces to two main principles: (1) the division of the experimental area into plots as small
as possible subject to the type of farm machinery used, and to adequate precautions against
edge effect; (2) the use of arrangements [of the varieties or treatments] which eliminate a
maximum fraction of the soil heterogeneity, and yet provide a valid estimate of the resid-
ual errors. Of these arrangements, by far the most efficient, as judged by experiments upon
uniformity trial data, is that which the writer has named the Latin Square.” After the idea of
blocking in one direction, leading to the randomized block design, Fisher thus introduced
the idea of blocking in two directions, which led to various forms of Latin square designs
(see Chapters 3 and 10).

Initially, systematic arrangements in a square were used, in particular in Denmark and
Norway since 1872, in which the number of rows and columns were equal to the number of
varieties. For example, for five varieties, one such arrangement is given in Table 1.4a, where
the rows and columns represent the two directions of variability. This arrangement would,
if possible, be repeated several times. This particular arrangement is, however, such that
the distribution of the varieties (treatments) over the field is along diagonals. This may be a
drawback in that such an arrangement may mimic a possible fertility trend. To counteract
this, another systematic arrangement, known as the Knut Vik square, was introduced, which
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TABLE 1.4

Systematic Latin Squares

(a) A B C D E (b) A B C D E

E A B C D D E A B C

D E A B C B C D E A

C D E A B E A B C D

B C D E A C D E A B

for five varieties is given in Table 1.4b. It is obtained by moving each row forward two places
instead of one. This provides an even distribution of the varieties over the field, but Fisher
(1935) showed that this arrangement does not lead to valid estimation of error and called
it a biased design (see also Kempthorne 1952, p. 330).

In order to eliminate these problems, Fisher insisted that the term Latin square design
should be “applied only to a process of randomization by which one [square] is selected
at random out of the total number of Latin squares possible” (Fisher 1926, p. 510) (see
also Yates 1933b). For this purpose, he had enumerated all 4 × 4, 5 × 5, and 6 × 6 squares,
as these were the most important ones from a practical point of view. He wrote that the
Statistical Laboratory at Rothamsted would be able to “supply these, or other types of
random arrangements, to intending experimenters.” In their Statistical Tables for Biologi-
cal, Agricultural and Medical Research, Fisher and Yates (1938) then describe more practical
randomizations for Latin square designs of various sizes.

Fisher (1935) showed how the analysis of variance, which he had introduced earlier
(Fisher 1918, 1926), can be applied to estimate the experimental error for making com-
parisons between varieties or, more generally, between treatments (we shall use this
terminology henceforth to reflect today’s much wider use of experimental design). The
subdivision of the s2 – 1 d.f. among the observations from an s × s Latin square design is
given in Table 1.5.

It shows that the 2(s – 1) d.f. ascribable to differences between rows and columns and
representing the components of heterogeneity of soil fertility, which have been eliminated
in the field, are also eliminated from the estimate of error. Based on randomization the-
ory, this error is then used to test hypotheses about treatments (see also Hinkelmann
and Kempthorne, 2008). This method represents a correction of the faulty analysis of the
systematic squares used earlier (see Fisher 1935).

TABLE 1.5

Subdivision of d.f. for s × s Latin Square

Rows s − 1
Columns s − 1

Treatments s − 1
Error (s − 1) (s − 2)

Total s2 − 1
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1.4.2 Change-Over Designs

We have seen in previous sections how, in agronomic trials, the problem of the variability
of soil fertility was dealt with through the introduction of block designs and Latin square
designs. Using animals, for example in feeding trials, presented the researchers with similar
problems as the variability among animals is usually quite large. Thus, rather than using
each animal as the experimental unit, each animal was used as a block, and the individual
treatments were randomly assigned over several time periods. These designs were called
switchover designs (later also change-over designs or crossover designs; see Chapter 4). In the
case of dairy cows, however, this practice would lead to other problems because of a drop in
milk yield toward the end of the lactation period. These considerations have led to the use
of Latin square designs with rows as periods and columns as cows. For three treatments,
that is, different rations, Cochran et al. (1941) at the Iowa Agricultural Experiment Station
used the Latin square given in Table 1.6a for several, say s, groups of three cows using the
same or different time periods.

A possible partitioning of the d.f. in the analysis of variance (ANOVA) is given in Table
1.7. The effects included in the ANOVAare dictated by the underlying design, except for the
groups × rations effect, which is optional depending on the specific experimental situation
encountered.

Such an arrangement would be sufficient if there are long enough rest periods between
successive assignments of different rations so that there are no carry-over effects from a treat-
ment in one period to that in the next. For shorter change-over periods, however, one may
anticipate a carry-over effect of the ration given in the previous period for certain types of

TABLE 1.6

Latin Square SwitchOver Designs

(a)
Cow

(b)
Cow

Period 1 2 3 Period 1 2 3

1 A B C 1 B A C

2 B C A 2 A C B

3 C A B 3 C B A

TABLE 1.7

ANOVA for SwitchOver Design

d.f.

Source Same Periods Different Periods

Groups s − 1 s − 1
Cows within groups 2s 2s

Periods 2 2s

Rations 2 2

Groups × rations 2(s − 1) 2(s − 1)
Error 4s − 2 2s

Total 9s − 1 9s − 1
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measurement, such as total milk yield. In that case, the exclusive use of the Latin square
given in Table 1.6a is not satisfactory, since ration A is only preceded by ration C, B only
by A, and C only by B. In this situation, Cochran et al. (1941) recommended to use Latin
square Table 1.6a for half of the groups and for the other half use the Latin square, which
they called the complementary square, given in Table 1.6b. Now each ration is preceded by
every other ration the same number of times. For this reason, this design is referred to as
balanced for residual (carry-over) effects. It allows the estimation not only of contrasts of the
direct effects but also of contrasts of the residual effects, and because of the balancedness,
each set of standardized contrasts (one for direct effects and one for residual effects) is esti-
mated with the same precision. The ANOVA table now contains in addition to the sources
given in Table 1.7 also a source due to residual effects. The important point, however, is that
since this is a nonorthogonal design, the direct and residual effects can no longer be obtained
as simple averages but have to be estimated using the method of least squares for the basic
model (where the interaction terms are optional depending on the specific experimental
situation):

observation = mean + group effect + cow within group effect + period effect

+ direct effect + group×direct effect interaction + residual effect

+ group×residual effect interaction + error.

For testing hypotheses about direct and residual effects, partial sums of squares have to
be used. For alternative methods and models, see Jones and Kenward (2003).

The method for constructing balanced change-over designs for any number of treat-
ments, t, was formally developed by Williams (1949). He showed that for t even, one Latin
square is sufficient to achieve balance, whereas for t odd (as in Cochran’s case), two Latin
squares are necessary. Numbering the treatments as 0, 1, 2, …, t − 1, the construction is
based on a particular arrangement of the t treatments for cow (column) 1 and then adding
1 (mod t) to each treatment to obtain the arrangement for cow (column) 2 (Williams 1949;
Bradley 1958; see also Hinkelmann and Kempthorne 2005). These designs are often referred
to as Williams squares. An example for t = 6 (with columns as subjects and rows as periods)
is given in Table 1.8a.

For t odd, the first Latin square is constructed in the same way as the one for t even, and
the second square is the complementary square obtained by reversing the sequence from
the first square for subject t to obtain the sequence for subject t+1 and then developing the
remaining columns as described earlier. An example for t = 5 is given in Table 1.8b.

TABLE 1.8

Change-Over Designs

(a) 0 1 2 3 4 5 (b) 0 1 2 3 4 1 2 3 4 0

5 0 1 2 3 4 4 0 1 2 3 2 3 4 0 1
1 2 3 4 5 0 1 2 3 4 0 0 1 2 3 4

4 5 0 1 2 3 3 4 0 1 2 3 4 0 1 2
2 3 4 5 0 1 2 3 4 0 1 4 0 1 2 3
3 4 5 0 1 2
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The designs for t even are also known as sequentially counterbalanced Latin squares in
the psychology literature and as column complete squares in the mathematics literature.
For a discussion and overview of extensions of the class of Williams squares, see Isaac
et al. (2001).

An important feature of the designs mentioned earlier is that the number of treatments,
t, is the same as the number of periods (rows), p say. In some situations, it may, however, be
desirable, for practical and/or ethical reasons, to use designs where p < t. A simple method
to obtain such designs is to delete one or more periods from the full design described ear-
lier (Patterson 1950). Other methods are discussed by Jones and Kenward (2003), using,
for example, Youden square designs (see Section 1.6.4) or balanced incomplete block (BIB)
designs (see Section 1.6.1).

In other situations, it may be possible and desirable to use designs where p > t (for a
discussion, see Jones and Kenward 2003). One important case is where p = t + 1. Such
designs are used mainly for statistical reasons in order to remove the nonorthogonality
between direct and residual effects from the balanced designs with p = t. This is par-
ticularly important if the residual effects themselves are of interest to the researcher. The
nonorthogonality arises because each treatment is followed by every other treatment the
same number of times, except by itself. More efficient designs can be constructed by sim-
ply adding as an extra period the last period of the original design as suggested by Lucas
(1957) at North Carolina Agricultural Experiment Station. An alternative procedure is to
have a preperiod the same as the first period of the original design. These designs were
later called strongly balanced designs for residual effects (e.g., Hinkelmann and Kempthorne
2005). Omitting the observations from the preperiod in the analysis will lead to orthogonal
designs.

For a discussion of other designs with p > t, see Jones and Kenward (2003).
Further variations of change-over designs with carry-over effects from the preceding

period are designs that take into account second-order residual effects, that is, carry-over
effects from two preceding periods. Such designs were considered by Williams (1950), who
proposed a method of construction based on Græco-Latin squares (see Section 1.4.3).

1.4.3 Orthogonal Latin Squares

“Two Latin squares may be said to be orthogonal to each other if, when they are super-
imposed, every letter of one square occurs once with every letter of the other” (Bose 1938,
p. 323). If the letters of one Latin square are Latin letters and the letters of the other Latin
square are Greek letters, then superimposing these two Latin squares leads to what has
been called a Græco-Latin square (see, e.g., Fisher and Yates 1938). Græco-Latin square
designs can be used to eliminate variability in three directions, using rows, columns, and
Greek letters as the levels of three blocking factors and Latin letters as the treatments.

For any Latin square of size s (except for s = 2 and 6), it is possible to construct a set
of Latin squares, such that any two of them are mutually orthogonal (Bose et al. 1960).
Fisher conjectured that if s is a prime or a prime power, then there exist s − 1 mutually
orthogonal Latin squares. This conjecture was proved independently by Bose (1938) and
Stevens (1939). They also provided methods of constructing such sets, which Bose referred
to as hyper-Græco-Latin squares and Stevens as completely orthogonalized Latin squares. For
s not a prime or prime power, the number of possible mutually orthogonal Latin squares
depends on s and is at most s − 1.
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TABLE 1.9

4×4 Hyper-Græco-Latin Square

P1 P2 P3 P4

C1 Aα1 Bβ2 Cγ3 Dδ4
C2 Cβ4 Dα3 Aδ2 Bγ1

C3 Dγ2 Cδ1 Bα4 Aβ3
C4 Bδ3 Aγ4 Dβ1 Cα2

An example of a hyper-Græco-Latin square design for s = 4 was described by Box et al.
(2005) for an experiment with a Martindale wear tester, which is used for testing the wear-
ing quality of types of cloth. Four pieces of cloth can be tested simultaneously in one
machine cycle. The response is the weight loss of the test piece after being rubbed against
emery paper for 1000 revolutions of the machine. Specimens of four different types of cloth,
representing the treatments (A, B, C, D), are mounted in four holders (1, 2, 3, 4). Each holder
can be in any one of four different positions (P1, P2, P3, P4) on the machine. Each emery
paper sheet (α, β, γ, δ) was cut into four quarters and each quarter was used to complete
a single cycle (C1, C2, C3, C4) of 1000 revolutions. With holder, position, emery paper,
and cycle as the blocking factors and type of cloth as the treatment factor, the layout of the
experimental design (apart from randomization) is given in Table 1.9.

Since each factor accounts for three d.f., this design (with 16 observations) leaves no d.f.
for error in the ANOVA table. Therefore, in order to make this experiment work, from a sta-
tistical point of view, one needs to replicate the design given in Table 1.9. This is discussed
in detail by Box et al. (2005).

1.5 Factorial Experiments

“No aphorism is more frequently repeated in connection with field trials, than that we
must ask Nature few questions, or, ideally, one question at a time. The writer is convinced
that this view is wholly mistaken. Nature, he suggests, will best respond to a logical and
carefully thought out questionnaire; indeed, if we ask her a single question, she will often
refuse to answer until some other topic has been discussed” (Fisher 1926, p. 511).

1.5.1 Rationale: Efficiency and Comprehensiveness

With the preceding words, Fisher provides his rationale for carrying out factorial experi-
ments rather than the usual one-at-a-time experiments (or single-question method) common at
that time (see also Daniel 1973). He illustrates this with an agricultural field trial with win-
ter oats (Eden and Fisher 1927) using three treatment factors: type of nitrogenous manure
(M, S), amount of manure (0, 1, 2), and time of application (early, late). On the surface, this
is a 2 × 3 × 2 factorial, but all plots receiving the amount 0 are indistinguishable and act
essentially as a control, C. This is therefore an experiment with 9 (instead of 12) different
treatments, consisting of a 2 × 2 × 2 factorial plus control (Kempthorne 1952 refers to such
experiments as partially factorial experiments). The experiment was performed in 8 blocks of
size 12 as shown in Table 1.10.
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TABLE 1.10

Complex Experiment with Winter Oats

C 2 M Early 2 S Late C 2 S Late C C 1 S Early

1 S Early 1 M Early 1 M Late 1 S Late 2 M Early 2 M Late 1 M Early 1 M Late
C 2 M Late C 2 S Early C 1 S Late C 2 S Early

2 S Early 2 M Early C 1 M Late C 2 S Early 2 S Late 2 M Late
C 1 S Late 1 S Early 1 M Early 1 M Late C C 1 S Late

2 M Late C 2 S Late C 2 M Early C 1 M Early 1 S Early

2 S Early 2 M Late 1 S Early 2 M Early 2 S Late 2 S Early 2 M Early C

C C 1 M Late C 1 M Early 2 M Late C 1 M Late
2 S Late 1 M Early C 1 S Late C C 1 S Early 1 S Late

2 M Early 1 M Early 2 M Late 2 S Late 1 S Early C C 1 S Late

1 S Late C C 1 M Late 1 M Early 2 S Early 2 M Late C

1 S Early C 2 S Early C C 2 M Early 2 S Late 1 M Late

Source: Adapted from Fisher, R.A., J. Ministry Agric., 33, 512, 1926.

Fisher used this experiment to point out that “any general difference between M and S,
between early and late application, or ascribable to quantity of nitrogenous manure, can
be based on 32 comparisons, each of which is affected only by such soil heterogeneity as
exists between plots in the same block. To make these three sets of comparisons only, with
the same accuracy, by single question methods, would require 224 plots, against our 96.”

The important point here is that each observation from the factorial experiment is used
in several comparisons, whereas with the single-question method, one would need 32 plots
for each level of each factor to achieve the same accuracy for each comparison (assuming
the error variances are the same for both designs, say σ2

e ). For example, to assess the effect
of M versus S, we consider in each block comparisons of the observations for the treatments
(x, M, y) and (x, S, y), where (x, y) represents each combination of the different forms
(referred to also as levels) of the other two factors, amount of manure and time of applica-
tion, respectively. Thus, we have four comparisons in each of the eight blocks. The average
of these 32 comparisons represents an estimate of the differential effect of M versus S.
The variance of this estimate is 2σ2

e /32 (for a more detailed analysis of the results of this
experiment, see Eden and Fisher 1927). For the single-question method, we estimate the
differential effect of M versus S by comparing the means of the observations from two
treatments differing only with respect to the factor type of nitrogen, for example, (1, M,
early) versus (1, S, early). Similarly, if we add the treatment (2, S, early), we can estimate
the differential effect of the quantity 1 versus 2. And using the treatment (2, S, late), it is pos-
sible to estimate the effect of early versus late. In order for these estimates to have variance
σ2

e /16, we need 32 replications for each of the four treatments, whereas in the experimen-
tal setup of Table 1.10, each of the 8 factorial treatments is replicated only 8 times. Finally,
inclusion of 32 replications (plots) for the control C leads to 160 plots (rather than the 224
plots mentioned but not explained by Fisher) as a minimal design using the single-question
method, as compared to 96 plots for the factorial method.

Fisher (1935) refers to this as factorial experiments having greater efficiency: comparisons
are made with the same precision with a fraction of the observations that would otherwise
be necessary. Also, in addition to comparisons among individual factors, factorial experi-
ments can investigate possible interactions among two or more factors. He refers to this as
greater comprehensiveness, because this information cannot be obtained by the conventional
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method of changing one factor at a time or only at considerable expense over time and
under ideal conditions, which usually are not available for agricultural field experiments.
Even for a variety trial, as Fisher points out, it will be advantageous and even necessary
to include what he calls subsidiary factors, such as seed rate, drilling width, and amount of
seed. The inclusion of additional factors provides for wider inductive inference.

Frank Yates had joined Fisher in 1931 at Rothamsted Experimental Station and became
the head of statistics at Rothamsted Experimental Station in 1933 when Fisher was
appointed to a chair at University College London. Jointly, they put forth powerful and
what appeared to be convincing arguments for the use of factorial experiments (Fisher
1935; Yates 1935, 1937), not only in agriculture but in other areas of application as well
(see Section 1.8.1), but they encountered strong resistance and criticism. Part of this crit-
icism is best documented in the discussion of Yates’ paper delivered before a session of
the Royal Statistical Society (Yates 1935). Neyman (in Yates 1935, p. 235) wrote: “…I am
inclined to think that before trusting it [complex experimentation] so entirely as Mr. Yates
and many of the other speakers have done, it is desirable to produce some further evidence
as to its validity.” He criticized the use of main effects (represented by the comparison of
the effects of two different levels of one factor averaged over the level combinations of all
the other factors) as compared to simple effects (represented by the comparison of the effects
of two levels of one factor for particular level combinations of the other factors, as used
in the preceding single-question method) and the difficulty of detecting main effects and
interactions because of insufficient number of replications. He thereby reiterated an earlier
criticism of Wishart (1934), summarizing his remarks (p. 241) as follows: “…if the exper-
imenter is inclined to believe in the absence of troublesome interactions and thus in the
soundness of the method of complex experiments, I think it will be useful for him to real-
ize that the method is based on belief. Further, he should recognize what curious answers
may be given to the questionnaire if the number of replications is small and Nature chooses
to be frivolous and not behave as the experimenter expects her to do.” Another criticism
concerned the use of large blocks because of the large number of treatments, which might
lead to an increase in error. Before refuting the criticism by pointing to the higher efficiency
of factorial experiments and reliance on a series of experiments rather than a single exper-
iment as well as on systems of confounding (see Section 1.5.2), Yates made the following
general remark (p. 243): “A general survey of the remarks immediately brings out one fact
of considerable interest. Those speakers who are actually engaged in experimental work or
are in close contact with experimental workers, appear completely satisfied with factorial
design, while those who are not so engaged have raised several objections to the method.
Now if the method of factorial design were as fundamentally unsound, misleading, and
unreliable as the critics would have us believe, one would have expected some at least of
those who had most used it to have discovered the fact, both from bitter experience and
because they had at one time and another devoted a considerable amount of thought to it.
But this is not the case. I am encouraged, therefore, to believe that the force of these criti-
cisms is not perhaps as great as their volume would indicate.” In the end, factorial designs
and factorial experiments proved, of course, to be great achievements in the development
of experimental design (see Chapters 7 through 9).

1.5.2 Confounding

Heterogeneity in soil fertility or in experimental material in general requires the exper-
imenter to try to reduce experimental error as much as possible by using appropriate
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methods of designing the experiment. Since it is an empirical fact that the plots in smaller
blocks are more homogeneous than plots in larger blocks, it would be advantageous, in par-
ticular in factorial experiments with a large number of treatment combinations, to make use
of smaller blocks wherever possible. The question how to do this was answered by Fisher
(1935) with the introduction of the notion of confounding. The idea behind this notion is
that very often higher-order interactions are nonexistent or if they exist, “there would be
no immediate prospect of the fact being utilized” (Fisher 1971, p. 111). In such a case, blocks
within a replicate would be created such that the contrasts between blocks shall be contrasts
between such unimportant or nonexistent interactions. Fisher’s representation of the main
effects and interactions in a simple algebraic form makes this process very simple.

To illustrate this point, we consider the 23 factorial, that is, three factors (A, B, C) at two
levels (0, 1) each, with blocks of size 4. Following the notation introduced by Fisher and
Yates (see, e.g., Yates 1937), the eight treatment combinations are denoted by (1), a, b, ab, c,
ac, bc, and abc, where the correspondence between treatment combinations and factor-level
combinations is given here:

Treatment

Combination (1) a b ab c ac bc abc

Factor level A 0 1 0 1 0 1 0 1
B 0 0 1 1 0 0 1 1

C 0 0 0 0 1 1 1 1

Using the notation of Hinkelmann and Kempthorne (2005), we can write all the main
effects and interactions symbolically (Fisher 1935) as follows:

AαBβCγ = [a + (−1)α][b + (−1)β][c + (−1)γ]
4

,

where α, β, γ equal 1 if the corresponding factor is included in the main effect/interaction
or 0 otherwise. If we assume that the three-factor interaction ABC (i.e., α, β, γ =1), given by

4ABC = (a − 1)(b − 1)(c − 1) = abc − ab − ac + a − bc + b + c − 1,

is negligible, then the treatment combinations with a plus sign are assigned to units in one
block and the treatment combinations with a minus sign are assigned to units in the other
block; that is, we have

Block 1 : a, b, c, abc,

Block 2 : ab, ac, bc, (1).

Denoting the treatment combinations by (x1x2x3) with xi = 0, 1 representing the low and
high levels of factor i(i = 1, 2, 3), the aforementioned blocks 1 and 2 can be expressed as

Block 1: 100, 010, 001, 111,

Block 2: 110, 101, 011, 000.
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This arrangement, repeated in all replicates, allows the estimation of all main effects and
interactions other than ABC with equal variance. We emphasize that the treatments need
to be randomized independently in each block of each replicate.

This procedure is easily generalized to the general 2f factorial with blocks of size 2q or
to the 3f factorial and blocks of size 3q for any q < f , and Fisher provided examples of
that (Fisher 1935). Using group theoretical arguments, Fisher (1942, 1945) also provided a
simple method of constructing systems of confounding. He introduced the notion of the
intrablock subgroup, which represents the initial block from which all other blocks can be
derived quite easily. He also introduced the notion of partial confounding, whereby, for
example, one interaction is confounded in one replicate and another interaction is con-
founded in another replicate. To use the preceding example, suppose we were interested
in at least some information about the ABC interaction, we could construct a design in
which ABC is confounded in, say, replicate 1, and another interaction, say AB, is con-
founded in replicate 2. Then, in replicate 1, we would have the same blocks as given earlier,
but in replicate 2, the block arrangement would be as follows:

Block 3: (1), ab, c, abc,

Block 4: a, b, ac, bc,

or in alternative notation

Block 3: 000, 110, 001, 111,

Block 4: 100, 010, 101, 011.

This design would allow estimation of all main effects and interactions, but the variance
of the estimators for AB and ABC would be twice as large as the variances for the estimators
for the remaining effects. This fact is also reflected in the ANOVA tables given in Table 1.11,
where we consider the complete confounding system with 2r replications of blocks 1 and
2 and the partial confounding system with r replications of blocks 1, 2, 3, and 4, that is, 4r
blocks altogether in each design. Comparison of the expected mean squares (E(MS)) shows
again explicitly that the information on AB is less with partial confounding than with no

TABLE 1.11

ANOVA Tables for Systems of Confounding

Complete Confounding Partial Confounding

Source d.f. E(MS) d.f. E(MS)

Replication 2r − 1 2r − 1
Blocks within reps 2r 2r

A 1 σ2
e + 4r[A]2 1 σ2

e + 4r[A]2
B 1 σ2

e + 4r[B]2 1 σ2
e + 4r[B]2

AB 1 σ2
e + 4r[AB]2 1 σ2

e + 2r[AB]2
C 1 σ2

e + 4r[C]2 1 σ2
e + 4r[C]2

AC 1 σ2
e + 4r[AC]2 1 σ2

e + 4r[AC]2
BC 1 σ2

e + 4r[BC]2 1 σ2
e + 4r[BC]2

ABC 0 — 1 σ2
e + 2r[ABC]2

Error 6(2r − 1) σ2
e 5(2r − 1)+2(r − 1) σ2

e
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confounding of AB, that is, 2r[AB]2 versus 4r[AB]2, where [AB]2 (and similar expressions)
refers to the squared value of the effect AB as defined earlier.

1.5.3 Some General Results

The preceding example illustrates the basic principle of partial confounding and the
method of constructing such a system of confounding. This idea was then generalized to
include situations where more than two interactions were to be confounded with blocks,
either completely or partially. Fisher (1942) showed how combinatorics and group the-
ory can be used to construct appropriate designs and how to use the intrablock subgroup
to easily construct the other blocks for a given system of confounding. One important
result is that if two interactions, say ABCD and CDEF, are confounded with blocks, then
also what we call now the generalized interaction ABEF[=(ABCD)× (CDEF)= ABC2D2EF
and deleting any letter raised to the power 2] (see also Section 1.7.1) is confounded with
blocks. This imposes certain restrictions on the choice of appropriate interactions that
can be confounded with blocks if one wants to avoid confounding main effects and two-
factor interactions. Fisher showed that the block size determines how many factors can be
accommodated without having to confound main effects and two-factor interactions. For
a generalization of this result, see Hinkelmann and Kempthorne (2005, Chapter 11).

The mathematical theory of systems of confounding for symmetrical factorials, with
each factor having ps levels, with p being a prime number, was given by Bose (1947). His
discussion is based essentially on geometrical arguments by identifying the treatment com-
binations as points in a Euclidean geometry and the main effects and interactions as pencils
in lower-dimensional flats. A more algebraic presentation was provided by Kempthorne
(1947, 1952), who introduced an overparameterized model for the true (or expected) yield
of a treatment combination that is useful not only for constructing and evaluating systems
of confounding but also for the analysis of data from the actual experiment. His method
formalizes and extends the representation given by Yates (1937) (see also Cochran and Cox
1950, 1957), who referred, for example, in the 32 experiment to I- and J-components as part
of the two-factor interaction, which Kempthorne calls AB and AB2, respectively.

An extension of the principle of confounding is to make use of the variance-reducing
property of the Latin square and use systems of double confounding, whereby some effects
are confounded with rows and some with columns. In fact, this method is not confined to
arrays in a square but can be used also more generally in a rectangle (Fisher 1935; Yates
1937). As an example, consider the arrangement in Table 1.12 of a 25 factorial in a 4 × 8
rectangle, where ABC, CDE, and ABDE are confounded with rows and AB, CD, ABCD,
BDE, ADE, BCE, and ACE are confounded with columns.

The first row and the first column represent the intrablock subgroups, respectively, for
the two aforementioned confounding systems.

TABLE 1.12

Double Confounding

1 2 3 4 5 6 7 8

1 (1) ab ace bce abde de bcd acd

2 abe e bc ac d abd acde bcde

3 cde abcde ad bd abc c be ae

4 abcd cd bde ade ce abce a b
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1.5.4 Asymmetrical Factorials

Factorial designs considered in previous sections are referred to as symmetrical factorials,
which means that each factor has the same number of levels. Among these, the factorials
with 2 and 3 levels, that is, the 2f and 3f factorials, are of particular practical importance,
but the theory was extended to pf and sf factorials, where p is a prime number and s is the
power of a prime number (for details, see Hinkelmann and Kempthorne 2005). Practical
situations often require the use of designs where different factors have different numbers
of levels. These are referred to as mixed or asymmetrical factorials. Of particular interest
are 2f × 3g or 2f × 3g× 4h factorials. To construct systems of confounding for such facto-
rials is in general a much more complicated problem than that for symmetrical factorials
(see Hinkelmann and Kempthorne 2005). Yates (1937) and Li (1944) provided extensive
tables of what are now called balanced factorial designs (Shah 1958). Their feature is that for
some main effects or interactions, part of the information is confounded with blocks over
the entire design. This is different from the type of partial confounding discussed earlier,
where in any given replicate, one (or more) interaction(s) is (are) completely confounded.
As an example, consider the design in Table 1.13 for a 2 × 2 × 4 factorial in blocks of size 4
(Li 1944). Here, the levels of the factors are denoted by 0, 1, 2, and 3.

The result of the arrangement of the treatment combinations for factors A, B, and C
as given in Table 1.13 is that the interactions AC, BC, ABC are partially confounded with
blocks. More specifically, these interactions are estimated with efficiency 2/3, that is, 1/3 of
the information is lost due to confounding, whereas all other effects are estimated with full
efficiency or efficiency 1, that is, there is no loss of information. Another interesting result
is that this type of design represents a close connection between balanced factorial designs
and partially balanced incomplete block (PBIB) designs (see Section 1.6). More specifically, using
results established by Dean and John (1975) and Kshirsagar (1966), this is an EGD-PBIB(7)
design given by Hinkelmann (1964) (for more details, see Hinkelmann and Kempthorne
2005). One method of constructing some of the balanced factorial designs is through the
use of pseudo-factors (see Hinkelmann and Kempthorne 2005). For example, the four-level
factor C in Table 1.13 can be represented by a 22 factorial with factors C1 and C2 say, and
the design can be obtained by confounding AC1, BC2, and ABC1C2 in replication 1; AC2,
BC1C2, and ABC1 in replication 2; and AC1C2, BC1, and ABC2 in replication 3.

These results give an indication of the versatility and usefulness of factorial designs not
only in agricultural field trials but in other areas of scientific and industrial experimen-
tation as well. Other aspects and more details of factorial designs are given in Chapters 7
through 11. Also, for further discussion of factorial designs and their applications in various
scientific fields and industry, the reader is referred to a large number of textbooks, among

TABLE 1.13

Balanced Factorial Design

Replication 1 Replication 2 Replication 3

Block Block Block

1 2 3 4 1 2 3 4 1 2 3 4

000 010 100 110 000 010 100 110 000 010 100 110

011 001 111 101 111 101 011 001 101 111 001 011
102 112 002 012 012 002 112 102 112 102 012 002
113 103 013 003 103 113 003 013 013 003 113 103
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them are Box et al. (2005), Cox (1958), Dean and Voss (1999), Giesbrecht and Gumpertz
(2004), Hinkelmann and Kempthorne (2005, 2008), Montgomery (2012), Ryan (2007), and
Wu and Hamada (2009).

1.5.5 Split-Plot Experiments

A particular type of factorial experiment, dictated by practical circumstances, was
described by Yates (1935). It involved two factors, say A with a levels and B with b lev-
els, where factor A could only be applied to large plots and factor B could be applied
to smaller plots. For example, factor A may represent different types of soil preparation,
and factor B may represent different varieties. The experiment was arranged such that
the field was divided into a × r large plots to which the levels of factor A were randomly
assigned such that each level of factor A occurred r times. Then each large plot was sub-
divided into b subplots to which the levels of factor B were assigned randomly. For this
reason, such an experiment is referred to as a split-plot experiment consisting of whole plots
for factor A and split plots or subplots for factor B. The special feature of this design is that
there are two independent randomizations and factor A is applied in a CRD, whereas fac-
tor B is applied in a RCBD, with the levels of factor A representing the blocks. This leads
to two different types of tests: one for the main effect A and one for the main effect B and
the interaction AB, using the whole-plot error and the split-plot error, respectively (see also
Chapter 8).

Different experimental situations have led to different arrangements of this type. For
example, both factors may only be applied to large plots. Then the (rectangular) field could
be divided into large blocks in both directions, with the levels of factor A being applied in
one direction and the levels of factor B being applied in the other direction. Such a design
was referred to as a split-plot design in strips or, more recently, as a split-block design (see
Section 1.2.2) or a strip-block design in industrial experimentation (Vivacqua and Bisgaard
2004).

Another extension is to subdivide the split plots further into split-split plots that can
accommodate a third factor C, say. Thus, there are now three independent randomizations
and three types of tests: for (1) A, (2) B and AB, and (3) C, AC, BC, and ABC. The design is
referred to as a split-split-plot design.

There are many more variations of these types of designs. For a listing and classifica-
tion of such designs, see Hinkelmann and Kempthorne (2008). For more on split-plot-type
designs, see also Chapter 8. For new aspects of constructing appropriate split-plot-
type designs for industrial applications, see Vining (2012).

1.6 Incomplete Block Designs

In agricultural field experiments, it is generally possible to use blocks large enough to
accommodate all treatments in an RCBD or Latin square design. This may come, how-
ever, at the expense of accuracy of estimation, because the variability in soil fertility may
be quite large, leading to large experimental error. But “in some other experimental mate-
rial the groupings which most effectively eliminate heterogeneity are definitely limited in
numbers” (Yates 1936a, p. 122). Yates mentioned as examples of such limitation the number
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of pigs in a litter, monozygotic twins, or the number of leaves on a plant. When the treat-
ments have a factorial structure, this disadvantage may be overcome by employing systems
of confounding (see Section 1.5.2). This leads to the use of incomplete blocks and to a reduc-
tion in the variance of the estimates of treatment comparisons. But what should one do
in situations with a limited number of experimental units in natural blocks and a large
number of treatments that do not have a factorial structure?

1.6.1 Balanced Incomplete Block Designs

One answer to the question of how to modify the randomized block type of arrangement
in this situation was given by Yates (1936a, p. 122), who recommended a particular type
of arrangement that he characterized as follows: “In this modified type of arrangement the
number of experimental units per block is fixed, being less than the number of treatments,
and the treatments are so allotted to the blocks that every two treatments occur together
in a block equally frequently.” He called this type of arrangement a symmetrical incomplete
randomized block arrangement, which is now referred to as a BIB design (see Chapter 3). As an
example, consider the (nonrandomized) design, given by Yates (1936a), in Table 1.14, with
t = 6 treatments in b = 10 blocks of size k = 3 and with every two treatments occurring
together λ = 2 times in a block.

Yates provided a number of possible designs but emphasized that in many cases the
designs would have to be quite large to satisfy the basic equal frequency property. Many
more BIB designs were found after they were introduced by Yates (for some more complete
listings, see, e.g., Fisher and Yates 1938; Bose 1939; Cochran and Cox 1957; Raghavarao
1971; and Hinkelmann and Kempthorne 2005). Many of these designs can be obtained by
statistical packages (see Section 1.10.4). Of particular interest are BIB designs with blocks of
size 2 that are simply obtained by taking all possible combinations of size 2. Yates pointed
out that these designs are more efficient than the designs that had been used theretofore by
using one treatment as the control and comparing each other treatment against this control.
The BIB designs with blocks of size 2 have found wide application in biology, genetics,
psychology, and medicine (where they often are referred to as left-right designs because of
the application of treatments to left and right body parts).

Yates also argued that experimental arrangements are not likely to be of practical value
unless they are easy to analyze, and he showed that the analysis of data from a BIB design
is indeed quite simple, even though the BIB design is a nonorthogonal design in the sense
that the treatment effects are not independently estimated from the block effects. Using the
method of least squares (see Chapter 2) for the customary linear model for observations from
a block design, namely,

observation = mean + block effect + treatment effect + error,

TABLE 1.14

BIB Design

Block

1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 2 2 2 3 3
Treatments 2 2 3 4 5 3 4 5 4 4

3 4 5 6 6 6 5 6 5 6
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Yates derived explicit expressions for estimating linear functions of treatment effects and
for estimating the error variance from the ANOVA table. One important feature of the BIB
design is that all simple treatment comparisons are estimated with the same variance. He
further showed that the relative efficiency (RE) of the BIB design relative to the RCBD with
the same number of replications is given by

(1 − 1/k)σ2
RCBD

(1 − 1/t)σ2
BIBD

,

where k denotes the block size, t denotes the number of treatments, and σ2
RCBD and σ2

BIBD
represent the error variances for the RCBD and the BIB design, respectively. The ratio
(1 – 1/k)/(1 – 1/t) = (k – 1)t/(t – 1)k he called the efficiency factor of the BIB design, which,
since k < t, is less than one (see also Sections 1.9.1 and 1.9.2).

The analysis given by Yates (1936a) is based on intrablock comparisons between treat-
ments, but he argued (Yates 1940) that information about treatment effects can also be
obtained from interblock comparisons if block effects are considered to be random effects. He
referred to this as recovery of interblock information. Calling σ2

e the intrablock variance and
σ2

e + kσ2
b the interblock variance, where σ2

b is a measure of the variability among blocks,
he defined the weights w = 1/σ2

e and w′ = 1/(σ2
e + kσ2

b) and used them to obtain the com-
bined estimator of treatment differences as the weighted combination of the corresponding
intrablock and interblock estimators. The actual estimates of treatment comparisons are
obtained by using estimates of w and w′, or of ρ = w/w′. Yates showed how this can be
accomplished by using different forms of the ANOVAtable as indicated in Table 1.15, where
n denotes the total number of observations, b the number of blocks, and t the number of
treatments (Yates and other writers later changed t to v to indicate varieties).

In Table 1.15, the sums of squares SS(B), SS(T/B) (i.e., the sequential sums of squares for
the preceding observation model), and SS(Total) in the left part are obtained directly, and
SS(E) is then obtained by subtraction. In the right part, SS(T) is obtained directly, SS(Total)
and SS(E) are the same as on the left, and SS(B/T) is then obtained by subtraction, where
SS(T) and SS(B/T) are the sequential sums of squares for the ordered model

observation = mean + treatment effect + block effect + error.

The important features of these ANOVA tables are that (1) the mean squares MS(E) and
MS(B/T) can be used to estimate σ2

e and σ2
b , since

E[MS(E)] = σ2
e and E[MS(B/T)] = σ2

e + [(n − t)/(b − 1)]σ2
b ,

TABLE 1.15

ANOVA Tables for Incomplete Block Designs

Source d.f. Sums of Squares Source

Blocks ignoring treatments b − 1 SS(B) SS(B/T) Blocks eliminating treatments
Treatments eliminating blocks t − 1 SS(T/B) SS(T) Treatments ignoring blocks

Error n − b − t + 1 SS(E) SS(E) Error

Total n − 1 SS(Total) SS(Total) Total
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and (2) MS(T/B)/MS(E) provides a test for the equality of treatment effects using intrablock
information only. The estimation procedure for σ2

b is referred to as the Yates procedure and
the estimator of σ2

b as the Yates estimator (see Section 1.10.1 for other approaches).
Yates (1940, p. 325) concluded with some advice concerning the usefulness of BIB

designs: “In agricultural experiments the gain from the use of inter-block information will
not in general be so great as in similar quasifactorial (lattice) designs [see Section 1.6.2],
since complete replications cannot (except in special cases) be arranged in compact groups
of blocks. For this reason also, cases will arise in which the use of ordinary randomized
blocks will be more efficient than the use of incomplete blocks, whereas lattice designs
can never be less efficient than ordinary randomized blocks. …. Their [BIB designs] great-
est value is likely to be found in dealing with experimental material in which the block
size is definitely determined by the nature of the material. A further use is in co-operative
experiments in which each centre can only undertake a limited number of treatments.”

The preceding discussion should give the reader some idea how the necessity for IBDs
has evolved from practical considerations. Some further extensions are given in Sections
1.6.2 through 1.6.4. Beyond that, the notion of IBD has received considerable attention over
the years, and more modern results are being presented in Chapter 3.

1.6.2 Pseudo-Factorial Designs

According to Yates (1936b, p. 424), “a simple method [of dealing with the problem of com-
paring a large number of varieties and] of keeping the block size small is to select one or
more varieties as controls and to divide the rest into sets, each set being arranged with
the controls in a number of randomized blocks. Unfortunately this method has the dis-
advantage that comparisons between varieties in different sets are of lower accuracy than
comparisons between varieties in the same set.” To alleviate this problem partly and to
avoid the waste of experimental material by the controls, Yates (1936b) introduced what he
called pseudo-factorial or quasi-factorial designs.

For the simplest quasi-factorial design with t = p2 treatments (varieties), the treatments
are labeled by a pair of symbols (xy) with x, y = 0, 1, 2, …. , p − 1 (=q) and arranged in a
square or lattice (hence also the name lattice design even though this arrangement is not the
design itself) as follows:

00 01 02 ............... 0q
10 11 12 ............... 1q
20 21 22 ............... 2q

.

.

.
q0 q1 q2 ............... qq

Blocks of size p are then formed by first taking each row as a block (the X arrangement)
and then taking the columns as blocks (the Y arrangement), thus creating two replications
with p blocks each. In terms of the pseudo-factors X and Y, this means that the X main effects
are confounded with blocks in one replicate and the Y main effects are confounded with
blocks in the other replicate, but all the (p − 1)2 d.f. for interactions are unconfounded.
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This is, therefore, a system of partial confounding. We are, however, not interested in main
effects and interactions but rather in differences between treatments (varieties). Now, all
contrasts among treatments are estimable, but with different precisions. For this particular
setup, Yates showed that there are two types of treatment comparisons, one type being
estimated with full precision and the other type being estimated with half precision, that
is, twice the variance of the former.

Still other arrangements are possible. Consider, for example, the case p = 5: we could
superimpose on the 5 × 5 lattice a Latin square of size 5, and generate an additional repli-
cate with blocks formed by having all the treatments with the same Latin letter in the
same block. Since 5 is a prime number, we know that there exist 4 pairwise orthogonal
Latin squares, and each can be used as described earlier. This, together with the X and Y
arrangements, will lead to 6 replicates, each with 5 blocks of size 5. As a consequence of
this arrangement, each simple treatment comparison is estimated with the same precision.
For this reason, this design is called a balanced lattice design, which is a special case of a
BIB design. If p is not a prime or prime power, then the number of possible replicates is
restricted by the maximum number of existing mutually orthogonal Latin squares for p
(see Section 1.4.3), say q, leading to at most q + 1 replicates.

Yates (1936b) proposed a wide variety of lattice designs (for a concise tabulation, see, e.g.,
Hinkelmann and Kempthorne 2005). In addition to two-dimensional square lattice designs
discussed above, he discussed lattices for t = p1p2 when the treatments are arranged in a
rectangle with p1 rows and p2 columns, and the lattice design generated from this arrange-
ment consists of p1 blocks of size p2 (using the rows as blocks) in one replicate and p2 blocks
of size p1 (using the columns as blocks) in the second replicate. These designs, however, did
not find wide application. Their drawback is that if p1 and p2 are quite different, then the
error variances for the different block sizes may be quite different from each other, which
leads to complicated analyses. Yates (1939) also proposed three-dimensional or cubic lattices
with t = p3 in blocks of size p. In addition to blocking in one direction only, he further con-
sidered blocking in two directions, that is, confounding in two directions, which led him to
lattice squares and lattice rectangles. Extensions of many of the most commonly used lattice
designs were given by Kempthorne and Federer (1948a,b) and Federer (1955).

Another extension of the lattice designs introduced by Yates was given by Harshbarger
(1947, 1949, 1951). He considered the case of t = p(p − 1), which is of considerable prac-
tical value since it fills the gap between t = (p − 1)2 and t = p2. Specifically, Harshbarger
considered designs with blocks of size p − 1 and called these rectangular lattice designs. The
treatments again are labeled (xy) with x, y = 0, 1, . . . , p − 1 and x �= y and arranged in a
square array, illustrated here for p = 5.

— 01 02 03 04
10 — 12 13 14
20 21 — 23 24
30 31 32 — 34
40 41 42 43 —

The first replicate is then obtained by using the rows as blocks and the second replicate
by using the columns as blocks. This design is called a simple rectangular lattice with t = 20
treatments in 10 blocks of size 4, each treatment being replicated twice. Harshbarger also
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introduced a triple rectangular lattice by superimposing a Latin square of order p on this
array and deleting the diagonal. For this to work, however, the Latin square must be one
with a transversal along the main diagonal, that is, the cells along the main diagonal must
contain all of the p Latin letters. The third replicate is then obtained by using the Latin
letters to form the p blocks of size p − 1.

Lattice designs are, by their very nature, IBDs. Another property is that each replicate
contains all the treatment combinations (varieties). They are referred to as resolvable incom-
plete block designs (see also Chapter 3). The property of resolvability, introduced by Bose
(1942), is of particular importance in variety trials as argued by Patterson and Williams
(1976, p. 84): “Practical field conditions dictate that all designs used for these trials are
resolvable. Thus some important disease measurements are expensive and have to be
restricted to one or two replications. Again, large trials cannot always be completely drilled
or harvested in a single session. Use of resolvable designs allows these operations to be
done in stages, with one or more complete replications dealt with at each stage.”

In addition to the lattice designs described above, other resolvable designs were pro-
posed by Bose and Nair (1962) and by David (1967) with his cyclic designs. To provide
even more flexibility, Patterson and Williams (1976) introduced what they refer to as alpha
designs. Their algorithm allows for the construction of resolvable designs for any number of
treatments (varieties) t and block sizes k such that t is a multiple of k. Their designs include
some but not all square and rectangular lattices.

1.6.3 Partially Balanced Incomplete Block Designs

Realizing that practically useful BIB designs exist only for a relatively small set of param-
eters (t, b, k, r), Bose and Nair (1939) introduced a rather rich class of IBDs that they called
partially balanced incomplete block designs. The main difference compared to BIB designs is
that now simple treatment differences are estimated with different precisions according to
certain rules.

In its simplest and most intuitive and practicable form, there will be two different vari-
ances for the estimates of treatment differences. Using a well-defined association scheme, for
each treatment the remaining treatments are divided into first associates and second asso-
ciates. Each treatment has n1 first associates and n2 second associates, and each treatment
occurs together with its first associates in the same block (of size k) λ1 times and with its
second associates λ2 times, where λ1 or λ2 can be 0, but λ1 �= λ2. Denoting the estimator
for the treatment effect difference τu − τv by τ̂u − τ̂v any two treatments, Tu and Tv say, we
then have Var (τ̂u − τ̂v) = c1σ

2
e if Tu and Tv are first associates or c2σ

2
e if they are second

associates, with c1 �= c2. The most important condition for this result to hold is the fol-
lowing: if any two treatments Tu and Tv are ith associates, then the number of treatments
common to the jth associates of Tu and the kth associates of Tv is pi

jk, independent of the ith
associates Tu and Tv. To illustrate these concepts, we consider the following example (see
Clatworthy 1973):

Suppose we have t = 8 treatments and b = 6 blocks of size k = 4. Using the group-divisible
association scheme

1 5
2 6
3 7
4 8
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where two treatments in the same row are first associates, and otherwise are second
associates, we have n1= 1 and n2= 6. The matrices Pi= (pi

jk) are given by

P1 =
(

0 0
0 6

)
, P2 =

(
0 1
1 4

)
.

A group-divisible PBIB design with λ1= 3 and λ2= 1 is given by (with the rows representing
the blocks, before randomization of the treatments)

1 5 2 6
3 7 4 8
1 5 3 7
2 6 4 8
1 5 4 8
2 6 3 7

This design is also a resolvable design, because blocks 1 and 2, blocks 3 and 4, and blocks 5
and 6 each form a replicate of all 8 treatments.

Based on earlier results by Bose (1939) for BIB designs, Bose and Nair (1939) and
subsequently many other contributors provided an array of mathematical tools for the
construction of PBIB designs, such as geometrical configurations, finite Euclidean and
projective geometries, the method of symmetrically repeated differences, triple systems,
and orthogonal arrays (see Raghavarao, 1971; Street and Street, 1987; Hinkelmann and
Kempthorne, 2005). Bose and Shimamoto (1952) studied in detail the two-associate-class
PBIB designs, which, from a practical point of view, represent the most important PBIB
designs. Extensive tables of these designs were prepared by Bose et al. (1954) and enlarged
and revised by Clatworthy (1973).

Another large and important class of PBIB designs are the cyclic PBIB designs with
between 2 and t/2 associate classes. They were introduced by Kempthorne (1953) and
Zoellner and Kempthorne (1954) for designs with blocks of size k = 2. They were further
developed more generally by, for example, David (1963, 1965), David and Wolock (1965),
John (1966, 1969), and Wolock (1964). An extensive table of these designs was prepared by
John et al. (1972) (see also John and Williams 1995). For k = 2 these designs also became
known as paired comparison designs. Cyclic PBIB designs proved to be quite useful (see, e.g.,
Section 1.11.1) since (1) they are easy to construct, (2) they exist for a wide combination of
design parameters, and (3) they are easy to analyze.

Further developments led to many other types of PBIB designs with more than two
associate classes. Among them are the Kronecker product designs by Vartak (1955) (see
also Surendran 1968), m-associate class group-divisible designs of Roy (1953–1954) and
Raghavarao (1960), extended group-divisible designs by Vartak (1959) and Hinkelmann
(1964), cubic designs by Raghavarao and Chandrasekhararao (1964), and hypercubic
designs by Shah (1958) and Kusumoto (1965). For mathematical details of constructing
IBDs, see Raghavarao (1971) and Street and Street (1987). Later developments are discussed
in Chapter 3.

1.6.4 Youden Square Designs

The introduction of IBDs was an important step in conducting experiments with a large
number of treatments. The use of small blocks, either intentionally or dictated by the type
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TABLE 1.16

5 × 21 Youden Square

Plant

Pos. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 A B C D E F G H I J K L M N O P Q R S T U
2 B F K M S A O C D E L H U P I R J Q T N G
3 C N F O L G B S J H A P I Q R M T K U E D

4 D J U F Q I S N P O M T B A C E G H R K L
5 E R P T F H K M S U J B Q O L G C D A I N

of available experimental material, often leads to considerable reduction of experimental
error. Experimenting with tobacco-mosaic virus at the Boyce Thompson Institute for Plant
Research, Youden (1940, p. 228) wrote: “It is apparent that much depends upon an apt
selection of an arrangement which will take the fullest possible advantage of either known
or suspected similarities in the material or environment.” Using leaves of plants as exper-
imental units, he specifically referred to similarities of the leaves from a single plant and
similarities of the leaves in the same position on different plants. This led him (Youden 1937)
to use special arrangements of BIB designs with plants as blocks, arranging the treatments
such that each treatment occurred exactly once in each position. Such an arrangement is
part of a t× t Latin square, specifically a k × t rectangle, where k is the block size of the BIB
design. For this reason, these designs are referred to as incomplete Latin square designs or as
Youden squares, the latter name being proposed by Fisher. They thus provide for elimination
of heterogeneity in two directions, just as the Latin square design (see Chapters 3 and 10).

As an example, we consider the Youden square design of Table 1.16 that was actu-
ally used by Youden (1937) for 21 virus preparations on five leaves, each of 21 Nicotiana
glutinosa L. plants.

Youden square designs exist for all symmetrical BIB designs, that is, all BIB designs with
t = b can be arranged as Youden square designs (Hartley and Smith 1948). A listing of
Youden square designs is provided by Cochran and Cox (1957).

1.6.5 Comparing Treatments with a Control

In some situations, for example, variety trials, the emphasis of the experiment may be to
compare test treatments (varieties) with a control or standard. Even though this can be accom-
plished with any of the available designs by having one of the treatments as the control, it
seemed more appropriate to develop new designs that pay attention to the special role of
the control and that are more efficient for this type of comparisons. To serve this purpose,
several classes of such designs were developed.

An obvious choice was to reinforce or supplement an existing design, such as a com-
plete block or IBD with one or more replications per block of the control. Such designs are
referred to as supplemented balance designs (Hoblyn et al. 1954; Pearce 1960) or reinforced BIB
designs (Cox 1958; Das 1958).

A more specific approach was taken by Bechhofer and Tamhane (1981) when they intro-
duced the balanced treatment incomplete block design (BTIB), which is defined as a design
consisting of t test treatments and one control in b blocks of size k < t + 1 with the
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following properties: (1) each test treatment occurs together with the control λ0 times in
a block and (2) any two test treatments occur together λ1 times in a block. Tables of such
designs were provided by Bechhofer and Tamhane (1985). A discussion of the properties of
designs for comparing test treatments with controls is given by Hedayat et al. (1988) (see
also Chapter 3).

Further extensions of these designs involve the use of partially balanced treatment incom-
plete block designs (see Rashed 1984; Jacroux 2003; Hinkelmann and Kempthorne 2005) and
the inclusion of several controls (see Jacroux 2002, 2003).

1.7 Fractional Factorial Designs

“The use of a factorial set of treatment combinations has now become a widely accepted
means of investigating, within a single experiment, the effects on the experimental mate-
rial of several different treatment variants. The principles of factorial design have been
elaborated primarily for agricultural field experiments, but have been found valuable in
many other types of experimentation” (Finney 1945, p. 291). At the same time, there was
some concern about the large number of treatment combinations necessary for such exper-
iments and the practicality of carrying them out. Finney, in cooperation with Yates and
Kempthorne, began to discuss ways of reducing the number of treatment combinations,
and Finney (1945) introduced the notion of fractional replication, an important development
that opened up the possibility of using different fractions of the complete factorial, based on
different assumptions. This made the application of factorial designs much more practical
and, in turn, led to a much wider use of factorial experiments, not only in the agricultural
setting but particularly in industrial and manufacturing applications (see, e.g., Davies 1956;
Box et al. 2005).

1.7.1 Fractional Replication

The basic idea for considering only a fraction of all possible treatment combinations was
based on an argument often given by Fisher and Yates for justifying the use of nonreplicated
complete factorials, namely, that higher-order interactions are (1) generally of no interest
and (2) usually negligibly small, the latter supported by practical experience. The question
then is how to select a subset of all treatment combinations without sacrificing too much
information. Finney (1945) used the 2f factorial to develop a suitable procedure (see also
Chapters 7 through 9).

As an example, we consider the 23 factorial with factors A, B, C. The eight treatment
combinations (observations) of the full factorial allow the estimation of all the main effects
and interactions, representing seven estimable functions. With only a fraction of the treat-
ment combinations, the number of estimable functions will necessarily be reduced. If the
three-factor interaction ABC is assumed to be negligible, then it seems natural to consider a
fraction consisting of the treatment combinations that have, say, negative signs in the sym-
bolic representation of ABC (see Section 1.5.2) or, using the terminology of Kempthorne
(1952), that enter negatively into ABC. These treatment combinations are 000, 110, 101, and
011, representing a 1/2 fraction of the 23 factorial, denoted by 23−1. Since there are only four
observations, only three effects/interactions can be estimated, and each effect/interaction
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TABLE 1.17

Estimation of Effects/Interactions in a 23−1 Factorial

Effects

Mean A B AB C AC BC ABC

Treatments
000 + – – + – + + –
110 + + + + – – – –

101 + + – – + + – –
011 + – + – + – + –

(except the mean and ABC) is a linear contrast of the observations associated with the
four available treatment combinations. These contrasts can be obtained from Table 1.17,
where we list the signs for each treatment combination in the symbolic representation of
the various main effects and interactions.

It is obvious from Table 1.17 that in addition to the mean–ABC (i.e., the average of all the
observations), we can estimate the following three combinations of effects: A−BC, B−AC,
and C−AB. Thus, A is confused (using Finney’s terminology) or aliased with BC, B with AC,
and C with AB. Designs with these properties are generally not of practical value, unless
two-factor interactions are negligible. This example, however, illustrates the nature of frac-
tional factorial designs, in that various effects are aliased with each other and assumptions
have to be made in order to estimate the relevant effects.

Formally, the particular fraction as well as its alias structure is determined by the identity
relationship or defining relation. For the 23−1 factorial given earlier, this defining relation is
given by

I = ABC or more precisely I = −ABC,

which says that the fraction consists of all the treatment combinations that enter negatively
into ABC. Using this equation formally as a mathematical equation with I as the identity
and replacing every letter raised to an even power by 1, we obtain the alias structure by
multiplying each effect into both sides of the defining relation, such as

A = −A(ABC) = −A2BC = −BC.

This indicates, as shown earlier, that A−BC is estimable or, alternatively, that A is aliased
with BC.

Finney (1945) (see also Kempthorne 1947) showed that this procedure can be used to
obtain different fractions for the 2f factorial. For example, a 1/4 fraction of the 26 factorial,
or a 26−2, can be obtained by specifying a suitable defining relation, such as

I = ABCD = CDEF,

which means that the fraction consists of all the treatment combinations that enter with the
same sign into ABCD and CDEF. This yields 16 treatment combinations, and it is easy to
see that these 16 treatment combinations also enter with the same sign into the generalized
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interaction of ABCD and CDEF, which is formally obtained as (ABCD) × (CDEF) = ABEF.
With this the final defining relation is given by

I = ABCD = CDEF = ABEF.

Finney (1945) refers to the elements in the defining relation as the alias subgroup. The
reason, of course, is that from this relationship, we obtain the alias structure, such as

A = BCD = ACDEF = BEF,

AB = CD = ABCDEF = EF.

This can be continued until all 15 estimable functions of effects have been identified. The
preceding equations indicate, for example, that the main effect A is aliased with two 3-
factor interactions and one 5-factor interaction. If these can be assumed to be negligible,
then A is estimable. This will be the case with all other main effects as well. On the other
hand, the second equation shows that two-factor interactions are aliased with other two-
factor interactions, and judicious assumptions will have to be made if one wants to estimate
specific two-factor interactions (see Chapter 7).

These kinds of arguments were also extended by Finney (1945) and Kempthorne (1947)
to 3f−g fractions. As an example, consider the 34−2, that is, a 1/9th replicate of the 34 facto-
rial consisting of nine treatment combinations. Using Kempthorne’s (1947, 1952) notation,
a possible defining relation might be

I = ABC2 = ACD = (ABC2)(ACD) = (ABC2)(ACD)2.

In this defining relation, ABC2 and ACD are referred to as the independent interactions.
There are now two generalized interactions, obtained by multiplying the first independent
interaction into the second independent interaction and into the squared interaction. The
multiplication is then carried out formally that leads to

I = ABC2 = ACD = A2BC3D = A3BC4D2.

In this equation, each power is reduced modulo 3, dropping each letter raised to the power
0 and using the convention that the first letter of each interaction should be raised to the
first power, which is achieved by squaring the entire interaction term, as needed. Then the
final defining relation is

I = ABC2 = ACD = AB2D2 = BCD2.

It can be shown (see Hinkelmann and Kempthorne 2005, Example 13.4) that with the
resulting fraction, one can estimate the main effects for factors A, B, C, and D, assuming
that all interactions are negligible. Since each main effect accounts for 2 d.f., the four main
effects account for the 8 d.f. available from the nine observations.

The mathematics for the 3f−g fractional factorial laid the foundation for dealing with
regular fractions for the general sf factorial, where s is the power of a prime number
(see Kempthorne 1952; Hinkelmann and Kempthorne 2005). An important result was
given by Rao (1947), who established the relationship between fractional factorials and
orthogonal arrays (for further reading on orthogonal arrays, see Hedayat et al. 1999).
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Employing orthogonal arrays relaxes the necessity to use a number of treatment combi-
nations that is a power of s, which is a restriction when considering regular fractions. In
any case, however, for the practical application, Finney (1945, p. 301) advises: “Fractional
replication is a device which should always be used with caution, and skillful choice is
needed to ensure that only one of the several aliases of each degree of freedom is at all
likely to represent a real treatment effect.” Examples of a wide range of applications using
fractional factorial designs are given by Prvan and Street (2002).

1.7.2 Characterization of Regular Fractional Factorials

Since their introduction, fractional factorial designs have been used widely, in particular
in industrial and manufacturing applications. Because there are many choices for design-
ing fractional factorials, it seemed appropriate to provide some sort of classification for
them that would reflect their properties with respect to the estimation of effects, in par-
ticular main effects and two-factor interactions. The first important step in this direction
was made by Box and Hunter (1961a,b). They introduced the notion of the resolution of
a design as the lowest order of any interaction included in the defining relationship. For
example, if the defining relation contains a three-factor interaction and no main effects or
two-factor interactions, then the design is said to be a resolution III design. The important
consequence then is that some main effects are aliased with two-factor interactions. Hence,
those main effects can only be estimated if those two-factor interactions (plus some other
higher-order interactions) are negligible. In resolution IV designs, main effects are aliased
with three-factor interactions, and two-factor interactions are aliased with other two-factor
interactions. From an estimation point of view, resolution V designs are of major interest,
since they allow the estimation of main effects and two-factor interactions, assuming that all
other interactions are negligible. The drawback of these designs, of course, is that they can-
not be constructed with very small fractions. For example, for the 28 factorial, only a 1/4th
fraction with 64 treatment combinations can result in a resolution V design, whereas a 1/8th
or 1/16th fraction with 32 or 16 treatment combinations, respectively, can be obtained as a
resolution IV design. Chapter 7 provides a detailed account of the construction of resolution
III, IV, and V two-level designs.

Another important concept to distinguish between competing fractional factorials was
introduced by Fries and Hunter (1980). They wanted to distinguish between various
designs of the same resolution for the same number of factors. As an example, consider
the following 28−3 fractions of resolution IV, d1 and d2 say, given by the defining relations

d1 : I = ABCDEF = CDEG = ABFG = BDEH = ACFH = BCGH = ADEFGH,

d2 : I = CDEF = ABDEG = ABCFG = ABCEH = ABDFH = CDGH = EFGH.

The defining relation contains 5 four-factor interactions for d1 and 3 for d2. As a con-
sequence, in d1 24 of the 28 two-factor interactions are aliased with each other, and the
remaining 4 are aliased with higher-order interactions, whereas in d2 only 13 two-factor
interactions are aliased with each other, and the remaining 15 are said to be clear (Wu and
Chen 1992), i.e., aliased with three-factor or higher-order interactions. According to Fries
and Hunter (1980), d2 has less aberration than d1. Among all competing designs, the one
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with the smallest number of four-factor interactions in the defining relation is said to be a
minimum aberration design of resolution IV.

Still other criteria have been introduced to characterize and distinguish among compet-
ing designs, such as estimation capacity, projections of a design, estimation index, and generalized
minimum aberration. These criteria are useful not only for constructing regular fractional
factorials but also for constructing nonregular fractional factorials. Nonregular designs are
more flexible with respect to number of treatment combinations than regular designs as
they are not based on defining relations but mostly on orthogonal arrays (see Plackett–
Burman designs in Section 1.7.3). They also accommodate situations where different factors
have different numbers of levels (see, e.g., Addelman 1962). This leads often to rather com-
plicated alias structures, however. An excellent discussion of the aforementioned criteria
and the relationships among them pertaining to regular and nonregular fractional factorial
designs, without and with blocking, has been given by Chen and Cheng (2012). For more
details, see also Wu and Hamada (2009), Mukerjee and Wu (2006), and Chapter 9.

1.7.3 Main Effect Plans

Plackett and Burman (1946) posed the question how one should select n treatment com-
binations from a complete factorial such that the main effects will be estimated with the
same precision as if attention had been concentrated on varying the levels of a single fac-
tor throughout the n treatment combinations. An example of their effort is the following
design for 11 factors, each at 2 levels, in n = 12 assemblies (treatment combinations or
runs), where the rows represent treatment combinations and the columns represent factors
(the low and high levels are denoted by 0 and 1, respectively):

1 1 0 1 1 1 0 0 0 1 0
0 1 1 0 1 1 1 0 0 0 1
1 0 1 1 0 1 1 1 0 0 0
0 1 0 1 1 0 1 1 1 0 0
0 0 1 0 1 1 0 1 1 1 0
0 0 0 1 0 1 1 0 1 1 1
1 0 0 0 1 0 1 1 0 1 1
1 1 0 0 0 1 0 1 1 0 1
1 1 1 0 0 0 1 0 1 1 0
0 1 1 1 0 0 0 1 0 1 1
1 0 1 1 1 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0

This design is referred to as a main effect plan or more precisely as a saturated orthogonal
main effect plan (OMEP). The construction is based on the existence of Hadamard matrices
(see Hedayat et al. 1999). Plackett and Burman have shown that for the 2f factorial such
plans exist for f = n − 1 and n = 4q (q = 2, 3, . . .), although it is not known whether they
exist for all q (see Hedayat et al. 1999). Plackett and Burman have listed the actual designs
for some values of q (see also Chapter 9).

Another method of constructing OMEPs is based on Fisher’s (1942, 1945) procedure for
constructing the intrablock subgroup for systems of confounding. This subgroup is the
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OMEP, called the Fisher plan (it is worth mentioning at this point that the mathematical
ideas for regular fractional factorials and for confounding [Sections 1.5.2 and 1.5.3] are
essentially the same). The OMEPs are resolution III designs. For asymmetrical factorials,
Addelman and Kempthorne (1961) developed several methods of constructing OMEPs,
essentially extending Fisher’s method.

OMEPs have become a very important tool in exploratory studies, in particular when a
large number of factors have to be screened. The use of OMEPs and other highly fraction-
ated factorial designs (see, e.g., Tippett 1936) “has usually rested on an implicit hypothesis
of what we call factor sparsity. This hypothesis is that in relation to the noise only a small
proportion of the factors have effects that are large. The former will be called active factors”
(Box and Meyer, 1986, p. 11). Factor sparsity typically also implies effect sparsity, in that only
the main effects of the active factors and perhaps low-order interactions among them are
important.

1.7.4 Supersaturated and Search Designs

For screening a very large number of factors, f say, even OMEPs may not be practical
because they require too many treatment combinations. Moreover, assuming factor spar-
sity, as mentioned above, the main task then really becomes to select a small number, n
say, with n < f + 1, from the totality of all possible treatment combinations. Such designs
are called supersaturated designs. They are no longer orthogonal designs. Also, the effects
can no longer be estimated simultaneously but, based on the assumption of effect sparsity
and absence of factor interactions, some method of sequential regression analysis may be
appropriate.

Different methods of constructing supersaturated designs have been proposed. Among
them are designs found by computer search, first proposed by Booth and Cox (1962), for
the following pairs of (f , n): (16, 12), (20, 12), (24, 12), (24, 18), (30, 18), (36, 18), and (30, 24).
For more recent results see Gupta et al. (2010). Other methods are based on Hadamard
matrices (Lin 1993; Wu 1993; Butler et al. 2001; Gupta et al. 2008), on orthogonal arrays
(Fang et al. 2000; Liu and Lin 2009; Gupta et al. 2008), on BIB designs (Nguyen 1996; Butler
et al. 2001; Gupta et al. 2011), and on cyclic developments (Liu and Dean 2004; Georgiou
and Koukouvinos 2006; Georgiou et al. 2009). For more details see Chapter 9, and for an
overview of two-level supersaturated designs, see Kole et al. (2010).

The usefulness of OMEPs and supersaturated designs is based on the assumption that
essentially all interactions are negligible. In some cases that may be a questionable assump-
tion. This raises the question whether one can construct designs, which (1) consist of a small
number of treatment combinations and (2) allow the exploration of a limited, but unspec-
ified, number of low-level interactions. This led Srivastava (1975) to the development of
what he called search designs.

The most important classes of search designs are the main-effect-plus-one or resolution
III.1 plans, allowing the search of one active two-factor interaction, and the resolution
V.1 plans, allowing the search for one active three-factor interaction (in addition to all
two-factor interactions) (Srivastava and Gupta 1979; Srivastava and Ghosh 1976) from
among the totality of all such interactions. Optimal two-level designs were identified by
Ghosh and Tian (2006). A method for comparing search designs based on search proba-
bilities was proposed by Ghosh and Teschmacher (2002) (see also Sarkar and Chatterjee
2010).
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1.8 Industrial and Technological Experimentation

1.8.1 Early Use of Experimental Design

The experimental designs we have discussed so far were developed mainly in the con-
text of agricultural experimentation. Many of these ideas were accepted, however, also in
other fields of experimentation (see also Section 1.11), in particular in industrial produc-
tion. Tippett (1935, 1936, 1938), after having visited Fisher at Rothamsted, advocated the
use of experimental design when he joined the British Cotton Industry Research Associa-
tion’s Shirley Institute. This included the use of orthogonalized Latin squares (see Section
1.4.3) and factorial experiments. However, differences between agricultural and industrial
experimentation and reluctance on the part of production managers to conduct complex
experiments (see Hamaker 1955) led to a slow increase in the application of experimental
design in industry. One of the differences between agriculture and industry is the speed
with which results from experiments become available, generally much faster in indus-
try than in biological and medical sciences. For this reason, smaller experiments were
performed that required little time and needed less careful planning. In addition, since
variables could be controlled to a large extent, the results were much less subject to exper-
imental error, and hence, the analyses relied less on statistical arguments. An increase in
reported experiments, however, occurred in the 1950s using available designs. For refer-
ences to a large number of case studies, see Bisgaard (1992), and for examples of industrial
applications, see Hamaker (1955), Dean and Voss (1999), and Box et al. (2005). The latter
also emphasize graphical representation of experimental results and analyses, which is an
important requirement for engineers and managers (Hamaker 1955).

Most of the designs we have described are intended for comparative experiments, that is,
designs where the main interest is in comparing different qualitative or quantitative treat-
ments with respect to their effects or performance. This is not always of interest in industrial
experiments. There, one would like to investigate the relationship between treatments and
responses in the form of a response surface, that is, between input or independent and
output or dependent variables. Moreover, often one would like to use this relationship
to find the factor-level combination that gives the optimal (highest or lowest) response.
Methods that are directed toward this kind of investigation, using tools from experimental
design and regression analysis, are commonly known as response surface methodology (RSM).
Beginning with the seminal paper by Box and Wilson (1951), this started a new and fruitful
direction in industrial experimentation.

1.8.2 Basic Ideas of Response Surface Methodology

The basic ideas of RSM were essentially formulated by Box and Wilson (1951) as they
described the practical situation and presented methods on how to solve the problem of
“experimental attainment of optimum conditions.”

The response η of a process is assumed to depend on k standardized quantitative factors
x1, x2, . . . , xk, which can be measured or controlled exactly (we note here that we now use
k for the number of factors rather than f in order to conform to the notation used in RSM).
For the uth combination (u = 1, 2, … , n) of factor levels, we express this as

ηu = φ(x1u, x2u, . . . , xku;θ1,θ2, . . . ,θq) = φ(xu;θ),
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where θ1, θ2, … , θq are unknown parameters. The true yield η at any given point in the
operational region and the functional relationship φ are unknown. Instead, we have avail-
able only observed responses yu = y(x1u, x2u, . . . , xku) and shall attempt to approximate
φ(x;θ) by a polynomial function f (x1, x2, . . . , xk; β1, β2, … , βm) = f (x;β). This could be done
in principle by having observations over a fine grid in the operational region, but that is
not feasible from a practical point of view. Instead, we will be restricted to a relatively small
number of points (which are often referred to as runs or experiments) that will typically be
restricted to a smaller region, called the region of interest. Because of “unavoidable uncon-
trolled factors the observed response yu varies in repeated observations, having mean ηu
and variance σ2” (Box and Wilson, 1951, p. 2). Box and Wilson argued that the experi-
mental strategy to find the point (x0

1, x0
2, . . . , x0

k) in the experimental region, at which η is a
maximum or minimum, is influenced by

1. The magnitude of the experimental error;
2. The complexity of the response surface;
3. Whether or not experiments may be conducted sequentially so that each exper-

imental point may be designed using the knowledge gained from the previous
runs (experimental points).

In their words (p. 2), “Since the experimental error is small, small changes can be
determined accurately, and the experimenter may explore adequately a small sub-region in
the whole experimental region with only a few experiments. Also since the experiments
are sequential the possibility arises of using the results obtained in one sub-region to move
to a second in which the response is higher. By successive application of such a proce-
dure, a maximum or at least a near-stationary point of high response should be reached.”
As such, a method they introduced is what they refer to as the method of steepest ascent. To
apply the method of steepest ascent, they considered first-order polynomial models, and to
investigate the response surface at a near-stationary region, they considered second-order
polynomial models.

1.8.3 Response Surface Designs

Box and Wilson (1951) pointed out that their procedure leads to two types of errors: (1)
experimental error in estimating the function f (x; β) and (2) bias due to the inadequacy of
f (x;β) approximating φ(x;θ). To minimize these errors, singly or jointly, is essentially the
focus of response surface designs. Box and Hunter (1957) suggested the following basic
requirements of such designs:

1. Assuming that a polynomial f (x;β) of degree d approximates φ(x;θ) sufficiently
well, the design should allow f (x;β) to be estimated with satisfactory precision.

2. The design should allow a check of whether the chosen estimate of f (x;β) provides
a satisfactory fit to the response surface or whether a different polynomial may be
more appropriate.

3. The design should not contain an excessively large number of experimental points.
4. The design should lend itself to adequate blocking of the experimental points.
5. One should be able to amend the design in case the polynomial of degree d proves

to be inadequate and a polynomial of degree d + 1 needs to be fitted.



History and Overview of Design and Analysis of Experiments 39

To estimate the coefficients in first-order models, we use 2k factorial designs, or if they are
too large, we consider suitable fractional factorial designs. By suitable, we mean, of course,
that the design allows the estimation of main effects. Alternative designs called simplex
designs were introduced by Box (1952). In these designs, the design points are located at the
vertices of a regular k-dimensional simplex.

For the estimation of the coefficients of second-order models, one could, of course, con-
sider 3k factorials or resolution V 3-level fractional factorials. But even resolution V designs
contain an excessive number of points for the relatively small number of regression coef-
ficients to be estimated. Typically, one would like to estimate the linear, quadratic, and
linear × linear effects, utilizing both d.f. for the main effects, but only one d.f. from each of
the two-factor interactions. This may leave an excessive number of d.f. for testing lack of fit
and for error. Designs more suitable for this purpose have been developed over the years.

As one such design, Box and Wilson (1951) introduced the central composite design, prob-
ably the most commonly used design in RSM. In this design, each factor is used at five
different levels, but not all level combinations occur. Rather, the design consists of three
parts, as illustrated in Figure 1.2 for k = 2 and 3:

1. A factorial or cube part consisting of a full 2k factorial or a 2k−p fraction of at least
resolution V, each point being replicated, say, rF times.

2. An axial or star part consisting of 2k points on the axis of each factor at a distance
α from the center of the design, each point being replicated, say, rA times.

3. One or more, say n0, replications of the center point (0, 0, …, 0).

The total number of experimental runs then is n =2k−prF + 2krA + n0. Box and Hunter
(1957) added to this design the property of rotatability, which is automatically satisfied for
k = 1, but in general imposes certain conditions on the value for α, with α = √

2 for k = 2, for
example. Rotatability is a desirable property as it ensures that the variance of the predicted
response is the same for all points that are equidistant from the design center.

(–1, –1, –1)
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(0, 0, 0)

(1, –1, –1)
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FIGURE 1.2
Central composite designs. (a) k = 2 and (b) k = 3.
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Another important class of designs in this context are the Box–Behnken designs introduced
by Box and Behnken (1960). These designs use only three levels of each factor. They are
constructed by combining ideas from 2k factorial designs and IBDs (BIB or PBIB designs
with k treatments and b blocks of size m), resulting in b2m experimental points plus n0
center runs (for a general description, see Jo and Hinkelmann 1993). For further designs
and modifications of the designs described above, see Box and Draper (2007), Khuri and
Cornell (1996), Myers et al. (2009), and Chapter 5.

1.8.4 Mixture Experiments

A special and yet quite distinct application of RSM occurs in experiments with mixtures.
In such cases, the output η = φ(x;θ) does not depend on the actual input values, but rather
on the proportions to each other, represented by x = (x1, x2, . . . , xk). This means that x1 +
x2 + · · · + xk= 1 or, alternatively, 100%. An example may be the blending of k = 3 gasoline
and ethanol stocks to determine the fuel blend that gives the best gas mileage.

Following initial work by Claringbold (1955), a major impetus for research in this area
was provided by Scheffé (1958). He introduced the (k, m)-lattice design, referring to a col-
lection of uniformly spaced design points on a simplex (for this reason, the design is
now called a simplex-lattice design, see Cornell 2002). The input values xi are of the form
xi = 0, 1/m, 2/m, . . . , 1 subject to the condition given earlier. Thus, for example, the (3,
2)-lattice consists of the design points (x1x2x3) = {(100), (010), (001), (1/2 1/2 0), (1/2 0 1/2),
(0 1/2 1/2)}. Other commonly used mixture designs are simplex-centroid designs and axial
designs (for their definitions, see Cornell 1975, 2002).

Typically, the analysis of data from mixture experiments is based on polynomial models
of first or second degree, that is,

y(x) = β0 +
k∑

i=1

βixi + ε

or

y(x) = β0 +
k∑

i=1

βixi +
k∑

i=1

βiix2
i +

∑ ∑
i<j

βijxixj + ε.

Because of the dependency among the xi’s, the parameters associated with the various
model terms are not unique. To remove the dependency among the xi’s, we could write, for
example, xk = 1 − ∑k

i=1 xi and substitute this expression for xk into the preceding models.
For the first-degree model, this would lead to a model with parameters βi – βk, obscur-
ing the effects of the individual components. This becomes even more complicated for the
second-degree model. An alternative method of dealing with the dependence among the
xi’s is to use so-called canonical polynomials (Scheffé 1958). For the first-degree model,
such a polynomial is obtained by writing the original model as

y(x) = β0

⎛
⎝ k∑

i=1

xi

⎞
⎠ +

k∑
i=1

βixi + ε
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using the fact that �xi = 1. Combining terms leads to the model

y(x) =
k∑

i=1

β∗
i xi + ε

with β∗
i = β0 + βi (i = 1, 2, …, k). This model retains its symmetry and the β∗

i have a clear
meaning. For more details, we refer to Cornell (2002), Piepel and Cooley (2009), Sinha et al.
(2010), Zhang and Peng (2012), and Chapter 5.

In addition to the input variables x1, x2, . . . , xk, the experiment may also include so-called
process variables, say, z1, z2, . . . , zq, which also affect the output y, but are not connected
with the blending process itself. For example, in addition to the blending proportions of
gasoline and ethanol stocks, the output may also be a function of the type of car and driving
habits. This leads to obvious extensions of the aforementioned models, but at the same
time is bringing blocking and factorial designs into the picture. As a result, designing and
analyzing such experiments becomes more complicated. For a more general discussion, see
Cornell (2002, 2011) as well as some specific results given, for example, by Prescott (2004a,b)
and Goldfarb et al. (2004).

1.8.5 Computer Experiments

The experiments we have considered so far are physical experiments, which are carried out
in the real world, that is, on a piece of land, in the laboratory, or in a factory, but even they
can become quite complicated. We have seen earlier (see Section 1.7.4) how one can deal
with, for example, large numbers of input variables. In addition to a very large number of
factors, another complication may arise in the form of a complex relationship between input
and output variables, something that in, say, physics or meteorology may be expressed
mathematically in terms of a complicated set of differential equations. With the advent
of fast and powerful computers, these types of situations have been dealt with through
computer simulation in the form of computer experiments. See Chapter 16 for a history and
overview of computer experiments.

A computer program, incorporating methods of obtaining a numerical solution to the
problem at hand, is written to obtain from a set of input variables, say, x = (x1, x2, . . . , xk),
the possibly vector-valued output variable, say, y = f (x). According to McKay et al. (1979),
the output y often is available in the form of a graph y(t) as a function over time. From
a practical point of view, the problem may arise of what input values to choose. This is
discussed by McKay et al. (1979), who consider three methods that have intuitive appeal:
(1) random sampling; (2) stratified sampling, making sure that all areas of the sample space
of x are represented; and (3) Latin hypercube sampling, making sure that each input variable
xi (i = 1, 2,. . ., k) has all portions of its distribution represented by input variables. Each
form of sampling represents a design for the computer experiment, and Latin hypercube
sampling has become a preferred method (see Chapter 17). Still other designs are uniform
designs or distance-based designs. For a general discussion, see Sacks et al. (1989); Santner
et al. (2003); Lin et al. (2010); Morris (2012); and Chapters 16 through 19. For an interesting
application to defense and homeland security, we refer to Sanchez et al. (2012).



42 Handbook of Design and Analysis of Experiments

1.9 Efficiency and Optimality of Designs

As different designs were introduced that became progressively more complicated in order
to cope with different physical or industrial conditions, it was quite natural that methods
would be developed to assess which design would be better or more appropriate for given
experimental situations. To this end, different criteria would be developed, among them
the notions of RE, efficiency factor, and optimality.

1.9.1 Relative Efficiency

In agricultural field trials, it is important to understand the nature of the existing het-
erogeneity so that, if necessary, effective blocking can be used. In order to evaluate the
soil heterogeneity, the usual practice in the beginning of scientific experimentation was to
perform what are referred to as uniformity trials, that is, trials where only one treatment
(variety) was used so that the results were not affected by treatment effects. For obvious
reasons, this is, of course, not always a practical or economical method to follow. Rather
than performing a uniformity trial, Yates (1935) proposed the idea of actually performing
the intended experiment and obtaining retrospectively some information on how successful
the employed design had been. From a practical point of view, this information would be
useful only if this type of experiment were to be repeated subsequently. In order to assess
how successful a particular form of blocking had been, Yates (1935) introduced the notion
of RE. Specifically, he considered the situation of an experiment using a RCBD and then,
using the results from the experiment, assessed to what extent blocking had been success-
ful as compared to using a CRD, that is, no blocking at all. This information could be used
then for designing future experiments on the same field or, perhaps, similar fields.

Defining the RE of one design, d1, relative to another design, d2, as

RE (d1 to d2) = Efficiency d1

Efficiency d2

= Vard2

Vard1
,

where Vard refers to Var(�ciτ̂i), the variance of an estimated standardized treatment con-
trast �ciτi(�ci = 0, �c2

i = 1) for design d, Yates (1935) obtained an estimator for RE(RCBD
to CRD). Considering a conceptual uniformity trial and using the notation of Table 1.2 for
the RCBD actually used, he obtained

RE(RCBD to CRD) = [(b − 1)MS(B) + b(t − 1)MS(E)]/[(bt − 1)MS(E)].

For a detailed derivation, see Hinkelmann and Kempthorne (2008), who called this
expression the estimated RE.

The practical implication of RE is the relationship between the number of blocks in the
RCBD and the number of replications, r, for the CRD when using the same experimental
material. This relationship is given by r = b×RE. It implies that if RE > 1, then the num-
ber of replications for a CRD to achieve the same efficiency as the RCBD would have to
be RE times as large as the number of blocks, that is, the number of replications for the
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RCBD as used in the trial. These ideas can be extended to designs with increasing blocking
complexity.

1.9.2 Efficiency Factor

Another notion for comparing properties of different designs, particularly IBDs, is that of
efficiency factor. It compares, apart from the residual variance σ2

e , the average variance of
simple treatment comparisons for two competing designs (see Section 1.6.1). For example,
comparing an RCBD with r blocks and an IBD, both with the same number of experimental
units, the efficiency factor EIBD, assuming that σ2

e (RCBD) = σ2
e (IBD), is given by

EIBD = av. variance (τ̂i − τ̂j)RCBD/av. variance (τ̂i − τ̂j)IBD,

where the average (av) is taken over all possible combinations of i and j(i �= j).
If the IBD is a BIB design, then EBIB = (k−1)t/(t−1)k (Yates 1936), where t is the number of

treatments and k is the block size. EBIB is the upper bound for E, that is, the largest possible
value for the efficiency factor of an IBD with t treatments and b blocks of size k (Kempthorne
1956). If the IBD is a two-associate class PBIB design, then there are two efficiency factors:
E1 for comparisons between treatments that are first associates and E2 for comparisons
between treatments that are second associates. The overall efficiency factor is then given by

EPBIB = (n1E1 + n2E2)/(n1 + n2),

where n1 and n2 are the number of first and second associates, respectively (Bose and Nair
1939). The values for E1, E2, and EPBIB are listed by Clatworthy (1973) for making compar-
isons among competing PBIB designs. For example, for two PBIB designs, say, PBIB(1) and
PBIB(2), if EPBIB(1) > EPBIB(2), we would most likely choose PBIB(1) over PBIB(2), unless
practical considerations would suggest otherwise.

1.9.3 Optimality

The notion of an optimal design was first considered by Smith (1918) in the context of fitting
polynomial models. She considered experiments with the aim of studying the relation-
ship between treatments (inputs) and responses (outputs), as in response surface designs,
for example. And it is in this context that the concept of optimality has had the great-
est influence even though much of the development goes back to considering comparative
experiments.

Based on the early results by Wald (1943) and Ehrenfeld (1953) for Latin square-type
designs, Kiefer (1958, 1959, 1975a,b) set the stage for a much more rigorous and systematic
investigation of optimal designs. He introduced different optimality criteria, which are
based on different statistical properties concerning variances of the estimates of treatment
contrasts. These criteria can be discussed in terms of either maximizing a suitable function
of Fisher’s information matrix or minimizing a corresponding function of the variance–
covariance matrix, Vd, of a maximal set of orthonormal treatment contrast estimates, say,
P′τ̂. The most important optimality criteria are D-optimality where the determinant of Vd
is minimized, A-optimality where the trace of Vd is minimized, and E-optimality where the
largest eigenvalue of Vd is minimized, with d being a design within a class of competing
designs. The statistical meaning of these criteria is that D-optimality minimizes the gener-
alized variance or volume of the confidence ellipsoid of P′τ̂, A-optimality minimizes the
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average variance of the set P′τ̂, and E-optimality minimizes the maximum variance of a
single normalized contrast (for more details, see Chapters 2 and 3).

These three criteria do not always lead to the same optimal design, but Kiefer (1958)
showed that symmetric designs, that is, designs with their information matrix given by aI +
bJ (with a, b being constants, I being the t×t identity matrix, J being a t×t matrix with unity
elements) , are A-, D-, and E-optimals when their information matrices have maximal trace.
Examples of such designs include BIB designs, Latin square designs, and Youden designs.
From this, additional conditions led to the definition of universal optimality (Kiefer 1975a)
or Kiefer optimality (Pukelsheim 1993).

Since the introduction of A-, D-, and E-optimalities, other optimality criteria have been
introduced to serve particular purposes, in particular in the context of response surface
and regression-type designs. For a general discussion, see Pukelsheim (1993) and Atkinson
et al. (2007).

1.10 Matters of Analysis and Computation

The properties of balancedness and orthogonality play an important part in the develop-
ment of experimental designs. Not only are designs with these properties often optimal,
but also the computations required for estimating contrasts of treatment effects and for
obtaining the ANOVA table are quite simple, as they are based on the manipulation of
treatment means, block means, etc., conforming to the underlying linear model. Concerning
the notion of a linear model, it should be noted here that in the early work of Fisher and
Yates, we do not find such models stated explicitly. Analyses became more computation-
ally involved with the introduction of nonorthogonal designs, nonlinear models, and more
complex error structures. We note, for example, how Cochran and Cox (1950, 1957) go into
great detail to explain to the reader how the computations need to be done and how, in
certain cases, one can simplify matters.

1.10.1 Nonorthogonal Designs

The first examples of what we now call nonorthogonal designs or nonorthogonal linear mod-
els occur with the method of increasing precision through concomitant measurements (or
covariates) (Fisher 1935), that is, analysis of covariance, and with the occurrence of miss-
ing observations from an orthogonal design. In both situations, the computations become
more complicated, and Fisher (1935) explained in some detail how the analysis needs to be
performed. In the case of covariates, the estimates of the treatment effects (means) need
to be adjusted as well as the sum of squares for error. In the case of missing observa-
tions, Fisher (1935) described an algebraic method of estimating the missing values for
subsequent calculations and reducing the d.f. for the error sum of squares for each missing
observation (see also Yates 1933a). The problem of missing observations was dealt with for
the general situation by Coons (1957), who used (upon recommendation by M.S. Bartlett)
analysis of covariance techniques for this purpose. For several missing values, this becomes
computationally quite complicated using the calculators existing at that time.

A large class of nonorthogonal designs is that of IBDs, including BIB, PBIB, and BTIB
designs as described in Section 1.6 and Chapter 3. As illustrated by Yates (1936a) for the
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BIB design (see Section 1.6.1 and Table 1.15), there no longer exists a unique ANOVA table,
but rather two ANOVA tables with what are now called sequential sums of squares (see, e.g.,
Hinkelmann and Kempthorne 2008, Section 4.7; see also Section 1.6.1). One of them is used
to test hypotheses about treatment effects and to estimate σ2

e , and the other is used by
Yates (1940) to estimate σ2

b or the ratio ρ=σ2
b/σ2

e for the recovery of interblock information.
Although this estimation procedure is fairly simple to perform, the estimator itself is not the
most efficient. Other methods have been proposed; see, for example, Shah (1964), Graybill
and Weeks (1959), Graybill and Deal (1959), and Nelder (1968). The best estimation proce-
dure, however, is a modified maximum likelihood procedure proposed by Patterson and
Thompson (1971) for the general IBD, based on earlier work by Hartley and Rao (1967).
The special feature of the Patterson–Thompson procedure is that it is applicable also to
IBDs with block sizes not necessarily equal. Such cases may occur quite naturally in ani-
mal experiments when, for example, litters are considered to be blocks, which often are not
of equal size, a situation considered also by Cunningham and Henderson (1968).

Patterson and Thompson (1971, p. 545, 546) describe the basic idea of their method as fol-
lows: “The contrasts among yields are divided into two sets: (i) contrasts between treatment
totals; and (ii) contrasts with zero expectation, i.e. error contrasts. The method consists of
maximizing the joint likelihood of all possible contrasts in set (ii). Contrasts in set (i) are
excluded from the likelihood function on the grounds that, as long as treatment effects are
regarded as unknown, fixed, as opposed to random, and without restraints, no contrast
in set (i) can provide any information on error.” It is for this reason that the method has
become known as residual or restricted maximum likelihood (REML). Computationally, it is
more complex than the earlier methods, but as it has become part of several modern soft-
ware packages (see Section 1.10.4), it has become the most used method (see Littell 2002).
Its applicability goes much wider and beyond the analysis of experiments.

1.10.2 Complex Error Structures

The method of combining intra- and interblock information for the purpose of estimating
treatment effects can be accomplished in one step by using for the observation in the �th
plot of the jth block a mixed linear model of the form

yj� = μ + τj� + βj + εj�,

where j = 1, 2, . . . , b; � = 1, 2, . . . , kj; τj� denotes the treatment effect; βj the block effect,
which is assumed to be a random effect with mean 0 and variance σ2

b ; and εj� the error with
mean 0 and variance σ2

e . This leads to a covariance structure for the observations within the
jth block, with the variance–covariance matrix given by

V j = σ2
e Ikj + σ2

bJkj

(with Ikj being the kj × kj identity matrix and Jkj being the kj × kj matrix of unity elements)
and zero correlation for observations in different blocks. This represents a covariance struc-
ture that, for purposes of the analysis, leads to the method of generalized least squares
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requiring the estimation of two parameters, σ2
e and σ2

b . As an alternative method, this rep-
resents the prime example of REML estimation as developed by Patterson and Thompson
(1971).

The combined analysis of an IBD as described above is an example of an analysis based
on a mixed linear model. Another example is encountered sometimes in the context of agri-
cultural field experiments. Even though blocking is being used to eliminate variability,
additional variability, called spatial variability, may arise. Such variability can be eliminated
through further conditions on the design (see Section 1.11.2) or can be dealt with through a
special type of correlation structure for the error. One method was proposed by Papadakis
(1937), referred to as the nearest neighbor method. Basically, the yields of neighboring plots
in a single row, adjusted for treatment effects, are used as covariates. This method was
improved and extended to two dimensions by Bartlett (1978). Further developments were
proposed by Wilkinson et al. (1983) in the form of a smooth trend plus independent error model.
In it, they assumed that trend effects were made small by taking second differences of the
observations. Green et al. (1985) improved this method by using least squares smoothing.
Gleeson and Cullis (1987) unified previous approaches to spatial analysis by advocating the
use of the general class of autoregressive integrated moving average random processes using
REML for variance and covariance parameter estimation. For a comprehensive review, see
Stringer et al. (2012).

Another example of a complex error structure arises in the context of repeated measures
designs. For example, in order to compare the effectiveness of different drugs to control
blood pressure, different patients receive different drugs, and each patient’s blood pres-
sure is measured repeatedly over the course of a given time period. For a long time, these
designs were routinely analyzed as split-plot designs (often referred to as split-plot design
in time), even though it was realized that there may exist correlations between the repeated
measures, in particular when they were close together in time or space (Finney 1990a).
Geisser and Greenhouse (1958) showed that this analysis was correct if the correlation
structure was that of compound symmetry, defined as the same correlation between any two
measurements (as encountered in split-plot-type designs; see Section 1.5.5). Huynh and
Feldt (1970) extended the Geisser–Greenhouse result to a more general correlation struc-
ture given by the Huynh–Feldt condition, whereby the (k, �) element of the correlation
matrix is given by

σk� = λδk� + γk + γ�,

where δk� = 1 if k = � and = 0 otherwise, and γk and γ� are constants. These two conditions
are quite special and not always realistic. The introduction of REML and its incorporation
into software packages has made a routine application of different correlation structures,
such as AR(1), or spatial power correlation or even unstructured correlation, possible (see
Hinkelmann and Kempthorne 2008).

1.10.3 Graphical Methods

Graphical representations of data, either in their raw form or adjusted for certain extrane-
ous effects, have always been important in the data analysis process. This has been made
even easier with the advent of high-speed computers. In particular, residual plots are a useful
tool for checking certain assumptions concerning the model that has been used for the anal-
ysis. In the case of spatial models, for example, such plots may reveal additional trends or
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different trends in different blocks. They also may detect potential outliers that need to be
checked.

Graphical methods may also be used when numerical methods are not available. Such
a situation was considered by Daniel (1959) for the analysis of unreplicated saturated two-
level experiments, when no d.f. are available for estimating the error variance. Consider
a 2f−g fractional factorial and suppose that the m = 2f−g– 1 effects that can be estimated
with equal precision are main effects and two-factor interactions. Even though we think
that some of these effects are zero, we have no way of knowing which and we cannot
test that hypothesis because we do not have an estimate of σ2

e . Daniel (1959) proposed
a graphical procedure, the half-normal plot, to deal with this problem (see also Birnbaum
1959). The procedure consists of plotting the absolute values of the m estimates on the
upper half of normal probability paper, which can now be done routinely with the help
of computer packages. If, as assumed, most of the estimates are, in fact, estimating zero,
then they should fall on a straight line through the origin. So-called guard rails (Daniel
1959; Zahn 1975) are used to judge the significance of those effects/interactions that deviate
from this line. Then, from a new half-normal plot using only the nonsignificant effects, an
estimate of σ2

e can be obtained (Zahn 1975). For a discussion of using half-normal plots in
industrial applications, see Taylor (1994).

1.10.4 Statistical Software Packages

With the advent of modern computers, it did not take long before programs were writ-
ten to perform standard statistical analyses. In the early 1970s, a group of statisticians at
land-grant universities in the southern United States, called the University Statisticians
at Southern Experiment Stations, began to undertake a project to write and compile such
programs and make them generally available. Eventually, this project was transferred to a
private company, and the resulting product became known as the Statistical Analysis Sys-
tem (SAS), with SAS Institute becoming the company’s name. Many of the programs in
SAS are either directly devoted to experimental design, in particular programs to construct
particular designs, such as IBDs (PROC PLAN), systems of confounding, fractional fac-
torials (PROC FACTEX), response surface designs (PROC RSREG), and optimal designs
(PROC OPTEX), or indirectly as they can be used to analyze data from experimental and
observational studies, such as the General Linear Models Procedure (PROC GLM) or the Mixed
Models Procedure (PROC MIXED), which also incorporates REML estimation.

Concurrently with the development of SAS, a statistical software package was developed
at Rothamsted Experimental Station under the direction of John Nelder, head of the statis-
tics department. This program is called GENSTAT. Its primary objective was the analysis
of data from designed experiments, but many other procedures were incorporated as well.

In addition to these two major software packages, other statistical packages with pro-
grams for designing and analyzing experiments are widely available. Among them are
SPSS, BMDP, JMP, Minitab, Design-Expert, and R codes.

1.11 Areas of Application

As we have shown, many of the experimental designs have their origin in agricultural field
experimentation. Over the course of time, however, these ideas have found application in
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many other subject matter areas. Moreover, such applications as well as applications in
some subdisciplines of agriculture have led to modifications of existing designs, new ideas,
and new designs. In this section, we shall give some examples of such developments and
references.

1.11.1 Genetics and Breeding

Diallel crosses, introduced by Schmidt (1919), represent an important tool in plant breeding
and to a lesser extent in animal breeding. In such a program, a set of f females is crossed
with a set of m males in all possible combinations. This mating design is also known as the
North Carolina Design II (Comstock and Robinson 1952). For monoecious parents, where
each parent has male and female reproductive units, this design has been discussed exten-
sively by Griffing (1956). The goal is to assess the breeding potential of the individual lines
through their general combining abilities (Sprague and Tatum 1942) and to investigate the
type of gene actions present in the population through the estimation of genetic variance
components. To this end, offspring from this mating design are grown in an environmental
design, such as CRD, RCBD, and IBD, and the yield data of these offspring are then used
to estimate relevant genetic parameters.

In some cases, it is either not practical or too costly to perform all matings. This has led
to the development of incomplete mating designs, so-called partial diallel crosses (PDCs)
(Gilbert 1958; Hinkelmann and Stern 1960; Kempthorne and Curnow 1961). The construc-
tion of PDCs has been based on an analogy with IBDs, in particular cyclic designs with
blocks of size 2 (see Section 1.6.3), in the following way. For p parents, the complete diallel
cross (CDC) (without self- and reciprocal crosses) leads to p(p − 1)/2 crosses. This corre-
sponds to a BIB design with p treatments and p(p − 1)/2 blocks of size 2, the cross i × j
corresponding to a block containing treatments i and j, and λ = 1. This suggests that a PDC
corresponds to an m-associate PBIB design with p treatments, blocks of size 2, and param-
eters λ1, λ2, …, λm either 1 (indicating that the corresponding associates are combined in a
cross) or 0. The number of replicates per treatment is the number of times that an individual
is being crossed, and the number of blocks is equal to the number of crosses (see Curnow
1963; Hinkelmann and Kempthorne 1963). The offspring from these crosses are grown in
environmental designs, possibly IBDs (Agarwal and Das 1990; Gupta et al. 1995; Singh
and Hinkelmann 1995). Several methods of constructing optimal mating-environmental
designs have been proposed. For detailed discussion, see Singh et al. (2012).

The ideas of constructing PDCs have been extended to the construction of partial
three-way and four-way crosses. For the case of three-way crosses, Hinkelmann (1965)
established their correspondence with generalized PBIB designs as developed by Shah (1959)
and provided appropriate construction methods.

Using microarray technology to study gene functions and biological processes, new
designs had to be devised to perform and evaluate microarray experiments. Such experiments
allow researchers to measure the expression levels of thousands of genes in biological sam-
ples. Microarray experiments are two-phase experiments (Kerr 2003). In the first phase,
well-established designs are used, such as CRD and RCBD, depending on the question
of interest. The second phase of a microarray experiment, which involves measuring the
mRNA content of the tissue samples using microarrays (Nettleton 2012), has led to new
design notions and to new uses of familiar designs, such as sequential designs (Durrieu
and Briollais 2009) and factorial designs (Banerjee and Chatterjee 2008). An overview of
appropriate designs for two-color microarray experiments can be found in Nettleton (2012).
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1.11.2 Agronomy

Most agronomic field trials use one of the existing designs described in previous sections.
There are, however, situations where special conditions require additional attention with
regard to design and/or analysis. We refer here to trials where several crops are involved,
either simultaneously or sequentially. Basically, they fall into one of three categories: rota-
tion experiments, competition experiments, and intercropping experiments. Although different
in several ways, these types of experiments bear a close relationship. For the most part,
they are long-term experiments, and changes in external conditions may require changes
in the experimental setup. Hence, “flexibility of design is therefore required” (Patterson
1965, p. 171).

Rotation experiments have existed for a long time, but their statistical aspects were dis-
cussed first by Cochran (1939) and Yates (1949, 1954), who gave definitions of various forms
of such experiments. Design issues have to do with determining the number and type of
replications, such as replications of crop phases within or over different years (Cochran
1939); the inclusion of auxiliary treatments, such as different nitrogen factors, for com-
parisons between rotations; and testing of hypotheses about the underlying causes of the
effects of rotations (Patterson 1964). Special consideration must be given to plot sizes and
shapes for the different crops (Dyke 1974). And there are a number of issues concerning
the analysis (Yates 1954), such as whether or how to perform interim analyses, which
type of variate to analyze, and how to deal with serial plot correlations (Patterson and
Lowe 1970; Preece 1986). For details on designing and analyzing competition experiments,
see also Street and Wilson (1985) and Goldberg and Scheiner (1993).

As Mead (1979) pointed out, competition experiments occur in different complexities,
and in their most complex form, they are the same as intercropping experiments, that is,
growing several crops (most often two) simultaneously on the same piece of land. And
concerning intercropping, an age-old farming practice, Finney (1990b, p. 74) writes: “To
applied statisticians, data from experiments on intercropping are intrinsically interesting:
they introduce variants of problems of multivariate analysis, parameter estimation, and
experimental design.” He continues (p. 81) to state three principles of design for research
on intercropping with two crops, A and B, say: “(i) The treatments under test must include
sole crops as well as intercrops unless either the merits of intercropping are already so firmly
established that sole crops need not even be discussed or tradition so strongly favours inter-
cropping that no research findings will change it; (ii) for there to be any basis for discussing
the optimal ratio between the areas occupied by A and B, intercropping experiments must
include at least two such ratios (say 2:1 and 1:2) in addition to the sole crops; (iii) if the
argument for intercropping is to involve insurance against weather or other disasters to
one component, experiments must be conducted in several years.” Suitable designs are dis-
cussed by Federer (1993, 1999) for two and three or more crops, respectively. Intercropping
data are essentially multivariate, but the discussion continues whether the use of various
forms of (univariate) land equivalent ratios (LERs) is appropriate, where an LER is a measure
of the efficiency of an intercrop in terms of the land area required under sole cropping to
give the yields from the individual crops (see Mead and Riley 1981).

1.11.3 Medicine and Pharmacology

“A clinical trial is an experiment testing medical treatments on human subjects” (Piantadosi
1997, p. 10), reiterating the statement by Hill (1963, p. 1044): “In the assessment of a treat-
ment, medicine always has proceeded, and always must proceed, by way of experiment.
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The experiment may merely consist in giving the treatment to a particular patient or series
of patients, and of observing and recording what follows—with all the difficulty of inter-
pretation, of distinguishing the propter hoc from the post hoc.” In principle, the designs for
randomized controlled clinical trials are usually quite simple, but they are made more com-
plicated by the fact that human beings are involved who have to give their consent to be
included in the trial and that such trials are subject to regulatory conditions and monitored
by data safety monitoring boards (see Wittes and Yu 2012). Also the use of randomiza-
tion has not been without controversy (Rosenberger and Lachin 2002) as it involves ethical
issues. Clinical trials become even more complex since they usually are of a sequential
nature and often subject to monitoring. This leads to the use of adaptive designs and group
sequential methods when repeated interim analyses lead to changes in the trial design (see
Chow and Chang 2011; Leifer and Geller 2012; Yin 2012) and to the use of adaptive random-
ization procedures, such as Efron’s (1971) biased coin design (see Zhang and Rosenberger
2012 and Chapter 24).

A different kind of experiment, relative to those we have discussed so far, is that of bio-
logical assay or bioassay. This area is associated with the names of Bliss, Fieller, and Finney,
with, among many other things, introducing the method of probit analysis (Bliss 1934),
describing theory and practice of assays (Bliss and Cattell 1943), formulating what has
become known as Fieller’s theorem for making inference in bioassay (Fieller 1940), and
giving the first systematic account of the statistical principles for bioassay (Finney 1947). In
the words of Finney (1952, 1971, p. 1) “an assay is [thus] a form of biological experiment,
but the interest lies in comparing the potencies of treatments on an agreed scale instead
of in comparing the magnitudes of effects of different treatments.” A stimulus at different
doses is given to subjects, and the subsequent response of a measurable characteristic of
the subject, as a function of the dose, is of interest for comparing the potencies. The potency
is being obtained relative to a standard preparation of the stimulus in a direct or indirect
assay. Typically the dose–response relationship is modeled as a dose–response regression,
which may be linear or nonlinear. Designs are then required to estimate the dose–response
relationship for two major types of assays: parallel line assays and slope ratio assays. For par-
allel line assays, one considers designs with k nonzero doses, each for the standard and test
preparations, referred to as (k, k) designs. Analogous designs for slope ratio assays, referred
to as (1, k, k) designs, typically have additional observations at zero dose. Incomplete block
designs and crossover designs play an important role in this context. An interesting exam-
ple is a twin crossover design (Smith et al. 1944; Finney 1955), given in Table 1.18, where in
a basic design four subjects are given two doses from two standard and test preparations,
S1, S2, T1, and T2.

TABLE 1.18

Twin Crossover Design

Dose on Occasion

Subject 1 2

1 S1 T2
2 S2 T1
3 T1 S2
4 T2 S1
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For a detailed discussion of available designs and types of analyses, see Finney
(1978). For more recent developments concerning aspects of design, see for example,
Smith and Ridout (2003), Hanusz and Rutkowska (2006), and Donev et al. (2008).

1.11.4 Marketing

Stated choice or stated preference experiments have become accepted tools in marketing
research as well as in other areas where one wants to obtain information about products
or services that do not yet exist and where people are presented with options to choose
from. More specifically, “a stated choice experiment consists of a set of choice sets. Each
choice set consists of two or more options (or alternatives). Each respondent is shown each
choice set in turn and asked to choose the option they think is best (or worst) from among
the options presented in the choice set” (Street and Burgess 2012, p. 332).

A particular, and perhaps most commonly used, choice experiment is the so-called
generic stated preference choice experiment, in which it is assumed that all options in each
choice set, other than the none of these option, if present, are described by the same set
of attributes and each attribute can take one level from a finite set of possible levels. This
last statement suggests that attributes correspond to the factors of a factorial design and the
levels of the attributes correspond to the levels of those factors. An option in a choice set cor-
responds then to a particular factor-level combination. All possible options would therefore
correspond to the complete set of factor-level combinations. It is, obviously, impractica-
ble to present a responder with all those options. An obvious way to proceed then is to
use fractional factorials, and this is what Street and Burgess (2012) use to construct opti-
mal choice designs. This is made more complicated, however, since the attributes usually
have different numbers of levels, which leads to asymmetric designs. For a detailed discus-
sion of choice experiments, see Louviere et al. (2000), Street and Burgess (2007, 2012), and
Chapter 22.

1.11.5 Manufacturing and Product Development

Statistical methods, in particular experimental designs, have long been used to determine
optimal manufacturing conditions and properties; see, for example, RSM (Section 1.8.2). A
new philosophy, however, was introduced by Taguchi (1986). He introduced what is now
referred to as robust parameter design. The basic idea is that there are two types of factors
that operate on a system: control factors and noise factors. Control factors are set at a cer-
tain level and remain unchanged during the process, whereas noise factors may change
randomly during the process. Very often the noise factors are environmental factors and
hence capable of causing unwanted variation in the outcome of the process. “The goal of
robust parameter design is to design the process in such a way as to operate at the levels
of the control variables, that is parameters, that make the process as insensitive as possi-
ble to the random fluctuations of the noise factors” (Robinson and Anderson-Cook 2012,
p. 444).

There are different approaches to achieving that goal. Taguchi’s (1986) main influence
has been to consider not only the mean of the process but also the variance. To this
end, he combined the sample mean and sample variance into a single performance mea-
sure, which he called the signal-to-noise ratio (SNR). There are a number of possible SNR,
and the appropriate choice depends on the goal of the experiment (see, e.g., Robinson
and Anderson-Cook 2012). The SNR is then used to construct an optimality criterion.
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Taguchi combined fractional factorials in what he called inner and outer arrays to produce
optimal designs according to his criterion. This approach has been criticized for a number of
reasons (see e.g., Box 1988; Nair 1992), and other approaches were developed with respect
to the underlying design and the modeling of the data. Some of these approaches make
use of response surface methods. In dual response modeling (Box 1988; Vining and Myers
1990), two separate models are developed: one for the process mean as determined by the
control factors and the other for the process variance as determined by the noise factors.
For this approach, modifications to the crossed array designs were suggested by Steiner
and MacKay (2005) and Asilahijani et al. (2010). As an alternative to the dual-response
modeling, Welch et al. (1990) and Myers et al. (1992) proposed to use combined arrays
together with a single model response approach. Special forms of combined array designs
are mixed resolution and composite designs (Borkowski and Lucas 1997). For a detailed
discussion, see Ankenman and Dean (2003), Bursztyn and Steinberg (2006), and Robinson
and Anderson-Cook (2012).

1.12 Epilogue

Experimental design is an important feature of empirical research and industrial investiga-
tions. We have shown how the development started with simple agronomic trials, which
had practical intent and scientific foundation, but no statistical validity. Nevertheless, these
experiments were the building blocks from which Fisher and Yates began to formulate and
develop the basic principles of experimental design within a statistical framework. These
principles are still valid today and form the foundation of experimental design. Throughout
this chapter, we have commented and elaborated on many developments that have taken
place over almost 100 years. Similar reviews have been presented by Cox and Reid (2000)
along more technical lines and by Atkinson and Bailey (2001) distinguishing between agri-
cultural and industrial experiments. Ideas of reducing experimental error through more
sophisticated error-control designs (Hinkelmann and Kempthorne 2008); of increasing the
inference space through more complex treatment designs, such as various types of factorial
designs; and through the inclusion of subject-specific factors, referred to by Cox (1984) as
intrinsic factors, have been implemented over the years. Important strides have also been
made with respect to the analysis of data, in particular from nonorthogonal designs. We
have touched on many of these aspects, but it is obviously impossible to capture all the
developments in a single chapter. Many of the topics, however, will be discussed in subse-
quent chapters in much more detail, including some of the latest results. Throughout this
introductory chapter, we have made references to these chapters as well as to pertinent
contributions in the vast literature.

Other topics, which have not even been mentioned here, will be presented in some chap-
ters of this handbook, for example, designs for nonlinear models (Chapters 12 through 14).
In some cases they deal with fairly new topics. To tackle new problems, however, requires
an understanding of past developments. At the same time we must keep in mind one
reviewer’s comment: “Challenges in design and analysis of experiments change with
changing needs in the sciences, and we are in an era in which rapid changes in technol-
ogy make some of today’s hot challenges tomorrow’s history.” In any case, experimental
design is a constantly evolving part of statistical science and practice.
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2.1 Introduction

The linear model is exceptionally well documented throughout the statistical literature. The
theory is elegant, and applications in science, engineering, medicine, education, social sci-
ence, commerce and industry abound. Accounts are included in introductory texts such
as that of Kutner et al. (2004), the book devoted to regression by Draper and Smith (1998)
and matrix algebra-based texts such as the classic books by Scheffé (1959), Searle (1971),
Graybill (1976) and Rao (2001) and the more recent books by Ravishanker and Dey (2002)
and Khuri (2010). The theory of the linear model falls naturally into two parts, that for the
linear model of full rank and that for the linear model not of full rank. While certain con-
cepts relating to these two forms of the linear model intersect, the models nevertheless merit
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separate attention. The aim in this chapter, therefore, is to give concise accounts of each sep-
arately, emphasizing those aspects which have an impact on design and introducing some
key concepts relating to the construction of optimal designs.

The linear mixed model is, technically, an extension of the linear model which includes ran-
dom effects. In practice, however, the linear mixed model offers very much more in terms of
flexibility and scope than this extension might at first suggest. The basic ideas underpinning
the model are rooted in animal genetics but today have far-reaching application in partic-
ular in medicine, biology and education. There are a number of excellent texts devoted to
the linear mixed model, many of which also include accounts of the linear model itself.
These include the books by Duchateau et al. (1998), Pinheiro and Bates (2000) and Verbeke
and Molenberghs (2000) and the strongly theoretical classic texts by Searle et al. (1992)
and McCulloch and Searle (2001). In this chapter, the basic theory underpinning the linear
mixed model is introduced, and elements of design, specifically relating to two main areas
of application, are then explored.

2.2 Formal Definitions

The linear model can be specified quite straightforwardly by the equations

yi = f ′(xi)β + εi, i = 1, . . . , n, (2.1)

where yi is the ith observation taken at the k explanatory variables specified by the vector
xi = (xi1, xi2, . . . , xik), f (xi) is a (p + 1)× 1 vector of functions of those variables with
β= (β0,β1, . . . ,βp) a conformable vector of unknown parameters, and εi is an error term
which has mean zero and is not necessarily independent of other error terms. The functions
f (xi) have a leading element of 1 associated with the intercept or mean parameter β0 and
in addition comprise elements corresponding to the explanatory variables xi1, xi2, . . . , xik
and, quite commonly, to scalar functions of those variables such as xi1xi2, x2

i1 and x3
i2. The

explanatory variables themselves take values from a design space X which is determined
by the nature of the experiment. The specification of this design space and the attendant
selection of explanatory variables together provide the essential framework for a designed
experiment.

Equation (2.1) is generally referred to as the observational equation and can be readily
assembled in matrix form as

y = Xβ + ε,

where y = (y1, . . . , yn)′, the matrix X is n × (p + 1) with ith row f ′(xi) and ε = (ε1, . . . , εn)′
is distributed as a random vector with mean 0 and variance matrix �. For the linear model
of full rank, the matrix X is of full column rank, that is, rank(X) = p + 1 if n ≥ p + 1, and
for the linear model not of full rank, X is not of full column rank, that is, rank(X) < p + 1.
Linear models not of full rank are defined intrinsically, at least in general. However, such
models can also arise in practice, most commonly when data collection does not follow a
well-designed experiment.
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The linear mixed model extends the linear model to incorporate random effects and can
be specified quite simply as

y = Xβ + Zu + ε,

where u is a q×1 vector of random effects with mean 0 and variance matrix G, independent
of the error term ε, and Z is an n × q matrix of functions of explanatory variables whose
values are taken from a design space Z . Designs for this model are thus specified by the
matrices X and Z. However, it is not uncommon for the explanatory variables defining the
matrix Z to be fixed, that is, determined by the structure of the problem, and thus for design
issues to be dictated solely by the specification of the matrix X.

2.3 Linear Model of Full Rank

The theory of the linear model of full rank with error variables that are independently
and identically distributed provides the basis for theory relating to more general settings.
This theory, together with some attendant design issues, is therefore discussed in detail as
follows, and extensions to the model with errors that are heteroscedastic or correlated or
both are then considered.

2.3.1 Independent Errors with Constant Variance

2.3.1.1 Theory

Consider the linear model of full rank with error variables independently and normally
distributed with common variance σ2. Then the observations y are distributed as y ∼
N(Xβ,σ2I), where I is the identity matrix, and the log-likelihood is given by

l = l(β,σ2; y) = −n
2

ln(2π) − n
2

ln(σ2) − 1
2σ2 (y − Xβ)′(y − Xβ).

The maximum likelihood estimators (MLEs) of the unknown parameters β and σ2 can be
obtained by solving the likelihood equations ∂l

∂β = 0 and ∂l
∂σ2 = 0 (Khuri 2010). Thus,

the MLE for β, written β̂, is given by the solution to the normal equations X′Xβ̂ = X′y.
Since X has full column rank, the matrix X′X, of order p + 1 and rank(X′X) = rank(X) =
p + 1, is nonsingular and thus

β̂ = (X′X)−1X′y.

The MLE of σ2, denoted σ̂2, follows immediately as

σ̂2 =
(

y − Xβ̂
)′ (

y − Xβ̂
)

n
= y′ (I − X(X′X)−1X′) y

n
.
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Note that it follows from the form of the likelihood that β̂ is also the least squares estimator
of β. In addition, it can be shown, by an appropriate Gauss–Markov theorem, that β̂ is the
best linear unbiased estimator (BLUE) of β (Khuri 2010).

Under the assumption of normality, the distributions of β̂ and σ̂2 are given by

β̂ ∼ N(β,σ2(X′X)−1) and
nσ̂2

σ2 ∼ χ2
n−(p+1)

respectively. Thus, β̂ is unbiased, whereas σ̂2 is biased since E(̂σ2) = (n−(p+1))

n σ2. For this
reason, the least squares estimator

s2 =
(

y − Xβ̂
)′ (

y − Xβ̂
)

n − (p + 1)

is commonly used in place of σ̂2 to estimate σ2. Further, key properties of β̂ and σ̂2 follow
immediately. In particular, β̂ and σ̂2 are sufficient statistics for β and σ2 and in addition are
independently distributed.

Interest, particularly when constructing good designs, often focuses on linear functions
of the regression parameters β. It follows from the principle of invariance that a func-
tion c′β, where c is a constant vector conformable with β, has MLE c′β̂ and, from the
distribution of β̂, that

c′β̂ ∼ N(c′β,σ2c′(X′X)−1c).

More specifically, the fitted values are given by ŷ = Xβ̂ and are distributed as

ŷ ∼ N(Xβ,σ2X(X′X)−1X′),

where the matrix X(X′X)−1X′ is referred to as the hat matrix or the orthogonal projection
matrix, succinctly denoted PX. Similarly, the predicted value of a response ŷ0 at a specified
setting of the explanatory variables x0 is given by ŷ0 = f ′(x0)β̂ with distribution

ŷ0 ∼ N
(

f ′(x0)β,σ2f ′(x0)(X′X)−1 f (x0)
)

.

The information matrix for β and σ2 at the design specified by the explanatory variable
settings x1, . . . , xn, and hence by the matrix X, plays a crucial role in the design of exper-
iments for the linear model of full rank. In the present context, the information matrix is

given by −E
[

∂2l
∂θ∂θ′

]
where θ = (β,σ2) and thus by

⎡
⎢⎢⎣

1
σ2 (X′X) 0

0
n

2σ4

⎤
⎥⎥⎦
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(McCulloch and Searle 2001). Clearly, β̂ is an efficient estimator since Var(β̂) = σ2(X′X)−1

attains the Rao–Cramér lower bound. However, it can be shown that σ̂2 and indeed s2 are
not efficient for σ2.

Certain aspects of inference for the parameters β and σ2 have an impact on design, albeit
somewhat indirectly, and these are outlined here. Thus consider testing the null hypothesis
H0 : Hβ = h against the alternative HA : Hβ �= h where H is a q × (p + 1) matrix of full row
rank and h is a vector of constants such that h ∈ C(H) where C is the column space. Then
the likelihood ratio test is based on the test statistic

(
Hβ̂ − h

)′
(H(X′X)−1H′)−1

(
Hβ̂ − h

)
qs2

which follows an F distribution with degrees of freedom q and n − (p + 1) under H0 and a
noncentral F distribution with noncentrality parameter

λ = (Hβ − h)′(H(X′X)−1H′)−1(Hβ − h)/σ2

under HA. For a linear function c′β, the test statistic for H0 : c′β= c0 against HA : c′β �= c0
simplifies to

(
c′β̂ − c0

)2

s2(c′(X′X)−1c)
∼ t2

n−(p+1)

under H0, and the associated 100(1−α)% confidence interval for c′β can be summarized as

c′β̂ ± t�n−(p+1);α2
s
√

c′(X′X)−1c

where t�n−(p+1);α2
is the 100(1 − α

2 )th percentile of the tn−(p+1) distribution. Special cases

include c = ej corresponding to the jth individual parameter, with ej the (p + 1) × 1 vector
with jth element equal to 1 and all other elements 0, and c = f (xi) corresponding to the
fitted value of the ith observation. If several such linear functions are compared simultane-
ously, then intervals based on a multiple comparison correction, such as that of Bonferroni,
should be invoked. For the parameters themselves, the test statistic for H0 : β = 0 reduces
to the analysis of variance–based form

y′X(X′X)−1X′y
(p + 1)s2

where y′X(X′X)−1X′y is the regression sum of squares and the attendant 100(1 − α)%
confidence region for β is the ellipsoid specified by

(
β − β̂

)′
X′X

(
β − β̂

)
≤ (p + 1)s2F�

p+1,n−(p+1);α

where F�
p+1,n−(p+1);α is the 100(1 − α)th percentile of the Fp+1,n−(p+1) distribution.
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Explanatory variables quite often fall naturally into, or are considered to be in, two or
more groups. This setting is explored here for two groups with extensions to more than
two groups being immediate. Thus consider the linear model of full rank partitioned as

y = Xβ = X1 β1 + X2 β2 + ε (2.2)

where X = [X1 X2] and β1 and β2 are p1 × 1 and p2 × 1 vectors of unknown parameters
with p1 +p2 = p and with associated, conformable model matrices X1 and X2, respectively.
Note that the mean or intercept β0 is assumed to be incorporated into the parameter vector
β1. The results for the full model hold with obvious modification, but it is worth consid-
ering the information matrix and confidence regions for β1 and β2 a little more carefully.
Thus the information matrix for the parameters β′ = (β′

1,β′
2) has the form

1
σ2

⎡
⎣X′

1X1 X′
1X2

X′
2X1 X′

2X2

⎤
⎦ ,

and the information for β1 alone, that is, ignoring β2, is clearly proportional to X′
1X1. It

now follows quite straightforwardly that the information for β2 eliminating β1, that is,
with the parameter β1 unknown (Pawitan 2001), is summarized in the Schur complement
M�

22 = X′
2X2 − X′

2X1(X′
1X1)

−1X′
1X2. Furthermore, the test of the hypothesis H0 : β2 = β20

against HA : β2 �= β20 is based on the statistic

(
β̂2 − β20

)′
M�

22

(
β̂2 − β20

)
p2 s2 ,

and the associated 100(1 − α)% confidence region for β2 is given by

(
β2 − β̂2

)′
M�

22

(
β2 − β̂2

)
≤ p2 s2F�

p2,n−(p+1));α,

where F�
p2,n−(p+1);α is the 100(1 − α)th percentile of the Fp2,n−(p+1) distribution.

2.3.1.2 Design

In the context of the linear model of full rank, a design represents an allocation of ni obser-
vations to the ith distinct explanatory variable setting xi for i = 1, . . . , t where

∑t
i=1 ni = n,

and is denoted

ξn =
{

x1, x2, . . . , xt
n1, n2, . . . , nt

}
. (2.3)

Note that the explanatory variables xi, i = 1, . . . , t, are generally referred to as the support
points of the design or, collectively, as the support of the design. The design ξn defines
the matrix X, with ni rows of X corresponding to the setting or functions of the setting xi,
i = 1, . . . , t. Optimal designs, that is, designs which are in some sense optimal according
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to a specified criterion, are now sought. The immediate challenge therefore is to formulate
criteria which are meaningful and applicable.

In linear regression, optimality criteria relating to the precise estimation of the parame-
ters β and to linear functions of those parameters are of key importance and are commonly
based on the information matrix X′X/σ2 for β, with σ2 an unknown nuisance parame-
ter. It is sometimes possible to order the information matrices for β, or more precisely the
matrices X′X, for different designs according to their nonnegative definite differences, that
is, according to the Loewner ordering, but such an ordering is not in general readily iden-
tified (Pukelsheim 1993; Yang et al. 2011). Designs based on criteria which are appropriate
scalar functions of the information matrix are therefore sought.

In terms of the parameters β themselves, the criteria of D- and A-optimality have dom-
inated the literature. Specifically, D-optimal designs are those designs which minimize the
generalized variance of the parameter estimates β̂ or, equivalently, the volume of the confi-
dence ellipsoid for β and thus which maximize the determinant det(X′X), and A-optimal
designs are those designs which minimize the average variance of the estimates β̂ and
thus the criterion trace

(
(X′X)−1). DS-optimal designs provide a useful counterpoint to

D-optimal designs and are those designs which minimize the generalized variance of a sub-
set of the parameters β. Thus for the parameters β2 introduced earlier in the partitioned
model (2.2), a DS-optimal design is a design which maximizes the determinant det(M�

22).
In particular, the DS-optimality criterion plays a key role in design for model checking
(Atkinson et al. 2007).

The precise estimation of linear functions of the regression parameters, that is, func-
tions of the form c′β where c is a vector of constants, is of central interest. The variance of
c′β̂, the estimate of c′β, is given by σ2c′(X′X)−1c (Section 2.3.1.1), and the definition of a
c-optimal design as a design which minimizes this variance follows immediately. The cri-
teria of DA-, C- and E-optimality are built on c-optimality in an obvious way. Specifically,
a set of linear functions of β can be assembled row-wise as Tβ where T is an appropriate
matrix of constants, and the estimate Tβ̂ has variance matrix σ2T(X′X)−1T ′. Thus DA- and
C-optimal designs can be introduced as those designs which minimize the determinant
and the trace of the matrix T(X′X)−1T ′, respectively. The variances of the linear functions
embedded in Tβ depend on the scaling of the rows of T, and this can be countered by
introducing E-optimal designs as those designs which minimize the maximum variance
σ2c′(X′X)−1c subject to the normalizing constraint c′c = 1.

The predicted values ŷ0 (Section 2.3.1.1) are, of course, estimates of the linear func-
tions of the parameters of the specific form f ′(x0)β, and they play a key role in any
regression analysis. As a consequence, optimality criteria specific to the precise estima-
tion of the predicted responses have been formulated. In particular, designs minimizing
the maximum variance of f ′(x0)β̂, that is, designs minimizing the maximum of the func-
tion f ′(x0)(X′X)−1f (x0), over the design spaceX are termed G-optimal designs. In addition,
designs minimizing the average variance of the predicted responses over the settings in a
specified subset of the design space, say X0, that is, designs minimizing the criterion

�
x0∈X0

f ′(x0)(X′X)−1f (x0) dμ(x0) = trace

⎡
⎣(X′X)−1

�
x0∈X0

f (x0)f
′(x0)dμ(x0)

⎤
⎦

where μ is a probability measure on X0, are termed V-optimal if the subspace X0 comprises
a finite number of points and I-optimal otherwise.
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The criteria just discussed are aptly referred to as the alphabetic optimality criteria. There
are in fact many such criteria other than those already noted, but it is possible to cut across
this large family and to identify classes of criteria based on form and properties. Thus
the D-, DS- and DA-optimality criteria are all determinant based, the A-, c-, C-, V- and
I-optimality criteria all have the form trace

(
(X′X)−1L

)
for some matrix L and are termed

L-optimality criteria (Fedorov 1972), and the E- and G-optimality criteria are both mini-
max. In addition, certain of these criteria can be expressed in terms of the eigenvalues of
the matrix X′X, denoted λi, i = 1, . . . , p + 1. Specifically, D-optimal designs maximize the
product

∏p+1
i=1 λi, A-optimal designs minimize the sum

∑p+1
i=1

1
λi

and E-optimal designs max-
imize the minimum eigenvalue. Finally, it is readily seen that D- and DS-optimal designs
are invariant to linear transformations of the rows of X, that is, transformations of the form
XA where A is an appropriate nonsingular matrix of order p + 1. Specifically, in the case
of D-optimality, the determinant of the information matrix for the regression parameters
associated with such a transformation is given by det(A′X′XA) and, since A is constant
and nonsingular, is proportional to det(X′X). This invariance does not, at least in general,
extend to other criteria.

The discussion thus far has focused on designs with integer numbers of points allocated
to the explanatory variable settings, that is, designs of the form given in (2.3). Such designs
are used in practice and are referred to as exact designs. There is however no unifying
mathematical theory associated with optimality for exact designs. To compound matters,
the construction of optimal exact designs is invariably combinatorial in nature and neces-
sarily computationally challenging. In addition, the optimality or otherwise of a candidate
design cannot be readily demonstrated. In the late 1950s, Kiefer broke through the exact
design mind-set by introducing the notion of an approximate design and by developing
the elegant theory that is associated with such designs. His ideas are formalized in two
papers, a sole-author discussion paper in 1959 (Kiefer 1959) and a paper with Wolfowitz in
1960 (Kiefer and Wolfowitz 1960), and are now presented here, albeit somewhat briefly.

An approximate design is defined, quite straightforwardly, as a probability measure on
the design space X . If the measure comprises a finite set of points, then this definition can
be relaxed to give the design

ξ =
{

x1, x2, . . . , xt
w1, w2, . . . , wt

}
, (2.4)

with weights allocated to the distinct settings, that is, with 0 < wi < 1 for i = 1, . . . , t and
with

∑t
i=1 wi = 1. The formulation relates directly back to that of the exact design (2.3)

but with the proportions of observations allocated to the settings not necessarily being
ratios of integers. It now follows that the information matrix for β at an approximate design
ξ based on a finite set of points can be introduced as

M(ξ) = X′WX =
t∑

i=1

wi f (xi)f
′(xi)

where W is a diagonal matrix of the weights, that is, W = diag(w1, . . . , wt), and the nui-
sance parameter σ2 is taken without loss of generality to be 1. Furthermore, optimality
criteria based on this information matrix, and expressed as �(M(ξ)), or more succinctly
and depending on the context as �(ξ), can then be easily formulated.
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The theory associated with optimal approximate designs is now introduced. Convex
criteria play a key role and are defined as those criteria which satisfy the inequality

�[αξ1 + (1 − α)ξ2] ≥ α�(ξ1) + (1 − α)�(ξ2)

where ξ1 and ξ2 are approximate designs of the form (2.4) and 0 ≤ α ≤ 1. Then it can
be shown, by invoking Carathéodory’s theorem (Silvey 1980; Rockafellar 1996), that an
approximate design which minimizes a criterion that is convex over the space of all such
designs, �, can always be formulated as a design based on a finite number of support points
and furthermore that an upper bound of p(p + 1)/2 + 1 can be placed on that number. This
powerful result then leads directly into the formulation and proof of a suite of general
equivalence theorems (Fedorov 1972; Silvey 1980; Atkinson et al. 2007). The theorems are
presented here in broad form and without proof. Specifically, consider a convex criterion
�(ξ) with a directional derivative at ξ in the direction of the point x defined by

φ(x, ξ) = limα→0
�

(
M [(1 − α)ξ + αx]

) − � (M(ξ))

α
.

Then the theorem stated as follows holds, provided the design space X is compact.

Theorem 2.1 (A General Equivalence Theorem) The following three conditions characterize a
�-optimal approximate design ξ�:

1. The design ξ� minimizes �(ξ) over all approximate designs ξ ∈ �.

2. The design ξ� maximizes the minimum of the directional derivative φ(x, ξ) over all x ∈ X .

3. The minimum of φ(x, ξ) is given by φ(x, ξ�) = 0 and is attained at the support points of
the design.

The impact of the theorem is immediate and far reaching. One of the key features, and
arguably the most important, is that the conditions of the theorem provide a mechanism for
confirming the global optimality or otherwise of a candidate optimal design. In addition,
and to fix ideas, it is worth considering the special cases of D-, L- and E-optimality in a little
more detail. Thus the D-optimality criterion det(M(ξ)) can be reexpressed as the convex
criterion �D(ξ) = −ln

(
det(M(ξ))

)
, and the associated directional derivative of �D(ξ) at a

design ξ in the direction of a point x is given by

φD(x, ξ) = (p + 1) − f ′(x)M(ξ)−1 f (x)

where f ′(x)M(ξ)−1 f (x) is proportional to the variance of the predicted response f ′(x)β̂

and is termed the standardized variance function, written d(x, ξ). It thus follows that the
condition φD(x, ξ) ≥ 0 for all x ∈ X for the design ξ to be D-optimal, which arises from
the equivalence theorem, is equivalent to the variance-based condition d(x, ξ) ≤ p + 1 for
all x ∈ X and thus that approximate D-optimal designs are also G-optimal. In other words,
within the context of approximate designs, the D-optimality criterion which is convex and
tractable and the G-optimality criterion which is minimax and difficult to manipulate are
in fact equivalent.
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The L-optimality criterion is based on minimizing �L(ξ)= trace
(
M(ξ)−1L

)
and, as noted

earlier, includes A-, c-, C-, I- and V-optimality. The criterion can be readily shown to be
convex, and the attendant directional derivative of �L(ξ) at a design ξ in the direction of a
point x is given by

φL(x, ξ) = trace
(

M(ξ)−1L
)

− f ′(x)M(ξ)−1L M(ξ)−1 f (x).

The general equivalence theorem stated earlier can thus be invoked, thereby extending
the notion of L-optimality to approximate designs. However, directional derivatives of the
form φL(x, ξ) do not enjoy such a ready interpretation as that of φD(x, ξ).

The E-optimality criterion, which is based on minimizing the maximum of c′M(ξ)−1c
over all c such that c′c = 1, is clearly minimax, and as a consequence, the attendant
equivalence theorem must be delicately formulated. Specifically, the theorem states that
an approximate design ξ is E-optimal if and only if there exists a matrix E = ∑p0

i=1 αiziz′
i

such that

φE(x, ξ) = λmin − x′Ex = λmin −
p0∑

i=1

αi(x′zi)
2 ≥ 0 for all x ∈ X

where the terms αi are positive numbers which sum to 1 and the vectors zi comprise the
set of p0 normalized eigenvectors of M(ξ) corresponding to the smallest eigenvalue λmin
for i = 1, . . . , p0 and 1 ≤ p0 ≤ p + 1. The condition on φE(x, ξ) is subtle, somewhat circular
and not in general algebraically tractable, reflecting the fact that the E-criterion is minimax
and not amenable to differentiation, at least in a more conventional sense.

Finally, the notion of design efficiency merits special attention. Specifically, the D- and
L-efficiency of a design ξA relative to an optimally better design ξB are defined as the ratios

[
det(M(ξA))

det(M(ξB))

] 1
p+1

and
trace

(
M(ξB)−1L

)
trace

(
M(ξA)−1L

)

respectively, where ξA and ξB can be either approximate or exact designs. These efficiencies
are, in essence, ratios of variances, and their inverses can thus be interpreted as the numbers
of replications of design ξA required for that design to have the same variance as that of
design ξB. In addition, if an approximate optimal design is available for a particular setting,
then the design can be used as a benchmark, that is, as the base design ξB in the calculation
of efficiencies.

The criteria introduced here form the building blocks for many other regression-based
criteria, such as compound and constrained criteria, and criteria for augmented and
sequential designs. These somewhat more complicated criteria are covered in detail both
in Atkinson et al. (2007) and in later chapters of the handbook and thus, for the sake of
brevity, are not discussed here.

Some ideas relating to the construction of optimal designs are now outlined. More com-
plete details are given in Atkinson et al. (2007). Thus, for certain model settings, it is possible
to obtain explicit expressions for approximate optimal designs by invoking algebraic argu-
ments based on the relevant equivalence theorem. Some fascinating examples are given in
Fedorov (1972), Silvey (1980) and Atkinson et al. (2007) and indeed throughout the design
literature. However, more generally, optimal or near-optimal approximate designs must
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be found numerically using an appropriate constrained optimization procedure and the
global optimality or otherwise of the resultant candidate design then confirmed, again
numerically.

The construction of exact optimal designs is more challenging, and arguably more
intriguing, than that of approximate optimal designs. The essential problem is combina-
torial, and indeed Welch (1982) has shown that the construction of exact D-optimal designs
is NP-hard. In certain cases, it may be feasible to obtain the requisite globally optimal exact
design by, for example, complete enumeration, branch-and-bound search or subtle alge-
braic arguments. More generally, however, recourse must be made to heuristic algorithms.
The latter fall broadly into two classes, greedy algorithms such as those based on Fedorov-
type exchanges, candidate-free coordinate exchange and multiplicative updating of the
weights and nature-inspired algorithms including simulated annealing, genetic algorithms
and swarm intelligence. Further issues relating to algorithmic searches for optimal designs
are covered in Chapter 21.

A small example serves to fix ideas relating to design construction. Suppose that a cubic
polynomial is to be fitted to observations on the interval [−1, 1] in such a way that the
regression parameters are estimated as precisely as possible. Suppose further that only five
measurements can be taken at locations which can be specified to one decimal place. What
can the designer recommend? First, the approximate D-optimal design follows immedi-
ately from a suite of results based on elegant arguments involving differential equations
(Fedorov 1972) and puts equal weights on the four support points −1, − 1√

5
, 1√

5
and 1. This

design provides a benchmark for efficiencies but is not practically meaningful in that
the five observations cannot be distributed equally across the four support points of the
approximate design. Second, exact D-optimal designs comprising five points taken on the
interval [−1, 1] can be constructed numerically using a suitable constrained optimization
routine and, somewhat surprisingly, comprise the four support points of the approximate
design with any one of those points repeated twice. The loss in efficiency relative to the
benchmark approximate D-optimal design is small, just less than 5%. Finally, five-point
D-optimal designs based on measurements taken on a grid with spacings of 1 decimal place
can be readily found by complete enumeration and comprise the points −1, −.4, .4, .5 and
1 or, by symmetry, the points −1, −.5, −.4, .4 and 1. The loss of efficiency for these designs
relative to the five point D-optimal design based on continuous measurements is less than
0.5% and is surprisingly small.

Finally, an account of the linear model of full rank with independent error terms of con-
stant variance would not be complete without mention of response surface methodology
(RSM). The main thrust of RSM is to explore the surface generated by responses to several
variables, usually coded, by fitting first- and second-order polynomial models which pro-
vide an approximate rather than a mechanistic model for the data. More specific aims are to
examine the nature of the surface and to locate an appropriate optimum. The theory which
underpins RSM is that of the linear model of full rank, but complex and often conflicting
desiderata influence design. Thus the alphabetic criteria described previously which are
critically important in design construction within the regression context are subsumed in
a wealth of other criteria (Myers 1999). Specifically, RSM is used extensively in industry,
and as a consequence, criteria for good design are strongly driven by practical concerns
and include, inter alia, issues such as the nature of the variances of predicted responses
across the design region, cost-effectiveness, robustness to missing values and estimation of
pure error. Many of these requirements are not always easy to quantify and can be exam-
ple specific. There are a number of excellent texts on the topic of RSM, including those by
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Box et al. (2005), Khuri (2006) and Myers et al. (2009), and Chapter 5 provides a review of
recent design-related developments.

2.3.2 Heteroscedastic and Correlated Error Terms

Settings in which the error terms of the linear model of full rank have a variance matrix of
general form, that is, Var(ε) = �, are easy to formulate but fraught with problems relating
to the analytic and algorithmic construction of the attendant optimal designs.

Suppose first that the errors are independent and that the variance of an observation at
the generic setting x is of known form σ2/λ(x), where λ(x) is termed the efficiency func-
tion (Fedorov 1972). Then it is easy to see that the model can be reformulated as a linear
model with explanatory variables specified by

√
λ(x) f (x) and with error terms of constant

variance σ2. Thus all the results pertaining to the linear model of full rank described in
the previous subsection accrue. In particular, in the case of polynomial models in a single
explanatory variable, the theory of differential equations and related orthogonal polyno-
mials can often be invoked in order to derive analytic expressions for D-optimal designs,
and a synthesis of the results is given in the paper by Dette and Trampisch (2010).

Suppose now that the observations are correlated, that is, � = σ2R, with the correlation
matrix R a function of specified explanatory variables and of known form. This setting is
readily formulated and is nicely exemplified by a single time series with autocorrelated
errors. The analytic derivation of the associated optimal designs is however challenging,
and, to compound matters, numerical construction requires cunningly devised and special-
ized algorithms. An introduction to this area of design construction is given in Atkinson
et al. (2007), and a comprehensive account, together with some cutting-edge developments,
is presented in Chapter 6.

Suppose, more generally, that the error variables are normally distributed with a vari-
ance matrix � which is of known form but is now a function of unknown parameters as
well as explanatory variables. Then the log-likelihood can be expressed in the usual way as

−n
2

ln(2π) − 1
2

ln det(�) − 1
2
(y − Xβ)T�−1(y − Xβ)

and the information matrix for the parameters derived taking into account the parameter
dependencies of �. In so doing, however, three scenarios which depend on the interplay
between the unknown parameters in � and the regression parameters β should be recog-
nized. Specifically, if � depends on unknown parameters θ which do not include β, that is,
� = �(θ), it can be shown, by invoking some subtle matrix algebra, that the information
matrix for β and θ is block diagonal and is given by

⎡
⎣XT�−1X 0

0′ 1
2

{
trace

(
�−1 ∂�

∂θr
�−1 ∂�

∂θs

)}
⎤
⎦ , (2.5)

where the notation (Brs) is used to denote a generic matrix B with rsth element Brs. In
addition, if � depends on β alone, that is, � = �(β), the information matrix for β is then

XT�−1X + 1
2

{
trace

(
�−1 ∂�

∂βr
�−1 ∂�

∂βs

)}
,
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and if � depends on unknown parameters θ and also, and separately, on the regression
parameters β, that is, � = �(β,θ), then the off-diagonal block matrices in (2.5) are no
longer zero and are given by

1
2

{
trace

(
�−1 ∂�

∂βr
�−1 ∂�

∂θs

)}
.

These formulae simplify considerably in the case of independent observations, and full
details are given in the paper by Atkinson and Cook (1995). If the observations are corre-
lated, however, the major application of the setting is to be found within the context of the
linear mixed model and is discussed in Section 2.5.

2.4 Linear Model Not of Full Rank

The theory of the linear model not of full rank is somewhat more challenging and more
intricate than that of the linear model of full rank and relies heavily on the notion and
properties of the generalized or g-inverses of a matrix. Furthermore, this reliance permeates
into the formulation of applications based on the model. Note therefore that a g-inverse of
an n × k matrix A, not necessarily square, is a k × n matrix, denoted A−, which satisfies
the condition AA−A = A. It can be shown that such a matrix always exists but that it is
not necessarily unique. Note also that a unique g-inverse of A, termed the Moore–Penrose
inverse and denoted A+, does in fact exist and satisfies the three conditions A+AA+ = A+,
(AA+)′ = AA+ and (A+A)′ = A+A, in addition to the base condition AA+A = A. The
Moore–Penrose inverse finds powerful application in the theory of the linear model not
of full rank and can be readily computed by invoking the singular value decomposition.
Further details relating to g-inverses are included in, for example, the books by Pringle and
Rayner (1971) and Ben-Israel and Greville (2003).

2.4.1 Theory

Consider again the linear model y = Xβ + ε with ε ∼ N(0,σ2I) but now with the matrix
X not of full column rank, that is, rank(X) = r < p + 1 ≤ n. The normal equations

X′Xβ0 = X′y,

with the vector β0 representing a solution to these equations, follows immediately by
minimizing the sum of squares

S(β) = (y − Xβ)′(y − Xβ)

or, equivalently, maximizing the likelihood with respect to the parameter β. However,
rank(X′X)= rank(X)= r < p+1 and thus X′X is singular, and the solution β0 is not unique
(Khuri 2010). Indeed, there are infinitely many such solutions. To be specific, the normal
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equations are consistent since C(X′X) = C(X′), and X′y ∈ C(X′X), and a general solution
to them can be expressed as

β0 = (X′X)−X′y + [
I − (X′X)−X′X

]
z (2.6)

where z is an arbitrary vector (Pringle and Rayner 1971).
Since there are infinitely many solutions to the normal equations, it is clear that it is not

sensible to consider least squares or, equivalently, maximum likelihood estimation of the
parameters β. The question therefore immediately arises as to whether it is meaningful to
estimate any function of the parameters β. The issue can be approached by defining a linear
function of β, written c′β, to be estimable if and only if c′β0 is unique, that is, invariant to
the choice ofβ0. A further question then arises as to whether any such linear functions exist.
In fact, estimable functions are readily characterized as is shown in the following theorem.

Theorem 2.2 The linear function c′β is estimable if and only if c′ ∈ R(X) or, equivalently, if and
only if c′ ∈ R(X′X), where R denotes the row space.

The proof is short and elegant and is therefore included here.

Proof : Suppose that β0
1 and β0

2 are two different solutions to the normal equations.
Then X′Xβ0

1 = X′y = X′Xβ0
2 and thus X′X(β0

1 − β0
2)= 0, that is, (β0

1 − β0
2)∈ [R(X′X)]⊥,

where W⊥ denotes the orthogonal complement of an inner product space W . Now c′β is
estimable if and only if c′β0

1 = c′β0
2, that is, c′(β0

1 − β0
2)= 0, and thus if and only if

c′ ∈R(X′X) = R(X).

Thus, c′β0 is taken to be the least squares or, equivalently, the MLE of the estimable
function c′β. Furthermore, it can be shown that the function c′β is estimable if and only
if there exists an unbiased estimator of c′β which is linear in y. In fact, the existence of
a linear unbiased estimator for c′β can be used as the basis for an alternative, and often
more tractable, definition of estimability. It can also be proved that c′β0 is the BLUE of c′β,
thereby establishing a Gauss–Markov result (Khuri 2010). Finally, note that a set of func-
tions Tβ is termed estimable if and only if each individual function so defined is estimable
and thus if and only if R(T) ⊆ R(X). The maximum number of linearly independent
estimable functions is clearly rank(X) = r.

Many estimable functions can be identified by inspection of the rows of X or X′X. Thus,
the fitted values Xβ are clearly estimable, the least squares estimate of σ2,

s2 =
(

y − Xβ0
)′ (

y − Xβ0
)

n − r

is thus unique and a full analysis of variance can be formulated. However, identifying
estimable functions by eye is not always straightforward, and the subtle problem of estab-
lishing whether or not a given function c′β is estimable then arises. One approach is to use
the result

c′β is estimable if and only if c′ = c′ (X′X
)−

(X′X)
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to establish estimability (Pringle and Rayner 1971). More generally, symbolic algebra pack-
ages, as, for example, Mathematica (Wolfram Research 2014), provide matrix operations
such as Gaussian elimination that are performed exactly and can be used to confirm or
refute the estimability of a set of functions Tβ.

A solution to the normal equations is required in order to calculate the estimate c′β0

of an estimable function c′β. The most obvious approach is to set z = 0 in the general
solution (2.6) and to invoke β0 = (X′X)−X′y where (X′X)− is any generalized inverse of
X′X. There are a number of ways in which such a generalized inverse can be found. For
example, if X′X is partitioned so that the leading diagonal matrix X′

1X1 is nonsingular with
rank r = rank(X′X), then a g-inverse of X′X is given by

[
(X′

1X1)
−1 0

0′ 0

]
.

More generally, symbolic algebra packages such as Mathematica (Wolfram Research 2014)
and GAP (GAP 2014) provide explicit expressions, and programming languages such as R
(R Development Core Team 2014) and MATLAB� (MATLAB 2014) provide numeric results
for the Moore–Penrose inverse of a matrix.

A second approach to finding a solution to the normal equations is to impose a con-
straint Hβ0 = h directly on the equations themselves. The matrix H must necessarily be
a row complement of X′X or equivalently of X, that is, H must be a q × (p + 1) matrix
of rank p + 1 − r which satisfies R(X) ∩ R(H) = ∅. In certain cases, such as the com-
pletely randomized design, it is possible to impose the constraints by inspection, that is,
by hand, but more generally, a solution to the normal equations based on H is given by
β0 = (X′X + H′H)−1X′y. A particularly useful choice of H is an orthogonal complement of
X of full row rank, that is, a row complement of X satisfying H′X = 0 with q = p + 1 − r.

The matrix (X′X + H′H)−1 is a g-inverse of X′X. In fact, more generally, the two app-
roaches to finding a solution to the normal equations, that of finding a g-inverse of X′X
and that of imposing a constraint on the normal equations, can be shown to be equivalent.
However, the two approaches are subtly different in implementation and are valuable in
somewhat different contexts.

In many settings for which the linear model not of full rank is appropriate, the explana-
tory variables fall naturally into two or more groups. The partitioned form of the model and
the attendant model matrix therefore play a key role in the design and analysis of an exper-
iment. Some notions relating to the normal equations and to estimability for the model
comprising two groups of explanatory variables are therefore introduced here. Specifically,
consider again the partitioned model y = Xβ = X1β1 + X2β2 +ε but now with the matrix
X = [X1 X2] not of full rank. Then the normal equations can be expressed succinctly as

[
S11 S12

S21 S22

][
β0

1

β0
2

]
=

[
X′

1y

X′
2y

]

where S11 = X′
1X1, S22 = X′

2X2, and S12 = X′
1X2 with S21 = S′

12. Solutions to the nor-
mal equations can be obtained by a sweep-out procedure, that is, by premultiplying the
equations by the sweep matrix
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F =
[

I 0

−S21S−
11 I

]

to give

[
S11 S12

0 S22 − S21S−
11S12

] [
β0

1

β0
2

]
=

[
X′

1y

X′
2y − S21S−

11X′
1y

]

(Pringle and Rayner 1971). Thus, information on the parametersβ2 for a particular design is
contained in the Schur complement S�

22 = S22−S21S−
11S12, and it follows that the linear func-

tion c′
2β2 is estimable if and only c′

2 ∈ R(S�
22). Similarly, if the coefficients β1 are of interest,

then clearly information on β1 is contained in the matrix S�
11 = S11 − S12S−

22S21, and c′
1β1 is

estimable if and only if c′
1 ∈ R(S�

11). Note, however, that, unless the off-diagonal matrix S12
is zero so that the effects relating to β1 and β2 are in that sense orthogonal, information and
estimability for the parameter vectors β1 and β2 jointly must be approached with care. For
example, the linear function c′

1β1 + c′
2β2 is estimable if and only if (c′

1, c′
2) ∈ R([X1 X2]).

Details relating to the linear model not of full rank are intricate, and it is therefore
tempting to reformulate the model as one of full rank. Such a reparametrization can be
introduced formally as follows. Consider finding a basis set of estimable functions assem-
bled as β� = Tβ with T an r × (p + 1) matrix of full row rank, and consider setting
Xβ = Uβ� where U is a matrix of full column rank. Then it can be shown that the model
y = Uβ� +ε is “equivalent in every way to the original model” (Pringle and Rayner 1971).
The construction of U follows by observing that X = UT so that XT′ = UTT ′ and hence that
U = XT ′(TT ′)−1. Also, if U′U is diagonal, then the transformation is said to be an orthogo-
nal full rank reparametrization. Such reparametrizations can be useful, for example, in the
case of 2k factorial experiments discussed in Chapter 7, but more generally, the essence and
ready interpretation of the model is lost.

The problems encountered in developing the theory of the linear model not of full rank
are further exacerbated if the error terms are assumed to be correlated. The research ques-
tions which arise are challenging and impinge on notions of blocking for spatial data.
Some issues, more particularly in relation to design, are discussed in the recent paper by
Kunert et al. (2010) and references therein.

The theory of the linear model not of full rank can also be developed using projection
matrices. Specifically, the hat matrix X(X′X)−X′ defines the estimation space and the matrix
I − X(X′X)−X′ the error space of the model, and arguments based on projections onto
these matrices can then be invoked. This approach provides a fascinating and powerful
counterpoint to the one presented here, and full details are available in the books by Bailey
(2008) and by Morris (2011).

2.4.2 Examples and Design

In order to fix ideas, examples from two major areas of application of the linear model not
of full rank, namely, block designs for varietal trials and factorial experiments, are now
introduced. In addition, since it is not easy to formulate a general framework for design,
many issues relating specifically to design are explored within the context of these exam-
ples. The concepts presented here provide a basis for an understanding of the later chapters
on block designs, that is, Chapters 3, 4, and 10, and on factorial experiments, that is, Chap-
ters 7 through 9. Books on block designs include the classic texts of Cochran and Cox (1957)
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and Shah and Sinha (1989) and the more recent texts by John and Williams (1995) and Dey
(2010), and those on factorial experiments include the classic text by Raktoe et al. (1981)
and the recent book by Wu and Hamada (2009) and provide excellent further detail.

2.4.2.1 Block Designs

Consider first a block design with t treatments replicated ri times, i = 1, . . . , t, and the
treatments allocated to b blocks of size kj, j = 1, . . . , b. The total number of observations is
therefore n = ∑t

i=1 ri = ∑b
j=1 kj. Assume that the structure and allocation are such that

a treatment occurs at most once in each block and thus that the design is a binary block
design. Then the allocation of treatments to blocks can be summarized succinctly by the
t × b incidence matrix N = {nij} where nij = 1 if treatment i occurs in block j and 0 other-
wise. Observe that the sum of the rows of the matrix N is the vector of block sizes, that is,
k = N′1 = (k1, . . . , kb)

′, and that the sum of the columns of N is the vector of treatment repli-
cations, that is, r = N1 = (r1, . . . , rt)

′. For ease of exposition, the theory of block designs
developed here is restricted to binary block designs but can be readily extended to block
designs for which treatments are replicated within blocks.

If the ith treatment occurs in the jth block, the attendant observation yij can be mod-
elled as

yij = μ + τi + βj + εij

where μ is the mean effect, τi the ith treatment effect, βj the jth block effect, and εij is an
error term distributed as N(0,σ2) independently of all other such terms. The model can
also be expressed in matrix form as

y = 1μ + X1τ + X2β + ε

where the matrices X1 and X2 are the unit/treatment and unit/block incidence matrices,
respectively, τ = (τ1, . . . τt)

′,β = (β1, . . .βb)
′ and ε ∼ N(0,σ2I). Note that the matrix X1

is n × t, the matrix X2 is n × b and both matrices have rows with one element equal to
1 and all other elements 0. The incidence matrix itself is then given by N = X′

1X2. Two
linear relationships between the columns of the n × (t + b + 1) matrix X = [1 X1 X2] can
immediately be identified since X11 − 1 = 0 and X21 − 1 = 0. Thus rank(X) ≤ t + b − 1 and
the linear model for the block design is not of full rank.

The normal equations for this setting are readily derived and can be expressed suc-
cinctly as

⎡
⎢⎣

n r′ k′

r R N

k N′ K

⎤
⎥⎦

⎡
⎢⎣
μ0

τ0

β0

⎤
⎥⎦ =

⎡
⎢⎣

G

t

b

⎤
⎥⎦

where R = diag(r1, . . . , rt), K = diag(k1, . . . , kb), G is the sum of the observed values, that is,
G = 1′y, and t = X′

1y and b = X′
2y are the vectors of treatment and block totals respectively

(John and Williams 1995). The singularity of the normal equations follows from the fact
that X′X is of order t + b + 1 but with rank(X′X) = rank(X) ≤ t + b − 1. It is convenient
to identify the singularities more explicitly. Thus, consider reducing the normal equations
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to a more tractable form by invoking the sweep-out procedure introduced earlier, that is, by
multiplying both sides of the equations by the nonsingular sweep matrix

F =
⎡
⎢⎣

n−1 0′ 0′

0 I −NK−1

0 −N′R−1 I

⎤
⎥⎦

to give the set of equations

⎡
⎢⎣

1 n−1r′ n−1k′

0 R − NK−1N′ 0

0 0 K − N′R−1N

⎤
⎥⎦

⎡
⎢⎣
μ0

τ0

β0

⎤
⎥⎦ =

⎡
⎢⎣

ȳ

t − NK−1b

b − N′R−1t

⎤
⎥⎦

where ȳ = G/n. Thus, (R − NK−1N′)1 = 0 and (K − N′R−1N)1 = 0 thereby concentrating
the singularities in X′X in two matrices. Furthermore, solutions for the treatment effects can
be obtained from the equation Cτ0 = q where C = R−NK−1N′ and q = t−NK−1b, and all
information regarding these effects is summarized in the matrix C, termed the treatment
information matrix.

The question now arises as to which linear functions of the parameters μ,τ, and β are
estimable given that the normal equations possess at least two singularities. The answer
to this question is inextricably tied up with the notion of connectedness. Specifically, a
block and a treatment are said to be associated if the treatment occurs in the specified
block, and two treatments are said to be connected if they are linked by a chain of asso-
ciated treatments and blocks (Dey 2010). A design is said to be connected if every pair
of treatments is connected. It can then be shown that, for a connected design, rank(C) =
rank(R − NK−1N′) = t − 1 and rank(K − N′R−1N) = b − 1 and hence that the matrix X′X
has rank t + b − 1. Here, attention is restricted to connected block designs.

Since the treatment information matrix C is of order t with C1 = 0 and rank(C) = t − 1,
it is now immediately clear that all treatment contrasts of the form c′τ with c′1 = 0, that
is, with c′ ∈ R(C), are estimable. Similarly, all block contrasts are estimable. Furthermore,
a solution to the equations Cτ0 = q is given by τ0 = C−q where C− is a g-inverse of C.
Specifically, note that the vector 1 is an orthogonal row complement of C and thus that a
particularly tractable g-inverse of C is given by (C + aJ)−1 where a is any nonzero constant
and J = 11′. Note also that the unique Moore–Penrose inverse of C is given by C+ =
(C+t−1J)−1−t−1J (Caliński and Kageyama 2000). The least squares estimator of the contrast
c′τ can now be obtained as c′C−q. In addition, the vector q can be expressed as q = (X′

1 −
NK−1X′

2)y with y ∼ N(0,σ2I), and it then follows by some straightforward algebra that
Var(q) = σ2C and hence, since c′ ∈ R(C), that Var(c′τ0) = σ2 c′C−c.

The setting just described provides a template for block designs more generally. For
example, the randomized complete block design can be recovered by taking blocks of size t,
while row-and-column designs, that is, designs with two block structures that are arranged,
at least figuratively, as rows and columns, can be readily formulated through direct exten-
sions of the observational and normal equations. In addition, the design setting provides
sufficient flexibility to demonstrate how designs, which are in some sense optimal accord-
ing to specified criteria, can be accommodated in terms of the allocation of treatments to
blocks. This idea is now explored a little further.
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The primary aim of any block design for varietal and related trials is to compare treat-
ments once the effects of the blocks have been discounted. It is natural therefore to focus on
design criteria which are based on the variances of the estimated pairwise treatment dif-
ferences. An immediately appealing optimality criterion in this regard is that of equality of
the variances, that is, variance balance. As an example, consider the balanced incomplete
block design (BIBD), which is equi-replicate with treatments replicated r times, which has
blocks of the same size k and which is such that the number of times each pair of treatments
occurs in the same block is the same and is equal to λ. Then, intuitively, it is clear that the
variances of estimated pairwise treatment differences are equal, but it is informative to
demonstrate this explicitly. Thus, it is readily shown from earlier derivations and from the
fact that any treatment shares a block with r(k − 1) = λ(t − 1) other treatments that

C = rI − 1
k

[(r − λ)I + λJ] = r(k − 1) + λ

k
I − λ

k
J = λt

k
I − λ

k
J.

It now follows that k
λt I is a g-inverse of C and hence that the variances of all estimated

pairwise treatment differences are equal and are given by 2kσ2/(λt). The BIBD is not a
panacea for variance balance and good design however. Specifically the three conditions
rt = bk, λ(t−1) = r(k−1) and b ≥ t (Fisher’s inequality) are necessary but not sufficient for
a BIBD to exist. For example, it can be shown that a BIBD with t = b = 22, r = k = 7 and
λ = 2 does not exist. As a consequence, there is a large body of mathematically intricate
research devoted to broad classes of designs which, inter alia, go part way to meeting the
requirement of variance balance (John 1971; John and Williams 1995; Bailey 2004). Block
designs with independent responses, including the BIBD and other related designs, are
discussed in comprehensive detail in Chapter 3.

The structural restrictions associated with BIBDs and related designs lead naturally
into a consideration of alphabetic optimality criteria rather than the more stringent cri-
terion of variance balance. Thus, A- and MV-optimal designs are those designs which
minimize the average of the variances of the estimated pairwise treatment differences and
the maximum of those variances respectively and are well documented and widely used
(John and Williams 1995). In the case of A-optimality, the criterion reduces to minimizing
trace(BC−B′), where the

(t
2

) × t matrix B comprises rows with elements 0, 1 and −1 which
define appropriately all pairwise treatment differences, and thus, since B′B = tI − J, to
trace

(
C−(tI − J)

)
. Furthermore, if the Moore–Penrose inverse is chosen as the g-inverse

of C, then C+1 = 0 and the A-optimality criterion reduces quite simply to minimizing
trace (C+) (Bailey 2009). The A-optimality criterion can be expressed in terms of the t − 1
nonzero eigenvalues of the matrix C, denoted λ1, . . . , λt−1, as

∑t−1
i=1

1
λi

. Other criteria based
solely on these eigenvalues can also be formulated but are not as widely used or as prac-
tically meaningful as the A-optimal and MV-optimal criteria. For example, D-optimal
designs maximize the product

∏t−1
i=1 λi, E-optimal designs maximize the minimum nonzero

eigenvalue of C and (M, S)-optimal designs minimize the sum of squares
∑t−1

i=1 λ
2
i over the

set of all designs for which the sum
∑t−1

i=1 λi is a maximum. Further discussion relating to
optimality criteria which are both meaningful and widely used in block designs is given in
Chapter 3.

Some attention should also be given to the notion of orthogonality of block designs.
Specifically a block design is said to be orthogonal if estimates of treatment contrasts are the
same whether or not the block effects are included in the model. For example, the random-
ized complete block design is orthogonal. More generally, many row-and-column designs
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such as the Latin square and the Graeco-Latin square designs are also orthogonal and enjoy
all the powerful properties that so accrue.

Finally, it should be emphasized that there are a number of standard or textbook block
designs which are precisely specified and which enjoy certain desirable properties but
which are not sufficiently flexible, in terms of allocation of treatments to blocks, to
accommodate a range of optimality criteria. Such designs include Latin square designs,
Graeco-Latin squares and Youden squares and the randomized complete block designs,
amongst others. The analysis of these designs is rooted in the theory of the linear model
not of full rank described earlier, and the implementation and attendant analyses are com-
prehensively delineated in a number of intermediate texts such as those of Dean and Voss
(1999) and Montgomery (2012).

2.4.2.2 Factorial Experiments

Consider first the case of two factors A and B with numbers of levels a and b, respectively.
Suppose that observations are taken at combinations of the factor levels specified by an
a × b incidence matrix N, with the number of observations in the ijth cell, that is, taken at
level i of A and level j of B, given by nij, with nij ≥ 0, i = 1, . . . , a and j = 1, . . . , b. Then, if
nij > 0, the observations in the ijth cell can be modelled as

yijk = μ + Ai + Bj + εijk for k = 1, . . . , nij,

where μ is the mean effect, Ai and Bj are the effects of the factors A and B at levels i and
j, respectively, and the error term εijk is distributed as N(0,σ2) independently of all other
such error terms. Technically this model is the same as that introduced for the block design
earlier in this section, and similar considerations in terms of connectedness and estima-
bility apply. For example, in a connected two-factor model, all contrasts of the effects Ai,
i = 1, . . . , a, and, separately, of the effects Bj, j = 1, . . . , b, are estimable. However, it should
be emphasized that underlying issues relating to the experiment itself, in particular the
choice of factors and levels and the randomization and replication of treatment combi-
nations, are crucial and are comprehensively delineated in Chapter 1. As an aside, it is
interesting to note that the effects of A and B are not necessarily orthogonal but that there
is a class of designs for which orthogonality holds. Specifically, it can be shown that the
effects of the factors A and B are orthogonal if and only if the proportionality condition

ni0n0j

n
= nij with ni0 =

b∑
j=1

nij and n0j =
a∑

i=1

nij,

holds for all i = 1, . . . , a and j = 1, . . . , b. The two-factor model can be extended to accommo-
date interaction between the factors and to models with several factors with and without
interaction, but, for the sake of brevity, full details are not presented here. The pri-
mary challenge in the design of factorial experiments is encountered when blocking is
required or when the numbers of treatment combinations is large and only a fraction can
be implemented.

The theory which underpins sn factorial experiments, that is, designs with n factors at s
levels where s is a prime number, is rooted in Galois field theory and is very different to that
for the general multifactor model. Many of the key features relating to these experiments,
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in particular blocking and fractional factorials, are introduced in Chapter 1 and discussed
later in comprehensive detail in Chapter 7. More general results, including those for mixed
level factorial designs such as 2m4n and 2m3n factorials, are given in a number of texts, for
example, Wu and Hamada (2009). The aim here therefore is to introduce a small example
in order to demonstrate, albeit briefly, how the basic concepts of blocking in sn factorial
experiments emanate from the formulation of an appropriate linear model not of full rank.

Consider a 32 design, that is, a design comprising two factors A and B each at 3 levels, 0, 1
and 2. Then the responses to the nine treatment combinations, coded as ij for i, j = 0, 1, 2,
can be modelled as

yij = μ + Ai + Bj + ABi+j + AB2
i+2j + εij

where Ai and Bj are main effects and ABi+j and AB2
i+2j are interaction terms with arithmetic

for the subscripts performed modulo 3. Thus, for example, y12 = μ+A1 +B2 +AB0 +AB2
2 +

ε12. It then follows immediately from the form of the observational equations for a single
replicate that the model is not of full rank but that the treatment means and the contrasts
for individual treatment effects, for example, A0 −A2 and AB0 −2AB1 +AB2, are estimable.
Suppose now that replicates of a 32 experiment are to be arranged in 3 blocks of size 3.
The set of nine treatment combinations can be partitioned into the three subsets {00, 11, 22},
{10, 21, 02} and {20, 01, 12} which are associated with the interaction terms AB2

0, AB2
1 and

AB2
2, respectively. These subsets can then be taken as specifying the blocks for each repli-

cate, with the interaction AB2 thereby confounded with blocks. Contrasts involving A,
B, and AB, separately, remain estimable. However, while contrasts of treatment means
associated with the same level of AB2 are estimable, the treatment means themselves
are not.

2.5 Linear Mixed Model

The linear mixed model was introduced earlier but, for clarity, is defined again more
compactly here. The model can be formulated as

y = Xβ + Zu + ε

where y is the n × 1 vector of responses, β is a (p + 1) × 1 vector of unknown fixed effects
with attendant model matrix X, u is a q × 1 vector of random effects with attendant model
matrix Z, and ε is an n × 1 vector of error terms. The random effects are taken to be
distributed as u ∼ r.v.(0, G), where r.v. indicates a random variable, the error terms as
ε ∼ r.v.(0, R), and u and ε are taken to be independent. The variance-covariance matrix
of y is assumed to depend on a vector of variance components θ through the matrices G
and R and is expressed succinctly as � = �(θ) = ZGZ′ + R. Note that for ease of expo-
sition, the matrix X is taken here to be of full column rank. Matrices X not of full column
rank can be accommodated by introducing g-inverses and incorporating notions relating
to estimability.
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2.5.1 Theory

2.5.1.1 Estimation

Suppose that the random effects u and the errors ε are normally distributed. Then the
distribution of y is normal and is given by

y ∼ N(Xβ, ZGZ′ + R),

and the log-likelihood thus follows in the usual way as

l = l(β,θ; y) = −n
2

ln(2π) − 1
2

ln
(
det(�)

) − 1
2
(y − Xβ)′�−1(y − Xβ).

If the variance components θ are known, then the MLEs of the fixed effects β follow
immediately from the likelihood equations ∂l

∂β = 0 as

β̂ = (X′�−1X)−1X′�−1y ∼ N(β, (X′�−1X)−1), (2.7)

and all the results relating to the generalized least squares setting accrue. However, if the
parameters θ are not known, then the situation is more complicated in that θ must be
estimated and the distribution of the estimate of β is, at least in general, intractable. Specif-
ically, consider solving the ML equations ∂l

∂β = 0 and ∂l
∂θ = 0 simultaneously. Observe that

this approach yields

∂l
∂θ

= −1
2

∂ ln
(
det(�)

)
∂θ

− 1
2
(y − Xβ)′ ∂�−1

∂θ
(y − Xβ)

= −1
2

trace
(

∂�

∂θ
�−1

)
+ 1

2
(y − Xβ)′�−1 ∂�

∂θ
�−1(y − Xβ)

= 0

with β a function of θ, that is, β(θ) = (X′�−1X)−1X′�−1y. Thus, in order to obtain solu-
tions to the ML equations for θ, the expression for β = β(θ) can be plugged into ∂l

∂θ = 0
to yield

trace
(

∂�

∂θ
�−1

)
= y′P∂�

∂θ
Py (2.8)

where P is the symmetric matrix expressed succinctly as

P = P(θ) = �−1 − �−1X(X′�−1X)−1X′�−1

and depends on θ. These equations are, in general, highly nonlinear in θ and must be
solved numerically. However, the solutions are problematic in that they do not always
comply with the inference region, that is, with constraints on θ to ensure that variances are
nonnegative, and more generally that � itself is nonnegative definite. The MLEs for θ are
thus necessarily awkward to handle.
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Many problems associated with the MLEs for the variance components θ are rooted in
the fact that these estimates in turn incorporate estimates of the fixed effects β. To counter
this, Patterson and Thompson (1971) introduced the notion of restricted or residual max-
imum likelihood estimation, that is, REML. Specifically a vector w = K′y with K′X = 0,
which comprises the maximum number of linearly independent error contrasts, is intro-
duced and thus w ∼ N(0, K′�K). The vector w contains no information about β and has
degrees of freedom n−(p+1), that is, rank(K′�K) = n−(p+1). The restricted log-likelihood
for θ given the error contrasts K′y can now be expressed by

lR(θ; K′y) = − (n − (p + 1))

2
− 1

2
ln

(
det(K′�K)

) − 1
2

y′K(K′�K)−1K′y.

Furthermore, and crucially, it can then be shown by some subtle but rather tedious algebra
that lR(θ; K′y) is invariant to the specific choice of the matrix K and is given, up to an
additive constant, by

−1
2

ln
(
det(�)

) − 1
2

ln
(

det(X′�−1X)
)

− 1
2

y′Py,

(Harville 1977; Searle et al. 1992; Khuri 2010). The REML estimators for θ, written θ̂REML,

can then be obtained by solving the likelihood equation ∂lR(θ;K′y)

∂θ = 0 subject to the con-
straints of the inference region. In general, REML estimates of θ are to be preferred to
the MLE since they eliminate the fixed effects and possess appropriate degrees of free-
dom. Strictly, there are no estimates for β associated with the REML approach, but clearly
estimates of β can be obtained by plugging the estimator θ̂REML into the expression for β̂.

Overall therefore, the estimate of the fixed effects parameters β is of the form

β̂ =
(

X′�−1
(
θ̂
)

X
)−1

X′�
(
θ̂
)−1

y,

where the estimate of θ, denoted generically θ̂, is obtained either by ML or by REML. This
estimate is readily computed, but its distribution is extremely complicated. In particular,
the variance of β̂ is of immediate interest, but small sample approximations are somewhat
intractable (Kackar and Harville 1984). The estimates of the fixed effects β and the variance
components θ, both ML and REML, are however based on likelihood, and the associated
variance matrix can therefore be approximated asymptotically by the inverse of the Fisher
information matrix. Furthermore, since the parameters β are not included in the variance
components, it follows immediately that the information matrix for β and θ is given by the
block diagonal matrix (2.5), that is, by

⎡
⎣X′�−1X 0

0
1
2

{
trace

(
�−1 ∂�

∂θr
�−1 ∂�

∂θs

)}
r,s

⎤
⎦ .

This matrix depends on the matrix X, on the matrix Z through the relation � = ZGZ′ + R
and, of course, on the variance components θ. This dependence in turn impacts on the
construction of optimal designs based on information and is explored a little further in
Section 2.5.2.
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2.5.1.2 Prediction

In many applications based on the linear mixed model, particularly those in animal genet-
ics, interest focuses on prediction of quantities involving the random effects. There are in
fact a number of approaches to the problem of prediction, and the more informative ones
are summarized briefly here. Full details are available in the seminal article by Robinson
(1991) and in the books by McCulloch and Searle (2001) and Ruppert et al. (2003).

A particularly straightforward approach to prediction concentrates on the random
effects u alone assuming, at least initially, that β and θ are known. The aim is to derive the
best predictor of u, say ũ, where ũ is best in the sense that it minimizes the mean squared
prediction error (MSPE), that is, E [(̃u − u)′(̃u − u)]. Thus the required predictor is given by
the conditional expectation E(u|y). Furthermore, if the random effects u and the error terms
ε are normally distributed, then

[
y
u

]
∼ N

([
Xβ

0

]
,
[

� ZG
GZ′ G

])
,

and it follows immediately that ũ = E(u|y)= GZ′�−1(y − Xβ) with � = ZGZ′ + R.
As a counterpoint to this, the best linear predictor of u can be derived without making any
distributional assumptions about u and ε and coincides with ũ. In practice, the fixed effects
β are invariably unknown. Thus, assuming that the variance components θ are known, a
naive practical predictor for u can be introduced as ũ = GZ′�−1(y − Xβ̂) = GZ′Py where β̂,
the ML estimator of β given in (2.7), is plugged in for β.

A more stringent and cohesive approach to prediction which incorporates both the fixed
effects β and the random effects u is that of best linear unbiased prediction (BLUP), where
best is again interpreted in the sense of minimizing the MSPE. The approach has no distribu-
tional requirements and can be regarded as the prediction equivalent of BLUE. Specifically,
consider the best linear predictor of a linear function of the form a′Xβ+ c′Zu, where a and
c are specified vectors, subject to the constraint that the linear function is unbiased, that
is, E

(
a′Xβ + c′Zu

) = a′Xβ. Then it follows by some intricate algebra that the BLUP of β
is given by β̃ = (X′�−1X)−1X′�−1y, coinciding with the MLE of β under normality and
with the BLUE of β, and the BLUP of u is given by ũ = GZ′�−1(y − Xβ̃), coinciding with
the naive predictor (McCulloch and Searle 2001).

An alternative approach to deriving the BLUPs, following Henderson et al. (1959), is to
take the random effects u and the error terms ε to be normally distributed and to introduce
the pseudo-p.d.f.

f (y, u;β,θ) = f (y|u)f (u),

= 1

(2π)
n
2 det(�)

1
2

exp
{
−1

2
(y − Xβ − Zu)′�−1(y − Xβ − Zu)

}

× 1

(2π)
q
2 det(G)

1
2

exp
{
−1

2
u′G−1u

}

which treats the random effects u as observed. Then a hierarchical log-likelihood can
be formulated as lH(β,θ; y, u) = ln

(
f (y, u;β,θ)

)
. Estimates of β and predictors of u

can be obtained by solving
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∂lH(β; y, u)

∂β
= 0 and

∂lH(β; y, u)

∂u
= 0,

and thus by solving the equations

[
X′R−1X X′R−1Z

Z′R−1X Z′R−1Z + G−1

] [
β̃

ũ

]
=

[
X′R−1y

Z′R−1y

]
,

which are termed the mixed model equations. The immediate solutions to these equa-
tions for the BLUPs β̃ and ũ are of a different algebraic form to those given previously
but can be shown, by some careful manipulation, to be the same (McCulloch and Searle
2001). The mixed model equations are inherently attractive, and solving them directly is
computationally efficient.

In order to draw inferences about the fixed effects and the random effects, it is necessary
to derive appropriate variances for the BLUPs, β̃ and ũ. The variance components θ are,
at least initially, assumed to be known. Since E(̃u) = 0 and X′P = 0 where, as before,
P = �−1 − �−1X(X′�−1X)−1X′�−1, it follows that

Var

[
β̃

ũ

]
=

[
(X′�−1X)−1 0

0 GZ′PZG

]

(Searle et al. 1992). However, while the BLUP β̃ coincides with the MLE for β and pre-
dicts or estimates the fixed effects, in contrast, the BLUP ũ is a predictor of the random
effects u. Thus the prediction error variance Var(̃u−u) is more meaningful than the variance
Var(̃u) and is to be preferred. The prediction error variance matrix for β̃ and ũ is therefore
given by

Var

[
β̃

ũ − u

]
=

[
(X′�−1X)−1 −(X′�−1X)−1X′�−1ZG

−GZ′�−1X(X′�−1X)−1 G − GZ′PZG

]
.

Furthermore, if a linear function of the form g = g(β, u) = a′Xβ + c′Zu, with BLUP given
by g̃ = g(β̃, ũ) = a′Xβ̃ + c′Zũ, is of interest, then the prediction error variance follows
immediately as

Var(̃g − g) = Var
(

a′Xβ̃ + c′Z(̃u − u)
)

= c′ZGZ′c − d′�−1d + (a′ − d′�−1)X(X′�−1X)−1X′(a − �−1d)

where d′ = c′ZGZ′ and this expression can be used in inference. Similarly if the BLUP of
E(y|u), that is, the vector of fitted values ỹ = Xβ̃ + Zũ, is of interest, then the associated
prediction error variance matrix is given by

Var(̃y − E[y|u]) = X(X′�−1X)−1X′ + ZGZ′ − ZGZ′PZGZ′

− X(X′�−1X)−1X′�−1ZGZ′ − ZGZ′�−1X(X′�−1X)−1X′.
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The discussion on prediction thus far is predicated on the assumption that the variance
components θ are known. However, this is rarely the case, and ML or REML estimators
of θ must be incorporated into the prediction process. The obvious expedient of plug-
ging an estimator of θ, generically θ̂, into expressions for the BLUPs is therefore adopted.
Specifically the estimated BLUP of the random effects u, termed the EBLUP, is introduced as

ũ = Z′G(θ̂)�−1(θ̂)(y − Xβ̂),

but its distribution is not tractable. To compound matters, the plug-in estimate of the pre-
diction error variance of the BLUP of the linear function g = g(β, u) = a′Xβ+ c′Zu, termed
the empirical mean squared prediction error (EMSPE) and obtained quite simply by plug-
ging θ̂ into the expression for the prediction error variance Var(̃g−g) withθ known, tends to
underestimate the prediction error variance of the EBLUP. Approximations to this plug-in
prediction error variance which improve on its properties and in particular the bias have
been developed by Kackar and Harville (1984), Prasad and Rao (1990) and Harville and
Jeske (1992) but are somewhat complicated to implement.

2.5.2 Examples and Design

In order to delve a little more deeply into the ideas which underpin the linear mixed model,
particularly issues relating to design, two broad areas of application are introduced. Specif-
ically, attention is focused first on settings for which multiple observations are taken on
individual units and second on models, such as those for kriging and splines, which can
be cast as linear mixed models.

2.5.2.1 Observations on Individuals

Consider a group of K individuals, for example, patients in a clinical trial. Suppose that
di observations are taken on the ith individual, i = 1, . . . , K, giving a total of n = ∑K

i=1 di
observations. Then the linear mixed model for the ith individual can be specified as

yi = Xiβ + Ziui + εi,

where yi is the di × 1 vector of responses, β is a (p + 1) × 1 vector of unknown fixed
effects common to all K individuals, ui is a q × 1 vector of random effects specific to the
ith individual, Xi and Zi are conformable matrices of explanatory variables or functions of
those variables associated with the fixed and the random effects, respectively, and εi is a
di × 1 vector of error terms. The random effects are taken to be distributed as ui ∼ N(0, G)

and represent between-individual error, the error terms are assumed to be distributed as
εi ∼ N(0, Ri) and represent within-individual error and ui and εi are taken to be indepen-
dent both within and between individuals. In addition, the matrices G and Ri, i = 1, . . . , K,
are assumed to depend on a vector of variance components θ common to all K individu-
als. Clearly therefore, the response yi is distributed as N(Xiβ, �i) with the variance matrix
�i = ZiGZ′

i + Ri a function of the variance components θ, i = 1, . . . , K.
The models for the individuals can be assembled as the linear mixed model

y = Xβ + Zu + ε,
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where, since observations between individuals are independent, X′ = (X′
1, . . . , X′

K), Z =
diag(Z1, . . . , ZK), u′ = (u′

1, . . . , u′
K) and ε′ = (ε′

1, . . . ,ε′
K) and thus

y ∼ N(Xβ, �) where � = diag(�1, . . . , �K).

Furthermore, the information matrix for the fixed effects β is readily derived as∑K
i=1 X′

i�
−1
i Xi and that for the variance components as

1
2

K∑
i=1

{
trace

(
�−1

i
∂�i

∂θr
�−1

i
∂�i

∂θs

)}
r,s

.

Note that both these information matrices depend on the variance components θ. Thus, in
the design phase, if θ is unknown, then a best guess may be adopted and designs, termed
locally optimal designs, constructed (Chernoff 1953).

The general setting for the linear mixed model just described is widely used in the mod-
elling of longitudinal data, that is, data comprising observations made on a number of
individuals over time. To fix ideas, suppose that a simple linear regression model with a
random intercept and independent error terms is appropriate for modelling observations
on each individual. Then the model for the ith individual is given by

yi = β01 + β1ti + ui1 + εi, (2.9)

where yi is a di × 1 vector of observations taken at time points specified by the di × 1 vector
ti, β0 and β1 are unknown fixed effects parameters, ui is a random term distributed as
N(0,σ2

u), thereby introducing the random intercept term β0 + ui, and the error terms εi are
distributed as N(0,σ2

e I). It now follows that �i = σ2
e Idi + σ2

uJdi
, that

�−1
i = 1

σ2
e

(
I − γ

1 + diγ
J
)

whereγ = σ2
u/σ2

e and hence the information matrix for the parametersβ0 andβ1 is given by

M(ti) = 1
σ2

e (1 + diγ)

[
di 1′ti
t′

i1 (1 + diγ)t′
iti − γ(1′ti)

2

]

(Debusho and Haines 2008). The total information matrix is therefore
∑K

i=1 M(ti). The ques-
tion now arises as to how to design such a longitudinal study. For example, suppose that
100 individuals are available, exactly 3 observations from the time points 0, 1, . . . , 9 and 10
can be taken without repetition on each individual, and that the precise estimation of the
fixed effects β0 and β1 is of interest. Should observations be taken on 100 individuals at the
3 time points (0, 5, 10) or on 30 individuals at the time points (0, 2, 10), 40 at (0, 5, 10) and 30
at (0, 8, 10), or should some other allocation be adopted? In fact, it can be shown, using the
approach outlined as follows, that for all values of the variance ratio γ, the requisite design
puts 50 individuals at the time points (0, 1, 10) and 50 at (0, 9, 10).
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Questions such as the one just posed can be formalized and answered within the general
longitudinal setting by introducing the notion of a population design. Broadly, a popu-
lation design is a design in which groups of individuals are allocated to distinct design
settings. More formally, ni individuals are allocated to the distinct design setting (Xi, Zi)

which comprises di observations, i = 1, . . . , t. Thus the number of distinct design settings
is t, and the total number of individuals in the design is now K = ∑t

i=1 nidi. The design can
be represented as

ξn =
{
(X1, Z1), (X2, Z2) . . . , (Xt, Zt)

n1, n2, . . . , nt

}
,

and the attendant information matrix is given by
∑t

i=1 niX′
i�

−1
i Xi. The ideas which under-

pin optimal design for the linear model of full rank delineated in Section 2.3.1 can now
be invoked within the context of population designs, but with points xi replaced by dis-
tinct design settings (Xi, Zi) for i = 1, . . . , t. In particular, alphabetic optimality criteria
can be introduced, the notion of an approximate design formulated and exact designs con-
structed numerically using exchange-type algorithms. The only point of departure is that
the information matrix in the linear mixed model setting depends sensitively on the vari-
ance components. A best guess for these components suffices, but care must be exercised
for random coefficient models other than the random intercept model (Longford 1994).
For example, if the slope and intercept in the simple linear regression model have random
effects with variance matrix G, then the specification of G depends crucially on the location
of the time points.

Two further points of interest in relation to the modelling of longitudinal data using lin-
ear mixed models should be noted. First, there have only been a few reports in the literature
on designs, which in some sense maximize the information on the variance components.
These include a review article by Khuri (2000) and insightful and informative papers by
Giovagnoli and Sebastiani (1989), Liu et al. (2007), and Loeza-Serrano and Donev (2014).
Second, nonlinear models are often used to model individual responses in longitudinal
studies. In the context of design, these models are commonly linearized, and thus, many
of the considerations for the linear mixed model outlined previously apply, except that the
variance components now include the regression parameters (Mentre et al. 1997).

Block designs for which the block effects are assumed to be random can be effectively
cast in the linear mixed model framework. For ease of exposition, the notation introduced
here complies with that used for the block designs discussed in Section 2.4.2 and deviates
somewhat from the notation for the linear mixed model used earlier. Thus consider a block
design comprising b blocks of equal size k and t treatments replicated ri times, i = 1, . . . , t.
Then the k × 1 vector of observations in the jth block, denoted yj, can be modelled as

yj = μ1 + Ajτ + uj1 + εj,

where μ is the mean, τ is the t × 1 vector of fixed treatment effects, Aj is the k × t
unit/treatment incidence matrix for the jth block, and the error term εj is distributed as
N(0,σ2

e I). In addition, the term uj represents the random effect for the jth block and is
assumed to be distributed as N(0,σ2

u) independently of all other random effects and error
terms. Thus it follows, using arguments similar to those invoked for the random intercept
model (2.9) introduced earlier, that the information matrix for the treatment effects τ is
given by
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1
σ2

e (1 + kγ)

⎡
⎢⎢⎢⎢⎢⎣

bk
b∑

j=1

1′Aj

b∑
j=1

A′
j1 (1 + kγ)

b∑
j=1

A′
jAj − γ

b∑
j=1

A′
j11′Aj

⎤
⎥⎥⎥⎥⎥⎦

where γ = σ2
u/σ2

e . A little reflection then shows that this matrix can be expressed as

1
σ2

e (1 + kγ)

[
bk r′
r (1 + kγ)R − γNN′

]

in the usual block design notation. Furthermore, by invoking the sweep procedure and
performing some tedious algebra, the information matrix for the treatments eliminating
the fixed mean effect can be shown to be given, up to a multiplying constant, by

CR = (R − 1
k

N′N) + 1
1 + kγ

(
1
k

N′N − 1
bk

rr′
)

(Bailey 2009).
From a design perspective, similar considerations apply to the treatment information

matrix CR with random block effects to those which apply to the corresponding matrix C
for block designs with fixed block effects introduced in Section 2.4.2. Thus, if the design
is connected and the ratio γ is known or a best guess is available, then A-, MV-, D- and
E-optimal designs can be constructed. From a broader perspective, the interpretation of
the random block design itself is of interest. Thus the model with γ = 0 corresponds to no
block effects and in the limit as γ approaches infinity to fixed block effects. More generally,
the model combines intra- and interblock information in a seamless manner and can be
extended for example to split-plot designs for which traditional methods of analysis have
proved awkward (Goos 2002). Finally, note that this example differs from that for longitu-
dinal studies, first, in that the model matrices associated with the fixed effects are not of
full rank and, second, in that population designs are not relevant since blocks tend not to
be repeated.

2.5.2.2 Kriging and Other Models

The universal kriging model for spatial data can be formulated as a linear mixed model,
and certain advantages accrue from this insight. Specifically, consider the model

y = Xβ + u + ε

where y is an n × 1 vector of observations taken at n locations in a spatial field, β is a
(p + 1) × 1 vector of unknown parameters, and X is an n × (p + 1) matrix comprising
explanatory variables and functions of those variables at the specified locations. The error
structure is captured in the terms u and ε, with u taken from a stationary random field,
usually Gaussian, with correlations dependent on distances between the locations at which
observations are taken. More specifically, u ∼ N(0,σ2Rc) where Rc is an appropriate corre-
lation matrix and ε is assumed to be distributed as N(0, τ2I) independently of u. Note that,
within the spatial context, the variances τ2 and σ2 are termed the nugget and the partial
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sill, respectively. The terms u are interpreted here as random effects. The variance of y is
thus given by � = τ2I + σ2Rc and the estimation of the parameters σ2, τ2 and any param-
eters embedded in the matrix Rc follows in the usual way, with REML estimates generally
favoured over MLEs.

Interest then centres on the prediction of an unknown observation y0 at a given location
with explanatory variables x0 already recorded there. The derivation of the BLUP for y0 is
a little different to that for the random effects u themselves and in fact represents the more
general case of prediction (Harville 1991). The resultant predictor is given by

ỹ0 = x′
0β̂ + v′

0�
−1(y − Xβ̂)

and the prediction or kriging variance, Var(̃y0 − y0), by

(σ2 + τ2) − v′
0�

−1v0 + (x′
0 − v′

0�
−1X)(X′�−1X)−1(x0 − X′�−1v0)

where v0 is the vector of covariances of the unknown observation y0 with the known obser-
vations y. Two key problems in design for spatial data can be identified, that of deciding
at which location to next take an observation in the random field and that of which node
to remove and which to add in a monitoring network. Design criteria which accommodate
these goals can be formulated in terms of the kriging variance. For example, if the problem
relates to deciding on the location of the next observation, then the location for which the
kriging variance is a maximum can be sought.

Models for spatial data are of course not limited simply to the kriging model. There is a
vast literature on spatial statistics, including the classic text of Cressie (1993) and the more
recent books by Diggle and Ribeiro Jr. (2007) and Cressie and Wikle (2011). Design issues are
specifically discussed in the text by Müller (2007) and the recent volume edited by Mateu
and Müller (2013), and cutting edge issues relating to optimal design for spatial data are
presented in Chapter 15. It should also be noted that kriging models can be extended to
random fields in more than two dimensions and that such models without a nugget effect,
that is, without the error terms, are used extensively in the design and analysis of computer
experiments. More details, particularly relating to design, are available in the books by
Santner et al. (2003) and by Fang et al. (2006) and in Chapters 16 through 19.

Finally, it should be noted that there are many settings ranging from ill-posed inverse
problems, through to the Kalman filter and smoothing splines, which can also be mapped
onto the linear mixed model. Some are mentioned briefly in the discussion of the paper by
Robinson (1991), while the notion that a smoothing spline can be formulated as a linear
mixed model is carefully explored in the seminal text by Ruppert et al. (2003). It is however
arguable as to whether full advantage of these mappings has been taken within the context
of the design of experiments.

2.6 Conclusions

The theory underpinning the linear model of full rank, the linear model not of full rank and
the linear mixed model has been introduced, and notions relating to the design of experi-
ments for these models have been developed and interwoven into the text. The discussion
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is compact, and the interested reader can delve more deeply into the theorems, proofs and
design concepts through the many excellent texts that are readily available and are included
in the references which follow. The aim of this chapter is to provide a sound basis and some
necessary building blocks for an understanding of the specialized chapters which follow.
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3.1 Blocking: The Basics

Dean and Voss (1999) describe an experiment to assess the impact of visual context on
human subjects’ ability to reproduce a straight line. The experimental procedure has a
subject look at a picture of a 5 cm straight line, then draw freehand a line of the same
length on a sheet of paper. The recorded response is the length of the segment drawn. This
basic procedure is repeated six times for each subject, with each repetition drawn on a
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separate sheet. Visual context is varied with the six pictures, each having one of six, dis-
tinct, preprinted borders. The goal of the experiment is to understand differences, if any, in
responses, depending on the six bordering treatments. That understanding is hampered in
so far as responses vary for reasons having nothing to do with the treatments.

Variability is apparent in the line-segment experiment in the fact that very few, if any,
individuals can consistently draw straight lines of precisely the same length even under
identical conditions. Observe, however, that the lengths of lines drawn by the same person
are likely to vary less than the lengths of lines drawn by different people. That is, for all
of the reasons that humans vary in their drawing skill, subject-to-subject variability will
be greater than within-subject variability, and possibly much greater. This suggests that it
would be advantageous, if possible, to isolate the larger subject-to-subject variability from
other, intrinsic sources of variability in response, including that due to visual contexts, so
that context effects become more readily discernible. This is the purpose of blocking: an
often powerful technique for isolating a source of variability in experimental material so
that it does not interfere with inferences on comparisons among treatments. As discussed in
Chapter 1, blocking was originally introduced and developed as an experimental principle
by R. A. Fisher and F. Yates; see particularly Sections 1.3 and 1.6.

Formally, a block is a set of experimental units sharing a common value of some charac-
teristic thought to represent a potentially major source of variation in the response. A set of
experimental units is blocked if they have been arranged into disjoint blocks. A block design is
a choice of treatments to be used in each block, followed by a random assignment of those
treatments to the units in each block. It is quite common, though not required, to have the
same number of experimental units and thus to use the same number of treatments, in each
block. Only equisized blocks are considered in this chapter.

In the line-segment experiment described earlier, fourteen subjects were recruited. Each
was presented with six line pictures, one for each of the six border treatments in a random
order, and asked to draw the line on a blank paper. The blocks are the fourteen subjects, and
the units within the blocks are the six presentations of pictures. Using b for the number of
blocks, v for the number of treatments, and k for the number of units in a block, this exper-
iment has v = k = 6 and b = 14. The name of this particular design is randomized complete
block design (RCBD). The blocks are said to be “complete” because each comprises a single
replicate of the v treatments (no treatment left out of the block and none repeated).

Blocking is a design choice. Alternatively, the line-segment experiment could have been
run with a completely randomized design (CRD). With fourteen subjects and six presenta-
tions to each, there are a total of 14 × 6 = 84 experimental units. A CRD would start
by preparing fourteen pictures with each border, then assigning them at random to the
84 units, where “at random” means that each of the 84!/(14!)6 distinct assignments is
equally likely. The CRD is attempting through the randomization to distribute, without
distinction, all nuisance sources of variation across the treatments, paying no special atten-
tion to subject to subject or any other particular source of variability. Blocking, on the other
hand, serves to isolate one of those sources that, pre-experimentation, we have identified as
potentially major, so that it does not affect our estimation of treatment differences. For the
line-segment experiment, the separate random assignments of treatments to units within
each subject (block) keep the major subject-to-subject variability separated from treatments
while seeking to spread within-subject variability equally across the treatments. This is
reflected in the analysis of variance (ANOVA) skeletons presented in Table 3.1. The sum of
squares for treatments is the same in both ANOVAs. What changes is the removal of vari-
ability due to blocks from the error sum of squares. The F-test for comparing treatments, as
well as all estimation for comparisons of treatments, is subject to the variability estimated
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TABLE 3.1

ANOVAs for the Line-Segment Experiment

CRD RCBD

Source d.f. Source d.f.

Treatments 5 Blocks = Subjects 13

Error 78 Treatments 5
Error 65

Total 83 Total 83

by MSE. Reducing that variability increases the power of the test and the precision of those
estimates. This is the primary purpose of blocking. For further exposition on the important
role played by randomization, see Chapter 1. The randomization employed is a primary
characteristic distinguishing block designs from CRDs.

The probability distribution employed to randomize treatment assignment within
blocks also generates a statistical model for the responses; see Hinkelmann and
Kempthorne (2008) for an introduction to and development of this theory. For our pur-
poses, it is sufficient to simply state the model

yju = μ + τd[j,u] + βj + εju. (3.1)

where, yju is the response from unit u in block j, and the design function d[j, u] identi-
fies which of the v treatments have been assigned to that unit. The response is written in
(3.1) as the sum of a general mean μ, an effect τd[j,u] of the treatment applied to the unit in
question, an effect βj of the block in which the unit lies, and a random error term εju asso-
ciated with that unit and its measurement. Though there are many other options, unless
otherwise specified, the εju in this section are taken to be uncorrelated, mean zero random
variables, with common variance σ2

E.
The block effects βj serve to reduce the variability to which treatment comparisons are

exposed, but are not the target of inference. That target is the set of treatment effects τi,
with the design goal of maximizing precision of treatment comparisons. To see how this is
done, rewrite (3.1) in matrix form as

y = μ1 + Xdτ + Zβ + ε, (3.2)

where for the total n of experimental units employed, Xd is the n × v unit/treatment inci-
dence matrix corresponding to the design function d[j, u], that is, Xd has a one in position
(u, j) if treatment j is assigned to unit u; τ = (τ1, . . . , τv)

′ is the v × 1 vector of treatment
effects; Z is the n × b unit/block incidence matrix; and β = (β1, . . . ,βb)

′ is the b × 1 vector
of treatment effects. Write PZ = Z(Z′Z)−1Z′ for the projector onto the column space of Z.
Then standard linear model theory (see Chapter 2) says that the least squares equations for
estimation of τ are X′

d(I−PZ)Xdτ̂ = X′
d(I−PZ)y. The coefficient matrix Cd = X′

d(I−PZ)Xd
is the information matrix for estimation of τ. It serves this role: if c′τ is any estimable func-
tion of the treatment effects, then Vard(ĉ′τ) = (c′C−

d c)σ2
E for any generalized inverse (see

Chapter 2) C−
d of Cd. A good design d will be one that makes the variances (c′C−

d c)σ2
E small

in some overall sense (over all comparisons c of interest). The purpose of blocking the
units was to minimize, in so far as possible, the error variance σ2

E. Given the blocks and



102 Handbook of Design and Analysis of Experiments

whatever they accomplish in variance reduction, it is the choice of which treatments are
assigned within each block (i.e., the selection of d) that determines Xd and, hence, Cd and
the quadratic forms c′C−

d c. Good choice of d will minimize, again in an overall sense, these
quadratic forms.

Before proceeding, here are a few pertinent facts about Cd. Obviously, Cd is symmetric,
and since (I − PZ) is idempotent, Cd = X′

d(I − PZ)Xd is nonnegative definite. As it is the
coefficient matrix in the least squares equations, its row space consists of all vectors c such
that c′τ is estimable. Easily checked is Cd1 = 0, so this v×v matrix has rank at most v−1, and
the estimability of c′τ requires c′1 = 0. Hence, only contrasts of treatments are estimable,
and all contrasts are estimable if, and only if, rank(Cd) = v − 1. Accordingly, the terms
(c′C−

d c)σ2
E targeted by the design problem are termed contrast variances.

A design d is said to be connected if its information matrix Cd has rank v−1 and otherwise
is disconnected. Because disconnected designs are unable to provide estimates of every treat-
ment contrast, they are inappropriate unless a lower dimensional model for the treatment
effects is in play, such as is employed with fractional factorial designs (Chapter 7). This
chapter focuses on estimating all treatment contrasts, so considers only connected designs.
Letting D = D(v, b, k) denote the class of all connected designs for v treatments in b blocks
of k units per block, the goal is to determine a “best” design in D.

Needed now is a way to operationalize the idea of “best.” As will be seen, there are
many ways to do this, some more statistically meaningful than others and with varying
relevance depending on experimenter goals. The basic idea is to select a function, let’s call
it �, that maps the information matrix Cd to the real numbers � in a manner that summa-
rizes variances of contrast estimates. Smaller values of � will correspond to designs that
make variances smaller in the sense that � measures. We begin with a general framework
for functions of this type, then explore particular functions that are useful in a variety of
situations.

Formally, � is defined on the class C of all symmetric, nonnegative definite matrices of
rank v − 1 with zero row sums. Let � : C → �. � corresponds to a standard optimality
criterion if

(i) � respects the nonnegative definite ordering: for any C1, C2 ∈ C such that
C1 − C2 is nonnegative definite, �(C1) ≤ �(C2),

(ii) � is invariant to treatment permutation: �(PCP′) = �(C) for each C ∈ C
and every permutation matrix Pv×v,

(iii) � is convex: �(αC1 + (1 − α)C2) ≤ α�(C1) + (1 − α)�(C2) for all C1, C2 ∈ C.
(3.3)

A design minimizing � is said to be �-optimal.
It can be shown (e.g., Morgan 2007b) that C1 − C2 is nonnegative definite, implying that

c′C−
1 c ≤ c′C−

2 c for all contrast vectors c. Thus, property (3.3)(i) says that � summarizes vari-
ances of estimators in a way that uniformly smaller variances produce smaller values of �,
this being a minimal requirement if � is to be statistically meaningful. Property (3.3)(ii)
is equality of interest in all treatments, for permutation invariance says � produces the
same summary measure regardless of how the treatments are interchanged. The convexity
property (3.3)(iii) is a technical requirement that is advantageous for optimality arguments
and that, happily, turns out to be an attribute of all the commonly employed, statistically
reasonable criteria.

The notion of equal treatment interest, incorporated through (3.3)(ii), is appropriate for
many, but not all, experiments. One notable class of exceptions is experiments having a
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control treatment, with differing emphasis on contrasts involving, and not involving, the
control. Criteria that incorporate unequal treatment interest are taken up in Section 3.7.

Let Nd be the v×b matrix whose (i, j) entry is ndij = the number of units in block j assigned
treatment i by design d. Further write rd = (rd1, . . . , rdv)

′ where rdi = ∑
j ndij is the total

number of units assigned treatment i, and let Rd = Diag(rd) be the diagonal matrix of the
replication numbers rdi. Then the information matrix Cd can be expressed as

Cd = Rd − 1
k

NdN′
d. (3.4)

Having selected the treatments to be used in any given block, they will be assigned to that
block’s units with a random device. The specific realization of the randomization does not
change (3.4) and so does not affect the quality of the information that the experiment will
produce.

The (i, i′) entry of NdN′
d in (3.4), labeled λdii′ = ∑

j ndijndi′j, is called a treatment concurrence
number. For i �= i′ this is the number of pairs of units within blocks receiving the pair of
treatments i, i′. As Cd is determined by the replication numbers rdi and the concurrence
numbers λdii′ , the search for an optimal design can be understood through these counts. As
we shall see, depending on the criterion selected, different values for these counts, that is,
different designs, can be judged best. But first we need to define some specific criteria.

The inverses of the v − 1 positive eigenvalues ed1 ≤ ed2 ≤ · · · ≤ ed,v−1 of Cd are
termed canonical variances; aside from σ2

E, they are variances for the estimators of contrasts
specified by their corresponding normalized eigenvectors. Many, though not all, of the
commonly employed optimality criteria are functions of the canonical variances. Among
these (see Table 3.2 and also Chapter 2) are the A, E, and D criteria. Each has a partic-
ular statistical meaning, as follows. Up to a design-independent constant, A measures
(i) the average of the variances for all v(v − 1)/2 pairwise comparisons τ̂i − τi′ and also
(ii) the average of the variances when estimating any v − 1 orthonormal contrasts. The
E-value for a design is proportional to the maximal estimator variance over all normalized
contrasts, maxc Vard(ĉ′τ)/c′c. The D-value for a design is proportional, under a normality
assumption, to the volume of the confidence ellipsoid for estimating any v−1 orthonormal
contrasts. Also displayed in Table 3.2 is MV, a standard criterion in the sense of (3.3) that
is not solely a function of the eigenvalues. Like E, the MV criterion seeks to minimize the
impact of the worst case, but with respect to pairwise contrasts rather than all contrasts. Of
the measures in Table 3.2, the D criterion is the least popular for assessing block designs,
though it is widely used in other design settings. Other interpretations of A are revealed in
Morgan and Stallings (2014).

TABLE 3.2

Optimality Criteria

Criterion Function

A �A = ∑v−1
i=1

1
edi

E �E = 1
ed1

D �D = ∏v−1
i=1

1
edi

MV �MV = maxh∈H h′C−
d h

Note: H is the collection of normalized contrast
vectors with two nonzero coordinates.
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A, D, and E are special instances of the �t family of criteria specified by minimizing

�t(Cd) =
[∑

i e−t
di /(v − 1)

]1/t
: take t = 1, t → 0, and t → ∞, respectively. All �t criteria are

standard criteria in the sense of (3.3). While other values of t do not admit simple statistical
interpretations like those given earlier, it is interesting to see that the eigenvalue-based
criteria in Table 3.2 are all part of the same continuum.

The criteria in Table 3.2 often, but not always, agree on what design is best. The three
examples that follow illustrate several aspects of this situation. Each displays an incomplete
block design (IBD), in which the block size k is smaller than the number of treatments, and so
a block cannot receive a complete replicate of the treatments. The optimality results stated
in the examples will be justified later in this chapter. Here and throughout this chapter,
block designs will be displayed with blocks as columns.

Example 3.1

This design, for (v, b, k) = (6, 10, 3), is optimal with respect to all of the criteria in Table 3.2.

1
2
6

2
3
6

3
4
6

4
5
6

5
1
6

1
2
4

2
3
5

3
4
1

4
5
2

5
1
3

In this design, all the replication numbers are equal (rdi ≡ 5) and all the concurrence
numbers are equal (λdii′ ≡ 2, i �= i′).

Example 3.2

This design, for (v, b, k) = (7, 28, 5), is E-optimal but not A-optimal.

1
2
3
4
6

1
2
3
4
7

1
2
3
5
6

1
2
3
5
7

1
2
4
5
6

1
2
4
5
6

1
2
4
5
7

1
2
4
5
7

1
2
4
6
7

1
2
4
6
7

1
2
5
6
7

1
2
5
6
7

1
3
4
5
6

1
3
4
5
6

1
3
4
5
7

1
3
4
5
7

1
3
4
6
7

1
3
4
6
7

1
3
5
6
7

1
3
5
6
7

2
3
4
5
6

2
3
4
5
6

2
3
4
5
7

2
3
4
5
7

2
3
4
6
7

2
3
4
6
7

2
3
5
6
7

2
3
5
6
7

In this design, all the replication numbers are equal (rdi ≡ 20). However, the concurrence
numbers are not all the same, ranging from 12 (e.g., λd12) to 14 (e.g., λd17).

Example 3.3

This design, for (v, b, k) = (5, 7, 3), is E-optimal and MV-optimal but neither A-optimal
nor D-optimal.

1
1
2

1
3
4

1
3
5

1
4
5

2
3
4

2
3
5

2
4
5

This design has two different replication numbers (rd1 = 5, other rdi = 4), while all the
concurrence numbers are equal (λdii′ ≡ 2, i �= i′).
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Example 3.3 is distinguished from both Examples 3.1 and 3.2 by having a treatment
(in this case, treatment 1) assigned to more than one experimental unit within a block.
Examples 3.1 and 3.2 have all ndij ∈ {0, 1} and consequently are said to be binary block
designs. Example 3.3 provides an example of a nonbinary block design. This and the other
combinatorial features demonstrated by the preceding example designs will arise in the
search for general properties that make for good block designs. Because the combinato-
rial structure (through rdi’s and λdii′ ’s) determines the information structure (Cd), much of
the statistical theory for block designs is aimed at identifying design structures that can be
proven optimal or, failing that, near optimal.

3.2 Cost of Blocking

Variance reduction through blocking does not come for free. One aspect of this is seen in
Table 3.1, where the error degrees of freedom for the RCBD is 13 fewer than for the CRD. If
a block design uses b blocks, then b − 1 degrees of freedom are “stolen” from error relative
to the unblocked CRD, resulting in a less precise estimate of the remaining error variance
σ2

E. This impacts, for instance, widths of confidence intervals for treatment contrasts. Fortu-
nately, this tends to be a small cost in all but the smallest designs (those providing few error
degrees of freedom) and will be more than outweighed by the reduction in σ2

E achieved by
a well-chosen blocking variable. There is a more substantial cost that is the focus of this
section: treatment information in the data that are lost to blocks.

To frame the idea, look again at the design in Example 3.1. Consider the data contrast
y6. − y1., which is the difference in the totals for the sixth and first blocks. Were the units
not blocked, y6. − y1. would contribute to the estimate for τ4 − τ6. Because of the blocking,
its expected value is τ4 −τ6 +3(β6 −β1), which is uninformative for τ4 −τ6. The treatment
information in y6. − y1., lost to the blocking, is said to be confounded with blocks. More gen-
erally, the expected value of an arbitrary data contrast

∑
j cjyj. of block totals contains the

term
∑

j cjβj, so it cannot contribute to estimating treatment contrasts.
Starting with y in model (3.2) and the blocks projection matrix PZ, consider the trans-

formed data y∗ = (I − PZ)y having model y∗ = X∗
dτ + ε∗. Least squares estimation for τ

using the data y∗ leads to exactly the same information matrix (3.4) for τ as that found when
starting with the original data y. Since PZ transforms y to block averages, this shows that
estimation of τ uses only data information that is orthogonal to the block totals. Any treat-
ment information found in the b block totals, and as explained in the preceding paragraph,
is confounded with blocks, also said to lie in the blocks stratum. Confounding represents the
primary cost of blocking: treatment information lost to blocks.

Confounding occurs whenever not every treatment is equally replicated in every block,
so whenever incomplete blocks are used, but never with complete blocks. In a RCBD,
every block contains each treatment once, so no contrast of block totals contains treatment
information. Aside from the small cost of lost error degrees of freedom, a RCBD estimates
treatment differences just as efficiently as a CRD even if achieving no reduction in σ2

E. Effi-
ciency gains with a RCBD are typically substantial if the blocking actually delivers on its
variance-reduction goal.

With an IBD, confounding means that less of the data are used in estimating treatment
contrasts. Consequently, should blocking be ineffective and not reduce σ2

E, an IBD can
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produce results that are markedly inferior to what would have been achieved without
blocking at all. Prudent use of incomplete blocks requires understanding how much infor-
mation is confounded and so the amount of variance reduction required to justify that use.
This understanding can be gained through a modification of the treatment information
matrix (3.4).

The efficiency matrix Cd,eff, here also shown in spectral form, is a transformed version of
the information matrix

Cd,eff = R−1/2
d CdR−1/2

d =
v−1∑
i=1

εdif dif
′
di. (3.5)

The eigenvalues εdi are termed the (canonical) efficiency factors for design d. Obviously, effi-
ciency factors are positive (for connected designs), and it can be shown that they obey an
upper bound of 1. The eigenvectors f di define the basic contrast vectors cdi = R1/2

d f di. Aside

from the constant σ2
E, the variance of the estimator for basic contrast i is Vard(ĉ′

diτ) = 1/εdi.
The efficiency matrix is also defined for unblocked designs. For a CRD with the same

replication numbers rd employed by the preceding IBD, the treatment information matrix
is Rd − 1

n rdrd
′ and so

CCRD,eff = R−1/2
d

[
Rd − 1

n
rdrd

′
]

R−1/2
d

= I − 1
n

R1/2
d JR1/2

d , (3.6)

where J is the all-one matrix. The f di in (3.5) are also eigenvectors of (3.6), but with corre-
sponding eigenvalues identically 1, for CCRD,efff di = f di − 1

n R1/2
d Jcdi = f di − 1

n R1/2
d 0 = f di.

Thus, and again aside from σ2
E, the basic contrast c′

diτ for the IBD d is estimated by a CRD
having the same replication numbers as d with variance VarCRD(ĉ′

diτ) = 1. The ratio of
this variance to that produced by d, assuming both designs produce the same value for σ2

E
(blocking achieves no reduction), is

Effd(c′
diτ) = VarCRD(ĉ′

diτ)/Vard(ĉ′
diτ) = εdi. (3.7)

It follows from (3.7) that efficiency factor εdi measures the proportion of unconfounded
information available with d on the basic contrast c′

diτ. Said another way, 1 − εdi is the
proportional reduction in σ2

E needed for the IBD d to estimate this contrast as well as an
unblocked design. If d reduces σ2

E by more than 100(1 − εdi)%, then it will estimate this
contrast better than a CRD.

It was mentioned earlier that there is no confounding with a RCBD. This is equivalent
to saying that for a RCBD, all efficiency factors are 1. Readers may wish to check that the
efficiency matrix for a RCBD is identical to that in (3.6) for an equally replicated CRD.

The basic contrasts are linearly independent and so form a basis for all treatment con-
trasts. Ordering the efficiency factors εd1 ≤ εd2 ≤ · · · ≤ εd,v−1, it follows that the proportion
of unconfounded information available on every contrast is at least εd1 and no contrast
uses more than 100εd,v−1% of the information in the unblocked design. A single, summary
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measure of the fraction of available information is provided by the harmonic mean of the
efficiency factors

v − 1∑v−1
i=1

1
εdi

, (3.8)

called the average efficiency factor. It is the inverse of the average variance of the basic contrast
estimators. The average efficiency factor is a convenient measure for comparing designs
with an eye to minimizing confounding. Keep in mind, however, that it is expressed rela-
tive to an unblocked design with the same replication vector. Both individual and average
efficiency factors are relative measures, valid for design comparison only among designs
having the same rd. Even then, full understanding of the average efficiency factor requires
a broader context, to be explored in Section 3.7.

Examples of efficiency factors, calculated for the example designs in Section 3.1, are
displayed in Table 3.3. The blocking in Example 3.2 must reduce error variance by about
7% if it is to perform as well, on average, as an unblocked design with 20 replicates. The
design in Example 3.1 has all efficiency factors equal to 80%, so should error variance be
reduced by more than 20%, every contrast will be estimated more efficiently than with an
unblocked, 5-replicate competitor. Exact expressions for (3.8) as functions of v and other
design parameters are known in a few cases; see Sections 1.6.1 and 1.9.2.

Many block designs used in practice are equally replicated, having all rdi = bk/v ≡ r.
In this case, efficiency factors are proportional to eigenvalues of the information matrix Cd,
εdi = edi/r, the average efficiency factor (3.8) is inversely proportional to the A-optimality
value, and the smallest efficiency factor is inversely proportional to the E-optimality value
(see Table 3.2). We will return to the relationship between efficiency factors and optimal-
ity criteria in Section 3.7, when the interpretation of (3.8) for the Example 3.3 design can
also be given.

Table 3.4 lists efficiencies for the most efficient IBDs, for up to ten treatments and up
to ten replicates, for those (v, b, k) for which bk is a multiple of v. Included is the average
efficiency factor, termed the A-efficiency, and the lowest efficiency factor εd1, termed the
E-efficiency. Note that if blocking reduces variation by more than (1 − εd1)100%, the design
will be better than a CRD for estimating every treatment contrast. How these best IBDs are
determined is the topic of Sections 3.3 and 3.4.

Before ending this section, it should be mentioned that if block effects are random, β ∼
(0,σ2

BI), then the blocks stratum information PZy can contribute to treatment estimation.
The procedure, known as analysis with recovery of interblock information, will be mentioned
briefly in later sections. Owing to the additional variance term σ2

B, blocks stratum informa-
tion is typically poor. That is why, as pursued in this chapter, blocking schemes are chosen
to maximize the within-block information based on y∗ and as captured in (3.4).

TABLE 3.3

Eigenvalues and Efficiency Factors for Example Designs

Example Eigenvalues edi Efficiency Factors εdi Average Efficiency

3.1 4,4,4,4,4 4
5 , 4

5 , 4
5 , 4

5 , 4
5

4
5

3.2 18.4,18.4,18.4,18.4,18.8,19.6 0.92,0.92,0.92,0.92,0.94,0.98 0.933

3.3 3 1
3 , 3 1

3 , 3 1
3 , 3 1

3
5
6 , 5

6 , 5
6 , 7

10 0.796
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3.3 Universal Optimality and BIBDs

In a landmark paper, Kiefer (1975) tackled the question of how a design might be optimal
with respect to all criteria defined by (3.3). He found this result:

Theorem 3.1 For the class of designsD with corresponding information matrices C = {Cd : d ∈ D}
and having Cd1 = 0 for all d, suppose there is a d∗ ∈ D for which

trace(Cd∗) = max
d∈D

trace(Cd); (3.9)

Cd∗ = α

(
I − 1

v
J
)

. (3.10)

Then d∗ is universally optimal, that is, d∗ is optimal with respect to every criterion satisfying the
properties (3.3).

Proof : Let � be any of the criteria satisfying (3.3), let d ∈ D be any competing design, and
let P be the class of all v × v permutation matrices P. Then invoking (3.3)(ii) and (3.3)(iii),

�(Cd) = �(PCdP′) = 1
v!

∑
P∈P

�(PCdP′) ≤ �

(
1
v!

∑
P∈P

PCdP′
)

.

Writing C̄d for 1
v!

∑
P∈P PCdP′, we have C̄d = αd(I − 1

v J), where αd = trace(Cd)/(v−1) ≤ α.
Consequently,

�(Cd) ≤ �(C̄d) = �

(
αd

(
I − 1

v
J
))

≤ �

(
α

(
I − 1

v
J
))

= �(Cd∗),

the last inequality by virtue of (3.3)(i), since Cd∗ − C̄d = (α − αd)(I − 1
v J) is nonnegative

definite. �

Theorem 3.1 applies to block designs and to any class of designs where each member
of C is symmetric, nonnegative definite, and of rank deficiency one with zero row sums.
The proof demonstrates why all three of the properties in (3.3) are important.

Adesign d having information matrix of form (3.10), Cd = α(I− 1
v J), enjoys an additional,

useful quality that does not depend on variance magnitude, and so is not directly assessed
by criteria (3.3). Let c be any normalized contrast vector (c′c = 1). A generalized inverse of
Cd is 1

α
I so that Vard(ĉ′τ) = σ2

E/α does not depend on the contrast selected. This property,
known as variance balance, says that all treatment comparisons are estimated with the same
precision. Variance balance simplifies interpretation of experimental results. It is the exact
expression of equal treatment interest.
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Example 3.4

The design in Example 3.1 has constant replication 5, constant concurrence 2, and, hence
from (3.4), information matrix

Cd = 5I − 1
3
[2(J − I) + 5I] = 4

(
I − 1

6
J
)

.

This matrix has the complete symmetry required by (3.10) and, from Lemma 3.1, has the
maximal trace property (3.9) relative to all designs for v = 6 treatments in b = 10 blocks
of size k = 3. Thus, by Theorem 3.1, the design is universally optimal over D(6, 10, 3).

Block designs meeting the Theorem 3.1 conditions are easily characterized.

Lemma 3.1 A block design d with block size k ≤ v satisfies (3.9) and (3.10) if, and only if,

(i) d is binary;

(ii) d is equireplicate, that is, rdi is constant in i;

(iii) d is equiconcurrent, that is, λdii′ is constant in i �= i′.

Setting k = v, Lemma 3.1 says the RCBDs are universally optimal. This should be no
surprise; not only is the use of each treatment once in each block intuitively appealing,
it has already been seen in Section 3.2 that RCBDs carry the same treatment information
as an equally replicated CRD. It is easily shown that, among CRDs with a fixed number of
experimental units, those with equal replication are universally optimal.

An IBD satisfying the conditions of Lemma 3.1 is called a balanced incomplete block design
(BIBD). One example is the design in Example 3.1.

Given the strong result of Theorem 3.1, BIBDs are, in a sense, “ideal” IBDs; they are rec-
ommended for use whenever available. Their shortfall is that in the universe of all possible
(v, b, k), BIBDs are rare. Let the integer r denote the common replication for any equally
replicated IBD, and let the integer λ denote the common treatment concurrence for a BIBD.
Here are three necessary conditions for a BIBD to exist:

Lemma 3.2 If there is a BIBD in D(v, b, k), then (i) r = bk/v, (ii) λ = bk(k − 1)/v(v − 1), and
(iii) b ≥ v.

The first two conditions of Lemma 3.2 follow immediately from Lemma 3.1. The third,
known as Fisher’s inequality, was proven in Fisher (1940).

Lemma 3.2 places strong restrictions on the triples (v, b, k). Thinking again of Exam-
ple 3.1, fix v = 6 and k = 3. Then (i) and (ii) of Lemma 3.2 jointly tell us that b must be
a multiple of 10. Only in 1/10 of the design classes D(6, b, 3) is a BIBD even possible.

In addition, the conditions of Lemma 3.2, while necessary, are not always sufficient to
guarantee existence of a BIBD. One of the outstanding open problems in combinatorial
mathematics is to determine when those conditions are in fact sufficient. The impressive
work of H. Hanani, summarized in Hanani (1975), establishes, with one exception, suffi-
ciency for k ≤ 5. For that one exception, (v, b, k) = (15, 21, 5), Chowla and Ryser (1950)
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have shown that 15 treatments cannot be placed in 21 blocks of 5 treatments each so that
(i) through (iii) of Lemma 3.1 simultaneously hold; this BIBD cannot be constructed.

For k = 6, the Lemma 3.2 conditions are sufficient whenever λ > 2 and when λ = 2
except for (v, b, k) = (21, 28, 6). There are still several open cases for λ = 1. See Chapter II.3
of Colbourn and Dinitz (2007) for further details on this and larger k. This is a problem that
grows more difficult as k increases.

BIBDs were first proposed as experimental designs by Yates (1936a). Since that time, a
mountainous, and still expanding, body of work on BIBD construction has evolved, with
many contributions from statisticians and mathematicians alike. A good, recent survey of
known BIBD results can be found in Chapter II.1 of Colbourn and Dinitz (2007). BIBDs are
cataloged online at, and can be downloaded from, www.designtheory.org.

The conditions of Theorem 3.1 can also be met when k > v. Define a multiply complete (for
short, m-complete) block to be a block of k = mv experimental units of which m are randomly
assigned to each treatment. Universally optimal designs in D(v, b, mv) are the generalized
complete block designs comprised solely of m-complete blocks. For k > v but not an integer
multiple of v, let k0 = k (mod v) and set m = (k − k0)/v. If k0 > 1 and there is a BIBD
d0 ∈ D(v, b, k0), then there is a universally optimal design d ∈ D(v, b, k) found by appending
an m-complete block to each block of d0. If k0 = 1 and b = sv for integer s ≥ 1, then append
each treatment to s blocks of a generalized complete block design in D(v, b, k − 1). These
optimal designs with k0 > 0 are collectively referred to as Kiefer’s balanced block designs
(KBBDs).∗

Universal optimality is defined in Theorem 3.1 as optimality with respect to all crite-
ria (3.3). In light of Theorem 3.1, it is natural to ask if this optimality can be had for any
block design if the conditions of the theorem are not met. The answer, at least in a restricted
sense, is yes.

Theorem 3.2 (Yeh 1988) Fix k = v − 1. For every m ≥ 1, there is a BIBD in D(v, b = mv, k),
which is universally optimal. For other values of b, the following designs are universally optimal
over the subclass of binary designs in D(v, b, k):

(i) 2 ≤ b ≤ v − 1: any binary design d with maxi rdi = b and mini rdi = b − 1.

(ii) b = mv + 1 and m ≥ 1: a BIBD(v, mv, k) to which one binary block is added.

(iii) b = mv + b0 for 2 ≤ b0 ≤ v − 1 and m ≥ 1: a BIBD(v, mv, k) to which the blocks of a
design from (i) with b0 blocks is added.

It is an open question as to whether, for any of the designs in Theorem 3.2(i)–(iii), uni-
versal optimality can be extended beyond the binary subclass. It certainly cannot always
be done. Morgan and Jin (2007) show that for b = 2 the designs displayed in Table 3.5 are
uniquely E-optimal and so E-better than any binary competitor.

Theorem 3.2 designs with b ≡ ±1 (mod v) fall within two design classes that will be
mined for optimality in the following sections. They can be classified both as GGDD(2)s
(Section 3.4.2) and NBBD(1)s (Section 3.4.3).

∗ These designs are more commonly referred to as balanced block designs per Kiefer’s original terminology. The new
name proposed here distinguishes them from the many other block designs that also have the balance property,
cf. Preece (1982).
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TABLE 3.5

E-Optimal Design
in D(v, 2, v − 1),
v ≥ 7

1

2

3
...

v − 3

v − 2

v − 2

1

2

3
...

v − 3

v − 1

v

3.4 Block Designs That Approximate BIBD Structure

The vast majority of block designs used in practice have block size no larger than the num-
ber of treatments. Setting k = v, Theorem 3.1 tells us that the RCBDs are the designs
of choice. With IBDs, once one leaves the BIBDs, there is no simple answer. This section
explores the considerable theory that has grown, and continues to grow, around the IBD
problem.

Section 3.3 presents two key facts concerning BIBDs: in terms of criteria (3.3) they are
optimal in the strongest sense possible, and the triples (v, b, k) for which they exist are rare
in the universe of all such triples. To add perspective to the latter, for 3 ≤ v ≤ 15 and
2 ≤ r ≤ 30, there are 1021 integer triples (v, b, k) where r = bk/v is an integer; of these,
only 253 have b ≥ v and integer λ (see Lemma 3.2). Even restricting to equal replication,
the BIBDs leave much more unsolved than solved in the search for optimal block designs.

Yet the BIBDs are suggestive of how one might proceed. BIBDs are defined by conditions
(i) through (iii) of Lemma 3.1. If these conditions produce universal optimality (as they do),
then designs that are in some sense “close” to achieving those conditions should be good
candidates for, if not universal optimality, individual optimalities of interest, such as those
in Table 3.2. That is the tack taken in this section.

The symbols r and λ were assigned specific meanings in Section 3.3; now they will be
defined in such a way as to preserve the earlier meanings as special cases. The starting
point is the block design setting (v, b, k) with k < v. Associated with this setting,

r =  bk
v � = maximal achievable minimum replication,

p = bk − vr = plot excess over those needed for equal replication r,
λ =  r(k−1)

v−1 � = maximal achievable minimum concurrence for a
treatment having replication r,

q = r(k − 1) − λ(v − 1) = total concurrence excess, for a treatment having
replication r, over constant concurrence λ.

(3.11)

These auxiliary parameters will be used throughout this section. The necessary conditions
Lemma 3.2(i),(ii) for BIBD existence may be restated as p = q = 0, termed the BIBD setting.
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The concern in this section is for those settings where at least one of the plot excess p and
the concurrence excess q is not zero.

Because equal replication is so common in practice, greatest attention has been paid to
settings having p = 0, and this is where we begin. Now equal replication is possible, and
“closeness” to a BIBD can be formulated in terms of deviation of the λdii′ ’s from λ. If not a
BIBD setting, then necessarily 1 ≤ q ≤ v − 2.

3.4.1 Regular Graph Designs

With p = 0 and whatever the value of q, let d be a binary, equireplicate design. Using (xii′)i�=i′
to denote a matrix that is zero on the diagonal, the information matrix Cd for design d can
be written as

Cd = rI − 1
k

NdN′
d = rI − r

k
I − 1

k
(λdii′)i�=i′

= r(k − 1)

k
I − 1

k
(λ)i�=i′ − 1

k
[(λdii′)i�=i′ − (λ)i�=i′ ]

=
(

vλ + q
k

)
I − λ

k
J − 1

k
�d, (3.12)

where the discrepancy matrix �d has elements δdii′ , called discrepancies, defined by

δdii′ =
{

0 if i = i′,
λdii′ − λ if i �= i′. (3.13)

Any discrepancy matrix is symmetric with constant row sums of q.
A BIBD has all λdii′ = λ and so �d = 0v×v. One idea for what it means for a design d

to be “close” to a BIBD is for it to be binary and equireplicate (meeting the BIBD condi-
tions Lemma 3.2(i),(ii)), and for it to have �d close to the zero matrix in some sense. This
motivates the regular graph designs.

Definition 3.1 Let the class of designs D(v, b, k) have p = 0 and q > 0. A design d ∈ D is a
regular graph design if

(i) d is binary,

(ii) d is equireplicate, and

(iii) the v(v − 1) discrepancy values δdii′ are all in {0, 1}.

The name “regular graph design” comes from the fact that �d for such a design is the
adjacency matrix of a regular graph with v vertices. There is an edge connecting vertices i
and i′ in this graph if δdii′ = 1, but no edge if δdii′ = 0. The “regular” means that each vertex
is connected to the same number of other vertices, which is q. In graph terminology, q is
called the degree or the valency of the regular graph.

Within the binary, equireplicate class, imposing Definition 3.1(iii) is equivalent to mini-
mizing trace(�′

d�d) = trace(�2
d), a natural way to minimize deviation from the complete

symmetry condition (3.10) in Theorem 3.1. Alternatively, RGDs can be viewed as firstly
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maximizing trace(Cd) (i.e., (i) of Definition 3.1) and, given that, then minimizing trace(C2
d)

(i.e., (ii) and (iii)). Designs with this (M, S)-property∗ have minimal dispersion of their eigen-
values among designs with maximal sum of eigenvalues. Take note that these ideas of
closeness to a BIBD give priority to (3.9) over (3.10).

John and Mitchell (1977) conjectured that if D(v, b, k) contains at least one regular graph
design, then the A-, D-, and E-optimal designs must each be a regular graph design. If their
conjecture is true, then so long as at least one regular graph design exists, all other designs
can be ignored when looking for an optimal design. For k > 2, no counterexample is known
for their conjecture for either A-optimality or D-optimality. On the other hand, it has not been
proven, either. Counterexamples are known for the E-criterion (see Section 3.4.4).

Example 3.5

This regular graph design, for (v, b, k, q) = (7, 7, 5, 2), is A-, D-, and E-optimal among
regular graph designs:

1
2
3
4
5

1
2
3
4
7

1
2
3
6
7

1
2
5
6
7

1
4
5
6
7

2
3
4
5
6

3
4
5
6
7

Its discrepancy matrix is

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 1
1 0 1 0 0 0 0
0 1 0 1 0 0 0
0 0 1 0 1 0 0
0 0 0 1 0 1 0
0 0 0 0 1 0 1
1 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

If one could simply enumerate all designs in D(v, b, k), then optimality with respect to
any criterion could be trivially determined. The John–Mitchell conjecture for regular graph
designs brings the enumerative problem within reach, up to a point. In fact, it changes the
design enumeration problem into a graph enumeration problem, as follows. Each graph
is a discrepancy matrix, so enumerating all regular graphs of degree q is equivalent to
enumerating information matrices of the form (3.12), regardless of whether or not the corre-
sponding designs exist. The matrices can then be ranked according to the desired optimality
criterion, the best determined, and only then is it necessary to find a corresponding design.
Should such a design not exist, then one moves on to the next best graph, and so on.

John and Mitchell (1977) followed this strategy for up to v = 12 treatments and r = 10
replicates. Formal optimality tools can then be employed to show that all of their designs,
including the design in Example 3.5, are A- and D-optimal over the entire classD(v, b, k); see
Theorem 3.6. Their stopping point was driven by the size of the graph enumeration prob-
lem, which grows rapidly with v (and q). Over 35 years later, tremendous strides have been
made in computational power, yet little progress has been gained on the graph enumeration

∗ (M, S)-property has been often called (M, S)-optimality, but as it does not directly measure magnitude of contrast
variances, the former term is more appropriate.
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problem for v > 16. Recent progress on optimal RGDs for selected cases with v up to 18
may be found in Cakiroglu (2013).

3.4.2 Group Divisible Designs

A different approach to approximating the BIBD information structure can be based on
giving first priority to approaching the complete symmetry condition (3.10) corresponding
to Lemma 3.1(iii). How this “closeness” idea should be implemented can be seen in how the
proof of Theorem 3.1 employs the convexity (3.3)(iii) of optimality functions. That usage is
a particular case of the technique of matrix averaging.

Definition 3.2 Let P1, . . . , Pt be t permutation matrices of order v. An averaging of the
information matrix Cd is Cd = 1

t
∑t

i=1 PiCdP′
i. Cd is called an average matrix of Cd.

Lemma 3.3 (Constantine 1981) Suppose Cd is an average matrix of Cd. Then Cd is nonnegative
definite with zero row sums and the same trace as Cd, and �(Cd) ≤ �(Cd) for any � satisfying (3.3).

For given trace of Cd, Theorem 3.1 maximizes information by averaging over all treat-
ment permutations. When complete symmetry is not attainable in an actual design, an
information matrix might be more advantageously improved by averaging over subsets of
treatment permutations. If a corresponding design for the “partially averaged” matrix can
be found, then it could be a promising candidate for optimality. The structure Cd produced
by averaging within all subsets of a treatments partition is that of a generalized group divisible
design (GGDD).

Definition 3.3 The design d ∈ D(v, b, k) is a GGDD(s) if the treatments in d can be divided into
s mutually disjoint sets V1, ..., Vs of size v1, ..., vs such that the elements cdii′ of Cd satisfy

(i) For g = 1, ..., s and all i ∈ Vg, cdii = rdi − λdii/k = cg, where cg depends on the set Vg but
not otherwise on the treatment i;

(ii) For g, h = 1, ..., s and all i ∈ Vg and i′ ∈ Vh, with i �= i′ if g = h, −kcdii′ = λdii′ = γgh,
where γgh depends on the sets Vg and Vh but not otherwise on the treatments i and j.

It is convenient to assume that the treatment subsets V1, ..., Vs in the preceding definition
are arranged so that the cg’s are in nonincreasing order: c1 ≥ c2 ≥ · · · ≥ cs. If |Vg| = 1,
then γgg is defined to be zero. This version of the GGDD definition is due to Srivastav and
Morgan (1998), with the idea in less general form dating back to Adhikary (1965).

Example 3.6

The following design d ∈ D(6, 11, 3) is a GGDD(2).

1
2
3

1
2
4

1
2
5

1
2
6

1
3
6

1
4
5

2
3
4

2
5
6

3
4
6

3
5
5

4
5
6
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The information matrix for d is

Cd = 1
3

⎛
⎜⎜⎜⎜⎜⎜⎝

12 −4 −2 −2 −2 −2
−4 12 −2 −2 −2 −2
−2 −2 10 −2 −2 −2
−2 −2 −2 10 −2 −2
−2 −2 −2 −2 10 −2
−2 −2 −2 −2 −2 10

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The groups are V1 = {1, 2} and V2 = {3, 4, 5, 6}. The concurrence parameters are γ11 = 4
and γ12 = γ22 = 2.

Definition 3.3 requires neither binarity nor equal replication, though both will frequently
be employed. For instance, a binary, equireplicate GGDD(1) is just a BIBD, giving us our
first example of optimality for GGDDs. The optimal design in Example 3.3, which is also a
GGDD(1), is a case where neither additional property is employed. Nor are those properties
possessed by the designs in Table 3.5, which are E-optimal GGDD(3)s (see Theorem 3.16).

A binary, equireplicate GGDD, with equal group sizes and with the further property that
γgh is constant in g �= h, goes by the simpler name group divisible design (GDD). It is custom-
ary with GDDs to drop the γ notation entirely and refer instead to the in-group concurrence
λ1 and the out-group concurrence λ2. If |λ1 − λ2| = 1, then a GDD is a RGD. These designs
were formally defined by Bose and Shimamoto (1952).

Some GDDs enjoy a very broad optimality that, though not as strong as universal opti-
mality, does encompass all three of the eigenvalue-based criteria listed in Table 3.2. In
terms of eigenvalues, complete symmetry (3.10) is equivalent to ed1 = ed2 = · · · = ed,v−1.
Approximating complete symmetry (as through the GDD notion) will be valuable from an
optimality perspective if it corresponds to an optimal relaxation of eigenvalue equality. The
type 1 optimality criteria provide a framework for investigating the form of this relaxation.

Definition 3.4 Let f be a real-valued function on � and define �f on the class of information
matrices C by �f (Cd) = ∑v−1

i=1 f (edi). Minimizing �f is a type 1 optimality criterion if

(i) f is continuously differentiable on (0, T ),

(ii) f ′ < 0, f ′′ > 0, f ′′′ < 0 on (0, T ),

(iii) f is continuous at 0 and limx→0+ f (x) = +∞,

where T = maxC trace(Cd).

Taking f (x) = 1/x gives the A criterion and f (x) = − log(x) the D criterion. All of the �t
criteria are included in the type 1 class, including (in the limit) E. The type 1 class does not
include the MV criterion, for its value is not determined solely by the edi.

Theorems 3.3 through 3.5 to follow each provide eigenvalue conditions for attainment
of optimality with respect to type 1 criteria. They do this by employing various combina-
tions of moment and extremal bounds for the set of v − 1 eigenvalues. Though not all are
needed in this subsection, these theorems are best understood as a group, so are given here.
Applications of these results extend to many situations other than GDDs, some of which
will be explored in later subsections.
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The task of minimizing �f can be cast as an optimization problem independent of
information matrices and their eigenvalues. The goal is to

minimize
v−1∑
i=1

f (xi)

for f of Definition 3.4 and positive variables x1 ≤ x2 ≤ · · · ≤ xv−1. Where the minimum is
attained will depend on constraints ruling the xi. We will consider (in various combina-
tions) the following:

(i)
∑

xi = T1 for some positive T1.

(ii)
∑

x2
i ≥ T2 for some T2 satisfying T2

1
v−1 ≤ T2 ≤ T2

1.
(iii) x1 ≤ T0 for some T0 satisfying

(a) T0 ≤ (T1 −
√

v−1
v−2 P)/(v − 1) where P =

√
T2 − T2

1
v−1 ,

(b) (T1 − T0)
2 ≥ T2 − T2

0 ≥ (T1 − T0)
2/(v − 2).

(3.14)

In the design optimality application, constraints (3.14)(i) through (iii) correspond,
respectively, to fixing the trace value trace(Cd)= ∑

i edi, placing a lower bound on the trace
square trace(C2

d)= ∑
i e2

di, and placing an upper bound on the smallest eigenvalue ed1.

Theorem 3.3 (Cheng 1978) The minimum of
∑

f (xi) subject to conditions (3.14)(i) and
(ii) is at

x1 = x2 = · · · = xv−2 =
T1 −

√
v−1
v−2 P

v − 1
and xv−1 = T1 + √

(v − 1)(v − 2)P
v − 1

,

where P is as defined in (3.14)(iii).

For Theorem 3.3 applied to the design optimality problem, the first moment of the eigen-
values is fixed, such as when restricting to binary designs, and their second moment is
bounded from below. The minimum of �f is achieved at the second moment bound if the
smallest v − 2 eigenvalues can be made equal. The next result incorporates information on
the smallest eigenvalue.

Theorem 3.4 (Jacroux 1985) The minimum of
∑

f (xi) subject to all of the conditions (3.14)(i)
through (iii) is at x1 = T0,

x2 = . . . = xv−2 =
(T1 − T0) −

√
v−2
v−3 P0

v − 2
, and xv−1 = (T1 − T0) + √

(v − 2)(v − 3)P0

v − 2
,

where P0 =
[
(T2 − T2

0) − (T1−T0)
2

v−2

] 1
2 .
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In Theorem 3.4 the first moment of the eigenvalues is again fixed and again their second
moment is bounded from below, but now there is also an upper bound for the minimum
eigenvalue. The optimum is achieved at the second moment bound if we can get the small-
est eigenvalue to reach its upper bound, and the remaining eigenvalues have a structure
as in Theorem 3.3. Theorem 3.3 can also be refined by incorporating information on the
largest eigenvalue, as shown next.

Theorem 3.5 (Cheng and Bailey 1991) The minimum of
∑

f (xi) subject to conditions (3.14)(i)
and (ii), and the additional constraint xv−1 ≤ Tv, is at any set of xi’s for which there are exactly two
distinct values and for which

∑
i

x2
i = T2 and xv−1 = Tv.

For any fixed trace of the information matrix, Theorems 3.3 through 3.5 show how the
“equality of eigenvalues” implied by (3.10) can be advantageously relaxed in situations
where it is not achievable. We now investigate the application of these results.

In the following, a design is termed generalized optimal if it is optimal with respect to all
type 1 criteria. Working with a variant of Theorem 3.3 (see the original paper for details),
Cheng (1978) proved generalized optimality for GDD(2)s having λ2 = λ1 + 1. This remains
one of the most far-reaching optimality results, outside the realm of universal optimality
explored in Section 3.3, which has been established for block designs. Otherwise, with few
exceptions (see the next paragraph and following Theorem 3.9), it has been necessary to
either restrict the class D(v, b, k) of competing designs, to restrict to a particular criterion,
or both. The GDDs have been fertile ground in both regards.

In a very early paper, Takeuchi (1961) established E- and MV-optimality of the GDD(s)s
having λ2 = λ1 + 1 for any s ≥ 2. A GDD is said to be singular if r = λ1 and semiregular
if r > λ1 and rk = vλ2. Employing Theorem 3.5, Cheng and Bailey (1991) established
generalized optimality within the binary, equireplicate subclass of D(v, b, k), for singular
GDDs with λ2 = λ1 − 1 and semiregular GDDs with λ2 = λ1 + 1. Using majorization
(see Bhatia 1997; and Section 3.5.3) techniques to establish inferiority of nonbinary and
unequally replicated competitors, Bagchi and Bagchi (2001) were in many cases able to
extend these generalized optimality results to the full class D(v, b, k).

The dual of an IBD d with treatment/block incidence matrix Nd is the design d̃ (say) for
which Nd̃ = N′

d. If d is binary with equal replication r, then d̃ is binary with replication
r̃ = k and Cd̃ = kI − 1

r N′
dNd (compare Equation 3.4). Owing to the fact, true of any matrix

times its transpose, that N′
dNd has the same nonzero eigenvalues as NdN′

d, the duals of
the singular and semiregular GDDs mentioned earlier are also generalized optimal among
binary, equireplicate competitors. The Cheng and Bailey (1991) paper contains several other
results of this flavor, found by identifying classes of designs whose eigenvalues satisfy
Theorem 3.5.

As noted earlier, GDDs are RGDs whenever |λ1 −λ2| = 1. GDDs are attractive targets for
optimality arguments along the lines given earlier because their information matrices pro-
duce only two distinct eigenvalues. While other RGDs need not have this distinction, they
do all possess (M, S)-property, so are approximating the requirements of Theorem 3.1 but
without necessarily having a “nice pattern” for their eigenvalues like found in Theorems 3.3
through 3.5. Theorem 3.4 can nevertheless be effectively exploited for the RGD-optimality
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problem. A two-armed approach handles the binary and nonbinary subclasses of D(v, b, k)
separately. Henceforth denote the binary subclass by B(v, b, k).

In the theorem to follow, T0 and T∗
0 are upper bounds for ed1, found from Lemma 3.5

and Corollary 3.1 (in Section 3.4.4) applied to non-RGDs. The smallest trace(C2
d) that can

be attained by a binary, non-RGD is the value used for T2. These values are plugged into
Theorem 3.4 and a result of Kunert (1985) to produce non-RGD lower bounds for �f (Cd),
displayed as the right-hand side of the inequalities (3.15) for binary designs and (3.16) for
nonbinary designs.

Theorem 3.6 (Jacroux 1985) Let d̄ ∈ D(v, b, k) for v > k ≥ 3 be a RGD. Write

T0 = max
{ [r(k − 1) − (λ + 2)]v

(v − 2)k
,
[r(k − 1) + λ − 1]

k
,
(r − 1)(k − 1)v

(v − 1)k

}
,

T∗
0 = max

{ [r(k − 1) − 2]v
(v − 1)k

,
(r − 1)(k − 1)v

(v − 1)k

}
,

T1 = b(k − 1), T2 = tr(C2
d̄
) + 4

k2 , and P0 =
[
(T2 − T2

0) − (T1 − T0)
2

v − 2

] 1
2

.

If T0 ≤ [(T1 − T0) −
√

v−2
v−3 P0]/(v − 2) and

v−1∑
i=1

f (ed̄i) < f (T0) + (v − 3)f

⎛
⎜⎝ (T1 − T0) −

√
v−2
v−3 P0

v − 2

⎞
⎟⎠ + f

(
(T1 − T0) + √

(v − 2)(v − 3)P0

v − 2

)
,

(3.15)

then a �f -optimal design in B(v, b, k) must be a RGD. If moreover T∗
0 ≤ [T1 − 2

k − T∗
0]/(v − 2)

and

v−1∑
i=1

f (ed̄i) < f (T∗
0) + (v − 2)f

(
T1 − 2

k − T∗
0

v − 2

)
, (3.16)

then a �f -optimal design in all of D(v, b, k) must be a RGD.

If these conditions hold, then all non-RGDs are ruled out with respect to �f , but
Theorem 3.6 does not say that the design d̄ must be �f -optimal. Rather, it says that
some RGD will be the optimal design; one must still complete the enumeration described
following Example 3.5. Jacroux (1985) employed Theorem 3.6 to establish A- and D-
optimality, over all of D(v, b, k), of the best RGDs determined by John and Mitchell (1977),
lending strong credence to the John–Mitchell conjecture. Theorem 3.6 and its application to
RGDs are an excellent example of how good theory can bring a complicated design problem
within computational reach.
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To this point, all of the designs shown to be optimal in this section have been binary. Even
more, they have all had (M, S)-property, though this is not a requirement of the GGDDs in
Definition 3.3. Indeed, there is no known example of an A-optimal IBD that is not binary.
The situation is different with respect to the minimax criteria E and MV. E-optimality will
be explored in more detail in Section 3.4.4; the remainder of this subsection concentrates
on the MV criterion.

Many of the MV-optimality arguments found in the literature build on the simple
inequality (3.17) first proven by Takeuchi (1961). It is applicable to any class of information
matrices C as identified prior to (3.3). For Cd ∈ C, Cd = (cdii′),

Vard(τ̂i − τi′)

σ2
E

≥ 4
cdii + cdi′i′ − 2cdii′

. (3.17)

The proofs of Theorems 3.7 and 3.8, not shown here, depend critically on (3.17). Again
notice the emphasis on symmetry. The Theorem 3.7 result is for GGDD(1)s.

Theorem 3.7 (Morgan and Uddin 1995) For the class of designs D = D(v, b, k), suppose there
is a d∗ ∈ D for which

min
i

∑
i′ �=i

cd∗i′i′ = max
d∈D

min
i

∑
i′ �=i

cdi′i′ , and (3.18)

Cd∗ = α

(
I − 1

v
J
)

. (3.19)

Then d∗ is MV-optimal in D. Moreover, if d ∈ D and Cd �= Cd∗ , then d∗ is MV-superior to d.

The second condition (3.19) of Theorem 3.7 is identical to the second condition (3.10) of
Theorem 3.1. The two theorems are distinguished by their first conditions (3.18) and (3.9),
with (3.18) allowing the possibility that trace may not be maximized. When the two con-
ditions of Theorem 3.7 can be met without simultaneously meeting those of Theorem 3.1,
maximum trace designs cannot be MV-optimum, for the asymmetry they necessarily entail
results in higher variances for some elementary contrast estimators.

Theorem 3.7 gives us our first insight into how nonbinarity can advantageously enter
into the IBD-optimality problem. When equal replication is not possible (plot excess p > 0),
judicious use of nonbinarity can improve the approximation to complete symmetry and
with this improve an optimality measure, particularly those (MV and E) that are most sensi-
tive to an extreme contrast variance. Morgan and Srivastav (2002) have proven that the MV
conclusions of Theorem 3.7 also hold for the E-criterion.

Like Theorem 3.1, which requires (p, q) = (0, 0), the scope of Theorem 3.7 is fairly small
in the (v, b, k) universe, needing (as can be shown) (p, q) = (1, 0). The nonbinary design
in Example 3.3 is MV-optimal over D(5, 7, 3) by Theorem 3.7. The A-optimal design in
D(5, 7, 3) is binary.
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Nonbinarity can also enter into MV-optimal GGDDs with s > 1, as demonstrated next.
Though neither binarity nor equal replication is required, Theorem 3.8(i) does imply
binarity when p = 0. For r = bk/v�, the c in (i) is c = r(k − 1)/(v − 1).

Theorem 3.8 (Srivastav and Morgan 1998) Let d� ∈ D(v, b, k) be a GGDD(s) for which

(i) cg ≥ c for 1 ≤ g ≤ s − 1 and cs = c,

(ii) γss ≥  pk+2r(k−1)

2(v−1)
�,

(iii) γgg ≥ γss for 1 ≤ g ≤ s − 1,

(iv) γgh is constant in g �= h,

(v)
(γgg+(v−1)γ1s)

vγ1s(kcg+γgg)
+ (γhh+(v−1)γ1s)

vγ1s(kch+γhh)
≤ 2

kc+γss
for 1 ≤ g, h ≤ s with g �= h.

If p ≤ v − 2, then d� is MV-optimal in D(v, b, k).

The nonbinary design in Example 3.6 is MV-optimal by Theorem 3.8. Again, nonbina-
rity is coming into play here when equal replication is not possible, provided it allows the
group divisible structure to be achieved, so approximating (3.10) at the expense of (3.9).
Condition (i), however, limits the extent of nonbinarity. Many results of a similar flavor to
Theorem 3.8 are known; see Srivastav and Morgan (1998) and the references therein.

The last two theorems beg the question of whether an optimal design in any of the senses
in Table 3.2 can be nonbinary when equal replication is possible (i.e., when p = 0). The con-
jectured answer is no. Morgan (2009) examined this question for GGDD(1)s, also known as
variance-balanced designs. Consider two designs d1 and d2. If Cd1 − Cd2 �= 0 is nonnega-
tive definite, then d1 dominates d2 in the sense explained following (3), in which case d2 is
inadmissible. Let d̄ ∈ D(v, b, k) with p = 0 be a nonbinary GGDD(1), implying that ed̄i ≡ ē
is constant in i. If there is an E-optimal d ∈ D(v, b, k) that is binary and equireplicate, then
Cd−Cd̄ = Cd−ē(I− 1

v J) is nonnegative definite and d̄ is inadmissible. Morgan (2009) showed
that of the 230 GGDD(1)s with v ≤ 15 and p = 0 listed by Billington and Robinson (1983),
228 are inadmissible by virtue of comparison with E-optimal designs; the two remaining
cases were left unresolved due to the E-optimal designs not being known.

3.4.3 Nearly Balanced Incomplete Block Designs

Theorems 3.7 and 3.8 demonstrate that when equal replication is not possible, nonbinary
designs with sufficient balance are sometimes MV- or E-optimal (Sections 3.4.2 and 3.4.4).
This has not been found to be the case for A-optimality, leading to a need to identify more
flexible, binary design classes that leave room for measured steps away from symmetry.

Definition 3.5 A nearly balanced incomplete block design with concurrence rangeψ, or NBBD(ψ),
is a design d ∈ D(v, b, k) satisfying

(i) Each ndij = 0 or 1 (the design is binary),

(ii) Each rdi = r or r + 1 (replication numbers as equal as possible),
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(iii) maxi�=i′,j�=j′ |λdii′ − λdjj′ | = ψ,

(iv) d that minimizes trace(C2
d) over all designs satisfying (i) through (iii).

Definition 3.5 is from Morgan and Srivastav (2000). The NBBD(1)s were earlier studied
by Jacroux (1985), Jacroux (1991), and Cheng and Wu (1981), the last also considering a
subclass of the NBBD(2) designs. The definition is tailored toward (M, S)-property, while
allowing through (iii) that the concurrence numbers λdii′ need not be as close as possible.

Most of the designs found optimal in Sections 3.4.1 and 3.4.2 are NBBD(1)s for plot
excess p = 0. We begin here with p > 0 and ψ= 1 but will also see that ψ= 1 is not always
achievable and that contrary to the intuition from BIBDs, minimizingψdoes not necessarily
lead to the best design (see Example 3.8). Two simple methods for constructing NBBD(1)s
when p > 0 begin with a BIBD d ∈D(v, b, k). For any b0 such that b0k < v, one may (i) delete b0
disjoint blocks from d or (ii) append b0 disjoint blocks on the v treatments to d. The resulting
NBBDs are binary GGDD(b0 + 1)s.

If p > 0 so that equal replication is not possible, the NBBD(1)s, being structurally close
to RGDs, are promising candidates for A- and D-optimality. Relative to a NBBD(1),
other binary designs must have larger trace(C2

d), opening the door for an adaptation of
Theorem 3.4 for NBBD(1)s similar to that done with Theorem 3.6 for RGDs. That is, one can
bound the E-value and the trace-square value for binary, non-NBBD(1)s, use these bounds
to calculate a bound for the A-value (say) of non-NBBD(1)s via Theorem 3.4, and then com-
pare this bound to the A-value of an actual NBBD(1) (compare (3.15) in Theorem 3.6). If the
A-value of the NBBD(1) is smaller, then an A-optimal design inB(v, b, k) must be a NBBD(1).
Analogous steps lead to an inequality similar to (3.16) for ruling out nonbinary competitors.
See Jacroux (1991) for details, where many NBBD(1)s with k > 2 are shown to be A-optimal
and refinements to Theorem 3.4 are also incorporated.

Some settings (v, b, k) do not allow ψ= 1 and larger concurrence ranges need to be con-
sidered. This comes about in either of two basic ways. First, if binarity forces some λdij to be
less than the concurrence parameter λ defined in (3.11), then the concurrence range is nec-
essarily at least two. An example is D(7, 28, 5) of Example 3.2. Second, requiring all λdij ≥ λ

will, in some settings, force some λdij ≥ λ + 2 as shown in Lemma 3.4.

Lemma 3.4 (Cheng and Wu 1981) Let d ∈ B(v, b, k) have replication numbers rdi ≥ r for all i
and concurrence numbers λdij ≥ λ for all i �= j. If the concurrence excess q satisfies (i) q > v − k or
(ii) q ≤ v − k and p(k − p) > (v − 2p)q, then λdij ≥ λ + 2 for some i �= j.

In similar fashion as explained earlier for NBBD(1)s, for settings where ψ< 2 is not
possible, Theorem 3.4 can be adapted for establishing optimality of NBBD(2)s. This was
done by Morgan and Srivastav (2000) who, among other findings, discovered instances of
A-optimal NBBD(3)s. Examples 3.7 and 3.8 are based on their results.

Example 3.7

The following member of D(5, 7, 3) is a NBBD(2) with minimal concurrence λd12 =
1 = λ − 1.

1
2
3

1
3
4

1
3
5

1
4
5

2
3
4

2
3
5

2
4
5
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This design is A- and D-optimal, but neither E- nor MV-optimal. The best design for the
latter two criteria is nonbinary—see Example 3.3.

Example 3.8

Up to isomorphism, D(9, 11, 5) contains two NBBD(2)s, here labeled d1, d2, and one
NBBD(3), d3.

d1 :

1
2
3
4
5

1
2
3
7
9

1
2
4
6
8

1
2
5
8
9

1
3
4
6
9

1
3
4
7
8

1
5
6
7
9

2
3
6
7
8

2
4
5
6
7

3
5
6
8
9

4
5
7
8
9

d2 :

1
2
3
4
9

1
2
3
5
8

1
2
4
5
6

1
2
6
7
9

1
3
4
5
7

1
3
6
7
8

1
4
5
8
9

2
4
6
7
8

2
5
7
8
9

3
4
6
8
9

3
5
6
7
9

d3 :

1
2
3
5
9

1
2
3
6
8

1
2
4
5
7

1
2
4
6
9

1
2
7
8
9

1
3
4
5
8

1
3
4
6
7

2
5
6
7
8

3
4
7
8
9

3
5
6
7
9

4
5
6
8
9

All three designs have the same trace(C2
d) value. Of the NBBD(2)s, d1 is A- and D-better,

while d2 is E- and MV-better. The NBBD(3), however, is better than the NBBD(2)s on all
four of these criteria and is A- and D-optimal over all of D(9, 11, 5).

The approach taken in this subsection is also useful for the irregular BIBD settings: those
triples (v, b, k) where the necessary conditions for existence of a BIBD (Lemma 3.2) are sat-
isfied, but no BIBD exists. In an irregular BIBD setting, a binary design must have some
λdij less than λ, suggesting NBBD(2)s as likely candidates for optimality. Since p = 0, equal
replication is possible, and any binary, equireplicate design d will have discrepancy matrix
�d with row and column sums of zero. Define the total discrepancy δd of such a matrix to be
δd = ∑

i�=j |δdij|/2. Reck and Morgan (2005) enumerated the 51 feasible nonzero submatrices
for all �d for NBBD(2)s and NBBD(3)s having δd ≤ 5 and established that should a corre-
sponding design d exist for any one of these, then the A-optimal and D-optimal designs in
an irregular BIBD setting with r ≤ 41 must be a NBBD with concurrence range and total
discrepancy in these ranges. For r ≤ 41, there are 497 BIBD settings that are either known
to be irregular or for which the existence question is open. The smallest of these is the basis
for Example 3.9, taken from Reck and Morgan (2005).
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Example 3.9

An A- and D-optimal design in D(15, 21, 5). The total discrepancy of this design is δd = 4.

1
2
3
4
5

1
2
6
7
8

1
3
6
9
12

1
4
10
13
14

1
5
9
11
15

1
7

13
14
15

1
8
10
11
12

2
3
11
13
15

2
4
6
12
15

2
5
10
12
14

2
7
9
11
14

2
8
9
10
13

3
4
7
10
11

3
5
7
8
13

3
6
9
10
14

3
8
12
14
15

4
5
8
9

15

4
6
8
11
14

4
7
9
12
13

5
6
11
12
13

5
6
7
10
15

Including �d = 0, there are seven discrepancy matrices that produce better A-values
than that of this design, but in D(15, 21, 5), there is no corresponding design for any of
them.

In a later paper, the same authors (Morgan and Reck 2007a) determined an E-optimal
design inD(15, 21, 5). Interestingly, that NBBD(2) has total discrepancy 7, so its discrepancy
matrix is not among the 51 candidate matrices for the aforementioned A-optimality. More-
over, they found little relationship between the A- and E-rankings of discrepancy matrices.
These results point to the difficult interplay between combinatorial and optimality aspects
of designs that can arise when “nice” designs do not exist. To date D(15, 21, 5) is the only
irregular BIBD setting where optimal designs have been determined.

3.4.4 E-Optimal Block Designs

There has been a wealth of research on E-optimality of block designs, particularly for set-
tings with plot excess p = 0 and more generally for those that fall within the NBBD(1)
framework. This is partly because, in working with only the smallest eigenvalue ed1 of Cd,
the technical problems tend to be more readily tractable than with other eigenvalue-based
criteria. But it is also due to its pragmatic appeal of keeping any contrast from being esti-
mated poorly. When E-optimal designs differ from those that are A- or D-optimal, it is not
uncommonly due to the latter estimating a few contrasts poorly and many slightly better.

The E-criterion asks that ed1 be maximized, so that E-optimality arguments accordingly
require upper bounds for this smallest, positive eigenvalue of Cd. The basic lemma by
which these are obtained (cf. result 6.59(b) in Seber 2008) is stated next.

Lemma 3.5 For any Cd and any nonzero vector h,

ed1 ≤ h′Cdh

h′(I − 1
v J)h

.

Different choices for h lead to different bounds, with utility depending on the particular
design problem faced. Corollary 3.1 displays the most frequently employed.
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Corollary 3.1 The smallest positive eigenvalue ed1 of Cd satisfies

(i) ed1 ≤ (cdii + cdi′i′ − 2cdii′)/2, i �= i′ = 1, . . . , v;

(ii) ed1 ≤ ∑
i∈M

∑
i′∈M vcdii′/m(v − m) for any m = |M|, M ⊂ {1, 2, . . . , v}.

The bound (i) is based on pairwise contrasts, compare (3.17). Application of Corollary 3.1
leads easily to bounds for investigating E-optimality of regular graph designs.

Theorem 3.9 (Cheng 1980; Jacroux 1980) Let d ∈ D(v, b, k) with k < v and p = 0:

(i) ed1 ≤ max{[r(k − 1) − λ − 2]v/[(v − 2)k], [r(k − 1) + λ − 1]/k} if d is equireplicate but
not a RGD.

(ii) ed1 ≤ (r − 1)(k − 1)v/[(v − 1)k] if d is not equireplicate.

Thus, if the E-best RGD d∗ ∈ D(v, b, k) satisfies

ed∗1 ≥ max{[r(k − 1) − λ − 2]v/[(v − 2)k], [r(k − 1) + λ − 1]/k, (r − 1)(k − 1)v/[(v − 1)k]},

then d∗ is E-optimal over all of D(v, b, k).

Cheng (1980) and Jacroux (1980), whose broadly overlapping articles were published
back to back, applied Theorem 3.9 and related arguments to between them establish
E-optimality for a substantial number of smaller designs, including 159 of the 209 parame-
ter sets considered by John and Mitchell (1977). Cheng (1980) further proved E-optimality
for GDD( v

2 )s having λ1 = λ2 + 1, λ2 ≥ 1 as well as for the duals of these designs and for the
duals of BIBDs and of GDDs with λ2 = λ1 + 1. The duals of BIBDs, known as linked block
designs, in some cases enjoy generalized optimality (Bagchi and Bagchi 2001).

GDDs are members of a class of binary, equireplicate IBDs known as partially bal-
anced incomplete block designs (PBIBDs) with two associate classes. Any 2-class PBIBD d
has exactly two concurrence numbers λdii′ ∈ {λ1, λ2}, and the pairwise contrast vari-
ances Vard(τ̂i − τi′) take just two distinct values; see Dey (2010) or Clatworthy (1973)
(which includes an extensive tabling of smaller designs) for a good introductory treat-
ment, including definition of triangular parameters for these designs. PBIBDs were exten-
sively studied in the statistics community from their introduction by Bose and Nair
(1939) until interest was overtaken by increasing emphasis on optimality from the mid-
1970s onward. In effect, the PBIBDs were too broad a class from an optimality per-
spective, containing both optimal and markedly inefficient members. PBIBDs are most
competitive when, as in the optimality results for the aforementioned GDDs, they
have concurrence range of one, in which case they have (M, S)-property. Constantine
(1982), relying heavily on Corollary 3.1(ii), was able to establish E-optimality of 2-class
PBIBDs with (λ1, λ2)= (1, 0) or (0, 1) whenever an additional inequality on the triangu-
lar parameters is met. This included all 2-class PBIBDs with (λ1, λ2)= (1, 0) and b < v;
see the paper for details and full results. Cheng (2012) has recently combined more
detailed knowledge of regular graphs with the bounds of Theorem 3.9 to prove further
E-optimality results for RGDs, including E-optimality over equireplicate designs for all
those PBIBDs with λ2 = λ1 + 1 known as either triangular type or L2 type.



Blocking with Independent Responses 127

Expanding on the John and Mitchell (1977) cataloging of RGDs and later proofs of their
optimality over all competitors, there has been progress on determining all E-optimal block
designs for settings with p = bk − vr = 0 in a practical range. The basic idea is first to
determine the E-best design in the equireplicate subclass B∗ of B(v, b, k) and then to prove
its optimality over all of D(v, b, k). The first step requires Cd to be of the form (3.12), in
which case ed1 can be expressed in terms of adv, the largest eigenvalue (other than q) of the
discrepancy matrix �d:

ed1 = vλ + q
k

− adv

k
. (3.20)

With (3.20), E-optimization over B∗ is translated to an eigenvalue problem for discrepancy
matrices as defined by (3.12) and (3.13). That is, it is translated to the class of symmetric,
zero-diagonal, integer matrices with row sums q. John and Mitchell (1977) restricted this
class to contain only 0/1 matrices, making a full search feasible for up to v = 12. Morgan
(2007b) adapted Lemma 3.5 to remove that restriction, allowing the full class to be stud-
ied, but without a full enumeration, for v ≤ 15. Relative to regular graph discrepancy
matrices, bounding via Lemma 3.5 can initially eliminate any discrepancy matrix � with
values corresponding to λdii′ that are too far from λ to allow optimality. As v grows, this
still leaves far too many matrices to evaluate, a problem that can be overcome with another
application of Lemma 3.5. Let �

(t)
d be any t × t principal minor of �d, and let Ht be the set

of normalized t-vectors. Then

ed1 ≤ vλ + q
k

− 1
k

max
h∈Ht

(
v

v − (h′1)2

)
h′(�(t)

d − q
v

J)h. (3.21)

Inequality (3.21) allows competitive � matrices to be built up one row/column at a time
(take t = 3, . . . , v), at each step eliminating those substructures that are bounded below
a predetermined value (such as ed1 for a known RGD). In this way, Morgan (2007b) was
able to determine E-best discrepancy matrices, including many with values outside {0, 1}.
These matrices may be classified into type 1, those with values in {0, 1} only; type 2, values
ranging from 0 to 2; type 3, values ranging from −1 to 1; and type 4, values ranging from −1
to 2; see Table 3.6. There are many cases where RGDs are not uniquely E-optimal (compare
Theorem 3.9). When no � matrix of type 1 is E-best, no RGD can be E-optimal, provided a
design exists for the E-best matrix.

Example 3.10

The E-best discrepancy matrix for v = 7, q = 5 has minimal av-value in (3.20) of av = 1.
This matrix, call it �opt, is

�opt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 −1 1 1 1 1
−1 0 −1 1 1 1 1
−1 −1 0 1 1 1 1

1 1 1 0 −1 0 0
1 1 1 −1 0 0 0
1 1 1 0 0 0 −1
1 1 1 0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

�opt is potentially the basis for E-optimal design in D(7, 7 + 21m, 5) for each m ≥ 0. The
discrepancy matrix for the E-best RGD, displayed in Example 3.5, has av = 1.247, a clearly
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TABLE 3.6

Number of E-Best Discrepancy Matrices by Type (1, 2, 3, 4)

v q Total Count Count by Type

4 1 2 (1,0,1,0)
2 1 (1,0,0,0)

5 2 1 (1,0,0,0)

6 1 3 (1,0,2,0)
2 2 (1,0,1,0)

3 1 (1,0,0,0)
4 1 (1,0,0,0)

7 2 1 (0,0,1,0)
4 1 (1,0,0,0)

8 1 5 (1,0,4,0)
2 2 (1,0,1,0)
3 6 (2,0,4,0)

4 1 (1,0,0,0)
5 1 (1,0,0,0)

6 1 (1,0,0,0)

9 2 1 (1,0,0,0)

4 13 (4,0,9,0)
6 1 (1,0,0,0)

10 1 7 (1,0,6,0)
2 2 (1,0,1,0)

3 7 (1,0,6,0)
4 3 (1,0,2,0)
5 1 (1,0,0,0)

6 89 (6,26,5,52)
7 1 (1,0,0,0)

8 1 (1,0,0,0)

11 2 1 (1,0,0,0)

4 1 (0,0,1,0)
6 8 (1,0,7,0)

8 1 (1,0,0,0)

v q Total Count Count by Type

12 1 11 (1,0,10,0)
2 2 (1,0,1,0)

3 4 (0,0,4,0)
4 17 (1,0,16,0)

5 56 (7,0,49,0)
6 1 (1,0,0,0)
7 480 (15,101,55,309)

8 1 (1,0,0,0)
9 1 (1,0,0,0)

10 1 (1,0,0,0)

13 2 1 (1,0,0,0)

4 1 (0,0,1,0)
6 1 (0,0,1,0)

8 18 (2,0,16,0)
10 1 (1,0,0,0)

14 1 15 (1,0,14,0)
2 2 (1,0,1,0)
3 1 (0,0,1,0)

4 1 (1,0,0,0)
5 1 (0,0,1,0)

6 4 (1,0,3,0)
7 1 (1,0,0,0)

8 2213 (21,158,198,1836)
9 24 (2,0,22,0)

10 11 (6,0,5,0)

11 1 (1,0,0,0)
12 1 (1,0,0,0)

15 2 1 (1,0,0,0)
4 16 (0,0,16,0)

6 234 (7,0,227,0)
8 19 (2,0,17,0)

10 1 (1,0,0,0)
12 1 (1,0,0,0)

inferior competitor. The design in Example 3.5 is nevertheless E-optimal over D(7, 7, 5),
in part because there is no competing design having discrepancy �opt.

The discrepancy matrix for the design in Example 3.2 is �opt, proving the design is
E-optimal over D(7, 28, 5) and that it is E-better than the best RGD, found by adding
the 21 blocks of a BIBD(7, 21, 5) to the Example 3.5 design. Adding m − 1 copies of the
BIBD to the design in Example 3.2 produces an E-optimal design in D(7, 7 + 21m, 5) for
every m ≥ 1.
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With the E-best discrepancy matrices in hand, Morgan (2007b) was able to complete the
E-optimality design problem for k > 2, v ≤ 15; save a few open cases where the best
design is yet to be determined. In every case, optimality was established over the full class
D(v, b, k), using Lemma 3.5 chiefly through Corollary 3.1. At this writing, the designs are
available online at www.designtheory.org.

3.5 Small Block Designs

Three senses of what it means for an IBD to be “small” will be explored in this section. All
are limiting cases: block size k = 2, number of blocks b = 2, and small number of units bk.
Common to these situations is that at least some of the optimal designs have very different
combinatorial properties than the designs seen in Section 3.4: they do not “approximate”
BIBDs. The auxiliary parameters r, p, λ, and q, defined in (3.11), continue to be used here.

3.5.1 Block Size Two

Block size two would, at first glance, appear to present an optimality problem that, if not
simple, would at least be straightforward. This turns out to be decidedly untrue. We begin
with an example.

Example 3.11

This design d ∈ D(8, 8, 2) is both A-optimal and D-optimal:

d :
1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
1

However, the A-optimal design d1 and the D-optimal design d2 in D(9, 9, 2) are quite
different from each other:

d1 :
1
2

2
3

3
4

4
1

5
1

6
1

7
1

8
1

9
1

d2 :
1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

9
1

Design d1 in Example 3.11 is especially perplexing due to its grossly unequal replication
counts in a setting with no plot excess (p = 0). The following theorems will show it is not
an isolated example.

The designs in Example 3.11 are all binary, for good reason. One simplification afforded
by k = 2 is that nonbinary designs are inadmissible, for it is easily demonstrated that a
nonbinary block of size two makes no contribution to Cd. Thus, the blocks of a design are
a selection, with replacement, of pairs of treatments. Any such design can be cast as an
undirected multigraph whose vertices are the treatments and with the number of edges
connecting vertices i and i′ being the number of blocks consisting of treatments i and i′.
These concurrence graphs for two of the designs in Example 3.1 are displayed in Figure 3.1.
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FIGURE 3.1
Graphs for the designs d and d1 in Example 3.11.

If the concurrence graph for a design has the same number of edges joining any two ver-
tices, the design is a BIBD, universally optimal by Theorem 3.1. For a more thorough
accounting of design from a graph perspective, see Bailey and Cameron (2013).

A few notions from graph theory are needed for results later in this section. The degree
of a vertex is the number of edges incident with that vertex. A leaf is a vertex of degree
one. A graph is connected if each vertex can be reached from any other vertex by a path.
A bridge in a connected graph is an edge that, if removed, creates a disconnected graph.
Any edge connected to a leaf is a bridge. A star is a collection of leaves incident with a
common vertex. A cycle is a path with no repeated edges that begins and ends with the
same vertex. A tree is a connected subgraph with no cycles. A spanning tree is a tree that
includes every vertex in a graph.

Both graphs in Figure 3.1 are connected. In fact, connectedness of the designs (see
Section 3.1) corresponds to connectedness of their concurrence graphs.∗ The graph for d1,
which has five leaves and five bridges, is a star attached to a cycle. That for d is a cycle.

Theorem 3.10 (Cheng et al. 1985) For each given v, there is a bv such that for all b ≥ bv,
a D-optimal design in D(v, b, 2) is

(i) A RGD if p = 0;

(ii) A NBBD(1) if p > 0 and λ = (r + 1)/(v − 1)�;

(iii) A NBBD(2) if p > 0 and λ = (r + 1)/(v − 1)� − 1.

Theorem 3.10 tells us that, for b sufficiently large, D-optimal designs with block size 2
must have the (M, S)-property. In particular, this says that the concurrences are being dis-
tributed across the treatment pairs as equally as possible. The graph-theoretic result of the
next theorem makes a similar, but much broader, statement: it does not allow “too few”
connections between any pair of treatments.

∗ This is true for the concurrence graph of any block design, not just those of block size two.
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Theorem 3.11 (Bailey and Cameron 2013) For any b ≥ v, the concurrence graph of a D-optimal
design in D(v, b, 2) contains no bridges and thus no leaves.

Theorem 3.11 becomes especially interesting when compared to Theorem 3.12.

Theorem 3.12 (Bailey 2007) For 20 ≤ v ≤ b ≤ 5v/4, any E-optimal design in D(v, b, 2) has
leaves.

A-optimal designs with b not too much larger than v must also have leaves; see Bailey
and Cameron (2013). Thus, many A-optimal and many E-optimal designs with block size
two, and with r = 2b/v� = 2, have some treatments replicated once! This is in marked con-
trast to the D-optimality result with large b in Theorem 3.10 and provides myriad examples
where optimal designs cannot have (M, S)-property.

The smallest b for D(v, b, 2) where p = 0 (and connected designs exist) is b = v. Much is
known about this setting. Parts (i) and (ii) of Theorem 3.13 are special cases of results cited
at the end of Section 3.5.3; the E-optimality is from Bailey and Cameron (2009). Designs d1
and d2 of Example 3.11 illustrate Theorem 3.13.

Theorem 3.13 For D(v, v, 2), v ≥ 3,

(i) The D-optimal designs are the cycles.

(ii) The A-optimal designs are the cycles if v ≤ 8, v−4 leaves attached to one vertex of a square
if 9 ≤ v ≤ 12, and v − 3 leaves attached to one vertex of a triangle if v ≥ 12.

(iii) The E-optimal designs are the cycles if v ≤ 6, and v − 3 leaves attached to one vertex of a
triangle, or a star with one doubled edge, if v ≥ 6.

If b is a multiple of v(v − 1)/2, then the optimal designs are precisely the BIBDs. Otherwise,
as b grows larger with p = 0, RGDs are strong performers for which a number of optimality
results are now known. Some of these are instances of results stated earlier in this article,
and some have arisen from examination of small v. An E-optimality theorem for RGDs,
whose proof relies heavily on Corollary 3.1, is stated next. Recall from Section 3.4.4 that adv
is the largest eigenvalue (other than the concurrence excess q) of the discrepancy matrix �d.

Theorem 3.14 (Bagchi and Cheng 1993) For v ≥ 9 and 1 ≤ q ≤ (v + 2)/2, q �= v
2 , any RGD

with adv = 1 is E-optimal over D(v, b, 2).

Bagchi and Cheng (1993) further established E-optimality over all of D(v, b, 2) for RGDs
with v ≤ 8 and q = v − 3. Their results do not claim RGDs are uniquely E-optimal,
and as evidenced by Table 3.6, it is not infrequent for certain non-RGDs, falling in the
q range of Theorem 3.14, to also be E-optimal. The paper Morgan (2007b), discussed in
Section 3.4.4, determined all E-optimal designs in the binary, equireplicate subclass of
D(v, b, 2) for v ≤ 15.
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3.5.2 Two Blocks

Like block size two, with only two blocks, one might initially expect few complications in
the optimality problem. Here, this expectation is met, up to a point. For IBDs, we have
k < v, and if 2k ≤ v, then all designs are disconnected, so take v

2 < k < v. The parameter r
is thus r = 2k/v� = 1 from which p = 2k−v, that is, v = 2k−p. Up to treatment relabeling,
there is exactly one binary design (call it d0, see Table 3.7), which consequently has (M, S)-
property. Design d0 is a GGDD(3) with groups of size p, k − p, and k − p and treatment
replication two within the size p group.

An arbitrary design in d ∈ D(v, 2, k) must have at least v − p = 2(k − p) treatments
replicated exactly once. Partition the treatment set V = V1∪V2∪V3 where V1 contains those
of the singly replicated treatments that appear in the first block, V2 the singly replicated
treatments in the second block, and V3 the remaining treatments. Averaging Cd within
each of the Vi produces C̄d for a GGDD(3) whose optimality values are lower bounds (see
Lemma 3.3) for those of d. Comparing these to the values for d0 yields Theorem 3.15.

Theorem 3.15 (Morgan and Jin 2007) The unique binary design d0 in D(v, 2, k) is A-optimal
and D-optimal.

Perhaps surprisingly, d0 need not be the E-optimal design. Depending on k, it can be infe-
rior to the nonbinary design d∗ displayed in Table 3.7. The result is stated as Theorem 3.16.
The proof in the cited paper is quite lengthy, the averaging technique based on V1 ∪V2 ∪V3
being inadequate to the task.

Theorem 3.16 (Morgan and Jin 2007) In the class D(v, 2, k), the binary design d0 is the unique
E-optimal design if v

2 < k < 5v
6 ; the nonbinary design d∗ is the unique E-optimal design if 5v

6 <

k < v; and both d∗ and d0, and only these two designs, are E-optimal if k = 5v
6 .

The E-optimality of the designs in Table 3.5 is a consequence of Theorem 3.16.

TABLE 3.7

Optimal Designs for D(v, 2, k)

d0:

1

2
...

p

p + 1

p + 2
...

k

1

2
...

p

k + 1

k + 2
...

v

d∗:

1

2
...

2p − k

2p−k+1

2p−k+1

2p−k+2

2p−k+2
...

p

p

1

2
...

2p − k

p + 1

p + 2

p + 3

p + 4
...

v − 1

v
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3.5.3 Minimally Connected Designs

The block design model (3.1) requires at least 1 + (v − 1) + (b − 1) = b + v − 1 degrees
of freedom if all treatment contrasts are to be estimable. A block design produces bk total
degrees of freedom, and thus connectedness requires that bk ≥ b + v − 1. The designs in
D(v, b, k) are minimally connected if bk = b + v − 1.

Minimal connectedness for block designs is analogous to “saturation” of fractional facto-
rials (see Chapters 7 and 9), and the name saturated block designs is also used; in neither case
are error degrees of freedom available. Minimally connected classes will be distinguished
by the notation D(v, b, k)m. Lemma 3.6 provides basic properties for these classes.

Lemma 3.6 For each d ∈ D(v, b, k)m, there is exactly one unbiased estimator for each treatment
contrast. Consequently, any d ∈ D(v, b, k)m is binary, and no pair of blocks has more than one
treatment in common, that is, no pair of treatments occurs in more than one block.

Proof : Suppose there are two unbiased estimators p′y and q′y for c′τ. Let a = p − q �= 0
and for the block design model (3.2), write Ad = (1, Xd, Z) and θ′ = (μ,τ′,β′). Then 0 =
E(a′y) = a′Adθ for all θ ⇒ a′Ad = 0′ ⇒ bk > rank(Ad) = b + v − 1, a contradiction. �

A design in D(v, b, k) is D-optimal if, and only if, its concurrence graph has maximal
number of spanning trees over all designs in D (Cheng 1981). Lemma 3.6 tells us that the
concurrence graph for a minimally connected design is a connected, simple graph with no
cycles: it is itself a tree. This gives us this curious result:

Theorem 3.17 (Bapat and Dey 1991) All designs in D(v, b, k)m are D-optimal.

Other criteria do distinguish designs in Dm. Theorem 3.18 will establish a version of
M-optimality for a particular member of that class. Let vd1 ≥ vd2 ≥ · · · ≥ vdm be estimator
variances for a set of m contrasts of interest when estimated using design d. Design d∗ is
M-optimal for estimation of the m specified contrasts if d∗ minimizes

∑m
g=1 f (vdg) for every

monotonically increasing, convex function f .
Let vd be the m×1 vector of the vdg. A necessary and sufficient condition for M-optimality

of d∗ is that for every competing d, vd weakly submajorizes vd∗ :
∑h

g=1 vdg ≥ ∑h
g=1 vd∗g for each

h = 1, . . . , m (e.g., Bhatia 1997, p. 40). Authors like Bagchi and Bagchi (2001) have pursued
M-optimality based on the canonical variances e−1

di (in which case, type 1 optimality func-
tions are subsumed; compare Definition 3.4). Here, vd is taken as the vector of variances
for the m = (v

2

)
pairwise comparisons τ̂i − τi′ .

The designs of interest have one treatment in every block, and all other treatments repli-
cated once; see Table 3.8. The optimality result in Theorem 3.18 is a special case of a more
general result proven in the cited paper.

Theorem 3.18 (Jin and Morgan 2008) The designs in Table 3.8 are uniquely M-optimal for
estimation of pairwise contrasts.

Now the A-value is proportional to the average of the variances of the τ̂i − τi′ , and
the MV-value is the maximum of those variances. Thus, among the results embedded in



134 Handbook of Design and Analysis of Experiments

TABLE 3.8

M-Optimal Design in D(v, b, k)m

1

2
...

k

1

k + 1
...

2k − 1

1

2k
...

3k − 2

· · ·

1

v−k+2
...

v

Theorem 3.18 are that the designs in Table 3.8 are A-optimal and MV-optimal over Dm.
These two individual optimalities were first proven by Mandal et al. (1990/1991) and Dey
et al. (1995). Bapat and Dey (1991) prove Table 3.8 designs are E-optimal.

Table 3.8 designs are maximal trace GGDDs, with b+1 groups and with smallest positive
information matrix eigenvalue 1/k. They maximize, rather than minimize, the replication
range (maxi ri − mini ri) over Dm and, so like a number of other small designs seen in
Sections 3.5.1 and 3.5.2, are well off from having the (M, S)-property.

If bk = b + v, then one degree of freedom is available for error estimation. Optimal
designs are also known for this “saturated plus one” setting; not surprisingly, they are a bit
more complicated than those in Dm. See Balasubramanian and Dey (1996) for D-optimality,
Krafft and Schaefer (1997) for A-optimality, and Dey et al. (1995) for MV-optimality. For the
E-optimality problem, this author is not aware of a general solution, though Theorem 3.13
and Theorem 3.16 with v = 2(k − 1) fall into this category.

3.6 Multiple Blocking Factors

The line-segment experiment described in Section 3.1 motivated variance reduction
through blocking by subject. Because subject performance may change with practice, it
could also be useful to block on the order of presentation of sheets to subjects. If this is
done, the design selection problem will need to consider allocation of treatments relative
to two blocking factors: subjects and time order. In agricultural experimentation to compare
grain varieties, fields of the varieties are typically planted at several locations, and at each
location, several harvesting teams may be employed. Now both location and harvesting
teams are obvious blocking factors, for both are likely to contribute substantial variation
to observed yields. These are just two examples of how more than one blocking factor can
be incorporated when designing an experiment, in order to eliminate more than one major
source of variability in experimental material.

This section focuses chiefly on the most commonly employed variants of two blocking
factors, before briefly exploring some of the other possibilities. Let F1 and F2 denote two
factors. Two broad design classes can be defined depending on the structural relationship,
nested or crossed, between F1 and F2.

Definition 3.6 Blocking factor F1 is said to nest blocking factor F2 if any two experimental units
in an F2-block are in the same F1-block. If F1 nests F2, then F2 is nested in F1.
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TABLE 3.9

Nested Block Design for 12 Treatments in Blocks of Size Six

1

2

4

5

6

10

3

7

8

9

11

12

1

4

8

9

10

12

2

3

5

6

7

11

1

3

4

6

7

8

2

5

9

10

11

12

1

3

6

10

11

12

2

4

5

7

8

9

Nested block designs are those with two blocking factors, one nesting the other. Members
of the two blocking systems in a nested design are descriptively referred to as superblocks
and subblocks. In the agricultural experiment described earlier, locations would be super-
blocks, and within each location, the harvesting teams would form subblocks. The design
in Table 3.9 has four superblocks, each nesting two subblocks (four locations, two teams at
each location). Nested block designs are taken up in Sections 3.6.1 and 3.6.2.

The model for observations generated with any nested design is a simple extension
of (3.2) for standard block designs. Let b1 be the number of superblocks and b2 the num-
ber of sublocks per superblock, now using b (= b1b2) for the total number of subblocks.
Let k be the number of experimental units per subblock, so that the superblock size is
k1 = b2k. The class of connected nested designs is denoted by D(v, b1, b2, k). The model
for d ∈ D(v, b1, b2, k) is

y = μ1 + Xdτ + Z1β1 + Z2β2 + ε, (3.22)

where β1 and β2 are the b1 ×1 and b1b2 ×1 vectors of parameters for the nesting and nested
blocks, respectively. With suitable ordering of the observations y and using the Kronecker
product ⊗, the corresponding incidence matrices are Z1 = Ib1 ⊗ 1k1 and Z2 = Ib ⊗ 1k.

Definition 3.7 Blocking factors F1 and F2 are crossed if each F1-block intersects each F2-block in
the same number of experimental units.

Designs with two crossed blocking factors are termed row–column designs, another
descriptive name; see Table 3.10. Members of the two blocking systems are now termed row
blocks and column blocks, and the intersection of a row block with a column block is a cell. As
is most frequently encountered, the designs in Table 3.10 implement the row–column idea
with one unit per cell. More precisely, these are complete crosses. Readers interested in incom-
plete crosses, having either empty cells or unequal numbers of units per cell, are referred
to Saharay (1996) as a starting point. Row–column designs are the topic of Section 3.6.3. If
the line-segment experiment were to be run as a row–column design, the columns would
denote subjects, and the rows would denote order of presentation.

The standard model for row–column designs can also be written in the form (3.22), where
now β1 and β2 are the b1×1 and b2×1 vectors of parameters for the row blocks and column
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TABLE 3.10

Three Row–Column Designs: A 3 × 12 for Six Treatments and a 4 × 4 and a
6 × 6 for Four Treatments

6 2 1 6 5 4 3 3 1 4 5 2

1 6 3 2 6 5 4 1 4 2 3 5

2 1 6 4 3 6 1 5 5 3 2 4

1 2 3 4

2 3 4 1

3 4 1 2

4 3 2 1

1 2 3 4 1 2

2 3 4 1 3 4

3 4 1 2 2 3

4 3 2 1 4 1

1 2 3 4 1 3

3 4 2 1 2 4

Note: Each design has one experimental unit and hence one assigned treatment
per cell.

blocks, respectively. The two design models are distinguished by how their blocking struc-
tures are reflected in Z1 and Z2. With one unit per cell and with observations in row-major
order, they are now Z1 = Ib1 ⊗ 1b2 and Z2 = 1b1 ⊗ Ib2 .

Though substantial, the optimality theory for designs with more than one blocking factor
is not as well developed as that in Sections 3.3 through 3.5. The subsections to follow will
report the main findings to date. Consistent with earlier sections in this chapter, the number
of experimental units in a block is taken to be constant across blocks of the same blocking
factor.

3.6.1 Resolvable Block Designs

Various classes of nested designs are defined by various requirements placed on the nest-
ing blocks. A resolvable block design is a nested block design for which the superblocks are
complete, that is, for which the block design defined by the nesting factor is a RCBD. The
design in Table 3.9 is a resolvable block design: the superblocks resolve the subblocks into
complete replicates of the treatment set. Resolvable designs are, by a wide margin, the most
frequently employed nested designs in practice and have been extensively employed in
agricultural field trials. The Table 3.9 design, for instance, could be used for a trial com-
paring 12 crop varieties over four locations (superblocks), using two harvesting teams
(subblocks) at each location.

Writing Z = (Z1, Z2), the information matrix arising from (3.22) for estimation of τ (see
following (3.2)) is Cd = X′

d(I − PZ)Xd. The nesting relationship says the column space of
Z1 is contained in the column space of Z2 so that PZ = PZ2 (superblock effects are “washed
out” by subblock effects). Consequently, Cd reduces to Cd = X′

d(I − PZ2)Xd = Rd − 1
k NdN′

d,
where Nd is the (v × b) treatments × subblock incidence matrix. It follows that a nested
design is connected (i.e., all treatment contrasts are estimable) if and only if the subblock
design is connected.

Lemma 3.7 If a nested block design is �-optimal as a member of D(v, b, k) when ignoring
superblocks, then it is �-optimal over D(v, b1, b2, k).

Select any optimal design in D(v, b, k), then partition its b = b1b2 blocks into b1 sets
of b2 blocks each. Lemma 3.7 says this is, an optimal design in D(v, b1, b2, k). If b2k = v
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and each treatment appears in each superblock, this is an optimal resolvable design. Sim-
ply put, the superblocks are irrelevant to the basic optimality argument. Nested designs
would present no new optimality problems were special demands not placed on the nest-
ing blocks. Those demands, though not reflected in the information matrix, are intended to
incorporate pragmatic issues with experiment execution. Nesting factors often represent a
grouping of subblocks that are similar due to closeness in time or space or that are subject
to management by different personnel. A discussion of why nested designs are employed,
with several examples, can be found in Section 1 of Morgan (1996).

Superblocks for resolvable designs are complete blocks. Resolvability assures that any
problem associated with the nesting factor will impact every treatment equally, with possi-
bilities ranging from model shortcomings at the nesting level to loss of entire superblocks
during experimentation. If, in the preceding crop example, disease ruins yields at one
location, the remaining locations still give the same amount of data on each variety. Resolv-
ability imparts robustness to otherwise unforeseen difficulties at the superblock level.

The lesson that should be taken from Lemma 3.7 is that although the criterion value for
a nested design is precisely that of its subblock design in D(v, b, k), the superblock require-
ments restrict the designs in D(v, b, k) that are even considered. The search for an optimal
design in D(v, b1, b2, k) is the search for an optimal design over a subclass of D(v, b, k). The
optimal member of the subclass may, or may not, coincide with an optimal design over all
of D(v, b, k). To give one example, the A-optimal design in D(12, 8, 6), which is not resolv-
able, is easily shown to be better than the optimal resolvable design displayed in Table 3.9
with respect to all generalized optimality criteria.

Henceforth, we use r = bk/v in lieu of the number of superblocks b1 for resolvable
designs and s = v/k in lieu of the number of subblocks b2 per superblock. The class of
resolvable IBDs is denoted by DR(v, r, s, k). A simple instance where optimality does coin-
cide for DR(v, r, s, k) and D(v, b, k) is when the latter contains a BIBD that is resolvable. For
instance, take the ten blocks in Example 3.1, and add ten blocks given by their set com-
plements, to get a BIBD in DR(6, 10, 2, 3) that is universally optimal over the larger class
D(6, 20, 3). There is an extensive literature on resolvable BIBDs that will not be covered
here; see Chapter II.7 of Colbourn and Dinitz (2007) for an introduction including many
existence results.

3.6.1.1 Affine Resolvable Designs

The affine resolvable designs provide a very rich class of optimal resolvable designs.

Definition 3.8 A resolvable design is affine resolvable if any two subblocks in different
superblocks intersect in the same number of treatments.

Denote the common subblock intersection number by ω. Then k = ωs so that v = sk =
ωs2 is necessarily divisible by a square for an affine resolvable design. This observation
points to an interesting combinatorial relationship. Given an affine resolvable design d, cre-
ate a v × r array, call it Bd, as follows. Rows of Bd correspond to treatments of d. Columns
of Bd correspond to superblocks (replicates) of d. Labeling the subblocks in superblock j by
1, 2, . . . , s in any order, the (i, j) entry of Bd is the label of the subblock in superblock j that
contains treatment i. Affineness of d implies that any ordered pair of symbols from {1, . . . , s}
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can be found as rows of any two-columned subarray of Bd exactly ω times. Thus, Bd is
an orthogonal array (see Chapter 9) of strength two. Conversely, given a strength-two
orthogonal array, the identification can be reversed to create an affine resolvable design.
Affine resolvable designs are therefore combinatorially equivalent to strength-two orthogonal
arrays, a fact that will shortly prove useful.

The importance of affine resolvable designs is made clear in Theorem 3.19.

Theorem 3.19 (Bailey et al. 1995) Any affine resolvable design in DR(v, r, s, k) is M-optimal
based on canonical variances. In particular, it is generalized optimal over DR(v, r, s, k).

Also notice that if replicates (superblocks) are lost from an affine resolvable design,
the remaining design is still affine resolvable, and so still optimal in all of the senses of
Theorem 3.19.

Strength-two orthogonal arrays, and thus affine resolvable designs, have been exten-
sively studied. Relying on that work, Bailey et al. (1995) established existence of affine
resolvable designs with up to seven replicates for every v = ωs2, ω ≥ 2. The design in
Table 3.9 is affine resolvable. Designs with ω = 1 are also known as square lattices; see
Section 3.6.1.2.

MV-optimality is not addressed by Theorem 3.19, and despite the very strong optimality
established there, an affine resolvable design need not be an MV-optimal resolvable design
(Morgan 2008). Even among nonisomorphic affine resolvable designs in DR(v, r, s, k), MV
behavior can vary. Morgan (2010) determined MV-best affine resolvable designs based on
an aberration criterion for v of the form ω2k. There has otherwise been little work on MV-
optimality of resolvable designs, affine or not.

3.6.1.2 Other Resolvable Designs

The earliest resolvable designs to be rigorously studied in the statistical literature were the
lattices, introduced by Yates (1936b). The m-dimensional lattices for v = tm treatments have
k = tu and s = tm−u. The square lattices are those with (m, u) = (2, 1), corresponding to
ω = 1 in Section 3.6.1.1. For b ≤ v, Cheng and Bailey (1991) proved generalized optimality
of square lattices over all binary, equireplicate competitors (not just resolvable designs).
Chapter 18 of Hinkelmann and Kempthorne (2005) provides a good introduction to lattice
designs. Also covered there are the rectangular lattices having k = s − 1, known to be highly
efficient resolvable designs (Bailey and Speed 1986). Designs in this and the next paragraph
are also discussed in Section 1.6.2.

Patterson and Williams (1976a) introduced the alpha designs as a flexible method for
building resolvable designs having k < s. Particular members of this class are known to
be highly efficient or optimal, but the technique is too general to admit a comprehensive
optimality theory. A readable account of alpha design development and application, with
many references, is given by Paterson (1988).

There has been productive work on small resolvable designs. Patterson and Williams
(1976b) established a useful link between optimal, binary, equireplicate members of
D(s, s, k) and optimal resolvable designs in DR(v, 2, s, k) having two replicates, showing
how the former can induce the latter. Efficient resolvable designs having three replicates
are provided in Bailey (2005). Morgan and Reck (2007b) established optimality for many
classes of resolvable designs having two blocks per replicate.
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3.6.2 Other Nested Block Designs

Relative to resolvable designs, there are two directions to explore for the nesting factor:
superblocks of size less than v and of size greater than v. Although each of these directions
offers multiple possibilities, there has been one main line pursued for each in the statistical
literature.

For b2k < v, the emphasis has been on the nested BIBDs (NBIBDs). A nested design is a
NBIBD if the subblock design is a BIBD in D(v, b, k), and the superblock design is a BIBD in
D(v, b1, b2k). Lemma 3.7 says that a NBIBD is universally optimal over D(v, b1, b2, k). Intro-
duced by Preece (1967), an extensive survey for this topic including a tabling of smaller
designs is available in Chapter VI.36 of Colbourn and Dinitz (2007). The BIBD structure at
the superblock level provides robustness by assuring a reasonably good design should a
superblock be lost, the remaining design being GGDD(2). Moreover, NBIBDs were proven
universally optimal by Morgan (1996) when recovering both subblock and superblock
information.

For b2k > v, several authors have investigated α-resolvable block designs. The distin-
guishing characteristic of these nested designs is that the superblocks are multiply com-
plete, with each treatment applied to α-experimental units in each superblock. Section 3.3
of Caliński and Kageyama (1996) contains an introductory treatment of α-resolvability,
related extensions, and attendant results, to which the reader is referred for further
details. Of special interest are the affine α-resolvable designs, which have any two sub-
blocks intersecting in either ω1 or ω2 treatments depending on whether they are in the
same, or different, superblocks. The technique employed by Bailey et al. (1995) to prove
M-optimality of affine resolvable designs (Theorem 3.19) can be extended to include the
affine α-resolvable designs.

3.6.3 Row–Column Designs

As indicated by Definition 3.7 and Table 3.10, row–column designs are represented as
rectangular arrays in which rows correspond to levels of a blocking factor F1 with b1
(say) levels, columns correspond to levels of another blocking factor F2 with b2 levels,
cells correspond to experimental units, and numbers in cells are labels for the treatments
assigned. Row–column designs are randomized by selecting random permutations of rows,
of columns, and of treatment labels, though there are variants on this (e.g., Section 10.2.2
of Hinkelmann and Kempthorne 2008). Row–column designs are widely used for experi-
mentation in many disparate fields including agriculture (where they were first developed),
psychology, and industry. Any general, applied textbook on experimental design will offer
multiple examples.

Setting Z = (Z1, Z2), the information matrix Cd = X′
d(I − PZ)Xd from the row–column

version of model (3.22) simplifies to

Cd = Rd − 1
b1

NdN′
d − 1

b2
MdM′

d + 1
b1b2

rdrd
′, (3.23)

in which Nd = ((ndij)) = X′
dZ2 is the treatment/column block incidence matrix and Md =

((mdil)) = X′
dZ1 is the treatment/row block incidence matrix (compare (3.4)).

The class of connected row–column designs is denoted DRC(v, b1, b2). The row–column
design optimality problem amounts to minimizing �(Cd) over DRC(v, b1, b2) for one or
more of the usual criteria �. Any d ∈DRC(v, b1, b2) has two component block designs,
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dR ∈ D(v, b1, b2) for the row blocks, and dC ∈ D(v, b2, b1) for the column blocks. This
suggests (compare Lemma 3.7) that the optimality problem might be fruitfully addressed
through our considerable knowledge of optimality for the simple block design class
D(v, b, k). This approach can work, provided two conditions can be met.

Theorem 3.20 Suppose d0 ∈ D(v, b2, b1) is �-optimal, is equireplicate, and the number of blocks b2
for d0 is an integer multiple of v. Then, there is a �-optimal row–column design d∗ ∈ DRC(v, b1, b2)

for which the column component design d∗
C is d0.

Proof : For any d ∈ DRC(v, b1, b2), the matrix MdM′
d − 1

b1
rdrd

′ is nonnegative definite. That
is, CdC − Cd is nonnegative definite and thus �(CdC) ≤ �(Cd) (see (3.3)(i)).

Write the blocks of d0 as adjacent columns to give a b1×b2 array. Now permute treatments
within each column as necessary to achieve equal replication of treatments within each
row. The resulting design, which is d∗ of the theorem, is said to be row regular. That row
regularity can be achieved whenever an equireplicate block design has number of blocks
a multiple of v is guaranteed by the basic theory for systems of distinct representatives
(e.g., Chapter 5 of van Lint and Wilson 2001). Easily checked is that row regularity implies
MdM′

d − 1
b1

rdrd
′ = 0 for any design d, so that Cd∗ reduces to Cd0 . Thus,

�(Cd∗) = �(Cd0) ≤ �(CdC) ≤ �(Cd),

for any d ∈ DRC(v, b1, b2). �

Theorem 3.20 presents a simple, effective method for obtaining optimal row–column
designs. The most popular row–column designs in practice fit into its framework. A Latin
square design d ∈ DRC(v, v, v) is a row–column design d for which dC is a RCBD and dR is a
RCBD. AYouden design d ∈ DRC(v, k, v) is a row–column design d for which dC is a BIBD, and
dR is a RCBD. By Theorems 3.1 and 3.20, Latin square and Youden designs are universally
optimal in their respective row–column classes. By the same reasoning, all generalized Latin
squares, for which each of dC and dR is either a complete or a generalized complete block
design, are universally optimal. A recent introductory review of Latin squares from the
statistician’s viewpoint appears in Morgan (2007a). The 4 × 4 design in Table 3.10 is a Latin
square design.

Also included in Theorem 3.20 are row–column designs where the row component is a
complete block design and the column component is an optimal IBD, these being opti-
mal cases of Latin rectangles. The 3 × 12 design in Table 3.10 falls into this category, it
being a row-regular arrangement of an A- and E-optimal IBD in D(6, 12, 3). This design
would be appropriate for a version of the line-segment experiment as described at the start
of Section 3.6, employing twelve subjects (columns) with three presentations of pictures
(rows) per subject.

A generalized Youden design (GYD) d ∈ DRC(v, b1, b2) is a row–column design d for which
dC is a BIBD or a KBBD (see Section 3.3) and dR is either a complete block, a generalized
complete block, or a KBB, design. Universal optimality of the row-regular GYDs is imme-
diate. Other GYDs, however, are not universally optimal (Das and Dey 1992). Kiefer (1975),
employing a very delicate argument, was nonetheless able to prove that all “double KBBD”
GYDs, in which both dR and dC are KBBDs, are both A-optimal and D-optimal, the latter
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being for v > 4. A tabling of GYDs is available in Ash (1981). A nonregular 6 × 6 GYD for
four treatments appears in Table 3.10.

Other results employing Theorem 3.20 are easily written. For instance, any GDD in
D(v, mv, k) with λ2 = λ1 + 1 can be arranged as a row–column design that is generalized
optimal over DRC(v, k, mv). However, the row–column design problem becomes quite dif-
ficult outside settings where row regularity is possible. Kiefer’s optimality proof for GYDs
that lack row regularity is highly nontrivial, even with those designs having the best com-
ponent designs dR and dC possible. The technical difficulties become only more complex
for settings where “nice” component designs are not available. The reader is referred to
Chapter 4 of Shah and Sinha (1989) for a review of relevant (and limited) results prior to
1989. The remainder of this section will highlight the most attractive of the sparse set of
results obtained since. This is an area sorely in need of further development.

Some insight is gained by rewriting the information matrix (3.23) in terms of the compo-
nent designs. Let Cd0 denote the information matrix for a CRD having the same replication
numbers as d. Then, Cd0 = Rd − 1

b1b2
rdrd

′ and

Cd = CdR + CdC − Cd0 , (3.24)

which tempts one to optimize dR and dC separately. Unfortunately, this will not gener-
ally work because, for instance, eigenvalues for the individual information matrices may
have no specific relationship to those for Cd. Commuting matrices, however, share their
eigenspaces, which for equireplicate designs suggests investigating dR and dC for which
CdR and CdC commute. The condition for this turns out to be that M′

dNd is a multiple of
Jb1×b2

(Shah and Eccleston 1986), termed adjusted orthogonality. The challenge is to show
that an adjusted orthogonal design with optimal dR and optimal dC is also optimal among a
relevant class of designs that is not so restricted. One interesting result of this type is stated
in Theorem 3.21.

Theorem 3.21 (Bagchi and Shah 1989) An adjusted orthogonal row–column design in
D(v, b1, b2) for which dR and dC are each linked block designs is M-optimal over all equireplicate
competitors.

Linked block design are defined in Section 3.4.4. Bagchi and Shah (1989) also show how
to construct designs that satisfy Theorem 3.21. Bagchi and van Berkum (1991) prove E-
optimality over all of DRC(v, b1, b2) for adjusted orthogonal designs with dC and dR being a
linked block design and an affine resolvable design.

Row–column designs with two rows carry special interest due to their use in two-color
microarray experiments (Bailey 2007). The following is a recent result along these lines:

Theorem 3.22 (Chai and Cheng 2011) If v is even and 2b/v is an odd integer, then a design for
which dC is a BIBD, and for which the row replication numbers satisfy |mdi1 − mdi2| = 1 for all i, is
A-optimal over DRC(v, 2, b).

In the same paper, generalized optimality within the equireplicate subclass of
DRC(v, 2, b) is proven based on dC being a GDD(2) (see Section 3.4.2) with λ2 = λ1 + 1, with
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the row replication difference mdi1 − mdi2 depending on group membership. Microarray
experiments have also sparked interest in saturated row–column designs; see Chapter 23
and Qu (2010).

On the theme of “small” row–column designs, the optimality question has been thor-
oughly investigated for v = 3 in the pair of papers by Morgan and Parvu (2007) and Parvu
and Morgan (2008). The results illustrate well how optimizing dR and dC can, depending
on b1 and b2, sometimes produce optimal, and sometimes decidedly suboptimal, designs.
A little additional terminology is needed before describing the most interesting
conclusions.

Let treatment i be replicated rdi times. The assignment of treatment i to units is uniform
in rows if mdil ∈ {rdi/b1�, rdi/b1� + 1} for l = 1, . . . , b1, and uniform in columns if ndij ∈
{rdi/b2�, rdi/b2�+ 1} for j = 1, . . . , b2. Row regularity in Theorem 3.20 is the special case of
row uniformity for all treatments in an equireplicate design with b2 an integer multiple of v,
while row uniformity for all treatments without row regularity is invoked in Theorem 3.22.
A design that is uniform in both rows and columns for all treatments is said to be uniform.
A row–column design has maximin replication if mini rdi = b1b2/v�. A design is EM-optimal
if it is E-optimal, and if among all E-optimal designs, it is M-optimal.

Morgan and Parvu (2007) prove that an A-optimal design in DRC(3, b1, b2) must be uni-
form, but in some cases cannot have maximin replication. On the other hand, Parvu and
Morgan (2008) prove that, aside from 4 × 4 layouts, an EM-optimal design must have max-
imin replication, but in some cases cannot be uniform. For instance (see the papers for full
results), if b1 ≡ 1 (mod 3) and b2 ≡ 1 (mod 3), then A-optimal designs are uniform with
replications rd1 = b1(b2 + 2)/3 and rd2 = rd3 = rd1 − b1. For the same setting, EM-optimal
designs have rd2 = rd3 = rd1 − 1 = (b1b2 − 1)/3, but nonuniformity in all but the smallest
cases.

Example 3.12

The two designs d1, d2 ∈ DRC(3, 7, 7) shown here are, respectively, A-optimal and
EM-optimal. The replication counts (r1, r2, r3) are (21, 14, 14) for d1 and (17, 16, 16) for
d2. With their given replications, d1 is uniform, but d2 has nonuniformity of treatment 1
in the first column.

d1 :

1 1 1 2 2 3 3
1 2 3 1 3 1 2
1 2 3 2 3 1 1
2 3 1 1 1 3 2
2 3 1 3 1 2 1
3 1 2 1 2 1 3
3 1 2 3 1 2 1

d2 :

1 2 1 1 2 3 3
2 1 3 3 1 2 3
2 2 1 3 1 3 3
2 3 3 1 1 2 1
3 1 2 2 2 1 1
3 2 1 2 3 1 2
3 3 2 1 3 1 2

3.6.4 Designs with Nesting and Crossing

Once one steps away from the basic settings with two crossed, or two nested, blocking
factors, the possibilities grow rapidly. This section examines just two of these, each with
three blocking factors and each with both nesting and crossing. See Morgan and Bailey
(2000) for a systematic approach to optimal design with even more blocking factors.
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3.6.4.1 Semi-Latin Squares

Row–column designs are not limited to having one experimental unit for each row/column
intersection. With k > 1 units per cell, a cell effect can be included in the model so that “cell”
becomes a third blocking factor. Because cell blocks are nested within both row blocks and
column blocks, a result much like Lemma 3.7 entails: if the cell component block design dcell

is optimal over D(v, b1b2, k), then the row–column design is optimal. Connectedness, too, is
determined solely by the cell blocks. There is no new issue here unless, as in Sections 3.6.1
and 3.6.2, there are other demands placed on the nesting factors.

A row–column design is doubly resolvable if each treatment is replicated once in each
row block and once in each column block. A Latin square is trivially a doubly resolvable
design with b1 = b2 = v and k = 1 unit per cell. The doubly resolvable row–column designs
with b1 = b2 and k > 1 are termed semi-Latin squares. Writing b for the common number of
rows/columns, the class of semi-Latin squares for v = bk treatments is denoted DSL(b, k).
A member of DSL(5, 3) is displayed in Table 3.11. An excellent introduction to semi-Latin
squares with many examples of their use, in areas as widespread as consumer testing,
agriculture, and message authentication, is provided by Bailey (1992).

Definition 3.9 A Trojan square is a semi-Latin square found by superimposing k mutually
orthogonal Latin squares (MOLSs) of order b, using a different set of symbols for each square.

For a thorough accounting of MOLS with a table of squares of small side, see Chapter III.3
of Colbourn and Dinitz (2007). The semi-Latin square in Table 3.11 is a Trojan square. Cheng
and Bailey (1991) (using Theorem 3.5 in Section 3.4) proved that Trojan squares are general-
ized optimal and so A-, D-, and E-optimal, over DSL(b, k) and indeed over the entire binary,
equireplicate subclass of D(bk, b2, k). Thus, Trojan squares are preferred whenever they can
be found.

There are at most b − 1 MOLS of side b, and a full set of b − 1 can be found whenever
b is a prime or a power of a prime. This gives optimal Trojan squares in DSL(4, k ≤ 3),
DSL(5, k ≤ 4), DSL(7, k ≤ 6), DSL(8, k ≤ 7), and DSL(9, k ≤ 8). There is no pair of MOLS
of side 6 and so no Trojan square in DSL(6, 2). Bailey and Royle (1997) determined the
A-best, D-best, and E-best designs in the subclass of DSL(6, 2) having (M, S)-property (all
λdcelli,i′ ∈ {0, 1}). These designs and all semi-Latin squares with no treatment concurrence
exceeding 1 are called SOMAs (an acronym for simple orthogonal multiarray). Whether or
not SOMAs are optimal over all of DSL(6, 2) remains to be seen. More recently, Soicher
(2013) has determined highly efficient squares in DSL(6, k) for 4 ≤ k ≤ 10. A complete

TABLE 3.11

5×5 Semi-Latin Square for 15 Treatments in Blocks of 3

1,6,11 2,7,12 3,8,13 4,9,14 5,10,15

5,9,13 1,10,14 2,6,15 3,7,11 4,8,12
4,7,15 5,8,11 1,9,12 2,10,13 3,6,14

3,10,12 4,6,13 5,7,14 1,8,15 2,9,11
2,8,14 3,9,15 4,10,11 5,6,12 1,7,13
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enumeration in the same paper resulted in A- , D-, and E-optimal members of DSL(4, k) for
4 ≤ k ≤ 10. Soicher (2012) proved M-optimality of any semi-Latin square for which every
two cells in different rows and columns intersect in the same number of treatments; this
may be thought of as an extension of Theorem 3.19 to the doubly resolvable setup.

3.6.4.2 Nested Row–Column Designs

Just as row–column designs are not limited to one unit per cell, they are not limited to a
single row–column layout. Nested row–column designs are seen in agricultural field trials
where there is a separate row–column layout blocking on two sources of variation in each
of several fields. They arise whenever a row–column experiment is repeated through time
or space and row (column) blocks are unlikely to exert the same effects at each repetition.
A nested row–column design can be as simple as two Latin squares, nesting v rows and v
columns in each of the squares. The general setup is for b separate b1 × b2 layouts, each
now called a block, with one experimental unit per cell (a total of bb1b2 units). The class of
all connected designs is denoted by DRC(v, b, b1 × b2). Table 3.12 displays two designs in
DRC(5, 10, 2 × 2).

Theorem 3.23 (Bagchi et al. 1990) Suppose there is a design d∗ ∈ DRC(v, b, b1 × b2) for which
(i) each block is row regular for the treatments it contains and (ii) the column blocks are a �-optimal
design in D(v, bb2, b1). Then d∗ is �-optimal over DRC(v, b, b1 × b2).

So, for instance, if the bb2 columns are the blocks of a BIBD, a row-regular nested row-
column design is universally optimal. This is the case with design d2 in Table 3.12. Likewise,
nests of Latin squares, of Youden designs, and of row-regular GYDs are universally opti-
mal. It is known that a nest of GYDs that are not row regular can be suboptimal; see Morgan
(1997). Theorem 3.23 is an extension of Theorem 3.20 to the nested setup.

Curiously, if rows, columns, and blocks exert random effects, then an analysis recover-
ing information from the three blocking strata may lead to a design that does not have the
row-regular property of Theorem 3.23. The three component designs (blocks, row blocks,
column blocks) of design d1 in Table 3.12 are each BIBDs, together comprising a BIBD with
nested rows and columns (BIBRC). Morgan and Uddin (1993) give conditions on the vari-
ances of the various blocking effects under which a BIBRC will outperform a design that
is optimal by Theorem 3.23, in which case d1 is preferred to d2 in Table 3.12. Many authors
have worked on constructing IBDs of both types, though progress has slowed of late. Espe-
cially as regards smaller designs (small b and b1b2 ≤ v), there are few optimality results
known, though this is not surprising given the state of knowledge for ordinary (b = 1)

TABLE 3.12

Two Nested Row–Column Designs for Five Treatments in Blocks of Size 2 × 2

d1:
1 5

3 2

1 4

5 3

1 3

2 4

1 2

4 5

2 3

4 5

3 1

2 5

5 1

3 4

2 1

4 3

4 1

5 2

4 2

5 3

d2:
1 2

2 1

1 3

3 1

1 4

4 1

1 5

5 1

2 3

3 2

2 4

4 2

2 5

5 2

3 4

4 3

3 5

5 3

4 5

5 4
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row–column designs. Bagchi and Bose (2008) developed optimal main effects plans in small
nested row–column designs. A number of results are summarized in the survey Morgan
(1996).

3.7 Control Treatments and Weighted Optimality

Bailey (2008) described an experiment evaluating impact of several fungicide application
regimens for winter wheat. Six treatments are combinations of spray time (early, mid, or
late season) and spray amount (full or half spray). A seventh treatment is to do nothing: no
spray. This baseline condition can be used to show that fungicide spray does have a strong
impact on wheat yield. Differences of the other treatments relative to baseline are expected
to be large; the more difficult questions, which are the principal target of the experiment,
surround separating out relative effectiveness of the six spray treatments.

Some consumer product trials are aimed at determining if variants of a standard product
are comparable to that standard. The primary question is: “Can a product that is ‘equally
good’ be produced with differing ingredients?” The goal of these trials is to detect which
of the new “test” products differs from the standard and which do not.

The two experimental situations just described earlier share an important commonal-
ity: they both incorporate a control treatment. They exhibit two of the usual ways in which
controls arise, as an established treatment among new variants and as a “do nothing” treat-
ment. The two situations differ, however, on the importance that is placed on comparisons
with the control, relative to that on comparisons among the other, test treatments.

Use of a control treatment raises some interesting questions from a design optimality
point of view. If, as in the fungicide trial, differences with the control are expected to be
large, then it would make sense to invest less replication in the control and more in the
test treatments, resulting in improved comparisons among the latter. The consumer prod-
uct experiment, on the other hand, places high priority on comparisons with the control,
indicating likely benefit from its over-replication.

Preceding sections have presumed equal interest in all treatments, incorporated in the
permutation invariance property (3.3)(ii). By placing neither greater nor lesser emphasis
on any treatment, this approach produces optimal designs that in most cases are either
equally replicated or as close to equal replication as possible. As seen in the two preceding
examples, and as is common for experiments including a control, a different approach is
called for when not all treatment comparisons are of equal interest. This section formulates
such an approach and presents basic results for its application.

A generic linear model for experiments with treatments and nuisance factors is

y = Xdτ + Zη + ε, (3.25)

where η incorporates the model intercept and all blocking effects. This model can be mod-
ified to infuse differential treatment interest. Let Wv×v be any symmetric, positive definite
matrix, scaled so that 1′W1 = 1. W1/2 denotes its symmetric, square root matrix satisfying
W1/2W1/2 = W. Now write X̃d = XdW−1/2 and τ̃ = W1/2τ. A reexpression of (3.25) is

y = X̃dτ̃ + Zη + ε (3.26)
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for which the treatments information matrix, denoted Cdw, is

Cdw = X̃
′
d(I − PZ)X̃d = W−1/2CdW−1/2. (3.27)

Cdw is the weighted information matrix for estimation of treatment contrasts. Equations 3.26
and 3.27 tell us that Cdw is a proper information matrix for estimation of linear model
parameters, though we will not interpret it in that way. Like Cd, it is symmetric, nonneg-
ative definite, and (for any connected design) rank v − 1. Unlike Cd, it does not have zero
row sums, unless 1 is an eigenvector of W. One such case is W = 1

v I, giving (aside from
the scale factor 1

v ) the ordinary (unweighted) information matrix as a special case.
The matrix W is chosen to change the emphasis an optimality criterion places on differ-

ent contrasts, particularly those involving specially designated treatments such as controls.
Toward that end, it will be profitable (though not necessary, see Stallings and Morgan 2014)
to investigate those W that are diagonal. Henceforth,

W =

⎛
⎜⎜⎜⎝

w1 0 · · · 0
0 w2 · · · 0
...

...
. . .

...
0 0 · · · wv

⎞
⎟⎟⎟⎠ (3.28)

with all wi > 0 and
∑

i wi = 1. Then wi is the weight assigned to the ith treatment. How
weights are selected is determined by how they impact optimality evaluations. Conven-
tional (unweighted) optimality theory has wi = 1/v for all i.

Definition 3.10 Let � be any optimality criterion satisfying the properties (3.3). For any given
weight matrix W, the weighted criterion �w is

�w(Cd) = �(Cdw). (3.29)

A design d∗ in a class of competitors D is �w-optimal or weighted optimal with respect to �,
if �w(Cd∗) = mind∈D �w(Cd).

Let P be the collection of all v × v permutation matrices, and let Pw contain those mem-
bers of P that preserve the weight matrix, that is, Pw = {P ∈ P : PWP′ = W}. Weighted
criteria inherit these properties from (3.3):

(i) � respects the nonnegative definite ordering: for any C1, C2 ∈ C such that
C1 − C2 is nonnegative definite, �w(C1) ≤ �w(C2).

(ii) �w is invariant to treatment permutation in Pw: �w(PCP′) = �w(C) for each
C ∈ C and every P ∈ Pw.

(iii) �w is convex: �w(αC1 + (1 − α)C2) ≤ α�w(C1) + (1 − α)�w(C2) for all C1, C2 ∈ C.
(3.30)

Property (i) says weighting cannot change a dominating relationship, (ii) says that
weighted criteria do not distinguish among treatments accorded the same weight in (3.28),
and (iii) implies that matrix averaging (compare Lemma 3.3) with allowed permutationsPw



Blocking with Independent Responses 147

will improve designs from a weighted perspective. The last of these, incidentally, indicates
that GGDDs may be a useful design class in the weighted setup.

Definition 3.11 The weighted variance for contrast c′τ estimated from design d is

Vardw(ĉ′τ) = [c′W−1c]−1Vard(ĉ′τ). (3.31)

The multiplier [c′W−1c]−1 is the weight of the contrast.

It is through weighted variances that weighted criteria are understood. Many conven-
tional criteria, those that are functions of the eigenvalues edi, are statistically meaningful
because all normalized contrast variances are convex combinations of the e−1

di (the canon-
ical variances). Denote the positive eigenvalues of the weighted information matrix Cdw
by θd1 ≤ · · · ≤ θd,v−1. Wang (2009) established that all weighted contrast variances
are convex combinations of the θ−1

di , showing that eigenvalue-based weighted criteria are
summary measures of weighted variance in the same way that their conventional counter-
parts summarize unweighted variance. Accordingly, the θ−1

di are termed canonical weighted
variances.

Weighted versions of the eigenvalue-based criteria in Table 3.2 are Aw = ∑
i θ

−1
di and

Ew = 1/θd1. Morgan and Wang (2010) show that the D criterion is unresponsive to weights
(Dw produces the same design ordering regardless of the wi). They also show that Ew is
the largest weighted variance over all contrasts and that Adw = ∑

i
∑

j�=i
wiwj
v−1 Vard(τ̂i − τj)

is a weighted sum of variances for elementary treatment contrasts, providing useful
interpretations of each. For brevity, only eigenvalue-based criteria are considered here.

Weight selections wi are made for the contrast weights (c′W−1c)−1 they induce. Though
not every conceivable weighting can be captured by the diagonal weight matrix (3.28),
situations of practical interest can. For experiments with a control (call it treatment 1) and
v − 1 equal-interest test treatments, let w1 be the control weight and w2 = · · · = wv =
(1 − w1)/(v − 1) be the common weight for test treatments. With this selection of W, the
weight assigned to any elementary control contrast τ1 − τi is (w1

−1 + w2
−1)−1, while that

for comparing two test treatments is (2/w2)
−1. The ratio of these two contrast weights is

ξ = 2(v − 1)w1/[1 + (v − 2)w1]. Selection of w1 can be determined by the desired value of ξ,
which ranges from 0 to 2 as w1 is varied from 0 to 1. The range of ξ reflects the fact that in an
orthogonal design, test–test comparisons can be estimated with variance arbitrarily smaller
(subject to sample size) than, though no more than twice that, of test–control comparisons.

The Aw, Ew, and MVw problems are solved for CRDs and all ξ in Morgan and
Wang (2010). Taken up in the following are the implications when blocking in the pres-
ence of a control treatment. This topic has been intensively studied for one special case
(Section 3.7.1), while general ξ has only of late come under investigation (Section 3.7.2).

A special case of (3.28) is weights proportional to replications (wi = ri/bk); compare (3.5)
and (3.27). With these weights, canonical efficiency factors and canonical weighted vari-
ances are proportional. Thus, comparing designs on their average efficiency factor (3.8) is
comparing on weighted A-values. From Table 3.3, we can now say that blocking according
to the design in Example 3.3 must reduce variance by more than 20% if average weighted
variance is to be better than a CRD with the same replication numbers.
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If one is not interested in weighted information, then (3.8) should not be used unless
restricting to equireplicate designs. It should also be clear that since weighted optimality
criteria are based on a fixed choice of weights, (3.8) is only valid for comparing designs d
with fixed replication vector rd.

3.7.1 Design for TvC Experiments

The product-testing experiment described earlier is an example of a test treatments versus
control (TvC) experiment. TvC experiments seek to evaluate as efficiently as possible com-
parisons of v − 1 test treatments with a control. First rigorously studied by Majumdar and
Notz (1983), the relevant information matrix is CTvC

d = (H′C+
d H)−1, where H = (

1v−1, −Iv−1
)

is the coefficient matrix for the simple test versus control comparisons.

Lemma 3.8 (Morgan and Wang 2010) Take w2 = · · · = wv = (1 − w1)/(v − 1) in (3.28) and
let control weight w1 → 1. The limiting Moore–Penrose inverse of Cdw is

lim
w2→0
w1→1

1
w2

C+
dw =

(
0 0
0 H′C+

d H

)
.

Lemma 3.8 places design for TvC experiments in the weighted optimality framework
as a limiting case. This relationship has been recently exploited in determining many E-
optimal TvC designs. A design is E2-optimal if it is E-optimal and if it maximizes the second
smallest eigenvalue ed2 of Cd among all E-optimal designs.

Theorem 3.24 (Morgan and Wang 2011) Let k0 = k/2�. Suppose d∗ ∈ D(v, b, k) satisfies these
conditions:

(i) The control treatment is assigned to nd∗1j = k0 units in block j for j = 1, 2, . . . , b.

(ii) d∗ is equally replicated and binary in the v − 1 test treatments.

(iii) The design d∗
1 ∈ D(v − 1, b, k1 = k − k0) found by deleting all replicates of the control

from d∗ is connected.

Then

• d∗ is E-optimal for the TvC problem.
• If d∗

1 is E-optimal over D(v1, b, k1), then d∗ is E2-optimal for the TvC problem.
• If d∗

1 is M-optimal over D(v1, b, k1), then d∗ is EM-optimal for the TvC problem.

So long as v1 = v − 1 divides bk1 and k1 ≤ v1 all known M-optimal (this includes BIBDs)
and E-optimal (see Section 3.4.4) block designs for D(v1, b, k1) are binary and equireplicate.
Theorem 3.24 successfully exploits the considerable knowledge of ordinary block designs
in achieving optimality for TvC experiments.

The A-optimality problem for TvC experimentation has a much longer history, hav-
ing been developed before the general weighted approach was available. Much of the
known theory has focused on GGDD(2) designs. Because of the specialized application
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to TvC experiments, the designs have been given a distinctive name (for a slightly broader
definition, see the original paper Bechhofer and Tamhane 1981).

Definition 3.12 A design d ∈D(v, b, k) is a balanced treatment incomplete block design
(BTIBD) if it is a GGDD(2) with groups of sizes v1 = 1 and v2 = v − 1, it is uniform in the
control treatment (the treatment in the first group), and it is binary in the v − 1 treatments of the
second group.

Since a BTIBD is uniform in the control, there are integers t and s for which the total
control replication is tb + s. That is, the control is assigned to t units in b − s blocks and to
t + 1 units in s blocks. This is denoted by BTIBD(v, b, k; t, s). The designs in Example 3.13
below are BTIBD(8, 5, 7; 2, 0) and BTIBD(8, 5, 7; 1, 0).

BTIBDs are “maximally averaged” with respect to the allowable permutationsPw, which
is all permutations of the v − 1 test treatments. The information matrix CTvC

d for a BTIBD
is thus completely symmetric, but Theorem 3.1 does not apply due to this matrix having
full rank. The eigenstructure is, nonetheless, very simple, with v − 2 of the eigenvalues
being identical. A happy consequence is that the A-value for any BTIBD is easily calcu-
lated. Indeed, any competing design, regardless of its combinatorial properties, can have

its information matrix averaged to produce C̄
TvC
d of GGDD(2) form with this same simple

eigenstructure, yielding a workable lower bound expression for its A-value. This expres-
sion can be minimized over all of D(v, b, k), and should that minimum occur at a BTIBD,
the A-optimal design has been identified. In this way one can prove the following theorem:

Theorem 3.25 (Stufken 1987) If (k− t−1)2 +1 ≤ t2(v−1) ≤ (k− t)2, then a BTIBD(v, b, k; t, 0)

is A-optimal over D(v, b, k).

Theorem 3.25 is one of the more simply stated of many A-optimality results for BTIBDs.
An excellent survey including many examples is available in Majumdar (1996), where vari-
ants on the approach outlined earlier, pursued extensively in the 1980s and 1990s, are
described. Catalogs of A-optimal TvC designs are available in Hedayat and Majumdar
(1984) and Ting and Notz (1988).

Example 3.13

These two designs are both GGDD(2) with overreplication of the control:

d1 :

1
1
2
3
5

1
1
3
4
6

1
1
4
5
7

1
1
5
6
8

1
1
6
7
2

1
1
7
8
3

1
1
8
2
4

d2 :

1
2
3
6
8

1
3
4
7
2

1
4
5
8
3

1
5
6
2
4

1
6
7
3
5

1
7
8
4
6

1
8
2
5
7

By Theorem 3.25, d1 is EM-optimal. By Theorem 3.2 of Majumdar (1996), d2 is A-optimal.

The optimal designs in Example 3.13 are quite different from one another. Substantial
disagreement of criteria as seen here underscores the need for careful criterion choice in



150 Handbook of Design and Analysis of Experiments

TA
B

LE
3.

13
O

pt
im

al
Tw

C
D

es
ig

ns
in

D
(6

,6
,4

)

1 2 3 4

2 3 4 5

2 3 4 6

2 3 5 6

2 4 5 6

3 4 5 6

E
:0

.0
5–

0.
25

,
A

:0
.0

5–
0.

10
,

M
V

:0
.0

5–
0.

30

1 2 3 4

1 2 3 5

2 3 4 6

2 3 5 6

2 4 5 6

3 4 5 6

E
:0

.3
0–

0.
55

,
A

:n
on

e,
M

V
:0

.3
5–

0.
55

1 2 3 4

1 2 5 6

2 3 4 5

2 3 4 6

2 3 5 6

3 4 5 6

E
:0

.6
0,

A
:0

.1
5–

0.
40

,
M

V
:0

.6
0

1 2 3 4

1 2 3 5

1 2 5 6

2 3 4 6

2 4 5 6

3 4 5 6

E
:0

.6
5–

0.
75

,
A

:n
on

e,
M

V
:0

.6
5–

0.
80

1 2 3 5

1 2 3 6

1 4 5 6

2 3 4 5

2 3 4 6

2 4 5 6

E
:0

.8
0,

A
:0

.4
5–

0.
70

,
M

V
:n

on
e

1 2 3 4

1 2 3 5

1 2 4 6

1 3 5 6

2 4 5 6

3 4 5 6

E
:0

.8
5–

1.
00

,
A

:0
.7

5–
1.

00
,

M
V

:0
.8

5–
1.

00

N
ot

e:
C

on
tr

as
tw

ei
gh

tr
at

io
s
ξ

fo
r

w
hi

ch
ea

ch
d

es
ig

n
is

op
ti

m
al

ar
e

sh
ow

n
at

0.
05

in
cr

em
en

ts
.



Blocking with Independent Responses 151

accordance with experimenter goals. Criterion disagreement is more prevalent in weighted
situations; see Morgan and Wang (2010).

Gupta et al. (1999) took this line of attack a step further, broadening the class of experi-
ments that fall into the TvC categorization. Though not having the framework for weighted
optimality described in (3.27) through (3.29), their work is equivalent to the general Aw
problem with W specified by (3.28), allowing all w1 placing higher priority on control com-
parisons ( 1

v < w1 < 1) and so not restricting to the limiting case. Results for the Ew criterion
in this same, broader framework were obtained by Wang and Morgan (2010).

3.7.2 Lesser Weight on the Control

At the other end of the weight spectrum are the test treatments with control (TwC) experi-
ments. TwC experiments, which include the earlier described fungicide trial, are defined
by according lesser (w1 < 1/v) weight to the control. This has been a topic in two recent
articles, one of which is briefly described here.

Small w1 will typically mean small replication for the control. Matrix averaging then
becomes a less effective technique (the bounds produced can be further from what is actu-
ally attainable) for determining optimal or efficient designs, the difficulties being more
acute in small designs. Wang and Morgan (2010) thus resorted to enumeration to find small,
optimal TwC designs. For all but the very smallest problems, feasibility restrictions on
enumeration are required. These authors conjectured that optimal designs for TwC experi-
mentation in D(v, b, k) (k < v) are binary in all treatments and have range no more than one
for the replication numbers of the v − 1 test treatments (compare the John–Mitchell con-
jecture in Section 3.4.1). With these restrictions, they compiled a catalog of optimal TwC
designs for all v ≤ 12 and b ≤ 12 with v + b ≤ 18. Table 3.13 displays results of one of these
enumerations.

The designs in Table 3.13 hold no surprises. While the criteria do not always agree, repli-
cation of the control increases with w1 (equivalently, as the contrast weight ratio ξ increases)
regardless of the criterion. If sufficiently close to the unweighted case (w1 = 1/v; ξ = 1),
the criteria agree that an equally replicated design (a RGD) is best. The criteria also agree
on the same design, having just one replicate of the control, for sufficiently small w1.

3.8 Discussion and Directions

Blocking is one of the three fundamental techniques of design propounded by Fisher (1935),
growing out of his development of experimental ideas nearly a century ago. Since then, it
has been applied in multitudinous forms in a wide variety of experimental settings, with
increasing examination from theorists as time has passed. This chapter has attempted to
give a reasonably compact overview of the basic blocking implementations and, for them,
the mathematical techniques that have been developed to maximize the information that a
blocked experiment can provide.

There are many extensions. Covered elsewhere in this volume are blocking of fractions
(Chapter 8), and blocking with nonlinear models for responses (Chapter 13). Yet other top-
ics are blocking with nonconstant block sizes (Ghosh et al. 2008), block size k > v (Jacroux
and Whittinghill 1988, especially their Example 2.5), blocking with treatments and con-
tinuous covariates (Chapter 4 of Liski et al. 2002), blocking in the presence of correlated
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errors (Martin and Eccleston 1991) and robustness of blocking schemes to loss of observa-
tions (Morgan and Parvu 2008; Godolphin and Warren 2011) or to weight range (Wang and
Morgan 2012). The just-cited papers contain references for further exploration.

The simple block designs of Sections 3.3 through 3.5 have been the most intensely stud-
ied. It is then not surprising that they are the best understood, this being due in part
to greater tractability of the underlying mathematical problems. Yet there is still much
unsolved, especially as regards designs where average replication must be small. With
small designs, as indicated by Section 3.5, the combinatorial properties that lead to opti-
mality in larger designs do not necessarily prove useful. Paralleling this, optimality bounds
from matrix averaging and, from results such as Theorems 3.3 through 3.5, also tend to
be unhelpful. In many cases, small designs are simply “too discrete” to closely conform
to results found through the smoothness of continuous mathematics. Looking in the other
direction, the John–Mitchell conjecture that some RGD must be optimal when a RGD exists
has been confirmed for many criteria with arbitrarily large designs by Cheng (1992).

The asymptotics of Cheng (1992) suggest this interesting question: given an optimal
design in D(v, b, k) and a BIBD in D(v, b0, k), when is the collection of blocks from both
designs an optimal design inD(v, b+b0, k)? The suggestion is certainly attractive, for adding
a BIBD to the IBD d simply adds a constant to the eigenvalues edi. The E-optimality work
by Morgan (2007b) described in Section 3.4.4 has established arbitrary BIBD-extendability
for most E-optimal block designs with v ≤ 15. Cakiroglu (2013) has shown that extendabil-
ity holds with respect to A- and D-optimality for many of the regular graph designs in the
John–Mitchell catalog. The general question, however, remains open.

In some situations, more than one optimal block design has been identified for the same
criterion; see, for instance, Table 3.6. The obvious solution in this case is to bring other cri-
teria to bear, further trimming the competitors by their values on one or more secondary
optimality measures. This idea was seen in Theorem 3.24 with E2- and EM-optimality. Alter-
natively, one might examine the collection of contrast variances that will be produced by
each design, seeking simplicity that will aid interpretation of experimental results. It may
on occasion be worthwhile to sacrifice a small measure of efficiency in exchange for more
readily interpretable results.

When an IBD is needed and an optimal design is not known, the results reported in
this chapter give good guidance about what structural properties should be sought. So
long as the setting is not too small (cf. Section 3.5), a design incorporating (i) and (ii) of
Definition 3.5, and keeping trace(C2

d) as small as possible, will be reasonably close to highest
efficiency.

References for where optimal block designs can be found are scattered throughout this
chapter, but they are by no means complete. This reflects a substantial shortfall of design
research: the failure to create easy access to large collections of optimal designs. Practic-
ing statisticians need designs that are readily available, be they from online catalogs or
generated by popular software. Unfortunately, an optimal design in a journal article can
be only there—it may not exist for much of the experimental world. Two projects to help
remedy this situation, designtheory.org (Bailey et al. 2006) and www.iasri.res.in/design, have
appeared in the past decade. While these are very positive steps, there is still much to
be done.

For those desiring to generate block designs with specified combinatorial properties,
including resolvability restrictions, the freely available software GAP Design (Soicher 2009)
is an excellent tool so long as v + b is not too large (typically less than 20, though block
size k also plays a role). Numerous techniques for design construction have been developed



Blocking with Independent Responses 153

through the years, many having roots in the method of differences developed by Bose (1939)
for construction of BIBDs. Bose’s idea was to start with a few, carefully crafted blocks from
which all the blocks of a design could be generated through a group action. That general
idea is an integral part of GAP Design.

The impact of increasing computational power has not been as great in discrete design
as in most other areas of statistics. This is in part because some of the optimality problems,
like those for D(v, b, k) with plot excess p = 0, have partially yielded to analytic solution.
It is also due in part to combinatorial possibilities becoming too numerous too quickly as
design size grows. This could change in the near future if techniques like semidefinite pro-
gramming, now being brought to bear on optimizing design for regression models (Papp
2012), can be adapted for the design problems considered here. There has certainly been sig-
nificant, recent progress from reducing problem size through mathematical argument, thus
making computational resolution feasible (e.g., Section 3.4.4). However, there will always
be a need for, and an appreciation of, complete solutions to design problems like those in
Kiefer (1975), Cheng (1978), Bagchi and Bagchi (2001), and others mentioned throughout
this chapter. It would be a great loss should search algorithms become replacements for
known theory and results for optimal designs. At the least, known optimal block designs
should be stored for ready access, not searched at every call with no guarantee of absolute
optimality.
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4.1 Introduction

4.1.1 Prologue

In a crossover trial, every experimental subject is exposed to a sequence of treatments over
time, one treatment being applied to it at each time point. These subjects could be humans,
animals, machines, plots of land, etc. The different time points at which the subjects are
used are referred to as periods. Consider a crossover trial with n experimental subjects, each
subject being observed for p periods, resulting in a total of np experimental units. We shall
assume at the design stage that each such experimental unit yields a single response (which
could even possibly be an average or sum over multiple observations). If such a trial aims
at drawing inference on a set of t treatments, then any allocation of these t treatments to the
np experimental units is called a crossover design. In the literature, such designs have also
been referred to as changeover (see also Chapter 1) or repeated measurements designs.

Crossover designs have been extensively applied in a variety of areas including phar-
maceutical studies and clinical trials, biological assays, weather modification experiments,
sensory evaluation of food products, psychology, bioequivalence studies, and consumer
trials. Throughout this chapter, a crossover design with p periods, n subjects, and t treat-
ments will be displayed as a p × n array, with rows of the array representing the periods,
columns representing the subjects, and the numerals 1,2,. . . , t denoting the treatments.
The following are two examples of crossover designs:

Example 4.1

(i) d1 : t = 2 = p, n = 4.

1 2 1 2
2 1 2 1

(ii) d2 : t = 3 = p, n = 6.

1 2 3 1 2 3
2 3 1 3 1 2
3 1 2 2 3 1

The design d1 shown in Example 4.1 is a two-period two-treatment design, also called
an AB/BA design, where AB stands for the treatment sequence in which treatment 1 is
followed by treatment 2, BA being defined analogously. Such a design is often used in the
context of clinical trials where, for example, treatment 1 could be the drug under study
and 2 could be a placebo or another drug. An extensive discussion on the analysis of
data from such designs is available in Jones and Kenward (2003). An application of this
design in the context of pharmacokinetic studies can be found in Jones et al. (1999).

An advantage of a crossover design is that, for the same number of observations, this
design requires fewer experimental subjects compared to a traditional design where each
subject gives a single observation. This is useful in situations where the subjects are scarce
or expensive. However, the very feature of these designs, namely, the repeated use of a sub-
ject, also brings in associated problems. For instance, a crossover design results in a longer
duration of the experiment compared to a traditional design, and designs with a large
number of periods may not be particularly attractive in some areas of application.
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More importantly, there is a possibility that the effect of a treatment may continue to
linger on in a subject beyond the period in which it is applied. For instance, in design d2 of
Example 4.1, in the second period, the first subject may retain some of the effect of treat-
ment 1 applied to it in the first period, and so the response from the first subject in the
second period is affected not only by the direct effect of treatment 2 but also possibly by
the residual, or carry-over, effect of treatment 1. Similarly, the response in the third period
of the first subject is influenced by the direct effect of treatment 3, by the carry-over effect
of treatment 2, and also possibly by the effect of treatment 1 carrying over across two peri-
ods. In particular, an effect carrying over to the immediate next period is referred to as the
first-order carry-over effect, and extending this idea, there may be second-order or even
higher-order carry-over effects in subsequent periods.

Thus, there are two types of treatment effects associated with crossover trials, the direct
effects and the carry-over effects, the former effects being usually of primary interest. The
presence of carry-over effects complicates the design and analysis of crossover trials. One
option of avoiding these is to allow a larger time gap between two successive applications
of treatments, with the expectation that the carry-over effect, if any, would washout dur-
ing this gap. Though this strategy may help in avoiding the carry-over effect, insertion of
such gaps, usually called the rest (or washout) periods, increases the total duration of the
trial. Moreover, it can be difficult to determine how long a rest period should be in order
to washout the carry-over effect completely. Another reason why such washout periods
may make a trial infeasible is apparent in the context of clinical trials where the subjects
are patients. In such trials, adopting a washout period is equivalent to denying a patient
any treatment during this long gap, and this may be unacceptable on medical or ethical
grounds. So, instead of trying to eliminate the carry-over effects by inserting rest periods,
if one accepts their possible presence, then the challenge is to come up with an effective
design of the trial and its corresponding analysis so that the typical contrasts of interest,
namely, the direct effect contrasts, can be estimated efficiently after properly adjusting for
these carry-over effects.

Much of the literature on crossover designs deals with solutions to this problem under
different assumptions on the nature of the carry-over effects. In the following sections,
we provide a survey of some of the important results on the construction and analysis of
efficient/optimal crossover designs. Throughout this chapter, we assume that the
responses from a crossover trial are quantitative. However, there are situations in prac-
tice when such responses may be binary or categorical in nature. We do not elaborate on
the analysis of crossover trials with binary or categorical responses and refer the reader to
Chapter 6 of Jones and Kenward (2003) for details and additional references.

4.1.2 Early History

Crossover trials have a long history and, apparently, these were first applied in agricul-
ture in 1853. We refer the reader to Jones and Kenward (2003, Section 1.4) for details of
a crossover experiment in agriculture conducted by John Bennet Lawes of Rothamsted,
England, in 1853. An early use of crossover trials in human nutrition was made by
Simpson (1938). These trials were related to experiments on diets for children. In one such
trial, four different diets were compared using 24 pairs of children, one male and one female
in each pair. Each pair received one of all possible 24 permutations of four diets over four
periods in such a way that each treatment was given equally often in each period. Simpson
(1938) was aware of carry-over effects and suggested the insertion of a rest (or washout)
period between the experimental periods to remove the carry-over effects. He also stated
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that the insertion of a washout period to eliminate carry-over effects may not always be the
best strategy in all situations, especially when it may be necessary to estimate the carry-over
effects themselves, and suggested the use of suitable designs that allow the estimation of
both direct and carry-over effects.

Cochran (1939) observed the existence of carry-over effects in long-term agricultural
experiments and was one of the first to separate out the direct and carry-over effects while
considering an appropriate design for experimentation. In a classic and widely quoted
paper, Cochran et al. (1941) considered a crossover trial on Holstein cows for compar-
ing three treatments in three periods. The crossover design used was obtained by using
orthogonal Latin squares (see Chapter 1), as in the design d2 of Example 4.1. Cochran et al.
appear to be the first to formally describe the least squares method of estimation of direct
and carry-over contrasts. Another early example of an experiment indicating the presence
of carry-over effects was quoted by Williams (1949). In this experiment, samples of pulp
suspensions were beaten in a Lampen mill, to determine the effect of concentration on the
properties of resulting sheets. Observations of the condition of the mill after each beating
indicated that certain pulp concentrations had an effect on the mill, which might affect the
next beating, indicating the presence of carry-over effect. A design balanced for carry-over
effects was therefore used.

An early use of crossover designs was made in biological assays by Fieller (1940). He
used a two-period design involving two treatments for comparing the effects of different
doses of insulin on rabbits. Finney (1956) also described the design and analysis of several
crossover designs for use in biological assay. In subsequent years, the use of these designs
in many diverse areas, particularly in clinical trials and pharmaceutical studies, has been
extensive. Real-life examples and discussion on various aspects of crossover designs can
be found in the books on this topic by Pocock (1983), Ratkowsky et al. (1992), Jones and
Kenward (2003), Senn (2003), and Bose and Dey (2009). Over the years, several review
papers have been published on these designs, including those by Hedayat and Afsarinejad
(1975), Matthews (1988), Stufken (1996), Kenward and Jones (1998), Senn (2000), and Bate
and Jones (2008). An early technical report due to Patterson and Lucas (1962) provides
tables of useful crossover designs along with detailed steps of their analysis.

4.2 Model for Studying Crossover Designs

Consider a crossover trial in which t treatments are to be compared using n experimental
subjects over p time periods. As mentioned earlier, any allocation of the t treatments to the
np experimental units is called a crossover design. Let �t,n,p be the collection of all such
crossover designs.

For the analysis of data arising from crossover designs, various models have been stud-
ied in the literature. We first describe a commonly used model in the following subsection.
This model is hereafter called the traditional model.

Even though the traditional model has been widely studied, it has also been criticized
for being unsuitable for some experimental situations. In order to suit different situations,
the traditional model has been variously modified, for example, by making certain assump-
tions on the form of the carry-over effect, by assuming a certain structure for the correlation
of the error terms, or by assuming random subject effects. Some of these modifications will
be described in later sections.
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4.2.1 Traditional Model

The traditional model described in the following text is an additive linear model, where
the expected response from a subject at any given period is the sum of the corresponding
subject and period effects, together with the direct effect of the treatment applied at that
period and the carry-over effect of the treatment applied in the previous period (if any).
For the data from a design d ∈ �t,n,p, the traditional model may be expressed as

yij = μ + αi + βj + τd(i,j) + ρd(i−1,j) + εij,

1 ≤ i ≤ p, 1 ≤ j ≤ n, (4.1)

where yij is the observable random variable corresponding to the observation from the jth
subject in the ith period, d(i, j) denotes the treatment allocated to the jth subject in the ith
period according to the design d, and μ, αi, βj, τd(i,j), and ρd(i−1,j) are, respectively, a general
mean, the ith period effect, the jth subject effect, the direct effect of the treatment d(i, j), and
the first-order carry-over effect of the treatment d(i − 1, j), 1 ≤ i ≤ p, 1 ≤ j ≤ n; the εij’s are
the error components, assumed to be uncorrelated random variables with zero means and
constant variance σ2. We define ρd(0,j) = 0, 1 ≤ j ≤ n, to reflect the fact that there are no
carry-over effects in the first period. All the parameters in (4.1) are considered as fixed, that
is, nonrandom. In what follows, the same notation yij is used for the observation as well as
the random variable corresponding to the observation.

4.2.2 Information Matrices

We first express (4.1) in a form that is more convenient to study. Toward this end, let us
write the observations from a design d as an ordered vector, where the first p entries are
the p observations on subject 1, the next p are the observations on subject 2,. . ., and so on.
Thus, for any design d ∈ �t,n,p, yd = (y11, . . . , yp1, y12, . . . , yp2, . . . , y1n, . . . , ypn)′ is the np × 1
vector of observations arising out of d with yij as in (4.1). Here and hereafter, primes denote
transposition. Let α = (α1, . . . ,αp)

′, β = (β1, . . . ,βn)′ be, respectively, the p × 1 vector
of period effects and the n × 1 vector of subject effects, where αi and βj are as in (4.1).
Since d(i, j) ∈ {1, 2, . . . , t}, for simplicity in notation, we denote the direct (respectively, the
first-order carry-over) effect of treatment s by τs (respectively, ρs), 1 ≤ s ≤ t, and write
τ = (τ1, . . . , τt)

′, ρ = (ρ1, . . . , ρt)
′, ε = (ε11, . . . , εpn)′ to denote the t × 1 vector of direct

effects, the t×1 vector of carry-over effects, and the np×1 vector of error terms, respectively,
where εij is as in (4.1). Also, let θ = (μ,α′,β′,τ′,ρ′)′ with μ as in (4.1).

Let 1a and 0a denote the a×1 vectors of all ones and all zeros, respectively, and Ia denote
the identity matrix of order a, where a is a positive integer. For positive integers a and b, let
Oab denote the a × b null matrix and Jab, the a × b matrix of all ones; Jaa and Oaa will simply
be written as Ja and Oa, respectively. A square matrix A of order n is called completely
symmetric if A = aIn + bJn for some scalars a, b.

For a design d ∈ �t,n,p, let Tdj be a p × t matrix with its (i, s)th entry equal to 1 if subject
j receives treatment s in the ith period, and zero otherwise. Similarly, let Fdj be a p × t
matrix with its (i, s)th entry equal to 1 if subject j receives treatment s in the (i−1)th period,
and zero otherwise. Since ρd(0,j) = 0 for 1 ≤ j ≤ n, the first row of Fdj is zero, and for
2 ≤ i ≤ p, 1 ≤ j ≤ n, the ith row of Fdj is the (i − 1)th row of Tdj, that is,
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Fdj =
(

0′
p−1 0

Ip−1 0p−1

)
Tdj, 1 ≤ j ≤ n. (4.2)

Define Td = (T ′
d1, . . . , T ′

dn)′, Fd = (F′
d1, . . . , F′

dn)′, and let E(·) and Var(·) denote the expec-
tation and variance operators, respectively.

With the aforementioned notation, model (4.1) can equivalently be written as

yd = Xdθ + ε, E(ε) = 0np, Var(ε) = σ2Inp, (4.3)

where the design matrix Xd may be written in the following partitioned form:

Xd = [1np P U Td Fd] = [1np X1 X2], say, (4.4)

P, U, Td, and Fd being the parts of Xd corresponding to the period, subject, direct, and
carry-over effects, respectively, under the design d, and X1 = [P U], X2 = [Td Fd].
Furthermore, with the ordering of the observations as in yd, it is clear that

P = 1n ⊗ Ip and U = In ⊗ 1p,

where ⊗ denotes the Kronecker (tensor) product operator. Hereafter, we will write (4.3) to
denote the traditional model.

For a matrix A, let A− denote an arbitrary generalized inverse (g-inverse) of A (see
Chapter 2 for a definition of a g-inverse). Define P⊥(A) = I − A(A′A)−A′, where I stands
for the identity matrix of appropriate order. Then, it can be shown (see e.g., Bose and Dey
2009, Section 1.3) that under model (4.3), after eliminating the nuisance parameters α and
β, the information matrix for estimating τ and ρ jointly is of the form

Cd(τ,ρ) = X′
2P⊥(X1)X2

= X′
2X2 − X′

2X1(X′
1X1)

−X′
1X2

=
[

T ′
dATd T ′

dAFd

F′
dATd F′

dAFd

]
,

with

A = (In − n−1Jn) ⊗ (Ip − p−1Jp). (4.5)

We may rewrite Cd(τ,ρ) as

Cd(τ,ρ) =
[

Cd11 Cd12

Cd21 Cd22

]
, (4.6)
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where

Cd11 = Rd − n−1MdM′
d − p−1NdN′

d + (np)−1rdr′
d,

Cd12 = Zd − n−1MdM̄′
d − p−1NdN̄′

d + (np)−1rdr̄′
d = C′

d21, (4.7)

Cd22 = R̄d − n−1M̄dM̄′
d − p−1N̄dN̄′

d + (np)−1r̄dr̄′
d.

Here, rd (respectively, r̄d) is the t × 1 replication vector for direct (respectively, carry-over)
effects; Rd (respectively, R̄d) is the t × t diagonal matrix with diagonal elements given by
the elements of rd (respectively, r̄d); Md (respectively, M̄d) is the t × p direct (respectively,
carry-over) effect versus period incidence matrix; Nd (respectively, N̄d) is the t × n direct
(respectively, carry-over) effect versus subject incidence matrix, and Zd is the t × t direct
effect versus carry-over effect incidence matrix. It may be verified that these are related to
the matrices Td and Fd defined earlier as rd = T ′

d1t, r̄d = F′
d1t, Rd = T ′

dTd, R̄d = F′
dFd, Zd =

T ′
dFd.
Now, let the information matrices of the direct (respectively, carry-over) effects, eliminat-

ing the carry-over (respectively, direct) effects, be denoted by Cd (respectively, C̄d). Then, it
follows from (4.7) that

Cd = Cd11 − Cd12C−
d22Cd21,

C̄d = Cd22 − Cd21C−
d11Cd12.

(4.8)

It can be shown that Cd and C̄d as in (4.8) are invariant with respect to the choice of
g-inverses involved. A crossover design is said to be connected (cf. Chapter 3) for direct
effects if all contrasts among the direct effects are estimable, a necessary and sufficient
condition for this being Rank(Cd) = t − 1. Connectedness for carry-overs is analogously
defined.

We now briefly indicate the analysis of the data arising from a crossover design under
the model (4.3), assuming that there are no missing observations. The total sum of squares
(total SS) with np − 1 degrees of freedom (df) can be calculated as usual on the basis of
the np individual observations. The sum of squares due to periods (SSP) and that due to
subjects (SSS), with p − 1 and n − 1 df, can also be obtained routinely on the basis of the
p period-wise observational totals and the n subject-wise observational totals, respectively
(see e.g., Cochran and Cox 1957, Section 4.4). Turning to the direct and carry-over effects,
we define the 2t × 1 vector of adjusted treatment totals as

Q = X′
2yd − X′

2X1(X′
1X1)

−X′
1yd

=
[

T ′
dAyd

F′
dAyd

]
=

[
Q1
Q2

]
, (4.9)

where A is as in (4.5), Q1 = T ′
dAyd, and Q2 = F′

dAyd. Then the SS for the direct and carry-
over effects (jointly) after the elimination of the period and subject effects is

SS(τ,ρ) = Q′(Cd(τ,ρ))−Q. (4.10)
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For a crossover design, which is connected for both direct and carry-over effects, SS(τ,ρ)

has 2(t − 1) df because Q′
11t = Q′

21t = 0. Thus, the error sum of squares (SSE), with
(n − 1)(p − 1) − 2(t − 1) df, can be obtained as

SSE = Total SS − SSP − SSS − SS(τ,ρ).

In order to test the significance of the direct effects, one requires the corresponding adjusted
SS as given by

SSadj(τ) = (Q1 − Cd12C−
d22Q2)

′C−
d (Q1 − Cd12C−

d22Q2),

with t − 1 df, where Cd11, Cd12, and Cd21 are as in (4.7) and Cd is as in (4.8). On the basis of
SSadj(τ) and SSE, the F-test can now be employed in a straightforward manner for testing
the significance of direct effects. The procedure for testing the significance of carry-over
effects is similar.

4.3 Some Families of Crossover Designs

We now introduce a few classes of crossover designs, which have been widely studied
in the literature. Apparently, the designs described in Definitions 4.1 and 4.2 were first
formally defined and studied by Hedayat and Afsarinejad (1978) and Cheng and Wu
(1980), and systematic construction methods for these are available. However, in these
designs, the numbers of periods often exceed the numbers of treatments to be compared.
In some experiments, it may be difficult to accommodate a large number of periods, and
so one may prefer designs with p < t. Patterson (1952) was probably the first to give sys-
tematic methods of construction for designs with p ≤ t. Freeman (1959), Patterson and
Lucas (1962), Atkinson (1966), Hedayat and Afsarinejad (1975), Constantine and Hedayat
(1982), Afsarinejad (1983, 1985), and Stufken (1991) also considered designs with p ≤ t.
Some designs with p ≤ t are described in Definitions 4.3 through 4.5. All these designs
have nice combinatorial properties and, as a result, they have simple forms of the informa-
tion matrix for inference on direct effects under model (4.3). Moreover, as will be seen later,
they also enjoy excellent optimality properties.

A design is said to be uniform on periods if, in each period, it allocates each treatment to
the same number of subjects. Similarly, a design is uniform on subjects if, for each subject,
it allocates each treatment to the same number of periods. A design is simply said to be
uniform if it is uniform on periods as well as on subjects.

The aforementioned definitions imply that, for a uniform design d ∈ �t,n,p,

rd = np
t

1t, Rd = np
t

It, Md = n
t

Jtp, Nd = p
t

Jtn. (4.11)

4.3.1 Designs with p ≥ t

Definition 4.1 A design d ∈ �t,n,p is said to be balanced if, in the order of application, no treatment
precedes itself and each treatment is preceded by every other treatment the same number of times.
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Definition 4.2 A design d ∈ �t,n,p is said to be strongly balanced if, in the order of application,
each treatment is preceded by every treatment (including itself) the same number of times.

Clearly, if d is either balanced or strongly balanced, we have

Zd = T ′
dFd =n(p − 1)

t(t − 1)
(Jt − It) or Zd = n(p − 1)

t2 Jt, (4.12)

respectively. We now give some examples of these designs, where we define the positive
integers λ1, λ2,μ1, and μ2 as λ1 = n(p−1)/(t(t−1)), λ2 = n(p−1)/t2,μ1 = n/t, and μ2 = p/t.
Thus, for a balanced design, Zd = λ1(Jt − It) and, for a strongly balanced design, Zd = λ2Jt.

Example 4.2

The designs d1 and d2 in Example 4.1 are both balanced uniform designs with λ1 = 2. In
the following, we give two examples of strongly balanced designs with t = 3; the first
design has n = 9, p = 6, and the second has n = 6, p = 4:

d3 ≡

1 1 1 2 2 2 3 3 3
1 2 3 1 2 3 1 2 3
2 2 2 3 3 3 1 1 1
2 3 1 2 3 1 2 3 1
3 3 3 1 1 1 2 2 2
3 1 2 3 1 2 3 1 2

, d4 ≡
1 2 3 3 1 2
2 3 1 2 3 1
3 1 2 1 2 3
3 1 2 1 2 3

.

The design d3 ∈ �3,9,6 is uniform, with μ1 = 3,μ2 = 2, and λ2 = 5, while d4 ∈ �3,6,4
is uniform only on periods with μ1 = 2 and λ2 = 2. Note that d4 is uniform on subjects
in the first 3(= p − 1) periods, and its last period is obtained by repeating the allocation
in the previous period. Patterson and Lucas (1959) named a design of the form d4 as an
extraperiod design.

In view of (4.11) and (4.12), it is easy to see that the properties of uniformity and balance
lead to substantial simplifications in the forms of the information matrices. Consider any
two designs in �t,n,p, say d̃ and d∗, which are balanced uniform and strongly balanced
uniform, respectively. Then, on simplification from (4.7), one can show that

Cd̃11 = μ1pHt, Cd̃12 = −λ1Ht, Cd̃22 = μ1(p − 1 − p−1)Ht,

Cd∗11 = μ1pHt, Cd∗12 = Ot, Cd∗22 = μ1(p − 1 − p−1)Ht, (4.13)

where

Ht = It − t−1Jt. (4.14)

From (4.8), it can be verified that for a balanced uniform design d̃, the matrices Cd̃ and C̄d̃
are completely symmetric, given by

Cd̃ = α1Ht, C̄d̃ = α2Ht, (4.15)
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where

α1 = μ1p
[
1 − (p − 1)2(t − 1)−2(p2 − p − 1)−1

]
,

α2 = μ1

[
(p − 1 − p−1) − (p − 1)2(t − 1)−2p−1

]
.

Since Ht is an idempotent matrix, a g-inverse of Ht is It. Hence, one can consider g-inverses
of Cd̃ and C̄d̃ as given, respectively, by

(Cd̃)
− = α−1

1 It, (C̄d̃)
− = α−1

2 It. (4.16)

From (4.16), it is thus clear that the analysis of a balanced uniform crossover design becomes
extremely simple and this makes such designs attractive to users. Uniform crossover
designs have been used in diverse areas of investigation and, for references to such work,
we refer to Bate and Jones (2008).

From (4.8) and (4.13), it is also clear that the analysis of data from a strongly balanced
uniform design d∗ is further simplified owing to the fact that Cd∗12 = Ot. Thus, the direct
and carry-over effects are orthogonally estimable under these designs and

Cd∗ = μ1pHt, C̄d∗ = μ1(p − 1 − p−1)Ht. (4.17)

Such simple forms of the information matrices make it very convenient to study the
statistical properties of these designs.

Again, Definitions 4.1 and 4.2 imply that the parameters t, n, and p need to satisfy certain
divisibility requirements for these designs to exist. For instance, a strongly balanced design
exists only if t2 divides n(p − 1). To overcome this problem, Kunert (1983) departed from
the requirement of strong balance and introduced nearly strongly balanced designs where,
instead of requiring that each treatment pair appear equally often in successive periods, he
stipulated that each treatment pair appear in successive periods as equally often as possible.
Let us write Zd = (zdss′), that is, zdss′ is the number of times treatment s is immediately
preceded by treatment s′. A design d is a nearly strongly balanced design if

1. zdss′ is equal to either [n(p − 1)/t2] or [n(p − 1)/t2] + 1, for all 1 ≤ s, s′ ≤ t;
2. ZdZ′

d is of the form aIt + bJt for some constants a and b.

In condition 1, [·] is the greatest integer function. Bate and Jones (2006) introduced nearly
balanced designs, which only require condition 1. We give one example for each of these
designs; for further details including their optimality and efficiency properties, we refer to
Kunert (1983) and Bate and Jones (2006).

Example 4.3

The design d5 with t = 3, n = 6 = p, is nearly strongly balanced, while d6 with t = 5,
n = 10, p = 15 is nearly balanced:
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d5 ≡

1 2 3 1 2 3
2 3 1 1 2 3
3 1 2 2 3 1
3 1 2 3 1 2
2 3 1 3 1 2
1 2 3 2 3 1

, d6 ≡

5 1 2 3 4 2 3 4 5 1
2 3 4 5 1 1 2 3 4 5
1 2 3 4 5 4 5 1 2 3
4 5 1 2 3 3 4 5 1 2
3 4 5 1 2 3 4 5 1 2
3 4 5 1 2 4 5 1 2 3
4 5 1 2 3 1 2 3 4 5
1 2 3 4 5 2 3 4 5 1
2 3 4 5 1 5 1 2 3 4
5 1 2 3 4 5 1 2 3 4
5 1 2 3 4 5 1 2 3 4
1 2 3 4 5 4 5 1 2 3
4 5 1 2 3 1 2 3 4 5
2 3 4 5 1 3 4 5 1 2
3 4 5 1 2 2 3 4 5 1

.

4.3.2 Designs with p ≤ t

In this subsection, we consider some designs with p ≤ t. All these designs enjoy good
optimality properties, and we will discuss these properties later in this chapter. We begin
with the definition of the class of designs considered by Patterson (1952), which we shall
call Patterson designs. These designs are very popular among experimenters because they
involve a moderate number of subjects for given t and do not involve too many periods.
Several families of such designs are known.

Definition 4.3 A design d ∈ �t,n,p, where p ≥ 3, t ≥ 3, will be said to be a Patterson design if
the following conditions hold:

(i) d is uniform on periods, so that n = μ1t for some integer μ1 ≥ 1;

(ii) d is balanced, so that n(p − 1)/(t(t − 1)) = λ1 for some integer λ1 ≥ 1;

(iii) When the subjects of d are viewed as blocks, they form the blocks of a balanced incomplete
block (BIB) design with block size p;

(iv) When d is restricted to the first p−1 periods, then again, the subjects of d form the blocks
of a BIB design with block size p − 1;

(v) In the set of μ1 subjects receiving a given treatment in the last period, every other
treatment is applied λ1 times in the first p − 1 periods.

Example 4.4

The design d7 shown in the following is a Patterson design with t = 4, p = 3, n = 12:

d7 ≡
1 2 3 4 1 2 3 4 1 2 3 4
2 1 4 3 3 4 1 2 4 3 2 1
3 4 1 2 4 3 2 1 2 1 4 3

.

For a Patterson design d, it can be shown that

Cd11 = λ1tHt, Cd12 = −(λ1t/p)Ht, Cd22 = (λ1(pt − t − 1)/p)Ht. (4.18)

So, analogously to (4.15), the information matrices Cd and C̄d are both constant multiples
of Ht, leading to considerable simplification in the analysis.
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Stufken (1991) introduced a new class of designs and proved that these designs have
good optimality properties in certain subclasses of �t,n,p. These designs, labeled as Stufken
designs, are described in the following text. Stronger optimality properties of these designs
were established later by Hedayat and Yang (2004).

Definition 4.4 A design d ∈ �t,n,p will be called a Stufken design if it satisfies the following
properties:

(i) d is uniform on periods;

(ii) The first p − 1 periods of d form a BIB design with subjects as blocks;

(iii) In the last period of d, θ subjects receive a treatment that was not allocated to them in any
of the previous periods, while the remaining n−θ subjects receive the same treatment as in

period p−1, where θ is the nearest integer (or one of the nearest integers) to
n(pt − t − 1)

(p − 1)t
;

(iv) zdss′ − p−1 ∑n
j=1 ndsjn̄ds′j is independent of s and s′, s 
= s′, where Zd = (zdss′), Nd =

(ndsj), N̄d = (n̄dsj) are as defined earlier;

(v)
∑n

j=1 ndsjnds′j is independent of s and s′, s 
= s′.

To construct a Stufken design with t = 3, n = 36, p = 3, consider the array OAI(6, 33, 2)

shown in its transposed form in Example 4.14. A Stufken design with t = 3, n = 36, p = 3,
can be constructed by juxtaposing five copies of this transposed array together with one
copy of a 3 × 6 array, which has the first two rows of this transposed array as its first and
second rows and the second row of this transposed array repeated as its third row. We shall
describe the optimality properties of Stufken designs in Section 4.5.

Kunert and Stufken (2002) studied a general class of designs called totally balanced
designs, which satisfy more stringent combinatorial conditions and have good statistical
properties. These designs are quite general in the sense that, though the number of subjects
needs to be a multiple of the number of treatments, there is no restriction on the number of
periods, thus allowing p < t, p > t, or p = t. An attractive feature of these designs is that
they have good optimality properties, even under models more complicated than the one
in (4.3). We define these designs here and will study them again later.

Definition 4.5 A design d ∈ �t,n,p is called totally balanced if

(i) d is uniform on periods;

(ii) Each treatment is allocated as equally as possible to each subject in d, that is, each
treatment is allocated either [p/t] or [p/t] + 1 times to each subject;

(iii) The number of subjects where treatments s and s′ are both allocated [p/t] + 1 times in d
is the same for every pair s 
= s′, 1 ≤ s, s′ ≤ t;

(iv) Each treatment is allocated as equally as possible to each subject in the first p−1 periods
of d, that is, each treatment is allocated either [(p − 1)/t] or [(p − 1)/t]+ 1 times to each
subject over periods 1, . . . , p − 1;

(v) The number of subjects where treatments s and s′ are both allocated [(p−1)/t]+1 times
in the first p − 1 periods of d is the same for every pair s 
= s′, 1 ≤ s, s′ ≤ t;
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(vi) d is balanced;

(vii) The number of subjects where both treatments s and s′ appear [p/t] + 1 times in d and
the treatment s′ does not appear in the last period is the same for every pair s, s′, 1 ≤ s,
s′ ≤ t; s 
= s′.

Interestingly, some of the earlier designs follow as special cases of these designs; for
instance, when p is a multiple of t, a totally balanced design is a balanced uniform design.
The Patterson design shown in Example 4.4 is also a totally balanced design.

Example 4.5

The following is a totally balanced design with t = 3, n = 6, p = 4:

d8 ≡
1 2 3 3 1 2
2 3 1 2 3 1
3 1 2 1 2 3
1 2 3 3 1 2

.

4.3.3 Two-Period Designs

Clearly, in a crossover design, the number of periods p is at least two. We now review some
designs with only two periods, that is, designs with p = 2. These designs are of substantial
interest in clinical trials and have been studied, among others, by Grizzle (1965), Hills and
Armitage (1979), Armitage and Hills (1982), and Willan and Pater (1986).

Hedayat and Zhao (1990) gave an interesting connection between a crossover design
with two periods and a block design. We present this result in the following text, where
we write C d to denote the information matrix for treatments for an arbitrary block design
d under the usual additive linear model for block designs (see Chapter 3, Section 3.1).

Theorem 4.1 Let d be a design in �t,n,2, and let there be b ≤ t distinct treatments in the first
period of d, these treatments being labeled as 1, 2, . . . , b. Then there exists a block design d0 with t
treatments and b blocks of sizes r̄d1, . . . , r̄db, such that the treatment versus block incidence matrix
of d0 equals Zd, and the relationship

C d0 = 2Cd (4.19)

holds, where Cd is as in (4.8). Conversely, from a block design with t treatments and b(≤ t) blocks,
one can obtain a crossover design d in �t,n,2, with n equal to the total number of experimental units
in the block design, such that (4.19) holds.

This connection is helpful in the study of optimality of two-period crossover designs as
one can invoke well-known results on optimality of block designs for this purpose. The
following example illustrates Theorem 4.1.

Example 4.6

Let d ∈ �3,12,2 be as follows:

d ≡ 1 2 3 1 2 3 1 2 3 2 3 1
1 2 3 2 3 1 1 2 3 1 2 3 .
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This design has r̄d1 = r̄d2 = r̄d3 = 4. Then the corresponding block design d0 with
incidence matrix equal to Zd is given by the blocks

d0 ≡
Block I: 1, 1, 2, 3
Block II: 1, 2, 2, 3
Block III: 1, 2, 3, 3

.

Conversely, d can be obtained from d0, and it can be verified that for these designs, (4.19)
holds.

Again, from (4.19), it is clear that a design d ∈ �t,n,2 is connected for direct effects if and
only if the corresponding block design d0 is connected. Because of this fact, it is easy to see
that the contrasts among direct effects of treatments cannot be estimated from the design
d1 in Example 4.1. This is because the block design d0 corresponding to d1 has the following
two blocks:

Block I : 2, 2 and Block II : 1, 1.

The block design with the aforementioned two blocks is clearly disconnected, implying
that d1 is disconnected too. However, if d1 is modified to include identical pairs to give a
design d∗ as

d∗ ≡ 1 2 1 2
1 2 2 1 ,

then the corresponding block design has blocks

Block I : 1, 2 and Block II : 2, 1,

and is connected, leading to the connectedness of d∗ for direct effects.
There is another aspect of two-period designs that makes them interesting and we elab-

orate on this now. In the context of crossover designs, since the same subject gives multiple
responses, it is sometimes reasonable to deviate from the traditional model with uncorre-
lated errors and, instead, consider a model under which the observations from the same
subject are assumed to be correlated, these correlations being the same for all subjects, while
those from different subjects remain uncorrelated. Thus, for p = 2, the model is the same
as (4.3) with the exception that the variance-covariance matrix of the errors is now σ2�,

where � = In ⊗ V and V =
(

1 ρ

ρ 1

)
, with ρ (−1 < ρ < 1) representing the correlation

coefficient between the observations arising from the same subject.
An interesting aspect of two-period crossover designs is that the properties of these

designs under a model with correlated errors can be studied easily. It turns out that for
a design d with p = 2, the information matrix for the joint estimation of direct and carry-
over effects under a model with correlated errors as specified earlier is proportional to
the joint information matrix under (4.3); see Lemma 1.3.1 in Bose and Dey (2009). Hence,
for p = 2, the optimality properties of a design under the uncorrelated errors model (4.3)
remain robust even if the errors are correlated as described earlier.
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4.3.4 Two-Treatment Designs

Experiments with only two treatments are often used in practice; for example, in medical
experiments, one treatment may be a placebo or the standard drug, while the other treat-
ment could be a newly developed drug. The literature on two-treatment designs has been
enriched by various authors, including Kershner and Federer (1981), Laska and Meisner
(1985), Matthews (1987, 1990), Kunert (1991), Kushner (1997a), Carriere and Reinsel (1992),
Carriere and Huang (2000), and Kunert and Stufken (2008). In this context, a class of designs
called dual-balanced designs are found to have good statistical properties (see Section 4.5.5).

With two treatments, labeled say 1 and 2, consider a treatment sequence of length p,
every element of the sequence being either 1 or 2. For any such sequence, its dual is obtained
by interchanging the positions of 1 and 2. Then a dual-balanced design is defined as
follows.

Definition 4.6 A design that assigns an equal number of subjects to any treatment sequence and
its dual is called a dual-balanced design.

Example 4.7

The following are examples of dual-balanced designs:

d9 ≡
1 2
2 1
1 2
2 1

, d10 ≡
1 2 1 2
1 2 2 1
2 1 2 1
2 1 1 2

, d11 ≡
1 2
1 2
1 2
2 1

.

Note that though these designs are called dual balanced, they need not always be bal-
anced in the sense of Definition 4.1. For example, d9 is balanced, while d10 is strongly
balanced, and d11 is neither balanced nor strongly balanced in the sense of Definitions
4.1 and 4.2.

4.4 Constructions of Some Families of Designs

In this section, we give methods for construction for some selected classes of designs. To
see why these methods lead to the designs as claimed, we refer the reader to the related
references.

4.4.1 Balanced Uniform Designs

It is clear from Definition 4.1 (Section 4.3.1) and the definition of uniformity (Section 4.3)
that �t,n,p can contain a balanced uniform design only if t, n, and p satisfy the following
three conditions:

(i) n = μ1t, for some integer μ1 ≥ 1;
(ii) p = μ2t, for some integer μ2 ≥ 1;

(iii) n(p − 1) = λ1t(t − 1), for some integer λ1 ≥ 1.
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Case 1: t even. Williams (1949) gave a method for constructing a balanced uniform design
d ∈ �t,t,t, where t is any even integer. Starting with the initial t × 1 vector

a0 =
(

1, t, 2, t − 1, . . . ,
t
2

− 1,
t
2

+ 2,
t
2

,
t
2

+ 1
)′

,

he obtained t − 1 other vectors as au = a0 + (u, u, . . . , u)′, 1 ≤ u ≤ t − 1, where all entries in
au are reduced modulo t and every 0 in au is replaced by t. Then the t × t array

At = [a0, a1, . . . , at−1],

is a balanced uniform design in �t,t,t. As usual, rows of At represent the t periods and the
columns represent the t subjects. The design At is often called a Williams square.

Example 4.8

The following are two examples of Williams squares, or balanced uniform designs, in
�t,t,t, one with t = 4 and a0 = (1, 4, 2, 3)′ and another with t = 6 and a0 = (1, 6, 2, 5, 3, 4)′:

1 2 3 4
4 1 2 3
2 3 4 1
3 4 1 2

,

1 2 3 4 5 6
6 1 2 3 4 5
2 3 4 5 6 1
5 6 1 2 3 4
3 4 5 6 1 2
4 5 6 1 2 3

.

For n = μ1t and p = t, a balanced uniform design can be obtained by juxtaposing μ1
copies of a Williams square in �t,t,t.

Case 2: t odd. Balanced uniform designs with odd t in �t,t,t are known for only a few
values of t, for instance, t = 9, 15, 21, 27, 39, 55, 57, while they do not exist for t = 3, 5, 7.
Higham (1998) proved that a balanced uniform design exists in �t,t,t when t is a composite
number. The design for t = 21 is shown in Hedayat and Afsarinejad (1975), and designs for
t = 9, 15, 27 are given in Hedayat and Afsarinejad (1978). The afore mentioned papers may
be consulted for more details and references.

However, when n = 2t, a balanced uniform design exists in �t,2t,t for all odd t. Williams
(1949) gave a construction starting with two initial vectors. Let

b0 =
(

1, t, 2, t − 1, . . . ,
t + 5

2
,

t − 1
2

,
t + 3

2
,

t + 1
2

)′
,

c0 =
(

t + 1
2

,
t + 3

2
,

t − 1
2

,
t + 5

2
, . . . , t − 1, 2, t, 1

)′
.

Note that c0 is obtained by writing the entries of b0 in the reverse order. Now, for 1 ≤ u ≤
t − 1, let bu = b0 + (u, . . . , u)′ and cu = c0 + (u, . . . , u)′, where the elements of bu and cu are
reduced modulo t and, thereafter, every 0 therein is replaced by t. Then a balanced uniform
design in �t,2t,t is given by the t × 2t array

Bt = [b0 b1 · · · bt−1 c0 c1 · · · ct−1].
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The design d2 with t = 3 in Example 4.1 is constructed via this method. A design for t = 5
is shown next.

Example 4.9

For t = 5, b0 = (1, 5, 2, 4, 3)′ and c0 = (3, 4, 2, 5, 1)′, which lead to the following balanced
uniform design in �5,10,5:

1 2 3 4 5 3 4 5 1 2
5 1 2 3 4 4 5 1 2 3
2 3 4 5 1 2 3 4 5 1
4 5 1 2 3 5 1 2 3 4
3 4 5 1 2 1 2 3 4 5

.

There are several simple modifications of the Williams squares that give designs with the
same balance properties. For a review of such modifications, we refer the reader to Issac
et al. (2001).

4.4.2 Strongly Balanced Uniform Designs

From the definition of uniformity (Section 4.3.1) and Definition 4.2, one may check that
�t,n,p can contain a uniform, strongly balanced design only if the following conditions
hold:

(i) n = μ3t2, for some integer μ3 ≥ 1;
(ii) p = μ2t, for some integer μ2 ≥ 2.

Early examples of these designs with t = 3, n = 18, p = 6, and t = 4, n = 16, p = 8 were
given by Quenouille (1953). Later, Berenblut (1964) and Patterson (1973) gave general meth-
ods of their construction in �t,n=t2,p=2t. Cheng and Wu (1980) generalized this family to give
constructions for situations where t2 divides n and p is an even multiple of t. The design d3
shown in Example 4.2 is one such design. Starting with designs constructed by Cheng and
Wu’s method, one may obtain a strongly balanced uniform design in �t,n=αt2,p=2βt, where
α,β are integers, by juxtaposing copies of this design. Sen and Mukerjee (1987) gave a con-
struction of strongly balanced uniform designs for cases when t2 divides n and p is an odd
multiple of t. This, together with the construction of Cheng and Wu (1980), shows that the
necessary conditions (i) and (ii) are sufficient as well.

Using orthogonal arrays of strength two, Stufken (1996) gave a unified method of con-
struction of strongly balanced uniform designs for general μ2, which covers both the odd
and even cases. We describe this construction in the following.

An orthogonal array, OA(n, tp, 2), of strength two is an n×p array with entries from a set
of t symbols, such that any n × 2 subarray contains each ordered pair of symbols equally
often as a row, precisely n/t2 times (see Chapter 9). An OA(t2, t3, 2) exists for all t ≥ 2, and
let such an array be denoted by A0, its entries being 1, 2, . . . , t. Let B0 be an orthogonal array
OA(t2, t2, 2), obtained from A0 by deleting its third column. For 1 ≤ u ≤ t − 1, let Au be a
t2 × 3 matrix obtained by adding u to each element of A0 and similarly, let Bu be a t2 × 2
matrix obtained by adding u to each element of B0, where the elements of Au and Bu are
reduced modulo t, and then every 0 therein is replaced by t.
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Finally, let A and B be the 3t × t2 and 2t × t2 matrices defined as

A = [
A0 A1 · · · At−1

]′ , B = [
B0 B1 · · · Bt−1

]′ .

Since μ2 ≥ 2, let μ2 = 3α + 2β for some nonnegative integers α,β. It can then be verified
that the μ2t × t2 array

[A′ · · · A′ B′ · · · B′]′

consisting of α copies of A and β copies of B is a strongly balanced uniform design in
�t,t2,p=μ2t. Now juxtaposing μ3 copies of this design, we get a strongly balanced uniform
design in �t,n=μ3t2,p=μ2t.

Example 4.10

Let t = 3, n = 9, p = 6. We start with A0 ≡ OA(9, 33, 2) as shown in the following in
transposed form:

A′
0 ≡

⎡
⎣1 1 1 2 2 2 3 3 3

1 2 3 1 2 3 1 2 3
1 2 3 2 3 1 3 1 2

⎤
⎦ .

Here, μ2 = 2 and so we take α = 0,β = 1. From A0, we obtain B0 and then B1 and B2,
leading to the matrix B = (B0, B1, B2)

′ as indicated earlier. This B will be the design d3
displayed in Example 4.2.

4.4.3 Patterson Designs

We now describe methods of construction of some families of Patterson designs (see
Definition 4.3). Such a family exists in particular when t is a prime or a prime power. Let
u0 = 0, u1 = 1, u2 = x, u3 = x2, . . . , ut−1 = xt−2 be the elements of GF(t) (a Galois field of
order t), where x is a primitive element. Details on Galois fields may be found for example,
in Lidl and Niederreiter (1986). For 1 ≤ i ≤ t−1, define a t×t array Li whose (α,β)th element
equals uiuα +uβ, 0 ≤ α,β ≤ t−1. Then L1, . . . , Lt−1 form a complete set of (t−1) mutually
orthogonal Latin squares of order t (for more on mutually orthogonal Latin squares, see
Chapter 1, Section 1.4.3). Furthermore, Li+1 can be obtained by cyclically permuting the
last t − 1 rows of Li, 1 ≤ i ≤ t − 2. The t × t(t − 1) array L = [L1 L2 . . . Lt−1] is a Patterson
design in �t,t(t−1),t. On deleting any t−p rows of L, where t > p ≥ 3, one obtains a Patterson
design in �t,t(t−1),p. The design in Example 4.4 is obtained by this method, after deleting
the last row of the array L for t = 4.

Patterson (1952) obtained several families of designs that require fewer subjects than the
method described earlier. In particular, the following families of designs were obtained by
Patterson (1952):

Family I: t = 4m + 3, n = t(t − 1)/2, p = 3, t a prime or a prime power.
Family II: t = 4u + 3, n = 2t, p = (t + 1)/2, t a prime.
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Example 4.11

The following design is a member of Family I with t = 11, n = 55, p = 3:

1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11
2 3 4 5 6 7 8 9 10 11 1 5 6 7 8 9 10 11 1 2 3 4
4 5 6 7 8 9 10 11 1 2 3 2 3 4 5 6 7 8 9 10 11 1

1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11
6 7 8 9 10 11 1 2 3 4 5 10 11 1 2 3 4 5 6 7 8 9
5 6 7 8 9 10 11 1 2 3 4 6 7 8 9 10 11 1 2 3 4 5

1 2 3 4 5 6 7 8 9 10 11
4 5 6 7 8 9 10 11 1 2 3

10 11 1 2 3 4 5 6 7 8 9

.

4.5 Optimality under the Traditional Model

Hedayat and Afsarinejad (1978) initiated the study of optimality of crossover designs.
Subsequently, the area of optimal crossover designs has been enriched by the contributions
of a number of authors. Many of these results are with respect to the universal optimality
criterion of Kiefer (1975) (see Chapter 3). It is well known that universal optimality implies
the more common criteria like A-, D-, and E-optimality in the sense that a universally
optimal design is also A-, D-, and E-optimal.

Let D be a class of competing designs in a given context, and let Ad denote the infor-
mation matrix for a set of relevant parametric functions (e.g., contrasts among the direct
or carry-over effects in the setup of this chapter) under a design d ∈D and a given model.
Then, we recall from Chapter 3, Theorem 3.1 that a set of sufficient conditions for a design
d∗ ∈ D to be universally optimal over D is that (1) Ad∗ is completely symmetric and (2)
trace(Ad∗) ≥ trace(Ad) for all d ∈ D. In this section, we present a selection of results on
optimal crossover designs. Throughout this section, we consider the model (4.3).

4.5.1 Balanced Uniform Designs

It is interesting to note how the optimality results on balanced uniform designs have been
successively strengthened by various authors. The first result on optimal crossover designs
was obtained by Hedayat and Afsarinejad (1978) who proved that a balanced uniform
design (Definition 4.1) in �t,μ1t,t is universally optimal for the estimation of both direct and
carry-over effects over the class of all uniform designs in �t,μ1t,t. This result was strength-
ened by Cheng and Wu (1980), who removed the restriction of uniformity on the competing
designs, but even then, their results are valid only in some subclasses of �t,n,p, t ≥ 3. For
instance, they proved that a balanced uniform design is universally optimal for the esti-
mation of carry-over effects over the class of designs in which (1) n = μ1t, p = μ2t for some
integers μ1,μ2, (2) no treatment is assigned to two consecutive periods on the same subject,
and (3) each treatment is equally replicated in the first p − 1 periods. If in particular μ2 = 1
also holds (i.e., p = t), then restriction (3) is not needed. For the direct effects, they showed
that a balanced uniform design is universally optimal for the estimation of direct effects
over the class of designs which are uniform on subjects and uniform on the last period. This
result on direct effects by Cheng and Wu (1980) was further extended by Kunert (1984a)
who removed all restrictions on the competing class and proved that if t = n = p > 2, then
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a balanced uniform design is universally optimal for the estimation of direct effects over
�t,t,t and, if n = 2t, p = t, t ≥ 6, a balanced uniform design is universally optimal for direct
effects over �t,2t,t.

A more general result was obtained by Hedayat and Yang (2003) who proved that, for
n =μ1t, t = p > 2, and n ≤ t(t − 1)/2, a balanced uniform design is universally optimal for
direct effects in �t,n,t. On recalling that balanced uniform designs have completely sym-
metric information matrices (see (4.15)), the condition n ≤ t(t − 1)/2 is crucial in their
result as this is needed to establish that a balanced uniform design maximizes the trace
of the information matrix for direct effects among all designs in the competing class,
thereby establishing its universal optimality. It may be noted that when this condition is
not satisfied, universal optimality does not hold in general, though it is indeed true for
t = p = 3, n = 6. Earlier, Street et al. (1990) had shown via a computer search that a
balanced uniform design in �3,6,3 is A-optimal for direct effects; Hedayat and Yang (2004)
extended this result to universal optimality. For larger values of t, they also showed that if
4 ≤ p = t ≤ 12 and n ≤ t(t + 2)/2, then a balanced uniform design is universally optimal
for the estimation of direct effects over �t,n,t.

4.5.2 Stufken and Patterson Designs

When we depart from balanced uniform designs, and focus on designs with uniformity
on periods only, several optimality results are again available. For example, the universal
optimality of Stufken designs (see Definition 4.4) for direct effects in certain subclasses of
�t,n,p, was established by Stufken (1991). Kushner (1998) extended these results to show
that if n/(t(p − 1)) is an integer, then the Stufken designs are universally optimal for direct
effects in the entire class �t,n,p. Hedayat and Yang (2004) improved Kushner’s result to prove
that if a Stufken design exists in �t,n,p, then it is universally optimal for direct effects over
�t,n,p, irrespective of whether or not the aforementioned divisibility condition holds. By
this result, a Stufken design, which exists for t = p = 3, n = 36, is universally optimal in
�3,36,3, and thus it dominates the balanced uniform design in this class. Note that here the
condition n ≤ t(t − 1)/2 in the result of Hedayat and Yang (2003), mentioned in the earlier
subsection, is violated.

The optimality properties of Patterson designs (Definition 4.3) were studied by Shah
et al. (2005) who showed that these designs are universally optimal for the estimation of
both direct and carry-over effects over the subclass of all connected designs in �t,n,p in which
no treatment precedes itself.

4.5.3 Strongly Balanced Designs

We now turn to strongly balanced designs. The study of optimality aspects of such designs
was initiated by Cheng and Wu (1980). They proved a very general result that shows that a
strongly balanced uniform design (Definition 4.2) is universally optimal for the estimation
of both direct and carry-over effects over the entire class �t,n,p. However, since such a design
exists only if t2|n and t|p, these designs are quite large in size. By relaxing the condition of
uniformity on subjects in the class of competing designs, Cheng and Wu (1980) obtained
optimal designs that are smaller in size compared to strongly balanced uniform designs.
They showed that a strongly balanced design that is uniform on periods and uniform on the
subjects in the first p−1 periods is also universally optimal for both direct and carry-over effects
over the entire class, �t,n,p. The fact that direct and carry-over effects become orthogonally
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estimable in a strongly balanced design and the expressions in (4.17) are instrumental in
proving the universal optimality over the entire class of designs.

4.5.4 Two-Period Designs

Hedayat and Zhao (1990) used the connection established between block designs and two-
period crossover designs in Theorem 4.1 (Section 4.3.3) to obtain optimal crossover designs
starting from optimal block designs. It follows from Theorem 4.1 that if a block design d0
is optimal in the class of all proper (equal block size) block designs with t treatments and
b ≤ t blocks, then the two-period crossover design corresponding to d0 is also universally
optimal for direct effects, in the class of all two-period designs in which b treatments appear
in the first period equally often. The treatments need to occur equally often in the first
period because the treatments in period 1 of a two-period design correspond to block labels
in the block design, while those in period 2 correspond to the treatment labels within these
blocks. Consider, for instance, Example 4.6. There, d0 is a balanced block design and is
universally optimal over the entire class of connected block designs with t = 3 treatments
and b = 3 blocks each of size 4. Hence, it follows that the corresponding crossover design d
is universally optimal for the estimation of direct effects over the subclass of �3,12,2, which
are uniform on the first period.

Hedayat and Zhao (1990) also gave a set of necessary and sufficient conditions for a
two-period crossover design with t treatments and n subjects to be universally optimal in
the entire class �t,n,2. Their result is as follows:

Theorem 4.2 Let n ≡ 0 (mod t). Then a two-period, t-treatment, n-subject design d∗ is
universally optimal for direct effects over �t,n,2 if and only if

(i) fd∗s ≡ 0 (mod t), 1 ≤ s ≤ t, where fd∗s is the number of times treatment s appears in the
first period of d∗

(ii) zd∗s′s = fd∗s/t, 1 ≤ s′ ≤ t, where zd∗s′s is the number of subjects that receive treatment s
in the first period and treatment s′ in the second period of d∗

Note that the number of distinct treatments in the first period of the design d∗ in
Theorem 4.2 may be any number ∈ {1, 2, . . . , t}. Condition (i) of Theorem 4.2 merely
demands that for 1 ≤ s ≤ t, fd∗s = μst, where μs ≥ 0 is an integer, subject to

∑t
s=1 fd∗s = n.

In particular, one can have an optimal two-period design as given by Theorem 4.2 where
the same treatment is used for every subject in the first period, for example, the design d12.

Example 4.12

Using Theorem 4.2, it is easy to see that the designs d12 and d13 in the following are
universally optimal for direct effects over �3,12,2 and �6,18,2, respectively:

d12 ≡ 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 1 2 3 1 2 3 1 2 3 ,

d13 ≡ 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 .
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For the case when n is not a multiple of t, Hedayat and Zhao (1990) considered designs
with only a single treatment in the first period and all t treatments allocated as equally as
possible in the second period. Using the correspondence with block designs, they showed
that such crossover designs are A-optimal for direct effects over �t,n,2.

4.5.5 Two-Treatment Designs

Matthews (1990) used the approach of approximate design theory (see Kiefer, 1959) to give
an easily implementable method for producing optimal dual-balanced designs (Section
4.3.4) with two treatments. He showed that, for even p, any design that is optimal for direct
effects is also optimal for carry-over effects, while for odd p, any design that is optimal for
carry-over effects is also optimal for direct effects. For example, he showed that the designs
d9 and d10 in Example 4.7 are universally optimal designs for both direct and carry-over
effects in �2,2,4 and �2,4,4, respectively. The designs that he obtained as optimal for both
direct and carry-over effects are identical with the strongly balanced designs, shown to be
optimal by Cheng and Wu (1980) and discussed earlier in this section. However, his designs
that are optimal only for direct effects or only for carry-over effects need not be uniform over
subjects nor uniform over subjects in the first p − 1 periods, and so are not covered by the
results of Cheng and Wu (1980).

4.6 Some Other Models and Optimal Designs

Now we consider some models, other than the traditional one, which have been studied in
the literature. Recall that the traditional model given in (4.3) makes some implicit assump-
tions about the carry-over effects. For example, it assumes that only first-order carry-over
effects are present, the carry-over effect of a treatment in a period always remains the same
no matter which treatment is producing the direct effect in this period, and the carry-over
effect of a treatment does not depend on its direct effect.

However, in practice, such assumptions need not hold in all situations and so the validity
of the model (4.3) has been questioned, especially in medical applications; see for example,
Senn (1992) and Matthews (1994). For examples of situations in nonmedical applications
where the simplistic model (4.3) may not be appropriate, see Kempton et al. (2001). For
such situations, it becomes necessary to model the carry-over effects differently, and several
authors have studied the problem of finding good designs under such modified models.

Moreover, the traditional model (4.3) also assumes that the errors are uncorrelated, an
assumption that may not be met in typical crossover trials where it might be more realis-
tic to expect that the observations arising from the same subject over time are correlated.
In view of this, models with correlated errors have been studied too. In the following
subsections, we review some of these models and describe a selection of optimality results
under these models.

4.6.1 Circular Model

Recall that in (4.3), it was assumed that there are no carry-over effects in the first period.
Models with carry-over effects in the first period too have been studied by some authors.
For this, they proposed the inclusion of a preperiod or baseline period (0th period) when
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each subject receives the same treatment as the one allocated to it in the pth period. Even
though no observation is taken during this preperiod, the treatments applied in this period
cause a carry-over effect to be present in the first period, thereby creating a circular pattern
of carry-overs across the p periods. A model for studying these experiments is termed a
circular model, its only change from (4.3) being that instead of ρd(0,j) = 0 as in (4.3), it now
has ρd(0,j) = ρd(p,j), 1 ≤ j ≤ n. Consequently, the matrix Fdj defined in (4.2) in the context of
model (4.3) now takes the form

Fdj =
(

0′
p−1 1

Ip−1 0p−1

)
Tdj, 1 ≤ j ≤ n.

This leads to a considerable simplification in the analysis, but this simplicity comes at the
expense of having a preperiod of experimentation. This model has been sporadically used
in the literature, the traditional noncircular model being far more popular. For some results
on optimality under the circular model, one may refer to Magda (1980) and Kunert (1984b).

4.6.2 Model with Self- and Mixed Carry-Overs

In the models described so far, when a treatment is applied to a subject in a period, the
carry-over effect of this treatment in the following period is always the same, irrespective
of which treatment follows it. However, in some crossover trials, for example, in medical
applications, such a constant form of the carry-over may not be realistic and the carry-over
effect of a treatment may depend on whether it is being followed by itself, or by a differ-
ent treatment. For such situations, Afsarinejad and Hedayat (2002) introduced the self- and
mixed carry-over model where they assumed that the carry-over effect of a treatment is of
two types: if a treatment is followed by itself on a subject, then the carry-over effect of the
former treatment is called a self -carry-over effect, while if it is followed by a different treat-
ment, then it is called a mixed carry-over effect. Afsarinejad and Hedayat (2002) studied
only two-period designs under this model, while a study of designs in �t,n,p was devel-
oped by Kunert and Stufken (2002). More recently, Kunert and Stufken (2008) studied the
optimality of two-treatment designs under a model with self- and mixed carry-over effects.
The model with self- and mixed carryovers is as follows:

yij =
{
αi + βj + τd(i,j) + νd(i−1,j) + εij, if d(i, j) 
= d(i − 1, j)
αi + βj + τd(i,j) + χd(i−1,j) + εij, if d(i, j) = d(i − 1, j) , (4.20)

where χd(i−1,j) is the self-carry-over effect and νd(i−1,j) is the mixed carry-over effect of treat-
ment d(i − 1, j), νd(0,j) = χd(0,j) = 0, 1 ≤ i ≤ p, 1 ≤ j ≤ n, and all other terms in (4.20) are as
in (4.1). Analogous to (4.3) and remembering that d(i, j) ∈ {1, . . . , t}, the model in (4.20) can
equivalently be written as

yd = Pα + Uβ + Tdτ + Gdν + Sdχ + ε, (4.21)

where χ = (χ1, . . . ,χt)
′, ν = (ν1, . . . ,νt)

′ and Gd and Sd are the design matrices for the
mixed carry-over and self-carry-over effects, respectively, all other terms in (4.21) being as
in (4.3). Model (4.20) is presented here in the same form as was considered by Hedayat and
Afsarinejad (2002). This model remains unaffected if, as in (4.1), a general mean term is
included in it. This is because the column space of P or U includes the vector 1np.
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For the simpler case p = 2, Afsarinejad and Hedayat (2002) obtained optimal two-period
designs under (4.21) by invoking the connection between a block design and a two-period
crossover design as given in Theorem 4.1. They proved that a symmetric BIB design with t
treatments and block size k can be used to obtain a design that is optimal for direct effects
under (4.21) over the subclass of designs in �t,tk,2, which are uniform on the first period.

The case p > 2 for model (4.21) was studied by Kunert and Stufken (2002). To identify
the optimal design in this class, they first found an upper bound on the information matrix
for direct effects under (4.21) (in the Loewner sense) and then showed that this bound is
attained by a totally balanced design (see Definition 4.5). Next, they maximized the trace of
the upper bound and showed that a totally balanced design again attains this maximum.
Thus, they established the following result.

Theorem 4.3 For t ≥ 3 and 3 ≤ p ≤ 2t, if a totally balanced design d∗ ∈ �t,n,p exists, then d∗ is
universally optimal for the estimation of direct effects over �t,n,p under (4.21).

By this theorem, the design shown in Example 4.5 is universally optimal for direct effects
over �3,6,4 under (4.21).

4.6.3 Model with Direct-versus-Carry-Over Interactions

In the earlier model, the carry-over effect of a treatment was only of two types, the mixed
carry-over effect being the same no matter which treatment followed it. One can extend
this idea to postulate a model where the treatments allocated to the same subject in two
successive periods may have an interaction effect, in addition to the usual direct and carry-
over effects. Such a model was proposed by Sen and Mukerjee (1987) and is given by

y1j = μ + α1 + βj + τd(1,j) + ε1j, 1 ≤ j ≤ n,

yij = μ + αi + βj + τd(i,j) + ρd(i−1,j) + γd(i,j),d(i−1,j) + εij,

2 ≤ i ≤ p, 1 ≤ j ≤ n, (4.22)

where γd(i,j),d(i−1,j) is the interaction effect between treatments d(i, j) and d(i − 1, j), d(i, j) ∈
{1, . . . , t}, and all other terms are as in (4.1). For t = 2, this model is equivalent to
model (4.20).

Sen and Mukerjee (1987) showed that strongly balanced uniform designs are universally
optimal for direct effects under the nonadditive model (4.22). However, this result does
not have an exact counterpart for the estimation of carry-over effects. Sen and Mukerjee
(1987) proved that a strongly balanced uniform design satisfying certain extra combi-
natorial conditions is universally optimal for estimation of carry-over effects under the
model (4.22).

Further results on optimal crossover designs under (4.22) were obtained recently by Park
et al. (2011). They considered a particular class of strongly balanced designs with n = t2

subjects, which are uniform on the periods, and obtained a lower bound for the A-efficiency
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of the designs for estimating the direct effects. They then showed that such designs are
highly efficient for any number of periods p, 2 ≤ p ≤ 2t.

4.6.4 Model with Carry-Over Proportional to Direct Effect

In some crossover experiments, it is believed that the carry-over effect of a treatment is
proportional to its direct effect, thus requiring yet another modification of the traditional
model. The constant of proportionality may be either positive or negative, but it is gener-
ally unknown. Cross (1973) gave an example of such a situation where subjects were asked
to rate the loudness levels of different sound stimuli, and it was found that subjects gen-
erally gave a higher rating to a stimulus when it was preceded by a loud sound and gave
a lower rating to the same sound when it was preceded by a soft sound. Thus, here, the
constant of proportionality is positive. Schifferstein and Oudejans (1996) described another
experiment where subjects were asked to rate the saltiness of several saline solutions. It was
observed that the subjects rated a solution to be less salty if it was immediately preceded by
a solution with high salt concentration, while they rated the same solution to be more salty
when preceded by one with low salt concentration. Here, the constant of proportionality is
negative.

The model where carry-over effects are assumed to be proportional to direct effects is
given by

yij = μ + αi + βj + τd(i,j) + γτd(i−1,j) + εij, 1 ≤ i ≤ p, 1 ≤ j ≤ n, (4.23)

where γ is the constant of proportionality and all other terms are as in (4.1). We also assume
that t ≥ 3, because for t = 2, the model reduces to (4.1).

Even though this model has fewer parameters than (4.1), it is technically much harder
to analyze as it is nonlinear in τ and γ, both being unknown. In order to linearize (4.23),
Kempton et al. (2001) used a Taylor series expansion about τ0 and γ0, the true values of τ
and γ, respectively. Then the information matrix for direct effects can be obtained under
the linearized model. However, this information matrix now depends on the unknowns τ0
and γ0. Bailey and Kunert (2006) and Bose and Stufken (2007) also studied this model, and
we refer to them for expressions of the information matrices as obtained by them.

To overcome the aforesaid difficulty, Kempton et al. (2001) considered the distribution
of possible vales of τ0 and studied the performance of a design based on (a) the Ā-criterion,
which is the averaged version of the usual A-criterion, the average being taken over a mul-
tivariate normal distribution of τ0 with zero mean vector and dispersion matrix It − t−1Jt,
and (b) the IA-criterion, where the A-criterion is averaged over both τ0 and γ0, with τ0
distributed as in (a), γ0 having the uniform distribution on [−1,1], and τ0 and γ0 being
independent. Note that the Ā-criterion is a local optimality criterion as it depends on γ0.
They proved the following results:

1. Let d ∈ �t,n,p, where n = μ1t,μ1 ≥ 1, p = t ≥ 3, be a balanced uniform design.
Then, under model (4.23), d is Ā-optimal for the estimation of direct effects over
the class of all uniform designs in �t,n,p for all γ0.

2. Let d ∈ �t,n,p, where n = μ1t,μ1 ≥ 1, p = t + 1, t ≥ 3, be a strongly balanced design
that is uniform on periods and uniform on subjects in the first p − 1 periods. Then,
under model (4.23), d is IA-optimal for the estimation of direct effects over �t,n,p.
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Additional optimality results under (4.23) were obtained by Bailey and Kunert (2006).
Among other things, they showed that if d∗ is a totally balanced design with t ≥ p ≥ 3
or t ≥ 3, p = 2, then for all γ0 ∈ [−1, 1], d∗ is Ā-optimal for direct effects over all designs in
�t,n,p, which do not assign the same treatment to successive periods in any subject.

Bose and Stufken (2007) obtained optimal designs under the model (4.23) when γ is
known and not necessarily restricted to the interval [−1, 1]. Under this assumption, the
model (4.23) becomes linear, and the more stringent universal optimality criterion can be
used for obtaining optimal designs for given γ. While we refer the reader to the original
source for details, we give in the following some examples of universally optimal designs
under (4.23).

Example 4.13

Let t = 3 = n = p. The following designs are universally optimal for direct effects
over �3,3,3 for any γ in the intervals (0.52, 11.48), (−4.73, −1.27), and (−1.27, 0.52),
respectively:

1 2 3
2 3 1
2 3 1

,
1 2 3
2 3 1
1 2 3

,
1 2 3
2 3 1
3 1 2

.

4.6.5 Mixed Effects Models and Models with Correlated Errors

Several authors considered models with random subject effects. This leads to a mixed
effects version of model (4.1). With p = 2 periods, Carriere and Reinsel (1993) considered
the situation where the t2 possible treatment sequences are assigned to the subjects at ran-
dom, the lth sequence being assigned to nl subjects, 1 ≤ l ≤ t2. Accordingly, they modified
model (4.1) to the following form:

yijl = μ + αi + τd(i,l) + ρd(i−1,l) + βjl + εijl, (4.24)

where d(i, l) is the treatment in the period i in the sequence l, yijl is the response obtained in
period i from the jth subject assigned to the sequence l, βjl is the random subject effect of the
jth subject assigned to sequence l, and μ, αi, τs, ρs are as in model (4.1). The random subject
effects and the errors εijl are assumed to be mutually uncorrelated random variables with
means zero and variances σ2

β and σ2, respectively, 1 ≤ i ≤ 2, 1 ≤ j ≤ nl, 1 ≤ l ≤ t2. Thus,
(4.24) is a mixed effects model.

Then for any d ∈ �t,n,2, the information matrix for the direct effects, Cd, under the model
(4.24) is given by

σ2Cd = (1 + ν)−1(Rd − ν2R̄d − n−1(1 − ν2)r̄dr̄′
d − ZdR̄−

d Z′
d), (4.25)

where ν = σ2
β/(σ2 + σ2

β) and Rd, R̄d, r̄d, and Zd are as defined in Section 4.2.2. Using
(4.25), Carriere and Reinsel (1993) proved, among other things, that a strongly balanced
two-period design that is uniform on periods is universally optimal for direct effects over
�t,n,2.

A mixed effects model for general p(≥2) was studied by Mukhopadhyay and Saha
(1983), who assumed that the βj’s in model (4.1) are mutually uncorrelated random vari-
ables with means zero and constant variances, these being also uncorrelated with the
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error variable. Under this mixed effects model, they studied the optimality of balanced
and strongly balanced uniform designs, when the variances are known. This mixed effects
model has been considered more recently by Hedayat et al. (2006) who obtained optimal
and efficient crossover designs under such a model.

As has been mentioned in Section 4.3.3, in the context of crossover designs, the assump-
tion of independent errors may not be realistic in some situations and a model with
correlated errors may seem more appealing. To incorporate the correlations among obser-
vations within subjects, we may modify the traditional model (4.3) to

yd = Xdθ + ε, E(ε) = 0, Var(ε) = In ⊗ V , (4.26)

where V is a positive definite matrix of order p, representing the variance-covariance matrix
of the errors corresponding to observations from the same subject, and all other terms are
as in (4.3). So now the responses from different subjects are uncorrelated, while those from
the same subject can be correlated, these correlations being the same for all subjects. We
may take various forms of V to reflect the actual error structure in different situations; for
V = Ip, we are back to the traditional model. After some algebra, it can be seen that the
information matrix for direct effects under model (4.26) for a design d is given by

Cd = T ′
d(In ⊗ V−1/2)P⊥ ((

In ⊗ V−1/2
)

(P U Fd)
) (

In ⊗ V−1/2
)

Td. (4.27)

As in Section 4.3.3, for the special case p = 2, the problem of finding an optimal design
under a correlated model with V = (1 − ρ)I + ρJ and given ρ is equivalent to that of find-
ing an optimal design under (4.3), where ρ is the correlation coefficient between a pair of
observations from the same subject. For p > 2, the task of finding optimal/efficient designs
under the model (4.26) becomes simplified in the particular case t = 2. In this case, using
the approximate theory approach, Kushner (1997a) gave a set of necessary and sufficient
conditions for a dual-balanced design (Section 4.3.4) to be universally optimal for direct
effects. He also gave an expression for computing the efficiency of a dual-balanced design
for direct effects. Some authors have assumed that the errors within each subject follow
a stationary first-order autoregressive process. This reflects the belief that the correlation
between the observations from different periods on the same subject diminishes with time.
So V is of the form

V =

⎛
⎜⎜⎜⎜⎝

1 ρ ρ2 . . . ρp−1

ρ 1 ρ . . . ρp−2

ρ2 ρ 1 . . . ρp−3

. . . . . . . . . . . . . . .

ρp−1 . . . ρ2 ρ 1

⎞
⎟⎟⎟⎟⎠ , (4.28)

or a multiple of this. For model (4.26) with such a V , several authors (see e.g., Matthews,
1987; Kunert, 1991; and Kushner, 1997a) have studied the problem of obtaining efficient or
optimal designs, mainly using the approximate theory.

For example, if we consider the following two pairs of dual sequences,

1 2 1 2
1 2 2 1
2 1 2 1

,
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then a design that allocates a proportion of ρ/(3ρ − 1) subjects to each of the first two
sequences and a proportion of (ρ − 1)/(2(3ρ − 1)) to each of the last two sequences is uni-
versally optimal for direct effects for all ρ ∈ (−1, 0]. Similarly, if we consider the following
two pairs of dual sequences (1, 2, 1)′, (2, 1, 2)′, (1, 2, 2)′, (2, 1, 1)′, then a design that allocates
a proportion of ρ2/(3 + ρ)2 subjects to each of the first two sequences and a proportion of
(6ρ − ρ2 + 9)/(2(3 + ρ2)) to each of the last two sequences is optimal for direct effects for
all ρ ∈ (0, ρ1), where ρ1 ≈ 0.464 (Matthews 1987). In practice, however, ρ is unknown.
Taking cognizance of this fact, Matthews (1987) showed that if we simply consider the four
sequences displayed and allocate each to one subject, then the resulting design in �2,4,3
has an efficiency of at least 90% when −0.8 ≤ ρ ≤ 0.8. Thus, for a large range of possible ρ

values, this dual-balanced design is efficient, even when errors are correlated. He also gave
tables of efficiencies of several dual-balanced designs with three and four periods and for
several values of ρ. These tables can be used to choose an efficient design for experimenta-
tion in situations where the parameter combinations are such that an optimal design is not
available. Kunert (1991), too, identified efficient designs and gave a method for construct-
ing such efficient designs for any given value of ρ and p. Again, these efficient designs are
dual-balanced designs.

For arbitrary t and p, Kushner (1997b, 1998) gave a general approximate theory approach
for identifying optimal designs under the model (4.26). Kunert (1985), Gill (1992), Donev
(1998), among others, studied optimality under the exact theory approach and under
various assumptions. Martin and Eccleston (1998) studied variance-balanced crossover
designs, which allow all elementary contrasts (Chapter 3) of direct effects to be estimated
with a constant variance and also ensure the same for all elementary contrasts of carry-over
effects under the model (4.26). They showed that such a design in �t,n,p can be constructed
from an orthogonal array of type I of strength two. Note that a type I orthogonal array,
OAI(n, tp, 2), of strength two is an n × p array with entries from a set of t symbols, such that
any n × 2 subarray contains each ordered pair of distinct symbols equally often as a row,
precisely n/(t(t − 1)) times (see Chapter 9). An example is given in the following.

Example 4.14

A type I orthogonal array OAI(6, 33, 2) is shown as follows in transposed form:

1 2 3 1 2 3
2 3 1 3 1 2
3 1 2 2 3 1

.

Kunert and Martin (2000) obtained a general result on the optimality of designs given
by an OAI(n, tp, 2) under model (4.26). Their result is as follows:

Theorem 4.4 For t ≥ p > 2, let d∗ ∈ �t,n,p be a crossover design given by a type I orthogonal
array, OAI(n, tp, 2), with columns of the array representing the periods and the rows representing
the subjects of d∗. Then under (4.26) where V is any known positive definite matrix, d∗ is universally
optimal for the estimation of direct effects over the class of designs which are binary on subjects in
the sense that a treatment is applied to a subject at most once.

Kunert and Martin (2000) also showed that these designs are quite efficient even over the
general class �t,n,p. Moreover, these designs often require fewer subjects than that required
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by the optimum design obtained through an approximate theory approach for the same
number of treatments and periods.

Hedayat and Yan (2008) extended the self- and mixed carry-over model (4.21) to one
with correlated errors as in model (4.26). They considered two forms of V , one where
the errors within each subject follow a stationary first-order autoregressive process as in
(4.28) and another where they follow a stationary first-order moving average process. In the
second case,

V = Ip + ρW, ρ ∈ (−1/2, 1/2), (4.29)

with W = ((wij)), wij = 1 if |i − j| = 1 and = 0; otherwise, 1 ≤ i, j ≤ p. They studied
the performance of the designs in �t,n,p given by an OAI(n, tp, 2) and proved the following
theorem:

Theorem 4.5 For p = 3 and t ≥ 3, let d∗ ∈ �t,n,3 be a design given by a type I orthogonal array,
OAI(n, tp, 2). Then d∗ is universally optimal for direct effects over �t,n,3 under a model with self- and
mixed carry-over effects and with variance-covariance structure of errors within each subject given
by either

(i) V as in (4.28) and any ρ ∈ (−1, 1), or

(ii) V as in (4.29) and any ρ ∈ (−1/2, 1/2).

Example 4.15

The array given in Example 4.14 may be looked upon as a design in �3,6,3. By Theorem
4.5, this design is universally optimal for direct effects in �3,6,3 under the model (4.26)
with correlated errors, the error structure being given by either (4.28) or (4.29) and the
correlations as specified in (i) and (ii).

4.7 Other Advances

4.7.1 Crossover Trials for Comparing Treatments versus Control

A problem that arises often in practice concerns the evaluation of the performance of a
number of test treatments vis-a-vis a standard treatment, called control. The test treatments,
for instance, could be a number of new drugs, whose efficacy has to be evaluated relative to
an established drug, which acts as the control treatment. For direct effects, the parametric
function of interest in the present context is the contrast vector

⎛
⎝τ0 − τ1

· · ·
τ0 − τt

⎞
⎠ =

⎛
⎜⎜⎜⎝

1 −1 0 · · · 0
1 0 −1 · · · 0
...
1 0 0 · · · −1

⎞
⎟⎟⎟⎠τ = Bτ (say),
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where τ0 is the direct effect of the control treatment and, for 1 ≤ i ≤ t and τi is the direct
effect of the ith test treatment. The contrasts of interest for carry-over effects can be defined
similarly. Let �t+1,n,p be the class of all crossover designs involving t test treatments and
a control. For a design d ∈ �t+1,n,p, if Id is the information matrix for Bτ under the model
(4.3), then it can be shown that

Id = Ī′CdĪ,

where Ī = (0t, It)
′ and Cd is as given by (4.8) under a design involving t + 1 treatments.

For the test–control experiments, the A- and MV-optimality (see Chapter 3) criteria seem
to be natural and are frequently used. A design d∗ ∈ �t+1,n,p is A-optimal for Bτ if it min-
imizes trace(I−1

d ) over �t+1,n,p and is MV-optimal if it minimizes max {Var(τ̂0 − τ̂i) : 1 ≤
i ≤ t} where, for 1 ≤ i ≤ t, τ̂0 − τ̂i is the best linear unbiased estimator of τ0 − τi. The
problem of finding A- and MV-optimal crossover designs has been addressed by several
authors and we describe in the following some of their results.

Majumdar (1988) showed that if t = c2 for some positive integer c and d0 ∈ �c2+c,n,p
is a strongly balanced uniform crossover design, then a design d∗ obtained from d0 by
replacing each of the treatment labels c2 + 1, c2 + 2, . . . , c2 + c, by the control treatment
label 0, keeping everything else unchanged, is an A- and MV-optimal design for direct
effects for comparing c2 test treatments with a control, under the model (4.3). Following
the approach of Majumdar (1988), Ting (2002) also obtained additional optimal/efficient
crossover designs for comparing several test treatments with a control. Hedayat and Zhao
(1990) considered two-period designs for the problem, and starting from designs as given
by Theorem 4.2 (Section 4.5.4), they obtained A- and MV-optimal designs when the number
of test treatments is c2 for some integer c. Following Hedayat and Zhao (1990), for example,
the design in Example 4.16 with four test treatments and a control is A- and MV-optimal for
direct effects over �4+1,18,2, where the control treatment is labeled 0. This design is obtained
from design d13 in Example 4.12 by replacing the treatment labels 5 and 6 by the control
treatment label 0, keeping everything else unchanged.

Example 4.16

The following design is A- and MV-optimal for direct effects for comparing control 0 to
t = 4 test treatments:

1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3
1 2 3 4 0 0 1 2 3 4 0 0 1 2 3 4 0 0 .

For some other results on two-period designs for comparing test treatments with a
control, see Koch et al. (1989) and Hedayat and Zhao (1990).

The problem of finding optimal designs when 3 ≤ p ≤ t + 1 has been addressed
by Hedayat and Yang (2005, 2006), Yang and Park (2007), and Yang and Stufken (2008).
Hedayat and Yang (2005) defined a class of designs called totally balanced test–control
incomplete crossover designs and showed that if such a design satisfies a certain additional
condition, then it is A- and MV-optimal over the subclass of designs for which (1) the con-
trol treatment appears equally often in the p periods and (2) no treatment precedes itself.
Hedayat and Yang (2005) also gave construction procedures of these optimal designs. Two
such designs are given in the next examples.
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Example 4.17

Suppose t = 4 test treatments are to be compared with a control. Then, the following
design, obtained on replacing the treatment symbol 5 by the control treatment label 0 in
the uniform design shown in Example 4.9, is A- and MV-optimal over the subclass of
�4+1,10,5 satisfying (1) and (2) earlier:

1 2 3 4 0 3 4 0 1 2
0 1 2 3 4 4 0 1 2 3
2 3 4 0 1 2 3 4 0 1
4 0 1 2 3 0 1 2 3 4
3 4 0 1 2 1 2 3 4 0

.

Example 4.18

Suppose t = 3 test treatments are to be compared with a control. Then, the following
design is A- and MV-optimal over the subclass of �3+1,10,5 satisfying (1) and (2) earlier:

0 0 0 2 3 1 2 3 1
1 2 3 0 0 0 1 2 3
2 3 1 1 2 3 0 0 0

.

For some more results on optimal crossover designs for test–control comparisons, see
Hedayat and Yang (2005, 2006). Yang and Park (2007) obtained designs that are optimal or
efficient over a wider class of competing designs, but their results are only for three-period
designs. Yang and Stufken (2008) obtained further efficient and optimal crossover designs
under a wide variety of models including (4.3), (4.20), and some variants of these. They
also gave two algorithms for generating highly efficient designs under several models.

Extending the results of Hedayat and Yang (2005) to the case of random subject effects,
Yan and Locke (2010) showed that under the model (4.3), totally balanced test–control
designs with p = 3, 4, 5 periods are highly efficient in the class of designs in which the
control treatment appears equally often in all periods and no treatment is immediately
preceded by itself.

Before concluding this section, we comment on the replication numbers of the control
vis-a-vis test treatments in the optimal designs studied here. Commonly, in the absence
of carry-over effects, optimal designs for control versus test treatments have the control
replicated more often than the test treatments. However, this is not necessarily true for
crossover designs. For instance, in Example 4.16 with only two periods, the overall repli-
cation of the control is less than that of each test treatment, but in the second period, the
control is replicated twice as many times as each test treatment. Again, in Example 4.17,
the control treatment is replicated as often as each test treatment, while in Example 4.18, the
control is replicated more often. This may be attributed to the versatility of the approaches
underlying the identification and construction of optimal designs. Nevertheless, for large
n, the replication number of the control could possibly exceed that of the test treatments in
some optimal crossover designs.

4.7.2 Optimal Designs When Some Subjects Drop Out

In practice, it may happen that a crossover trial cannot be performed for the initially
planned p periods for all the subjects. Such a situation arises, for example, in clinical trials
where certain patients drop out from the study before the entire sequence of p treatments
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assigned to them can be completed. When subjects drop out before the trial is completed,
the final implemented design is a truncated version of the originally planned design. If
these two designs are denoted by dimp and dplan, respectively, then dimp may not remain
optimal/efficient even if dplan is an optimal design and, in certain extreme cases, dimp
may not even remain connected. Therefore, while choosing dplan, the possibility of subjects
dropping out has to be taken into consideration.

Low et al. (1999, 2003) suggested a computer-intensive method to ascertain the robust-
ness of dplan with p > 2 when the subjects drop out at random. They used the means and
standard deviations of certain performance measures based on the A- and MV-optimality
criteria and used these to assess the performance of dplan. This line of work was further
enriched by Majumdar et al. (2008) who started with a dplan, which is a balanced uniform
design in �t,μ1t,t, and explored the situation where all subjects remain in the experiment in
the first t − u periods, and then start dropping out at random, 1 ≤ u ≤ t − 1. The design
consisting of the first t − u periods was called by them as minimal and denoted by dmin.
They obtained a sufficient condition for dmin, and hence dimp, to remain connected and also
gave an upper bound on the maximum loss of efficiency due to subject dropouts in the
last u periods when dplan is a balanced uniform design in �t,μ1t,t. The following example
illustrates some of their findings.

Example 4.19

Consider the following balanced uniform designs for t = 3, 4, 5:

d14 ≡
1 2 3 2 3 1
3 1 2 3 1 2
2 3 1 1 2 3

, d15 ≡
4 1 2 3
1 2 3 4
3 4 1 2
2 3 4 1

, d16 ≡

1 2 3 4 5 3 4 5 1 2
5 1 2 3 4 4 5 1 2 3
2 3 4 5 1 2 3 4 5 1
4 5 1 2 3 5 1 2 3 4
3 4 5 1 2 1 2 3 4 5

.

If these designs are used as dplan, then Majumdar et al. (2008) showed that if no obser-
vation is taken in the last period, the dimp designs arising out of d14 and d16 remain
connected but that arising out of d15 becomes disconnected. A similar observation was
made by Low et al. (1999) too.

Bose and Bagchi (2008) studied the optimality aspects of the designs dmin when dplan
belongs to a class of designs, say, D1, consisting of locally balanced crossover designs, intro-
duced by Anderson and Preece (2002). Among other things, they showed that a design
dplan ∈ D1 is itself universally optimal for direct and carry-over effects over the binary sub-
class in �t,n,t, and furthermore, dmin obtained from a member of D1 remains optimal over
the binary subclass in �t,n,t−u when dmin consists of t − u ≥ 3 periods.

Example 4.20

For example, the design dmin obtained from the following design with t = 5 = p,
n = 20 is optimal for t − u ≥ 3:

1 2 3 4 5 2 3 4 5 1 1 2 3 4 5 2 3 4 5 1
2 3 4 5 1 4 5 1 2 3 5 1 2 3 4 5 1 2 3 4
5 1 2 3 4 5 1 2 3 4 2 3 4 5 1 4 5 1 2 3
3 4 5 1 2 1 2 3 4 5 4 5 1 2 3 3 4 5 1 2
4 5 1 2 3 3 4 5 1 2 3 4 5 1 2 1 2 3 4 5

.
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For some more results on efficient crossover designs when subjects drop out at random,
see Zhao and Majumdar (2012). In a recent paper, Zheng (2013) obtained necessary and
sufficient conditions for a crossover design to be universally optimal in approximate design
theory in the presence of subject dropout. He also provided an algorithm to derive efficient
exact designs.

4.7.3 Optimal Designs via Approximate Theory

Most of the results on optimal crossover designs described earlier concern exact designs
where each subject is allocated a sequence of treatments over the p periods and, thus, the
number of subjects assigned to a treatment sequence is a nonnegative integer. It follows
then that the proportion of subjects receiving a treatment sequence is of the form u/n where
0 ≤ u ≤ n and n is the total number of subjects. Because of the discreteness of u, this
approach does not allow the use of techniques based on calculus, and one has to employ
combinatorial arguments to arrive at optimal designs. In contrast to the exact theory, one
can often achieve considerable simplicity by allowing the aforementioned proportions to
vary continuously over [0, 1], such that the sum of these proportions over all treatment
sequences is unity. As a result, one now has a continuous design framework, which allows
the development of an approximate design theory and methods based on calculus can be
employed to determine these in an optimal fashion.

For t = 2 treatments, the approximate design theory was used by Laska et al. (1983),
Matthews (1987, 1990), and Kushner (1997a), and we have already described some of the
results obtained by these authors earlier in this chapter. A more detailed study of optimal
crossover designs using the approximate theory was made by Kushner (1997b, 1998), who
obtained optimality results for direct effects with arbitrary number of treatments under
a correlated errors model as given by (4.26). Note that the approach of Kushner (1997b)
can be employed to arrive at optimal designs under the uncorrelated errors model as well.
Based on the methods of Kushner (1997b), Bose and Shah (2005) obtained optimal designs
for the estimation of carry-over effects under (4.3). A detailed exposition of these methods
based on approximate theory is beyond the scope of this chapter, and an interested reader
may refer to the aforementioned references for more details.
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5.1 Introduction

Response surface methodology (RSM) is concerned with the development of an empirical
relationship between a response variable y and a set of control variables, x1, x2, . . . , xk, that
represent levels of quantitative factors believed to affect the response values. Such a rela-
tionship can be approximately represented by a polynomial model, typically of the first
degree or the second degree in x1, x2, . . . , xk. The model is then fitted to a data set gener-
ated by observing y at certain values of the control variables, referred to as locations, within
an experimental region denoted by R. If the fitted model is determined to be an adequate
representation of the response, then it can be used to

1. Determine, through hypothesis testing, significance of the factors whose levels are
represented by x1, x2, . . . , xk.

2. Predict the response at locations within R, that is, for given settings of the control
variables.

3. Determine optimum operating conditions on x1, x2, . . . , xk that maximize (or min-
imize) the expected response over a certain region of interest within R.

The settings of the control variables used to obtain the response values for fitting the
assumed model constitute the so-called response surface design. The choice of this design
is very important since it can have a significant impact on the reliability of the predicted
response values, the adequacy of the fitted model, and the ensuing optimization results.
The actual choice of design is based on certain criteria that pertain, for example, to the pre-
diction variance and the protection against a possible bias that can result from fitting the
wrong model.

One of the characteristics of RSM is its sequential nature. By this, we mean that an exper-
iment is performed in stages whereby information acquired in one stage is used to plan
the strategy in the next stage. For example, an exploratory experiment is initially run to
determine which factors are important in terms of influencing a response of interest. Data
collected in this experiment can then be used to gain more information about the response
and its influential factors. This process of sequential experimentation is repeated several
times until a clear understanding of the overall system is realized. The fitted model in the
last stage can then be used to determine optimum operating conditions on the factors that
maximize (or minimize) the response.

Factorial experiments play an important role in RSM. As will be seen later in Section
5.2.1, two-level factorial designs are used to fit simple models in the initial stages of
the experiment. Three-level factorial designs (see Section 5.2.2) are used to fit second-
degree models that are useful in determining optimal response values. Fractions of factorial
designs can be used if the number of factors is large. In a factorial experiment, the response
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is observed under all or a fraction of the possible combinations of the levels of the factors
considered in the experiment. Inferences can then be made with regard to the main effects
of the factors as well as their interactions. This investigation also provides information
regarding the intermediate levels of the factors. In other words, it is possible to interpolate
the response values at the combinations of levels not tried in the experiment. To explain
this, let us consider, for example, two quantitative factors, A and B, having three levels
each. In this case, we use the method of orthogonal polynomials to set up the polynomial
effects, namely, the linear and quadratic effects that partition the main effects of each factor
that carries two degrees of freedom (see Montgomery, 2013, Section 5.5). These polyno-
mial effects have one degree of freedom each. The interaction effect, A ∗ B, with its four
degrees of freedom is partitioned into four single-degree-of-freedom polynomial effects,
namely, AL ∗ BL, AL ∗ BQ, AQ ∗ BL, and AQ ∗ BQ, where the subscripts L and Q denote the
linear and quadratic effects of the corresponding factor. With commonly used designs, all
the aforementioned effects have independent estimates. An analysis of variance (ANOVA)
can then lead to the determination of the polynomial effects that are significant. This result
in a regression model that when fitted to the data can, in general, provide an adequate
description of the response data. Such a model is then used to predict the response at inter-
mediate levels of A and B. A similar analysis can be conducted if one factor is quantitative
and the other is qualitative, but only the main effect of the quantitative factor is parti-
tioned into polynomial effects. Furthermore, if a quantitative factor has k levels, then its
effect can be partitioned into k − 1 independent polynomial effects each having one degree
of freedom.

The original work in the area of RSM, which dates from the 1950s, has been widely
used in the chemical industry giving rise to many interesting applications. A review of
such applications was given by Hill and Hunter (1966). Since the 1970s, the scope of RSM’s
applicability has widened considerably with applications in the physical and engineering
sciences, food science, and the biological and chemical sciences, to name just a few (see
the review article by Myers et al. 1989). The more recent use in RSM of generalized linear
models (GLMs), developed by Nelder and Wedderburn (1972), extended the applicability
of RSM to several new areas, including the medical sciences and the pharmaceutical indus-
try (see the review article by Myers et al. 2004). Section 5.10 highlights the use of RSM in
agricultural and food sciences.

5.2 Traditional Response Surface Designs

By a traditional response surface design (TRSD), we mean a design typically used to fit
a first-degree or a second-degree polynomial model. Such models provide low-degree
approximations to the mean response in a given experimental situation. They are sim-
ple and do not require the availability of a large number of experimental runs, espe-
cially in the initial stages of the experiment where, for example, a first-degree model is
often used to explore the nature of the response surface. Most of the designs for these
models were developed in the 1950s and early 1960s. See Box and Wilson (1951), Box
(1952), Box and Draper (1959), Box and Hunter (1957), Box and Behnken (1960), and
Plackett and Burman (1946).
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In a TRSD setup, a response variable y is represented by a linear model of the form

y = f ′(x)β + ε, (5.1)

where x = (x1, x2, . . . , xk)
′ is a vector of k control variables, f (x) is a vector function of p

elements that consist of a constant and powers and cross products of x1, x2, . . . , xk up to a
certain degree denoted by d (≥ 1), β is a vector of unknown parameters, and ε is a random
experimental error assumed to have a zero mean. Hence, the mean of y, η(x), is given by

η(x) = f ′(x)β, (5.2)

which is a polynomial model of degree d. Two commonly used models are the first-degree
and second-degree models, namely,

η(x) = β0 +
k∑

i=1

βixi, (5.3)

and

η(x) = β0 +
k∑

i=1

βixi +
∑∑

i<j

βijxixj +
k∑

i=1

βiix2
i , (5.4)

where β0, βi, βij, and βii are unknown parameters that make up, in the respective models,
the elements of β.

Given a series of n (n ≥ p) experimental runs resulting in responses y1, . . . , yn, we get
from Model (5.1) the following representation for the uth response value:

yu = f ′(xu)β + εu, u = 1, 2, . . . , n, (5.5)

where xu = (xu1, xu2, . . . , xuk)
′ is the vector of design settings of x1, x2, . . . , xk at the uth run,

and εu is the corresponding error term. The n × k matrix, D, whose rows consist of the
values of x′

u, u = 1, 2, . . . , n, is called the design matrix. Thus,

D =

⎡
⎢⎢⎣

x11 x12 . . . x1k
x21 x22 . . . x2k
. . . . . . . . . . . .

xn1 xn2 . . . xnk

⎤
⎥⎥⎦ . (5.6)

Model (2.5) can then be expressed as

y = Xβ + ε, (5.7)

where y = (y1, y2, . . . , yn)′, X is the so-called model matrix whose rows are the values of
f ′(xu), u = 1, 2, . . . , n, and ε = (ε1, ε2, . . . , εn)′. In a typical response surface experiment, X
is of full column rank; hence, X′X is a nonsingular matrix.
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Estimation of β is usually done by using the method of ordinary least squares. If ε is
assumed to have a zero mean vector and a variance–covariance matrix σ2In, then the least-
squares estimator of β is

β̂ = (X′X)−1X′y. (5.8)

The variance–covariance matrix of β̂ is given by

Var(β̂) = σ2(X′X)−1. (5.9)

Using β̂ in place of β in (5.2) gives an estimate of the response surface at a point x that is
represented as

ŷ(x) = f ′(x)β̂. (5.10)

This is called the prediction equation, and ŷ(x) is referred to as the predicted response at x,
assuming that the form of the fitted model is correct. Its mean is f ′(x)β, the same as η(x) in
(5.2), and its variance, which is called the prediction variance, is given by

Var[ŷ(x)] = σ2f ′(x)(X′X)−1 f (x). (5.11)

The size of the prediction variance in a response surface experiment is of major concern.
Large prediction variances indicate unreliable predictions within R. Since the prediction
variance depends on D, the choice of the design matrix is of paramount importance in get-
ting good quality predictions. This is of course contingent on (5.2) being an adequate model
for the true mean response. Certain choices of D have desirable properties. For example, a
design is said to be orthogonal if the matrix X′X is diagonal resulting in the elements of β̂
being uncorrelated as can be seen from (5.9). Another property of design is that of rotatabil-
ity. Adesign is rotatable if the prediction variance is constant at all points that are equidistant
from the design center, normally chosen to be the point at the origin of the coordinates sys-
tem, but note that this depends on the scaling of x. This is an invariance property for the
prediction variance that allows equal-quality predictions in any direction provided that the
distance from the origin is unchanged. This can be helpful in the comparison of the pre-
dicted response values on the surfaces of concentric hyperspheres centered at the origin.
Note that properties such as orthogonality and rotatability depend on the design used and
the form of the fitted model since the matrix X depends on both. A rotatable design has
the additional uniform precision property if the prediction variances at the origin and at a
distance of one from the origin are equal. This can be helpful in keeping changes in the pre-
diction variance minimal in the vicinity of the origin. Further details concerning all three
design properties can be found in, for example, Khuri and Cornell (1996).

It is very common in RSM to have coded variables used in place of the original control
variables. This is done in order to facilitate the construction of the response surface design.
Coding removes the units of measurement of the control variables so that distances mea-
sured along the axes of the coded variables are standardized, that is, converted to unitless
terms. Two of the most obvious advantages of coding are
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1. Computational ease and increased accuracy in estimating the model parameters,
2. Enhanced interpretability of the parameter estimates.

There are several ways to code variables. Quite often, the following coding convention for
a model with k control variables is given by

xui = Xui − X̄i

sxi
,

where Xui and xui are the original and coded uth levels of the ith variable, u = 1, 2, . . . , n,
i = 1, 2, . . . , k with n being the number of experimental runs, X̄i is the average of the Xui’s,
and sxi is a measure of spread given by:

sxi =
[ n∑

u=1

(Xui − X̄i)
2

n

] 1
2

.

Under this coding convention,
∑n

u=1 xui = 0, and
∑n

u=1 x2
ui = n.

5.2.1 Designs for First-Degree Models

We begin by describing designs for models of the form given in (5.3). Such models are of
exploratory nature used in the initial stages of experimentation where little is known about
the response. As a result, the corresponding designs are typically simple and, in general,
of low cost. They are referred to as first-order designs. Of these designs, we will mention
the 2k factorial designs (k is the number of control variables considered in an experiment),
Plackett–Burman designs, and simplex designs. All three designs have the orthogonality
property.

5.2.1.1 2k Factorial Design

In this design, each factor, or control variable, is measured at two levels, and all possi-
ble combinations of these levels are considered. Such combinations are called treatments.
Thus the design matrix D consists of k columns and 2k unreplicated rows whose (u, i)th
element is the value of the ith control variable used in the uth experimental run (u =
1, 2, . . . , 2k; i = 1, 2, . . . , k). If the two levels of each factor are coded as 1 and −1, then
each element of D is equal to 1 or −1. This design is very easy to apply and allows ade-
quate estimation of not only the parameters in model (5.3) but also all possible interactions
among the factors. If only model (5.3) is fitted, then the design affords 2k − k − 1 degrees of
freedom for the error term in the corresponding ANOVA table, which is a larger number of
degrees of freedom than can be generated by many RSM designs. The only drawback is the
cost of running a complete factorial experiment when k is large (≥6). In this case, fractions
of 2k can be considered. The construction of such fractions can be found in, for example,
Chapter 3 in Khuri and Cornell (1996) and in Chapter 7.
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5.2.1.2 Plackett–Burman Design/Nonregular Factorial Design
(Plackett and Burman 1946)

This design is a fraction of a 2k design whose number of points, n, is only equal to k+1 and
is therefore quite economical. Unlike regular fractions, which require n to be a power of 2,
nonregular designs only require n to be a multiple of 4. Since n is equal to the number of
parameters in model (5.3), it is considered to be a saturated design. In Plackett and Burman
(1946), design arrangements can be found for k = 3, 7, 11, . . . , 99 factors. Such designs can
be used with qualitative and quantitative factors. For more details, refer to Chapter 9.

5.2.1.3 Simplex Design

This design is less frequently used than the first two designs. It is a saturated design with
n = k + 1 points located at the vertices of a k-dimensional simplex. For example, for k = 2,
the simplex is an equilateral triangle centered at the origin, and for k = 3, the simplex
is a tetrahedron. A method for constructing a simplex design in k = n − 1 dimensions is
described in Box (1952).

The levels of some of the factors of a simplex may not be practicable from the experi-
mental point of view. For example, under a simplex design, one factor has a coded range

extending from −
√

3
2 to

√
3
2 , rather than the traditional −1, 1 range as in 2k factorial and

Plackett–Burman designs. The former settings may be harder to apply and are therefore
not favorable to the experimenter.

5.2.2 Designs for Second-Degree Models

Having determined what factors to account for using a first-degree model, the experi-
menter often proceeds to the next stage where a higher-degree model is fitted to acquire
more information about the nature of the response surface under investigation. The second-
degree model in (5.4) is a natural extension to model (5.3). The number of parameters
in (5.4) is p = 1 + 2k + 1

2 k(k − 1); hence, any second-order design (i.e., a design for fitting
model (5.4)) must have at least this number of distinct points in order to support estimation
of the parameters.

The use of second-degree models becomes necessary when curvature is suspected in the
response surface. In this case, first-degree models will suffer from lack of fit and should
therefore be expanded by the addition of higher-order terms to their fitted equations.
The most commonly used designs for fitting second-degree models are the 3k factorial,
the central composite design (CCD), and the Box–Behnken design.

5.2.2.1 3k Factorial Design

This design is constructed by taking all possible combinations of the levels of k factors that
have three levels each. Thus, the number of points in this design is 3k. Running a complete
3k factorial design can therefore be very costly if k is large.

To reduce the cost of the experiment, a fraction of a 3k design can be considered. For
example, we can have a one-third fraction of a full 3k factorial containing 3k−1 runs. In
general, if m < k, then a 3−mth fraction of the 3k design will have 3k−m runs. Such a fraction
is called a 3k−m fractional factorial design. Coverage of these designs can be found in, for
example, McLean and Anderson (1984).
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Orthogonality for second-order designs is possible, but only when the variables in model
(5.4) are expressed in terms of orthogonal polynomials as shown in Box and Hunter (1957)
(see pp. 200–201) and in Khuri and Cornell (1996) (see Section 4.3). This is necessary because
the corresponding X′X matrix for model (5.4) is not diagonal since some of the off-diagonal
elements of X′X, namely,

∑n
u=1 x2

ui,
∑n

u=1 x2
uix

2
uj (i �= j), are positive, where xui is the uth set-

ting of the ith control variable, u = 1, 2, . . . , n; i = 1, 2, . . . , k, and n is the number of rows
in the X matrix. However, if model (5.4) is expressed in terms of orthogonal polynomials,
then orthogonality can be achieved for some designs. In particular, the 3k design is orthog-
onal if the three levels of each factor are equally spaced and if these levels are coded so that∑n

u=1 xui = 0 and
∑n

u=1 x2
ui = 1 (see Khuri and Cornell 1996, Sections 4.3 and 4.5.1).

As was pointed out in Section 5.2, orthogonality is a desirable property since it results
in a fitted model whose estimated parameters are uncorrelated. This facilitates making
simultaneous inferences about the unknown parameters of the true model. Furthermore,
the variance of the predicted response at any point x in a region of interest is expressible as
a weighted sum of the variances of the parameter estimates.

5.2.2.2 Central Composite Design

Box and Wilson (1951) introduced the CCD as an alternative to the 3k factorial design.
The makeup of the CCD is as follows:

1. A factorial portion consisting of a complete or fractional 2k factorial design whose
settings are coded using the usual ±1 values. Let F denote the number of points
in this portion. If a fractional factorial is to be used, it should be chosen so that all
main effects and two-factor interactions can be estimated.

2. An axial portion consisting of k pairs of points, the ith pair of which comprises of
two points on the ith coordinate axis that are symmetric with respect to the origin
at a distance of α.

3. n0 center-point replications.

Thus the number of points in this design is n = F + 2k + n0. The values of α and n0 are
chosen so that the CCD can attain desirable properties. For example, choosing α = F

1
4

causes the design to be rotatable. Furthermore, n0 can be chosen so that the design is either
orthogonal or has the uniform precision property.

An example of a design matrix for a CCD when k = 2, α = √
2, n0 = 1 is

x1 x2⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1
1 −1

−1 1
1 1√
2 0

−√
2 0

0
√

2
0 −√

2
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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A table listing desirable values of n0 for a rotatable CCD to be orthogonal or have the uni-
form precision property is given in Box and Hunter (1957). Other criteria for the choice of
n0, including good detectability of lack of fit of the second-degree model, can be found in
Draper (1982).

The CCD is perhaps the most popular second-order design due to its flexibility in choos-
ing the values ofα and n0, and for requiring a considerably smaller number of experimental
runs than the 3k design, especially when k ≥ 4. Furthermore, since it consists of a 2k com-
plete or fractional factorial design plus added points, it can be divided to specify a response
surface investigation in two stages. For example, suppose that an experimenter starts out a
study using a 2k factorial experiment to fit a first-degree model. Upon testing its adequacy,
it was determined that it suffered from a significant lack of fit, indicating inadequacy of
the first-degree model. The experimenter can then augment, in a second stage, the initial
2k design with the additional axial runs and center points in order to fit a second-degree
model. This process clearly explains the sequential nature of RSM as was pointed out in
Section 5.1.

A variant of the CCD, known as the San Cristobal design (SCD), was introduced by Rojas
(1962) for use in experiments in sugar farming. It was named after the sugar-milling town
of that name in Mexico. This design is used to fit a second-degree model in situations in
which the levels of the k control variables, for example, levels of fertilizers, are restricted to
be positive or zero. As described by Haines (2006), it consists of 2k factorial points together
with center and axial points, all contained within the positive orthant. The main difference
with the CCD is that the SCD includes a control, that is, the point (0, 0, . . . , 0) corresponding
to no application of any fertilizer. More specifically, the SCD in k control variables consists
of the following:

1. A full 2k factorial or a 2k−p fractional factorial design replicated r times with the
control variables taking the coded values 0 or 2. This gives a total of F = r2k or
r2k−p such points.

2. n0 center points of the form (1, 1, . . . , 1).
3. c axial points of the form (1, 1, . . . , 1 − α, . . . , 1) for each of the k variables where

0 < α ≤ 1.
4. One axial point of the form (1, 1, . . . , cα + 1, . . . , 1) for each of the k variables.

Note that the total number of points in this design is n = F + n0 + k(c + 1). The constraint
α ≤ 1 is needed in order to ensure nonnegative applications of fertilizer. The parameters
r, n0, c, and α can be chosen to achieve certain design properties such as orthogonality.
The SCD offers agriculturists interesting alternatives to factorial and fractional factorial
designs in that they can accommodate unusual design settings and often require fewer
runs. Haines (2006) also evaluated the performance of this design and reviewed some of
its basic properties.

5.2.2.3 Box–Behnken Design

This design, which was introduced in Box and Behnken (1960), consists of a particu-
lar subset of the factorial combinations from the 3k factorial design where each factor
has three levels. More specifically, it is formed by combining a two-level factorial design
with a balanced incomplete block design (BIBD). To illustrate this combination, consider,
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for example, a BIBD with three treatments and three blocks of the form shown in the
following text.

Treatments

Blocks 1 2 3
1 * *
2 * *
3 * *

Let us combine this design with a 22 factorial design (with levels at ±1) as follows: The two
asterisks in every block of the BIBD are replaced by the two columns of the 22 design. In
places where no asterisk is marked, the corresponding variable is set at the center level of
the factor (i.e., 0). Such a combination is augmented with a certain number of center points.
This results in a Box–Behnken design in three variables as shown in Table 5.1. The last row
in this table contains vectors of center points.

The Box–Behnken design is popular among industrial research workers because it is
economical and provides the settings −1, 0, and 1, which are easy to attain in an experiment
for each control variable. For three factors, the number of runs required by a Box–Behnken
design is low. However, as the number of factors increases, this advantage is no longer
there. This design, however, is not always rotatable. Box and Behnken (1960) list a number
of arrangements of this design for k = 3, 4, 5, 6, 7, 9, 10, 11, 12, 16 control variables, some
of which use two-level subdesigns in more than two factors or partially BIBDs in place of
BIBDs.

TABLE 5.1

Box–Behnken Design in Three Variables

x1 x2 x3

−1 −1 0
1 −1 0

−1 1 0
1 1 0

−1 0 −1

1 0 −1
−1 0 1

1 0 1

0 −1 −1

0 1 −1
0 −1 1

0 1 1

0 0 0
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More details concerning the aforementioned three designs and other lesser-used second-
order designs are given in standard texts on RSM, such as Khuri and Cornell (1996), Myers
et al. (2009), and Box and Draper (2007). Chapter 3 discusses BIBDs in detail.

5.2.3 Importance of Model Bias in the Choice of Design

The main design criteria in classical RSM are (1) minimization of the prediction variance
and (2) minimization of the bias caused by fitting the wrong polynomial model. While, in
(1), the fitted model is assumed to be the “true” model, the approach in (2) regards that
the fitted model does not necessarily represent the true model, and that model bias should
be accounted for when choosing a design. Box and Draper (1959) (see also Box and Draper
1963) emphasized the importance of bias contribution in the choice of design and advocated
the consideration of the so-called integrated mean squared error (IMSE) that incorporates
prediction variance and model bias. More specifically, the IMSE is expressible as (see Khuri
and Cornell 1996)

IMSE = V + B,

where

V = n�

σ2

�
R

Var[ŷ(x)] dx, (5.12)

and

B = n�

σ2

�
R

{E[ŷ(x)] − ζ(x)}2 dx. (5.13)

In (5.12) and (5.13), �−1 = �
R dx is the volume of the region of interest, R, n is the total num-

ber of observations used for fitting the model, σ2 is the error variance, dx = dx1dx2 · · · dxk,
and ζ(x) is the “true” mean response at a point x in R. Although it is not necessary, for
design purposes, ζ(x) is often represented by a polynomial model of degree higher than
the fitted model, and the quantity E[ŷ(x)] − ζ(x) is the bias of response prediction due to
model misspecification. It follows that a reasonable choice of design is based on the min-
imization of the IMSE. However, this is not possible without the specification of the form
of ζ(x) that is unknown. Designs are usually chosen by minimizing either V or B, where in
case of the latter, a particular form of the true model is usually assumed. Box and Draper
(1959) argued that unless V is considerably larger than B, a good choice of design is to have
one that minimizes B since such a design has characteristics similar to those of a design that
minimizes IMSE.

More specifically, if we assume that ζ(x) is of the form

ζ(x) = f ′
1(x)β1 + f ′

2(x)β2, (5.14)

where f ′
1(x)β1 is the portion associated with the fitted model and f ′

2(x)β2 is the portion that
was not fitted (both β1 and β2 are unknown), then it can be shown (see, e.g., Khuri and
Cornell 1996, Chapter 6) that B can be expressed as
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B = n
σ2β

′
2[μ22 − μ′

12μ
−1
11 μ12 + (A − μ−1

11 μ12)
′μ11(A − μ−1

11 μ12)]β2, (5.15)

where A = (X′
1X1)

−1X′
1X2 and μij are the region moment matrices,

μij = �
�
R

f i(x)f ′
j(x) dx, i, j = 1, 2. (5.16)

Note that in the expression for A, X1 is the model matrix with n rows for the fitted model,
and X2 corresponds to the unfitted portion of the model. Box and Draper (1959) state that,
in particular, B is minimized when (1/n)X′

1X1 = μ11 and (1/n)X′
1X2 = μ12. In this case, B

takes the value

B = n
σ2β

′
2(μ22 − μ′

12μ
−1
11 μ12)β2. (5.17)

This value of B depends on the unknown value of β2. Note that arriving at such an expres-
sion for B was based on assuming a particular form for the true model. In general, such an
assumption cannot be fully justified as the true form of the model may be unknown, but
designs may still be compared for their potential bias properties under realistic alternative
model forms.

Additional details concerning the role of bias in the choice of design can be found in
Chapter 20.

5.3 Response Surface Designs with Some Difficult-to-Change Factors

In some response surface experiments, particularly those carried out in certain industrial
settings, the levels of some factors are easy to change, while the levels of other factors
may be harder to change. This can be due to operational difficulties associated with fre-
quent changes of the levels in the latter factors or to the cost of these changes. For example,
in the process of increasing the strength of steel, two factors were considered influential,
namely, the temperature of heating the steel and the heat treatment time. Two tempera-
ture settings, 1600◦F and 1700◦F, and three times, 10, 20, and 30 min, were selected. The
process began by heating a particular furnace to one of the two temperatures, for example,
1600◦F, and then, three specimens of steel were inserted. One specimen was removed after
10 min and then soaked and air cooled. After 10 more minutes, another specimen was
removed and subjected to the same treatment. The same process was applied to the last
remaining specimen after 10 min of removing the second specimen. Thus, the times of
exposure to the first selected temperature were 10, 20, and 30 min for the first, second,
and third specimens, respectively. Next, the temperature of the furnace was changed
to the second setting, 1700◦F, and the process was repeated as before using three new
specimens.

In this experiment, the furnace temperature is a difficult-to-change factor since it takes
a great deal of time to heat the furnace to the desired temperature, especially if the furnace
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is large. On the other hand, heating time for a steel specimen is much easier to change.
This situation can be handled by running a factorial experiment with certain restrictions
imposed on randomization. These restrictions have an impact on how the analysis is to be
conducted. This topic is covered in detail in Chapter 8.

Several authors considered designs for experiments where the levels of some factors can
be difficult to change. For example, Box (1996) indicated that certain designs can be more
efficient and easier to run than completely randomized designs in industrial situations.
Draper and John (1998) recommended certain modifications to the CCD and Box–Behnken
designs to produce designs with a high degree of rotatability that accommodate difficult-to-
change factors. Mee and Bates (1998) considered designs for two- and three-level factorial
experiments involving silicon wafers. Kowalsky et al. (2006) also considered modifying
the CCD to allow the estimation of separate models for the process mean and process
variance. Their article was an extension of the one by Vining et al. (2005). More refer-
ences concerning designs for experiments with difficult-to-change factors can be found in
Myers et al. (2004).

5.4 Response Surface Models with Mixed Effects

The traditional model in classical RSM includes only fixed continuous polynomial effects.
This excludes other effects of discrete nature that are not measured on a continuous scale
such as block effects. For example, in the semiconductor industry, measurements on the
resistance in computer chips may be taken using several silicon wafers drawn from a large
lot. In order to account for any possible variation among the wafers, effects due to blocks
representing the wafers should be considered in addition to the effects of continuous fac-
tors that influence the resistance response. In the early days of RSM, block effects were
considered, but only under the special case of designs that block orthogonally as in Box and
Hunter (1957) who introduced the concept of orthogonal blocking for designs for second-
degree models. By that, we mean designs that allow estimation of the mean response in
a manner that is invariant to the block effects as if they do not exist. Orthogonal blocking
requires certain conditions on the design used. For example, for second-degree models, a
design blocks orthogonally if (1) each block consists of a first-order orthogonal design and,
(2) for each block, the sum of squared values for the ith control variable, i = 1, 2, . . . , k, is
proportional to the number of runs in the block.

The CCD can be blocked orthogonally where each of the factorial and axial portions of
the design forms a first-order orthogonal design. The appropriate number of center-point
replications will have to be determined to satisfy condition (2). For more details, see Khuri
and Cornell (1996), Section 8.2. A general condition for orthogonal blocking for models of
degree d (≥ 2) was given in Khuri (1992).

Suppose that the mean response in model (5.2) is estimated using a design divided into
b blocks of sizes n1, n2, . . . , nb. Modifying model (5.5) to include a block effect results in the
following model:

yu = f ′(xu)β + z′
uγ + φ′(xu)�zu + εu, u = 1, 2, . . . , n, (5.18)

where n = ∑b
i=1 ni; zu is a vector of b elements whose ith element takes the value 1 if the

uth trial is in the ith block and is zero otherwise; γ = (γ1,γ2, . . . ,γb)
′, where γi denotes the
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effect of the ith block; φ(xu) is the same as f (xu) except that it is missing the first element
of f (xu) that is equal to 1; � is a matrix that contains interaction coefficients between the
fixed polynomial terms and the blocks; and εu is a random experimental error. The model
can be expressed in vector form as

y = Xβ + Zbγ +
p∑

j=2

Ujδj + ε, (5.19)

where Zb = diag(1n1 , 1n2 , . . . , 1nb), Uj is a matrix of order n×b whose ith column is obtained
by multiplying the elements of the jth column of X with the corresponding elements of the
ith column of Zb (i = 1, 2, . . . , b; j = 2, 3, . . . , p), δj is a vector of interaction coefficients that
consists of the elements of the (j − 1)st row of �, p is the number of columns of X, and ε

is the vector consisting of all the εu’s (u = 1, 2, . . . , n). For more details, see Chapter 8 in
Khuri and Cornell (1996).

It is assumed that γ, δ2,δ3, . . . ,δp are normally and independently distributed with
zero means and variance–covariance matrices σ2

γIb,σ2
2Ib, . . . ,σ2

pIb, respectively. The ran-
dom error vector ε is independent of the previous random effects and is assumed to have
the normal distribution with mean 0 and a variance–covariance matrix �b given by

�b = diag(τ2
1In1 , τ2

2In2 , . . . , τ2
bInb), (5.20)

where the τ2
i ’s are unknown variance components. Note that the variance–covariance struc-

ture for �b indicates that the error variances are different for the different blocks, but
observations obtained within a block have the same variance. Using model (5.19), the mean
and variance-covariance matrix of y can then be written, respectively, as

E(y) = Xβ, (5.21)

Var(y) = �b

= σ2
γZbZ′

b +
p∑

j=2

σ2
j UjU′

j + �b. (5.22)

Therefore, the estimated generalized least-squares estimator of β is of the form

β̂∗ = (X′�̂−1
b X)−1X′�̂−1

b y, (5.23)

where �̂b is the same as �b except that appropriate estimates of the variance components
in �b, such as maximum likelihood or restricted maximum likelihood estimates, are used.
The corresponding estimated variance–covariance matrix of β̂∗ is approximately given by

V̂ar(β̂∗) ≈ (X′�̂−1
b X)−1. (5.24)

Consequently, the predicted response at a point x in a region R is

ŷ(x) = f ′(x)β̂∗, (5.25)
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and the corresponding prediction variance is approximately of the form

V̂ar[ŷ(x)] ≈ f ′(x)(X′�̂−1
b X)−1f (x). (5.26)

Tests concerning the fixed effects (i.e., the elements of β) and the random effects (i.e., the
variance components, σ2

γ,σ2
2,σ2

3, . . . ,σ2
p) were outlined in Khuri (2006).

The special case of homogeneous error variances, that is, when the diagonal elements of
�b in formula (5.20) are equal, was considered by Khuri (1996b). In this case, more simpli-
fied tests concerning the fixed and random effects in model (5.19) can be derived than in the
case of heterogeneous error variances. More recently, Saha and Khuri (2009) used a graph-
ical technique for the comparison of designs for response surface models with random
block effects.

5.5 Robust Parameter Design

The area of robust parameter design (RPD) is a well-developed methodology introduced
by Genichi Taguchi for product quality improvement. Taguchi identified two types of
inputs in a process: control factors (x), which are easy to manipulate, and noise factors
(z), which are difficult to control when the product is in actual use, but can be controlled
under laboratory conditions. The noise factors are the sources of variations in the process
response when the system is used in practice. The main aim of an RPD is to determine the
settings of the control factors that achieve a desired mean response and to make the process
robust, or less sensitive, to the effects of the noise variables.

5.5.1 Taguchi Approach

The Taguchi method has been discussed in details by several authors, for example, Kackar
(1985), Taguchi (1986), Khuri and Cornell (1996, Chapter 11), and Wu and Hamada (2009).
More references are given in Khuri and Mukhopadhyay (2010). To solve the RPD prob-
lem, Taguchi proposed the use of two design matrices, one for the control variables called
the control array and the other for the noise variables called the noise array. The arrays
used for the control and noise variables are usually orthogonal arrays (refer to Chapter 9).
Each of the level combinations of the control array is then crossed with all the level com-
binations of the noise array to give a crossed array design. Let us consider an example
on epitaxial layer growth from Wu and Hamada (2009). There were eight control factors
and two noise factors. A 16-run fraction of a 28 factorial design was used as the control
array and a 2 × 4 complete factorial design as the noise array. Thus, at each control setting,
there are eight observations, say, yi, i = 1, . . . , 8, one for each of the different noise settings.
Taguchi classified the RPD problem into three categories based on the following three goals
of the experimenter: the smaller the better, the larger the better, and target is the best. For
each of these classifications, a performance criterion or a signal-to-noise ratio (SNR) was
defined in terms of the yi’s. As an example, when the goal was to maximize the response,

the SNR to be used is −10 log
[

1
8

∑8
i=1

1
y2

i

]
. Rather than performing an analysis on the actual

observations, an analysis would be performed with SNR as the response variable.
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Even though the Taguchi method was an important step toward process improvement,
it was widely criticized by several authors. See, for example, Box (1985, 1988), Easterling
(1985), Pignatiello and Ramberg (1985), Nair (1992), and Myers et al. (2009), to name just a
few. Some of the main criticisms of the Taguchi method are the following:

1. Interactions among the control factors are ignored.
2. The required number of experimental runs in the crossed array scheme is much

larger than is needed.
3. The SNRs do not provide adequate means to identify the control factors that affect

only the process mean as distinguished from those that affect only the process
variance, as well as those that affect both the process mean and process variance.

For these reasons, other approaches were proposed as alternative solutions to the RPD
problem. One of the main alternative solutions is the adoption of the response surface
approach. More details concerning the Taguchi approach can be found in, for example,
the texts by Khuri and Cornell (1996) and Myers et al. (2009).

5.5.2 Response Surface Approach

The response surface approach to robust designs can further be categorized into the dual-
model and the single-model approaches.

1. Dual-model approach: Vining and Myers (1990) proposed that Taguchi’s aim of
keeping the mean on target while simultaneously minimizing the variance could
also be achieved in a response surface framework. They introduced a dual-model
approach by fitting two separate response surface models in only the control set-
tings, x, to the process mean (μ) and the process variance (σ2) whose estimates are,
respectively,

μ̂(x) = β̂0μ + x′β̂μ + x′B̂μx,

σ̂2(x) = γ̂0σ + x′γ̂σ + x′Ĉσx,

where β̂0μ, β̂μ, B̂μ, γ̂0σ, γ̂σ, and Ĉσ are the least-squares estimates. Any TRSD
with an outer array set up at each point is used to fit the mean and variance models.
The values of the sample means and variances computed from the outer array are
used as data points to fit the aforementioned two models. All the model parame-
ters are estimated using the least-squares method (for details, see Vining and Myers
1990, p. 40). Following the variance modeling of Bartlett and Kendall (1946), sev-
eral authors (Box and Meyer 1986 and Nair and Pregibon 1988) have also suggested
modeling the logarithm of σ̂2. However, Bartlett and Kendall (1946) advises against
the use of the natural logarithm of σ̂2 if the number of points is less than 5. Vining
and Myers (1990) proposed the use of any variance stabilizing transformation of
σ̂2 for cases where the number of outer array points is <10.

The variance function, σ̂2(x), is then minimized with respect to the control
settings, x, under the constraint that the mean response, μ̂(x), is equal to some
prespecified target quantity, using the dual response optimization method of
Myers and Carter (1973). Del Castillo and Montgomery (1993) showed how the
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same goals as in Vining and Myers (1990) could be realized by using nonlinear
programming techniques.

2. Single-model approach: Welch et al. (1990) showed that using a single experimen-
tal design for the control and noise variables greatly reduced the number of runs
needed in an experiment as compared to the crossed array design of Taguchi. This
single design for both types of factors is known as a combined array. Using the
combined array, a single model in the control variables, x, and the noise variables,
z, was fitted to the response y,

y(x, z) = β0s + g′(x)βs + z′δ + g′(x)�z + ε,

where g(x) is a known function of the control variables and βs, δ, � are the corre-
sponding regression coefficients of g(x), z, and the interaction coefficients between
the polynomial terms involving control variables and z. The error term, ε, is
usually assumed to be normally distributed with mean 0 and variance σ2.

Note that the combined array allowed estimation of interactions among the control
variables as well as interactions between the control and noise variables, if the design
is constructed to support this. Other authors who used the single-model approach were
Shoemaker et al. (1991), Myers et al. (1992a), and Borkowski and Lucas (1997) among sev-
eral others. Shoemaker et al. (1991) illustrated, through an example, the superiority of the
combined array approach over the crossed arrays from the standpoint of allowing the esti-
mation of control-by-control, control-by-noise, and noise-by-noise two-factor interactions.
The initial motivation for using the combined array approach is the substantial reduction
in the size of the experiment. In spite of this reduction in size, a carefully selected com-
bined array will nonetheless provide better information about the effects of control and
noise variables on the response than can be obtained from a larger combined array. In con-
trast, the crossed array approach facilitates estimation of many effects that are unlikely to
be important. Under the combined array approach, the size of the experiment can be made
smaller without sacrificing important information.

Myers et al. (1992a) showed that the single response model of Welch et al. (1990) fitted
to the response could be used to model the dual response surfaces for the mean and the
variance,

E[y(x, z)] = β0s + g′(x)βs,

and

Var[y(x, z)] = (δ′ + g′(x)�)Var(z)(δ′ + g′(x)�)′ + σ2,

where Var(z) denotes the variance–covariance matrix of the vector of the noise variables z.
To obtain the control settings for which the variance is minimized and the mean response
remains close to the prespecified target, say, T , Myers et al. (1992a) minimized the crite-
rion, E[ŷ(x, z) − T]2 = (E[ŷ(x, z)] − T)2 + Var[ŷ(x, z)], with respect to x, where ŷ(x, z) is the
predicted response. In their work, Myers et al. (1992a) assumed that effects of both control
and noise variables were fixed in the experiment. However, in reality the effects of the noise
variable are not fixed but random in the process. Later, to incorporate the random nature of
the noise variables, Khuri (1996b) proposed a mixed-effects model where the control factor
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was fixed but the noise factor was assumed to be random. For illustration, he presented an
example of wafers used in the semiconductor industry for studying the effects of several
factors on resistance in computer chips. Since the wafers were drawn from a large lot, their
effects in the model should be considered as random.

5.6 GLMs

Most traditional response surface techniques were developed within the framework of lin-
ear models under the strong assumption of continuous responses (quite often, normally
distributed) with uncorrelated errors and equal error variances. However, very often,
data from clinical/epidemiological trials do not satisfy these assumptions. In clinical/
epidemiological trials, we come across data that are more variable, and the assumption
of homogeneous error variances is not satisfied. In dose–response experiments, we come
across responses that are binary in nature, for example, in Phase I clinical trials, we get data
in the 1/0 format where 1 represents a toxic side effect in the subject, while 0 says that there
was no toxic effect. For such data, statistical analysis using GLMs would be more appropri-
ate. GLMs were introduced by Nelder and Wedderburn (1972) as an extension of the class
of linear models. Under the framework of GLMs, discrete as well as continuous responses
can be accommodated, and normality and constant variances are no longer a requirement
for the response. A classic reference for GLMs is the book by McCullagh and Nelder (1989)
(see also Lindsey 1997, Dobson 2001, McCulloch and Searle 2001, and Myers et al. 2002).
Chapter 13 provides a detailed discussion on GLMs.

GLMs are usually specified by the following three components: (1) distributional compo-
nent, a sample of n independent random variables, y1, . . . , yn, from an exponential family;
(2) linear predictor, a linear regression function, η, called the linear predictor, in k control
variables, x1, . . . , xk, of the form η(x) = f ′(x)β, where f (x) is a known vector function of x
and β is a vector of unknown parameters; and (3) link function, η(x) = g(μ(x)), where μ(x) is
the mean response and g is a known monotone differentiable function whose inverse exists
and is denoted by h. Estimation of β is usually based on the method of maximum likeli-
hood, which is usually carried out using an iterative weighted least-squares procedure (see
McCullagh and Nelder 1989, pp. 40–44). Using the resulting estimate of β, an estimate of
the mean response and approximate estimates of its variance and bias can be obtained (for
details, see Robinson and Khuri 2003).

5.6.1 Choice of Designs for GLMs

Unlike linear models, the prediction variances and the mean squared error of predictions
(MSEPs) of the mean response both depend on the unknown parameter vector β. Thus, to
choose a good design, the experimenter requires some prior knowledge on β. This depen-
dence causes a great difficulty in the construction and choice of designs for GLMs. By the
choice of a good design, we mean the determination of the settings of the control variables
and the number of experimental units to be assigned at these particular settings so that the
prediction variance or the MSEP are low. A detailed review of design issues for GLMs is
given in Khuri et al. (2006). Chapter 13 contains more details on selecting optimal designs
in GLMs.
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We next discuss some common approaches to address that the assessment of designs
depends on the unknown parameters for most GLM models.

5.6.1.1 Locally Optimal Designs

In this approach, the experimenter assumes certain initial values for the unknown parame-
ters. Using these initial values, designs are found based on various optimality criteria such
as D-optimality or A-optimality. Since the optimal designs depend on the initial values for
the parameters, they are called locally optimal. Research on locally optimal designs may
be categorized into a study of binary data using logistic regression and a study of Poisson
count data. Abdelbasit and Plackett (1983), Khan and Yazdi (1988), Sitter and Wu (1993),
and Mathew and Sinha (2001), among others, are some of the early references on locally
optimal designs for logistic regression using a single response. More recently, Biedermann
et al. (2006, 2007) found locally optimal designs for logistic regression models. Dror and
Steinberg (2006) used clustering techniques to find locally D-optimal designs with sev-
eral predictor variables, but only a single binary response. Yang et al. (2011) extended the
algebraic approach of Yang and Stufken (2009) to construct optimal designs for GLMs
with multiple covariates. A recent work by Biedermann and Woods (2011) proposed opti-
mal designs for generalized nonlinear models, where the linear predictor is replaced by a
nonlinear function in the parameters. For multiresponse binary data, very little work can
be found in the literature. For bivariate responses, Heise and Myers (1996) studied optimal
designs, while Zocchi and Atkinson’s (1999) work was based on multinomial logistic mod-
els. For Poisson count data, optimal results were discussed by Liski et al. (2002) and Wang
et al. (2006). Russell et al. (2009) considered optimal designs for a Poisson regression model
with a log link and multiple predictor variables.

5.6.1.2 Two-Stage Sequential Designs

If “good” initial values of the parameters are not available, then the optimal design selected
for those parameter values may not be very efficient. Keeping this in mind, Wu (1985), Sitter
and Forbes (1997), and Sitter and Wu (1999) proposed that instead of relying solely on the
initial values of the parameters and selecting an optimal design, the experiment should
be divided into two stages: In the first stage, estimates of the parameters are computed.
These estimates are then used to find additional design points in the second stage so that
the combined design is “good” (Sitter and Forbes 1997). More recently, Dror and Steinberg
(2008) proposed sequential optimal designs for GLMs that can be applied to cases with
multiple linear predictors and can also be used with any GLMs and not just those with
binary responses.

5.6.1.3 Bayesian Designs

The optimality criteria for Bayesian designs are usually the integrated versions of the clas-
sical optimality criteria like D- or A-optimality, where the integration is with respect to
the prior distribution of the parameter vector. Due to the computational difficulties in
finding the exact posterior distribution of β, most of the Bayesian criteria are based on
normal approximations to the posterior distribution. The most common form of the nor-
mal approximation used is that the parameter vector β follows the normal distribution



216 Handbook of Design and Analysis of Experiments

with mean β̂ and variance [nI(β̂, ζ)]−1, where β̂ is the MLE of β, ζ is the design mea-
sure, and I is the expected information matrix. Chaloner and Larntz (1989) proposed
the following Bayesian optimality criterion analogous to D-optimality, Eβ[log detI(β, ζ)],
where the expectation is taken according to the prior distribution of β. Some of the papers
illustrating the Bayesian approach in designs for GLMs include Zacks (1977), Chaloner
and Larntz (1989, 1992), Atkinson et al. (1993), Dette and Sperlich (1994), Chaloner and
Verdinelli (1995), and Mukhopadhyay and Haines (1995). More details can be found in
Chapter 13.

5.6.1.4 Quantile Dispersion Graphs (QDGs) Approach

In this approach, several designs for GLMs are compared based on the distribution of the
MSEP corresponding to each design. A description of the distribution of the MSEP is given
in terms of its quantiles. Since the MSEP depends on the unknown parameters, the quan-
tiles of the MSEP are also functions of the unknown parameters. The dispersion of these
quantiles over a certain parameter space is determined and then depicted by the so-called
quantile dispersion graphs (QDGs). If an initial data set is available, it is used to find the
confidence region of the parameter vector. Some values are then randomly selected from
the confidence region to address the issue of dependence of the MSEP on the parameters.
Robinson and Khuri (2003) were the first to implement the QDGs to find designs for a sin-
gle binary response using a logistic regression model. Their work was extended by Khuri
and Mukhopadhyay (2006) to Poisson count data with a log-linear link function. Both the
papers by Robinson and Khuri (2003) and Khuri and Mukhopadhyay (2006) discussed sit-
uations with several control variables. Mukhopadhyay and Khuri (2008a) applied QDGs to
find designs for multivariate GLMs. Their methodology was illustrated by a multinomial
response in a combination drug therapy study on male mice.

5.6.2 Model Misspecification in GLMs

The functional form of the true relationship between the response and the control variables
affecting it is usually unknown in practice. The experimenter assumes a model of a certain
form to approximate the unknown relationship and bases all derived conclusions on such a
model. However, there always remains a possibility that the assumed form of the model is
incorrect and might be vastly different from the true relationship. In most cases, inferences
drawn are affected by the assumed model form and are therefore incorrect. This is known
as model misspecification. Chapter 20 covers robust designs.

In the case of GLMs, the form of the true linear predictor is usually unknown. Suppose
that the experimenter assumes a linear predictor of the form

η(x) = f ′(x)β. (5.27)

An estimate of β is obtained under this model form and then used to estimate the mean
response. Suppose that the true linear predictor is of the form

ηT(x) = f ′(x)β + v(x), (5.28)

where v(x) is an unknown function, possibly highly nonlinear. Thus assuming a model
of the form (5.27) when in fact (5.28) is the true model gives a misspecified linear predic-
tor. There may also be cases when the link function and/or the linear predictor together
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are misspecified. For example, the experimenter may assume a logistic link for a binary
response when the true link function is of the probit type.

In the context of linear models, several authors considered the effect of model
misspecification on design selection. However, not much work has been done on
model misspecification in nonlinear models or GLMs. Sinha and Wiens (2002) studied
model misspecification for nonlinear models. In recent years, selecting designs robust
to model misspecification have been extended to GLMs by Abdelbasit and Butler (2006),
Woods et al. (2006), and Dror and Steinberg (2006). For logistic regression models,
Adewale and Wiens (2009) developed an average mean squared error criterion that gen-
erates designs insensitive to possible misspecifications in the linear predictors. Their work
was later extended by Adewale and Xu (2010) where misspecifications due to both lin-
ear predictors and link functions were also studied. More recently, Mukhopadhyay and
Khuri (2012) applied the QDGs approach to compare designs for GLMs in the presence of
model misspecification of the type given by model (5.28). Additional details concerning
misspecifications in GLMs can be found in Chapter 20.

5.6.3 Further Extensions

Very recently, Woods and van De Ven (2011) proposed methods for constructing D-optimal
designs for GLMs with blocks. They considered experiments with an exponentially dis-
tributed response represented by a model fitted by using the method of generalized
estimating equations.

Although several researchers have studied designs for GLMs, very little work has been
done in the context of generalized linear mixed models (GLMMs). These models are used
in analyzing clustered correlated data in binary and count response studies. To define a
GLMM, we again need to specify three components (Sinha and Xu 2011): Elements of the
response vector y = (y1, y2, . . . , yn)′, conditional on the random vector ν, are independent
and follow a distribution in the exponential family. The linear predictor is η(x) = f ′(x)β +
z′ν, where f (x) is a row of the model matrix X and z is a row of the matrix Z for the random
effects. The linear predictor is related to the mean response through a link function g, where
the inverse of g exists. Sinha and Xu (2011) constructed D-optimal sequential designs for the
analysis of longitudinal or repeated measurements data using GLMMs. The performance
of their proposed designs was studied using various simulation studies.

5.7 Multiresponse Experiments

Response surface methods are quite often concerned with experiments in which several
responses are measured for each setting of a group of control variables. Such experiments
are known as multiresponse experiments. Some popular examples of multiresponse experi-
ments involve taking measurement of the efficacious and the toxic effects of a drug when
administered to a subject or measurements of yield and cost of a product in a manufac-
turing experiment. Schmidt et al. (1979) investigated the effects of cysteine and calcium
chloride on the textural and water-holding characteristics of dialyzed whey protein con-
centrates gel systems. This experiment involved four response variables and is therefore a
multiresponse experiment. Another example concerning a multiresponse experiment was
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described in Evans et al. (1982) who considered data of seed-germination percentages after
4 weeks of incubation of four plant species in response to 55 alternating and constant-
temperature regimes in dark laboratory germinators. Many other multiresponse scenarios
were cited in the works of Hill and Hunter (1966), Myers et al. (1989), and Khuri (1996a).
In a multiresponse experiment, the measured response values are usually correlated
within a single run, but are otherwise assumed to be independent. Specifically, responses
taken from a single experimental unit or subject are modeled to allow for correlations,
while those taken from different units are regarded as independent. Thus, the correla-
tion structure existing among the responses should be taken into account in any analysis
concerning the multiresponse data. This includes the selection of an experimental design
that depends on the variance–covariance matrix of all the responses, as will be seen in
Section 5.7.1.

Suppose there are q responses measured for each setting of k control variables, x =
(x1, . . . , xk)

′, and n is the total number of experimental runs. Using a polynomial regression
model, we can write

Yi = Xiβi + εi, i = 1, . . . , q,

where Y i is an n × 1 vector corresponding to the ith response, Xi is an n × pi matrix of
rank pi of known functions of the setting of the control variables, βi is a pi × 1 vector of
unknown parameters, and εi is a random experimental error vector such that E(εi) = 0,
Var(εi) = σiiIn and Cov(εi,εj) = σijIn, i �= j = 1, . . . , q. Combining the aforementioned q
equations, we get the multiresponse model

Ỹ = Xβ + ε,

where Ỹ = [Y ′
1, Y ′

2, . . . , Y ′
q]′, β= [β′

1,β′
2, . . . ,β′

q]′, ε= [ε′
1,ε′

2, . . . ,ε′
q]′, and X = diag

(X1, X2, . . . , Xq) is a block diagonal matrix. The best linear unbiased estimator of β is given
by β̂ = (X′�−1X)−1X′�−1Ỹ, where � = (�−1 ⊗

In)−1 and � is the variance–covariance
matrix whose (i, j)th element is σij (i, j = 1, 2, . . . , q). If � is unknown, an estimate of it can
be used. Zellner (1962) provided the estimate �̂ whose (i, j)th element is given by

σ̂ij = 1
n

{
Y ′

i

[
In − Xi(X′

iXi)
−1X′

i

] [
In − Xj(X′

jXj)
−1X′

j

]
Y j

}
, i, j = 1, 2, . . . , q.

More details concerning the use of this estimator can be found in Khuri and Cornell (1996,
p. 254).

For a general multiresponse model, Box and Draper (1965) used Bayesian techniques
to estimate the parameter vector β. They assumed normal responses with the variance–
covariance matrix � and noninformative prior distributions for β and �. Box et al. (1973)
later showed that Box and Draper’s estimation criterion failed to give meaningful results in
the presence of exact linear dependencies among the responses. For example, in a chemical
mechanism, an exact linear relationship exists among the amounts of the substituents in
order to maintain the carbon balance (Khuri and Cornell 1996, Section 7.2).
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5.7.1 Designs for Multiresponse Experiments

The design selection problem in a multiresponse experiment is more complex than in the
case of a single response. In choosing a design for a multiresponse experiment, one should
consider all the responses simultaneously; otherwise, the selected design may be efficient
for one response but inefficient for the others. Draper and Hunter (1966) used Bayesian
methods with a noninformative prior distribution for β to obtain a design criterion for
the estimation of the parameters. Fedorov (1972) introduced an algorithm for the sequen-
tial construction of a D-optimal design for multiresponse models. However, his method
required knowledge of the variance–covariance matrix �. Wijesinha and Khuri (1987a)
suggested a solution to the problem of unknown � by developing a sequential procedure
for the construction of the design where an updated estimate of � was obtained at each
stage of the sequential procedure. Wijesinha and Khuri (1987b) also introduced a design
criterion for constructing optimal designs to improve the power of the multivariate lack of
fit test for a linear multiresponse model. In clinical trials, it is of interest to find the dose
levels/combinations of dose levels that optimize the toxicity and safety responses simul-
taneously. Recently, several papers (viz., Dragalin and Fedorov 2008, Dragalin et al. 2008
and Fedorov et al. 2011) have been published that propose adaptive/sequential procedures
based on optimal design methods as proposed in Fedorov (1972) and Cook and Fedorov
(1995) for finding the dose level when two responses are involved.

5.7.2 Multiresponse Optimization

A primary objective in RSM is to determine the settings of the control variables that give
rise to an optimum response. However, when there is more than one response, the problem
of finding common settings of the control variables that will optimize all the responses is
usually not possible since the settings that optimize one response will generally not opti-
mize the others. Consider a situation where a researcher is studying the effect of various
fertilizing agents on the yield and cost of a certain crop product. He or she is interested
in determining the values of the fertilizers that maximize the crop yield while minimizing
the cost of production. It is very likely in this situation for the yield to be maximized at
certain settings of the fertilizers, while the cost is minimized for a different set of values of
the fertilizers. In this case, determining the settings of the fertilizers that are favorable to
both responses, yield and cost, is not possible.

Lind et al. (1960) considered superimposing contours of all the responses to determine
the region where all the responses are “near” optimal. However, this method becomes
very cumbersome and difficult to use as the numbers of control and response variables
increase. A more general approach is to set up the multiresponse optimization problem
as a constrained optimization problem. Suppose that there are q responses from which
one response is selected, say, Y1, identified as the primary response. Then the constrained
optimization problem may be framed as in Myers et al. (2004), by finding the settings
of x = (x1, x2, . . . , xk)

′ ∈ R that optimize the predicted response corresponding to Y1
such that the other (q − 1) responses lie in the intervals [li, ui], i = 2, . . . , q. Myers and
Carter (1973) studied the constrained optimization problem where there are two responses,
labeled as the primary and the secondary responses. They fitted appropriate models to the
two responses and then determined the settings of the control variables that optimized
the estimated primary response while keeping the secondary response within a certain
interval. Some extensions for optimization of nondegenerate and degenerate dual response
systems within a spherical experimental region were suggested by Del Castillo et al. (1997,
1999) and Fan (2000).
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Harrington (1965) introduced the desirability approach for solving the multiresponse
optimization problem. Each predicted response was transformed into a desirability
function using an exponential transformation that increased as the desirability of the
corresponding property increased. Derringer and Suich (1980) proposed more general
transformations that provided the user with greater flexibility. The desirability functions
for all the responses were then incorporated into a single function, usually the geomet-
ric mean, which was then maximized with respect to the control variables. Del Castillo
(1996) modified the desirability approach so that the desirability functions were differen-
tiable and more efficient gradient-based optimization methods could be used. Kim and Lin
(2000) used the desirability approach for multiresponse optimization; however, they did
not assume any form or degree of the estimated response models. Later, Wu (2005) pro-
posed a double-exponential transformation for the desirability functions accounting for
correlations among the responses.

Khuri and Conlon (1981) argued that the desirability approach does not take into account
correlations that may exist among the responses and instead suggested the generalized dis-
tance approach. Since the individual optima for the responses are not usually attained at
the same settings of the control variables, the generalized distance approach determined
a set of conditions on the control variables that were “favorable” to all the responses. The
distance of the vector of individual optima of the predicted responses from the vector of
estimated mean responses, weighted by the inverse of the variance–covariance matrix of
the predicted responses, was determined. Minimizing this distance function with respect
to the control variables, Khuri and Conlon arrived at a set of conditions for a so-called
compromise optimum. Other approaches for multiresponse optimization based on a loss
function, usually the mean squared error loss, taking into account the heterogeneity in
responses, were discussed by Pignatiello (1993), Ames et al. (1997), Vining (1998), and Ko
et al. (2005). Multiresponse optimization for GLMs using the distance approach was more
recently discussed by Mukhopadhyay and Khuri (2008c).

5.8 Graphical Procedures for the Evaluation and Comparison of Response
Surface Designs

In this section, we discuss graphical procedures for design comparison. Unlike single-
valued criteria like D-optimality that only measure the performance of a design at a single
point in the experimental region, these techniques enable comparison of designs over the
entire region. A design is said to be “good” if it has low and stable values of prediction
variance or MSEP throughout the experimental region. Graphical procedures give a more
complete picture of the design’s prediction capability since it may very well vary when
measured at different parts of the experimental region. However, these graphical proce-
dures are not used to develop better designs but only to compare several designs and
choose the best among them. In recent years, graphical techniques for evaluating the pre-
diction capability of designs throughout the experimental region have become popular.
We next discuss three such graphical techniques.

Giovannitti-Jensen and Myers (1989) and Myers et al. (1992b) proposed 2D plots known
as variance dispersion graphs (VDGs), which display the minimum, maximum, and average
prediction variances for a given design over spheres of varying radii centered at the origin.
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By changing the radius of a sphere, these graphs are able to cover the entire region, R, from
the center to the boundary. Later, various authors, including Vining (1993) and Borkowski
(1995), worked on construction of VDGs. These graphs were also used for studying process
robustness by Borror et al. (2002). Trinca and Gilmour (1998) extended VDGs to be used in
response surface designs with blocks. It should be noted that the VDGs depend on the
form of the fitted model as well as on the coding of the control variables used in the model.
This follows from the dependence of the prediction variance on the model matrix that is
influenced by the coding convention.

Zahran et al. (2003) argued that VDGs were unable to provide complete information
about the distribution of the scaled prediction variance (SPV) on a given sphere (SPV is
the prediction variance multiplied by the number of experimental runs and divided by
the experimental error variance). They suggested that to get all the useful information, the
volume associated with the SPV on a given sphere should be considered and introduced
the fraction of design space (FDS) criterion. The FDS values for each design were plotted
against SPV to obtain the FDS plots. FDS plots have been used by Goldfarb et al. (2004) in
mixture experiments and by Liang et al. (2006) for split-plot designs. For examining design
robustness related to SPV values, Ozol-Godfrey et al. (2005) used FDS plots. These plots
were also used to assess different designs for GLMs under parameter misspecification by
Ozol-Godfrey et al. (2008).

Khuri et al. (1996) proposed the comparison of several response surface designs using
the distribution of the SPV on a given sphere based on its quantiles. Instead of comparing
average or extreme values of the SPV, they reasoned that the entire distribution of the SPV
should be taken into account. Using several examples, they showed that two designs may
have similar VDG patterns, but the distributions of their SPV in terms of quantiles are
different. They determined the quantiles of the SPV using a set of points on a sphere of
radius r inside the experimental region. Using different values of r, they were able to cover
the entire experimental region. For each r, the quantiles for a given design were then plotted
against their corresponding probabilities to obtain the quantile plots. Khuri et al. (1999)
used quantile plots to compare designs for a constrained mixture region. More recently,
Mukhopadhyay and Khuri (2008b) used quantile plots to compare the robustness of several
response surface designs to model misspecification on the basis of the MSEP. The proposed
approach uses four criterion functions derived from the MSEP.

QDGs were first proposed by Khuri (1997) for comparing several designs for estimating
variance components in an ANOVA situation, where the factors are discrete rather than
continuous. Later, Lee and Khuri (1999, 2000) extended the use of QDGs to unbalanced ran-
dom one-way and two-way models, respectively. Their QDGs were based on both ANOVA
and maximum likelihood estimators. QDGs were also used by Khuri and Lee (1998) in the
comparison of designs for nonlinear models and for three-fold nested designs by Jung et al.
(2008). More recently, Saha and Khuri (2009) compared designs for response surface models
with random block effects based on QDGs.

Robinson and Khuri (2003) extended the use of QDGs to compare designs for logistic
regression models. QDGs were later used for count data by Khuri and Mukhopadhyay
(2006). In general, designs for GLMs were compared on the basis of the distribution of their
MSEP values over the entire experimental region. The distribution of the MSEP was con-
sidered in terms of its quantiles. Since in the case of GLMs the MSEP depends on unknown
parameters, then so do the quantiles. For a given design, the quantiles of the MSEP were
obtained within the experimental region, R. This region was partitioned into several con-
centric regions, denoted by Rλ, using a shrinkage parameter λ (where by shrinking we
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mean reducing the size of the region). Suppose we denote the pth quantile corresponding
to a design D on the surface of Rλ by QD(p,β, λ), where β is the unknown parameter vec-
tor of the linear predictor. To address the dependence of the quantiles on the parameters,
a parameter space was considered from which a subset of parameter values, denoted by
C, was chosen. Values of QD(p,β, λ) were computed for β ∈ C. The minimum and the
maximum values, Qmin

D (p,β, λ) and Qmax
D (p,β, λ), of the pth quantile with respect to the

parameter values in C were computed. The QDGs for each design were then obtained by
plotting Qmin

D (p,β, λ) and Qmax
D (p,β, λ) against p. Using the QDGs approach, a design is

said to be good if it has small and close values of Qmin
D (p,β, λ) and Qmax

D (p,β, λ) over the
range of p. Small values of the minimum and maximum quantiles imply small MSEP, while
close values indicate robustness to the changes in the parameter values. Mukhopadhyay
and Khuri (2008a) also used QDGs to evaluate and compare designs for multivariate GLMs.
Since in the multivariate setup the MSEP is a matrix, they used a scalar-valued function
of the MSEP, namely, the largest eigenvalue of the MSEP matrix (EMSEP), as their com-
parison criterion. As before, EMSEP also depends on the unknown parameter vector. The
dispersion of the quantiles of the EMSEP over the space of the unknown parameters was
determined and then depicted by the QDGs.

5.8.1 Numerical Example

We consider a data set from a manufacturing process studying the effect of temperature and
processing time on product quality. This data set was also considered by Ozol-Godfrey et al.
(2008) for comparing designs using FDS plots. The response variable is binary in nature
taking the value 1 if the product is acceptable and zero otherwise. The initial design, D1, is
a 22 factorial design with five replications at each of the corner points. The factors are both
recoded to lie in the interval [−1, 1]. Ozol-Godfrey et al. (2008) arrived at the following
fitted model:

log
(

π̂(x)

1 − π̂(x)

)
= 2 + 0.5x1 − 0.8x2 + 0.3x1x2.

Design D1 is compared with another design, denoted by D2, which is a replicated (five
times) 22 factorial design with a center point (five replications). Through FDS plots, the
authors conclude that design D1 performs (in terms of SPV) better than D2 in most of the
design space. Adding center runs to a design helps the performance of the design (lower
prediction variances) at the center. Using graphical techniques, Vining and Myers (1991)
considered the impact of adding center runs to a 23 factorial design using a first-degree
model with a full second-degree model as an alternative model. They demonstrated that
the addition of center runs increases the MSEP near the perimeter of the region.

Here, we use QDGs to compare the two designs and try to see if we can obtain any
additional information about the performances of the two designs in the design space. The
designs are compared on the basis of the quantiles of their MSEP as well as the SPV. The
quantiles are computed on the surfaces of concentric regions Rλ to cover the entire design
space. To address the dependence of the quantiles of the MSEP/SPV on the unknown
parameter values, we consider for each of the four parameters in the model a set of five
points consisting of the point estimate of the parameter value in addition to two pairs of
points that are symmetric with respect to the point estimate. The points in the first pair
are at a distance of one standard error from the estimate; in the second pair, the points are
two standard errors away from the estimate. These 625 points constructed by selecting the
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aforementioned five points for each parameter is denoted by C. The QDGs for the SPV are
presented in Figure 5.1; those for the MSEP are shown in Figure 5.2.

From Figure 5.1, we note that the prediction capability of design D2 is better than D1
for small values of λ, that is, near the center of the region, while for higher values of λ,
D1 performs better than D2. However, from Figure 5.2 (QDGs based on MSEP), we get a
different message. We see that design D2 performs better than D1 over the entire design
space, when compared on the basis of MSEP. We also observe that the performances of
both designs deteriorate as we move out toward the boundary. From the gap between the
minimum and the maximum quantiles of both designs, we can say that the designs are
sensitive to the changes in the parameter values. So we see that basing our comparison
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FIGURE 5.1
QDGs comparing designs D1 (22 factorial) and D2 (22 factorial with center runs) based on SPV.
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on MSEP instead on SPV, we get a different result. This is due to the fact that the MSEP
takes into account not only the variance but also the bias in estimation. Also, unlike the
FDS plots, the QDGs could tell exactly where in the design region the performance of D2 is
better than that of D1. Additionally, the QDGs assessed the robustness of the designs to the
parameter values.

5.9 Mixture Designs

A mixture experiment is one in which the response depends only on the relative propor-
tions of the ingredients, or components, present in a mixture. For example, the tint strength
of a house paint is affected by the proportions of two known pigments and a certain solvent
in the paint, but does not depend on the amount of the mixture. Also, the tensile strength
of stainless steel depends on the proportions of iron, copper, nickel, and chromium in the
alloy.

If xi denotes the proportion of the ith component of k components, then xi ≥ 0 for
i = 1, 2, . . . , k, and

k∑
i=1

xi = 1. (5.29)

The constraint in (5.29) on the values of xi causes mixture experiments to be different from
general response surface experiments where the values of the control variables do not nec-
essarily add up to 1. Because of this constraint, the factor space of interest, or experimental
region R, is a subset of a k − 1 dimensional space (or a (k − 1) simplex). For example, for
k = 2, R is a line segment; for k = 3, it is an equilateral triangle; and for k = 4, it is a regular
(equal sided) tetrahedron.

In a mixture experiment, polynomial models, typically used in RSM, are expressed in
light of the restriction in (5.29). For example, for k = 2, the second-degree model,

η = β0 +
2∑

i=1

βixi + β12x1x2 +
2∑

i=1

βiix2
i ,

can be rewritten, after replacing x2
1 by x1(1 − x2) and x2

2 by x2(1 − x1), as

η = β0(x1 + x2) +
2∑

i=1

βixi + β12x1x2 + β11x1(1 − x2) + β22x2(1 − x1),

which can be expressed as

η = β′
1x1 + β′

2x2 + β′
12x1x2,

where β′
1 = β0 + β1 + β11, β′

2 = β0 + β2 + β22, and β′
12 = β12 − β11 − β22. For the sake of

simplicity, we can drop the primes from the betas in this model.
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Using the restriction in (5.29), Scheffé (1958) introduced the following so-called canonical
forms of mixture polynomial models:

Linear

η =
k∑

i=1

βixi. (5.30)

Quadratic

η =
k∑

i=1

βixi +
∑ ∑

i<j

βijxixj. (5.31)

Full cubic

η =
k∑

i=1

βixi +
∑ ∑

i<j

βijxixj +
∑ ∑

i<j

δijxixj(xi − xj) +
∑ ∑ ∑

i<j<k

βijkxixjxk. (5.32)

Special cubic

η =
k∑

i=1

βixi +
∑ ∑

i<j

βijxixj +
∑ ∑ ∑

i<j<k

βijkxixjxk. (5.33)

Since the mixture factor space is a simplex, design points for a mixture experiment must
be at the vertices, on the edges or faces, or in the interior of the simplex. Scheffé (1958)
suggested some designs for fitting the polynomial models he had already introduced. His
choice of points was initially motivated by the need to simplify the derivation of the least-
squares estimates of the models’ parameters by solving simple equations. Of course, such
a need is no longer necessary. Still, however, his designs are quite adequate and suitable
for practical experimentation.

For fitting Scheffé’s canonical polynomial models, Scheffé (1958) suggested simplex-
lattice designs. By definition, a {k, m} simplex-lattice design for k components consists of
all design points that can be formed by using for each of the k components, x1, x2, . . . , xk,
the (m + 1) equally spaced levels

xi = 0,
1
m

,
2
m

, . . . , 1, i = 1, 2, . . . , k

provided that
∑k

i=1 xi = 1. For example, the {3, 2} simplex lattice consists of the following
six points on the boundary of the triangular factor space:

(x1, x2, x3) = (1, 0, 0), (0, 1, 0), (0, 0, 1),
(

1
2

,
1
2

, 0
)

,
(

1
2

, 0,
1
2

)
,
(

0,
1
2

,
1
2

)
.
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In general, the number of design points in the {k, m} simplex lattice is

(
k + m − 1

m

)
= (k + m − 1)!

m!(k − 1)! .

An alternative design to the {k, m} simplex lattice is the simplex-centroid design sug-
gested by Scheffé (1963). It contains 2k − 1 points consisting of the k permutations

of (1, 0, 0, . . . , 0), the
(k

2

)
permutations of

(
1
2 , 1

2 , 0, 0, . . . , 0
)

, the
(k

3

)
permutations of(

1
3 , 1

3 , 1
3 , 0, 0, . . . , 0

)
, and so on, down to the centroid point

(
1
k , 1

k , . . . , 1
k

)
.

The {k, m} simplex-lattice and simplex-centroid designs are boundary-point designs in
that, with the exception of the overall centroid, all the design points are located on the
boundaries (vertices, edges, faces, etc.) of the simplex factor space. Quite often, however,
it may be desirable to have more experimental runs in the interior of the simplex where
information about complete mixtures can be obtained. It is therefore recommended to aug-
ment such designs with axial runs that are positioned inside the simplex factor space. A
discussion concerning these axial runs and how they can be selected is given in (Cornell
1990, Section 2.15).

5.9.1 Constraints on the Mixture Components

Quite often in some mixture experiments, values of the mixture components, x1, x2, . . . , xk,
may be restricted by certain lower and/or upper bounds. For example, xi may be required
to be positive inside the factor space, that is, the ith components must be present in all the
blends, as in the case of a fruit drink that is required to contain at least a certain proportion
of orange juice. If lower bounds are placed on all mixture components, then we have

xi ≥ Li ≥ 0, i = 1, 2, . . . , k, (5.34)

where the Li’s are given values such that L = ∑k
i=1 Li < 1. The resulting factor space is

reduced to a subspace of the original simplex region that is also a simplex. In order to main-
tain summability to one of the mixture components inside the reduced space, the following
transformation is needed:

x′
i = xi − Li

1 − L
, i = 1, 2, . . . , k, (5.35)

where x′
1, x′

2, . . . , x′
k are called pseudocomponents. Note that x′

i ≥ 0 for all i and
∑k

i=1 x′
i = 1.

Thus, under the transformation in (5.35), the reduced mixture space becomes an ordinary
mixture space when described in the pseudocomponents.

In case of both lower and upper bounds on the mixture components, we get the following
double inequalities:

0 ≤ Li ≤ xi ≤ Ui ≤ 1, i = 1, 2, . . . , k, (5.36)

where Li and Ui are given constants. In this case, the factor space is a convex polyhe-
dron that is more complicated in shape than the simplex-shaped region defined by having
only lower bounds. In such cases, computer-generated designs, based, for example, on the
D-optimality criterion, can be used to find designs to fit Scheffé’s mixture models. In this
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respect, the vertices of the constrained region, as well as convex combinations of some
of the vertices, are candidates for design points. This gives rise to the so-called extreme
vertices designs. See the work by McLean and Anderson (1966). Crosier (1984) derived a
formula for calculating the number of vertices of any constrained region.

5.9.2 Slack-Variable Models

Scheffé’s polynomial models can alternatively be expressed in terms of k − 1 independent
variables. This can be done by selecting one mixture component, say, xi for some i, and
expressing it in terms of the remaining mixture components (using the restriction in [5.29]),
then substituting it into Scheffé’s model. This mixture component is called a slack variable,
and the resulting model, which now depends only on the remaining mixture components,
is called a slack-variable model. If a complete Scheffé’s model is used, then, in terms of pre-
diction, it makes no difference which component is designated as the slack variable. By
a complete model, we mean a model that contains all polynomial terms, up to a certain
degree, along with their lower-order terms and cross products. If such a model is used,
then it will be equivalent to all its corresponding slack-variable models (see Khuri 2005).
By definition, two models are equivalent if the column spaces of their corresponding model
matrices (i.e., the X matrix as in (5.7)) are the same. For such models, the predicted response
values and corresponding regression sums of squares are identical.

The concept of model equivalance is related to the definition of a well-formulated model.
By this, we mean a model with the property that for every one of its polynomial terms, all
polynomial terms inferior to it are included in the model (a polynomial term, such as t1,
is said to be inferior to another polynomial term, say, t2, if t2 = t1t3, where t3 is a poly-
nomial term different from 1). We can then see that a complete Scheffé’s model is well
formulated.

Well formulation of a model becomes an important consideration when the model is
subjected to any variable selection procedure. This is true because such a procedure may
select as the “best submodel” of a given size one that is not well formulated. This is
undesirable since for such a submodel, the predicted response and the regression sum of
squares can change depending on how the control variables in the submodel are coded.
Thus, any variable selection procedure should be restricted to submodels that are well
formulated.

In particular, if Scheffé’s complete model and one of its equivalent slack-variable mod-
els are both reduced by deleting some of their terms using the same variable selection
procedure, then the best t-variable submodel obtained from Scheffé’s model may not be
equivalent to the best t-variable submodel obtained from the slack-variable model (t is the
number of parameters in the submodel). This is true because the t-dimensional column
spaces of the matrices for the two submodels may be different. Note that all submodels
considered must be well formulated. Khuri (2005) demonstrated that a Scheffé’s sub-
model may or may not be equivalent to a given slack-variable submodel. Furthermore, the
slack-variable submodels may not be equivalent to one another. Thus, when making a com-
parison among the t-variable Scheffé’s and slack-variable submodels using, for example,
R2, the coefficient of determination; MSE, the error mean square; and PRESS, the predic-
tion error sum of squares, the choice of the best fitting submodel may turn out to be a
submodel of the Scheffé type or one of the slack-variable submodels. Thus, this choice
depends on which mixture component is selected as a slack variable. If all the aforemen-
tioned submodels were equivalent, then they would have the same summary statistics
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values (i.e., R2, MSE, and PRESS). Khuri (2005) also studied the effect of collinearity on
Scheffé’s and its slack-variable submodels (a model is said to suffer from collinearity if
there is a near linear dependency among the columns of its model matrix). He used certain
diagnostic measures of collinearity to discriminate among the submodels (in mixture exper-
iments, collinearity can occur when one or more of the mixture components have very small
ranges, which cause the mixture space to be highly constrained). It was concluded that
collinearity affected Scheffé’s and the slack-variable submodels differently, depending on
the size of the fitted submodel.

5.10 Applications of RSM

Mead and Pike (1975) were among the first to explore the use of RSM in biological research.
They provided a survey of a large number of papers in biological journals to determine
the extent of using RSM ideas. They reported that “not much awareness of current RSM
methods was shown” and proposed a “joint development by biologists and statisticians of
particular biologically reasonable models for particular practical research problems.” This
is a good advice since the practical research worker will be more interested in methods that
pertain to his or her particular field of application rather than pursuing general results.

Fortunately, RSM has since become more applicable to a wide spectrum of research areas,
including those with biological and agricultural applications. The development of new sta-
tistical software and the introduction of fast computers made it a lot easier for practitioners
to attempt more advanced RSM techniques than was possible before. The food industry, in
particular, has been a prime user of RSM since the early 1970s. Myers et al. (1989) devoted
two sections to review various applications of RSM in the food and biological sciences.

Since RSM’s original work was widely used in the physical and engineering sciences
as well as industrial research, more attention was initially given to these areas. This was
reflected in the review articles by Hill and Hunter (1966) and Myers et al. (1989). This trend
continued in the 1980s with the flurry of interest in the Taguchi method and its response
surface alternatives. In the remainder of this section, we shall bring attention to applications
in other areas that have not received as much attention, as in the case of the agricultural and
food sciences. The cited papers represent only a small sample from a much larger collection.

5.10.1 Applications of RSM in Agricultural Sciences

Edmondson (1991) provided an interesting application of RSM to greenhouse experiments
and presented some valuable insights into the use of RSM in an agricultural setting versus
an industrial one. Response surface techniques were utilized by Keisling et al. (1984) to pre-
dict weed age and future weed size from weed height. The objectives of their study were to
(1) utilize response models to generate data for describing weed interference in soybeans,
(2) present strategies for estimating multispecies interference, and (3) project yield loss from
existing data. The study was designed to produce information to assist soybean producers
in recognizing economically detrimental threshold levels of weed infestations that require
the initiation of control measures. Broudiscou et al. (1999) investigated the effects of several
mineral compounds on feed degradation and microbial growth in a continuous culture sys-
tem using RSM. The models considered were of the second degree fitted to data generated
by a nonstandard design that consisted of 16 points giving seven levels to each of the four
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factors in the experiment. The design had good characteristics (by comparison to a CCD
with 25 experimental runs, as shown in their Table II on p. 257), was close to being orthog-
onal, and almost rotatable. The authors used the measure of rotatability by Khuri (1988) to
assess the percent rotatability of their design, which turned out to be 99.6 as compared to
89.2 for the CCD. Furthermore, the design was also more G efficient than the CCD.

RSM has received attention for modeling the performance of agronomic experiments.
For example, Gilmour and Trinca (2005) showed, using turnip yield data, that due to
the complexity in biological systems, second-degree polynomial models may not provide
an adequate fit. In these situations, researchers should instead use fractional polynomial
response models. They considered a data set from studying the spacing and density effects
on turnip yield given by Mead (1988) and fitted a fractional polynomial model. Salawu
et al. (2007) used inverse polynomials to model the yield of maize against three control
variables, namely, levels of nitrogen, phosphorous, and potassium. A 33 factorial design
was used, and the experiment was conducted in a randomized complete block layout with
two replications per treatment combination. The inverse polynomial model (introduced
by Nelder 1966) provided a better fit than the traditional second-degree model. The latter
model may produce negative estimates of the yield response, which, of course, must be
positive. This shows that taking into account any physical knowledge about the response
can be very beneficial when choosing an appropriate model.

5.10.2 Applications of RSM in Food Sciences

Food science has also benefited greatly from the application of RSM to its various areas
of research. Diniz and Martin (1996) used RSM to study the effects of pH, tempera-
ture, and enzyme–substrate ratio (E/S) on the degree of hydrolysis of dogfish muscle
protein. The effects of the hydrolysis variables were estimated using a Box–Behnken
design. This design was also utilized by Jiang et al. (2009) to investigate the effects of x1 =
ultrasonic temperature (30◦C−70◦C), x2 = power (120−300 W), and x3 = time (10−50 min)

on ultrasonic-assisted extraction for oligosaccharides from longan fruit pericarp (OLFP).
Their fitted second-degree model was then used to obtain optimum conditions on x1, x2,
x3 that maximize the OLFP response. Optimization was also the goal of a study conducted
by Cao et al. (2009) to study the effects of temperature, pH, and E/S ratio on the response,
degree of hydrolysis (DH) for a marine shrimp called Acetes chinensis that was harvested in
China. The design used was a CCD for three control variables with n0 = 6 center-point
replications and an axial parameter α = 1.682. This causes the design to be rotatable.
Also, since n0 = 6, the design has the additional uniform precision property (see Table 4.3
in Khuri and Cornell 1996). The results of Cao et al.’s study indicated that hydrolysis of
shrimp (A. chinensis) resulted in a maximum DH value of about 26.33% under the optimal
conditions on temperature, pH, and E/S ratio.

Another optimization experiment was carried out by Zhang et al. (2007) in a study con-
cerning pyridoxine (PN), which is one of the three members of the vitamin B6 group. It has
broad applications in the food industry, cosmetics, and medical supplies. RSM was suc-
cessfully applied to determine optimum operating conditions for maximum conversion of
PN. The control variables were reaction temperature, reaction time, enzyme loading, molar
substrate ratio, and water activity. The design used was a CCD whose factorial portion con-
sisted of a one-half fraction of a 25 factorial, its axial portion contained 10 points with an
axial parameter α = 2 and n0 = 6 center-point replications. This design is rotatable since
α = F1/4 where F = 16 is the number of factorial points. It also has the uniform precision
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property since n0 = 6 (see Table 4.3 in Khuri and Cornell 1996). A listing of several appli-
cations of RSM in the optimization of chemical and biochemical processes was given by
Bas and Boyaci (2007). In addition to their review of the recent literature on RSM applica-
tions to the aforementioned areas, they also provided a critique concerning the misuses of
RSM in some of the reviewed articles.

5.11 New Research Directions in RSM

The area of GLMs is a relatively new area in RSM. We believe that the use of GLMs in
RSM will continue to grow and expand. For example, there is a need to develop computa-
tional methods to evaluate optimal designs when the dimension of the design space is high.
Finding robust and efficient designs in high-dimensional problems will involve formidable
computational challenges.

An emerging area is the use of graphical techniques to compare response surface designs.
It is known that the minimization of the MSEP criterion depends on the unknown parame-
ters of the linear predictor for a GLM. This makes the choice of designs for GLMs dependent
on unknown parameters. The method of QDGs was developed to deal with the design
dependence problem, as was described in Khuri and Mukhopadhyay (2006). Mukhopad-
hyay and Khuri (2012) used QDGs to compare designs for GLMs under a misspecified
linear predictor. There is also a need to study the effects of misspecifications of the link
function and/or the parent distribution of the data on the shape of the quantile plots of the
QDG approach. Furthermore, there is a need to explore the design dependence problem in
multiresponse situations involving several response variables that may be correlated.

The use of QDGs has thus far been limited to just comparing several given designs.
However, it is important to be able to start with an initial design and then construct a more
efficient design by augmenting the initial design with several points selected in a sequential
manner from the design space through the use of QDGs. This will be consistent with the
sequential nature of RSM. Solving this problem can lead to the development of optimal
designs for GLMs using QDGs.
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The present chapter provides a survey of results on experimental design for linear regres-
sion models with correlated responses.

6.1 Estimation and Design for Correlated Errors: The Main Approaches

6.1.1 Introduction

The common linear regression model is given by

y(x) = θ1f1(x) + · · · + θmfm(x) + ε(x), (6.1)

where f1(x), . . . , fm(x) are given linearly independent functions, ε(x) denotes a random error
process or field with E[ε(x)] = 0, x is the explanatory variable, which varies in the design
space X ⊂ R

d, and θ1, . . . ,θm are unknown parameters.
We assume that N observations can be taken at experimental conditions x1, . . . , xN to esti-

mate the parameters in the linear regression model (6.1). If an estimate of θ = (θ1, . . . ,θm)T

has been chosen, the quality of the statistical analysis can be further improved by choos-
ing an appropriate design for the experiment (in this chapter, we use the sign T to denote
the transposition). In particular, an optimal design minimizes a functional of the variance–
covariance matrix of the estimate, where the functional should reflect certain aspects of
the goal of the experiment. In contrast to the case of uncorrelated errors, where numer-
ous results and a rather complete theory are available (see e.g., Chapters 2 and 3 and
the monograph of Pukelsheim (2006), the construction of optimal designs for dependent
observations is intrinsically more difficult because the information matrix cannot be decom-
posed into the sum of information matrices for the individual design points. However, this
problem is of particular practical interest as, in many applications, the observations are
correlated. Typical examples include models where the explanatory variable x represents
time and where all observations correspond to one subject.

Because explicit solutions of optimal design problems for correlated observations are
rarely available, several authors have proposed to determine optimal designs based on
asymptotic arguments, see for example, Sacks and Ylvisaker (1966, 1968), Bickel and
Herzberg (1979), Näther (1985a), and Zhigljavsky et al. (2010). Roughly speaking, there
exist three approaches to embed the optimal design problem for regression models with
correlated observations in an asymptotic optimal design problem.

The first one is due to Sacks and Ylvisaker (1966, 1968), who assumed that the covariance
structure of the error process ε(x) is fixed and that the number of design points tends to
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infinity. As a result of this assumption, the design points become very close to each other
and the corresponding asymptotic optimal designs depend only on the behavior of the
correlation function in a neighborhood of the point 0.

Alternatively, Bickel and Herzberg (1979) and Bickel et al. (1981) considered a different
model, where the ordinary least squares (OLS) estimate is used and the correlation func-
tion depends on the number of observations N. The covariance matrix of the estimate is
of order O(1) in the model considered by Sacks and Ylvisaker (1966) and of order O(1/N)

in the model discussed by Bickel and Herzberg (1979). Therefore, the approach of Bickel
and Herzberg (1979) makes the optimal designs derived for the dependent and indepen-
dent cases more comparable. These authors assumed that the observation errors ε(t) in
the model (6.1) is a stationary process with short-range dependence, where the correlation
function of this process ρ(t) = E[ε(0)ε(t)] satisfies ρ(t) = o(1/t) if t → ∞. Dette et al.
(2009) extended results of Bickel and Herzberg (1979) to the case where the error process
has long-range dependence.

Recently, Zhigljavsky et al. (2010) modified the Bickel–Herzberg approach and allowed
the variance (in addition to the correlation function) to vary as the number of observa-
tions changes. As a result, the asymptotic covariance matrices may contain a kernel with a
singularity at the diagonal.

Significant research has been devoted to constructing exact optimal designs for the best
linear unbiased estimator (BLUE); see Section 6.3. The simplest algorithm was proposed in
Brimkulov et al. (1980). Other algorithms are based on the method of virtual noise devel-
oped by Pázman and Müller (2001) and the method of the expansion of the covariance
kernel suggested by Fedorov and Müller (2007). Note that the BLUE can only be used if the
correlation structure of errors is known, and its misspecification can lead to a severe loss of
efficiency. On the other hand, the OLS estimate does not employ the correlation structure.
Obviously, the OLS estimate can be less efficient than the BLUE, but in many cases, the loss
of efficiency is either small or negligible.

The structure of this chapter is as follows: In Section 6.1.2, we introduce different vari-
ations of the optimal design problem for the linear regression model (6.1). In particular,
we consider various assumptions about the design space X , the vector-function f (x) =
(f1(x), . . . , fm(x))T, the covariance kernel K(x, z) = E[ε(x)ε(z)], and also different sets of
designs, three different estimates of the unknown parameter θ, and corresponding covari-
ance matrices. In Section 6.1.3, we briefly discuss the concept of information contained in
design points and discuss some well-known paradoxes.

Section 6.2 is devoted to the problem of designing experiments for one-parameter mod-
els. This problem is often easier than similar problems for the multi-parameter case, and
in some cases, it can be solved explicitly, see, for example, Theorem 6.5. The easiest
one-parameter model is the so-called location-scale model where the variance of the OLS
estimate leads to a convex design optimality functional and makes many tools of the con-
vex optimization theory (see Section 6.2) applicable. Moreover, if the correlation function
ρ of the stationary error process in a location-scale model is convex for x > 0, then the OLS
estimate coincides with the BLUE; see Theorem 6.4.

Section 6.3 is devoted to the problem of optimal design for the BLUE. We review classi-
cal Sacks–Ylvisaker results (Sacks and Ylvisaker 1966, 1968) and also more recent results of
Fedorov–Müller and Pázman–Müller (Pázman and Müller 2001; Fedorov and Müller 2007).
Moreover, we also consider the well-known exchange algorithm for the construction of
N-point optimal designs. Additionally, we review one of Harman’s results on optimal
design for prediction in the case of the quadratic model and Wiener process (Harman and
Stulajter 2010).
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Section 6.4 reviews some results concerning characterization and construction of optimal
designs for the OLS estimate. We explain the classical Bickel–Herzberg approach and its
extension for the case of a long-range dependent error process. We also review some of
the recent results of the authors concerning the explicit construction of optimal designs for
models with m ≥ 2 parameters and some particular covariance kernels.

Appendices 6.A and 6.B contain selected proofs and a table of common correlation
functions that appear in discussions in the literature on optimal design for correlated
observations.

The authors are aware of the following three substantial surveys devoted to the theory
of optimal designs for correlated observations; see also a short survey in Müller’s book
(Müller 2007): the first one is an excellent book by Näther (1985a), and the other two are
the surveys by Cambanis (1985) and Fedorov (1996). As much research has been done in
recent years, we feel that there is a need for a new survey on the subject.

6.1.2 Different Versions of the Optimal Design Problem

6.1.2.1 General Regression Problem

The general multiparameter linear regression model (6.1) can be written as

y(x) = θTf (x) + ε(x), (6.2)

where the explanatory variable x belongs to a design space X , f (x) = (f1(x), . . . , fm(x))T is
a vector of linearly independent regression functions, and ε(x) denotes random process or
field with E[ε(x)] = 0, and E[ε(x)ε(z)] = K(x, z). The vector of parameters θ = (θ1, . . . ,θm)T

is unknown and has to be estimated on the basis of observations taken from one realization
of a stochastic process (or field) y(x). The function K(·, ·) will be called a covariance kernel.

Throughout this article, we consider different variations and specifications of the model
(6.2) in relation to the problem of optimal design.

6.1.2.2 Design Space X
We make a distinction between the following forms of the design space:

(a) X is a finite set.
(b) X is an interval [−1, 1].
(c) X ⊆ R.
(d) X ⊆ R

d with d ≥ 1.

In the case d = 2, the model (6.2) is called spatial model. If d ≥ 2, then ε(x) is called a random
field. If nothing is stated about X , then the most general case, which is (d), is considered.

6.1.2.3 Vector of Regression Functions f(x)

We will distinguish the following forms of the vector of functions f (x):

(a) The general case with m ≥ 1.
(b) The case of m = 1 where the model (6.2) is called a one-parameter model; see

Section 6.2.
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(c) The case of m = 1 and f (x) = 1 where the model (6.2) is called a location-scale
model; see Section 6.2.2.

To avoid technical difficulties, we always assume that all the components of the vector f(x)

are continuous functions.

6.1.2.4 Covariance Kernels K

We will distinguish the following cases for the covariance kernel K(·, ·):

1. The general positive definite function K(·, ·).
2. Kernels of stationary processes or fields, which have the form K(x, z) = σ2ρ(x − z),

where ρ(·) is a correlation function. Examples of commonly used correlation
functions are given in Table 6.1 and discussed in Appendix 6.B.

3. Kernels with nugget term, that is, K(x, z) = γK0(x, z)+(1−γ)δx,z, where 0 < γ < 1,
the kernel K0 is continuous on the diagonal, and δ denotes Kronecker’s symbol.

4. Kernels with singularity at the diagonal. These kernels possess the property that
K(x, z) → ∞ as x → z and K(x, x) is not defined for some x ∈ X (see Section 6.4.4
for examples).

By the definition, a kernel K : X × X → R is called positive definite if K(x, z) = K(z, x) for
all x, z ∈ X , and for any set of distinct points x1, . . . , xN in X , the matrix

� = (K(xi, xj))
N
i,j=1,

is nonnegative definite. We shall call the kernel K strictly positive definite if the inequality

��
K(x, z)ζ(dx)ζ(dz) > 0,

holds for any signed measure ζ on X such that 0 < |ζ|(X ) < ∞.

6.1.2.5 Designs

The following three types of designs will be considered in this article:

1. An exact N-point design ξN = {x1, . . . , xN}, where xi ∈ X .
2. An approximate design ξ(dx) corresponding to a probability measure on the design

space X (see interpretation in the following text).
3. A signed design defined as a signed measure ξ(dx) on the design space X with

|ξ|(X ) = ξ+(X ) + ξ−(X ) < ∞.

We denote the spaces of exact N-point designs onX , approximate designs onX , and signed
design measures on X by �N, �, and �(S), respectively.
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TABLE 6.1

Commonly Used Correlation Functions, d = 1, λ > 0, R > 0

Name ρ(x), x ≥ 0

Exponential e−λx

Gaussian e−λx2

Rational quadratic
1

(1 + λx2)ν
, ν > 0

Spherical, triangular
(
1 − x

R
)

1[0,R](x)

Spherical, circular

(
1 − 2

π

(
x
R

√
1 − x2

R2 + arcsin
( x

R
)))

1[0,R](x)

Spherical
(

1 − 3x
R + x3

2R3

)
1[0,R](x)

Penta-spherical
(

1 − 15x
8R + 5x3

4R3 − 3x5

R5

)
1[0,R](x)

Cubic
(

1 − 7x2

R2 + 35x3

4R3 − 7x5

2R5 + 3x7

4R7

)
1[0,R](x)

Stable exp
(−λxν

)
, 0 < ν ≤ 2

Oscillating, damped cosine e−λx cos(ωx), ω > 0

Oscillating, hole effect
1
ωx

sin(ωx), ω > 0

Oscillating, Bessel �(ν + 1)2ν(λx)−νJν(λx), ν ≥ (d + 1)/2

Poisson
1 − β2

1 − 2β cos(2πx) + β2 , 0 < β < 1

Cauchy family
1

(1 + |x|β)α/β
, β > 0, 0 < α ≤ 1

Mittag-Leffler family Eν,β(−|x|α), 0 < α ≤ 1, 0 < ν ≤ 1, β ≥ ν

Eν,β(−x) = �(β)

∞∑
k=0

(−x)k

�(νk + β)

E1,1(−x) = e−x, E1,2(−x) = (1 − e−x)/x

E1,3(−x) = 2(e−x − 1 + x)/x2

E1/2,1(−x) = ex2 (
1 − 2√

π

� x
0 e−u2

du
)

Scaling (1 − x2)e−x2/2

Singular logarithmic − ln x2

Singular rational
1

|x|α , 0 < α < 1

6.1.2.6 Interpretation of Approximate Designs

Consider an approximate design ξ, which is a probability measure on the design space X .
In asymptotic investigations for the case X ⊆ R, it is usually assumed that a sequence
of exact designs ξN = {x1,N, . . . , xN,N} is generated for increasing N using a continuous
nondecreasing function a : [0, 1] → X by
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xi,N = a
(

i − 1
N − 1

)
, i = 1, . . . , N,

where the function a is the inverse of a distribution function corresponding to ξ. For the
multidimensional space, we can suppose that exact designs are generated as centers of
partitions of the design space assuming that the diameters of partitions tend to zero but
the volumes of the cells Ci,N in these partitions are proportional to ξ(Ci,N).

6.1.2.7 Methods of Estimation and Covariance Matrices

Assume that an exact design ξN = {x1, . . . , xN} with a corresponding vector of observa-
tions y = (y1, . . . , yN)T is given. We consider the following three estimates of the unknown
parameters θ: the BLUE, OLS, and signed least squares (SLS). These estimates are, respec-
tively, defined by,

BLUE θ̂ = (XT�−1X)−1XT�−1y, (6.3)

OLS θ̃ = (XTX)−1XTy, (6.4)

SLS θ̃S = (XTS X)−1XTS y, (6.5)

where X = (fi(xj))
i=1,...,m
j=1,...,N is an N×m matrix, � = (K(xi, xj))i,j=1,...,N is an N×N matrix, and

S is an N×N diagonal matrix with +1 and −1 on the diagonal. The covariance matrices of
the estimates (6.3), (6.4), and (6.5) are given by

Var(θ̂) = (XT�−1X)−1,

Var(θ̃) = (XTX)−1XT�X(XTX)−1, (6.6)

Var(θ̃S) = (XTS X)−1XTS �S X(XTS X)−1,

respectively. Note that for the BLUE, there exists a nontrivial optimal design problem in
the space �N, but the corresponding problem in � is trivial: we simply observe the whole
process y(x); see Section 6.3. On the other hand, for the OLS estimate, the optimal design
problems in the spaces �N and � are meaningful; see Section 6.4. For the SLS estimate, we
consider the optimal design problem in the space �(S); see Section 6.2.3.

6.1.2.8 Optimality Criteria

The following criteria of design optimality (to be minimized) will be considered:

(a) Minimization of the variance of an estimate in a one-parameter model.
(b) Universal optimality of the covariance matrix (see Section 6.4.4).
(c) Minimization of a functional of the covariance matrix, for example, the determi-

nant or the trace (see Sections 6.3 and 6.4).
(d) Minimization of the mean squared error (MSE) of the best linear predictor at some

point (see Section 6.3.6).
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6.1.2.9 Information Matrix

To express information obtained from a design ξN, we use the Fisher information matrix
based on the assumption of normality of the observations

IM(ξN) = −E

[
∂2 ln p(y|ξN)

∂θ∂θT

]
,

where p(y|ξN) is the normal density with mean (θTf (x1), . . . ,θTf (xN)) and covariance
matrix � = (K(xi, xj))

N
i,j=1. Standard calculus gives that the matrix IM(ξN) equals

IM(ξN) = XT�−1X.

That is, the Fisher information matrix IM(ξN) is the inverse of the covariance matrix of the
BLUE of θ.

A very important observation concerning the information matrix IM(ξN) is the fact,
unlike the independent error situation, that in general, IM(ξN) cannot be decomposed into
the sum of the information measures for the individual design points. This makes the prob-
lem of designing experiments for correlated observations much more difficult than in the
case of uncorrelated errors.

6.1.2.10 Possible Generalizations of the Model (6.2)

Possible generalizations of the model (6.2) that are not considered in this survey include
the following:

(a) Regression models having general expected response E[y(x)] = η(x,θ), which is
non-linear in its parameters; see Atkinson (2008), Dette et al. (2010), and Fedorov
et al. (2012).

(b) Models with covariance kernel K depending on unknown parameters; see Müller
and Stehlík (2004), Pázman (2010), and Zimmerman (2006).

(c) Random-effect and mixed-effect models including population models; see
Atkinson (2008), Fedorov (1996), Schmelter (2007), Dette and Holland-Letz (2009),
Dette et al. (2010), and Holland-Letz et al. (2011, 2012).

(d) Treatment models where only block designs are of interest; see Cutler (1993a,b),
Kiefer and Wynn (1981, 1984), and Kunert et al. (2010).

(e) Models where observations are split into groups corresponding to independent
realizations of a stochastic process, resulting the block-diagonal structure of the
matrix �; see Dette et al. (2010), Holland-Letz et al. (2011), and Schmelter (2007).

(f) Models with observational noise, that is, cov(y(xi), y(xj)) = K(xi, xj) + τ2δi,j, so that
we need to repeat observations at the same points to estimate τ2; see Bates et al.
(1996), and Bettinger et al. (2008).
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6.1.3 Information Contained in Design Points

6.1.3.1 Points Providing Zero Information

To express information obtained from an exact design ξN, we use the information matrix

IM(ξN) = XT�−1X =
∑

i,j∈N
f (xi)gNij f T(xj),

where gNi,j stands for the i, jth element of the matrix �−1, (gNi,j )
N
i,j=1 = �−1, and N =

{1, . . . , N}. Despite the fact that the information matrix IM(ξN) cannot be decomposed into
the sum of information measures for each point, we can characterize the points that provide
zero information.

Lemma 6.1 (Pázman 2010, Lemma 1) Let ξN = {x1, . . . , xN} be an exact design and A be a
subset of N . If there exist vectors ai ∈ R

m, i ∈ A, such that the vector of regression functions f (x)

can be represented as

f (x) =
∑
i∈A

K(x, xi)ai,

for all x ∈ {x1, . . . , xN}, then all points in the set {xi | i 
∈ A} provide zero information; that is,

IM({xi}i∈A) = IM(ξN).

The proof of Lemma 6.1 is given in Appendix 6.A.

Corollary 6.1 (Pázman 2010, Corollary 1) Let ξN = {x1, . . . , xN} be an exact design. Define the
vector

ai =
N∑

j=1

gNij f (xj).

If ai = 0 for some i, then the point xi provides zero information.

Example 6.1

Consider the linear regression model, that is, f (x) = (1, x)T, with covariance kernel
K(x, z) = max{0, 1 − |x − z|}. Then the three-point design {−1, 0, 1} gives the same infor-
mation as the whole process observed on [−1, 1] and the same as any N-point design that
includes points −1, 0, 1 in its support.

Let us now present two paradoxes that are specific for the case of correlated obser-
vations; see Näther (1985a).
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6.1.3.2 Smit’s Paradox

Consider the location-scale model y(x) = θ + ε(x) with the correlation function ρ(t) = e−|t|
and the design interval X = [−1, 1]. Let us compare two estimates of the parameter θ:

• The mean for an exact design

θ̄ξN = N−1
N∑

i=1

y(xi).

• The mean for the continuous design

θ̄c =
1�

−1

y(x)dx/2.

For the design ξ5 = {−1, −0.5, 0, 0.5, 1}, straightforward calculation shows that Var(θ̄ξ5) =
0.529 while Var(θ̄c) = 0.568. We can see that Var(θ̄ξ5) < Var(θ̄c); that is, the variance
of the mean θ̄ξN using five observations is smaller than the variance of the mean for the
continuous design; this is called Smit’s paradox (see Smit 1961).

Consider now the design ξ9 = {−1, − 3
4 , − 1

2 , . . . , 1
2 , 3

4 , 1} with nine support points. Note
that ξ9 is obtained from ξ5 by adding four points. Calculus gives that Var(θ̄ξ9) = 0.542
and we can observe that Var(θ̄ξ9) > Var(θ̄ξ5). This means that for correlated observations,
the variance of the mean θ̄ξN can be increased by additional observations, which never
happens in the case of independent errors.

It is worth noting that the variance of the continuous BLUE of θ in the location-scale
model is 0.5, that is, slightly smaller than Var(θ̄ξ5). This means that the observation of a
process at five points gives almost the same information as the continuous observation of
the process.

6.1.3.3 Estimates with Zero Variance

Another interesting effect happens if we consider the location-scale model with a correla-
tion function such that ρ(2) = −1. Then for the two-point design ξ2 = {−1, 1}, we have
Var(θ̄ξ2) = 0. This means that the BLUE yields exactly the true value of the parameter θ,
which can never be in the case of uncorrelated observations. In general, estimation with
zero variance is possible only if the correlation function is positive semidefinite but not
positive definite.

6.2 Designs for One-Parameter Models

Throughout this section, we consider the one-parameter model

y(x) = θf (x) + ε(x), (6.7)

where θ is a scalar parameter, f (x) is a continuous function on X , and E[ε(x)] = 0, and
E[ε(x)ε(z)] = K(x, z).
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6.2.1 Designs for the BLUE

6.2.1.1 Designs for a Continuous Observation

Suppose that X ⊂ R and that an observation of the whole process {y(x)}x∈X is available.
The estimate θ̂ is called BLUE if θ̂ admits the representation

θ̂ =
�

y(x)dG(x),

where G is a function of bounded variation, that is, G ∈ BV(X ), E[θ̂] = θ, and

E(θ̂ − θ)2 = inf
{

E
(�

y(x)dG(x) − θ
)2

: G ∈ BV(X ) , E
(�

y(x)dG(x)
)

= θ

}
.

Note that the condition of unbiasedness in terms of G has the form
�

f (x)dG(x) = 1.

The following result is proved in Näther (1985a), p. 19. This result gives a necessary
condition for an estimator to be the BLUE.

Theorem 6.1 (Näther 1985a, Theorem 2.3) If

�
K(x, z)dG(x) = Cf (z),

for all z ∈ X and
�

f (x)dG(x) = 1, then the estimate

θ̂(G) =
�

y(x)dG(x),

is the BLUE. Moreover,

Var(θ̂) = C.

The existence of the solution of the Wiener–Hopf integral equation

�
K(x, z)dG(x) = f (z),

in the general case is a very hard and often ill-posed problem. Some analytic results have
been obtained in the case of stationary processes having the spectral density in the form of
the ratio of polynomials (see Pisarenko and Rozanov 1963 and Näther 1985a, Sec. 2.3).

6.2.1.2 Results of Sacks and Ylvisaker

Let {ξN}N∈N be a sequence of designs that converges to a continuous design μ, where for
each N ∈ N, ξN is an N-point design. Then the design problem can be viewed as how the
discrete BLUE θ̂(ξN) approximates the continuous BLUE θ̂(μ). The best known asymptotic
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result was obtained by Sacks and Ylvisaker (1966, 1968), who studied a sequence of exact
designs, which is asymptotically optimal in the sense that the convergence

lim
N→∞ |θ̂(ξN) − θ̂(μ)|2 = 0,

holds with the best possible convergence rate.
Suppose that the design space X is an interval [a, b]. The sequence {ξN} is called

asymptotic optimal for the BLUE if

lim
N→∞

Var(θ̂(ξN)) − Var(θ̂(μ))

inf
ξ̃N

Var(θ̂(ξ̃N)) − Var(θ̂(μ))
= 1.

To formulate the main result of Sacks and Ylvisaker (1966), we first define α(x) (assuming
its existence) as a difference of the two limits as z approaches x from below and above

α(x) = lim
z↗x

∂K(x, z)
∂z

− lim
z↘x

∂K(x, z)
∂z

, (6.8)

where the covariance kernel K can correspond to a stationary or non-stationary process.

Theorem 6.2 (Sacks and Ylvisaker 1966) Assume that α(x) > 0 and the function f (x) in the
model (6.7) enables the representation

f (x) =
�

K(z, x)h(z)dz,

where h(z) is continuous and x, z ∈ X = [a, b]. Then the sequence {ξN}N∈N defined by ξN =
{x11, . . . , xNN} where xiN is such that

xiN�
a

|α(x)h2(x)|1/3dx = i − 1
N − 1

b�
a

|α(x)h2(x)|1/3dx,

i = 1, . . . , N, is asymptotically optimal. Moreover,

Var (θ̂(ξN)) → Var (θ̂(μ))

with the rate O(N−2).

Example 6.2

Consider the one-parameter model

y(x) = θx2 + σW(x),
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where x ∈ [a, b] and {W(x)}x∈[a,b) is a Wiener process. The equidistant design (i.e.,
the design with equally spaced design points) on [a, b] is asymptotically optimal for
estimating θ; see Sacks and Ylvisaker (1966). Moreover, for the model

y(x) = θxγ + σW(x), γ < 1/2, x ∈ [0, 1],

the design with points xi = (i/N)3/(2γ−1), i = 1, . . . , N, is asymptotically optimal.

Example 6.3

Consider the location-scale model with correlation structure given by the stationary
Ornstein–Uhlenbeck process, that is, ρ(t) = e−λ|t|. Then equidistant designs are optimal;
see Kiselak and Stehlík (2008) and Zagoraiou and Baldi-Antognini (2009).

6.2.2 Optimal Design for OLS Estimation

In view of (6.6), for an N-point design ξN ∈ �N, the variance of the OLS estimate of θ in
the model (6.7) is given by

Var(θ̃) =
∑N

i=1
∑N

j=1 K(xi, xj)f (xi)f (xj)(∑N
i=1 f (xi)

)2 .

Consequently, for an approximate design ξ ∈ �, we consider the functional

D(ξ) =
[�

f 2(x)ξ(dx)
]−2��

K(x, z)f (x)f (z)ξ(dx)ξ(dz) (6.9)

as the design optimality functional. In general, the optimality functional (6.9) is not convex,
and therefore the problem of finding the optimal design is hard. The situation is much
simpler in the case of the location-scale model where f (x) = 1 for all x ∈ X .

6.2.2.1 Location-Scale Model

For the function f (x) = 1, the design optimality functional (6.9) becomes

D(ξ) =
��

K(x, z)ξ(dx)ξ(dz). (6.10)

Lemma 6.2 The functional D defined in (6.10) is convex. Moreover, if the covariance kernel K is
strictly positive definite, then D is strictly convex. That is,

D((1 − α)ξ + αξ0) < (1 − α)D(ξ) + αD(ξ0),

for all 0 < α < 1 and any two measures ξ and ξ0 on X such that ξ − ξ0 is a non zero (signed)
measure.

The proof of Lemma 6.2 is given in Appendix.
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The following result uses Lemma 6.2 and serves as an equivalence theorem (see Chap-
ter 2, Theorem 2.1), which can be used to verify the optimality of a given design.

Theorem 6.3 (Zhigljavsky et al. 2010)

(i) An approximate design ξ∗ minimizes the functional D defined in (6.10) if and only if

min
x∈X

b(x, ξ∗) ≥ D(ξ∗), (6.11)

where the function b is given by

b(x, ξ) =
�

K(x, z)ξ(dz).

(ii) In particular, a design ξ∗ is optimal if the function b(·, ξ∗) is constant, that is,

b(x, ξ∗) = D(ξ∗),

for all x ∈ X .

In the following examples, we present cases where analytical expressions for optimal
designs can be found and verified using Theorem 6.3. In these examples, we suppose that
X = [−1, 1]. Details can be found in Zhigljavsky et al. (2010).

Example 6.4

For the location-scale model with exponential correlation function ρ(t) = e−λ|t|, the opti-
mal design ξ∗ is a mixture of the continuous uniform measure on the interval [−1, 1] and
a two-point discrete measure supported on {−1, 1}, that is, the design ξ∗ has the density

p∗(x) = ω∗
(

1
2
δ1(x) + 1

2
δ−1(x)

)
+ (1 − ω∗)1

2
1[−1,1](x),

where ω∗ = 1/(1 + λ), δx(·) denotes the Dirac measure concentrated at the point x and
1A(·) is the indicator function of a set A. Note that the function b(·, ξ∗) is constant and
given by D(ξ∗) = 1/(1 + λ).

Example 6.5

For the location-scale model with triangular correlation function ρ(t) = max{0, 1 − λ|t|},
we have the following on optimal designs minimizing (6.10):

(a) For λ ∈ N, the optimal design is a discrete uniform measure supported at the 1 + 2λ
equidistant points, tj = j/λ − 1, j = 0, 1, . . . , 2λ. For this design, D(ξ∗) = 1/(1 + 2λ).

(b) For any λ > 0, the optimal design ξ∗ is a discrete symmetric measure supported at 2n
points ±t1, ±t2, . . . , ±tn with weights w1, . . . , wn at t1, . . . , tn, where n = �2λ�,

(w1, . . . , wn) = 1
n(n + 1)

(�n/2�, . . . , 3, n − 2, 2, n − 1, 1, n).
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FIGURE 6.1
Support points of the optimal designs in the location-scale model with triangular correlation function
ρ(t) = max{0, 1 − λ|t|} for different values of λ.

The symbol �z� stands for the smallest integer that is larger or equal to z. Here, t1, . . . , tn
denote the ordered quantities |u1|, . . . , |un|, where uj = −1+ j/λ, j = 1, . . . , n−1, un = 1.
Moreover, D(ξ∗) = 2λ/(n(n + 1)).

The support points for various values of λ are depicted in Figure 6.1, where a vertical line
at λ intersects the curves.

Example 6.6

Let ρ(t) = − ln(t2). Then the asymptotic optimal design minimizing the functional (6.10)
is the arcsine density on the interval [−1, 1] with density

p∗(x) = 1

π
√

1 − x2
.

Example 6.7

Let ρ(t) = 1/|t|α with 0 < α < 1. Then the asymptotic optimal design minimizing the
functional (6.10) is a beta distribution on the interval [−1, 1] with density

p∗(x) = 2−α

B
(

1+α
2 , 1+α

2

) (1 + x)
α−1

2 (1 − x)
α−1

2 .

6.2.2.2 Hajek Result

The following result is proved by Hajek (1956).



252 Handbook of Design and Analysis of Experiments

Theorem 6.4 (Hajek 1956) Consider the location-scale model with stationary error process
{ε(x)}x∈X . Suppose that the correlation function ρ is convex on (0, ∞). Let G∗ be a function such
that the estimate

θ̂ =
�

y(x)dG∗(x),

is the BLUE. Then the function G∗ is monotonically increasing.

Thus, for the model (6.7) with f (x) = 1 and a stationary error process having a convex
correlation function, G∗ is a proper distribution function corresponding to a probability
measure. This means that the pair OLS plus optimal design for OLS is the best possible
pair and coincides with the BLUE for a continuous observation of the process.

Note that the exponential and triangular correlation functions are convex.

Example 6.8

For the location-scale model with exponential correlation function

ρ(t) = e−λ|t|, X = [a, b],
we have that

dG∗(x) = 1
2 + λ(b − a)

[δa(x) + δb(x) + 1] dx,

and

θ̂ = 1
2 + λ(b − a)

⎡
⎣y(a) + y(b) +

b�
a

y(x) dx

⎤
⎦ ,

is the BLUE; see Näther (1985a, p. 57) for details.

6.2.3 Optimal Design for SLS

Consider the one-parameter model (6.7) with the design space as a discrete set X =
{x1, . . . , xn} and f (xi) 
= 0 for all i = 1, . . . , n (if f (xj) = 0 for some j, then the point xj
can be removed from X without changing the value of the estimates). Assume also that we
are using SLS and the matrix S with signs on the diagonal can be chosen along with the
weights p1, . . . , pn assigned to the points x1, . . . , xn in X . The design optimality functional
D(ξ) becomes

D(ξ) =
∑n

i=1
∑n

j=1 K(xi, xj)f (xi)f (xj)sisjpipj

(
∑n

i=1 f (xi)sipi)
2 (6.12)

with si ∈ {−1, 1} for all i = 1, . . . , n and
∑n

i=1 pi = 1.
Denote wi = sipi and call it signed weight of a point xi in the design ξ. Since

∑n
i=1 |wi| =∑n

i=1 pi = 1, the signed measure ξ, which assigns weights wi to points xi, i = 1, . . . , n,
belongs to the space �(S) of signed measures.

The problem of finding an optimal design and an optimal SLS estimate simultaneously
in the linear regression model with one parameter consists therefore in optimizing the
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functional

∑n
i=1
∑n

j=1 K(xi, xj)f (xi)f (xj)wiwj

(
∑n

i=1 f (xi)wi)
2 (6.13)

with respect to the signed weights {w1, . . . , wn} such that
∑n

i=1 |wi| > 0. Note that the value
of the functional (6.13) does not change if we change all the weights wi → cwi (i = 1, . . . , n)
for arbitrary c 
= 0.

Despite the fact that the functional is not convex, the problem of determining the optimal
design can be easily solved by applying the Cauchy–Schwarz inequality.

Theorem 6.5 Assume that the matrix � = (K(xi, xj))i,j=1,...,n is positive definite and f (xi) 
= 0 for
all i = 1, . . . , n. Then the optimal weights w∗

1, . . . , w∗
n minimizing (6.13) subject to

∑n
i=1 |wi| = 1

are given by

w∗
i = c

(�−1f )i

f (xi)
i = 1, . . . , n,

where c = (
∑n

i=1(�
−1f )i/f (xi))

−1 and f = (f (x1), . . . , f (xn))T.

The proof of Theorem 6.5 is given in Appendix 6.A.
For the design ξ∗ = {x1, . . . , xn; w∗

1, . . . , w∗
n}, we have D(ξ∗) = (f T �−1f )−1, that is, the

variance of the SLS estimate coincides with the variance of the BLUE constructed using all
observations. This means that the pair {SLS estimate, design ξ∗} provides the optimal pair
{estimate, design} for the problem (6.7). This result (in a slightly different form) is obtained
in (Näther 1985a, Theorem 5.3).

Example 6.9

Consider the location-scale model on X = {−1, 0, 1} and the Gaussian correlation func-
tion ρ(t) = e−t2/2. The optimal signed measure ξ∗ assigns the weights 0.455, −0.09, and
0.455, respectively, to the points −1, 0, and 1. It gives Var(θ̂BLUE) = Var(θ̃S|ξ∗) = 0.563.
Note that for OLS the optimal design ξ∗

OLS is concentrated at only two points −1 and
1 giving them weights 0.5 each. It gives Var(θ̃|ξOLS) = 0.568, which is slightly larger
than the variance of the BLUE.

6.3 Optimal Designs for the BLUE

Consider the general model (6.2) with θ ∈ R

m. Recall from Section 6.1.2 that having N
observations the BLUE of the parameter θ has the form

θ̂ = (XT�−1X)−1XT�−1y,
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which is the solution of the weighted least squares problem, and the covariance matrix of
the BLUE is given by

Var(θ̂) = (XT�−1X)−1.

The results in this section are the multi-parameters counterparts of the one-parameter
results of Section 6.2.

6.3.1 BLUE for Continuous Observations

Similar to the one-parameter case of Section 6.2.1, suppose that an observation of the whole
process {y(x)}x∈X is available. The estimate θ̂ is called BLUE if θ̂ admits the representation

θ̂ =
�

y(x)dG(x),

where G(x) = (G1(x), . . . , Gm(x))T is a vector of functions with bounded variation,
E[θ̂] = θ and

E‖θ̂ − θ‖2 = inf
{

E
(∥∥∥� y(x)dG(x) − θ

∥∥∥2
)

: G such that E
(�

y(x)dG(x)
)

= θ

}
.

Note that the condition of unbiasedness in terms of G has the form

�
f(x)dGT(x) = Im,

where Im is the m×m identity matrix.
The following result is proved in Näther (1985a, p. 19), and is a generalization of

Theorem 6.1.

Theorem 6.6 (Näther 1985a) If

�
K(x, z)dG(x) = Cf (z),

for all z ∈ X and

�
f (x)dGT(x) = Im,

then the estimate

θ̂(G) =
�

y(x)dG(x),

is the BLUE. Moreover, Var(θ̂) = C.
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Note that numerical computation of the continuous BLUE can be done as follows; see
Näther (1985a) for more details: First, one has to find a solution H of the integral equation

�
K(x, z)dH(x) = f (z),

and then the matrix

C =
(�

f (x)dHT(x)
)−1

is defined. If the matrix C is non-singular, then the BLUE is given by

θ̂ = C
�

y(x)dH(x).

Remark 6.1 Note that there does not exist a design problem in the case of continuous
observation since measurements are performed at all points. However, observation of a
process by exact designs can approximate continuous observation in many ways. Suppose
that a sequence of exact designs ξN converges to a continuous measure μ and another
sequence of exact designs ξ̃N converges to a continuous measure μ̃. Then it follows that
variances of the BLUE for designs ξN and ξ̃N converge to the same value if the supports of
the measures μ and μ̃ are the same.

6.3.2 Results of Sacks and Ylvisaker

Let {ξN}N∈N be a sequence of designs that converges to a continuous designμ andX = [a, b].
Then the problem is how the discrete BLUE θ̂(ξN) approximates the continuous BLUE θ̂(μ).

In the multi parameter case, the covariance matrix D(ξN) = (XT�−1X)−1 converges to
a limiting matrix as N → ∞. To compare matrices corresponding to different designs, we
have to use a suitable functional, for example, the L-optimality functional �(M) = tr(LM)

with a given positive definite matrix L and M is any matrix. The sequence {ξN}N∈N is called
asymptotically L-optimal for the BLUE if

lim
N→∞ inf

ξ̃N

�(D(ξN) − D(μ))

�(D(ξ̃N) − D(μ))
= 1.

In addition to the L-criterion, some other ways to define criteria of the asymptotic optimal-
ity are considered in Sacks and Ylvisaker (1968). The following result is a generalization of
Theorem 6.2.

Theorem 6.7 (Sacks and Ylvisaker 1968) Suppose that the function α defined in (6.8) is positive
and the components of the vector f (x) = (f1(x), . . . , fm(x))T satisfy the representation

fj(x) =
�

K(z, x)hj(z) dz,
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where the functions hj(z) are continuous, j = 1, . . . , m. Consider the design ξN = {x11, . . . , xNN}
where the points xiN are defined by

xiN�
a

|α(x)hT(x)Lh(x)|1/3dx = i − 1
N − 1

b�
a

|α(x)hT(x)Lh(x)|1/3dx,

i = 1, . . . , N, h = (h1, . . . , hm)T, and α(x) as in (6.8), then the sequence {ξN}N∈N is asymptotically
L-optimal.

Remark 6.2 In the linear and quadratic regression model with exponential covariance func-
tion e−λ|t|, the exact N-point D-optimal design converges to the equally spaced design as
λ → 0; see Dette et al. (2008).

In the following sections, we present three methods of numerical construction of optimal
designs: the method of exchange of points, the method of virtual noise, and the method
using the expansion of the covariance kernel.

6.3.3 Exchange-Type Algorithms

The steps of the exchange algorithm for computing an exact �-optimal N-point design are
as follows. Note that the exchange algorithm for models with uncorrelated observations is
given in Chapter 21.

First, we have to choose a starting design ξ
(0)
N such that the covariance matrix D(ξ

(0)
N ) is

nonsingular. At iteration j, one point from the design ξ
(j)
N is replaced by another point from

the design space, where we need to find a replacement giving a decrease of the �-criterion.
The algorithm has to be stopped if the decrease is smaller than a given tolerance bound
and proceeds to the next iteration otherwise.

For the D-optimality criterion, Brimkulov et al. (1980) proposed the procedure where
simultaneously a new point is introduced, which is defined by

x+ = arg max
x∈X \ξ(j)

N

φ(x, ξ(j)
N ),

and a point is removed, which is defined by

x− = arg min
x∈ξ(j)

N

φ(x, ξ(j)
N ).

Here, the function φ is given by

φ(x, ξ) = ψ2(x, ξ) + f̃
T
(x, ξ)IM−1(ξ)f̃ (x, ξ)

ψ2(x, ξ)
,
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where

ψ2(x, ξ) = K(x, x) − kT(x, ξ)�−1(ξ)k(x, ξ),

k(x, ξ) = (K(x, x1), . . . , K(x, xN)), IM(ξ) = XT(ξ)�−1(ξ)X(ξ),

f̃ (x, ξ) = f (x) − XT(ξ)�−1(ξ)k(x, ξ), X(ξ) = (f (x1), . . . , f (xN))T.

Note that the procedure proposed in Brimkulov et al. (1980) is based on ideas of using an
analog of the sensitivity function from the equivalence theorem for the case of uncorrelated
observations. Ucinski and Atkinson (2004) have developed formulas for the straightfor-
ward exchange algorithm that provides the best decrease of the optimality functional as
follows:

1. Select an initial design ξ(0) = {x(0)

1 , ..., x(0)
N } such that x(0)

i 
= x(0)

j for i 
= j and

det IM(ξ(0)) 
= 0. Define the matrices X(0) = (f (x(0)

1 ), . . . , f (x(0)
N ))T, �(0) =

(K(x(0)

i , x(0)

j ))N
i,j=1, and IM(0) = X(0)T(

�(0)
)−1X(0).

2. Set j = 0.
3. Determine

(i∗, z∗) = arg max
(i,z)∈{1,...,N}×X

�(xi, z),

where

�(xi, z) = (det IM(ξ
(j)
xi�z) − det IM(ξ(j)))/det IM(ξ(j)),

and ξ
(j)
xi�z denotes the design obtained from ξ(j) if the points xi and z are

interchanged.
4. If �(xi, z) < δ, where δ is some given positive tolerance, then terminate. Other-

wise, set ξ(j+1) = ξ
(j)
xi∗�z∗ and determine X(j+1), �(j+1), and IM(j+1) corresponding

to ξ(j+1) (expressions simplifying the numerical computation are given in Ucinski
and Atkinson 2004). Set j ⇐ j + 1 and go to step 3.

This method has been used in a number of practical examples; see Glatzer and Müller
(1999), Müller (2005), Müller (2007), Müller and Stehlík (2010), and Stehlík et al. (2008).

6.3.4 Constructing Optimal Designs by Expansion of the Covariance Kernel

Fedorov and Müller (2004) proposed to approximate the model (6.2) by the following
mixed-effect model

y(x) = θTf (x) +
q∑

j=1

βjψj(x) + εo(x),

where θ is the vector fixed-effect parameters, βj are random-effect parameters, ψj(x) are
eigenfunctions of Mercer’s expansion (Kanwal 1997) of the covariance kernel, and εo(x)
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is an error process with no correlation. Then an optimal design is determined using the
truncated D-criterion, namely, the minimization of the determinant of the covariance
matrix for the parameter θ, while both parameters θ and β are considered as unknown
parameters. In general, the computation of optimal designs requires the knowledge of
eigenfunctions ψj. Fedorov and Müller (2004) developed an approximation of the sensi-
tivity function φ(x, ξ), which is used in the exchange algorithm for computing discrete
optimal designs for models with uncorrelated observations. Specifically, for a discrete
design ξ = {x1, . . . , xn; w1, . . . , wn}, the function φ(x, ξ) has the form

φ(x, ξ) = f̃
T
(x, ξ)M−1(ξ)f̃ (x, ξ),

where

f̃
T
(x, ξ) = f T(x) + kT(x, ξ)�−1

Sξ

(
W + �−1

Sξ

)−1
WX,

M = XT(W − W
(

W + �−1
Sξ

)−1
W)X,

and the matrices X and W are defined by X = (f (x1), . . . , f (xn))T, W = N
s2 diag{w1, . . . , wn},

k(x, ξ) = (K(x, x1), . . . , K(x, xn)), Sξ = supp(ξ), �Sξ
= (K(xi, xj))

n
i,j=1, and s2 is a tuning

parameter that should be close to zero, for example, s2 = 10−6.
This method has been used in a number of practical examples (see Fedorov and

Flanagan 1997; Müller 2005, 2007).

6.3.5 Method of Virtual Noise

Pázman and Müller (2001) have proposed the method of virtual noise to determine optimal
designs. This method considers the following extended model:

ỹ(x) = θTf (x) + ε(x) + ε(x),

where ε(x) is the original stochastic process such that Cov(ε(x1), ε(x2)) = K(x1, x2) and ε(x)

is an additional heteroscedastic white noise depending on a design. The two processes ε(x)

and ε(x) are assumed to be uncorrelated. For a given design ξ = {x1, . . . , xn; w1, . . . , wn},
the variance of white noise at design points is given by Var(ε(xj)) = γσ2 ln(maxi wi/wj),
where γ is a tuning parameter, which should be small, for example, γ = 10−6.

The information matrix for the model with virtual noise is given by

IMε(ξ) = XT
(

�Sξ
+ γdiag

(
ln
[
max

i
wi/w1

]
, . . . , ln

[
max

i
wi/wn

]))−1

X,

where X = (f(x1), . . . , f(xn))T. Note that despite the presence of the weights wi, the designs
ξ in this approach can only be considered as exact N-point designs (see Pázman and Müller
1998).

To deal with the optimal design problem of finding the exact N-point optimal design
ξN ∈ �N, which maximizes �(IMε(ξN)), several algorithms have been proposed (see
Müller and Pázman 1999; Müller and Pázman 2003). These algorithms consist of a step-
wise one-point correction of the design. For example, in Müller and Pázman (2003) the
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design ξ(j) is updated as

ξ(j+1) = j
j + 1

ξ(j) + 1
j
δx∗ ,

where δx = {x; 1} is the one-point measure supported at x ∈ X . The point x∗ min-
imizes the directional derivative of �(IMε(ξ(j))) in the direction of δx where ξ(j) =
{x1, . . . , xn; w(j)

1 , . . . , w(j)
n }. Thus x∗ = xi∗ , where

i∗ = arg min
i=1,...,n

1

w(j)
i

(
d(xi) − 1Bj(i)

NBj

n∑
k=1

d(xk)

)
,

d(x) = aT(x)∇�(IM)a(x), a(x) = ∑n
k=1 gikf (xk), �−1 = (gik)

n
i,k=1, IM = XT�−1X, ∇�(M) =

∂�(M)/∂M, X = (fi(xj))
i=1,...,m
j=1,...,n , NBj is the cardinality of the set Bj = {i ∈ {1, . . . , n} : wi =

maxk w(j)
k }, and 1Bj(i) is the indicator function of the set Bj. An initial design ξ(0) can be

chosen as the uniform discrete design supported at points forming a discretization of the
design space.

This method has been used in a number of practical examples (see Müller 2005, 2007). A
relationship between the method of virtual noise and the method of the expansion of the
covariance kernel is discussed in Pázman (2010) and Pázman and Müller (2010).

6.3.6 Design for Prediction in the Quadratic Model

Consider the quadratic model

y(x) = θ1 + θ2x + θ3x2 + σW(x), (6.14)

where x ≥ 0, f (x) = (1, x, x2)T, and W(x) is the standardized Wiener process with

K(u, v) = cov(W(u), W(v)) = min(u, v).

Note that the Wiener process is nonstationary. In addition to estimation of the vector of
parameters θ = (θ1,θ2,θ3)

T, one can be interested in prediction of the process {y(u)}u∈[a,b]
at a point x, where x > b and [a, b] is a design interval. The best linear unbiased predictor
is given by

ŷ(x) = θ̂
T

f (x) + kT(x, ξ)�−1(y − Xθ̂),

where k(x, ξ) = (K(x, x1), . . . , K(x, xN))T, y = (y(x1), . . . , y(xN))T is a vector of observa-
tions at design points x1, . . . , xN, and θ̂ is the BLUE of θ. The MSE of ŷ(x) can easily be
calculated as

MSE(ŷ(x)) = K(x, x) − kT(x, ξ)�−1k(x, ξ) + cT
x (XT�−1X)−1cx,

where X = (fi(xj))
i=1,...,m
j=1,...,N and cx = f (x) − XT�−1k(x, ξ).
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Theorem 6.8 (Harman and Stulajter 2011) Consider the process (6.14) with design interval
[a, b]. Then the N-point design with points xi = a+ (b−a)(i−1)/(N −1), i = 1, . . . , N, is optimal
for estimating the unknown parameters θ1,θ2,θ3 with respect to any continuous Loewner isotonic
criterion as well as for the MSE of the best linear unbiased predictor.

Further results on optimal designs for prediction of processes can be found in Har-
man and Stulajter (2010, 2011) and Zimmerman (2006). Note that the design problem for
prediction is a major problem in computer experiments (see Bates et al. 1996; Dette and
Pepelyshev 2010; Pronzato and Müller 2012).

6.4 Optimal Designs for OLS

Recall from (6.2) and (6.4) that the OLS estimate is given by θ̃ = (XTX)−1XTy with
covariance matrix

Var(θ̃) = (XTX)−1XT�X(XTX)−1. (6.15)

Note that the BLUE can only be used if the correlation structure of the errors is known,
and its misspecification can lead to a considerable loss of efficiency. At the same time, the
OLS estimate does not employ the structure of the correlation. Obviously, the OLS estimates
can be less efficient than the BLUE, but in many cases, the loss of efficiency is small. For
example, consider the location-scale model with a stationary error process, the Gaussian
correlation function ρ(t) = e−λt2

, and the exact design ξ = {−1, −2/3, −1/3, 1/3, 2/3, 1}.
Suppose that the specified value of λ equals 1 while the true value is 2. Then the vari-
ance of the BLUE is 0.528, while the variance of the OLS estimate is 0.433. If the specified
value of λ equals the true value, then the variance of the BLUE is 0.382. A similar relation-
ship between the variances holds if the location-scale model and the Gaussian correlation
function are replaced by a polynomial model and a triangular or exponential correlation
function, respectively. For a more detailed discussion concerning advantages of the OLS
against the weighted least squares estimate, see Bickel and Herzberg (1979) and Section 6.1
in Näther (1985a).

Some results on the efficiency of the OLS estimation compared to the BLUE estimation
are obtained in Kiefer and Wynn (1981), Bischoff (1995a,b), and Puntanen et al. (2011).

6.4.1 OLS for Approximate Designs

Consider the model (6.2) and the case when a continuous observation of a process is avail-
able, and let ξ be an approximate design with nonsingular matrix M(ξ) = �

f (x)f T(x)ξ(dx).
Hence, the least squares problem has the form

inf
θ

�
(y(x) − θTf (x))2ξ(dx)
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with the solution

θ̃ = M−1(ξ)
�

f (x)y(x)ξ(dx),

which is called the continuous LSE. The covariance matrix of the estimate θ̃ has the form

Var(θ̃) = M(ξ)−1B(ξ, ξ)M(ξ)−1,

where

B(ξ,ν) =
��

K(x, z)f (x)f T(z)ξ(dx)ν(dz).

The general approximate design problem is therefore given by

min
ξ∈�

�(D(ξ)),

where � is some functional on the set of m × m matrices and the matrix D is defined by

D(ξ) = M(ξ)−1B(ξ, ξ)M(ξ)−1.

6.4.2 Results of Bickel and Herzberg

Consider the general model (6.2) with stationary error process and X = [−T, T]. Suppose
that for N observations, the correlation function is given by

ρN(t) = ρo(Nt), (6.16)

where ρo(t) = γρ(t) + (1 − γ)δt and ρ(t) → 0 as t → ∞, γ ∈ (0, 1]. The following regular-
ity conditions are needed to present a main result of Bickel and Herzberg (see Bickel and
Herzberg 1979) described in Theorem 6.9.

(C1) The regression functions f1(t), . . . , fm(t) are linearly independent and bounded on the
interval [−T, T] and satisfy a first order Lipschitz condition, that is,

|fi(t) − fi(s)| ≤ κ|t − s|

and

| fi(t)| ≤ κ

for all t, s ∈ [−T, T], i = 1, . . . , m.

(C2) There exists a twice differentiable quantile function a : (0, 1) → R and a positive constant
κ < ∞ such that for all u ∈ (0, 1),

1
κ

≤ a′(u) ≤ κ, |a′′(u)| ≤ κ. (6.17)
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The quantile function a is used to generate exact N-point designs ξN =
{t1N, . . . , tNN}, that is,

tiN = a
( i − 1

N − 1

)
, i = 1, . . . , N. (6.18)

(C3) The correlation function ρ(t) is differentiable with bounded derivative, that is, |ρ′(t)| ≤ κ,
t ∈ (0, ∞), and satisfies ρ′(t) ≤ 0 for sufficiently large t. This assumption implies that
ρ(t) is nonnegative for sufficiently large t.

(C4) The correlation function ρ is integrable, that is,
� |ρ(t)| dt < ∞. As a consequence, the

function

Q(t) =
∞∑

j=1

ρ(jt), (6.19)

is well defined and finite for all t > 0.

Theorem 6.9 (Bickel and Herzberg 1979) Consider the model (6.2) with correlation function
ρN defined in (13.6) for observations at N points t1N, . . . , tNN defined in (6.18). Assume that the
correlation function ρ, the quantile function a, and the regression functions f1, . . . , fm satisfy the
regularity assumptions (C1)–(C4), and suppose that the elements of the matrix

R(a) =
⎛
⎝ 1�

0

fi(a(u))fj(a(u))Q(a′(u)) du

⎞
⎠

m

i,j=1

,

exist and are finite. Then the variance–covariance matrix (6.15) of the least squares estimate is well
defined and

lim
N→∞σ−2NVar(θ̃) = W−1(a) + 2γW−1(a)R(a)W−1(a),

where γ is the parameter of the correlation function ρo(t) and the matrix W(a) is given by

W(a) =
⎛
⎝ 1�

0

fi(a(u))fj(a(u)) du

⎞
⎠

m

i,j=1

.

The conditions on the quantile function a imply that the corresponding design ξ has
a continuous density, say, p : [0, 1] → R. Therefore, the matrices W(a) and R(a) can be
expressed in terms of p as follows:

R(ξ) =
⎛
⎝ 1�

0

fi(t)fj(t)Q(1/p(t))p(t) dt

⎞
⎠

m

i,j=1

,
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and

W(ξ) =
⎛
⎝ 1�

0

fi(t)fj(t)p(t) dt

⎞
⎠

m

i,j=1

.

In the remaining part of this section, we consider the one-parameter case when f = f1.
Define H(t) = Q(t) − tQ′(t), where Q(t) is given by (6.19), and the function q(x,μ, τ) by

q(t,μ, τ) =
⎧⎨
⎩

1
H−1(μ(1 − τ/f 2(t)))

, μ(1 − τ/f 2(t)) ≥ 0,

0, otherwise.

Theorem 6.10 (Bickel and Herzberg 1979) Assume that the regression function f in the one-
parameter linear model (6.7) is continuous and Q defined in (6.19) is strictly convex. Then the
optimal design exists, and its density is of the form q(t,μ∗, τ∗), where the parameters μ∗ and τ∗
satisfy the equations

�
q(t,μ∗, τ∗)dt = 1

and

2
�

Q(1/q(t))f 2(t)q(t)dt�
f 2(t)q(t)dt

= μ∗ − 1
2γ

.

6.4.3 Results for Long-Range Dependence Error Structure

As in the previous section, we consider the general model (6.2) with stationary error process
having short-range dependence. Suppose that for N observations, the correlation function
is given by

ρN(t) = ρo(Nt),

where ρo(t) = γρ(t)+(1−γ)δt and ρ(t) → 0 as t → ∞, γ ∈ (0, 1]. As in the previous section,
we assume that regularity conditions (C1)–(C3) are satisfied, and instead of assumption
(C4) of Bickel and Herzberg (1979), we now assume that

∞�
0

|ρ(t)| dt = ∞. (6.20)

The condition (6.20) means the long-range dependence of the observations. Note that in
this case, it follows that

∞�
0

|ρ(t)| dt =
∞∑

k=0

|ρ(k)| = ∞,
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where ρ(k) = cov(ε(u), ε(u + k)) for any u. The correlation function of a stationary process
with long-range dependence can be written as

ρα(t) = L(t)
|t|α , |t| → ∞, (6.21)

where 0 < α ≤ 1 and L(t) is a slowly varying function (SVF) for large t (see Doukhan et al.
2003). In particular, ρα satisfies

ρα(t) = O(1/|t|α), |t| → ∞,

and we will say that ρα(t) belongs to SVF family.
First, we introduce two parametric families of correlation functions that are important

in applications. The correlation function ρα belongs to the Cauchy family if it is defined by

ρα(t) = 1
(1 + |t|β)α/β

, (6.22)

where β > 0, 0 < α ≤ 1. The correlation function ρα belongs to the Mittag-Leffler family if
it is defined by

ρα(t) = Eν,β(−|t|α), Eν,β(−t) = �(β)

∞∑
k=0

(−t)k

�(νk + β)
, (6.23)

where 0 < α ≤ 1, 0 < ν ≤ 1, β ≥ ν (for more details, see Dette et al. 2009).
In the following, we present optimal designs for the three families of correlation func-

tions, which are given by (6.21) through (6.23). The function Q(t) = ∑∞
j=1 ρ(jt) plays

an important role in the asymptotic analysis by Bickel and Herzberg (1979), but in the
case of long-range dependence, this function is infinite. For an asymptotic analysis under
long-range dependence, we introduce the function

Qα(t) = lim
N→∞

1
dα(N)

N∑
j=1

ρα(jt), (6.24)

where the normalizing sequence is given by

dα(N) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N1−α if α < 1 and ρα has the form (6.22) or (6.23),
ln N if α = 1 and ρα has the form (6.22) or (6.23),
L(N)N1−α if α < 1 and ρα has the form (6.21),
L(N) ln N if α = 1 and ρα has the form (6.21),

and shown in Lemma 6.3, which the function Qα(t) is well defined.
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Lemma 6.3 (Dette et al. 2009) If the correlation function ρα(t) belongs either to the Cauchy,
Mittag-Leffler, or SVF family, then the limit in (6.24) exists and is given by

Qα(t) =

⎧⎪⎨
⎪⎩

c
(1 − α)|t|α , 0 < α < 1,

c
|t| , α = 1,

where

c =
{

�(β)
�(β−ν)

, if ρα(t) belongs to the Mittag-Leffler family,

1 , otherwise.

The following result describes the asymptotic behavior of the OLS for the case of the
long-range dependence.

Theorem 6.11 (Dette et al. 2009) Consider the model (6.2) with correlation function ρN defined
in (6.16) for observations at N points t1N, . . . , tNN defined by (6.18). Assume that the correlation
function ρα is either an element of the Cauchy, Mittag-Leffler, or SVF family. If

� 1
0 Qα(a′(t))

dt < ∞ and the regularity assumptions (C1)–(C3) stated in the previous subsection are satisfied,
then we obtain for the variance-covariance, matrix of the least squares estimate defined in (6.15):

σ−2 N
dα(N)

Var(θ̃) = 2γW−1(a)Rα(a)W−1(a) + O(1/dα(N)),

where the matrices W and Rα are given by

W(a) =
⎛
⎝ 1�

0

fi(a(u))fj(a(u)) du

⎞
⎠

m

i,j=1

,

Rα(a) =
⎛
⎝ 1�

0

fi(a(u))fj(a(u))Qα(a′(u)) du

⎞
⎠

m

i,j=1

.

Note that the constant γ only appears as a factor in the asymptotic variance–covariance
matrices of the least squares estimate. Because most optimality criteria are positively
homogeneous (see, e.g., Pukelsheim 1993), it is reasonable to consider the matrix

W−1(a)Rα(a)W−1(a),

which is proportional to the asymptotic variance–covariance matrix of the least squares
estimate. Moreover, if the function a corresponds to a continuous distribution with a den-
sity, say φ, then a′(t) = 1/φ(t) and the asymptotic variance–covariance matrix of the least
squares estimate is proportional to the matrix

Dα(φ) = W−1(φ)Rα(φ)W−1(φ),
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where the matrices W(φ) and Rα(φ) are given by

W(φ) =
⎛
⎝ T�

−T

fi(t)fj(t)φ(t) dt

⎞
⎠

i,j=1,...,m

,

Rα(φ) =
⎛
⎝ T�

−T

fi(t)fj(t)Qα(1/φ(t))φ(t) dt

⎞
⎠

i,j=1,...,m

= c
1 − α

⎛
⎝ T�

−T

fi(t)fj(t)φ1+α(t) dt

⎞
⎠

i,j=1,...,m

,

respectively, and we have used the representation Qα(t) = c/((1 −α)|t|α) for the last iden-
tity. An (asymptotic) optimal design for classical least squares estimation minimizes an
appropriate function of the matrix Dα(φ).

Note that under long-range dependence, the variance–covariance matrix of the least
squares estimate converges more slowly to zero than in the case of independent or
short-range dependent errors. In the case of short-range dependence, no normalization
is necessary other than normalizing the variance–covariance matrix. Under long-range
dependence, an additional factor dα(N)/N is needed. Moreover, it is worthwhile to note
that under long-range dependence, the asymptotic variance–covariance matrix is fully
determined by the function Qα(t) and does not depend on the particular correlation func-
tion ρα. In the following section, we discuss several examples in order to illustrate the
concept.

In most cases, the asymptotic optimal designs for the regression model (6.2) have to
be found numerically; explicit solutions are only possible for very simple models. The
following result established optimal designs for linear models with one parameter.

Theorem 6.12 (Dette et al. 2009) Assume that the correlation function ρα is either an element
of the Cauchy, Mittag-Leffler, or SVF family. Then, for the one-parameter linear regression model
(6.7), the asymptotic optimal design exists; it is absolute continuous with respect to the Lebesgue
measure and has the density

p∗(t) =

⎧⎪⎨
⎪⎩

1

H−1
α (μ − τ/f 2(t))

=
(1 − α

1 + α
(μ − τ/f 2(t))

) 1
α , μ − τ/f 2(t) ≥ 0,

0, otherwise,
(6.25)

where the constants μ and τ are given by

μ = 2

�
f 2(t)Qα(1/p∗(t))p∗(t) dt�

f 2(t)p∗(t) dt
,

τ =
�

f 2(t)Qα(1/p∗(t))p∗(t) dt +
�

f 2(t)Q′
α(1/p∗(t)) dt.
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We now consider two special cases, which are of particular importance. If the number of
parameters m equals 1 and f (t) ≡ 1, we obtain the location-scale model, and the asymptotic
optimal density is the uniform density, that is,

p∗(t) =
{

1
2T , |t| ≤ T,
0, otherwise.

(6.26)

Similarly, in the linear model through the origin, we have m = 1, f (t) ≡ t, and the asymptotic
optimal density is given by

p(t) =

⎧⎪⎪⎨
⎪⎪⎩

0, |t| ≤ √
τ/μ,(

1−α
1+α

(μ − τ/t2)
)1/α

,
√
τ/μ ≤ |t| ≤ T,

0, otherwise,

where

μ = 2

�
t2p1+α(t) dt

(1 − α)
�

t2p(t) dt
, τ =

�
t2p1+α(t) dt,

and α is the parameter of the correlation function. These formulas are given for 0 <α< 1.
For α = 1 and f (t) = t, the asymptotic optimal density is the uniform density (6.26).
The optimal densities for the parameters α= 1/4, 1/2, 3/4, 0.95 and T = 1 are displayed in
Figure 6.2.

6.4.3.1 Linear Regression

Consider the model (6.2) with m = 2, f1(t) = 1, f2(t) = t, which corresponds to the lin-
ear regression model. In this case, the optimal design for estimating the slope (i.e., the
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FIGURE 6.2
Asymptotic optimal design densities on the interval [−1, 1] for the linear regression model through the origin.
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FIGURE 6.3
Asymptotic D-optimal design densities for the linear regression model on the interval [−1, 1].

e2-optimal design) has the density (6.25), while the D-optimal designs have to be deter-
mined numerically in all cases. Some D-optimal design densities on the interval [−1, 1]
corresponding to the parameters α = 1/4, 1/2, 3/4, 0.95 are displayed in Figure 6.3.

6.4.4 Optimal Designs for OLS

In this section, we consider the general model (6.2) with arbitrary covariance kernel. For
an exact N-point design ξN, the covariance matrix of the least squares estimate θ̃ = θ̃ξN

given in (6.15) can be written as

Var(θ̃) = D(ξN) = M−1(ξN)B(ξN, ξN)M−1(ξN), (6.27)

where the matrices M and B are given by

M(ξN) =
�

f(x)fT(x)ξN(dx), (6.28)

B(ξN, ξN) =
��

K(x, z)f(x)fT(z)ξN(dx)ξN(dz). (6.29)

The definition of the matrices M(ξ) and B(ξ, ξ) can be extended to an approximate design
ξ, provided that the corresponding integrals exist. The matrix

D(ξ) = M−1(ξ)B(ξ, ξ)M−1(ξ), (6.30)

is called the covariance matrix for the design ξ (as in Section 6.4.1) if the matrices B(ξ, ξ)

and M−1(ξ) are well defined. An (approximate) optimal design minimizes a functional of
the covariance matrix D(ξ) over the set �.

Note that in general the function D(ξ) is not convex (with respect to the Loewner order-
ing) on the space of all approximate designs. This implies that even if one determines
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optimal designs by minimizing a convex functional, say �, of the matrix D(ξ), the cor-
responding functional ξ → �(D(ξ)) is in general not convex on the space of designs �.
Consider, for example, the case m = 1 where D(ξ) is given by

D(ξ) =
[�

f 2(x)ξ(dx)
]−2� �

K(x, z)f (x)f (z)ξ(dx)ξ(dz) ; (6.31)

then it is obvious that this functional is not necessarily convex. On the other hand, for the
location-scale model, we have m = 1, f (x) = 1 for all x ∈ X , and this expression reduces to

D(ξ) =
� �

K(x, z)ξ(dx)ξ(dz).

In the case, K(x, z) = σ2ρ(x − z), where ρ is a correlation function; this functional is con-
vex on the set of probability measures on the domain X ; see Lemma 6.1 in Zhigljavsky
et al. (2010) and Lemma 4.3 in Näther (1985a). For this reason (namely, the convexity of the
functional D(ξ)), most of the literature on (asymptotic) optimal design problems for least
squares estimation in the presence of correlated observations considers the location-scale
model. This corresponds to the estimation of the mean of a stationary process; see, for
example, Boltze and Näther (1982) and Näther (1985a,b).

Consider an optimality functional � on the space of the non-negative definite matrices,
and define

ϕ(x, ξ) = fT(x)D(ξ) C(ξ)M−1(ξ)f(x), (6.32)

b(x, ξ) = tr
[
C(ξ)M−1(ξ)B(ξ, ξx)M−1(ξ)

]
, (6.33)

where

C(ξ) = ∂�(D)

∂D

∣∣∣
D=D(ξ)

(here, we assume differentiability of the optimality functional). The following result is a
reformulation of the necessary condition of design optimality.

Theorem 6.13 (Dette et al. 2013) Let ξ∗ be any design minimizing the functional �(D(ξ)). Then
the inequality

ϕ(x, ξ∗) ≤ b(x, ξ∗) (6.34)

holds for all x ∈ X , where the functions ϕ(x, ξ) and b(x, ξ) are defined in (6.32) and (6.33),
respectively. Moreover, there is equality in (6.34) for ξ∗-almost all x, that is, ξ∗(A) = 0 where

A = A(ξ∗) = {x ∈ X | ϕ(x, ξ∗) < b(x, ξ∗)}

is the set of x ∈ X such that the inequality (6.34) is strict.
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In this section, we consider the matrix D(ξ) defined in (6.30) as the matrix optimality
functional, which we are going to minimize on the set � of all designs, such that the matri-
ces B(ξ, ξ) and M−1(ξ) (and therefore the matrix D(ξ)) are well defined. We say that a design
ξ∗ is universally optimal if

D(ξ∗) ≤ D(ξ)

in the sense of the Loewner ordering for any design ξ ∈ �; see Pukelsheim (1993). Note
that a design ξ∗ is universally optimal if and only if ξ∗ is c-optimal for any nonzero vector
c ∈ R

m; that is, cTD(ξ∗)c ≤ cTD(ξ)c for any ξ ∈ � and any nonzero c ∈ R

m.
For a given design ξ ∈ � with nonsingular matrix M(ξ), introduce the vector-valued

function

g(x) =
�

K(x, z)f(z)ξ(dz) − �f(x) , x ∈ X , (6.35)

where � = B(ξ, ξ)M−1(ξ). This function satisfies the equality

�
g(x)fT(x)ξ(dx) = 0 . (6.36)

Additionally, as the vector of regression functions f(·) is continuous on X , the function g(·)
is continuous too.

The following theorem gives a necessary conditions for the universal optimality of a
design.

Theorem 6.14 (Dette et al. 2013) Consider the regression model (6.1) with covariance kernel K,
a design ξ ∈ �, and the corresponding vector-function g(x) defined in (6.35). If the design ξ is
universally optimal, then the function g(x) can be represented in the form g(x) = γ(x)f(x), where
γ(x) is a nonnegative function defined on X such that γ(x) = 0 for all x in the support of the
design ξ.

Let us now discuss the case when the regression functions are proportional to eigenfunc-
tions of the integral operator induced by the covariance kernel. To be precise, let X denote
a compact subset of a metric space, and let ν denote a measure on the corresponding Borel
field with positive density. Consider the integral operator

TK(f )(·) =
�

K(·, z)f (z)ν(dz) (6.37)

on L2(ν). Under certain assumptions on the kernel (e.g., if K(x, z) is symmetric, continuous,
and positive definite), TK defines a symmetric, compact self-adjoint operator. In this case,
Mercer’s theorem (see, e.g., Kanwal 1997) shows that there exists a countable number of
eigenfunctions ϕ1,ϕ2, . . . with positive eigenvalues λ1, λ2, . . . of the operator K, that is,

TK(ϕ	) = λ	ϕ	, 	 = 1, 2, . . . . (6.38)

The next statement follows directly from Theorem 6.14.
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Theorem 6.15 (Dette et al. 2013) Let X be a compact subset of a metric space and assume that
the covariance kernel K defines an integral operator TK of the form (6.37), where the eigenfunctions
satisfy (6.38). Consider the regression model (6.1) with f(x) = L(ϕi1(x), . . . ,ϕim(x))T and the
covariance kernel K, where L ∈ R

m×m is a non-singular matrix. Then the design ν is universally
optimal in the linear regression model (6.2).

The following two results give optimal design in explicit form for polynomial regression
models with two singular covariance kernels.

Theorem 6.16 (Dette et al. 2013) Consider the linear regression model (6.1) with f(x) =
(1, x, x2, . . . , xm−1)T on the interval X = [−1, 1], and the covariance kernel ρ(t) = − ln(t2). Then
the arcsine design ξa with density

p(x) = 1/(π
√

1 − x2), x ∈ (−1, 1)

is the universally optimal design.

Theorem 6.17 (Dette et al. 2013) Consider the linear regression model (6.1) with f(x) =
(1, x, x2, . . . , xm−1)T on the interval X = [−1, 1], and covariance kernel ρ(t) = 1/|t|α. Then the
design with generalized arcsine density

pα(x) = 2−α

B( 1+α
2 , 1+α

2 )
(1 + x)

α−1
2 (1 − x)

α−1
2 ,

is universally optimal.
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Appendix 6.A Proofs

Proof of Lemma 6.1 Let GN = (gNi,j )
N
i,j=1 = (�N )−1 where �N = (K(xi, xj))i,j∈N . Also let

GA = (gA
i,j)i,j∈A = (�A)−1 where �A = (K(xi, xj))i,j∈A. Straightforward calculus gives
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IM(ξN) =
∑

i,j∈N
f(xi)gNij fT(xj)

=
∑
k,l∈A

∑
i,j∈N

akK(xk, xi)gNij K(xj, xl)aT
l

=
∑
k,l∈A

akK(xk, xl)aT
l

=
∑
k,l∈A

f (xk)gA
klf

T(xl) = IM({xi}i∈A),

which completes the proof. �

Proof of Lemma 6.2 We have

D(αξ2 + (1 − α)ξ1) =
��

K(x, z)[αξ2(dx) + (1 − α)ξ1(dx)][αξ2(dz) + (1 − α)ξ1(dz)]
= (1 − α)2

��
K(x, z)ξ1(dx)ξ1(dz) + α2

��
K(x, z)ξ2(dx)ξ2(dz)

+ 2α(1 − α)
��

K(x, z)ξ1(dx)ξ2(dz)

= α2D(ξ2) + (1 − α)2D(ξ1) + 2α(1 − α)
��

K(x, z)ξ1(dx)ξ2(dz)

= αD(ξ2) + (1 − α)D(ξ1) − α(1 − α)A ,

where

A =
��

K(x, z)[ξ2(dx)ξ2(dz) + ξ1(dx)ξ1(dz) − 2ξ2(dx)ξ1(dz)]
=

��
K(x, z)ζ(dx)ζ(dz)

and ζ(dx) = ξ2(dx) − ξ1(dx). Since the correlation function K(x, z) is positive definite, it
follows A ≥ 0. If K(x, z) is strictly positive definite, we have A > 0 whenever ζ is not
trivial. Therefore, the functional D(·) is strictly convex. �

Proof of Theorem 6.5 Denote Kij = K(xi, xj), f (xi) = fi, ai = fiwi, i, j = 1, . . . , n, a =
(a1, . . . , an)T. Then for any signed design ξ = {x1, . . . , xn; w1, . . . , wn}, we have

D(ξ) =
∑

i
∑

j Kijfifjwiwj

(
∑

i f 2
i wi)

2
=
∑

i
∑

j Kijaiaj

(
∑

i fiai)
2 = aT�a

(aTf )2 .

Since � is symmetric and � > 0, there exists �−1 and a symmetric matrix �1/2 > 0 such
that � = �1/2�1/2. Denote b = �1/2a and d = �−1/2f . Then we can write D(ξ) as D(ξ) =
bTb/(bTd)2. The Cauchy–Schwarz inequality gives for any two vectors b and d: (bTd)2 ≤
(bTb)(dTd), that is, bTb/(bTd)2 ≥ 1/(dTd). This inequality with b and d as mentioned earlier
is equivalent to
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D(ξ) ≥ 1
f �−1f

for all ξ ∈ �(S). The equality in this inequality is attained if the vector b is proportional to
the vector d; that is, if bi = cdi for all i and any c 
= 0. Then the equality bi = cdi can be
rewritten in the form wi = c(�−1f )i/f (xi). �

Appendix 6.B Common Correlation Functions

Definition 6.1 (Stationarity in the wide sense). A random field is a stationary random field in
the wide sense if E[ε(x)] = const and K(x, z) := cov(ε(x), ε(z)) = ρ(x − z).

The covariance function ρ(x) on R

d is fully separable if ρ(x) = ρ1(x1) · · · ρd(xd). Note that the
product and the sum of two covariance functions are also covariance functions; see Abrahamsen
(1997), Sec 3.1.

Definition 6.2 A stationary random field is an isotropic random field (in the wide sense) if the
covariance function depends on distance alone, that is,

K(x, z) = ρ(‖x − z‖),

and ‖x‖ = √
xTx.

Definition 6.3 A stationary random field is an anisotropic random field (in the wide sense) if the
covariance function depends on a non-Euclidean norm of the difference of two points, that is,

K(x, z) = ρ(‖x − z‖A),

where ‖x‖A = √
xTAx and A is a positive semidefinite matrix. The function ρ(‖x − z‖A) is called

an ellipsoidal correlation function.
In Table 6.1 we present correlation functions for the one-dimensional case. In the case of d > 1,

most common isotropic correlation functions have the form ρ(‖x‖).
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7.1 Introduction

7.1.1 Fractional Factorial Experiments

As explained in Chapter 1, the purpose of a factorial experiment is to investigate the
average contribution that each treatment factor makes to the response (called the factor
main effect) as well as the nonadditive (joint) effect of the factors on the response (called the
factor interactions). In this chapter, we label the response variable as y and the k factors as
F1, F2, F3, . . . (except in Section 7.10 where we use A, B, C, . . . for ease of exposition), and
we look at unblocked experiments.

If the ith factor, Fi, is observed at �i levels, then the total number of treatment combina-
tions (combinations of factor levels) is t = ∏k

i=1 �i. In experiments with numerous factors,
t will be very large even when each factor has only two levels. For example, an experiment
with 10 two-level factors has a total of t = 210 = 1024 treatment combinations. If all of
these were run sequentially in an experiment and each one required only 10 min to set up
and obtain an observation, the entire experiment would take over 170 hours. Many exper-
iments are run in industrial settings, where “time is money” and the allotted time frame
for experimentation may be much less than this. The situation is worse if the time required
for a single observation is considerably longer than 10 min! Consequently, it is frequently
the case that only a fraction of the treatment combinations will be observed, resulting in a
fractional factorial experiment. For similar reasons, fractions are usually run with factors at
small numbers of levels (say, 2 or 3).

The use of fractional factorial experiments is widespread, especially for research and
development in industry and engineering and in medical research and biotechnology (see,
e.g., Schmidt and Launsby 1992; Dante et al. 2003; and Jaynes et al. 2012). Although a
selection of a manageable number, n, of the t treatment combinations for the experiment
could be made at random, a random choice is unlikely to lead to a “good” design; the main
effects and important interaction estimates may turn out to be highly correlated, may have
large variances, or may not even be estimable. Consequently, a huge amount of research
has been devoted to the selection (construction) of good fractions (e.g., Draper and Mitchell
1967; Bailey 1977; Fries and Hunter 1980; Franklin 1984; Chen et al. 1993; Chen and Cheng
2004; and Xu 2005, among others).

The early work on construction of good fractions was mostly for the case of two-level
factors and focused on half, quarter, eighth, and so on fractions, resulting in 2k−1, 2k−2,
2k−3, . . . treatment combinations to be observed in the experiment. These are referred to as
2k−q fractions, where q = 1, 2, 3, . . . , k − 1. In general, if every factor has s levels, then sk−q

fractions have been sought instead. If factors have nonprime numbers of levels, they can be
replaced by pseudofactors; for example, the levels of a six-level factor Fi can be represented
by a combination of levels of factors F(1)

i and F(2)

i with two and three levels, respectively.
An experiment is called symmetric if all its factors have the same number of levels, and
asymmetric otherwise.

In this chapter, we give special attention to recent work on the construction of the most
useful 2k−q fractions. We restrict our discussion to regular fractions that are governed by
defining relations and that allow main effects and interactions either to be estimated indepen-
dently of each other or to be completely aliased (indistinguishable). In Chapter 9, nonregular
fractions will be discussed, where partial aliasing occurs and where the choice of the number
of observations is more flexible.
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In planning an experiment, it is often convenient to code the levels of each factor. If the
factor is quantitative with two levels, then we can think of the two levels as being low and
high where the low level can be defined as either the smaller level of the factor (e.g., 70◦C
as opposed to 80◦C) or the level that is likely to give the smaller response. There are five
common codings in the literature for the (low, high) levels; these are (1, 2), (0, 1), (−1, 1),
(−, +), and (_ , a). The first two are self-explanatory, depending on whether the levels are
numbered starting from 1 or starting from 0. These codings also extend naturally to more
than two levels. The use of the third coding will become apparent as we discuss main effect
and interaction contrasts; the fourth is an abbreviation of the third. The last notation is
now falling into disuse; it records which factors are at their high levels. If there are two
factors at two levels each, we can record the four treatment combinations in one of the
following ways.

Notation 1 11 12 21 22

Notation 2 00 01 10 11

Notation 3 (−1, −1) (−1, 1) (1, −1) (1, 1)

Notation 4 −− −+ +− ++
Notation 5 (1) b a ab

We mostly use notations 2 and 3 in this chapter.
In Section 7.2, we present two ways to write the model for a factorial experiment and

discuss criteria for good fractional factorial designs, such as minimum aberration that was
introduced in Chapter 1. Methods for constructing and characterizing good regular 2k−q

fractions are given in Sections 7.3 through 7.6. Analysis issues are addressed in Section 7.7,
including analysis of saturated models and count data. The topic of screening to find the
most important factors is dealt with in Section 7.8.

Follow-up experiments are often run to untangle effects that are indistinguishable in the
original fractional factorial experiment; suggestions for designing follow-up experiments
are given in Section 7.9. Section 7.10 discusses some construction methods for designs when
factors have more than two levels. Recent work on discovering which fractions are equiv-
alent to each other is summarized in Section 7.11; these results are useful in compiling
catalogs of designs and searching for the best fractions. Section 7.12 deals with incorpo-
ration of noise factors into the experiment in order to design a product or process that is
robust. Finally, some other issues such as blocked designs, and minimizing the number of
level changes are mentioned briefly in Section 7.13.

7.2 Regular Fractions and Models

7.2.1 Models for Factorial Experiments

Using terminology similar to that of Chapter 3, a general model for a full (not fractional)
factorial experiment with one observation on each of the t treatment combinations is
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y = τ + ε, ε ∼ N(0, Iσ2), (7.1)

where τ is a vector of parameters that represent the mean responses at the t treatment
combinations, and y and ε are the corresponding vectors of response and error variables;
matrix Ad of Chapter 3 becomes the identity matrix and there are no blocks. As discussed
in Chapter 1, the functions c′τ of τ that are of interest are the main effect and interaction
contrasts. If factor Fi has two levels, its main effect, γi, is a contrast (comparison) between
the mean responses when the factor is at its high and low levels, while the interaction, γij,
of the two-level factors i and j is a contrast between the effect of the ith factor when the jth
factor is at its two different levels (or vice versa). Higher-order interactions are defined in
a similar way.

It was shown in Chapter 1 how to obtain the contrast vector c′ for the main effect and
interaction contrasts c′τ. For example, in a 23 experiment with three two-level factors and
treatment combinations coded as 000, 001, . . . , 111 (in lexicographical order), the main effect
and interaction contrasts, written as functions of τ, are shown as the rows of (7.2):

γ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ∗
γ1
γ2
γ12
γ3
γ13
γ23
γ123

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1
4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
−1 −1 −1 −1 1 1 1 1
−1 −1 1 1 −1 −1 1 1

1 1 −1 −1 −1 −1 1 1
−1 1 −1 1 −1 1 −1 1

1 −1 1 −1 −1 1 −1 1
1 −1 −1 1 1 −1 −1 1

−1 1 1 −1 1 −1 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

τ000
τ001
τ010
τ011
τ100
τ101
τ110
τ111

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1
n/2

X′τ. (7.2)

It can be verified that each of the contrast vectors (rows of X′) in (7.2) can be written as

c′ = 1
n/2

c′
1 ⊗ c′

2 ⊗ c′
3,

where ⊗ denotes Kronecker product, c′
i = [ –1 1 ] when the main effect or interaction

involves factor i, and c′
i = [1 1] when it does not. Since X′X = nI where n is the num-

ber of observations and X is square and full rank, it follows that X′ = nX−1. Therefore,
τ = (n/2)(X′)−1γ = (1/2)Xγ. If we write β = (1/2)γ, so that the parameters in vector β

represent the factorial effects divided by 2, then model (7.1) can be expressed as a usual
regression model,

y = Xβ + ε, ε ∼ N(0, Iσ2). (7.3)

For the 23 experiment, this is,

Yijk = μ + β1x1 + β2x2 + β3x3 + β12x1x2 + β13x1x3 + β23x2x3 + β123x1x2x3 + εijk,

where xi = −1 when factor i is at its low level and xi = +1 when factor i is at its high level
(i = 1, 2, 3). We call X the model matrix.

If a factor has more than two levels, its main effect has more than one degree of freedom
(df). In this case, it is usual to select a set of orthonormal contrasts (i.e., the contrasts are
orthogonal and normalized to satisfy c′c = 1.0). For example, if factor 1 has three levels
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and the main effect or interaction involves factor 1, then c′
1 in the Kronecker product may

be taken to have two orthonormal rows, such as

c′
1 =

[−1/
√

2 0 1/
√

2
1/

√
6 −2/

√
6 1/

√
6

]
. (7.4)

Any two orthogonal contrasts could be chosen, but the two illustrated here tend to be used
for quantitative factors with equally spaced levels since they model the linear and quadratic
trends in the response as the level of the factor increases (see, e.g., Wu and Hamada 2009,
Section 1.8). If factor i has �i levels, then c′

i would have �i − 1 orthonormal rows. As stated
earlier, the coefficients in c′

i could be used in the model matrix X of a regression model.
We end this section with some notation that will be needed later in this chapter. Through-

out, we consider experiments with k factors and n runs, where a run of the experiment
consists of observing one treatment combination. The least squares estimate of β is β̂ =
(X′X)−1X′y and has variance–covariance matrix (X′X)−1σ2 (see Chapter 2). The inverse of
this matrix, (X′X)σ−2, is called the information matrix for estimating β, and when compar-
ing designs, it is common to set σ2 = 1.0 without loss of generality. For two-level designs,
the main effect columns from the model matrix X form an n × k matrix D, which we refer
to as the design matrix, since its entries xij define the design d; that is, xij defines whether the
jth factor is to be set at its high or low level in the ith run of the experiment, according to its
value +1 or −1. Because of the correspondence between D and the main effect columns of
X for two-level factors, we talk about a column as representing either a factor or its main
effect, interchangeably. For simplicity, sometimes the design matrix, D, is itself called the
design. Lastly, if we partition the columns of the design matrix, D, into D = [D1 D2], then
the design D1 is called a projection of D onto the factors included in D1.

7.2.2 Aliasing of Factorial Effects

Table 1.17 shows an example of a design with three two-level factors in which only treat-
ment combinations 000, 011, 101, and 110 are to be observed in the experiment. This is a
23−1 half fraction with k = 3 factors and n = 22 = 4 runs. The design matrix is

D =

⎡
⎢⎢⎣

−1 −1 −1
−1 1 1

1 −1 1
1 1 −1

⎤
⎥⎥⎦ , (7.5)

and the regression model (7.3) is

⎡
⎢⎢⎣

y000
y011
y101
y110

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 −1 −1 −1 1 1 1 −1
1 −1 1 1 −1 −1 1 −1
1 1 −1 1 −1 1 −1 −1
1 1 1 −1 1 −1 −1 −1

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ

β1
β2
β3
β12
β13
β23
β123

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ ε = [
X1 X2

] [
β1
β2

]
+ ε,

(7.6)
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where β′
1 = [μ β1 β2 β3]′ and β2 = [β12 β13 β23 β123]′ and correspondingly X1 con-

tains the first four columns of X and X2 contains the last four columns. Since there are
only four observations, the model matrix cannot have more than four columns and still
have full column rank. For example, in this particular design, we can fit the main effects
model

y = X1β1 + ε

and estimate β1 via its least squares estimator β̂1 = (X′
1X1)

−1X′
1y. However, from (7.6),

the expected value of y is E[y] = [X1β1 + X2β2], and so we have

E[β̂1] = β1 + (X′
1X1)

−1X′
1X2β2

= β1 + 1
4

⎡
⎢⎢⎣

0 0 0 −4
0 0 −4 0
0 −4 0 0

−4 0 0 0

⎤
⎥⎥⎦β2 =

⎡
⎢⎢⎣
μ − β123
β1 − β23
β2 − β13
β3 − β12

⎤
⎥⎥⎦ = 1

2

⎡
⎢⎢⎣
μ∗ − γ123
γ1 − γ23
γ2 − γ13
γ3 − γ12

⎤
⎥⎥⎦ . (7.7)

Strictly speaking, we cannot estimate any single element of β based just on the half frac-
tion (7.5); we can estimate only certain linear combinations of the elements of β (see also
Chapter 1, Section 1.7.1). In practice, it is common to take β̂1 as an estimate for β1, con-
tingent on the assumption that β2 = 0. Obviously, such an assumption may be false; if so,
one’s estimate of β1 will be biased due to fitting a model that omits terms that are not in
fact zero. The matrix

A = (X′
1X1)

−1X′
1X2 = (1/n)X′

1X2

is called the alias matrix and is calculated for the current example in (7.7); it is useful for
showing how omitted terms may bias estimates for β1.

The alias matrix is useful not just in the context of main effects models but also for any
models of the form y = X1β1 + ε in which β1 contains the mean and up to n − 1 estimable
factorial effects and β2 contains the remaining factorial effects. For regular 2k−q fractions,
the alias matrix consists of 1’s, –1’s, and 0’s. A column of X2 (corresponding to β2) that is
identical to a column in X1 yields a 1 in X′

1X2/n, and the two corresponding parameters are
said to be aliased. For our main effects model example in (7.7), each row of the alias matrix
contains one –1 and the rest zeros. For instance, the element of the first column and last row
of the alias matrix is –1; this is because the column associated with β12, the first column of
X2, is the negative of the last column from X1, which is associated with β3. Thus, −β12 is
aliased with β3 and, equivalently, −γ12 is aliased with γ3. (We say that the interaction F1F2
is aliased with F3.) The other entries in the last row of the alias matrix are zero because the
remaining columns of X2 are orthogonal to the column for β3.

For our example, only two parameters appear in each linear combination in (7.7) because
D is a half fraction. For regular 2k−q designs, when all columns corresponding to the full
factorial model are included in [X1 X2], the 2−q fraction leads to n = 2k−q alias sets of
size 2q. The first of these sets, the one associated with μ, is discussed first. The defining
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relation for a regular 2k−q design contains the 2q − 1 factorial effects whose columns of X
are constant for the n treatment combinations in the fraction. In (7.6), only one column
besides the first is constant, that being the last column corresponding to the three-factor
interaction F1F2F3. The defining relation for this fraction is written as I = –123. Here and
later, I denotes a column of 1’s corresponding to μ, any bold numeral denotes the column
of X corresponding to the main effect of that factor, and a string of bold numbers indi-
cates an interaction column from X. In the next two sections, we discuss examples where
q = 4 (i.e., 2−4 = 1/16th fractions). There, the defining relation consists of 15 interactions
in addition to the intercept.

From X in (7.6), each main effect contrast is the negative of the other two factors’ interac-
tion contrast. Thus, we write 1 = −23, 2 = −13, and 3 = −12. These are referred to as alias
chains or alias strings. They correspond to the linear combinations of parameters in (7.7).
In general, a unique least squares estimate of β1 can only be obtained if the effects in β1
are from different alias chains.

Selection of a (regular) fraction of treatment combinations to be observed in an exper-
iment is an art and forms the topic of Sections 7.3 through 7.6. Selection of good designs
for situations where regular fractions do not exist or are not competitive with nonregular
fractions is discussed in Chapter 9.

7.2.3 Defining Contrast Subgroup and Construction of Designs

The interactions that appear in the defining relation for a 2k−q regular fraction are referred
to as words. Together with the identity word I, this collection of interactions or words is
labeled the defining contrast subgroup, since they form a subgroup of all possible words.
This means that for any pair of interaction contrasts in the defining contrast subgroup,
their elementwise product is also in the defining contrast subgroup.

For example, let us examine the defining relation for a 29−4 design that we label as d1 in
this section and the next. Design d1 is defined by the q = 4 generating words 1236, 1247,
1258, and 13459. The product of the first two generating words is

1236 · 1247 = 12223467 = 3467,

where “·” means the elementwise product of vectors (columns of X). The result follows
from the fact that any column multiplied by itself is a vector of all +1’s and so disappears
from the product; 3467 is called the generalized interaction of 1236 and 1247.

The entire defining contrast subgroup of d1 of size 2q = 16 is

I 1236 1247 3467 1258 3568 4578 12345678

13459 24569 23579 15679 23489 14689 13789 26789.
(7.8)

The second half of the first row is obtained by multiplying the generating word 1258 by
the first half of the row. Similarly, the second row is obtained by multiplying the first row
times the last generating word, 13459.

The q = 4 generating words can also be expressed as alias chains as follows:

6 = 123, 7 = 124, 8 = 125, 9 = 1345. (7.9)
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Note that the factors that appear on the left-hand sides in (7.9) do not appear in any of the
interactions on the right-hand sides. When expressing the generators for a design in this
way, the factors on the left are called generated factors and the others are called basic factors.
We will also refer to the interactions 123, …, 1345 as factor generators. It is customary to take
the first k − q factors as basic factors, but there are other sets of k − q generating words,
basic factors, and factor generators that would result in the identical defining relation and
defining contrast subgroup. For instance, in this example, the same defining relation could
also be obtained by taking the last five factors as basic factors and using the alias chains 1
= 5679, 2 = 6789, 3 = 568, and 4 = 578 to generate the first four factors. Whichever repre-
sentation is chosen for a regular fraction, the defining relation and the alias scheme can be
recovered.

The design matrix D for any regular 2k−q design can easily be constructed by creating
a full factorial design in k − q basic factors and then adding the q additional columns to
complete D based on interactions of the basic factors. We can also use the alias chain rep-
resentation to create a series of fractions. For example, if we start with a full 25 factorial
design for factors F1, . . . , F5 and add just the two generated factors F6 and F7 in (7.9) to the
five basic factors, we have a 27−2 design and its defining contrast subgroup consists of just
the first four terms in (7.8). If we added the third generator, we would have a 1/8th frac-
tion, and the defining contrast subgroup would consist of the first line in (7.8). Adding the
fourth generated factor results in a 1/16th fraction, that is, a 29−4 design, and so the defin-
ing contrast subgroup is then the entire (7.8). Each time a generator is added, a new word
is multiplied by the previous defining contrast subgroup, which doubles its size. Note also
that each factor that appears in the defining contrast subgroup appears in exactly half of
the words.

Besides the defining contrast subgroup, there are n − 1 alias sets of size 2q. Multiplying
the defining contrast subgroup by any factorial effect not in that subgroup identifies a set
of 2q aliased effects. For example, the first four aliases of 12 are 12·1236 = 36, 12·1247 = 47,
12·3467 = 123467, and 12·1258 = 58. This set with 12 and its 15 aliases is a coset of (7.8).
Often, the longer aliases (which represent the higher-order interactions) are just ignored,
as we will do shortly in Table 7.1.

Rather than constructing a 2k−q design by creating a full factorial in a set of basic fac-
tors augmented with q generated factors, the treatment combinations to be observed in the
design d can be constructed using modulo 2 arithmetic. Define xi to be the level (0 or 1) of
the ith factor in a particular run, and let aij be 1.0 if the jth generator of the defining relation
contains factor Fi and let aij be 0.0 otherwise. The design consists of all of those treatment

TABLE 7.1

Two-Factor Interaction Alias Chains for d1 and d2, Assuming
That Higher-Order Interactions Are Negligible

d1 d2

12 = 36 = 47 = 58 12 = 36 = 47

13 = 26 34 = 67 13 = 26 = 48

14 = 27 35 = 68 14 = 27 = 38

15 = 28 36 = 47 16 = 23 = 78

16 = 23 38 = 56 17 = 24 = 68

17 = 24 45 = 78 18 = 34 = 67

18 = 25 48 = 57 28 = 37 = 46
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combinations (x1x2 . . . xk) that satisfy
∑k

i=1 aijxi = 0 modulo 2 for j = 1, . . . , q. Fractions
obtained in this way always contain the zero treatment combination (000 . . . 0). Thus, for
example, the 23−1 fraction that has defining contrast subgroup {I, −123} is obtained from
the equation

x1 + x2 + x3 = 0, modulo 2.

and results in the fraction d = (000, 011, 101, 110). To obtain an alternative fraction with
the same defining contrast subgroup (up to sign changes), one can add any treatment com-
bination not in d, where addition means addition of corresponding digits and reducing
modulo 2. For example, addition of 100 to d results in the fraction d∗ = (100, 111, 001, 010).
The primary advantage of this method is that it readily extends to the construction of sk−q

fractions using modulo s (see Section 7.10).

7.2.4 Criteria for Good Designs: Resolution and Aberration

As shown in Section 7.2.2, unique estimability of main effects and interaction effects in
a regular fraction can only be achieved when at most one effect from an alias chain is
included in the model (and other effects in the same chain are omitted from the model).
Consequently, interpretation of the analysis requires either that certain effects are assumed
negligible or that a follow-up experiment be performed to disentangle the aliased effects
(Section 7.9). A widely held belief, supported in general by investigations of real experi-
ments (see the study of Lin et al. 2006), is that it is much more likely for high-order effects
(interactions between large numbers of factors) to be smaller than low-order effects such
as main effects and two-factor interactions. Consequently, it is best if the defining contrast
subgroup contains only high-order interactions. As defined in Chapter 1, the resolution of
the design is the minimum number of factors involved in any of the interactions in the
defining contrast subgroup, and a goal in designing the experiment is to choose a fraction
with highest possible resolution.

There are often several designs of size n with maximum resolution, which may still differ
in terms of usefulness for the experiment. For example, let us look at the following defining
relations for two resolution IV 29−4 designs (denoted by 29−4

IV ) examined by Chen et al.
(1993):

d1 : I = 1236 = 1247 = 3467 = 1258 = 3568 = 4578 = · · · and nine longer words,

d2 : I = 1236 = 1247 = 3467 = 1348 = 2468 = 2378 = 1678 = · · · and eight longer words.

We have already considered d1 in Section 7.2.3; its complete defining contrast subgroup
is given in (7.8). Design d2 has the generating words 1236, 1247, 1348, and 23459.
Although both d1 and d2 have resolution IV, they differ in their alias properties as can be
seen from the aliases among the two-factor interactions that are shown in Table 7.1.

A natural criterion for a good design is to minimize the numbers of short words (i.e.,
low-order interactions) in the defining relation among those for all fractions of the same
size and maximum resolution (Fries and Hunter 1980). Let Aj denote the number of length-j
words in a design’s defining relation and define the word length pattern (wlp) for that
design as

wlp = (A3, A4, . . . , Ak). (7.10)
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Referring to (7.8), in addition to the six length-4 words, there are eight length-5 words and
one length-8 word, so design d1 has wlp1 = (0,6,8,0,0,1,0). It may be verified that design d2
has wlp2 = (0,7,7,0,0,0,1). The first nonzero entry of the wlp is Ar, where r is the resolution
of the design. Design d1 has smaller A4 than design d2, and it is said to have lower aberration.
In fact, d1 is the minimum aberration 29−4 design and d2 is second best.

For some 2k−q cases, two or more of the maximum resolution designs may be tied on the
minimum value of Ar. The wlp’s are then compared on subsequent entries until one design
wins (i.e., has a smaller entry) and is declared to be the minimum aberration design; on rare
occasions (e.g., n = 128, k = 41–44 and 50), there are two or more nonequivalent minimum
aberration designs. All other designs tied on the first nonzero entry of the wlp receive the
consolation prize of having weak minimum aberration (Chen and Hedayat 1996).

Interestingly, although the minimum aberration design d1 mentioned above has fewer
words than d2 of length 4, from Table 7.1, it can be seen that it has only eight two-factor
interactions that are not aliased with other two-factor interactions (all FiF9, i = 1, . . . , 8),
whereas d2 has 15 two-factor interactions (all FiF9 and all FiF5) not aliased with other two-
factor interactions. Since the aliasing structure of designs of the same resolution can be
very different and the minimum aberration design may or may not be the design with
the properties most preferred by the experimenter, other criteria have also been found
useful for comparing and selecting the best resolution IV designs. These are discussed in
Section 7.4.3.

In Sections 7.3 through 7.6, we look at the construction, ranking, and equivalence of two-
level fractions. Although the goal is usually to obtain designs with the highest possible
resolution, we start by examining designs with resolution III, followed by resolution IV
and then resolution V designs. Designs with factors having more than two levels will be
discussed later, in Section 7.10.

7.3 Resolution III Designs

Resolution III fractions for two-level factors exist for number of factors k ≤ n − 1. When
k = n − 1, the design is said to be saturated and its design matrix is very easily constructed
recursively. Define S1 = 1 and

Sn =
[

Sn/2 Sn/2
Sn/2 −Sn/2

]
(7.11)

for n = 2, 4, 8, …(i.e., for n any power of 2). For example,

S8 =
[

S4 S4
S4 −S4

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Each Sn in this series is a square matrix of –1’s and +1’s with orthogonal columns, which
implies S′

nSn = nIn. The matrix in (7.11) is the Sylvester-type Hadamard matrix; see Hedayat
et al. (1999, Chapter 7) for additional details. After removing the first column of Sn (which
we will call column 0, or c0 for short), columns 1, 2, 4, 8, . . . , n/2 can be associated with
basic factors since they form a full factorial. Labeling the basic factors as F1, F2, . . . , Fn−q,
we thus associate the main effect of F1 with c1 (i.e., column 1), F2 with c2, F3 with c4, F4
with c8, etc. The q generated factors will be defined by the other columns of Sn, which
correspond to interactions of the basic factors; for example, if we associate F5 with column
c3, then 5 = 12. Omitting c0 from S8, one obtains a 27−4 fraction. We note, in passing, that
X′ in (7.2) is S′

8 with F3, F2, and F1 associated with columns c1, c2, and c4, respectively, and
low and high levels interchanged.

All regular, saturated two-level fractions of size n are isomorphic—two designs are
isomorphic if one can be obtained from the other by interchanging rows (treatment com-
binations), interchanging columns (factor labels), and reversing the levels for one or more
factors (see Section 7.11). Fractions with k = n − 2 factors are also unique up to isomor-
phism, as are those with k = n − 3 factors (Mukerjee and Wu (2006), p. 59). When k ≤ n − 4,
two 2k−q designs of the same size may not be isomorphic. However, all regular 2k−q designs
with n rows are projections of a saturated n-run design. That is, one can form the design
with fewer factors by taking a subset of the columns of Sn.

The primary criterion for ranking resolution III designs is the minimization of A3,
the number of length-3 words in the defining relation. Each word of length-3 in the
defining relation produces three aliases between main effects and two-factor interactions.
(For instance, the product of c1, c2, and c3 in S8 is equal to I, so the main effect of
each of the three factors associated with these columns is aliased with the interaction of
the other two.) Thus, 3A3 equals the number of two-factor interactions that are aliased
with main effects; any design that minimizes A3 necessarily minimizes the number of
two-factor interactions that might bias the main effect estimates. For the saturated design
where k = n − 1, all k(k − 1)/2 two-factor interactions are aliased with main effects and
so A3 = (n − 1)(n − 2)/6. If we delete any column from the saturated design Sn, then A3
decreases to (n − 2)(n − 4)/6; drop another column and the resulting design with k = n − 3
will have A3 = (n − 4)(n − 5)/6 (Angelopoulos et al. (2008)). Each time a factor is removed,
A3 declines, provided the factor being deleted appeared in one or more length-3 words in
the defining relation. Thus, the smaller the number of factors for a given number of runs,
n, the less risk of bias to main effects estimates. For k ≤ n/2, it is possible to eliminate all
aliasing between main effects and two-factor interactions; such designs are the subject of
Section 7.4.

When k ≤ n − 4, how does one obtain a 2k−q design that minimizes A3? One means is
to utilize software, such as SAS Proc Factex, which uses a depth-first search for selecting
generators. Alternatively, one may employ existing tables of designs. For instance,
Mee (2009, Appendix G) lists all minimum aberration designs of sizes 8, 16, 32, 64, and 128.
Here and in similar tables, the interactions to be used as generator columns are identified
by their Yates order number (Yates 1937). Yates introduced factorial effects in the systematic
order γ1, γ2, γ12, γ3, γ13,γ23,γ123, γ4, . . . , which puts main effects of individual factors in
places 1, 2, 4, 8, and so on, in increasing powers of 2. Furthermore, each interaction column
number can be decomposed as the sum of powers of 2. For instance, 7 = 1 + 2 + 4, implying
that the interaction contrast γ123 identified as Yates column 7 (c7) is the elementwise prod-
uct of c1, c2, and c4, corresponding to the main effects of factors F1, F2, and F3. Note that,
after eliminating c0, the columns of Sn correspond to Yates order.
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We illustrate the use of such tables to obtain the 16-run, minimum aberration 29−5 design;
Mee (2009, p. 488) lists columns 7 and 11–14 for generating this design. We need nine
columns in total from S16, so we take the four basic columns c1, c2, c4, and c8 for F1, F2,
F3, and F4, plus the five generator columns, c7, c11, c12, c13, and c14, for F5, F6, F7, F8, and
F9, respectively. For instance, since 12 = 4 + 8, with c4 and c8 corresponding to F3 and F4,
Yates column c12 corresponds to the γ34 interaction. Thus, 7 = 3·4 and so 347 is a word in
the defining relation. Columns c7, c11, c13, and c14 correspond to three-factor interactions;
these are used to create the other four generated factors F5, F6, F8, and F9 so that the gener-
ating words 1235, 1246, 347, 1348, and 2349 and their products form the defining contrast
subgroup. The defining relation of this design includes just four length-3 words: 178, 279,
347, and 567. From these, it can be seen that while the main effect of factor F7 is aliased
with four two-factor interactions, each of the other main effects is aliased with just a single
two-factor interaction, and this interaction involves F7. Thus, to bias as few main effects as
possible, the factor deemed least likely to have active two-factor interactions should be the
one labeled F7 and assigned to column c12.

Tang and Wu (1996) defined the column complement of a design to be the contrast
columns that are omitted from Sn. For instance, for n = 16 runs and k = 9 factors, the
minimum aberration 29−5 design {c1, c2, c4, c7, c8, c11, c12, c13, c14} has the complement
consisting of the omitted contrast columns {c3, c5, c6, c9, c10, c15}. Let Aj denote the number
of length-j words in the defining relation for the complementary design with n − k − 1 fac-
tors, just as Aj denotes the number of length-j words for the 2k−q design. Chen and Hedayat
(1996) and Tang and Wu (1996) both showed that for a given n and k,

A3 = C3(n, k) − A3,

A4 = C4(n, k) + A3 + A4,

where C3(n, k) and C4(n, k) are constants that depend only on n and k. Tang and Wu
further showed that the minimum aberration 2k−q design may be found by sequentially
maximizing A3, minimizing A4, maximizing A5, etc. For n = 16 and k = 9, C3(16, 9) = 8,
so A3 = 8 − A3. The minimum aberration 29−5 design is obtained if we omit six columns
from S16 that form a replicated 26−3 design; this complement has A3 = 4, so A3 = 4 also.
In general, the minimum aberration design is obtained by deleting n − k − 1 columns
from Sn that together have the maximum aliasing of two-factor interactions with main
effects.

In some instances, there exist several resolution III designs with the same A3 as the mini-
mum aberration design. These weak minimum aberration designs minimize the number of
two-factor interactions aliased with main effects and so should be considered as desirable
designs along with the minimum aberration design.

7.4 Resolution IV Designs

To appreciate the difference between the designs discussed here and those in Sections 7.3
and 7.5, consider the structure of the information matrix X′X. Let X1 denote the n × (k + 1)
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model matrix for a main effects model, and let X2 denote the n × k(k − 1)/2 matrix of
two-factor interaction contrasts. Then X = [X1, X2] is the model matrix for the two-factor
interaction model. For designs in the previous section, there is aliasing between main effects
and two-factor interactions resulting from entries of ±n appearing in X′

1X2 (Section 7.2.2).
For designs in this and the next section, such aliasing is avoided by requiring the inter-
cept and main effect columns to be orthogonal to two-factor interaction contrasts (i.e.,
X′

1X2 = 0). Ignoring three-factor and higher-order interactions, the only aliasing is among
two-factor interactions for resolution IV designs. In order to provide this clear estimation
for main effects, for a given k, designs here will require more runs than those in Section 7.3.
(The resolution V designs in Section 7.5 will be larger still.) If one expects only a few two-
factor interactions, then a resolution IV design will be suitable. For example, suppose one
has seven factors. If one thought all interactions were negligible, one might use either the
eight-run 27−4 design S8 or seven columns from the 12-run Plackett–Burman design (see
Chapter 9). Suppose instead that many two-factor interactions are expected to be impor-
tant. To estimate the 7 main effects and all 21 two-factor interactions requires 64 runs for
an orthogonal design (see Section 7.5). Such large run sizes are impractical for many appli-
cations. We now consider a compromise between the frugal resolution III designs and the
large designs of the next section. Regular resolution IV designs for seven factors can be con-
structed with either 16 runs or 32 runs; although these designs do not permit estimation of
the full two-factor interaction model, they do provide

[
X′

1X1 X′
1X2

X′
2X1 X′

2X2

]
=

[
nI 0
0 X′

2X2

]
,

with rank(X2) of up to 7 and 18, respectively.

7.4.1 Constructing Even Resolution IV Designs

For n any power of 2 (≥ 23), the maximum number of factors for a resolution IV fraction
is k = n/2. The unique (up to isomorphism) regular designs 24−1, 28−4, 216−11, 232−26, etc.
may be constructed by foldover as follows:

En =
[

Sn/2
−Sn/2

]
, (7.12)

where Sn/2 is the Sylvester-type Hadamard matrix defined in (7.11). These designs have
only even-length words in their defining relations. We refer to fractions with only even
words in the defining relation as even designs. The series of designs En, with k = n/2,
are called maximal even designs because they maximize the possible number of factors k.
Every even 2k−q design with k < n/2 is a projection of En. Let �= n/2 − k. Butler (2003a)
showed that a projection of the maximal design (7.12) with k > 5n/16 factors has minimum
aberration if and only if the � columns dropped from En form a design that has mini-
mum aberration among all even designs with � factors and n runs; see also Example 2 of
Xu and Cheng (2008). If the omitted columns form a full factorial, the projection of En onto
the remaining factors will obviously have minimum aberration.

The minimum aberration 226−20 design having n = 64 runs can be constructed by cre-
ating a full 26 factorial and then adding the 20 interactions listed by Mee (2009, p. 490)
as generators for the remaining factors. However, it is simpler to construct the minimum
aberration 226−20 design using the results of this section. First, construct E64 by folding over
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S32; then, delete columns c1, c2, c4, c8, c16, and c0. The remaining 26 columns form a min-
imum aberration 226−20 design, since the six columns we deleted from E64 form a full 26

design. To obtain the minimum aberration 225−19, one must delete one more column such
that the seven columns deleted from E64 form a resolution VI design; one choice is c31, the
five-factor interaction of c1, c2, c4, c8, and c16.

The maximal design En aliases the two-factor interactions in sets of size k/2 = n/4;
every factor appears once in each set of aliased two-factor interactions. These designs have
A4 = k(k − 1)(k − 2)/24. Projections of these designs have shorter alias chains and smaller
A4. If k > n/4, even designs have n/2 − 1 df for two-factor interactions and n/2 − k df for
error, assuming interactions involving three or more factors are negligible. For resolution
IV designs with k > 5n/16, every two-factor interaction is aliased with other two-factor
interactions (Chen and Hedayat 1998). The restriction k > 5n/16 also appeared in the min-
imum aberration result attributed to Butler (2003a) in the previous two paragraphs, since
for k = 5n/16, resolution (≥) IV designs with odd-length words exist. These designs are
discussed in the next section. No even resolution IV design with k ≤ 5n/16 has minimum
aberration; for these cases, we must use different constructions or exhaustive searches for
the best designs. (We will return to the idea of foldover in Section 7.9 when discussing
follow-up designs.)

7.4.2 Constructing Resolution IV Designs with k ≤5n/16

Only even resolution IV designs are projections of the maximal even designs introduced
in the previous section. Here, we introduce resolution IV designs that are not even. In
particular, we begin with the minimum aberration 210−5 design, which may be con-
structed by augmenting a full 25 factorial with factor generators 6 = 1234, 7 = 125, 8 = 135,
9 = 145, and 10 = 2345. Unlike the even designs described in the previous section, this
design uses some four-factor interactions as generators, which results in odd-length words
in the defining relation. This design is attractive for several reasons. First, this design
has only 10 length-4 words in the defining relation versus A4 = 15 for the best even
210−5 design. These 10 length-4 words create the following aliases among two-factor
interactions:

1 · 2 = 5 · 7 1 · 3 = 5 · 8 1 · 4 = 5 · 9 1 · 6 = 5 · 10

1 · 7 = 2 · 5 1 · 8 = 3 · 5 1 · 9 = 4 · 5 1 · 10 = 5 · 6

2 · 3 = 7 · 8 2 · 4 = 7 · 9 2 · 6 = 7 · 10 2 · 8 = 3 · 7

2 · 9 = 4 · 7 2 · 10 = 6 · 7 3 · 4 = 8 · 9 3 · 6 = 8 · 10

3 · 9 = 4 · 8 3 · 10 = 6 · 8 4 · 6 = 9 · 10 4 · 10 = 6 · 9

1 · 5 = 2 · 7 = 3 · 8 = 4 · 9 = 6 · 10.

(7.13)

Each length-4 word in the defining relation creates aliasing between three pairs of two-
factor interactions; there are 30 alias pairs in (7.13); these consist of the 20 separate alias
pairs and an additional 10 pairs implied by the last chain of five aliases.

Second, besides having smaller A4 than any even 210−5 design, this design has more
df for estimating two-factor interaction effects. The 45 two-factor interactions for the
10 factors are associated with 21 orthogonal contrasts, one for each alias chain in (7.13);
that is, rank(X2) = 21 for the minimum aberration design, whereas rank(X2) = 15 for any
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even 210−5 design. This minimum aberration design is second-order saturated (SOS), since
for its two-factor interaction model matrix [X1, X2],

rank[X1, X2] = 1 + k + rank(X2) = n;

that is, the two-factor interaction model utilizes all the df (Block and Mee 2003). Chen and
Cheng (2004) refer to all resolution IV SOS designs as maximal, since no factor can be added
to these designs without lowering their resolution; see their paper for connections with
how maximal is used in projective geometry.

7.4.2.1 Key Results for Existence and Construction of Resolution IV SOS Designs

All resolution III designs with k > n/2 are SOS, while most resolution IV and resolution V
designs are not SOS (Chen and Cheng 2004). However, every resolution IV design that is
not SOS is the projection of a resolution IV SOS design. We now discuss both the existence
and construction of resolution IV SOS designs by citing three key results.

Key result 1: As noted by Chen and Cheng (2006), there exist SOS designs with resolution
IV (or higher) and of size n (≥ 16) for k = 1 + n/4. When n = 16, this is the resolution V 25−1

design; for n = 32, this is the 29−4 design with A4 = 7 identified as d2 in Section 7.2.4; for
n = 64, there are actually five nonisomorphic 217−11 SOS designs. All regular SOS designs
with k = 1 + n/4 may be constructed as follows. Let En/2 = [B C] denote a partition of the
columns of En/2 into two nonempty sets. Then define

D1 =
[

1 B C
−1 −B C

]
. (7.14)

The design D1 constructed according to (7.14) has resolution IV (or higher). In addition, if
B contains an odd number of columns, then D1 must also be SOS (Cheng et al. 2008, Section
2.1). Consider two examples. First, starting with E8 and taking any one or three columns
for B, the resulting design is the resolution V 25−1 fraction. Second, starting with E16 and
taking a single column for B, one obtains the 29−4 SOS design mentioned earlier.

Key result 2: From any SOS design D of resolution IV SOS (or higher), another resolution
IV SOS design may be constructed with twice the number of runs and twice the number of
factors via the construction

D2 =
[

D D
D −D

]
. (7.15)

For instance, doubling the resolution V 25−1 fraction in this way produces the SOS 210−5

with the 21 alias sets shown earlier in (7.13). Repeated doubling produces a series of SOS
designs with the same k/n ratio.

Key result 3: Every regular SOS design of resolution IV (or higher) with k > n/4 is pro-
duced either by (7.14) if k is odd or by (7.15) if k is even. This insight was first derived from
a coding theory result in Bruen and Wehlau (1999).
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7.4.2.2 Summary of Resolution IV SOS Designs with k > n/4

Combining these key results, we have the following (incomplete) summary regarding SOS
designs with resolution IV or higher.

1. For k = n/2, we have the even SOS series E8, E16, E32, E64, . . . given by (7.12).
2. For k = 5n/16, we have the SOS series with the maximum number of factors k for

resolution IV or higher designs that are not even. The designs 25−1, 210−5, 220−14, . . .
in this series all have minimum aberration.

3. For k = 9n/32, we have the SOS series 29−4, 218−12, . . .. While these designs do
not have minimum aberration, they have many degrees of freedom for short alias
chains of two-factor interactions.

4. For k = 17n/64, the series begins with five nonisomorphic 217−11 designs given
by (7.14); these five D1 designs are constructed by taking different subsets of
columns from E32 for B. Doubling these leads to different doubled designs for
n = 128, 256, etc.

Additional series begin with designs constructed according to (7.14) of sizes n = 128
(233−26), n = 256 (265−57), etc.

If there were no SOS designs with k ≤ n/4, the search for the best designs would be
simpler. However, Bruen and Wehlau’s (1999) result does not address the existence of SOS
designs with k ≤ n/4. For n ≤ 32, there are no SOS designs with k ≤ n/4. However, Block
(2003) identified a 64-run 213−7 design that is SOS and 38 SOS designs of size 128 with
k between 21 and 31 (including the minimum aberration designs for k = 25 and 29). At
n = 256, Block’s (naïve) search discovered over 34,000 nonisomorphic resolution IV SOS
designs, one of which has just k = 33 factors. Thus, the search for the best resolution IV
designs must entertain designs that are not projections of SOS designs constructed by (7.14)
or (7.15).

Because SOS designs of resolution IV are known for k > n/4, minimum aberration
designs are more simply characterized for this range. Complementary column theory
facilitates the search for minimum aberration projections. For k = n/2 − 1, n/2 − 2, . . . ,
5n/16 + 1, the minimum aberration designs are projections of En. Xu and Cheng (2008)
developed a complementary column theory for projections of the k = 5n/16 SOS designs
and proved that the best projections have minimum aberration among all designs for
17n/64 ≤ k < 5n/16. That is, the best projections from the k/n = 5/16 series have lower
aberration than that of the SOS designs from the 9/32 and 17/64 series.

7.4.2.3 Minimum Aberration Resolution IV Designs with k ≤ n/4

For up to k = n/4 factors, minimum aberration designs are found by computational
searches. Start with all nonisomorphic designs of a given size; to each, add one gener-
ated factor from the set of all eligible generators, and keep only one version of designs that
are isomorphic. This process is repeated again and again, so that all possible designs are
obtained by adding factors sequentially. Chen et al. (1993) were the first to publish substan-
tive results obtained in this manner. For the current state of the art in searching for larger
two-level designs, see Xu (2009), who has enumerated all resolution IV designs of size 128
and all resolution IV designs of size 256 for k ≤ 17; see also the lists in Tables 3, 5 and 6 of
Lin and Sitter (2008).
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We now turn our attention to criteria other than minimum aberration for defining “best”
for resolution IV designs.

7.4.3 Other Criteria for Choosing a Resolution IV Design

For resolution III designs, the minimum aberration criterion was sufficient for defining
the best designs. However, for resolution IV designs, the wlp is not sufficient for ranking
designs because A4 does not adequately characterize the two-factor interaction alias struc-
ture. Thus, besides minimum aberration, the following criteria involving the aliasing of
two-factor interactions have been found useful for distinguishing the best designs:

• Maximize the number of two-factor interactions that are not aliased with any main
effects or other two-factor interactions; such interactions are called clear.

• Maximize rank(X2), the df for two-factor interactions.
• Minimize the average length (or the maximum length) of the chains of aliased two-

factor interactions.
• Maximize the design’s estimation capacity, which Cheng et al. (1999) defined as a

vector of the proportions of models that can be estimated having 1, 2, 3, . . . two-
factor interactions.

These criteria can all be expressed in terms of the alias length pattern, alp, for two-factor
interactions. As in Block and Mee (2003), we define aj to be the number of sets of aliased
two-factor interactions of size j and

alp = (a1, a2, . . . , aL),

where L is the longest chain of aliased two-factor interactions. For example, the minimum
aberration 210−5 design, whose aliasing was shown in (7.13), has alp = (0, 20, 0, 0, 1). Linking
the aforementioned criteria to the alp,

• a1 is the number of clear two-factor interactions;
• Rank(X2) = a1 + a2 + · · · + aL;
• the maximum alias length is L; the average length is 0.5k(k − 1)/(a1 + a2 +· · ·+ aL).

The estimation capacity vector of Cheng et al. (1999) can also be computed using the alp,
although the formulae are not simple. Finally, A4 = ∑L

j=2 j(j−1)aj/6, so the weak minimum
aberration criterion too is based on alp.

We conclude this section by considering the case of k = 13 factors to illustrate the need
for criteria other than minimum aberration. The smallest resolution IV regular fraction is
a 213−8 design with 32 runs and A4 = 55. However, this even design has only 15 df for
two-factor interactions, with alias chains of length-5 and length-6. To learn much about
interactions would require a larger design. The 64-run, minimum aberration 213−7 design
may be constructed using columns c21, c22, c31, c39, c41, c42, and c51 from S64 as gen-
erating columns (Mee 2009, p. 490). This design has wlp = (0, 14, 28, 24, . . .) and alp =
(20, 18, 6, 1). Thus, by doubling the number of runs, we now have

∑
ai = 20 + 18 + 6 + 1

= 45 df for estimating the two-factor interactions, with 20 clear, and another 36 aliased in
chains of length 2. Asecond resolution IV 213−7 design worthy of consideration uses instead
generating columns c7, c11, c13, c30, c46, c49, and c63 from S64; see design 13-7.2 from
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Chen et al. (1993). Assigning these seven columns to the main effects of F7, . . . , F13, respec-
tively, and the six basic columns to the main effects of F1, . . . , F6, we obtain the following
aliasing of two-factor interactions:

1 · 2 = 3 · 7 = 4 · 8 1 · 3 = 2 · 7 = 4 · 9
1 · 4 = 2 · 8 = 3 · 9 1 · 5 = 6 · 12 = 11 · 13
1 · 6 = 5 · 12 = 10 · 13 1 · 7 = 2 · 3 = 8 · 9
1 · 8 = 2 · 4 = 7 · 9 1 · 9 = 3 · 4 = 7 · 8
1 · 10 = 6 · 13 = 11 · 12 1 · 11 = 5 · 13 = 10 · 12
1 · 12 = 5 · 6 = 10 · 11 1 · 13 = 5 · 11 = 6 · 10
2 · 9 = 3 · 8 = 4 · 7 5 · 10 = 6 · 11 = 12 · 13.

(7.16)

Notice that only 14×3 = 42 of the 78 two-factor interactions appear in (7.16). Thus, 78−42 =
36 of the two-factor interactions are clear and so this design has alp = (36, 0, 14). With
50 df for two-factor interactions (and 13 for main effects), this 64-run design is SOS. In fact,
it is the only 64-run SOS design with k < 17 factors and so it has more df (50) for two-factor
interactions than any other 213−7 design. Although this design does not have minimum
aberration, it seems to win every other prize for regular 213−7 designs: with wlp = (0, 14,
33, 16, . . .), it has weak minimum aberration. With a1 = 36 it has 13 more clear two-factor
interactions than any other design. With L = 3, every other design has some longer alias
chains. The 36 clear two-factor interactions also have a special structure; as noted by Wu
et al. (2012), if the six factors (F2, F3, F4, F7, F8, F9) are placed in group G1 and the six factors
(F5, F6, F10, F11, F12, F13) are placed in group G2, then every two-factor interaction involving
one factor from each group is clear. This set of clear interactions is particularly useful for
applications as discussed in Section 7.12, taking one group for control factors and the other
for noise factors.

The criteria previously presented consider all two-factor interactions as of equal interest.
If one has additional information about the likelihood or relevance of specific interactions,
this information should be incorporated into the choice of the design. Articles that assist
the user in estimating particular sets of two-factor interactions include Ke and Tang (2003);
Ke et al. (2005); Wu and Chen (1992); Wu et al. (2012); and Grömping (2014).

7.5 Resolution V Designs

The resolution V 25−1 (SOS) design is an especially efficient design in terms of run size,
since its size n (= 16) is equal to 1 + 0.5k(k + 1), which is the number of parameters in the
two-factor interaction model with k factors. While all resolution V designs have orthog-
onal columns for terms in the two-factor interaction model and so are optimal in terms
of variance efficiency, these designs generally require much larger n than the number of
parameters to be estimated. While resolution III designs exist for k = n − 1 and resolu-
tion IV designs exist for k = n/2, resolution V designs generally allow only up to k ≈ √

n
factors. For instance, for n = 32, 64, 128, 256, and 512, the largest k’s for regular resolution
V designs are 6, 8, 11, 17, and 23, respectively. In every case, k ≤ √

n + 1.
Generators for the smallest minimum aberration designs having resolution of V or more

are listed in Table 7.2 for k ≤ 23. Franklin (1984) and Xu (2009) found the larger designs
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TABLE 7.2

Smallest Minimum Aberration Designs of Resolution V (or More) for 5-23 Factors

k Factors n Runs Design Generator Columnsa A5 A6

5 16 5–1.1 15 1
6 32 6–1.1 31 0 1

7 64 7–1.1 63 0 0
8 64 8–2.1 45, 51 2 1

9 128 9–2.1 31, 121 0 3
10 128 10–3.1 15, 51, 121 3 3
11 128 11–4.1 15, 51, 85, 120 6 6

12 256 12–4.1 31, 107, 205, 241 0 12
13 256 13–5.1 103, 121, 157, 179, 207 3 12

14 256 14–6.1 31, 39, 107, 169, 243, 254 9 18
15 256 15–7.1 78, 109, 135, 171, 181, 211, 246 15 30

16 256 16–8.1 23, 46, 92, 113, 139, 184, 197, 226 24 44
17 256 17–9.1 23, 46, 92, 113, 139, 184, 197, 226, 255 34 68
18 512 18–9.1 47, 93, 185, 227, 279, 369, 395, 453, 511 0 102

19 512 19–10.1 105, 127, 143, 181, 211, 285, 307, 327, 427, 473 12 84
20 512 20–11.1 Design 19–10.1, plus 485 16 120

21 512 21–12.1 Design 20–11.1, plus 510 21 168
22 512 22–13.1 105, 127, 155, 188, 206, 275, 298, 301, 350, 358, 369, 391, 507 63 189

23 512 23–14.1 23, 90, 99, 127, 155, 188, 206, 301, 340, 358, 391, 430, 435, 450 84 252

Source: With kind permission from Springer Science+Business Media: A Comprehensive Guide to Factorial
Two-Level Experimentation, 2009, p. 285, Mee, R.W.

a Column numbering according to Yates order.

in this table. The designs with k ≥ 7 would not be recommended unless experimentation
is inexpensive, since the run sizes can be two or three times the number of parameters to
be estimated in the two-factor interaction model. Of course, if the error variance is large,
so that more runs are needed to obtain adequate precision, then large designs may be
justified. As alternatives to regular resolution V designs, one should consider nonregu-
lar orthogonal arrays or D-optimal designs that provide sufficient precision for estimates
and sufficient protection from possible bias due to interactions omitted from the model; see
Chapter 9.

7.6 Row Coincidence Matrix

We now discuss a tool that is useful for understanding the nature of two-level fractional
factorial designs. Let D denote the n × k design matrix with ±1 coding (cf. Section 7.2.2).
The row coincidence matrix T is an n × n symmetric matrix defined as

T = DD′.

The diagonal elements of T equal k, since each row of D coincides perfectly with itself.
The off-diagonal elements range from −k (if the design contains rows that are mirror
image pairs) to k (if the design contains replicated rows). Mirror image pairs occur only
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in even fractional factorial designs (those with no odd-length words in the defining rela-
tion) or full factorial designs; thus, resolution III designs will have a value no smaller
than −(k − 2).

The row coincidence matrix reveals that saturated designs have a very simple structure.
Since removing the column of +1’s from Sn, defined in (7.11), produces a saturated design
and SnS′

n = nIn, the row coincidence matrix for any regular saturated fraction is nIn − Jn,
where Jn is an n × n matrix of +1’s. (This result holds for all orthogonal saturated designs.)
Thus, the treatment combinations for any saturated design have an invariance property;
the levels for each pair of treatment combinations coincide on n/2 − 1 factors and differ
on the other n/2 factors; see Xu and Wu’s (2001) Lemma 2. Viewing each treatment com-
bination as a point in k-dimensional space, the distance between every pair of points is
the same.

The row coincidence matrices for maximal even designs also have a simple structure.
Computing T = EnE′

n defined by (7.12) reveals that every row of T consists of the values k,
−k, and the rest zeros. Projections of maximal even designs will have row coincidence val-
ues that are also symmetrical, with all odd moments zero, where the moments are defined
as follows.

Let t1, t2, . . . , tn denote the elements of any column of T for a regular 2k−q design; for
regular 2k−q designs, Block (2003, Theorem 5.1) proved that the distributions of values are
identical for every column of T. Thus, the rth moment of T is defined to be

Mr =
[
tr
1 + tr

2 + · · · + tr
n
]

n
. (7.17)

For two-level designs, the Hamming distance matrix H is related to the row coincidence
matrix through

T = kJn − 2H.

Clark and Dean (2001) addressed the problem of equivalence of designs using the Ham-
ming distance matrices for a sequence of projections (see Section 7.11). Xu and Wu (2001)
derived explicit expressions for the generalized word length pattern (gwlp) of any design
as functions of moments of the design’s Hamming distance matrix. For regular fractions,
the wlp and gwlp are identical. Thus, the wlp (7.10) for regular fractions, which is our con-
cern here, can be written as moments of either H or T and so can be determined from a
single column of either. It is easily shown that for designs of resolution III or more, M1 = 0
(i.e., columns of T sum to zero) and M2 = k. Subsequent moments are used to compute
A3,…, A6 as follows (Butler 2003b):

A3 = M3/6,

A4 = [M4 − (3k − 2)k] /24,

A5 = [M5 − 10(k − 2)M3]/120,

A6 = [M6 − 5(3k − 8)M4 + 2(15k2 − 60k + 32)k]/720.

Xu and Wu (2001) proved that sequentially minimizing A3, A4, . . . (i.e., minimum aberra-
tion) is equivalent to sequentially minimizing the Mr’s. Furthermore, since the frequency
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TABLE 7.3

Row Coincidence Distributions for Five 29−5
III Designs

Design 9-5.1 Design 9-5.2 Design 9-5.3 Design 9-5.4 Design 9-5.5

−7 −3 −5 −3 −3
−1 −3 −3 −3 −3

−1 −3 −3 −3 −3
−1 −3 −1 −3 −1

−1 −3 −1 −1 −1
−1 −3 −1 −1 −1
−1 1 −1 −1 −1

−1 1 −1 −1 −1
−1 1 −1 −1 −1

1 1 1 −1 −1
1 1 1 1 −1

1 1 1 1 1
1 1 1 1 1
1 1 1 3 1

1 1 3 3 5
9 9 9 9 9

M3 24 36 36 42 48
M4 561 441 465 441 465

Source: With kind permission from Springer Science+Business Media: A Comprehensive Guide to
Factorial Two-Level Experimentation, 2009, p. 515, Mee, R.W.

distribution of values in T can be determined from the wlp, one can determine whether
two regular fractions have the same wlp by comparing their row coincidence distributions,
without even computing the moments. Finally, if the 2k−q fraction contains the treatment
combination (+1, +1, . . . , +1), then its row coincidence distribution can be obtained simply
by summing across the columns of the design.

We conclude this section by displaying the row coincidence distributions for the five
non-isomorphic regular 29−5

III designs, as identified by Chen et al. (1993). Table 7.3 contains
these distributions and their third and fourth moments. Comparing the coincidence dis-
tributions reveals the following insights. Since M3 is proportional to A3, all resolution III
designs have positively skewed coincidence distributions; the best design, 9-5.1, is the one
with the least skewness, that is, M3 = 24 and A3 = 4. According to Butler’s (2003a) Theo-
rem 4, all minimum aberration designs of resolution III project to the minimal even design,
so design 9-5.1 must include the resolution IV 28−4 fraction as a projection. The row coin-
cidence distribution for this maximal even design is −8, 0,. . ., 0, 8. Since design 9-5.1 has
coincidence values that just differ by ±1 from the symmetric coincidence values of the reso-
lution IV 28−4, this row coincidence distribution has the least skewness. In contrast, design
9-5.3 has a minimum row coincidence of –5, so its least coincident treatment combination
pairs still agree on two of the nine factors. Thus, dropping any one of design 9-5.3’s factors
cannot produce the even 28−4

IV design with coincident values of –8. (The other designs in
Table 7.3, all with least coincidence values of –3, can achieve a row coincidence value no
smaller than –4 when one factor is dropped.) Note also how the best design maximizes the
minimum distance between points (i.e., has the fewest coincidences among factors in differ-
ent treatment combinations). For the best two designs, the maximum agreement between
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two treatment combinations is on just five of the nine factors, resulting in a row coinci-
dence value of 1. The poorer designs have pairs of runs that agree on six or seven factors,
producing a ti value of 3 or 5, respectively. This makes explicit the intuition that the best
fractions more effectively spread out treatment combinations in the design space.

7.7 Analysis of Factorial Experiments

There is a simplicity to analyzing regular two-level fractional factorial designs due to the
fact that (1) each main effect and interaction represents a single df and (2) the contrasts from
different alias sets are orthogonal to one another. When the model in (7.3) is reasonable,
the only complication is the estimation of σ2 from data that lacks any replication. While
the factorial effects can be estimated separately, an estimate of σ is needed to compute
standard errors for the factorial effects. To estimate σ properly, some assumption must be
made. One approach is to assume that all interactions above a certain order are negligible.
For instance, for the 26−1 fraction with resolution VI, if we assume no three-factor or higher-
order interactions, then fitting the two-factor interaction model will leave 10 df for error. If
this assumption is valid, then the resulting mean squared error (MSE) provides an unbiased
estimator for σ2 and one may construct valid t-tests for each of the lower-order effects.
However, the assumption of no three-factor or higher-order interactions furnishes no df
for error in cases where the fraction is SOS.

For the analysis of resolution III designs and most resolution IV designs, an assumption
of effect sparsity is commonly invoked. Rather than specifying in advance of the analysis that
particular interactions are negligible, effect sparsity supposes that the number of “active”
(nonnegligible) main effects and interactions is no more than, say, 25% or 30% of (n − 1).
For instance, for a 16-run (32-run) fraction, this means that no more than about four (nine)
effects are active. Numerous papers have been written proposing methods of analysis for
two-level factorials based on effect sparsity. The most popular method is from Lenth (1989),
due to its simplicity and overall good performance (also see Haaland and O’Connell 1995).

We now illustrate the use of both analysis approaches using the initial experiment of
Barnett et al. (1997). These authors describe a wafer etching experiment with 18 runs, one
wafer per run. The response is the standard deviation (SD) of nine thickness measurements
on a single wafer. A 26−2

IV fractional factorial was used to define treatment combinations for
16 of the 18 runs; the generators for this fraction were 5 = 124 and 6 = 123. The remaining
two runs were taken at the center; this is possible since the six factors are all quantitative.
Table 7.4 shows the factors in coded levels, with runs sorted from best to worst SD. The two
additional center runs furnish 1 df for pure error from replication and 1 df for identifying
the presence of pure quadratic curvature, that is, effects of the form x2

i . We use the natural
log, ln(SD), to satisfy the constant error variance assumption.

We begin by assuming that no third-order terms (or higher order) are needed. The full
second-order model cannot be estimated due to aliasing; but a model with 14 df besides
the intercept can be fitted: 6 df for main effects, 7 df for two-factor interactions (one from
each alias set), and 1 df for the aliased pure quadratic terms. The MSE is 0.0345, with
3 df. Least squares estimates, t-ratios, and p-values are shown in Table 7.5, sorted from the
most significant to the least. (The pure quadratic estimate listed is the coefficient for 3x2

i ;
this rescaling is so that all estimates in Table 7.5 have the same standard error of σ/

√
16.)

Four estimates are significant at the 0.01 level. What is perhaps surprising is that only one
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TABLE 7.4

Barnett et al. (1997) Experiment

F1 F2 F3 F4 F5 F6 SD

1 1 1 −1 −1 1 1.60
−1 −1 1 −1 −1 1 1.71

−1 1 1 1 −1 −1 2.61
−1 1 1 −1 1 −1 3.10

1 1 1 1 1 1 3.10
−1 −1 1 1 1 1 3.43
−1 −1 −1 1 1 −1 4.05

0 0 0 0 0 0 4.83
1 1 −1 1 1 −1 6.18

0 0 0 0 0 0 6.37
−1 −1 −1 −1 −1 −1 6.49

1 −1 −1 1 −1 1 7.00
1 1 −1 −1 −1 −1 7.20
1 −1 −1 −1 1 1 7.25

−1 1 −1 1 −1 1 16.58
1 −1 1 −1 1 −1 19.11

1 −1 1 1 −1 −1 19.20
−1 1 −1 −1 1 1 38.50

Source: Reprinted with permission from Barnett, J. et al., Using fewer wafers to
resolve confounding in screening experiments, in Statistical Case Studies for
Industrial Process Improvement, Czitrom, V. and Spagon, P. (eds.), SIAM,
Philadelphia, PA, 1997, 235–250. Copyright 1997 Society for Industrial and
Applied Mathematics.

of the four is a main effect. Thus, this experiment indicates that high F3 is beneficial for
minimizing ln(SD) and that at least three other factors are involved. The pragmatist might
just declare a preference for factors 4 and 5 low and factors 3 and 6 high based on the
first two rows of Table 7.4, requiring no more experimentation. The curious investigator
would pursue a follow-up experiment. This example will be revisited for that purpose in
Section 7.9.

These data may also be analyzed based on an assumption of effect sparsity, without
specifying negligible high-order interactions. With a 16-run 26−2 fraction (and ignoring the
centerpoint runs), Lenth’s method would be based on 15 contrasts (6 main effects, 7 for
two-factor interactions, 2 for three-factor interactions). The addition of the two centerpoint
runs adds two additional df. JMP’s modeling screening analysis option implements Lenth’s
method using all 17 df that we describe here. Table 7.5 shows the 17 least squares estimates.
In addition to two three-factor interaction contrasts, we see an effect labeled null, which is
the pure error contrast, calculated as ln(6.37) − ln(4.83) = 0.2768 divided by

√
32 so that it

has the same standard error as the factorial effects.
To compute Lenth’s t statistics, one begins by computing the median magnitude of the

estimates scaled as in Table 7.5 to have the same variance. In Table 7.5, this median is 0.0795.
Lenth’s method computes s0 = 1.5(0.0795) = 0.1192 as a preliminary estimate of the standard
error of the estimates. (This multiplier is based on the fact that for a standard normal ran-
dom variable Z, E(1.5|Z|) is very nearly 1.) If no effects were active, s0 could serve as the
estimated standard error. However, if a few effects are active, their corresponding estimates
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TABLE 7.5

Sorted Estimates for ln(SD) from Two Models

Term Estimate t-Ratioa p-Valuea Lenth’s tb p-Valueb

F1 F2 = F3 F6 = F4 F5 0.4967 −10.69 0.0018 −5.38 0.0021
F1 F6 = F2 F3 −0.4400 −9.47 0.0025 −4.77 0.0029

F3 −0.3802 − 8.18 0.0038 −4.12 0.0058
F1 F3 = F2 F6 0.3533 7.60 0.0047 3.83 0.0080

F3 F4 = F5 F6 0.1682 3.62 0.0362 1.82 0.0824
F5 0.1111 2.39 0.0966 1.20 0.2120
F1 0.1026 2.21 0.1143 1.11 0.2434

F6 −0.0815 −1.75 0.1777 −0.88 0.3497
F3 F5 = F4 F6 0.0795 1.71 0.1857 0.86 0.3612

F1 F4 = F2 F5 0.0793 1.71 0.1866 0.86 0.3624
F1 F5 F6 =... −0.0615 −0.67 0.5315

F2 −0.0577 −1.24 0.3023 −0.63 0.5693
Null 0.0489 0.53 0.6312
F1 F5 = F2 F4 −0.0438 −0.94 0.4159 −0.47 0.6686

Aliased quadratic terms 0.0293 0.63 0.5734 0.32 0.7723
F4 −0.0195 −0.42 0.7032 −0.21 0.8472

F1 F3 F5 = ... 0.0173 0.19 0.8652

a Based on standard error calculated as [MSE/16]1/2 = 0.0465, with 3 df.
b Based on PSE = 0.0923.

should be much larger than the true standard error, which would tend to inflate s0. Conse-
quently, Lenth’s procedure is adaptive. Estimates larger than 2.5s0 are eliminated, and the
median is recalculated. Here, four estimates in Table 7.5 exceed 2.5(0.1192) = 0.298 in abso-
lute value, and the median from the remaining 13 estimates is 0.0615. Thus, Lenth’s pseudo
standard error (PSE) is 1.5(0.0615) = 0.0923. This estimate is double the standard error of
[MSE/16]1/2 = 0.0465 used in the first analysis; this discrepancy is because the 3 df for error
used there are among the smallest estimates in Table 7.5. Dong (1993) proposed a procedure
similar to that of Lenth, but based on the mean square of the estimates after pruning rather
than on their median. While the mean might be more efficient than the median, it is also
less robust to the presence of active effects after pruning. Schoen and Kaul (2000) consider
both methods, provide their own adjustments, and make recommendations that take into
consideration the expected number of active effects.

Lenth’s PSE is not the final goal of Lenth’s procedure. Rather, it is just a step in the
process of determining statistical significance. Here, we describe how the p-values in the
last column of Table 7.5 were computed. Lenth (1989) proposed the simple procedure of
computing p-values for Lenth’s t statistics using a t distribution with m/3 df, where m is
the total number of contrasts used. Here, m = 17, so Lenth (1989) would have us com-
pute p-values using the t distribution with 17/3 = 5.67 df. However, subsequent work has
shown that using a t distribution with m/3 df to compute p-values is too conservative. While
some software still uses m/3, it is preferable to abandon use of a t approximation and to
compute p-values by simulating the null distribution of Lenth’s t; see Edwards and Mee
(2008). This was done to provide the last column of Table 7.5. Using Lenth’s procedure,
four estimates have p-values below 0.01. For references to the power of Lenth’s method
and other procedures based on effect sparsity, see Haaland and O’Connell (1995), Hamada
and Balakrishnan (1998), and Mee (2009, Section 13.1).
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TABLE 7.6

Irvine et al. (1996) 213−9 Pulping Experiment

Run F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 Brightness

1 1 1 −1 1 −1 1 −1 −1 1 −1 −1 −1 1 20.5
2 −1 1 1 1 1 1 −1 1 1 −1 −1 1 −1 19.8

3 −1 −1 −1 1 1 1 −1 1 −1 1 1 −1 −1 17.3
4 −1 −1 1 1 1 −1 1 −1 1 1 −1 −1 1 29.0

5 1 −1 −1 1 −1 −1 1 1 1 1 −1 1 −1 19.5
6 −1 1 1 −1 −1 −1 −1 −1 1 1 1 1 −1 17.7
7 −1 −1 1 −1 −1 1 1 1 1 −1 1 −1 1 25.8

8 1 −1 1 1 −1 1 −1 −1 −1 1 1 1 1 23.8
9 1 −1 −1 −1 1 1 1 −1 1 −1 1 1 −1 23.4

10 1 1 1 −1 1 1 1 −1 −1 1 −1 −1 −1 22.1
11 1 1 −1 −1 1 −1 −1 1 1 1 1 −1 1 26.3

12 1 −1 1 −1 1 −1 −1 1 −1 −1 −1 1 1 23.4
13 −1 1 −1 −1 −1 1 1 1 −1 1 −1 1 1 26.4
14 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 17.6

15 1 1 1 1 −1 −1 1 1 −1 −1 1 −1 −1 20.0
16 −1 1 −1 1 1 −1 1 −1 −1 −1 1 1 1 26.4

Consider now another experiment, as described by Irvine et al. (1996) that used a 213−9
III

design to investigate the best method to remove lignin during the pulping stage of paper
production. Table 7.6 presents the coded levels of the 13 factors used in the experiment,
plus pulp brightness, which was one of 15 response variables reported for each treatment
combination. The design is a minimum aberration design; for 13 factors in 16 runs, any 13
contrast columns from S16 provide a minimum aberration design.

Main effects account for 13 of the n − 1 = 15 df available. The MSE of the main effects
model has just 2 df and provides an unbiased estimator for σ2 only if the two contrast
columns of S16 not assigned main effects have estimates with expected value of zero. For the
design in Table 7.6, these two columns correspond to F10F13 and F11F13; each of these is also
aliased with five more two-factor interactions. So, if any of these 12 two-factor interactions
is not negligible, the MSE of the main effects model will tend to overestimate σ2. Due to
this risk, it is preferable here to use Lenth’s method.

Fitting a two-factor interaction model for this experiment results in PSE = 0.281 (see
Table 7.7). Four of the 15 p-values estimated by simulation of Lenth’s t null distribution
are less than 0.02, while the others exceed 0.15. Thus, we have evidence for as many as
three active main effects and at least one active two-factor interaction. Which particular
interaction(s) is active cannot be determined from this resolution III design. In Table 7.7,
the estimate of 0.85 has been identified with F10F13, from among the aliases, since factor 13
has the largest main effect estimate. We will revisit this experiment in Section 7.9 where we
discuss augmenting fractional factorial designs.

If we had fit the main effects model here, then MSE would have been 6.185, and the
estimates would have had standard error (6.185/16)1/2 = 0.6217, more than double the PSE.
Although we do not know the true error variance here, the MSE is very likely much too
large due to bias by an active interaction. Note that Lenth’s method should be applied to
a saturated model, not a reduced model, since it is the scatter of estimates near zero that
furnishes information about σ.
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TABLE 7.7

Irvine et al. (1996) 213−9 Pulping Experiment

Term Aliases Estimate Lenth t p-Value

F13 4·8 = 9·12 = 1·7 = 5·6 = 2·3 2.7625 9.82 0.0003
F7 10·11 = 5·8 = 3·12 = 1·13 = 4·6 = 2·9 1.6375 5.82 0.0021

F5 3·11 = 7·8 = 10·12 = 1·4 = 6·13 1.0250 3.64 0.0087
F10F13 5·9 = 3·4 = 1·11 = 6·12 = 2·8 0.8500 3.02 0.0175

F4 9·11 = 8·13 = 1·5 = 6·7 = 2·10 −0.4000 −1.42 0.1521
F10 7·11 = 3·8 = 5·12 = 6·9 = 2·4 0.3250 1.16 0.2281
F9 4·11 = 12·13 = 1·3 = 6·10 = 2·7 0.3125 1.11 0.2450

F3 5·11 = 8·10 = 7·12 = 1·9 = 2·13 0.2625 0.93 0.3189
F11F13 8·9 = 4·12 = 1·10 = 3·6 = 2·5 0.2250 0.80 0.3873

F11 7·10 = 4·9 = 3·5 = 8·12 = 2·6 0.1500 0.53 0.6165
F8 5·7 = 4·13 = 3·10 = 11·12 = 1·6 −0.1250 −0.44 0.6755

F12 5·10 = 9·13 = 3·7 = 8·11 = 1·2 0.1125 0.40 0.7044
F1 7·13 = 4·5 = 3·9 = 6·8 = 2·12 −0.0625 −0.22 0.8301
F6 5·13 = 4·7 = 9·10 = 1·8 = 2·11 −0.0500 −0.18 0.8631

F2 4·10 = 7·9 = 3·13 = 1·12 = 6·11 −0.0375 −0.13 0.8946

s0 = 0.394, Lenth’s PSE = 1.5(0.225 + 0.150)/2 = 0.28125.

7.8 Screening

Experiments for the purpose of screening for active factors are common, for example,
in industrial research and development, in engineering, in genetic and medical screen-
ing, in drug discovery, and in simulation and computer experiments (see, e.g., articles
in Dean and Lewis 2006). Screening involves the evaluation of a large number of poten-
tially important factors to search for the few active factors (now defined as those that
have substantially large main effects and/or are involved in substantially large interac-
tions). Once detected, active factors are followed up in later studies for more detailed
analysis. Screening experiments may involve more factors than can be accommodated
by a regular fractional factorial design. Chapter 9 gives alternative designs, such as
orthogonal arrays, search designs, and supersaturated designs that can be used for
this purpose. Here, we mention an alternative strategy that allows regular fractions
to be used in two-stage group screening. The technique, described by Dorfman (1943)
for blood screening, was developed further by Watson (1961) for use in the factorial
setting for screening main effects; it was later extended for screening interactions by
Lewis and Dean (2001) and Vine et al. (2005). An overview of group screening is given
by Morris (2006), and an example of its use in the automobile industry is given by
Vine et al. (2008).

In two-stage group screening, factors are reordered and partitioned into groups so that,
say, the g factors F1, . . . , Fg belong to group G1, the h factors Fg+1, . . . , Fg+h belong to group
G2, and so on. Then a fractional factorial experiment is designed for the group factors,
G1, G2, . . ., and effects of individual factors within each of these groups are intentionally
confounded. The experiment is analyzed as if each group factor is a single experimental
factor and those group factors that are found to have active main effects or active interac-
tions are passed to the second-stage experiment. At the second stage, the active groups are
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dismantled and a new fractional factorial experiment is designed, run, and analyzed for
the resulting individual factors.

For example, suppose there are 20 factors to be screened and each is to be observed at
two levels. A 220−11

V design with 512 runs exists (see Table 7.2), allowing all main effects
and two-factor interactions to be estimated independently. However, if only a few of the 20
factors are active ( factor sparsity), these can likely be found in far fewer runs. For example,
if, at stage 1, we partition the 20 factors into five groups G1, . . . , G5, each containing four
factors, then a 25−1

V fraction with 16 observations can be used to determine which of the five
groups have active main effects and two-factor interactions. If two groups, say, are found
to be active, then there are eight individual factors within these two groups that now need
to be screened, and this can be done at stage 2 with a 28−2

V fraction having 64 observations
(Table 7.2). So a total of 80 observations will have been used. And if three groups were found
to be active at stage 1, then a 212−4

VI fraction with 256 observations could be used, for a total
of 272 observations (as compared with 512 for the 220−11

V fraction). In fact, there is another
possibility at stage 2 since an orthogonal array (Chapter 9) exists with 128 observations that
allows independent estimation of main effects and interactions; so only 144 observations
would be needed. There is a small possibility that all groups could be found to be active;
then the experimenter may actually use more observations in the two-stage design than in
the single-stage nongroup experiment, unless the choice is made to ignore factors in groups
with smaller effects.

When factor G is at level +1 in the stage 1 design, this means that all the factors within the
groups are held at level +1. Consequently, there is some unusual confounding at stage 1. In
fact, this is a resolution II design for the individual factors since the main effect contrasts of
all individual factors within the same group are identical; in addition, all two-factor inter-
actions between individual factors within the same group are aliased with the mean. Also
aliased are the two-factor interactions between any two factors, one from Gi and one from
Gj (for all pairs of groups Gi and Gj). Therefore, group screening designs, as all fractional
factorial designs, should be used only when factor sparsity is expected, and the hope is
that any active effects that happen to be aliased will reinforce each other and not cancel.
For main effects, reinforcement can be achieved whenever prior knowledge enables the
assignment of factor levels so that +1 represents the level that gives the larger response.

Draguljić et al. (2014) investigate the performance of group screening with a regular
design at stage 1 and a nonregular design at stage 2 and show that the technique works
well with shrinkage regression analysis methods, such as the Dantzig selector.

7.9 Augmentation of Designs and Follow-Up Experiments

In this section, we consider a variety of follow-up designs that are commonly used to
augment an initial two-level fractional factorial design in order to gain information about
aliased interactions. We use the Irvine et al. (1996) and Barnett et al. (1997) data analyzed
in Section 7.7 to motivate each augmentation choice.

7.9.1 Augmenting Resolution III Designs by Foldover

Lenth’s analysis of the 213−9 experiment of Irvine et al. (1996) identified three likely main
effects and at least one interaction as indicated by the p-values in Table 7.7. Generators for
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the design in Table 7.6 are

5 = −1 · 4, 6 = −1 · 2 · 3 · 4, 7 = 1 · 2 · 3, 8 = 2 · 3 · 4, 9 = −1 · 3,
10 = −2 · 4, 11 = 1 · 3 · 4, 12 = −1 · 2, 13 = −2 · 3.

(7.18)

Of the 78 two-factor interactions, 66 are aliased with main effects. The fact that at least one
interaction has been found among the 12 not aliased with main effects raises the question
of whether other interactions exist that are biasing our main effect estimates. To answer this
question, it would be helpful to run a second 213−9 fraction obtained by simply reversing
the signs of some of the original generators (a foldover fraction). Since 29 = 512, Table 7.6
shows a 1/512th fraction, and the other 511 fractions from this same family of generators
can be obtained by reversing the signs of one or more of the generated factors in (7.18). If
we reverse the signs of just the six even-length aliases of the generated factors {5, 6, 9, 10,
12, 13}, the new fraction has generators

5 = 1 · 4, 6 = 1 · 2 · 3 · 4, 7 = 1 · 2 · 3, 8 = 2 · 3 · 4, 9 = 1 · 3,
10 = 2 · 4, 11 = 1 · 3 · 4, 12 = 1 · 2, 13 = 2 · 3.

(7.19)

Note that even-length factor generators create odd-length generating words in the defin-
ing relation. For any 213−9 fraction, there are 256 odd-length words and 255 even-length
words in the defining relation, not counting the identity column. In the initial fraction here,
the signs of the generators were chosen to make all the odd-length words in the defining
relation to be negative and the even-length words to be positive. For the second fraction we
have proposed, all words in the defining relation have a positive sign. This implies that if
these two 213−9 fractions (7.18) and (7.19) are put together, the resulting 213−8 fractional fac-
torial will have resolution IV. For instance, the defining relation for (7.18) includes –145 and
the contrast coefficients for the interaction F1F4F5 are −1 for the 16 treatment combinations
in Table 7.6, while the coefficients for the same interaction are +1 for all treatment combi-
nations in the proposed follow-up design (7.19). Since the contrast coefficients for F1F4F5
sum to zero over the combined 32 runs, this interaction does not appear in the defining
relation for the design after augmentation. The same is true for all the odd-length words in
the defining relation for (7.18).

One does not need to know the generators or the defining relation of a resolution III
design to find a fraction that when added to the first design will increase the resolution.
One simply has to reverse all the signs in the design columns. This simple rule ensures
that the combined design will have resolution IV or more, since all odd-length words will
change sign in the augmenting fraction and so sum to zero for the combined design.

Analysis of a regular fraction augmented by foldover is straightforward, as it is simply
a regular 2k−(q−1) design. If each portion is run as a completely randomized design, as we
have assumed in our previous analysis, the combined design is a randomized block design
run in two blocks. When the data are analyzed, one should include a main effect for blocks.

What is estimable after the reverse all column signs fraction is run? Combining two 2k−q

blocks breaks each alias chain (of length 2q) in two, with odd-length effects in one set
and even-length effects in the other. Thus, for the Irvine et al. design, if we assume no
three-factor or higher-order interactions, the main effects in the 15 alias sets in Table 7.7 are
separated from the two-factor interactions and can all be estimated independently.

All two-factor interactions aliased in the original design are still aliased. This is because
no length-4 words were eliminated from the defining relation. When k ≥ 5n/8, the reverse
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all column signs fraction is the only one of the other 2k−q fractions that will create a 2k−(q−1)

fraction with higher resolution; the resulting augmented design is always even, since it
contains mirror image treatment combinations. However, for smaller k, there are sometimes
additional choices that will both eliminate all length-3 words (increasing the resolution to
IV) and eliminate some length-4 words; see Li and Mee (2002).

7.9.2 Augmenting Resolution IV Designs by Foldover and Semifoldover

The 26−2
IV fraction by Barnett et al. (1997) analyzed in Section 7.7 revealed that two-factor

interactions are the most prominent effects (see Table 7.5). However, the resolution IV frac-
tion aliases every two-factor interaction with one or two others as a result of the three
length-4 words in the defining relation

I = 1245 = 1236 = 3456. (7.20)

This design is a quarter fraction so there are three other fractions that may be obtained by
reversing the sign of one or both of the generators. If we reverse the sign of only the column
for factor 6, the new defining relation is I = 1245 = −1236 = −3456, and the combined 26−1

design has defining relation I = 1245. Augmenting the initial 26−2
IV design with any foldover

fraction different from the initial design eliminates two of the three words in the defining
relation (7.20). Here, the preferable foldover fraction is obtained by reversing the sign of
either factor 3 or factor 6, since all two-factor interactions involving F3 or F6 will then be
clear of aliasing with other two-factor interactions. This choice is motivated by the fact
that factor F3 has the largest main effect and so is often deemed the most likely factor to
be involved in interactions. A foldover of the design in Table 7.4 obtained by reversing
column 6 is shown in Table 7.8. If all 16 runs had been performed, five of the seven two-
factor interaction alias sets (refer to Table 7.5) would be split. The only remaining aliasing
would involve 12 = 45, 14 = 25, and 15 = 24.

Barnett et al. (1997) ran only eight additional runs to augment their original experiment,
not 16, as indicated by the responses in Table 7.8. Their follow-up experiment is called a
semifold fraction, since it only includes 8 runs from a second 26−2 design. Mee and Peralta
(2000) introduced notation to describe semifold designs; Barnett et al.’s semifold would be
designated fo = 6, ss = 6+, which means the foldover fraction is obtained by reversing the
signs of the column for F6 and then subsetting (ss) on the runs with positive values for F6.
If we had been recommending a semifold design, we would have recommended the eight
runs defined by fo = 6, ss = 3+, since the initial experiment indicated that the best results
are obtained at the high level for factor 3.

For any even resolution IV design, there are at most (n/2 − 1) df for two-factor interac-
tions. For such even designs, if one semifolds by subsetting on a main effect, the semifold
fraction permits estimation of as many two-factor interactions as could be estimated if the
entire foldover were to be run (Mee and Xiao 2008). The gain in completing the entire
foldover rather than the semifoldover is in the added precision. After foldover, the standard
errors are σ/

√
2n, while after semifoldover, the standard errors for two-factor interactions

can be as large as σ/
√

n. For more details, see Barnett et al. (1997) or Mee (2009, Section 9.5).
For the 26−2 and the 27−3 resolution IV designs, every possible foldover fraction can be

obtained by reversing the signs of a single main effect column. For the 28−4 and any design
where k < 2q −1, some foldover fractions are obtained only by reversing the signs of two or
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TABLE 7.8

Foldover Design by Barnett et al. (1997)

F1 F2 F3 F4 F5 F6 SD

1 1 1 −1 −1 −1
−1 −1 1 −1 −1 −1

−1 1 1 1 −1 1 6.63
−1 1 1 −1 1 1 6.60

1 1 1 1 1 −1
−1 −1 1 1 1 −1
−1 −1 −1 1 1 1 13.67

1 1 −1 1 1 1 9.23
−1 −1 −1 −1 −1 1 12.96

1 −1 −1 1 −1 −1
1 1 −1 −1 −1 1 8.59

1 −1 −1 −1 1 −1
−1 1 −1 1 −1 −1

1 −1 1 −1 1 1 6.19

1 −1 1 1 −1 1 9.81
−1 1 −1 −1 1 −1

Source: Design by Barnett, J. et al., Using fewer wafers to resolve confounding
in screening experiments, in Statistical Case Studies for Industrial Process
Improvement, Czitrom, V. and Spagon, P. (eds.), SIAM, Philadelphia, PA,
1997, 235–250.

more columns. If the signs of the column for a single factor are reversed, all two-factor inter-
actions involving that factor are separated from their aliased two-factor interaction strings.
However, for resolution IV designs with many sets of aliased two-factor interactions of
size 4 or more, a larger number of length-4 words are eliminated by foldovers obtained by
reversing column signs for more than one factor; for details, see Li and Lin (2003), Mee
and Xiao (2008), and Ai et al. (2010). Generally, once the foldover fraction is determined, a
judiciously chosen subset of n/2 runs will suffice (Edwards 2011); all n runs of the foldover
fraction should be performed only if the standard errors after the initial 2k−q experiment
were deemed unsatisfactorily large.

7.9.3 Other Design Augmentation Strategies

The previous two sections highlighted augmentation of an experiment by adding all (or
half) of a regular foldover fraction of size n to the original n-run design. Here, we give a
brief survey of four other common choices for augmentation: confirmation runs, D-optimal
augmentation, steepest ascent, and composite designs.

The analysis of data from a 2k−q fraction inevitably requires some assumptions and/or
educated guesses. At the very least, one ought to perform follow-up runs to confirm the
tentative conclusions reached from the fractional factorial analysis. For instance, if Barnett
et al. (1997) had not had the resources or time for running a semifold fraction, at least a
couple of confirmation runs should have been performed with F3 and F6 at the high level
and F4 and F5 at the low level, since this combination produced the two smallest SD. One
confirmation run should be a repeat of row 1 or 2 in Table 7.4, while a second run should
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take (F1, F2) = (–1, 1) since the initial experiment hints that low F1 is preferred. This pair of
runs would help confirm that SD < 2 is repeatable.

A foldover or semifoldover of Barnett et al.’s 26−2 design still has aliasing between three
pairs of two-factor interactions. This is inevitable since three two-factor interactions are
aliased together in the original fraction. Rather than restricting the follow-up runs to come
from a regular fraction, one can simply specify both the model of interest and the number
of follow-up runs and then use software to determine the additional treatment combina-
tions that maximize the information about the parameters of this model. If the criterion is
to maximize the determinant of X′X, this is D-optimal augmentation. This follow-up strat-
egy is popular due to its flexibility, since one is free to specify any model of interest and
any number of runs. If the run size is not sufficient to estimate the given model, one may
use Bayesian D-optimal design; the simplest version of this maximizes the determinant of
X′X + λI for a suitably small value of λ (Jones and duMouchel 1996).

If the objective is to optimize the response(s) and one can explore outside the region of
experimentation for the initial fraction, then steepest ascent (or descent) is an approach that
uses a fitted model to identify a search direction that optimizes the predicted response,
subject to a constraint on the standard error of prediction or a constraint on distance
from the center of the original design (see Box and Draper 2007, Chapter 6). Mee (2009,
Section 9.3) presents a variety of situations, including optimizing two or more responses
and optimization with multiple constraints.

Finally, one common model of interest for quantitative factors is the second-order model,
which contains not only the k linear main effects and k(k − 1)/2 two-factor interactions that
represent the two-factor interaction model, but also the k pure quadratic terms, x2

1, . . . , x2
k .

Box and Wilson (1951) first proposed the central composite design for estimating the second-
order model (see also Chapter 1, Section 1.8.3, and Chapter 5, Section 5.2.2). If the initial 2k−q

fractional factorial has resolution V or more, then the addition of a second block containing
2k axial points and at least one centerpoint run allows each factor to be observed at 3 or more
levels and permits estimation of the second-order model. The pair of axial points for the ith

factor uses levels that are equally spaced above and below the midpoint and for every other
factor uses the midpoint (between low and high levels). In coded units, the axial points for
the first factor are thus (−α, 0, . . . , 0) and (α, 0, . . . , 0). Taking α = 1 creates exactly three
levels for each factor, but this provides poor precision for the pure quadratic coefficients
unless the axial points are replicated. Alternatively, one may choose α near to

√
k, which

(in coded units) places the axial points the same distance from the centerpoint as the fac-
torial points; this improves the precision for the pure quadratic coefficients, but it requires
the design to have five levels for each factor. For details regarding the choice for α and the
number of centerpoint replicates, see Box and Draper (2007, Section 15.3). Box and Wilson
(1951) also suggested a composite design where the augmenting runs are placed outside
one corner of the factorial design. The notion of such asymmetric and noncentral com-
posite designs for estimating the second-order model is further explored in Lucas (1974)
and Mee (2001).

7.10 Regular Fractions for More Than Two Levels

When the experimental budget is tight so that the number of observations is limited, eco-
nomical experiments are obtained by using fractions with all factors limited to two levels.
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There are situations, however, in which more than two levels are needed as, for example,
when a qualitative factor has a number of features that need to be compared, such as batch
of wafers (with several distinct batches) or susceptor rotation method (clockwise, oscillating,
fixed) in integrated-circuit fabrication (e.g., Shoemaker et al. 1991). In this section, we give
a brief discussion of regular fractions with factors at more than two levels.

Suppose, first, that all factors have three levels. Then all main effects have 2 df, which
can be represented by any pair of orthogonal contrasts between the three levels, as in (7.4),
for example. The main effect of a factor is estimable if both contrasts are estimable, which
implies that all linear combinations of these contrasts are also estimable. Any pair of
estimable orthogonal contrasts can be included as columns of the model matrix X in (7.3).
Similarly, each two-factor interaction has 2 × 2 = 4 df, and an interaction is estimable if
there exists a set of four orthogonal and estimable interaction contrasts (which can then
be included in the model); three-factor interactions have 2 × 2 × 2 = 8 df; four-factor
interactions have 16 df, etc.

Regular s-level fractions, with s prime, have numbers of runs being a power of s, and
similar to the two-level setting, we refer to sk−q fractions. Also, similar to the 2-level case,
defining relations and defining contrast subgroups of sk−q fractions, with s prime, contain
the identity I and sq − 1 words that are generated by q generating words. The words in the
defining contrast subgroup fall into (sq − 1)/(s − 1) sets of size s − 1, each set representing
s − 1 df. For example, the defining relation of the resolution III 34−2 design in Chapter 1,
Section 1.7.1 is generated by the q = 2 words ABC2 and ACD, and the full set of 32 words
in the defining relation is

I = ABC2 = A2B2C

= ACD = A2BD = B2C2D

= A2C2D2 = BCD2 = AB2D2.

(7.21)

The words in (7.21) fall into the (32 − 1)/(3 − 1) pairs (ABC2, A2B2C), (ACD, A2C2D2),
(AB2D2, A2BD), and (BCD2, B2C2D), where the second word of each pair is the square of
the first, with exponents reduced modulo 3. It is quite common to list only the first word
in each pair, as was done in Chapter 1, with the understanding that it represents 2 df.

To understand how the generating words match the interaction contrasts, consider
the pair (Aa1jBa2jCa3j Da4j , (Aa1jBa2jCa3j Da4j)2). These represent any two orthogonal contrasts
between three sets of treatment combinations, (x1x2x3x4), satisfying

∑4
i=1 aijxi = 0 mod 3,∑4

i=1 aijxi = 1 mod 3, and
∑4

i=1 aijxi = 2 mod 3, where the aij are the exponents of A, B, C, D
in the jth generating word. Consider the first pair of words (ABC2, A2B2C) in (7.21), for
example, which represent any pair of orthogonal contrasts between three sets of treatment
combinations, each set satisfying one of the three equations of (7.22):

x1 + x2 + 2x3 + 0x4 = 0 mod 3,

x1 + x2 + 2x3 + 0x4 = 1 mod 3, (7.22)

x1 + x2 + 2x3 + 0x4 = 2 mod 3,

where we have taken the aij from the exponents of ABC2, but those from A2B2C would result
in the same division of treatment combinations. Similarly, the second pair of generating
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words (ACD, A2C2D2) represents a pair of orthogonal contrasts between three sets of
treatment combinations, each set satisfying one of the three equations of (7.23):

x1 + 0x2 + x3 + x4 = 0 mod 3,

x1 + 0x2 + x3 + x4 = 1 mod 3, (7.23)

x1 + 0x2 + x3 + x4 = 2 mod 3.

If we take the treatment combinations for the fraction satisfying, say, the first equation of
both (7.22) and (7.23), we will have a 34−2 fraction with defining relation as in (7.21) and
the 9 treatment combinations

0000, 0112, 0221, 1011, 1120, 1202, 2022, 2101, 2210. (7.24)

Any other pair of rows from (7.22) and (7.23) could be chosen instead, resulting in a dif-
ferent set of nine treatment combinations for the fraction but the same defining relation.
These alternative fractions can also be obtained by adding (modulo 3) a treatment combi-
nation that is not in the fraction (7.24) to all of the treatment combinations that are in the
fraction. For any of these fractions, all columns in the model matrix X for contrasts corre-
sponding to the words in the defining relation will be a constant multiple of the column I
of all 1’s.

In general, we can use the same idea to obtain sk−q fractions for any prime number of
levels s by choosing q generating words. The defining contrast subgroup is of size sq and
is generated from the q generating words each raised to powers u = 1, 2, . . . , s − 1 together
with their products, with exponents reduced modulo s. The treatment combinations for the
fraction are those that satisfy equations of the form

∑k
i=1 aijxi = 0 mod s, where aij is the

exponent of the ith letter in the jth generating word (i = 1, . . . , k, j = 1, . . . , q). Alternative
fractions with the same defining relation can be obtained as stated earlier.

Although a similar procedure can be used for s nonprime, care needs to be taken in
the choice of generating words, so that all exponents are relatively prime to s. For example,
suppose that a 44−1 fraction is required and that the q = 1 generator AB2C3D2 is chosen with
two of the exponents not relatively prime to 4. The defining contrast subgroup contains
AB2C3D2 raised to every power u = 1, 2, 3 and exponents reduced modulo 4, so the defining
relation is

I = AB2C3D2 = A2C2 = A3B2CD2,

and the four-factor interaction generating word results in a loss of 1 df for the two-factor
interaction F1F3. If generating word ABC3D, for example, were chosen instead, then all
exponents are relatively prime to 4 and the 3 df in the defining relation would belong to
the four-factor interaction (i.e., I = ABC3D = A2B2C2D2 = A3B3CD3).

There are several alternative representations for obtaining sk−q fractions for nonprime s;
one is to use the Galois fields when s is a power of a prime and another is to use pseudofac-
tors as described in Section 7.1 that gives a larger class of designs if s has a prime powered
divisor (see Bailey 1977, 1985; and Voss and Dean 1987, for more information).

For asymmetric designs (i.e., factors having different numbers of levels, s1, s2, . . . , sk),
the same ideas can be used, but the modulus arithmetic has to be done as though all
factors have m = LCM(s1, s2, . . . , sk) levels, where LCM is the lowest common multiple
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of s1, s2, . . . , sk. Correspondingly, the aij are multiplied by m/si, i = 1, . . . , k, (cf. Dean and
John 1975; and Bailey 1977). For example, for a 23−1 × 32−1 fraction with three two-level
factors, two three-level factors, and 12 treatment combinations, suppose that we choose the
single generator ABCD2E for the defining contrast subgroup. Multiplying the exponents ai1
by m/si and reducing modulo m = 6, the defining relation will be

I = A3B3C3D4E2 = D2E4 = A3B3C3 = D4E2 = A3B3C3D4E2,

and again, we see that a four-factor word has led to inclusion of lower-order interactions
in the defining relation. Since m = 6, the 22−1 × 32−1 treatment combinations satisfy

3x1 + 3x2 + 3x3 + 4x4 + 2x5 = 0 mod 6,

that is,

00000, 00011, 00022, 11000, 11011, 11022, 10100, 10111, 10122, 01100, 01111, 01122.

There are few catalogs of designs for regular fractions with factors at more than two levels.
Chen et al. (1993) gave a complete catalog of 27-run three-level fractions (which have at
most 12 factors). Xu (2005) presented a catalog of all 81-run three-level fractions (with a
maximum of 40 factors), 243-run three-level fractions of resolution IV and higher (with a
maximum of 20 factors), and 729-run three-level fractions of resolution V and higher (with
a maximum of 14 factors), as well as more information about the properties of the 27-run
fractions. A subset of 3k−q fractions is listed by Wu and Hamada (2009), as well as some
fractions of 2k × 4 and 2k × 42 factorials.

7.11 Equivalence of Designs

In Section 7.3, we stated the fact that all saturated, regular, resolution III two-level frac-
tions of size n are isomorphic in that the design matrix of one can be obtained from that of
another by interchanging rows (treatment combinations), interchanging columns (factor
names), and reversing the levels for one or more factors. In Sections 7.4 through 7.6, we
described properties and classes of nonisomorphic designs of various resolution. In gen-
eral, isomorphic designs have identical statistical properties under the model being fitted,
and therefore, only nonisomorphic designs need be evaluated when searching for optimal
designs or when preparing a design catalog; see, for example, the catalogs of nonisomor-
phic regular fractional factorial designs by Chen et al. (1993), Xu (2005, 2009), and Lin and
Sitter (2008).

Unless there are theoretical results that can be used to cut down the search, check-
ing for isomorphism is computationally intensive and a number of methods have been
proposed for reducing the computational burden. A naïve check for isomorphism of two
2k−q fractional factorial design matrices could require, in the worst case, an examination
of up to k!(2!)k(2k−q!) permutations of one design matrix to compare with the other, and

Shrivastava and Ding (2010) calculated
(
(2k−q−1)−(k−q)

q

)
possible pairs of designs that need

to be compared.
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There are two ways to reduce the size of the isomorphism check. The first is to partition
the set of all possible designs into small pools of possibly isomorphic designs, with designs
in different pools known to be nonisomorphic, and the second way is to reduce the number
of permutations that need to be examined. The first is accomplished either by using theoret-
ical results or by examining the basic properties of the designs. For example, designs with
different row coincidence distributions (Section 7.6), or different row coincidence moments
(7.17), are clearly nonisomorphic, as are designs with different values under the criteria
defined in Section 7.4.3. Then only designs that match on all of the basic properties remain
in the same pool and need to be examined for isomorphism. A variety of other design
checks for dividing the pools of possibly isomorphic designs were reviewed by Katsaounis
and Dean (2008), Lin and Sitter (2008), Xu (2009), and Shrivastava and Ding (2010).

Algorithms for detecting isomorphic regular two-level fractions among those remaining
in the candidate pools either operate directly on permutations of the design matrix or use
the result of Chen (1992) that two-level regular fractional factorial designs are isomorphic
if and only if the defining relation of one can be transformed to the other by a permutation
of factor labels and reordering of words. Fast algorithms using the latter approach have
been proposed by Xu (2009) and Shrivastava and Ding (2010).

When factors have more than two levels, there are two different types of isomorphism
depending upon whether factors are qualitative or quantitative. For example, when mod-
eling the effect of a three-level qualitative factor (say, color), it is irrelevant which of the
levels (say, red, blue, green) are labeled 1, 2, and 3, since pairwise comparisons among their
effects are not altered by the labeling. So there are 3! different permutations of levels of
every three-level factor that result in an isomorphic design. Building on our earlier defini-
tion, designs with qualitative factors are said to be combinatorially isomorphic if one can be
obtained from the other by (1) reordering the treatment combinations (rows of the design
matrix), (2) relabeling the factors (reordering the columns) and (3) relabeling the levels of
one or more factors.

On the other hand, if a three-level factor is quantitative, such as temperature, then the
levels have a definite ordering (low, middle, high) and a design for fitting a second-order
polynomial with the labeling 1, 2, 3, for three temperatures would not necessarily have the
same properties as the design with the labeling 1, 3, 2. (To see this, consider how the graph
of a straight line changes when the middle and high levels of the independent variable are
interchanged.) A simple reversing of the labeling, however, would not change the nature of
the fitted polynomial (other than switching signs of some of the polynomial coefficients).
Using the terminology of Cheng and Ye (2004), two designs for quantitative factors are
called geometrically isomorphic if one can be obtained from the other by (1) and (2) stated
earlier and (3) reversing the levels of one or more factors.

When all factors have two levels, the two types of isomorphism coincide since the only
possible relabeling of a factor’s levels is a reversal. For factors with more than two levels,
geometrically equivalent designs must also be combinatorially equivalent, since reversal
of levels is one possible relabeling. Combinatorially equivalent designs, however, may or
may not be geometrically equivalent.

The algorithm of Clark and Dean (2001), based on the Hamming distances of the treat-
ment combinations, can detect isomorphic designs with qualitative or quantitative factors
two or more levels, as well as identifying the permutations that transform one design into
the other (see, e.g., Katsaounis et al. 2007; Katsaounis and Dean 2008; Katsaounis 2012).
The algorithm of Cheng and Ye (2004) can detect geometrically isomorphic designs. Both
of these algorithms are designed to handle fractions in general, not necessarily regular frac-
tions or orthogonal arrays, and consequently, they can be slow. For the two-level regular
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case, the algorithms mentioned earlier are faster. For factors at two or more levels, a fast
method of generation of combinatorially nonequivalent orthogonal arrays, which include
regular fractions, is given by Schoen et al. (2009) (see also references therein).

7.12 Incorporation of Noise Factors

A common requirement in industrial research and development is to determine suitable
operating levels of control experimental factors (those that can be set by the manufacturer
or operator such as automobile spark plug gap, factory conveyor belt speed, and concen-
tration of chemical) that will result in a robust product or process. Here, robust means that
a measured response is stable in the presence of fluctuations of nuisance environmental
or uncontrollable variables (such as ambient temperature, humidity, driving speed, and
incorrect user-controlled machine settings); see, also, Chapter 1, Section 1.11.5.

Even though nuisance variables cannot be controlled in normal operating conditions,
they can sometimes be controlled in the laboratory that allows them to be incorporated
into an experiment, where they are known as noise factors. Instead of, or in addition to, the
average response, the effect of interest in such experiments is a function of the dispersion,
or variance, of the response at each control factor combination as the noise factors change
and the objective is to minimize the dispersion (cf. the first example in Section 7.7).

The focus on use of experimental design to minimize dispersion was strongly advo-
cated by Genichi Taguchi, former director of the Japanese Academy of Quality, who first
visited AT&T Bell Laboratories Quality Assurance Center in the United States in 1980.
Taguchi called such experimentation parameter design to distinguish it from engineering
design; see Taguchi (1990) for more information on his philosophy. During the 1980s,
statisticians responded to the suggested change in focus by developing new methods of
designing experiments as well as several approaches to their analysis. Reviews are given
by Ankenman and Dean (2003) and Bursztyn and Steinberg (2006), and an interesting panel
discussion on a variety of related issues can be found in Nair et al. (1992). One such method
uses regular fractional factorial experiments to measure dispersion through interactions
between control and noise factors. A large control×noise interaction indicates that the set-
tings of the control factors involved in the interaction have an effect on how much the
response changes with noise factor fluctuations. These control factors then give scope for
achieving a robust product through careful choice of their settings. Examples of experi-
ments to determine robust control factor settings are given by, for example, Shoemaker
et al. (1991); Engel (1992); Tuck et al. (1993); and Vine et al. (2008); see also Section 15.7 of
Dean and Voss (1999) and Section 11.5 of Wu and Hamada (2009).

In such experiments, estimation of control×noise interactions is of highest priority, and
the criterion of minimum aberration used in Sections 7.3 through 7.5, which weights all
interactions equally, no longer applies. Instead, a criterion that gives more prominence
to the control×noise interactions than to control×control or noise×noise interactions is
required. Generators for regular fractions that involve no aliasing of control×noise inter-
actions with main effects or other two-factor interactions are presented by Borkowski and
Lucas (1997) and Russell et al. (2004); see also Ke et al. (2005). These designs are some-
times known as compromise plans or mixed resolution designs. Nonregular designs based on
orthogonal arrays (Chapter 9) for ensuring the estimation of control×noise interactions
are the crossed arrays or direct product arrays of Taguchi and more recent improvements
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such as the compound arrays of Rosenbaum (1994, 1996), Hedayat and Stufken (1999), and
Zhu et al. (2007).

7.13 Summary and Discussion

Regular fractional factorial designs are prevalent in research and development in industry
as well as having widespread use in other areas such as engineering, drug discovery, con-
sumer and behavior research, genetics, and health-care research. In this chapter, we have
discussed in some detail the construction and properties of regular two-level fractions that
achieve optimality under criteria such as minimum aberration, estimation capacity, and
number of clear interactions (Sections 7.3 through 7.6). We also described, in Section 7.10, a
construction method for regular fractions with more than two levels. Analysis of fractional
factorial experiments, screening for active factors, follow-up experiments to resolve con-
founding, design equivalence, and incorporation of noise factors for measuring dispersion
effects have also been discussed (Sections 7.7 through 7.9, and 7.11, and 7.12).

In general, in order to avoid biases, the runs of a fractional factorial design should be
randomly ordered before they are observed. However, there are situations in which practi-
cal operation necessitates restrictions on randomization (see also Chapter 1, Section 1.3.5).
For example, if it is costly to change the level of one or more factors, then an order of obser-
vation that reduces the number of factor level changes would be advantageous. Similarly,
if the response is affected by uncontrollable variables that change over space or time, it is
desirable to use an arrangement of factorial treatment combinations that ensures treatment
estimates are independent of any such trends. Overview of work on trend-free arrange-
ments of two-level fractions, including cost-optimal arrangements, published before 1990
has been given by Cheng (1990) and Jacroux (1990). Other relevant work includes that of
Mount-Campbell and Neuhardt (1980); Cheng and Steinberg (1991); Bailey et al. (1992);
Coster (1993a,b); Cui and John (1998); and Mee and Romanova (2010), among others. When
the levels of one or more factors are held constant for a large portion of the experiment
before being changed, the resulting design is a split-plot design. Chapter 8 gives construc-
tions of fractional factorial experiments run as block designs and split-plot designs (see
Chapter 1, Section 1.5).

Fractional factorial experiments in other contexts are presented in other chapters. For
example, Chapter 9 discusses the construction of nonregular fractions, orthogonal arrays,
and supersaturated designs, and there, the concept of minimum aberration is extended to
the non-regular case. Chapter 21 discusses algorithms that can be used for searching for
factorial designs that do not necessarily have a well-defined combinatorial structure such
as those in this chapter. Finally, Chapter 22 includes the case of factorial experiments in the
discrete choice setting.
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8.1 Introduction

In the early stages of investigation, particularly in industrial applications, screening exper-
iments are often used to identify the few important factors affecting a system’s response.
To this end, fractional factorial designs (Chapter 7) are common choices in settings that aim
to investigate relatively many factors in relatively few trials. In many cases, such experi-
ments are performed as completely randomized designs, and data analysis is conducted
via regression and ANOVA approaches (e.g., Dean and Voss 1999; Montgomery 2008;
Wu and Hamada 2011) or through the use of half-normal probability plots (Daniel 1959).
However, complete randomization of the experiment trials may be impossible due to prac-
tical or cost constraints. Consequently, restrictions on the randomization are imposed,
thereby complicating both the design and the analysis of the experiment.

Experimental plans such as block (see, e.g., Bisgaard 1994; Sitter et al. 1997; Cheng et al.
2004), split-plot (Addelman 1964; Huang et al. 1998; Bisgaard 2000; Bingham and Sitter
2001; Vine et al. 2008), strip-plot (Miller 1997), and split-lot (Mee and Bates 1998; Butler
2004) designs have all been adapted to the fractional factorial settings. In spite of the com-
mon treatment structure, a quick glance at this literature reveals very different approaches
for design construction to accommodate the restricted randomization. It has been demon-
strated that these designs can be viewed in a unified manner. In particular, Bingham et al.
(2008) showed that each of the aforementioned designs can be constructed using an exten-
sion of the usual approach for blocking in fractional factorial designs. Furthermore, Cheng
and Tsai (2011) demonstrated that the construction of regular fractional factorial designs
with randomization restrictions fits within the theory of block structures proposed by
Nelder (1965) and extended by Speed and Bailey (1982) as well as Tjur (1984).

321
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In this chapter, a review of the design of fractional factorial experiments with random-
ization restrictions is presented. The framework used, to varying degrees, is most closely
related to work by Bingham et al. (2008) and Cheng and Tsai (2011). The work presented
here is related to other chapters in this volume–specifically, Chapters 7 and 10. This chap-
ter is outlined as follows. A few motivating examples are presented in Section 8.2. Basic
notation is introduced in Section 8.3, and Section 8.4 outlines the simple approach for
imposing randomization restrictions on factorial designs. The impact of the randomiza-
tion restrictions on the analysis of the experiment is considered in Section 8.5. Fractional
factorial designs with randomization restrictions are presented in Section 8.6, and the rank-
ing of designs is briefly discussed in Section 8.7. This chapter concludes with some final
comments in Section 8.8.

8.2 Motivating Examples

Designs with randomization restrictions have a long history in agricultural experiments
(see Federer and King 2007, for background). More recently, attention has turned to
so-called multistratum designs in industrial settings (e.g., Miller 1997; Huang et al. 1998;
Bisgaard 2000; Gilmour and Goos 2009; Jones and Goos 2009; Cheng and Tsai 2011). In this
section, a few motivating examples are given to illustrate how randomization restrictions
arise in factorial design settings.

Example 8.1 Blocking Full Factorial Designs

Montgomery (2008) outlines a setting where four factors (label them 1–4) are studied to
determine their impact on a product filtration system. Each factor has 2 levels and the
process must be run in 2 blocks of eight experiment trials. The design shown in Table 8.1

TABLE 8.1

24 Factorial Design in 2 Blocks

1 2 3 4 δ = 1234 Block

−1 −1 −1 1 −1 1

−1 −1 1 −1 −1 1
−1 1 −1 −1 −1 1

−1 1 1 1 −1 1
1 −1 −1 −1 −1 1
1 −1 1 1 −1 1

1 1 −1 1 −1 1
1 1 1 −1 −1 1

−1 −1 −1 −1 1 2
−1 −1 1 1 1 2

−1 1 −1 1 1 2
−1 1 1 −1 1 2

1 −1 −1 1 1 2

1 −1 1 −1 1 2
1 1 −1 −1 1 2

1 1 1 1 1 2
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is an example of a 24 factorial design in 2 blocks. The assignment of treatments to blocks
is done using the column labelled 1234 that is formed by taking the product of the level
settings of factors 1, 2, 3, and 4 across rows (aside: this column would also be used for
the 1234 interaction in a linear model). In this case, this means that when 1234 = − 1, a
treatment is assigned to block 1, and when 1234 = 1, a treatment is assigned to block
2. To run the experiment, a block is randomly selected, and the trials within a block are
performed in random order before proceeding to the next block. In this setting, δ = 1234
is called a blocking factor. Later, the more general term randomization restriction factor will
be used instead.

Suppose the aforementioned setting is modified so that the 16 treatments must be
performed in 4 blocks of 4 trials instead of 2 blocks of 8 trials. One possible choice of
design is shown in Table 8.2. For this design, the assignment of treatments to blocks
is done using the 22 unique settings of the blocking factors δ1 = 123 and δ2 = 234. As
previously, the design is performed by first randomly selecting a block, running the trials
within the block in random order, and proceeding in this manner until all blocks and
treatments have been exhausted.

Notice that when we form the interaction between an effect and itself, we get a col-
umn of 1’s. This is helpful in seeing that the interaction between the blocking factors
δ1 = 123 and δ2 = 234 is δ1δ2 = 14 and that interactions between blocking factors also do
not change signs within blocks. The block defining contrast subgroup is formed by tak-
ing all possible products of the blocking factors. In this case, the block defining subgroup
is {�, 123, 234, 14}, where � is the identity column (the notation � is used to indicate that
this is a blocking relation). It is common to write the block defining contrast subgroup in
terms of its block defining relation in similar fashion to the defining relation of a fractional
factorial design (see Chapter 7). That is, � = 123δ1 = 234δ2 = 14δ1δ2.

From a data analysis perspective, the 24 factorial design in 21 blocks in Table 8.1 has 1
blocking factor and the effect δ = 1234 is confounded in blocks. Similarly, the 24 factorial
design in 22 blocks in Table 8.2 has two blocking factors to specify the restricted random-
ization, and the effects δ1 = 123, δ2 = 234, and δ1δ2 = 14 are confounded with blocks.

TABLE 8.2

24 Factorial Design in 22 Blocks

1 2 3 4 δ1 = 123 δ2 = 234 δ1δ2 = 14 Block

−1 −1 −1 −1 −1 −1 1 1

−1 1 1 −1 −1 −1 1 1
1 −1 1 1 −1 −1 1 1

1 1 −1 1 −1 −1 1 1
−1 −1 −1 1 −1 1 −1 2
−1 1 1 1 −1 1 −1 2

1 −1 1 −1 −1 1 −1 2
1 1 −1 −1 −1 1 −1 2

−1 −1 1 1 1 −1 −1 3
−1 1 −1 1 1 −1 −1 3

1 −1 −1 −1 1 −1 −1 3
1 1 1 −1 1 −1 −1 3

−1 −1 1 −1 1 1 1 4

−1 1 −1 −1 1 1 1 4
1 −1 −1 1 1 1 1 4

1 1 1 1 1 1 1 4
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If the block effects are treated as fixed effects, then the significance of these effects can-
not be separated from the impact of the blocks. If the block effects are treated as random
effects, as will be done throughout this chapter, then it is sometimes possible to assess
the significance of the confounded interactions. In either case, the factorial effects that are
not confounded with block are not impacted by the blocks. This is known as orthogonal
blocking.

Example 8.2 Fractional Factorial Split-Plot Design

Bingham and Sitter (1999) describe a fractional factorial split-plot experiment to identify
factors that will help improve the efficiency of a ball mill. In their example, there are
seven, 2-level factors to be investigated in 24 trials. So, a 27−3 fractional factorial design
was required. Complicating matters, however, were that factors 1–4 were expensive to
adjust, and it was felt that only 8 unique settings of these factors would be considered.
Furthermore, once one of these 8 settings was chosen, all treatments at that setting would
be performed (in random order, of course) before moving on. The hard-to-change factors
(1–4) are called whole-plot factors and, from a randomization perspective, serve the same
role as blocking factors in the previous example. The easy-to-change factors (factors 5–7)
are allowed to vary for fixed whole-plot settings and are called subplot factors. This design
is an example of a 27−3 fractional factorial split-plot design with 23 whole plots, each with
two subplots.

The defining relation for the fraction in Bingham and Sitter’s illustration was I =
123 = 456 = 157 = 123456 = 2357 = 1467 = 23467, and the design is shown in Table 8.3.
Notice that the 8 unique settings of factors 1–4 are grouped into blocks (or whole plots) of
size 2. This is done to highlight how the randomization was performed; that is, a whole-
plot setting is first randomly selected and then all trials with that setting are performed
in random order before moving on to the next whole-plot setting. The analysis of such
a design is slightly more complicated than that of a fractional factorial design because
there are two types of error terms: whole plot and subplot. For example, the final two

TABLE 8.3

27−3 Fractional Factorial Split-Plot Design with 23 SubPlots of Size 2

1 2 3 = 12 4 5 6 = 45 7 = 15 Whole-Plot Error SubPlot Error

−1 −1 1 −1 −1 1 1 ε1,1 ε2,1
−1 −1 1 −1 1 −1 −1 ε1,1 ε2,2
−1 −1 1 1 −1 −1 1 ε1,2 ε2,3
−1 −1 1 1 1 1 −1 ε1,2 ε2,4
−1 1 −1 −1 −1 1 1 ε1,3 ε2,5
−1 1 −1 −1 1 −1 −1 ε1,3 ε2,6
−1 1 −1 1 −1 −1 1 ε1,4 ε2,7
−1 1 −1 1 1 1 −1 ε1,4 ε2,8

1 −1 −1 −1 −1 1 −1 ε1,5 ε2,9
1 −1 −1 −1 1 −1 1 ε1,5 ε2,10
1 −1 −1 1 −1 −1 −1 ε1,6 ε2,11
1 −1 −1 1 1 1 1 ε1,6 ε2,12
1 1 1 −1 −1 1 −1 ε1,7 ε2,13
1 1 1 −1 1 −1 1 ε1,7 ε2,14
1 1 1 1 −1 −1 −1 ε1,8 ε2,15
1 1 1 1 1 1 1 ε1,8 ε2,16
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columns of Table 8.3 display error terms that are associated with whole plots and sub-
plot, respectively. Notice that each whole plot gets its own error term and so does each
subplot. It turns out that the effects that change sign within whole-plot settings will have
one error variance and the remaining effects will have another (see Section 8.5).

Still remaining is how the blocks of runs were chosen. The blocks were constructed
using the following columns as randomization restriction factors: δ1 = 1, δ1 = 2, and δ3 = 4.
The use of the randomization factors (the δ’s) is exactly the same as the blocking factors
in the previous example. Letting � denote the identity column, the randomization restric-
tion defining relation (RRDR) is � = 1δ1 = 2δ2 = 12δ1δ2 = 4δ3 = 14δ1δ3 = 24δ2δ3 =
124δ1δ2δ3, and these effects will have a larger error variance than the remaining facto-
rial effects (Section 8.5). The difference between a split-plot design and a blocked design
is that in the former, the factors (or main effects) are used to specify blocks instead of
interactions in the latter.

Example 8.3 Factorial Split-Lot Design

There is a wide variety of combinations of randomization restrictions that can arise
in applications. Mee and Bates (1998), for example, considered a multistage split-lot
experiment where some of the factors that are fixed at one stage of experimentation
are allowed to vary at another stage. For this case, there were different sets of blocking
factors to consider and different RRDRs for each stage. Consider the following simple
illustration.

Suppose an industrial experiment that follows a 25 treatment structure is to be per-
formed. Further suppose that at the first stage of processing, once the levels of factors 1
and 2 are set, 8 of the 32 experimental units are processed before moving on to the next
level setting of these factors. At the next stage of processing, all of the 32 experimental
units are available, but once the levels of factors 3 and 4 are fixed, all trials at this setting
are run before choosing another setting for these factors. So, at the first stage of pro-
cessing, there are randomization restrictions placed on factors 1 and 2; at the next stage,
randomization restrictions are placed on factors 3 and 4; and no randomization restric-
tions are placed on factor 5. To run the experiment, one of the four setting combinations
of factors 1 and 2 is randomly selected, and then 8 experimental units are processed in
random order. Then a second setting combination of factors 1 and 2 is randomly cho-
sen, and so on. After this first stage is completed, one randomly chooses one of the four
setting combinations of factors 3 and 4, and each of the eight possible settings of fac-
tors 1, 2, and 5 appears within this block. The other three settings of factors 3 and 4 are
processed similarly in random order. This is an example of a factorial split-lot design. To
construct such a design, separate RRDRs are required for each stage of randomization.
This example is revisited in Example 8.5 of Section 8.4 where the use of separate main
effects and interactions for specifying randomization restrictions at different stages is
formalized.

8.3 Notation and Background

A 2k factorial design has k factors, each with 2 levels, and n = 2k trials that consist of
all possible combinations of the treatment factors. Throughout this chapter, the level set-
tings will be denoted ±1. Similarly, a 2k−q regular fractional factorial design considers
k 2-level factors, but in only n = 2k−q trials, and has an associated defining contrast
subgroup (see Chapter 7). Nonregular fractional factorial designs (those without a defining
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contrast subgroup will be discussed in Chapter 9) will not be considered in this chapter.
The treatment structure of a design defines the set of treatments used in the experiment.
The randomization structure of the design, on the other hand, speaks to the run order of the
design–more on this shortly. However, it is worth noting that the restrictions in random-
ization that are discussed here form blocks of equal size and are based on the columns of
the factorial model matrix (defined later).

A 2k full factorial design consists of all possible treatment combinations of k factors at
2 levels each. For example, ignoring blocking for the moment, the rows of columns 1–4 in
Table 8.1 give the 16 unique treatments for a 24 factorial design. These columns are used
to measure the main effects of factors 1–4. Then p-factor interaction columns (p = 2, . . . , k)
are constructed by taking the element-wise product of the p-factor columns. The n × n full
factorial model matrix, X, is formed by including all main effect and interaction columns
and augmenting them with a column of 1’s for the grand mean. Without loss of generality,
the columns of X can be denoted as X = {c0, c1, c2, . . . , ck, ck+1, . . . , cn−1}, with c0 denoting
the column of 1’s for the grand mean, and main effect columns labelled c1, . . . , ck for factors
1, . . . , k. This matrix is referred to as the model matrix. From a design perspective, the main
effect columns c1, c2, . . . , ck of X form the n × k design matrix, D. That is, the rows of D
identify the treatments used in the experiment.

The columns of the 2k−q full factorial model matrix are used to construct the fractional
factorial design. Specifically, the first k − q factors are assigned to independent columns
c1, c2, . . . , ck−q of X and the remaining q factors are assigned to interaction columns. This
specification of k factors to columns defines the treatments of the 2k−q fractional factorial
design. The first k − q factors are called basic factors and the remaining q factors are referred
to as generated factors. The interactions to which the generated factors are assigned are often
called factor generators or just generators. Of course, not all assignments of the q factors
to interaction columns are equally good due to the induced aliasing among the factorial
effects. Consequently, designs are usually ranked using a criterion that emphasizes the
estimation of lower-order effects (usually main effects and 2-factor interactions) such as
the minimum aberration (Fries and Hunter 1980) or clear effects (Wu and Wu 2002) criteria
(see Chapter 7).

The response model for a full factorial experiment is typically the multiple linear
regression model:

y = Xβ + ε, (8.1)

where X is the n×2k model matrix, n is the number of trials, β = (β0,β1, . . . ,β2k−1) denotes
the regression parameters, and ε is the n-vector of independent and identically distributed
(iid) normal random errors with mean zero and variance σ2.

In a fractional factorial experiment, there are more main effects and interactions than
trials. In fact, there are only 2k−q − 1 factorial effects that can be estimated. Furthermore,
all of these effects are aliased with other effects. To get around this issue, experimenters
often appeal to a few assumptions that allow data analysis to proceed. Specifically, these
are effect sparsity and effect hierarchy. The first assumption specifies that, relative to the
run size of the experiment, the number of important effects impacting the response is
small. The second assumption stipulates that lower-order effects are more likely to be
important than higher-order effects and effects of the same order are equally likely to
be active. In many cases, main effects and 2-factor interactions are the only effects that
are considered.
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An attractive feature of completely randomized 2-level factorial and fractional factorial
designs with response model (8.1) is that the regression effect estimators are independent
and normally distributed with the same variance. This fact, along with the effect sparsity
assumption, allows for simple and straightforward data analyses. For example, half-
normal probability plots (Daniel 1959) or more elaborate approaches (see, e.g., Hamada
and Balakrishnan 1998, and Chapter 7) are often used to identify active lower-order effects.

8.4 Full Factorial Designs with Randomization Restrictions

In the context of full factorial and regular fractional factorial experiments, several differ-
ent approaches have been proposed to study designs–indeed too many to list exhaus-
tively here. Abelian groups and vector spaces have been used to elicit the properties of
blocked factorial and fractional factorial experiments (e.g., Dean and John 1975; Bailey 1977;
Collings 1989). Blocked designs in this context were also studied via finite geometries by
Bose (1947) and later by, for example, Mukerjee et al. (1999). Regular split-plot designs
were studied by Addelman (1964), Bingham and Sitter (1999), Bisgaard (2000), Huang
et al. (1998), and Vine et al. (2008), to name only a few—all using apparently different
approaches.

It has been shown that the construction of full factorial and regular fractional facto-
rial designs with randomization restrictions falls under one unified framework (Bingham
et al. 2008; Ranjan et al. 2009). Indeed, Cheng and Tsai (2011) showed that this approach
fits squarely under the framework proposed by Nelder (1965) and extended by Speed and
Bailey (1982) and Tjur (1984). This chapter adopts the notation used in Bingham et al. (2008)
because it allows the main features of the design construction to be most practically illus-
trated. Full factorial designs are considered first and fractional factorial designs considered
as a special case in Section 8.5.

Denote the number of stages of randomization as S. For a blocked factorial design, for
example, S = 2, where the first stage of randomization corresponds to the order in which
the blocks are run and the second stage corresponds to the order in which the treatments
are run within each block. Similarly, a split-plot design has S = 2 stages of randomization–
the first stage corresponds to a random selection of the whole-plot level settings and the
second stage corresponds to the complete randomization of treatments on subplots within
a whole plot. A blocked split-plot design (McLeod and Brewster 2004), on the other hand,
has S = 3 stages, where the first stage of randomization is for blocks, the second corre-
sponds to the selection of the whole plot level settings nested within blocks, and the final
stage of randomization is at the subplot level of the design.

There are S − 1 stages corresponding to randomization restrictions, and the Sth stage of
randomization is a complete randomization within the final stage of nesting. As illustrated
in Examples 8.1 through 8.3, the columns of the factorial model matrix can be used to define
the randomization structure of an experiment in exactly the same way as blocking factorial
designs.

Begin by considering the sth stage of randomization (s ≤ S − 1) for a 2k factorial design.
To group the experiment trials into blocks of size 2k/2rs , rs linearly independent columns
of X are selected. Let the ith randomization restriction factor (i = 1, 2, . . . , rs) at stage s be
denoted as δ(s)

i . The 2rs unique randomization restriction factor level settings in the columns
of X corresponding to δ

(s)
1 , . . . ,δ(s)

rs are used to specify the sets of trials (e.g., blocks) where
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restricted randomization takes places. Note that the δ’s are not factors in a practical sense,
but the term is used in the same sense as one refers to a blocking factor (see, e.g., Sun et al.
1997; and Example 8.1).

Following the notation of Bingham et al. (2008), let Ls = {lsi}rs
i=1 be the index set of

columns of X that are assigned to randomization restriction factors at stage s, so that
δ

(s)
i = clsi . Using the ±1 coding of X, the interaction between δ

(s)
i and clsi is a column of

ones. For the sth stage of randomization, denote this column of 1’s as �(s). Consequently,
�(s) = clsiδ

(s)
i for i = 1, . . . , rs. Each clsi is called a randomization defining contrast. Analo-

gous to the block defining contrast subgroup, taking all possible interactions between the
defining contrasts creates the randomization defining contrast subgroup (RDCSG) for the sth
stage of randomization. The RDCSG contains the list of columns of X whose settings do not
vary within each of the unique settings in the columns corresponding to the randomiza-
tion defining words. For instance, in Example 8.2, this would be {�(1), 1, 2, 12, 4, 14, 24, 124}.
Similarly, we can equivalently write the RDCSG in terms of the RRDR as illustrated in that
example.

This framework for specifying the randomization restrictions, one stage at a time, makes
it easy to identify which main effects or interactions are impacted at the sth stage of ran-
domization. For example, split-plot design randomization restriction factors are assigned
directly to main effect columns. Furthermore, when the current stage of randomization,
s, is nested within another stage(s), each of the randomization restrictions from the previ-
ous stage that describe the nesting must be included as randomization restrictions in the
current stage, as shown in Example 8.4.

Example 8.4 Factorial Split–Split-Plot Design

Consider a 25 split–split-plot design, with whole-plot factors {1, 2}, subplot factors {3, 4},
and sub-subplot factor {5}. There are three stages of randomization to consider and,
thus, randomization restriction factors to specify for stages s = 1 and 2. Since there
are two whole-plot factors, the first-stage randomization restriction factors are assigned
to factors 1 and 2. That is, δ(1)

1 = 1 and δ
(1)
2 = 2. For the second stage of randomization,

factors 1 and 2 are still fixed, along with factors 3 and 4. Therefore, δ(2)
1 = 1, δ(2)

2 = 2,

δ
(2)
3 = 3, and δ

(2)
4 = 4. The corresponding RRDRs are

�(1) = 1δ(1)
1 = 2δ(1)

2 = 12δ(1)
1 δ

(1)
2 ,

�(2) = 1δ(2)
1 = 2δ(2)

2 = 3δ(2)
3 = 4δ(2)

4 = 12δ(2)
1 δ

(2)
2 = 13δ(2)

1 δ
(2)
3 = 14δ(2)

1 δ
(2)
4 ,

= 23δ(2)
2 δ

(2)
3 = 24δ(2)

2 δ
(2)
4 = 34δ(2)

3 δ
(2)
4 = 123δ(2)

1 δ
(2)
2 δ

(2)
3 = 124δ(2)

1 δ
(2)
2 δ

(2)
4 ,

= 134δ(2)
1 δ

(2)
3 δ

(2)
4 = 234δ(2)

2 δ
(2)
3 δ

(2)
4 = 1234δ(2)

1 δ
(2)
2 δ

(2)
3 δ

(2)
4 .

Example 8.5 Factorial Split-Lot Design (Example 8.3 Revisited)

Consider again the 25 split-lot design in Example 8.3. The randomization restriction fac-
tors for the first stage were δ

(1)
1 = 1 and δ

(1)
2 = 2, and the second-stage randomization

restriction factors were δ
(2)
1 = 3 and δ

(2)
2 = 4. Unlike the split–split-plot design in

Example 8.4, the first-stage randomization restriction factors are not randomization
restriction factors at the second stage of randomization. This means that factors 3 and
4 are not nested within level settings of factors 1 and 2. Therefore, the level settings of
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factors 1 and 2 vary within fixed settings of factors 3 and 4. The level settings of fac-
tor 5 vary at all stages of randomization under this specification. The RRDRs for this
design are

�(1) = 1δ(1)
1 = 2δ(1)

2 = 12δ(1)
1 δ

(1)
2 ,

�(2) = 3δ(2)
1 = 4δ(2)

2 = 34δ(2)
1 δ

(2)
2 .

8.5 Impact on Data Analysis

Restricting the randomization of an experiment impacts the manner in which the data anal-
ysis is conducted. Typically, observations that arise from the same blocks in a block design
receive a common random effect in the specified statistical model, and that is, the case
for multistage designs as well. The multiple linear regression model is again the model
of interest, and it is assumed that each stage of randomization introduces a new random
error term with trials in the same block receiving the same random effect. For example,
looking back at the split-plot design shown in Table 8.3, the final two columns list the
error terms corresponding to the whole-plot (block) error and subplot error. Each obser-
vation within a plot is subject to the same whole-plot random error term. Consequently,
observations that are randomized together within a block are correlated. For ease of nota-
tion, only unreplicated designs will be considered here and thus the number of trials in the
experiment is 2k.

The response model for designs with randomization restrictions in this chapter is
specified as

y = Xβ + ε, (8.2)

where y = (y1, . . . , y2k)′ and β = (β0,β1, . . . ,βk)
′. The difference between models (8.1) and

(8.2) is the error induced by the randomization structure of the experiment. When there are
S stages of randomization, the error vector ε can be written as the sum of S independent
error vectors: S−1 vectors for restricted randomization stages and 1 for complete random-
ization of experimental units. At the sth stage of randomization, there are ns = 2rs blocks
and a single random effect, εs,j (j = 1, . . . , ns), for each block. Let εs (s = 1, 2, . . . , S − 1)
be the ns × 1 vector of error terms associated with the sth stage of randomization – one
random effect per block. The εs,j’s are taken to be iid N(0,σ2

s ) random variables. Let Ns

be a 2k × ns incidence matrix that associates an error term to observations within a block.
Specifically, the (l, m)th element of Ns is 1 if the lth experimental unit belongs to the mth
block at the sth stage of randomization and 0 otherwise. The error structure for (8.2) can
then be written as

ε = N1ε1 + N2ε2 + · · ·, NS−1εS−1 + εS, (8.3)

where εS is an 2k × 1 vector of iid N(0,σ2
S) error terms associated with the 2k experimen-

tal units and not associated with restricted randomization. It follows that the covariance
matrix for the vector of responses is Var(y) = ∑S−1

i=1 NiN′
iσ

2
i + I2kσ2

s , where I2k is a 2k × 2k

identity matrix.
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Looking back to Example 8.2, there are n1 = 8 whole plots, and thus, the error vector
for the first stage of randomization is ε1 = (ε1,1, ε1,2, . . . , ε1,8)

′
. Furthermore, in (8.3), S = 2

and N1 is

N1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Theorems 1 and 2 of Ranjan et al. (2009) are helpful in pointing to analysis strategies for
these designs. Briefly, their Theorem 1 shows that the effect estimators arising from designs
constructed in the manner specified here are independent and normally distributed. The
theorem also demonstrates that the ordinary least squares and generalized least squares
estimators for β are the same. Thus, β̂ = (X′X)−1Xy. Theorem 2 of Ranjan et al. (2009) goes
on to develop formulae for the variance of an estimator. Let 1s(cm) (m = 0, 1, . . . , 2k − 1)
denote the indicator function that is equal to 1 when column m of X does not change levels
within blocks at the sth stage of randomization and 0 otherwise. Another way of looking
at this is 1s(cm) = 1 only if the effect associated with the mth column of X is in the sth stage
RDCSG. The variance of the effect estimator associated with column m of X is Var(β̂m) =
σ2

S/2k + ∑S−1
s=1 1s(cm)σ2

s /2rs .
So, under model (8.2) and the design construction described in this chapter, it turns out

that the factorial effect estimators have an error variance that is a linear combination of the
variances σ2

1,σ2
2, . . . ,σ2

S. However, only the effect estimators that appear in the sth stage
RDCSG have an error variance that contains a multiple of σ2

s (s = 1, 2, . . . , S−1) in addition
to σ2

S in the linear combination of variance components. The variances of the remaining
effects do not depend on σ2

s .
From a data analysis point of view, since the effect estimators are independent and

normally distributed, one can use the usual data analysis techniques. However, separate
analyses need to be performed on effects with the same variance. That is, one would require
S half-normal plots to conduct the analysis, one for each stage of randomization.

Example 8.6 Factorial Split-Lot Design (Examples 8.3 and 8.5 Revisited)

Consider again the 25 unreplicated split-lot design in Example 8.5. There are S = 3
stages of randomization–two for restricted randomization. Looking at the first RRDR in
Example 8.5, we see that the effect estimators corresponding to the main effects of fac-
tors 1 and 2, as well as the interaction between factors 1 and 2, will have a variance
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TABLE 8.4

Variances of Regression Effects in Example 8.6

Effect Variance

1, 2, 12
σ2

S
25 + σ2

1
22

3, 4, 34
σ2

S
25 + σ2

2
22

All other effects σ2
ε

25

σ2
S/25 + σ2

1/22. Similarly, the RRDR for the second stage of randomization reveals that
the effect estimators corresponding to the main effects of factors 3 and 4, as well as
their interaction, will have a variance of σ2

S/25 + σ2
2/22. The remaining factorial effects

are not impacted by the restrictions in randomization (i.e., they are orthogonal to both
block structures) and have variance σ2

S/25. The variances of the effect estimators are
summarized in Table 8.4.

The approach outlined earlier is useful in determining which effects are estimated
with which variance. This specific split-lot design deserves some further consideration.
If a half-normal probability plot, for example, is used to assess the significance of the
factorial effects, then 3 separate half-normal plots must be constructed–one for each set
of effects that have the same variance. Therefore, the first two half-normal plots each
show only three effects. Consequently, the importance of effects 1, 2, and 12, or 3, 4, and
34 cannot be assessed because there are too few degrees of freedom within each of the first
two groups. It is unlikely that anyone would run an experiment where the significance
of 4 out of 5 main effects could not be investigated.

To get around this issue, the structure of the design can be altered so that degrees of
freedom are shifted from the final stage of randomization to other levels of the design.
To do this, the number of blocks at the first 2 stages of randomization is changed from
4 blocks of 8 runs to 8 blocks of 4 trials. This is achieved by including two additional
randomization restriction factors δ

(1)
3 and δ

(2)
3 , one at each stage of restricted random-

ization. Operationally, this amounts to including additional randomization factors that
have the specific goal of altering the block size at the first two stages of randomization.
For example, let δ(1)

3 = 345 and δ
(2)
3 = 125, with the resulting RRDRs

�(1) = 1δ(1)
1 = 2δ(1)

2 = 12δ(1)
1 δ

(1)
2 = 345δ(1)

3 = 1345δ(1)
1 δ

(1)
3 = 2345δ(1)

2 δ
(1)
3

= 12345δ(1)
1 δ

(1)
2 δ

(1)
3 ,

�(2) = 3δ(2)
1 = 4δ(2)

2 = 34δ(2)
1 δ

(2)
2 = 125δ(2)

3 = 1235δ(2)
1 δ

(2)
3 = 1245δ(2)

2 δ
(2)
3

= 12345δ(2)
1 δ

(2)
2 δ

(2)
3 .

The effects and their variances are summarized in Table 8.5. To analyze the design,
separate half-normal plots are constructed for each set of effects in the rows of the table.
Since the 12345 interaction appears in both RRDRs, then this effect inherits the variance
from each stage of randomization and the importance of this effect cannot be assessed
by the use of plots. This may be a sacrifice that an experimenter can live with since
effect hierarchy suggests that this effect is unlikely to be important. The downside of
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TABLE 8.5

Variances of Regression Effects in Second Design of Example 8.6

Effect Variance

1, 2, 12, 345, 1345, 2345
σ2

S
25 + σ2

1
23

3, 4, 34, 125, 1245, 1235
σ2

S
25 + σ2

2
23

12345
σ2

S
25 + σ2

1
23 + σ2

2
23

All other effects
σ2

S
25

this design is that the number of blocks has increased at each stage of randomization,
thereby potentially increasing the cost of the design.

Bingham et al. (2008) pointed out that another assignment (δ(1)
3 = 1234 and δ

(2)
3 =

1345) could be made. In that example, the effect that appeared in both RRDRs is 34
instead of 12345. Thus, in the second design, the significance of the 34 interaction cannot
be assessed. Again the effect hierarchy would suggest that the first design specification
is likely to be preferable since sacrificing the 12345 interaction is more desirable than
sacrificing the 34 interaction in most applications.

Finally, it is worth noting that not every assignment δ(1)
3 and δ

(2)
3 is possible if the

desired randomization structure is to be maintained. For example, if we assign δ
(1)
3 = 24,

then δ
(1)
2 δ

(1)
3 = 4. As a consequence factor, 4 is fixed at both stages of restricted random-

ization instead of only at the second stage, thereby destroying the desired randomization
structure. So inspection of the RDCSGs is an important task. Ranjan et al. (2009) outline
an algorithmic approach to search for designs that preserves the specified randomization
structure. If all nonisomorphic designs are desired, their algorithm can be used with the
fast isomorphism check outlined in Spencer et al. (2013).

8.6 Fractional Factorial Designs with Randomization Restrictions

In this section, fractional factorial designs with randomization restrictions are considered.
In this setting, the columns of X are used both for constructing the fractional factorial
design and also for the RDCSGs specifying the randomization restrictions. The defin-
ing contrast subgroup of a fraction determines the treatment structure of the design,
whereas the RDCSG defines the randomization structure of the design. One can think of
these as specifying which effects (or sets of aliased effects) can be estimated and identi-
fying their variances. The challenge for the experimenter is in determining whether the
desired randomization structure is maintained (for split-plot designs, see, e.g., Bisgaard
2000) and whether or not the design allows assessment of the importance of the effects of
interest.

For a given fractional factorial design with specified defining contrast subgroup (the
treatment structure), it is fairly easy to see the impact of a chosen RDCSG (the random-
ization structure). This is done by “crossing" each RDCSG with the defining contrast
subgroup of the factorial design or, equivalently, by “crossing" their defining relations. This
is illustrated via the following example.
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Example 8.7 Fractional Factorial Split-Lot Design

Consider a split-lot design with 6 factors to be investigated in 25 trials. Thus, the treat-
ment structure of the design is a 26−1 fractional factorial design and the randomization
structure follows a 2-stage split-lot design. In this example, the RDCSG for the second
design in Example 8.6 is used for illustration. Thus, factors 1 and 2 are fixed at the first
stage of randomization, factors 3 and 4 are fixed at the second, and the levels of factors 5
and 6 are allowed to vary at each stage of randomization. Suppose that an experimenter
decides to use the column of X that corresponds to the 12345 interaction to generate the
levels of factor 6 (i.e., 6 = 12345) or, equivalently, the defining relation for the fractional
factorial design is I = 123456. This is the minimum aberration 26−1 fractional factorial
design (Fries and Hunter 1980).

Notice that the defining relation implies that several effects are aliased. For example,
the 125 and 346 interactions cannot be separated. This is usually denoted as 125 = 346
(see Chapter 7). Notice that, from �(2) in Example 8.6, the 125 interaction appears in the
second-stage RRDR. Therefore, this effect estimator (125 = 346) has an error variance as
shown in the second row of Table 8.5. We also see a serious problem: the main effect of
factor 6 is aliased with the 12345 interaction. This means that the main effect estimate
for factor 6 has the same variance as the 12345 interaction and its significance cannot be
assessed. In fact, since the 12345 interaction appears in both RRDRs, then the assignment
6 = 12345 means that factor 6 does not change levels within blocks as required.

More generally, to see which effects are estimated with which variance, each of the
RRDRs is multiplied by the words in the defining contrast subgroup of the fractional
factorial design. The effects that appear in the products pick up an error term from that
stage of randomization. While this may appear easy, care must be taken to maintain
the desired randomization structure. For example, if the specified RRDR is used, factor
6 should not be assigned to any of the effects in rows 2, 3, or 4 of Table 8.5 to avoid
destroying the desired randomization structure. Afractional factorial design that is better
than the minimum aberration design for this setting is given by the defining relation
I = 12346. To see the impact on factor 6, and interactions involving this factor, the RRDR
is multiplied by 12346, giving

12346�(1) = 2346δ(1)
1 = 1346δ(1)

2 = 346δ(1)
1 δ

(1)
2 = 1256δ(1)

3 = 256δ(1)
1 δ

(1)
3 = 156δ(1)

2 δ
(1)
3

= 56δ(1)
1 δ

(1)
2 δ

(1)
3 ,

12346�(2) = 1246δ(2)
1 = 1236δ(2)

2 = 126δ(2)
1 δ

(2)
2 = 3456δ(2)

3 = 456δ(2)
1 δ

(2)
3 = 356δ(2)

2 δ
(2)
3

= 56δ(2)
1 δ

(2)
2 δ

(2)
3 .

Notice that neither 6 nor its alias 1234 appears in either RDCSG. Therefore, the levels of
factor 6 are not fixed at any stage of randomization—as desired. In addition, the product
of the defining contrast subgroup and the RRDR identifies which interactions involving
a given factor are impacted by the randomization restrictions. In this case, observe that,
of the two-factor interactions, only 56 appears in both products.

8.7 Choosing Designs

For most experimenters, the task of design construction is just one of many decisions to
make when exploring a system. Choosing the design that best fits the particular setting
often plays a critical role in the success of the endeavor. In this section, some of the issues
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facing the ranking of designs are illustrated. In the end, there is no one criterion that is best
for all applications, and experimenters are typically encouraged to consider several “good"
designs before making a final choice.

The main issues facing an experimenter who wishes to perform the type of design con-
sidered in this chapter are related to estimability and variability of the effects of interest. In
unreplicated experiments, in particular, these issues present themselves rather quickly. For
instance, consider the designs at the end of Example 8.5. The choice of RDCSG indicates the
variance associated with each effect, and also that the significance of some effects cannot be
assessed. In that example, there was a choice between a design where the 12345 interaction
could not be assessed and another where the significance of the 34 interaction could not be
investigated using, for example, half-normal plots.

For completely randomized experiments, fractional factorial design criteria usually
emphasize the estimation of lower-order effects (e.g., main effects and two-factor inter-
actions). To this end, criteria such as minimum aberration (Fries and Hunter 1980), clear
effects (Wu and Wu 2002), and maximum estimation capacity (Cheng and Mukerjee 1998)
all attempt to maximize the ability to estimate lower-order terms, or collections of main
effects and some two-factor interactions, under the assumptions of effect sparsity and
effect heredity (see also Chapter 7). Such criteria have been adapted to the ranking of
fractional factorial designs with randomization restrictions. For example, blocked frac-
tional factorial designs have been ordered using variations of the minimum aberration
criterion by Sitter et al. (1997), Chen et al. (1999), Cheng and Wu (2002), and Xu and Lau
(2006). Split-plot designs were ranked with adapted versions of the minimum aberration
criterion by Huang et al. (1998), Bingham and Sitter (2001), and Yang et al. (2007), while
Zhao and Chen (2012) used the clear effects criterion, and Ai and Zhang (2004) used the
estimation capacity criterion to rank designs. Furthermore, similar to Cheng et al. (1999)
and Tsai et al. (2000), Cheng and Tsai (2011), proposed a more generally applicable crite-
rion that accounts for the different effect variances and also the estimability of two-factor
interactions.

The key wrinkle for all of the proposed design selection criteria is that they account
for the randomization restrictions and the corresponding impact on the effect variances
beyond focusing only on the estimability of the effects. The following example helps to
illustrate some of the main features of design selection.

Example 8.8 Fractional Factorial Split-Lot Design with S = 4

Suppose a 26−1 fractional factorial split-lot design is to be performed with S = 4 stages
of randomization and 2 factors defining each of the 3 levels of restricted randomiza-
tion. Further, suppose that each stage is to have 8 blocks of 4 trials. As in Example 8.7,
the minimum aberration treatment structure for the fractional factorial design assigns
factor 6 to the 12345 interaction column of a 25 full factorial design (i.e., I = 123456).
To form 8 blocks, there needs to be rs = 3 randomization restriction factors for each
of the 3 stages of restricted randomization. One possible assignment of randomization
restriction factors is δ

(1)
1 = 1, δ(1)

2 = 2, δ(1)
3 = 35, δ(2)

1 = 3, δ(2)
2 = 4, δ(2)

3 = 15, δ(3)
1 = 5,

δ
(3)
2 = 6, and δ

(3)
3 = 13, leading to the three RRDRs shown below. Keeping in mind that

1235 = 46, 1345 = 26, and 1356 = 24 due to aliasing in the fraction, the variances of the
effect estimators are summarized in Table 8.6.

�(1) = 1δ(1)
1 = 2δ(1)

2 = 12δ(1)
1 δ

(1)
2 = 35δ(1)

3 = 135δ(1)
1 δ

(1)
3 = 235δ(1)

2 δ
(1)
3

= 1235δ(1)
1 δ

(1)
2 δ

(1)
3 ,
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TABLE 8.6

Variances of Regression Effects for the Fractional Factorial Split-Lot Design in
Example 8.8 with I = 123456

Effect Variance

1, 2, 12, 35, 46, and 1 higher-order interaction
σ2

S
25 + σ2

1
23

3, 4, 34, 15, 26, and 1 higher-order interaction
σ2

S
25 + σ2

2
23

5, 6, 56, 13, 24, and 1 higher-order interaction
σ2

S
25 + σ2

3
23

1 higher-order interaction
σ2

S
25 + σ2

1
23 + σ2

2
23 + σ2

3
23

14, 16, 23, 25, 36, 45, and 6 other effects
σ2

S
25

�(2) = 3δ(2)
1 = 4δ(2)

2 = 34δ(2)
1 δ

(2)
2 = 15δ(2)

3 = 135δ(2)
1 δ

(2)
3 = 145δ(2)

2 δ
(2)
3

= 1345δ(2)
1 δ

(2)
2 δ

(2)
3 ,

�(3) = 5δ(3)
1 = 6δ(3)

2 = 56δ(3)
1 δ

(3)
2 = 13δ(3)

3 = 135δ(3)
1 δ

(3)
3 = 136δ(3)

2 δ
(3)
3

= 1356δ(3)
1 δ

(3)
2 δ

(3)
3 .

Notice that there are 6 effects in each of the first 3 rows of Table 8.6, and 3 separate
half-normal plots (one for each row) are needed to assess the significance of these effects.
Another half-normal plot is required to investigate the importance of the effects in the
final row of the table, and the 135 = 246 interaction cannot be assessed since there is
nothing with which to compare it.

Bingham et al. (2008) noted that it is desirable to have the proportion of lower-order
terms on each plot be (roughly) equal for each half-normal plot. The reason is related
to the effect sparsity and hierarchy assumptions. If the set of effects to be displayed on
a half-normal plot are, for example, all main effects or two-factor interactions, then the
effect sparsity assumption must also hold for the set of effects on this plot when viewed
in isolation, in addition to the entire experiment. As a more extreme example, suppose
there were to be another row in the table with only higher-order interactions. A half-
normal plot of these effects would provide no information about the lower-order effects
of interest. So there is some benefit to spreading the effects of interest across the different
levels of the analysis.

In the aforementioned example, the treatment structure was a minimum aberration
26−1 fractional factorial design. Suppose instead that factor 6 had been assigned to
the 1234 interaction column (I = 12346). If interactions involving 3 or more factors are
assumed to be negligible, this resolution V design would be just as good as the resolution
VI design used earlier in terms of estimating lower-order effects. Now suppose that this
design (I = 12346) is used with the same RRDRs as earlier. The effect variances are sum-
marized in Table 8.7. The resulting design has 4 main effects and two-factor interactions
in the first 2 rows of Table 8.7, 5 in the third row, and 8 in the final row.

Beforehand, it is tempting to view the two designs in Example 8.7 as essentially the
same. The first design has defining relation I = 123456 and the second has defining rela-
tion I = 12346. So in neither case are the two-factor interactions aliased with other main
effects or two-factor interactions. In addition, both designs have the same randomiza-
tion restriction factors. However, the appropriate effect variances are determined by
taking the product of the defining contrast subgroup for the fractional factorial design
and the RRDRs. It turns out that the second design has fewer two-factor interactions
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TABLE 8.7

Variances of Regression Effects for the Fractional Factorial Split-Lot Design in
Example 8.8 with I = 12356

Effect Variance

1, 2, 12, 35, and 2 higher-order interactions
σ2

S
25 + σ2

1
23

3, 4, 34, 15, and 2 higher-order interactions
σ2

S
25 + σ2

2
23

5, 6, 56, 13, 24, and 1 higher-order interaction
σ2

S
25 + σ2

3
23

1 higher-order interaction
σ2

S
25 + σ2

1
23 + σ2

2
23 + σ2

3
23

14, 16, 23, 25, 26, 36, 45, 46, and 4 other effects
σ2

S
25

confounded with blocks than the first design. Therefore, comparing the design summa-
rized in Table 8.7 with the design summarized in Table 8.6, there is some advantage to
the design that is not minimum aberration. While both designs achieve the desired ran-
domization structures and can estimate all main effects and two-factor interactions, the
second design has more of these effects with the smallest variance, a clearly desirable
property in terms of estimation efficiency and statistical power.

Bingham et al. (2008) proposed a criterion for selecting designs that attempts to spread
the effects of interest uniformly among the levels of the analysis. Cheng and Tsai (2011)
go even further, proposing an information capacity criterion for multistratum designs (see
also Cheng et al. 1999; Tsai et al. 2000). The idea behind their criterion is to maximize
an efficiency measure, averaged over the set of models containing all main effects and
k two-factor interactions. Specifically, they maximize the average V1/k over their model
set, where V is the determinant of the information matrix X′�−1X (where � = Var(y))
for a model with all main effects and k two-factor interactions. Indeed, one can con-
sider a sequence of such averages for increasing k in resolution III and IV fractional
factorial designs where 2-factor interactions are aliased with main effects and/or other
2-factor interactions. In addition to considering the variability of the effect estimators,
their approach also tries to minimize the degree of aliasing among 2-factor interactions
and other potentially important effects.

8.8 Concluding Remarks

In this chapter, randomization restrictions for factorial and fractional factorial designs have
been discussed. The general approach presented here brings together the factorial design
structure with many of the randomization structures developed for agriculture experi-
ments. The methodology fits within the orthogonal block structures developed by Nelder
(1965) – though it takes a fair amount of work to see how this can be so (Cheng and Tsai
2011). The key feature in design construction is to recognize that forming randomization
restrictions is essentially another form of blocking (see Bingham et al. 2008) and to be clear
about which effects are assigned to each level of the analysis. The examples developed
here aim to illustrate some of the key issues impacting the choice of designs in practical
settings.
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9.1 Introduction

Fractional factorial designs are classified into two broad types: regular designs and nonregu-
lar designs. Regular designs are constructed through defining relations among factors; they
are introduced in Chapter 1, Section 1.7 and fully described in Chapter 7. These designs
have a simple alias structure in that any two factorial contrasts are either orthogonal or
fully aliased. The run sizes are always a power of two, three, or another prime, and thus
the “gaps” between possible run sizes increase exponentially as the power increases.

Plackett and Burman (1946) first gave a large collection of two-level nonregular designs
whose run sizes are not a power of two. These designs are often referred to as the
Plackett–Burman designs in the literature and belong to a wide class of orthogonal arrays
(OAs) (Rao 1947). Plackett–Burman designs and other nonregular designs are widely used
in various screening experiments for their run size economy and flexibility (Wu and Hamada
2009). They fill the gaps between regular designs in terms of various run sizes and are flex-
ible in accommodating various combinations of factors with different numbers of levels.
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Unlike regular designs, nonregular designs may exhibit complex alias structures, that is, a
large number of effects may be neither orthogonal nor fully aliased, which makes it diffi-
cult to identify and interpret significant effects. For this reason, nonregular designs have
traditionally been used to estimate factor main effects only but not their interactions. How-
ever, in many practical situations it is often questionable whether the interaction effects are
negligible.

Hamada and Wu (1992) went beyond the traditional approach and proposed an analysis
strategy for nonregular designs in which some interactions could be entertained and esti-
mated through their complex alias structure. They pointed out that ignoring interactions
can lead to (1) important effects being missed, (2) unimportant effects being erroneously
detected, and (3) estimated effects having reversed signs resulting in incorrectly rec-
ommended factor levels. Their pioneering work motivated the recent studies in design
properties, optimality criteria, construction, and analysis of nonregular designs.

Supersaturated designs (SSDs) are factorial designs whose run sizes are too small to
allow estimation of all factorial effects of interest. They have become increasingly popular
in the last two decades because of their potential for reducing the number of runs. Broadly
speaking, SSDs are a special class of nonregular designs; some of the optimality criteria
and results developed for nonregular designs can easily be extended to the setting of SSDs.
Since SSDs are typically used to estimate main effects only, the problems associated with
SSDs are relatively simpler than those for other nonregular designs, so in this chapter, we
emphasize nonregular fractions.

The remainder of the introduction gives some basic concepts and definitions. An OA of
n runs, k factors, s levels, and strength t, denoted by OA(n, sk, t), is an n × k matrix in which
each column has s symbols or levels, and for any t columns, all possible st combinations
of symbols appear equally often as a row in the n × t subarray. A regular sk−q design of
resolution r is an OA(n = sk−q, sk, t = r − 1), but not every OA with these parameters is
a regular design. Further, let OA(n, sk1

1 × · · · × skm
m , t) denote a mixed-level OA of strength

t with ki columns of si levels for i = 1, . . . , m. Hedayat et al. (1999) gave a comprehensive
account of theory and applications of OAs.

OAs of strength 2, such as Plackett–Burman designs, allow all the main effects to be
estimated independently and they are universally optimal for the main effects model
(Cheng 1980). A necessary condition for the existence of an OA(n, sk1

1 × · · · × skm
m , 2) is that

n − 1 ≥ ∑m
i=1 ki(si − 1). A design is called saturated if n − 1 = ∑m

i=1 ki(si − 1) and super-
saturated if n − 1 <

∑m
i=1 ki(si − 1). In the literature, OAs of strength 2 are also called

orthogonal designs or OAs without mentioning the strength explicitly. For convenience,
an OA of strength 1 is also called a balanced design, where every level appears equally often
for each factor.

9.2 Examples of Nonregular Designs

Example 9.1

Consider an experiment reported by Vander Heyden et al. (1999) who used the high-
performance liquid chromatography (HPLC) method to study the assay of ridogrel and
its related compounds in ridogrel oral film-coated tablet simulations. The researcher
used a 12-run Plackett–Burman design to evaluate the importance of eight factors on
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TABLE 9.1

Design and Data for the HPLC Experiment

Run A B C D E F G H I J K MC

1 + + + − + + − + − − − 101.6
2 + + − + − − − + + + − 101.7

3 + − + + − + − − − + + 101.6
4 + − − − + + + − + + − 101.9

5 + − + − − − + + + − + 101.8
6 − + + + − + + − + − − 101.1
7 − + − − − + + + − + + 101.1

8 − − − + + + − + + − + 101.6
9 − − + + + − + + − + − 98.4

10 − + + − + − − − + + + 99.7
11 + + − + + − + − − − + 99.7

12 − − − − − − − − − − − 102.3

Note: Columns C, G, and K were not used in the experiment.

several responses. One response was the percentage recovery of main compound, rido-
grel. The eight factors were pH of the buffer (A), column manufacturer (B), column
temperature (D), percent of organic solvent in the mobile phase at the start of the gra-
dient (E), percent of organic solvent in the mobile phase at the end of the gradient (F),
flow of the mobile phase (H), detection wavelength (I), and concentration of the buffer
( J ). Table 9.1 gives the design matrix and the observed data. Fitting a main effects model,
we get

ŷ = 101.04 + 0.34A − 0.22B − 0.36D − 0.56E + 0.44F − 0.01H + 0.26I − 0.31J, (9.1)

where each factor has two levels coded as +1 and −1 for + and −, respectively. This
model has R2 = 0.78 with σ̂ = 1.045 on 3 degrees of freedom. The most significant factors
are E and F with p-values of 0.16 and 0.24, respectively. The researchers concluded there
was no significant relationship between any of the factors and this response because none
of the effects are significant at the 10% level.

For Plackett–Burman designs, main effects are partially aliased with two-factor inter-
actions (2fi’s). Nonnegligible 2fi’s could bias the estimates of the main effects. Phoa et al.
(2009) reanalyzed the data and found one very significant interaction. The interaction EF
is more significant than the main effects E and F. They found the following model:

ŷ = 101.04 − 0.56E + 0.44F − 0.30H + 0.88EF, (9.2)

where E and F are the percentages of organic solvent in the mobile phase at the start and
the end of the gradient, respectively, and H is the flow of the mobile phase. This model
has R2 = 0.96, indicating a good fit. In the model (9.2), H is significant at the 5% level
(p-value = 0.012) and E, F and EF are significant at the 1% level.

Example 9.2

Consider an experiment reported by Groten et al. (1996, 1997) who performed a
4-week oral/inhalatory study in which the toxicity of combinations of nine com-
pounds was examined in male Wistar rats. The nine compounds were formaldehyde
(A), dichloromethane (B), aspirin (C), cadmium chloride (D), stannous chloride (E),
loperamide (F), spermine (G), butylated hydroxyanisole (H), and di ethylhexyl (J).
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TABLE 9.2

Design and Data for the Chemical Toxicity Experiment

Run A∗ A B C D E F G H J ASAT

1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 70
2 1 −1 1 1 −1 1 1 −1 −1 −1 71

3 −1 −1 1 1 1 −1 −1 1 −1 −1 86
4 1 1 −1 −1 1 1 1 1 −1 −1 75

5 −1 −1 1 −1 −1 −1 1 1 1 −1 65
6 1 1 −1 1 −1 1 −1 1 1 −1 70
7 −1 1 −1 1 1 −1 1 −1 1 −1 96

8 −1 −1 1 −1 1 1 −1 −1 1 −1 65
9 −1 −1 −1 1 −1 −1 1 1 −1 1 77

10 −1 1 1 −1 −1 1 −1 1 −1 1 71
11 1 1 1 −1 1 −1 1 −1 −1 1 88

12 −1 −1 −1 1 1 1 −1 −1 −1 1 80
13 1 1 1 1 −1 −1 −1 −1 1 1 68
14 −1 −1 −1 −1 −1 1 1 −1 1 1 69

15 1 −1 −1 −1 1 −1 −1 1 1 1 72
16 1 1 1 1 1 1 1 1 1 1 82

Note: Columns A–J form a regular 29−5 design; columns A∗
and B–J form a nonregular 29−5 design.

Their experiment used a regular 29−5 design with design generators E = ABCD, F =
AD, G = AE, H = AC, J = AB. For each factor, the low level corresponds to no com-
pound. One of the responses measured was aspartate aminotransferase (ASAT) activity.
The design and data are given in Table 9.2. Ignoring three-factor or higher-order inter-
actions, the alias relations among main effects and 2fi’s are A = BJ = CH = DF = EG,
B = AJ, C = AH, D = AF, E = AG, F = AD, G = AE, H = AC, J = AB, BC = DG =
EF = HJ, BD = CG = EH = FJ, BE = CF = DH = GJ, BF = CE = DJ = GH, BG =
CD = EJ = FH, BH = CJ = DE = FG. The researchers believed that formaldehyde (A)
did not interact with other compounds, so the main effects of B–J can be estimated with
confidence. The estimate of A is fully aliased with four 2fi’s.

Groten et al. (1996, 1997) first analyzed the main effects and then analyzed the signif-
icant main effects together with their 2fi’s in a subsequent analysis. They concluded that
C, D, E, F, DE, and DF were significant effects and obtained the following model:

ŷ = 75.31 + 3.44C + 5.19D − 2.44E + 2.56F − 2.56DE + 2.19DF.

Recall that DF is fully aliased with A. When two effects are fully aliased in a regular
design, it is impossible to distinguish between them based on the data only in the anal-
ysis. When a 2fi is aliased with a main effect, we often assume the 2fi is negligible.
However, Groten et al. (1996, 1997) ignored the main effect of formaldehyde (A) and
concluded that the DF interaction was significant in their model, based on their expert
opinion. This contradicts the conventional statistical practice. This problem could be
avoided if a nonregular design had been used.

Phoa et al. (2009) demonstrated that we could estimate A and DF simultaneously if
a nonregular design had been used. Consider a new design in which formaldehyde has
level settings as column A∗ and all other factors have the same level settings as before.
Column A∗ differs from column A in the runs 2, 7, 10, and 15, where the high and low
levels are switched. For the new design, A∗ is not fully aliased with any 2fi, but is partially
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aliased with 16 2fi’s with correlation ±0.5. Here, and throughout this chapter, correlation
is defined as 1/n times the inner product of the columns corresponding to the factorial
effects. For example, the correlation between A∗ and CD is −0.5, while the correlation
between A∗ and DF is 0.5. Since A∗ is not fully aliased with any 2fi’s, we can separate A∗
and DF. One problem is that we do not have data from the new design. If formaldehyde
(A) were negligible as Groten et al. (1996, 1997) suggested, the changes we made in the
levels for formaldehyde (A) would not affect the responses; so it is reasonable to use the
same data for the new design. Then we can estimate A∗ and DF simultaneously, yielding
the following fitted model:

ŷ = 75.31 + 3.44C + 5.19D − 2.44E + 2.56F − 2.56DE + 3.46DF − 2.54A∗ − 1.94H,

where all effects are significant at the 5% level. The model has R2 = 0.96. The estimates
of A∗ and DF have opposite signs and the estimate of DF becomes larger (3.46 vs. 2.19) in
the modified design. One possible interpretation is that formaldehyde (A) was important
and the effect of DF could be underestimated in the original design when the main effect
of A was ignored. For more discussions on this experiment, see Phoa et al. (2009).

The advantage of the nonregular design is that it is possible to estimate partially
aliased effects without adding extra runs. The disadvantage is that the analysis becomes
more complicated.

Example 9.3

Ding et al. (2013) reported an experiment studying a system with Herpes simplex virus
type 1 (HSV-1) and five antiviral drugs, namely: interferon-alpha (A), interferon-beta
(B), interferon-gamma (C), ribavirin (D), and acyclovir (E). Their original experiment
used a composite design that consists of a 16-run factorial design with 2 levels and an
18-run OA with 3 levels. Two researchers conducted the experiment independently with
different random orders, yielding two replicates. Here we look at the 18-run OA only,
which corresponds to columns 2–6 of the commonly used OA(18, 37, 2); see Table 9.3.
For each drug, the 3 levels 0, 1, and 2 correspond to no drug, intermediate drug dosage,
and high drug dosage, respectively. The observed data, readout, were the percentage of
infected cells after the combination drug treatment.

Following Ding et al. (2013), we use the square root of readout as response. Since this
is an OA(18, 35, 2), we can fit both linear and quadratic main effects. A main effects model
identifies D and E as the most significant drugs; both their linear and quadratic effects are
significant. With only 18 runs, we do not have sufficient degrees of freedom to estimate
all the interactions among five drugs. Nevertheless, we can perform stepwise variable
selection. We find two significant bilinear effects DE and AC. The results are similar to
those obtained by Ding et al. (2013) using the entire 34-run composite design.

9.3 Alias Structure

For regular designs, we can find the alias relationships among factorial effects from defining
relations. For nonregular designs, the alias structure is complicated and we need to use the
general regression method. Suppose we fit a model

y = X1θ1 + ε, (9.3)
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TABLE 9.3

Design and Data of the Antiviral Drug Experiment

A B C D E Readout

Run 1 2 3 4 5 6 7 Replicate1 Replicate2

1 0 0 0 0 0 0 0 78.6 81.9
2 0 1 1 1 1 1 1 13.3 16.7

3 0 2 2 2 2 2 2 3.4 3.8
4 1 0 0 1 1 2 2 21.4 25.2
5 1 1 1 2 2 0 0 8.6 4.4

6 1 2 2 0 0 1 1 18.0 27.3
7 2 0 1 0 2 1 2 7.3 2.4

8 2 1 2 1 0 2 0 17.9 23.7
9 2 2 0 2 1 0 1 52.9 54.3

10 0 0 2 2 1 1 0 13.2 8.8
11 0 1 0 0 2 2 1 2.1 4.5
12 0 2 1 1 0 0 2 73.4 73.9

13 1 0 1 2 0 2 1 19.6 14.6
14 1 1 2 0 1 0 2 59.1 41.7

15 1 2 0 1 2 1 0 1.4 2.6
16 2 0 2 1 2 0 1 7.3 4.8

17 2 1 0 2 0 1 2 22.3 24.0
18 2 2 1 0 1 2 0 14.1 18.3

where y is an n×1 vector of the responses, X1 is an n×p1 matrix corresponding to the fitted
model, θ1 is a p1 × 1 vector of the model parameters, and ε is an n × 1 vector of normal
errors. The least squares estimator of θ1 is

θ̂1 = (X
′
1X1)

−1X
′
1y,

which is unbiased under the model (9.3). However, if the true model is

y = X1θ1 + X2θ2 + ε, (9.4)

where X2 is an n × p2 matrix corresponding to the additional variables that are not in the
fitted model, and θ2 is a p2 × 1 vector of the additional model parameters. It is easy to
show that

E(θ̂1) = θ1 + Cθ2,

where C = (X
′
1X1)

−1X
′
1X2 is the alias matrix; see Chapter 7, Section 7.2.2, Box and Draper

(1987), and Wu and Hamada (2009).

Example 9.4

Consider the HPLC experiment in Example 9.1. Suppose the model (9.3) contains the
intercept and eight main effects and the model (9.4) contains all

(8
2
) = 28 2fi’s besides

the main effects. The matrix X1 is a 12 × 9 matrix and X2 is a 12 × 28 matrix. The alias
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matrix C = 12−1X
′
1X2 is a 9 × 28 matrix whose elements are −1/3, 0, or 1/3. Except for

the first row, each row represents a factor and has exactly seven 0’s, corresponding to
the seven 2fi’s involving the factor. Each main effect is partially aliased with

(7
2
) = 21

2fi’s (which do not involve the factor itself) with correlation 1/3 or −1/3. For example,
we have

E(Ĥ) = H + 1
3
(AB − AD − AE − AF + AI − AJ − BD − BE + BF − BI

+ BJ + DE − DF + DI + DJ + EF − EI − EJ − FI − FJ − IJ). (9.5)

If EF is the only significant interaction, this simplifies to E(Ĥ) = H + 1
3 EF. Under the

model (9.2), H + 1
3 EF is estimated as −0.30 + 1

3 (0.88) ≈ −0.01, which agrees well with
the estimate of H in the main effects model (9.1). The main effect of H is not significant in
the main effects model because it is partially canceled by the significant EF interaction.

Example 9.5

Consider the chemical toxicity experiment in Example 9.2. We again look at the alias
relations between the main effects and 2fi’s. In this case, X1 is a 16 × 10 matrix and X2
is a 16 × 36 matrix. It is easy to see that X

′
1X1 = 16I so the alias matrix C = 16−1X

′
1X2

is a 10 × 36 matrix. For the regular design with column A, we have E(Â) = A + BJ +
CH + DF + EG, E(B̂) = B + AJ, etc. These are indeed the same as the alias relations
among the main effects and 2fi’s. For the nonregular design with column A∗, we have
E(Â∗) = A∗ + 0.5(BC + DG + EF + HJ + BF + CE + DJ + GH − BG − CD − EJ − FH +
BJ + CH + DF + EG), E(B̂) = B + 0.5(A∗C + A∗F − A∗G + A∗J), etc. For the regular
design, A is fully aliased with four 2fi’s with correlation 1, and the other eight main
effects are each fully aliased with one 2fi (involving factor A) with correlation 1. For the
nonregular design, A∗ is partially aliased with 16 2fi’s with correlation ±0.5, and the
other eight main effects are each partially aliased with four 2fi’s (involving factor A∗)
with correlation ±0.5.

9.4 Optimality Criteria

The main objective of the construction of optimal nonregular designs is to minimize the
aliasing of higher-order interactions on the main effects. The minimum aberration (MA)
criterion, defined in Chapter 1, Section 1.7.2, and Chapter 7, Section 7.2.4, is the stan-
dard criterion for comparing regular designs. This criterion can be extended to nonregular
designs. This section introduces some of these extensions.

9.4.1 Generalized Minimum Aberration

For a factorial design D with n runs and k factors, the full ANOVA model is

y = X0θ0 + X1θ1 + · · · + Xkθk + ε, (9.6)

where y is the vector of n observations, θ0 is the general mean, θj is the vector of jth-order
factorial effects for j = 1, . . . k, X0 is the vector of 1’s, Xj is the matrix of contrast coefficients
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for θj, and ε is the vector of independent random errors. Note that jth-order factorial effects
represent main effects when j = 1 and interactions when j ≥ 2. Here we consider only the
cases where the contrast coefficient of a j-factor interaction is the product of its correspond-
ing contrast coefficients of j main effects. As in Xu and Wu (2001), the main effect contrasts
are normalized so that they have the same length

√
n for a balanced design. In particu-

lar, for a two-level factor, the contrast vector of its main effect is coded as (−1, 1); for a
three-level factor, the contrast vectors of the linear and quadratic main effects are coded as
(−√

3/2, 0,
√

3/2) and (1/
√

2, −√
2, 1/

√
2), respectively.

For j = 1, . . . , k, Xu and Wu (2001) defined Aj, a function of Xj, to measure the overall
aliasing between all jth-order factorial effects and the general mean. Specifically, let Xj =
[x(j)

il ] and define

Aj(D) = n−21′XjX′
j1 = n−2

nj∑
l=1

( n∑
i=1

x(j)
il

)2

, (9.7)

where 1 is the n × 1 vector of ones, and nj is the number of all jth-order factorial effects.
The value of Aj is independent of the choice of the orthonormal contrasts used. The vector
(A1, . . . , Ak) is called the generalized wordlength pattern, because for a 2-level regular design,
Aj is the number of words of length j. The generalized minimum aberration (GMA) criterion
(Xu and Wu 2001) is to sequentially minimize A1, A2, A3, . . .. A design that does this is said
to have GMA.

Example 9.6

Consider two 2-level designs with 4 runs and 3 factors in Table 9.4. The first design D1
is a regular 23−1 design with defining relation I = ABC and the second design D2 is
called a one-factor-at-a-time design. Table 9.4 also shows elements of the correspond-
ing X1, X2, X3 matrices. For D1, we have A1 = (02 + 02 + 02)/42 = 0, A2 = (02 +
02 + 02)/42 = 0, and A3 = 42/42 = 1. For D2, we have A1 = [(−2)2 + 02 + 22]/42 = 0.5,
A2 = [22 + 02 + 22]/42 = 0.5, and A3 = 02/42 = 0. Since A1(D1) < A1(D2), D1 has
less aberration than D2; so the regular design D1 is preferred to the one-factor-at-a-time
design D2 with respect to the GMA criterion. This agrees with the well-known result that
factorial designs are more efficient than one-factor-at-a-time designs.

TABLE 9.4

Two 2-Level Designs with 4 Runs and 3 Factors

(a) D1: A Regular 23−1 Design (b) D2: One-Factor-at-a-Time Design

X1 X2 X3 X1 X2 X3

Run A B C AB AC BC ABC Run A B C AB AC BC ABC

1 + + + + + + + 1 + + + + + + +
2 + − − − − + + 2 − + + − − + −
3 − + − − + − + 3 − − + + − − +
4 − − + + − − + 4 − − − + + + −
Sum 0 0 0 0 0 0 4 Sum −2 0 2 2 0 2 0
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Example 9.7

Consider the 3-level design given in Table 9.5. This design is a regular 33−1 design with
defining relation I = ABC2 and has one word of length 3, that is, ABC2; for details of
3-level regular designs, see Chapter 1, Section 1.7.1, and Chapter 7, Section 7.10. Table
9.5 also shows the orthogonal polynomial contrasts. From the definition (9.7), we have
A1(D) = A2(D) = 0 and

A3(D) = [(−3a3)2 + (−3a2b)2 + (3a2b)2 + (−9ab2)2

+ (3a2b)2 + (−9ab2)2 + (9ab2)2 + (9b3)2]/92,

with a = √
3/2 and b = 1/

√
2. This simplifies to A3(D) = 2.

For a regular 2-level design, as in Example 9.6, the generalized word length pattern is
the same as the word length pattern defined in Chapter 7, Section 7.2.4. For a regular s-
level design, Aj(D) defined in (9.7) is the total degrees of freedom associated with words of
length j in the generating relation, that is, Aj(D) is s−1 times the number of words of length
j. Example 9.7 illustrates this for s = 3. Hence, GMA reduces to MA for regular designs. The
minimum G2-aberration criterion, proposed by Tang and Deng (1999), for 2-level designs is
a special case of the GMA criterion.

Suppose D is a balanced design, that is, an OA of strength 1. For each factor, each symbol
appears the same number of times. It is easy to see that X′

11 is a vector of 0s so A1(D) = 0.
Let X′

1X1 = (aij). Then aij/n is the correlation between the ith and jth columns of X1. Since
each contrast coefficient of a 2-factor interaction is the product of its corresponding two
main effect contrast coefficients, X′

21 is a column vector whose elements are aij, so A2(D) =
n−21′X2X′

21 = n−2 ∑
i<j a2

ij. That is, A2(D) measures the overall aliasing among all possible
main effects. For an OA of strength 2, A2(D) = 0; the reverse is also true. Xu and Wu (2001)
showed the following important property regarding the generalized word length pattern.

Theorem 9.1 A design D is an OA of strength t if and only if Aj(D) = 0 for 1 ≤ j ≤ t.

Therefore, following the GMA criterion, among all possible designs, we shall choose
balanced designs and among them choose orthogonal designs with maximum strength.

Example 9.8

Consider choosing five columns from the commonly used OA(18, 37, 2) given in Table
9.3. There are 21 possible choices. For illustration, consider three choices. Let D1 be the
design formed by columns 2 to 6, D2 be the design formed by columns 1 and 4–7, and D3
be the design formed by columns 1–5, respectively. The generalized word length patterns
for the three designs are (0, 0, 5, 7.5, 0), (0, 0, 6.5, 4.5, 1.5), and (0, 0, 7, 3.5, 2), respectively.
Hence, D1 is the best according to the GMA criterion. It can be easily verified that D1 has
GMA among all 21 5-factor designs.

The GMA criterion has a sound statistical justification. Suppose we fit the model

y = X0θ0 + X1θ1 + ε, (9.8)
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which contains the general mean and main effects. For a balanced design, the least squares
estimator of main effects θ1, θ̂1 = (X

′
1X1)

−1X
′
1y, is unbiased if (9.8) is correct. However,

under the full model (9.6),

E(θ̂1) = θ1 + C2θ2 + · · · + Ckθk,

where Cj = (X
′
1X1)

−1X
′
1Xj is the alias matrix between the main effects and j-factor inter-

actions. The estimation of the main effects is biased or contaminated by (nonnegligible)
interactions. A good design should have a small contamination. For a matrix C = (cij), let
‖C‖2 = ∑

i,j |cij|2 be its squared norm. The value ‖Cj‖2 is an overall measure of the con-
tamination of j-factor interactions on the estimation of main effects. It can be shown that
‖Cj‖2 is independent of the choice of orthonormal contrasts. In the spirit of the hierarchical
ordering principle discussed by Wu and Hamada (2009, Section 4.6), a good design should
sequentially minimize ‖Cj‖2 for j = 2, . . . , k. Xu and Wu (2001) showed that if all k factors
have s levels,

‖Cj‖2 = ( j + 1)Aj+1 + j(s − 2)Aj + (k − j + 1)(s − 1)Aj−1 for j = 2, . . . , k.

It is easy to see that sequentially minimizing A3, A4, . . . is equivalent to sequentially
minimizing ‖C2‖2, ‖C3‖2, . . ..

Theorem 9.2 The GMA criterion sequentially minimizes the contamination of j-factor interactions
on the estimation of main effects for j = 2, 3 . . ..

This result was first proved by Tang and Deng (1999) for 2-level designs and extended
by Xu and Wu (2001) for general designs.

An issue of the GMA criterion is computation. It is cumbersome to compute the gen-
eralized word length pattern according to the definition of Aj(D) in (9.7). Fortunately, Xu
and Wu (2001) provided an efficient method for computing the generalized word length
patterns via the coding theory. An alternative approach is to use the minimum moment
aberration to be discussed in Section 9.4.2.

The Hamming distance between two vectors, (x1, . . . , xk) and (y1, . . . , yk), is the number of
places where they differ, that is, the number of l’s such that xl 	= yl. For an n × k design D,
let dij(D) be the Hamming distance between rows i and j and Bl(D) = n−1|{(i, j) : dij(D) = l,
i, j = 1, . . . , n}| for l = 0, 1, . . . , k. In coding theory, the vector (B0(D), B1(D), . . . , Bk(D)) is
the distance distribution. It is obvious that

∑k
l=0 Bl(D) = n. Xu and Wu (2001) showed that

the generalized word length patterns are linear combinations of the distance distributions
and vice versa.

Theorem 9.3 For an n × k design D with s levels and j = 0, 1, . . . , k,

Aj(D) = n−1
k∑

i=0

Pj(i; k, s)Bi(D), (9.9)
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Bj(D) = ns−k
k∑

i=0

Pj(i; k, s)Ai(D), (9.10)

where Pj(x; k, s) = ∑j
i=0(−1)i(s − 1)j−i(x

i

)(k−x
j−i

)
are the Krawtchouk polynomials.

The equations (9.9) and (9.10) are known as the generalized MacWilliams identities, which
play a pivotal role in the theoretical development of nonregular designs.

Two designs are called (combinatorially) isomorphic if one design can be obtained from
the other by permutations of rows, columns, and levels in the columns. Isomorphic designs
have the same generalized word length pattern.

Cheng and Ye (2004) proposed another extension of the MA criterion. The Cheng and Ye
extension is intended for designs with quantitative factors and depends on the contrasts
used in the model. On the other hand, the Xu and Wu extension described in this section
is intended for designs with qualitative factors and does not depend on the contrasts used
in the model.

9.4.2 Minimum Moment Aberration

Based on coding theory, Xu (2003) proposed the minimum moment aberration criterion for
assessing nonregular designs. For an n × k design D with s levels and a positive integer m,
define the mth power moment to be

Km(D) = [n(n − 1)/2]−1
∑

1≤i<j≤n

[
δij(D)

]m , (9.11)

where δij(D) = k−dij(D) is the number of coincidences between rows i and j. The minimum
moment aberration criterion proposed by Xu (2003) is to sequentially minimize the power
moments K1, K2, . . ..

The power moments measure the similarity among runs (i.e., rows). The first and second
power moments measure the average and variance of the similarity among runs. Mini-
mizing the power moments makes runs to be as dissimilar as possible. As we will see,
the power moments also measure the non orthogonality among columns, and orthogonal
designs have small power moments.

Note that the computation of the power moments involves the numbers of coincidences
between rows. By applying generalized MacWilliams identities and Pless power moment
identities, two fundamental results in the coding theory (MacWilliams and Sloane 1977,
Chapter 5; Xu 2003) showed that the power moments Km defined in (9.11) are linear
combinations of the generalized word length patterns A1, . . . , Am defined in (9.7).

Theorem 9.4 For an n × k design D with s levels and m = 1, 2, . . . , k,

Km(D) = cmAm(D) + cm−1Am−1(D) + · · · + c1A1(D) + c0, (9.12)

where cm = m!s−mn(n − 1)−1 and ci are constants depending only on i, n, k, s for i < m.
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It is not difficult to see now that sequentially minimizing K1, K2, . . . is equivalent to
sequentially minimizing A1, A2 . . .. Therefore, the minimum moment aberration is equiva-
lent to the GMA.

The minimum moment aberration provides a useful tool for efficient computation and
theoretical development. For an n × k design with s levels, the complexity of computing
the generalized word length pattern according to the definition (9.7) is O(nsk), whereas the
complexity of computing k power moments is O(n2k2). The saving in computation is
tremendous when the number of factors k is large. This observation led to successful algo-
rithmic constructions of mixed-level OAs (Xu 2002), a catalog of 3-level regular designs
(Xu 2005b), and blocked regular designs with MA (Xu and Lau 2006). As a theoretical
tool, Xu (2003) developed a unified theory for nonregular and SSDs. Xu and Lau (2006)
and Xu (2006) further used the concept of minimum moment aberration to develop a the-
ory for blocked regular designs and constructed MA blocked regular designs with 32, 64,
and 81 runs.

For mixed-level designs, Xu (2003) suggested to use weights to reflect the importance of
the factors. For a design D = (xil), assign weight wl > 0 to the lth column and let

δij(D) =
k∑

l=1

wlδ(xil, xjl), (9.13)

be the weighted coincidence number between the ith and jth rows, where δ(x, y) = 1 if
x = y and 0 otherwise. Then define Km(D) as in (9.11). A special choice for a mixed-level
design is to choose weight proportional to its number of levels, say, wl = sl. For this
choice, Xu (2003) showed that if D is an OA of strength t, the identity in (9.12) holds for
m = 1, . . . , t + 1. Therefore, the minimum moment aberration is weakly equivalent to the
GMA for mixed-level designs.

9.4.3 Generalized Resolution and Projection Properties for 2-Level Designs

The resolution, defined in Chapter 1, Section 1.7.2, and Chapter 7, Section 7.2.4, is an impor-
tant concept for regular designs. To define the generalized resolution, we need to consider
projections of a design. For an n × k design D, a j-factor projection design is the n × j
submatrix representing the j factors. For clarity, we use d to denote a projection.

Suppose that d is an n × j matrix (dil) with two levels denoted by −1 and +1, and let

ρ(d) = 1
n

n∑
i=1

di1 × · · · × dij. (9.14)

The quantity ρ(d) is called a design moment in the response surface design literature. If d is a
balanced design, ρ(d) is the correlation between the main effect of a column and the interac-
tion involving the other j−1 columns. For illustration, consider the 12-run Plackett–Burman
design in Table 9.1. For d = {A, B}, ρ(d) = 0 since A and B are orthogonal. For d = {A, B, C},
ρ(d) = −1/3 is the correlation between the main effect A (or B or C) and the 2fi BC (or AC
or AB). For d = {A, B, C, D}, ρ(d) = −1/3 is the correlation between the main effect A (or B
or C or D) and 3fi BCD (or ACD or ABD or ABC), as well as the correlation between 2fi’s
AB and CD (or AC and BD, or AD and BC).
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The quantity |ρ(d)| is called the normalized J-characteristics by Tang and Deng (1999) or
aliasing index by Cheng et al. (2004) and Phoa and Xu (2009) because 0 ≤ |ρ(d)| ≤ 1. When
|ρ(d)| > 0, the k columns in d form a word of length k with aliasing index |ρ(d)|. A word is
called complete if |ρ(d)| = 1 or partial if |ρ(d)| < 1. When ρ(d) = 0, the k columns in d do not
form a word.

It is not difficult to see that if D is a two-level regular design then |ρ(d)| = 0 or 1 where
d is a projection of D. Ye (2004) showed that the reverse is also true. Therefore, for a non-
regular design, there always exists some projection d such that 0 < |ρ(d)| < 1. It can be
shown that Aj(D), as defined in (9.7), can be expressed as

Aj(D) =
∑
|d|=j

ρ2(d), (9.15)

where the summation is over all j-factor projections d.
Suppose that r is the smallest integer such that Ar(D) > 0. Then the generalized resolution

(Deng and Tang 1999) is defined to be

R̃ = R̃(D) = r + δ, where δ = 1 − max
|d|=r

|ρ(d)|, (9.16)

where the maximization is over all projections d with r factors. Grömping and Xu (2014)
recently extended the generalized resolution to OAs with mixed levels.

Example 9.9

Consider the 12-run Plackett–Burman design in Table 9.1. It is an OA of strength 2, so
A1 = A2 = 0 but A3 > 0. It is straightforward to verify that |ρ(d)| = 1/3 for any 12 × 3
subdesign d. So the generalized resolution is R̃ = 3 + (1 − 1/3) = 11/3.

Like the GMA, the generalized resolution has a good statistical justification. For a 2-level
OA with strength 2, maximizing the generalized resolution is equivalent to minimizing the
maximum bias of any individual 2fi on the estimation of the main effects (Deng and Tang
2002). In contrast, the GMA criterion minimizes the overall bias of all 2fi’s on the estimation
of the main effects.

The generalized resolution has a nice geometric property. It is easy to see that for an
OA(n, 2k, t), ρ(d) = 0 for any projection d with t factors or fewer and therefore r ≤ R̃ <

r + 1, where r = t + 1. If δ > 0, any projection with r = t + 1 factors contains at least
nδ/2r copies of a full 2r factorial (Deng and Tang 1999). This result was first proved by
Cheng (1995). Cheng (1995, 1998) and Bulutoglu and Cheng (2003) further studied some
hidden projection properties of nonregular designs; see Xu et al. (2009) for a review.

Box and Tyssedal (1996) defined a design to be of projectivity p if the projection onto every
subset of p factors contains a full factorial design, possibly with some points replicated. It
follows from these definitions that an OA of strength t is of projectivity at least t. A regular
design of resolution r has projectivity r − 1, while a nonregular design of generalized reso-
lution r + δ has projectivity at least r if δ > 0. A result of Cheng (1995) implies that, as long
as the run size n is not a multiple of 2t+1, an OA(n, 2k, t) with k ≥ t + 2 has projectivity t + 1,
even though the strength is only t.
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Example 9.10

Consider the two 29−5 designs in the chemical toxicity experiment given in Table 9.2. Both
designs have the same generalized word length pattern (0, 0, 4, 14, 8, 0, 4, 1, 0). For the
regular design, there are four words of length 3 with aliasing index 1; for the nonregular
design, there are 16 words of length 3 with aliasing index 0.5. The regular design has
generalized resolution 3.0 and projectivity 2, while the nonregular design has generalized
resolution 3.5 and projectivity 3.

Deng and Tang (1999) went beyond the generalized resolution and defined another
version of the GMA, which we refer to as the minimum G-aberration criterion for clarity.
Roughly speaking, the minimum G-aberration criterion always chooses a design with the
smallest confounding frequency among designs with maximum generalized resolution.
Formally, the minimum G-aberration criterion is to sequentially minimize the components
in the confounding frequency vector

CFV = [(f11, . . . , f1n); (f21, . . . , f2n); . . . ; (fk1, . . . , fkn)],

where fji denotes the frequency of j-factor projections d with |ρ(d)| = 1 + (1 − i)/n.
The minimum G2-aberration criterion, proposed by Tang and Deng (1999) and men-

tioned in Section 9.4.1, is a relaxed version of the minimum G-aberration criterion. For
2-level regular designs, both criteria reduce to the traditional MA criterion. However, these
two criteria can result in selecting different nonregular designs. Minimum G-aberration
nonregular designs always have maximum generalized resolution, whereas minimum
G2-aberration nonregular designs may not. This is in contrast to the regular case where
MA regular designs always have maximum resolution among all regular designs.

9.4.4 Projection Aberration, Estimation Capacity and Design Efficiency

The GMA criterion cannot distinguish designs when they have the same generalized word
length pattern. It is useful to examine projections by using a criterion like the minimum
G-aberration criterion. There are

(k
p

)
projected designs with p factors. Each of these designs

has an Ap value, which is referred to as the projected Ap value, to distinguish the overall Ap
value calculated from the whole k-factor design. The frequency of the projected Ap values
is called the p-dimensional projection frequency. For an OA(n, sk, t), when projecting onto any
t factors, we always get a full factorial design. So it is sufficient to consider projection fre-
quencies with p = t + 1, t + 2, and so on. The larger the projected Ap values are, the more
severe the aliasing is. One approach is to sequentially minimize the (t + 1)-dimensional
projection frequency starting from the largest projected At+1 value. If there is a tie, one
can further compare the (t + 2)-dimensional projection frequency and so on. This criterion
is referred to as the projection aberration criterion by Xu et al. (2004) and can serve as an
extension of the minimum G-aberration for general designs.

Example 9.11

Consider choosing six columns from the commonly used OA(18, 37, 2) given in Table 9.3.
There are seven possible choices. For illustration, consider three choices. Let D1, D2, and
D3 be the resulting designs from omitting the first, second, and third columns, respec-
tively. The generalized word length patterns for the three designs are (0, 0, 10, 22.5, 0, 7),
(0, 0, 13, 13.5, 9, 4), and (0, 0, 13, 13.5, 9, 4), respectively. Hence, D1 is the best according to



354 Handbook of Design and Analysis of Experiments

TABLE 9.6

Overall and Projected A3 Values

Frequency of Projected A3Overall
Design A3 1/2 2/3 1 2

D1 10 20 0 0 0
D2 13 16 0 3 1

D3 13 14 0 6 0

the GMA criterion. Note that D2 and D3 have the same generalized word length pat-
tern but they have different projection patterns. The frequencies of projected A3 values
are listed in Table 9.6. Among the three designs, D2 is the worst under the projection
aberration criterion since one of its 3-factor projections has projected A3 = 2; D1 is again
the best because all its 3-factor projections have projected A3 = 0.5.

Xu and Deng (2005) proposed another projection aberration criterion. When considering
the projection frequency, they replaced Aj(d), as defined in (9.7), with Kj(d), as defined
in (9.11), for a j-factor projection d. They referred to the resulting criterion as the moment
aberration projection criterion. The moment aberration projection criterion works the same
as the projection aberration criterion based on the Aj values. Both criteria will often select
the same best design. However, the moment aberration projection criterion can distinguish
more designs than the projection aberration criterion based on the Aj values, even for the
2-level case. The concept of moment aberration projection turns out to be very useful in the
algorithmic construction of regular designs; see Xu (2005b, 2009).

For regular designs, Cheng et al. (1999) justified the MA criterion by showing that it is a
good surrogate for some model-robustness criteria. Following their approach, Cheng et al.
(2002) considered the situation where (1) the main effects are of primary interest and their
estimates are required and (2) the experimenter would like to have as much information
about 2fi’s as possible, under the assumption that higher-order interactions are negligible.
Without knowing which 2fi’s are significant, they considered the set of models containing
all of the main effects and f 2fi’s for f = 1, 2, 3, . . .. Let Ef be the number of estimable models
and Df be the average of D-efficiencies of all models that contain main effects plus f 2fi’s.
Cheng et al. (2002) showed that two-level GMA designs tend to have large Ef and Df val-
ues, especially for small f ; therefore, the GMA criterion provides a good surrogate for the
traditional model-dependent efficiency criteria. Ai et al. (2005) and Mandal and Mukerjee
(2005) extended their approach to mixed-level designs.

9.4.5 Uniformity and Space-Filling Property

Uniformity or space filling is a desirable design property for physical and computer exper-
iments (Fang et al. 2006). Various discrepancies have been used to assess the space-filling
property or uniformity (Fang and Wang 1994; Fang et al. 2000). These discrepancies all have
geometrical meanings and can be interpreted as the difference between the empirical dis-
tribution of points in the design and the uniform distribution. Among them, the centered
L2-discrepancy, proposed by Hickernell (1998), is the most frequently used. For an n × k
design D = (xil) over the unit cube [0, 1]k, the squared centered L2-discrepancy (CD) has
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an analytic expression as follows:

[CD(D)]2 = 1
n2

n∑
i=1

n∑
j=1

k∏
l=1
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1 + 1
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2
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13
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)k

. (9.17)

The centered L2-discrepancy is defined over the unit cube [0, 1]k, but the s levels in a
factorial design are normally denoted as 0, 1, . . . , s−1. Thus, as it is often done in the litera-
ture, whenever the centered L2-discrepancy is calculated, level i (i = 0, 1, . . . , s − 1) should
first be transformed to (2i + 1)/(2s). Note that this is a useful relationship only when the s
levels of each factor actually represent equally spaced values of an underlying continuous
variable.

Fang and Mukerjee (2000) found a connection between aberration and uniformity for
2-level regular designs. This connection was extended by Ma and Fang (2001) for general
two-level designs. The basic result states that for a two-level n × k design D, regular or
nonregular, the centered L2-discrepancy can be expressed in terms of its generalized word
length pattern Ai(D) as follows:

[CD(D)]2 =
(

13
12

)k

− 2
(

35
32

)k

+
(

9
8

)k
⎛
⎝1 +

k∑
i=1

Ai(D)

9i

⎞
⎠ .

Since the coefficient of Ai(D) decreases exponentially with i, one can anticipate that designs
with small Ai(D) for small values of i should have small CD(D); in other words, GMA
designs tend to be uniform over the design region.

However, the result cannot be generalized to multi level designs directly, as level per-
mutations of one or more factors can alter the centered L2-discrepancy, but keep the
generalized word length pattern unchanged. By considering level permutations of three-
level designs, Tang et al. (2012) established a relationship between average centered
L2-discrepancy and generalized word length pattern. Tang and Xu (2013) generalized the
relationship to designs with arbitrary levels. Zhou and Xu (2014) further generalized their
results for any discrepancy defined by a reproducing kernel and showed that GMA designs
have good space-filling properties on average in terms of distance as well.

Hickernell and Liu (2002) showed that the GMA criterion could be defined and general-
ized using discrepancy. Tang (2001) and Ai and Zhang (2004a) showed that GMA designs
have good low-dimensional projection properties.

9.5 Construction Methods

The construction of optimal nonregular designs is challenging for two simple reasons:
(1) nonregular designs do not have a unified mathematical description and (2) the class
of nonregular designs is much larger than the class of regular designs.
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9.5.1 Algorithmic Methods

A simple strategy for constructing GMA or other optimal designs is to search over all possi-
ble projection designs from existing OAs, such as Plackett–Burman designs or Hadamard
matrices. A Hadamard matrix of order n is an n × n matrix of entries +1 and −1 whose
columns (and rows) are orthogonal to each other; see Chapter 7 of Hedayat et al. (1999). A
Hadamard matrix is said to be normalized if all of the entries of the first row and column are
+1. From a normalized Hadamard matrix of order n, one obtains a saturated OA(n, 2n−1, 2)

by deleting the first column. Deng and Tang (2002) presented a catalog of GMA designs by
searching over Hadamard matrices of order 16, 20, and 24. Xu and Deng (2005) searched
optimal designs over all Hadamard matrices of order 16 and 20 and 3-level designs from
68 saturated OA(27, 313, 2)’s. A limitation of this strategy is that we could miss the optimal
design in some cases because the optimal design cannot be expressed as such a projection.

Much effort has been devoted to the complete enumeration of all non isomorphic designs
with a small number of runs. Sun et al. (2002) proposed an algorithm for sequentially
constructing non isomorphic orthogonal designs. They successfully enumerated all 2-level
OAs with 12, 16, and 20 runs. An important result is that all 16-run OAs are projections of
one of the five 16-run Hadamard matrices. However, such a result does not hold for 20-run
designs. Ye et al. (2008) presented a complete set of combinatorially nonisomorphic OAs of
types OA(12, 2k31, 2), OA(18, 3k, 2), OA(18, 213k, 2), and OA(20, 2k51, 2). Schoen (2009) also
presented all OAs with 18 runs.

Schoen et al. (2010) proposed a general algorithm that can also handle mixed-level
designs. They successfully enumerated most nontrivial mixed-level OAs up to 28 runs
with strength 2, 64 runs with strength 3, and 168 runs with strength 4. They completely
enumerated all 24-run OAs with strength 2 and 28-run OAs up to 7 columns. The number
of non isomorphic designs OA(28, 2k, 2) is 4, 7, 127, 17,826, and 5,882,186, respectively, for
k = 3, 4, 5, 6, 7.

Algorithmic constructions are typically limited to small run sizes (≤32) or small number
of factors due to the existence of a large number of designs and the difficulty of determin-
ing whether two designs are isomorphic or not. Algebraic or combinatorial methods are
necessary to construct larger designs. A good construction method is the quaternary code
(QC) method introduced by Xu and Wong (2007).

9.5.2 Quaternary Code Designs

A QC is a linear subspace over Z4 = {0, 1, 2, 3} (mod 4), the ring of integers modulus 4. A
key device is the so-called Gray map:

φ : 0 → (0, 0), 1 → (0, 1), 2 → (1, 1), 3 → (1, 0), (9.18)

which maps each symbol in Z4 to a pair of symbols in Z2. Let G be an a × b matrix with
elements from Z4 and let C consist of all possible linear combinations of the row vectors of
G over Z4. Applying the Gray map to C, one obtains a 4a × 2b matrix or a two-level design
with 4a runs and 2b factors, denoted by D. Although C is linear over Z4, D may or may
not be linear over Z2. From D, we can construct a two-level design with 22a+1 runs and 4b
factors via the doubling method as follows:

D∗ =
(

D D
D D + 1

)
(mod 2). (9.19)
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TABLE 9.7

Example of Quaternary Code and Nonregular Design

(a) Quaternary Code C (b) Nonregular Design D

Run 1 2 3 4 5 6 Run 1 2 3 4 5 6 7 8 9 10 11 12

1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 1 2 1 3 2 0 0 0 1 0 1 1 1 0 1 1 0

3 0 2 2 0 2 2 3 0 0 1 1 1 1 0 0 1 1 1 1
4 0 3 3 2 3 1 4 0 0 1 0 1 0 1 1 1 0 0 1

5 1 0 2 1 1 1 5 0 1 0 0 1 1 0 1 0 1 0 1
6 1 1 3 3 2 0 6 0 1 0 1 1 0 1 0 1 1 0 0
7 1 2 0 1 3 3 7 0 1 1 1 0 0 0 1 1 0 1 0

8 1 3 1 3 0 2 8 0 1 1 0 0 1 1 0 0 0 1 1
9 2 0 0 2 2 2 9 1 1 0 0 0 0 1 1 1 1 1 1

10 2 1 1 0 3 1 10 1 1 0 1 0 1 0 0 1 0 0 1
11 2 2 2 2 0 0 11 1 1 1 1 1 1 1 1 0 0 0 0

12 2 3 3 0 1 3 12 1 1 1 0 1 0 0 0 0 1 1 0
13 3 0 2 3 3 3 13 1 0 0 0 1 1 1 0 1 0 1 0
14 3 1 3 1 0 2 14 1 0 0 1 1 0 0 1 0 0 1 1

15 3 2 0 3 1 1 15 1 0 1 1 0 0 1 0 0 1 0 1
16 3 3 1 1 2 0 16 1 0 1 0 0 1 0 1 1 1 0 0

Source: Xu, H. and Wong, A., Stat. Sinica, 17, 1191, 2007.

Example 9.12

Consider a 2 × 6 matrix

G =
[

1 0 2 1 1 1
0 1 1 2 1 3

]
.

All linear combinations of the two rows of G form a 16 × 6 linear code C over Z4. Apply-
ing the Gray map, we obtain a 16 × 12 matrix D = φ(C), which is a 212−8 design. See
Table 9.7 for the matrices C and D. It is straightforward to verify that D has general-
ized resolution 3.5; therefore, it is a nonregular design. Moreover, the 32 × 24 matrix D∗
obtained via doubling as in (9.19) is a 224−19 design and has generalized resolution 3.5 too.
For comparison, in both cases the best regular design of the same size has resolution 3.

Example 9.13

Consider a 4 × 8 matrix

G =

⎡
⎢⎢⎣

1 0 0 0 2 1 1 1
0 1 0 0 1 3 1 2
0 0 1 0 1 2 3 1
0 0 0 1 1 1 2 3

⎤
⎥⎥⎦ .

All linear combinations of the rows of G over Z4 form a 256 × 8 quaternary linear code
C. Applying the Gray map, we obtain a 256 × 16 matrix D = φ(C), which is isomorphic
to the (extended) Nordstrom–Robinson code (Xu 2005a). The resulting design D is an
OA(256, 216, 5) with many remarkable properties: it has generalized resolution 6.5 and
projectivity 7. For comparison, for a regular design to achieve the same resolution and
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projectivity, it would require at least 512 runs. For more statistical properties and results
from the Nordstrom–Robinson code, see Xu (2005a).

Lemma 9.1 Let G be an a × b matrix over Z4, C be the quaternary linear code generated by G,
and D = φ(C) be the binary image. Then D is an OA of strength 2 if and only if G satisfies the
following conditions:

(i) It does not have any column containing entries 0 and 2 only.

(ii) None of the columns is a multiple of another column over Z4.

Xu and Wong (2007) further showed that if the two conditions in Lemma 9.1 are satisfied,
then D has generalized resolution at least 3.5 and G has a maximum of (4a −2a)/2 columns.
Such a matrix can be constructed as follows:

1. Write down all possible columns of a elements over Z4.
2. Delete columns that do not contain any 1s.
3. Delete columns whose first non zero and non-two entries are 3s.

Theorem 9.5 For an integer a > 1, let G be the generator matrix obtained from the afore-
mentioned procedure. Then the binary image D generated by G has 4a rows, 4a − 2a columns,
and generalized resolution 3.5. The double D∗ of D has 22a+1 rows, 22a+1 − 2a+1 columns, and
generalized resolution 3.5.

Note that the nonregular designs constructed in Theorem 9.5 have generalized resolution
3.5. It is known that a regular 2-level design with n runs and k factors has resolution at most
3 when k > n/2; see Chapter 7, Section 7.4.1. Therefore, nonregular designs constructed
from QCs have higher resolution than corresponding regular designs when resolution 4
designs do not exist.

Since QC designs are linear over Z4, we can enumerate QC designs sequentially in a
similar manner as enumerating regular designs. Xu and Wong (2007) developed a sequen-
tial algorithm, similar to those by Chen et al. (1993) and Xu (2005b). They also presented a
collection of nonregular designs with 32, 64, 128, and 256 runs and up to 64 factors, many
of which are better than regular designs of the same size in terms of resolution, aberration,
and projectivity.

The linear structure of a QC also facilitates the derivation and analytical study of prop-
erties of QC designs. Phoa and Xu (2009) studied quarter-fraction QC designs, which are
defined by a generator matrix that consists of an identity matrix plus an extra column. They
showed that the generalized resolution, generalized word length pattern, and projectivity
can be calculated in terms of the frequencies of the numbers 1, 2, and 3 that appear in the
extra column.

Specifically, consider an a × (a + 1) generator matrix G = (v, Ia), where v is an a × 1
column vector over Z4 and Ia is the a × a identity matrix. The binary image D generated
by G is a 2(2a+2)−2 design. It is easy to verify that the identity matrix Ia generates a full 22a

design; therefore, the properties of D depend on the column v only. For i = 0, 1, 2, 3, let fi
be the number of times that number i appears in column v. Phoa and Xu (2009) showed
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that the number of words of D, their lengths and aliasing indexes can be expressed in terms
of the frequency fi.

Theorem 9.6 The 2(2a+2)−2 design D generated by G = (v, Ia) has 1 complete word of length
2f1 + 2f3 + 2 and 2/ρ2 words of length f1 + 2f2 + f3 + 1 with aliasing index ρ = 2−�(f1+f3)/2�, where
�x� is the integer value of x.

Since D has a complete word of length 2(f1 + f3)+2, its projectivity is at most 2(f1 + f3)+1.
The following theorem from Phoa and Xu (2009) shows that the projectivity of D is not
affected by the partial words.

Theorem 9.7 Suppose that D is the 2(2a+2)−2 design generated by G = (v, Ia):

(a) If f2 > 0, the projectivity of D is 2(f1 + f3) + 1.

(b) If f2 = 0 and f1 + f3 > 0, the projectivity of D is 2(f1 + f3) − 1.

Based on these theoretical results, Phoa and Xu (2009) constructed optimal quarter-
fraction QC designs under the maximum resolution, GMA, and maximum projectivity
criteria. These optimal QC designs are often better than regular designs of the same size in
terms of the design criterion. The GMA QC designs have the same aberration as the MA
regular designs and frequently with larger resolution and projectivity. A maximum pro-
jectivity QC design is often different from a MA or maximum resolution design but can
have much larger projectivity than a MA regular design. They further showed that some of
these QC designs have GMA and maximum projectivity among all possible designs. Zhang
et al. (2011) and Phoa et al. (2012) investigated 1/8 and 1/16 fraction QC designs, which
are defined by a generator matrix that consists of an identity matrix plus two additional
columns. Phoa (2012) further studied 1/64 fraction QC designs.

9.6 Optimality Results

It is infeasible to search over all possible designs in many situations. Theoretical results are
extremely useful to determine whether a design is optimal under the GMA or other criteria.
Xu (2003) gave several sufficient conditions for a design to have GMA among all possible
designs using the concept of minimum moment aberration.

One sufficient condition is that the numbers of coincidences between distinct rows are
constant or differ by at most one.

Theorem 9.8 Design D has GMA among all possible designs if the differences among all δij(D),
i < j, do not exceed one.

In other words, a design has GMA if its design points are equally or nearly equally
spaced over the design region. As an example, the 12-run Plackett–Burman design in
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Table 9.1 has GMA because the numbers of coincidences between any two distinct rows
are 5. It is easy to see that deleting any column yields an OA(12, 210, 2), which has GMA
among all possible designs too.

An important class of designs that satisfy the conditions in Theorem 9.8 are saturated
OAs of strength 2. Mukerjee and Wu (1995) showed the following result.

Lemma 9.2 The numbers of coincidences between any distinct pair of rows of a saturated
OA(n, sk, 2) are constant; specifically, δij(D) = (n − s)/(s2 − s) for any i 	= j.

Another sufficient condition relates to projections of a design.

Theorem 9.9 Design D has GMA among all possible designs if D is an OA(n, sk, t) and there are
no repeated runs in any (t + 1)-factor projection.

For example, consider the OA(18, 36, 2) given by columns 2–7 in Table 9.3. It is easy to
verify that its projection onto any three columns does not have repeated runs. Thus, this
design (and any of its projections) has GMA among all possible designs.

Another general technique for constructing optimal designs is linear programming,
which employs the generalized MacWilliams identities (9.9) and (9.10). The linear pro-
gramming technique has been used to establish bounds on the maximum size of a code for
given length and distance in coding theory (MacWilliams and Sloane 1977, Section 17.4) and
bounds on the minimum size of an OA for given number of factors and strength (Hedayat
et al. 1999, Section 4.5). Xu (2005a) used linear programming to show that several nonreg-
ular designs derived from the Nordstrom–Robinson code have GMA among all possible
designs. The following result is from Xu (2005a).

Theorem 9.10 Any regular 2k−2 MA design has GMA among all possible designs.

Butler (2003, 2004) presented a number of construction results that allow 2-level GMA
designs to be found for many of the cases with n = 16, 24, 32, 48, 64, and 96 runs.
Butler (2005) further developed theoretical results and presented methods that allow GMA
designs to be constructed for more than two levels. A key tool of Butler (2003, 2004, 2005) is
the use of some identities that link the generalized word length patterns with moments of
the inner products or Hamming distances between the rows; see also Chapter 7, Section 7.6.
These identities can be derived easily from the generalized Pless power moment identities
developed by Xu (2003).

9.7 Supersaturated Designs

The study of SSDs dates back to Satterthwaite (1959) and Booth and Cox (1962). The for-
mer suggested the use of random balanced designs and the latter proposed an algorithm to
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construct systematic SSDs. Many methods have been proposed for constructing two-level
SSDs in the last two decades after Lin (1993) and Wu (1993). The early construction meth-
ods use Hadamard matrices or balanced incomplete block designs; see, among others, Lin
(1993), Wu (1993), Nguyen (1996), Cheng (1997), and Tang and Wu (1997). Early algorithmic
construction includes Lin (1995), Nguyen (1996), and Li and Wu (1997). Chapter 1, Section
1.7.4 gives some other references. Georgiou (2014) gave a review of construction methods
and provided many additional references.

Lin (1993) used half fractions of Hadamard matrices to construct two-level SSDs. First
obtain a saturated OA(n, 2n−1, 2) from a normalized Hadamard matrix of order n (by delet-
ing the first column that is a column of ones). For example, we obtain the 12 × 11
Plackett–Burman design in Table 9.1 from a normalized Hadamard matrix of order 12. Now
for each column, half of the entries are 1 and the other half are −1. Use any column as the
branching column and take those rows whose entries are 1 in the branching column. Delet-
ing the branching column yields an SSD with n/2 runs and n − 2 columns (provided that
the resulting design has no repeated columns).

Wu (1993) proposed another construction method by utilizing partial aliasing of 2fi’s
among Plackett–Burman designs or Hadamard matrices. Consider the 12×11 design matrix
in Table 9.1 again for illustration. There are

(11
2

) = 45 2fi’s. None of the 45 2fi’s are fully
aliased with the original 11 columns or other 2fi’s. By combining the 45 columns with the
original 11 columns, we obtain an SSD with 12 runs and 66 columns.

A popular criterion in the SSD literature is the E(s2) criterion (Booth and Cox 1962; Lin
1993). For a balanced n × k design D with two levels denoted by 1 and −1,

E(s2) =
∑

1≤i≤j≤k

s2
ij/[k(k − 1)/2],

with sij = c′
icj, where ci and cj are the ith and jth columns of D. Nguyen (1996) and Tang

and Wu (1997) independently derived the following lower bound for two-level SSDs with
n runs and k factors:

E(s2) ≥ n2(k − n + 1)/[(k − 1)(n − 1)]. (9.20)

The GMA criterion can be used to assess general SSDs, including mixed-level designs.
Following the discussion of A2(D) in Section 9.4.1, it is easy to see that E(s2) =
2n2A2(D)/[k(k − 1)]2 for two-level SSDs. Therefore, the GMA criterion can be viewed as
a refinement of the E(s2) criterion and the general optimality results on the GMA cri-
terion can be applied to the SSDs directly. For example, using the connection between
the minimum moment aberration and GMA, Xu and Wu (2005) obtained the follow-
ing result regarding multi-level SSDs, which include many previous results as special
cases.

Theorem 9.11 For an SSD D with n runs and k factors at s levels,

A2(D) ≥ k(s − 1)(ks − k − n + 1)

2(n − 1)
+ (n − 1)s2η(1 − η)

2n
, (9.21)
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where η = k(n − s)/(ns − s) − �k(n − s)/(ns − s)� is the fractional part of k(n − s)/(ns − s). The
lower bound is achieved if and only if the numbers of coincidences, δij(D), differ by at most one for
all i < j. Furthermore, an SSD achieving the lower bound is optimal under the GMA criterion.

When applied to two-level SSDs, Theorem 9.11 improves the lower bound (9.20) when-
ever η > 0. Butler et al. (2001) and Bulutoglu and Cheng (2004) gave further improvements
on the lower bound (9.20) for two-level SSDs.

Many optimal SSDs that achieve the lower bound in Theorem 9.11 can be derived from
saturated OAs. A key property of saturated OAs, stated in Lemma 9.2, is that the numbers
of coincidences, δij(D), are constant for any pair of rows i 	= j.

Tang and Wu (1997) proposed construction of optimal two-level SSDs by juxtaposing
saturated OAs derived from Hadamard matrices. This method can be easily extended to
construct optimal multilevel SSDs. Suppose D1, . . . , Df are f saturated OA(n, sk, 2) with k =
(n − 1)/(s − 1). Let D = D1 ∪ · · · ∪ Df be the n × fk array obtained by column juxtaposition,
which may have duplicated or fully aliased columns. It is evident that δij(D) are constant
for any i < j. Then by Theorem 9.11, D is an optimal SSD under the GMA criterion. The
conclusion may no longer be valid if repeated columns are removed.

When n = s2, Lemma 9.2 implies that the numbers of coincidences between any two
rows are equal to 1 for a saturated OA(n, sk, 2). Then removing any number of orthogonal
columns from D also results in an optimal SSD under GMA, because the resulting design
has the property that the numbers of coincidences between any two rows differ by at most
one. In particular, for any k, the lower bound in Theorem 9.11 is tight when n = s2.

The half fraction method of Lin (1993) can be easily extended to construct multilevel
SSDs as follows. Taking any column of a saturated OA(n, sk, 2) as the branching column,
we obtain s fractions according to the levels of the branching column. After removing the
branching column, the fractions have the properties that all columns are balanced and the
numbers of coincidences between any two rows are constant. The row juxtaposition of any
f fractions form an SSD with fn/s rows and k − 1 columns, of which the numbers of coin-
cidences between any two rows differ by at most one. By Theorem 9.11, such a design is
optimal under GMA. For n = s2, any subdesign is also optimal, because the numbers of
coincidences between any two rows are either 0 or 1.

For any prime power s and integer p > 0, a saturated OA(n, sk, 2) exists where n = sp

and k = (n − 1)/(s − 1). The following result is from Xu and Wu (2005).

Theorem 9.12 Let s be a prime power. There exists an optimal s-level n × k SSD under the GMA
criterion that achieves the lower bound in Theorem 9.11 when any of the following conditions hold:

(i) n = sp and k = f (sp − 1)/(s − 1) where p > 0 and f > 0 are integers.

(ii) n = fsp−1 and k = (sp − 1)/(s − 1) − 1 where p > 0 and 0 < f < s are integers.

(iii) n = s2 and any integer k > 0.

(iv) n = fs and any integer 0 < k ≤ s where 0 < f < s is an integer.

The aforementioned optimal SSDs may contain fully aliased columns, which are not use-
ful in practice. To further distinguish designs with the same (overall) A2 values, we consider
their 2-factor projections and apply the generalized resolution for 2-level designs or the pro-
jection aberration idea in general; see Sections 9.4.3 and 9.4.4. To maximize the generalized
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resolution is equivalent to minimize the maximum absolute correlation between any two
columns, or the max(s2) = maxi<j s2

ij criterion in the literature. While there are abundant

results on the E(s2) criterion or its extensions, there are relatively few results on the max(s2)

criterion. Cheng and Tang (2001) studied the maximum number of factors that an SSD can
have under the constraint on max(s2).

Xu and Wu (2005) presented explicit construction methods that produce optimal SSDs
without fully aliased columns using linear and quadratic functions over finite fields. The
construction method was closely related to the Addelman and Kempthorne (1961) con-
struction method of OA(2sp, sk, 2) with k = 2(sp − 1)/(s − 1). Numerical comparisons for
small 3-, 4-, and 5-level SSDs indicate that their algebraic method produces good SSDs.

9.8 Analysis Strategies

We begin with a discussion of analysis of nonregular factorial experiments and toward the
end give references on analysis for SSDs.

The analysis strategy proposed by Hamada and Wu (1992) consists of three steps:

Step 1: Entertain all the main effects and interactions that are orthogonal to the main
effects. Use standard analysis methods such as ANOVA and half-normal plots to select
significant effects.

Step 2: Entertain the significant effects identified in the previous step and 2fi’s that include
at least one factor that has a significant main effect. Identify significant effects using a
forward selection regression procedure.

Step 3: Entertain the significant effects identified in the previous step and all the main
effects. Identify significant effects using a forward selection regression procedure.

Iterate between steps 2 and 3 until the selected model stops changing. Note that the
traditional analysis of Plackett–Burman or other nonregular designs ends at step 1.

Hamada and Wu (1992) based their analysis strategy on two empirical principles, effect
sparsity and effect heredity (Wu and Hamada 2009, Section 4.6). Effect sparsity implies that
only few main effects and even fewer 2fi’s are relatively important in a factorial experiment.
Effect heredity means that in order for an interaction to be included, at least one of the
main effects associated with its parent factors should be included. In other words, effect
heredity excludes models that contain an interaction but none of its parent main effects.
Hamada and Wu (1992) wrote that the strategy works well when both principles hold and
the correlations between partially aliased effects are small to moderate. The effect sparsity
assumption suggests that only a few iterations will be required.

Using this procedure, Hamada and Wu (1992) reanalyzed data from three real exper-
iments: a cast fatigue experiment using a 12-run Plackett–Burman design with seven
2-level factors, a blood glucose experiment using an 18-run mixed-level OA with one
2-level and seven 3-level factors, and a heat exchange experiment using a 12-run Plackett–
Burman design with ten 2-level factors. They demonstrated that the traditional main
effects analysis was limited and the results were misleading. Phoa et al. (2009) gave
three more real examples to show the importance of considering interactions for screening
experiments.
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Hamada and Wu (1992) discussed limitations of their analysis strategy and provided
solutions. Wu and Hamada (2009, Chapter 8) suggested some further extensions such as
the use of all subset variable selection if possible.

Example 9.14

Consider the HPLC experiment in Example 9.1. The traditional main effects analysis
shows that the two most important factors are E and F. The model that consists of only
the main effects of E and F has R2 = 0.41. Using the Hamada–Wu analysis strategy, we
find a significant EF interaction in step 2. Adding EF to E and F increases R2 from 0.41 to
0.89. In step 3, we further identify factor H, which is missed in the traditional approach,
as significant at the 5% level. We repeat steps 2 and 3 iteratively until no more new signif-
icant effects are identified and the model does not change anymore. When this happens,
we stop the procedure and report the final model, which is given in (9.2).

Box and Meyer (1993) proposed a Bayesian approach by considering all the possible
explanations (models including interactions) of the data from a screening experiment and
identifying those that fit the data well. The assumptions for prior distributions in their
approach are as follows:

1. Each factor has independent prior probability π being active.
2. All effects from a model are assigned independent prior normal distributions with

mean 0 and variance γ2σ2.
3. A noninformative prior distribution is employed for experimental noise σ.

The prior probability of a model with f active factors is π f (1−π)k−f for a k-factor design.
The model with f active factors includes main effects for each active factor and all of their
interactions (up to any desired order). The parameter γ captures the magnitude of the
effects relative to experimental noise σ. Box et al. (2005) suggested to choose π = 0.25
and γ between 2 and 3, based on a survey of a number of published analyses of factorial
experiments. The results are not very sensitive to moderate changes in π and γ when active
factors are present.

A Bayesian framework is used to assign posterior probabilities to all the models consid-
ered; see Box and Meyer (1993) or Box et al. (2005). These posterior probabilities are then
accumulated to marginal posterior probabilities for each factor. A factor that has a relatively
high posterior probability implies that either its main effect or an interaction involving it
or both are important.

Example 9.15

We analyze the HPLC experiment in Example 9.1 via the Bayesian approach. The pos-
terior probability plot in Figure 9.1a shows the marginal posterior probabilities for each
factor with π = 0.25 and γ = 2. The posterior probability is high for factors E and F,
moderate for factor H, and small for other factors. This suggests that factors E, F, and
H are active. However, the marginal posterior probabilities do not tell which 2fi’s are
significant. Since the frequentist approach identifies the EF interaction as significant, we
perform a second Bayesian analysis by treating the EF interaction as a new factor. The
resulting posterior probability plot in Figure 9.1b shows that EF is as significant as factors
E and F. Factor H is also significant, but not as significant as E, F, and EF. The finding is
consistent with the frequentist approach.
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FIGURE 9.1
The posterior probability plot for the HPLC experiment (a) with the original factors and (b) with the EF interaction.

Chipman et al. (1997) proposed a more sophisticated Bayesian approach for analyz-
ing data with complex aliasing. They employed a Gibbs sampler to perform an efficient
stochastic search of the model space, whereas Box and Meyer (1993) evaluated all possible
models, which could require intensive computation for large data sets. In addition, Chip-
man et al. (1997) carefully implemented the effect sparsity and effect heredity principles
with hierarchical models. They further introduced two types of effect heredity: weak and
strong heredity. Under weak heredity, a 2-factor interaction is important only if at least one
of its component factors is significant, while under strong heredity, both of its component
factors have to be significant.

Yuan et al. (2007) proposed an efficient variable selection approach based on the least
angle regression (LARS) algorithm of Efron et al. (2004). They modified the LARS algorithm
so that heredity principles can be taken into account in the variable selection process.

When all factors are quantitative, it is natural to consider a polynomial model to explore
the relationship between the response and factors. For k quantitative factors, denoted by
x1, . . ., xk, the second-order model is

y = β0 +
k∑

i=1

βixi +
k∑

i=1

βiix2
i +

k∑
1=i<j

βijxixj + ε, (9.22)

whereβ0,βi,βii,βij are unknown parameters, and ε is the error term. For the pure quadratic
terms βii to be estimated, all the factors must have more than two levels. The second-order
model (9.22) has p = (k + 1)(k + 2)/2 parameters. When the run size n is less than p, we
cannot estimate all the parameters in (9.22). A traditional approach is to assume that the
bilinear (or interaction) terms βij are negligible and fit a model with the linear and pure
quadratic terms only, which is the main effects model for three-level designs. However,
nonnegligible interaction terms will bias the estimate of linear and pure quadratic terms.
Abetter approach is to use the Hamada–Wu strategy and perform variable selection guided
by the effect heredity principle.

Cheng and Wu (2001) proposed an alternative analysis strategy in order to achieve the
dual purpose of factor screening and response surface exploration using a single design.
Their analysis strategy has two stages:
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Stage 1: Perform factor screening and identify important factors.
Stage 2: Fit a second-order model for the factors identified in stage 1.

Various screening analyses can be utilized in stage 1, such as the conventional ANOVA
or half-normal plots of the main effects, which include both linear and pure quadratic
terms for 3-level factors. Their analysis strategy again assumes that effect sparsity and
effect heredity principles hold. They reanalyzed a PVC insulation experiment reported by
Taguchi (1987) that used a regular 27-run design with nine 3-level factors. They identified
a significant linear-by-linear interaction effect that was missed by Taguchi. Xu et al. (2004)
gave another example, which uses an 18-run OA with one 2-level factor and seven 3-level
factors.

Finally, for SSDs we typically consider the main effects only with the assumption that all
2fi’s are negligible. In principle, any variable selection procedures can be used for analyzing
SSDs. Many analysis strategies have been used to analyze SSDs. The list includes forward
stepwise regressions (Lin 1993; Westfall et al. 1998), all subset regressions (Abraham et al.
1999), Bayesian variable selections (Chipman et al. 1997), penalized least squares (Li and
Lin 2003), partial least squares (Zhang et al. 2007), and the Dantzig selector (Phoa et al.
2009).

9.9 Concluding Remarks

We give an overview of recent developments in nonregular fractional designs and SSDs
in this chapter. In summary, nonregular designs are more flexible, require smaller num-
bers of runs, and have better statistical properties than regular designs. Yet the analysis of
nonregular designs is more complicated due to the partial aliasing among the effects. Xu
et al. (2009) highlighted some future directions of research, from applications and analysis
of nonregular designs to construction of good nonregular designs with large run sizes and
optimality results with respect to the generalized resolution.

One underlying assumption for the GMA criterion in Section 9.4.1 is that factor levels are
regarded as nominal symbols. This is appropriate for experiments with qualitative factors
where there is no ordering among the levels. However, for experiments with quantitative
factors, polynomial models such as (9.22) or other models are often used to describe the
relationship between the response and the factors. In these circumstances, permuting levels
for one or more factors can lead to designs with different geometrical structures and statisti-
cal properties. An important question is how the levels should be permuted for quantitative
factors. There are some recent developments on this topic; see Tang et al. (2012), Tang and
Xu (2013, 2014), and Zhou and Xu (2014). However, more work needs to be done.
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This chapter is about factors. Section 10.1 discusses what a factor is and introduces rele-
vant concepts and notation. Sections 10.2 and 10.3 deal with structure on the observational
units and show how to derive the null analysis of variance (ANOVA). Hasse diagrams are
introduced as a way to visualize some relationships between factors. Section 10.4 deals
with structure on the set of treatments and relates this to the set of candidate models for
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the expectation of the response variable. Section 10.5 puts these together by introducing the
design, which shows which treatment is allocated to which observational unit; the skeleton
ANOVA is derived.

The remaining sections build on Sections 10.1 through 10.5 but are fairly independent
of each other. Section 10.6 gives an algorithm for constructing the design and its skeleton
ANOVA. Section 10.7 discusses fixed and random factors. Sections 10.8 and 10.9 deal with
multistage and multiphase experiments, respectively.

Throughout, structures and designs are restricted to be orthogonal. This restriction is
discussed in Section 10.10. Finally, Section 10.11 gives some comments on the conventions
and wording used in this chapter.

10.1 Factors

This section deals with the vexed question of what a factor is: is it a variable, a function or a
partition? In particular, the definition of factor used in many statistical algorithms conflicts
with the definition that gives unambiguous interpretation of data sheets: I prefer the sec-
ond. The concept of one factor being finer than another is introduced in Section 10.1.2, as
are the infimum and supremum of two factors. In Section 10.1.3, each factor is associated
with a vector space and with two square matrices.

10.1.1 What Is a Factor?

A factor may be thought of as a variable whose levels can be adjusted for the purposes of
an experiment. On the other hand, some factors, such as day of the week or position on the
bench, are inherent in the experimental material: their levels cannot be changed. Both sorts
of factor may be regarded as functions from the set of observational units to the set of its
levels: thus, if F is a factor, then F(ω) denotes the level of F on observational unit ω.

Every factor F gives rise to a partition. I shall write F[ω] for the part of F containing obser-
vational unit ω. The distinction between these two concepts—function and partition—is
rather clearer for treatment factors, whose levels can be deliberately applied by the experi-
menter, than it is for inherent factors. Suppose that V is a factor denoting variety of wheat.
Then V(ω) means the variety of wheat sown on plot ω, while V[ω] means the set of all
plots which receive the same variety of wheat as plot ω.

Note: Within this chapter, the notations ( ), [ ] and { } are never used interchangeably.
The set of observational units for an experiment is denoted � throughout. Individual

observational units are denoted by lower-case Greek letters. The size of � is denoted N.
In the first three sections, we are concerned primarily with structure inherent in the

observational units before treatments are applied. Treatments are introduced in Section 10.4.
Structure on the set of observational units is often defined by factors, but authors do not

agree on what a factor is, even when they regard factors as functions. Two examples will
clarify this.

Example 10.1 (Blocks and plots)

The observational units are 32 plots in a field, which have been grouped into four blocks
of eight alike plots. There is one factor B, for blocks, and it has four levels. We may regard
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B as a function from � to {1, 2, 3, 4}, so that B(ω) is the label of the block containing plotω.
Alternatively, we may regard B as a partition of � into four parts, called blocks, which
are subsets of �. The block containing plot ω is denoted B[ω].

The real disagreement comes in deciding what the factor for plots should be. If the
plots are labelled 1–32, then we can use the function E from � to {1, . . . , 32}, or the par-
tition E which has E[ω] = {ω}. Alternatively, the plots may be numbered 1–8 within
each block. This specifies a function P from � to {1, . . . , 8}. However, the four plots
with P = 1 have nothing in common. To identify the plots, we need B ∧ P, whose lev-
els are all combinations of levels of B and P (this notation is defined more precisely in
Section 10.1.2).

One approach to Example 10.1 uses the second representation for the plots, calling B
and P factors and B ∧ P a generalized factor. The second approach is equivalent to the first
representation for the plots: it calls B and P pre-factors, because they are used to construct
the genuine factors, which are B and B ∧ P. Both approaches need the notion that P is nested
in B, which is formalized in Section 10.2.1. The former approach saves a little computer
space, because fewer levels are needed: in Example 10.1, P has eight levels but B ∧ P has 32
levels. Statisticians were among the earliest users of computers, and they used the former
approach to build powerful general algorithms such as those developed by Nelder (1965a)
and Wilkinson and Rogers (1973). It covers everything in Section 10.2 and feels natural to
statisticians who are familiar with these algorithms.

However, the first approach cannot cope with Example 10.2 or the more general struc-
tures in Sections 10.3 and 10.4. Moreover, it has a serious disadvantage in general use. Many
scientists keep their data in spreadsheets. In Example 10.1 there is one column for blocks
and one for plots (there will be further columns for treatments and for data). If the entries
in the column for plots take the values 1–8 within each block, then there is a danger that
these entries will be interpreted as meaning that all plots labelled 1 in that column have
something in common. This mistake is made quite often in practice, especially in long-
term experiments where those who analyse the data have not been involved from the start
of the experiment.

I shall use the second approach, partly because it is more widely applicable and partly
because it avoids this danger of mis-interpretation. That is, a genuine factor is either a
function whose levels are meaningful in isolation or it is the corresponding partition.

Example 10.2 (A superimposed experiment)

One year, an experiment was conducted on 64 individual apple trees, arranged in an 8×8
square. There were eight different pruning methods, and they were applied in a Latin
square (see Chapter 3). The following year, the same trees will be used for a different
experiment, but there may still be some residual effect of the different pruning methods,
so we need to consider the eight-level factors R, for rows; C, for columns; and P, for
pruning methods. Only 64 of the 83 possible combinations of their levels occur.

There is an algorithmic framework which covers Examples 10.1 and 10.2, as well as other
structures that we shall meet in Section 10.4. It is more general than the one that will be
described in Section 10.2. For this, we need to take the view that a factor on � is a partition
of � into meaningful parts, such as the blocks in Example 10.1 but not the set of plots
labelled 1 in all blocks. If F is such a factor, then F[ω] denotes the part of F containing ω;
that is, F[ω] is a subset of �. It may be the case that the factor is defined by a function:
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in Example 10.2, P(ω) denotes the previous year’s pruning method on tree ω, while P[ω]
denotes the set of all trees which received the same pruning method as tree ω.

10.1.2 Some Definitions Associated with Factors

Here we establish some definitions and notation that are crucial to the rest of the chapter,
both conceptually and in algorithms such as the one for calculating degrees of freedom.

If F is a factor on �, the number of parts of F will be denoted nF. This is the same as the
number of levels of F if they all occur on �. Factor F is defined to be uniform if all its parts
have the same size (some authors call this balanced, but the usage is different from balanced
in balanced incomplete-block design: see Chapter 3). If F is uniform, denote the common size
of its parts by kF: then nFkF = N = |�|.

If F and G are two factors on �, we say that F is aliased with G, written F ≡ G, if F and
G have the same parts; that is, they are the same apart possibly from the labelling of their
levels. Aliasing occurs in fractional factorial designs: see Chapter 7. We say that F is finer
than G, or that G is coarser than F, written F ≺ G or G � F, if every part of F is contained
in a part of G but at least one part of G contains two or more parts of F. In Example 10.1,
E ≺ B. The notation F � G means that either F ≺ G or F ≡ G. If F � G and F[α] = F[β],
then G[α] = G[β].

We will always use E to denote the equality factor: it splits � into N parts of size one. At
the other extreme is the universal factor U, which has a single part of size N. Thus, E � F � U
for all factors F on �.

If F and G are factors on �, their infimum F ∧ G is defined to be the factor whose levels
are all combinations (that occur on �) of levels of F with levels of G. That is, F ∧ G(ω) =
(F(ω), G(ω)) for ω in �. The parts of F ∧ G are all the non-empty intersections of an F-part
with a G-part. Thus, F ∧ G[ω] = F[ω] ∩ G[ω] for ω in �. In Example 10.2, R ∧ C ≡ R ∧ P ≡
C ∧ P ≡ E. In particular, F ∧ F = F, F ∧ G � F and F ∧ G � G for all F and G. If F � G, then
F ∧ G ≡ F.

Example 10.3 (A consumer experiment)

A consumer organization plans an experiment to compare new vacuum cleaners during
two notional months of 4 weeks each. Four volunteer homemakers participate during the
first month, while another four take part during the second. Each week, each partici-
pating volunteer tests two vacuum cleaners and rates them. Thus, � consists of 64 tests,
and two of the relevant factors are W (week) and H (homemaker), both with eight levels.
Then W ∧ H is a factor with 32 parts, one for each week–homemaker combination that
occurs: see Figure 10.1.

The supremum of two factors is a dual notion to that of infimum, but it is less well known.
The supremum F ∨ G of F and G satisfies F � F ∨ G and G � F ∨ G and has as many parts
as possible subject to this. Thus, the parts of F ∨ G are the smallest subsets of � which are
simultaneously unions of F-parts and unions of G-parts. In particular, F ∨ F = F, and if
F � G, then F ∨ G = G. In Example 10.2, R ∨ C = U.

To find the supremum F ∨ G by hand, write the levels of F and G as the rows and columns,
respectively, of a rectangle. In row i and column j, show all units ω with F(ω) = i and
G(ω) = j. Rearrange the rows, if necessary, so that the non-empty cells lie in rectangles
along the main diagonal and so that no further such subdivision of the rectangles is pos-
sible. Then the rectangles on the diagonal are the parts of F ∨ G. Figure 10.1 shows this
diagram for Example 10.3: W ∨ H is the two-level factor M whose parts are the months.
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Homemaker
1 2 3 4 5 6 7 8

1
2
3

Week 4
5
6
7
8

FIGURE 10.1
Calculating the supremum in Example 10.3: • denotes one test.

Most statistical software provides the facility to specify and calculate the infimum of two
factors, but it is rare to find explicit facilities for the supremum, even though Tjur (1984)
pointed out its importance; a recent exception is Großmann (2014). Why is the supremum
important? To take an extreme case, suppose that in Example 10.3 all tests in the first month
are given a score of 100, while all those in the second month score 0. If you ignore months,
and fit H to the data before fitting W, then you will conclude that there is a large differ-
ence between homemakers but no difference between weeks; if you fit W and H in the
other order, then you will draw the opposite conclusion. If you fit M before either W or H,
then you will reach the correct conclusion that there are differences between months, but
no further differences between weeks within a month or between homemakers within a
month.

10.1.3 Vectors and Matrices

The data from the experiment are a vector y in the N-dimensional vector space R

� of real
vectors whose coordinates are indexed by �. We denote by VF the vector subspace of R�

consisting of those vectors which take a constant value on each part of F. Thus, dim(VF) =
nF. In particular, VE = R

�, while VU is the one-dimensional subspace of constant vectors.
Moreover, if F � G, then VG ≤ VF, which means that VG is a subspace of VF. More generally,
a vector is constant on each part of F and on each part of G if and only if it is constant on
each part of F ∨ G, and so VF ∩ VG = VF ∨ G.

Each factor F defines some N×N real matrices with rows and columns indexed by �. The
relation matrix RF has (α,β)-entry equal to 1 if α and β are in the same part of F; otherwise,
it is 0. The averaging matrix PF has (α,β)-entry equal to 1/ |F[α]| if α and β are in the same
part of F; otherwise, it is 0. In particular, if F is uniform, then RF = kFPF. If z is any vector
in R

�, then the α-coordinate of PFz is the average of the β-coordinates of z for all β in the
same F-part as α. It follows that PF is the matrix of orthogonal projection onto VF, and so
rank(PF) = nF.

There are two special cases: RE is the N×N identity matrix IN and RU is the N×N matrix
JN whose entries are all 1. Moreover, PE = IN and PU = N−1JN.

If F � G, then PFPG = PGPF = PG. In particular, PF is idempotent (which means that
P2

F = PF), and PFPU = PUPF = PU, for all factors F.
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10.2 Poset Block Structures

This section introduces panel diagrams as a way of describing many common structures.
The list in each panel forms a partially ordered set, which is often abbreviated to poset, and
so these structures are called poset block structures.

Hasse diagrams are introduced in Section 10.2.2, partly to give a way of visualizing the
factors in each poset block structure and partly to give algorithms. Section 10.2.4 explains
how each poset block structure gives a decomposition of R

� into mutually orthogonal
subspaces, one for each genuine factor.

Randomization justifies the simple assumption (10.4) for the variance–covariance matrix
Cov(Y) of a response Y on �. This in turn leads to the null ANOVA described in
Section 10.2.6.

10.2.1 Panel Diagrams

Very many structures which occur in practice can be defined by a list of pre-factors, as in
Example 10.1, their numbers of levels, and their nesting relationships. These can succinctly
be shown in a panel diagram: see Brien and Bailey (2006, 2009, 2010) and Brien et al. (2011).

Figure 10.2 gives the panel diagram for Example 10.1. There are two pre-factors: Blocks,
with four levels, and Plots, with eight levels. It is helpful to use pre-factor names with
different initial letters, where possible, so that each may be abbreviated to its initial letter
after its first mention. The line 4 Blocks tells us that there is a pre-factor called Blocks with
four levels. The line 8 Plots in B tells us that there is another pre-factor called Plots, that it has
eight levels and that it is nested in B. There is one observational unit for each combination
of levels of B and P. To say that P is nested in B means that the relation P(α) = P(β) does
not signify anything meaningful unless B(α) = B(β).

More generally, if there are several pre-factors, then nesting means that the relation
P(α) = P(β) does not signify anything unless Q(α) = Q(β) for all pre-factors Q which
nest P. Thus, nesting is a partial order: it satisfies the following:

(N1) Every pre-factor is deemed to be nested in itself;
(N2) If P is nested in Q and Q is nested in R, then P is nested in R;
(N3) If P is nested in Q and Q is nested in P, then P = Q.

In general, a poset block structure is specified by a finite setM of pre-factors, partially ordered
by nesting, together with the number ni of levels for each pre-factor Pi in M. Put |M| = m:
then ni ≥ 2 for i = 1, …, m. Let �i be a set of size ni, for i = 1, …, m. The product set
�1 × �2 × · · · × �m gives a convenient way of indexing the observational units. Thus, � is

4     Blocks
8     Plots in B

FIGURE 10.2
Panel diagram for Example 10.1.
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identified with �1 × �2 × · · · × �m and each element ω of � is regarded as an m-tuple
(ω1, . . . ,ωm), where ωi is the level of Pi on ω.

Let L be any subset of M. Then L is defined to be ancestral if

whenever Pi ∈ L and Pi is nested in Pj, then Pj ∈ L. (10.1)

In Example 10.1, M = {B, P} and there are three ancestral subsets: ∅, {B} and {B, P}.
Each ancestral subset L defines a genuine factor F(L) on �. Given units α = (α1, . . . ,αm)

and β = (β1, . . . ,βm), then α and β are in the same part of F(L) if and only if αi = βi for
all Pi in L. Thus, F(∅) is just the universal factor U, while F(M) is the equality factor E. The
number nF(L) of levels of F(L) is the product of those ni for which Pi ∈ L; that is,

nF(L) =
∏

i:Pi∈L
ni. (10.2)

Moreover, F(L) is a uniform factor, because each part of F(L) has size kF(L), which is the
product of those ni for which Pi /∈ L; that is,

kF(L) =
∏

i:Pi∈M\L
ni. (10.3)

These numbers are illustrated for Example 10.3 in Table 10.1.
For each ancestral subset L, the relation matrix RF(L) is a Kronecker product of m

matrices: if Pi ∈ L, then the ith matrix is Ini ; otherwise, it is Jni
. Hence,

PF(L) =
⎛
⎝ ⊗

i:Pi∈L
Ini

⎞
⎠ ⊗

⎛
⎝ ⊗

i:Pi∈M\L
n−1

i Jni

⎞
⎠ .

In the poset block structure defined by M, the set F of genuine factors is given by

F = {F(L) : L is an ancestral subset of M}.

The notation F(L) is useful for general statements, but in specific examples, it may be clearer
to write the factor F(L) as the concatenation of the initial letters of the pre-factors in L, with

TABLE 10.1

Genuine Factors Defined by the Panel in Figure 10.3

Ancestral Number Size of

Subset Factor of Parts Each Part

L F(L) nF(L) kF(L)

∅ U 1 64

{M} M = W ∨ H 2 32
{M, V} MV = H 8 8

{M, P} MP = W 8 8
{M, V, P} MVP = W ∧ H 32 2
{M, V, P, T} MVPT = E 64 1
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2    Months
4    Volunteers in M
4    Periods in M
2    Tests in M, V, P

FIGURE 10.3
Panel diagram for Example 10.3.

F(∅) shown as U. Thus, in Example 10.1 the genuine factors are U, B and BP; moreover,
nU = 1, nB = 4, nBP = 32, kU = 32, kB = 8 and kBP = 1.

The structure in Example 10.3 can be expressed as a poset block structure, but to do so,
we need to change notation slightly, so that a four-level pre-factor V labels the volunteer
homemakers within each month, another four-level pre-factor P labels the 4 weekly periods
within each month, and a two-level pre-factor T labels the two tests within each combina-
tion of levels of M, V and P. The panel diagram is in Figure 10.3. Table 10.1 lists the six
ancestral subsets, the corresponding genuine factors, their numbers of levels and the sizes
of their parts.

The following results are proved in Bailey (2004, Chapter 9).

Proposition 10.1 Let L and K be ancestral subsets of M.

(i) If L ⊂ K, then F(K) ≺ F(L).

(ii) L ∪ K is an ancestral subset, and F(L) ∧ F(K) = F(L ∪ K).

(iii) L ∩ K is an ancestral subset, and F(L) ∨ F(K) = F(L ∩ K).

(iv) PF(L)PF(K) = PF(K)PF(L) = PF(L∩K).

10.2.2 Hasse Diagrams

The is finer than or aliased with relation � introduced in Section 10.1 is also a partial order,
because

(F1) If F is a factor, then F � F;
(F2) If F � G and G � H, then F � H;
(F3) If F � G and G � F, then F ≡ G.

Any partial order can be visualized using a Hasse diagram. In particular, any collection F of
factors on � can be shown on a Hasse diagram, as in Bailey (2004, 2008). In Section 10.2.4,
this leads to an algorithm for calculating degrees of freedom and sums of squares.

In the Hasse diagram, there is one dot for each factor. Beside the dot for factor F is shown
the integer nF, which is the number of parts of F. If F ≺ G, then the dot for G is further up
the diagram than the dot for F. If F ≺ G but there is no H in F with F ≺ H ≺ G, then a
line joins the dots for F and G. Thus, F ≺ G if and only if there is a path from the dot for F
to the dot for G traversing lines in an upwards direction only. Figures 10.4 and 10.5 show
the Hasse diagrams for the poset block structures defined by the panels in Figures 10.2
and 10.3, respectively.

The following algorithm can be used to derive the Hasse diagram.
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32BP

4B

1U

FIGURE 10.4
Hasse diagram for the poset block structure defined by Figure 10.2.

� 64MVPT = E

� 32MVP

� 8MP� 8MV

� 2M

� 1U

�
�
�
�

�
�

�
�

�
�

�
�

�
�
�
�

FIGURE 10.5
Hasse diagram for the poset block structure defined by Figure 10.3.

Algorithm 10.1 (From Panel Diagram to Hasse Diagram)
1. List the ancestral subsets of M in increasing order of size. Thus, the list starts with

∅, and if L ⊂ K, then L is listed before K.
2. For each L in the list

(a) Name the corresponding factor by concatenating the initial letters of the pre-
factors in L.

(b) Calculate the number nF(L) of parts from Equation 10.2.
(c) Calculate the size kF(L) of each part from Equation 10.3.

3. Start to draw the Hasse diagram by putting a dot for ∅ at the top level, all dots for
ancestral subsets of size one on the same level below this, those of size two on the
next level, and so on.

4. For each L in the list, write the name of the factor F(L) and the number nF(L) beside
the dot for L.

5. If L and K are in the list, and L ⊂ K, and |K| = |L| + 1, then draw a line between
the dots for L and K.
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12     Subjects
3     Periods

FIGURE 10.6
Panel diagram for a crossover trial.

36SP = E

12S 3P

1U

FIGURE 10.7
Hasse diagram for a crossover trial.

Starting with the panel in Figure 10.3, Steps 1 and 2 of Algorithm 10.1 give Table 10.1;
then Steps 3–5 give the Hasse diagram in Figure 10.5. The diamond shape in the centre
of this shows how easy it is to read suprema and infima off the Hasse diagram: here,
MV ∨ MP = M and MV ∧ MP = MVP.

Recall that the number of pre-factors is m. When m = 1, the only factors on � are U and E.
When m = 2, there are two possibilities. Either one pre-factor is nested in the other, as in
Example 10.1, or there is no nesting. An example of the latter occurs in crossover trials.
Example 4.4 has 12 subjects for three periods, with each subject able to have a different
treatment in each period. Figures 10.6 and 10.7 give the corresponding panel diagram and
Hasse diagram, respectively.

10.2.3 Crossing and Nesting Operators

Many statistical algorithms use the symbolic crossing and nesting of pre-factors described
by Nelder (1965a). Various different notations are in use: here we use / for nesting and × for
crossing, which means lack of nesting. Thus, the panels in Figures 10.2 and 10.6 correspond
to the formulas

(4 Blocks)/(8 Plots)

and

(12 Subjects) × (3 Periods),

respectively. The operators can be iterated. For three pre-factors, there are essentially five
possibilities (up to change of names and numbers of levels):
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12     Plants
  4     Heights
  2     Leaf-halves in P, H

2     Fields
3     Strips in F
4     Plots in F, S

(a)

  3     Sessions
12     Panellists in S
  6     Tastings in S

(b) (c)

  2      Sessions
  4      Runs in S
20      Players

(d)

6     Days
6     Periods
2     Rooms

(e)

FIGURE 10.8
Examples of the five poset block structures with three pre-factors.

(2 Fields)/(3 Strips)/(4 Plots);

(3 Sessions)/((12 Panellists) × (6 Tastings));

((12 Plants) × (4 Heights))/(2 Leaf-halves);

((2 Sessions)/(4 Runs)) × (20 Players);

(6 Days) × (2 Periods) × (2 Rooms).

These correspond to the panels in Figure 10.8a through e, respectively. The structures in
(a) and (d) are described by Bailey (2008), those in (b) and (e) by Brien and Bailey (2006)
and that in (c) by Bailey and Monod (2001).

However, the formulas obtained from iterated crossing and nesting do not cover all pos-
sibilities when m ≥ 4. Kempthorne et al. (1961) listed all poset block structures for m ≤ 4
and included one like that in Figure 10.9, also discussed by Bailey (1991), that cannot be
obtained from iterated crossing and nesting. When m = 5, only 48 of the 63 poset block
structures can be obtained from iterated crossing and nesting. As m increases, so does the
proportion of poset block structures that cannot be described by crossing and nesting alone.
However, the methods in this section apply to all poset block structures.

10.2.4 Subspaces and Degrees of Freedom

Each genuine factor F in a poset block structure has an associated vector space VF. These
subspaces overlap, as shown in Section 10.1. In particular, if F and G are two factors, then
VF∩VG = VF∨G. However, it can be shown that part (iv) of Proposition 10.1 implies that if F
and G are two factors in a poset block structure, then VF ∩V⊥

F∨G is orthogonal to VG ∩V⊥
F∨G.

12     Weeks
  2     Laboratories
  4     Technicians in L
10     Samples in W, L

FIGURE 10.9
Panel diagram for a poset block structure that cannot be defined by iterated crossing and nesting.
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Thus, if v ∈ VF, then there are orthogonal vectors w and x such that v = w + x, w ∈ VF∨G,
x ∈ VF, and x is orthogonal to VG. Put another way, the three subspaces VF∨G, VF∩V⊥

F∨G and
VG ∩ V⊥

F∨G are mutually orthogonal and their vector space sum is VF + VG. Continuing in
this way, this means that we can define further vector subspaces WF, one for each genuine
factor F in the poset block structure, in such a way that

(S1) If F �≡ G, then WF is orthogonal to WG;

(S2) For each F in the poset block structure, VF =
⊕
G�F

WG.

Let dF = dim(WF), the so-called degrees of freedom for F. Let QF be the matrix of orthogonal
projection onto WF. The following algorithm shows how to calculate all of these recursively,
starting at the top of the Hasse diagram and working downwards.

Algorithm 10.2 (From Hasse Diagram to Subspaces and Degrees of Freedom)
1. Start at the top of the Hasse diagram.
2. Put WU = VU, dU = nU = 1 and QU = PU.
3. If WG, dG and QG have been calculated for all G in F with G � F, then

(a) Put WF = VF ∩
(⊕

G�F

WG

)⊥
.

(b) Put dF = nF −
∑
G�F

dG.

(c) Put QF = PF −
∑
G�F

QG.

Notice that although VF and nF are completely defined by the factor F, knowledge of
the other factors present is needed to calculate dF and QF or to interpret the notation WF.
Although it would be simpler to retain the factor names as given in the Hasse diagram,
various other notations are commonly used for the W-subspaces to try to incorporate rel-
evant information about other factors. For example, WBP in Example 10.1 may be denoted
P[B] because P is nested in B; and WSP in the example shown in Figure 10.6 may be written
as S.P or S#P, because there is no nesting between S and P.

It is useful to show each dF on the Hasse diagram next to the corresponding nF: there
should be no ambiguity, because nF ≥ dF always. This is done in Figure 10.10, which shows
the Hasse diagram corresponding to the panel in Figure 10.9. For example, nLT = nLnT = 8
and dLT = nLT − dU − dL = 6. Some authors also give a brief notation for WF next to the dot
for F: see Brien and Bailey (2009, 2010).

10.2.5 Randomization

Suppose that a systematic design for the experiment has been decided. This might be as
simple as having all the treatments in the same order in each block, or it might be con-
structed using an algorithm like the design key in Section 10.6. If the structure on � is a
poset block structure, then the appropriate randomization can be deduced from the panel
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FIGURE 10.10
Hasse diagram for the poset block structure defined by Figure 10.9.

diagram. For each Pi in M independently, randomize the levels of Pi independently within
each combination of levels of all pre-factors (apart from Pi itself) which nest Pi.

For example, in the structure shown in Figure 10.8c, randomize the (labelling of the)
plants, randomize the (labelling of the) heights and independently randomize the (labels
of the) two leaf-halves in each plant–height combination.

Applying this randomization to the systematic design gives the randomized layout in
space or time for the experiment.

10.2.6 Null Analysis of Variance

Denote by Y the random vector for the responses, under the hypothetical assumption that
the same treatment is applied to all observational units. The more realistic situation is
developed in Section 10.4.2.

It was shown by Bailey et al. (1983) and Bailey (1991) that the method of randomization
in Section 10.2.5 justifies the assumption that all the entries in E(Y) are the same and that
Cov(Y) is a linear combination of the relation matrices RF for the genuine factors F. That
is, not only does this randomization justify the assumption that there are no fixed effects
other than the overall mean; it also justifies the assumption that the pattern of entries in
the variance–covariance matrix Cov(Y) is the same as it would be if every factor in F had
random effects.

As shown on p. 377, the genuine factors are all uniform, and so Cov(Y) is also a linear
combination of the averaging matrices PF. Hence, it is also a linear combination of the
orthogonal idempotent matrices QF defined in Section 10.2.4. Thus, there are non-negative
constants ξF such that

Cov(Y) =
∑

F

ξFQF. (10.4)
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TABLE 10.2

Null Analysis of Variance for the
Structure in Figure 10.8b

Stratum df

U (overall mean) 1

Sessions 2
Panellists[S] 33

Tastings[S] 15
P#T[S] 165

Total 216

If v ∈ WG, then QGv = v but QFv = 0 if F �= G. Thus, it follows from Equation 10.4 that, for
each factor F in F , the subspace WF is an eigenspace of Cov(Y) with eigenvalue ξF. There-
fore, Cov(QFY) = ξFQF, which acts like a scalar matrix on vectors in WF. These eigenspaces
were called strata by Nelder (1965a), and the constants ξF, for F in F , are called spectral com-
ponents of variance. Under this randomization model, there is no linear dependence among
the spectral components of variance. Data analysis within stratum WF proceeds as if the
variance–covariance matrix were ξFI.

The table listing the strata and their degrees of freedom, with WG shown above WF if
G � F, is called the null analysis-of-variance table. Table 10.2 shows this for the structure in
Figure 10.8b.

When data y are available, the preliminary sum of squares for genuine factor F is y′QFy.

Algorithm 10.3 (Calculation of Preliminary Sums of Squares)
1. For each factor F, calculate y′PFy as the sum, over all parts of F, of

(total of y on the part)2

size of the part
.

2. Put y′QUy = y′PUy = (total of y)2/N.
3. If y′QGy has been calculated for all G in F with G � F, then put

y′QFy = y′PFy −
∑
G�F

y′QGy.

These preliminary sums of squares will be used in Section 10.5.2 to complete the ANOVA
table.

10.3 Orthogonal Block Structures

This section introduces some slightly more general block structures where almost all of the
results in Section 10.2 hold.
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10.3.1 Working Directly with Genuine Factors

Sometimes we start not with a list of pre-factors, but with a given set � and some genuine
factors on �, in the sense of Section 10.1.

Let F and G be factors on �. Then F is defined to be orthogonal to G if PFPG = PGPF.
Thus, Proposition 10.1 shows that all factors in a poset block structure are orthogonal to
each other. Part (iv) of Proposition 10.1 generalizes as follows.

Proposition 10.2 If factors F and G are orthogonal to each other, then PFPG = PF∨G.

There are some surprising special cases. Every factor F is orthogonal to itself, because PF
obviously commutes with itself. Likewise, F is orthogonal to every factor with which it is
aliased. If F � G, then F is orthogonal to G, because PFPG = PGPF = PG (see Section 10.1.3).

It can be shown that an equivalent definition of orthogonality is that

|F[ω]| × |G[ω]| = |F ∧ G[ω]| × |F ∨ G[ω]| for all ω in �. (10.5)

This means that, within each part of F∨G separately, the size of the part of F∧G which con-
tains ω is proportional to the product of the sizes of the parts of F and G which contain ω.
If F, G, F ∧ G and F ∨ G are all uniform, then this is equivalent to the fact that, within each
part of F ∨ G separately, every part of F has non-empty intersection with every part of G.

A collection F of factors on � is called an orthogonal block structure if it satisfies the
following six conditions:

(O1) U ∈ F ;
(O2) E ∈ F ;
(O3) If F ∈ F , then F is uniform;
(O4) If F and G are in F , then F is orthogonal to G;
(O5) If F and G are in F , then F ∨ G ∈ F ;
(O6) If F and G are in F , then F ∧ G ∈ F .

In Section 10.2.1, we noted that if F is a poset block structure, then F satisfies conditions
(O1) and (O2): U = F(∅) and E = F(M). Moreover, every factor in a poset block structure is
uniform. Proposition 10.1 shows that every poset block structure satisfies conditions (O4)–
(O6). Hence, every poset block structure is an orthogonal block structure. In other cases,
conditions (O4)–(O6) can be tricky and time-consuming to check. However, Example 10.2
is an orthogonal block structure with F = {U, R, C, P, E} but it is not a poset block structure.

To see that Example 10.2 is an orthogonal block structure, notice that, for every pair of
R, C and P, all combinations of their levels occur, so their supremum is U: thus, condition
(O5) is satisfied. We saw in Section 10.1.2 that the pairwise infima of R, C and P are aliased
with E, and so condition (O6) is satisfied. Since |R[ω]| = |C[ω]| = |P[ω]| = 8 for all ω, it is
now clear that Equation 10.5 is true for all pairs of R, C and P: hence, conditions (O3) and
(O4) are also satisfied.

To see that Example 10.2 is not a poset block structure, suppose thatJ , K andL are ances-
tral subsets of some poset M. Then J ∩(K∪L) = (J ∩K)∪(J ∩L). Hence, Proposition 10.1
shows that
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F(J ) ∨ (F(K) ∧ F(L)) = F(J ) ∨ F(K ∪ L)

= F (J ∩ (K ∪ L))

= F ((J ∩ K) ∪ (J ∩ L))

= F(J ∩ K) ∧ F(J ∩ L)

= (F(J ) ∨ F(K)) ∧ (F(J ) ∨ F(L)) .

However, in Example 10.2, R ∨ (C ∧ P) = R ∨ E = R, while (R ∨ C) ∧ (R ∨ P) = U ∨ U = U.
If F is an orthogonal block structure, then the factors in F can be shown on a Hasse

diagram, as described in the first part of Section 10.2.2. Then conditions (O2), (O4) and
(O5) show that subspaces WF, for F in F , can be defined in such a way that conditions
(S1) and (S2) in Section 10.2.4 are satisfied and that R� = ⊕

F∈F WF. Algorithm 10.2 can
be used, just as in Section 10.2.4, to calculate WF, dF and QF. However, if F is not a poset
block structure, then there is no longer any way of labelling WF so that it can be interpreted
without knowing the whole of F .

Figure 10.11 shows the Hasse diagram for Example 10.2. Here WR = VR∩V⊥
U = VR∩W⊥

U ,
which has dimension 8−1 = 7: it consists of all vectors which are constant on each row but
whose entries sum to zero overall. Similarly, WE = VE ∩W⊥

U ∩W⊥
R ∩W⊥

P ∩W⊥
C : it consists of

all vectors whose entries sum to zero on each row, each column and each pruning method.
Its dimension is 64 − 1 − 7 − 7 − 7 = 42.

10.3.2 Randomization and the Null Analysis of Variance

If F is an orthogonal block structure which is not a poset block structure, then there is no
longer a simple algorithm for randomization. One approach is to choose a random permu-
tation g of � from among all those that satisfy F[α] = F[β] if and only if F[g(α)] = F[g(β)]
for all F in F . It is not straightforward to find out what the group of such permutations
is: in Example 10.2, it depends on the Latin square used to allocate the pruning treatments
in the previous year’s experiment. Further, there is no guarantee that the group is transi-
tive on �, which is needed for the assumption that all entries in E(Y) are the same. Even if
the group is transitive on �, it still may not be the case that there is a permutation g with
g(α) = γ and g(β) = δ if and only if {F ∈ F : F[α] = F[β]} = {F ∈ F : F[γ] = F[δ]}, which
is needed for assumption (10.4). In Example 10.2, there is one 8 × 8 Latin square for which
these conditions hold (Bailey 1982), but most Latin squares do not satisfy this.

U 1, 1

R

8, 7

P

8, 7

C

8, 7

E 64, 42

FIGURE 10.11
Hasse diagram for Example 10.2.
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One way forward is to simply assume that E(Y) has constant entries and that Cov(Y) is
given by Equation 10.4. This corresponds to considering that each factor in F gives random
effects. This usually implies that ξG > ξF if G � F, but Nelder (1954) argued that, for
example, correlations within a block can sometimes be negative, so that the only constraint
on the spectral components of variance ξF is that ξF ≥ 0 for all F inF . Then the null ANOVA
follows exactly as in Section 10.2.6. In particular, Algorithm 10.3 gives preliminary sums of
squares.

The second approach to randomization is specific to the type of combinatorial design
used for assigning treatments. A design is chosen at random from among all those satis-
fying certain combinatorial conditions. This does not lead to any simple expressions for
E(Y) or Cov(Y), but can sometimes lead to the result that the expected mean squares for
treatments and residual, within a given stratum, are equal if the treatment effects are zero.
For the general version of Example 10.2, Preece, Bailey and Patterson (1978) showed that
this happens if the design is chosen at random from a set of Latin squares which, when
augmented by the original Latin square, comprise a complete set of mutually orthogonal
Latin squares.

From now on, Equation 10.4 is simply assumed.

10.4 Orthogonal Treatment Structures

Here we consider the set of treatments before they are applied to the observational units. We
ignore the observational units until Section 10.5. Weaker conditions than those assumed in
Sections 10.2 and 10.3 still allow us to decompose the appropriate vector space into a sum
of mutually orthogonal subspaces, one for each factor. These allow us to build candidate
models for E(Y) in Section 10.4.2.

10.4.1 Treatment Factors

Let � be the set of treatments to be applied in an experiment. Here we consider factors on
� and subspaces of R�.

Many treatment structures are poset block structures, in spite of the name. For example,
a full factorial treatment structure with m treatment factors is a poset block structure with
m pre-factors and no nesting. The next two examples show some other possibilities.

Example 10.4 (Full factorial plus control)

An experiment on controlling scab disease in potatoes, reported by Cochran and Cox
(1957), compared the seven treatments shown in Table 10.3. Six treatments comprised
all combinations of three non-zero quantities of sulphur (S) and two times of spraying
(T); the seventh treatment was a do nothing control, for which the level of S was zero and
the level of T was not applicable because nothing was ever sprayed. Thus, the treatments
comprise a full factorial plus control.

Figure 10.12 displays the seven treatments in a rectangle whose rows are labelled by
levels of T and whose columns are labelled by levels of S. This shows that there is a two-
level factor C which differentiates the control treatment from the rest, that C = S ∨ T and
that none of the three factors C, S and T is uniform. However, Figure 10.12 also shows
that S and T do satisfy the proportionality condition (10.5), and so S is orthogonal to T.
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TABLE 10.3

Seven Treatments in Example 10.4

Treatment

Factor 1 2 3 4 5 6 7

C Control 1 2 2 2 2 2 2

S Amount of sulphur 0 300 600 1200 300 600 1200
T Timing N/A autumn autumn autumn spring spring spring

Sulphur
0 300 600 1200

N/A 1
Timing autumn 2 3 4

spring 5 6 7

FIGURE 10.12
Factors Sulphur and Timing in Example 10.4.

Example 10.5 (Methods with incomparable levels)

An experiment on reducing feed for chickens, reported by Bailey (2008), had the ten
treatments shown in Table 10.4. Method 1 was the no change control treatment. Method 2
consisted of reducing the protein content, by three different amounts. Method 3 con-
sisted of changing to a cheaper diet, at three different time points. Method 4 consisted of
replacing 5% of the protein by an equal quantity of roughage, of three different types.

Different instances of different methods have nothing in common, and so the factors
P, T and R are needed to label different treatments within each of the three non-control
methods. None of the five factors shown is uniform, and all pairs are orthogonal.
Moreover, P ∨ T = P ∨ R = T ∨ R = M. Figure 10.13 shows this for P and T.

A collection G of factors on � is called an orthogonal treatment structure if it satisfies the
following three conditions:

(T1) U ∈ G;
(T2) If F ∈ G and G ∈ G, then F is orthogonal to G;
(T3) If F ∈ G and G ∈ G, then F ∨ G ∈ G.

TABLE 10.4

Ten Treatments in Example 10.5

Treatment

Factor 1 2 3 4 5 6 7 8 9 10

C Control 1 2 2 2 2 2 2 2 2 2
M Method 1 2 2 2 3 3 3 4 4 4

P Protein 1 2 3 4 5 5 5 6 6 6
T Time 1 2 2 2 3 4 5 6 6 6

R Roughage 1 2 2 2 3 3 3 4 5 6
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Time
6

1

2

3

4

5

6

1

2

3

4

5 6 7

8, 9, 10

Protein

1 2 3 4 5

FIGURE 10.13
Factors Protein and Time in Example 10.5.

U 1, 1

C 2, 1

S

4, 2

T

3, 1

7, 2
~
E

FIGURE 10.14
Hasse diagram for treatment factors in Example 10.4.

These conditions are the counterparts of conditions (O1), (O4) and (O5) in Section 10.3.
Uniformity is no longer required: previously, it was needed to justify expressing Cov(Y)

as in Equation 10.4 as well as a linear combination of relation matrices. Nor is the equality
factor mandatory: when it is included, we shall write it as Ẽ, to avoid ambiguity in the next
section. Condition (O6) was needed in Sections 10.2 and 10.3 partly for the randomization
argument: if a permutation of � preserves partitions F and G, then it also preserves both
F ∨ G and F ∧ G. The counterpart of (O6) is not needed here, as all we seek is a unique
decomposition of R� (or a subspace of R� if Ẽ /∈ G) into mutually orthogonal subspaces.
See also the discussion in Section 10.7.

Each factor F in G defines a subspace VF of R�, as in Section 10.1. Since VF ∩ VG = VF∨G,
conditions (T2) and (T3) imply that further subspaces WF of R�, for F in G, can be defined
to satisfy conditions (S1) and (S2) in Section 10.2.4. Then dF and QF are defined as before.

The collection of factors can again be shown on a Hasse diagram. For clarity, we use open
circles for treatment factors, to distinguish them from factors inherent on the observational
units. Algorithm 10.2 can be used to calculate dF, WF and QF. Then Algorithm 10.3 can be
used to calculate treatment sums of squares y′QGy for G in G.

The Hasse diagrams for Examples 10.4 and 10.5 are in Figures 10.14 and 10.15. Because
we no longer insist on infima, these cannot necessarily be read off the Hasse diagram: in
Example 10.5, P ∧ T is an eight-level factor which is not included in the Hasse diagram.
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U 1, 1

C 2, 1

M 4, 2

P

6, 2

T

~

6, 2

R

6, 2

E 10, 0

FIGURE 10.15
Hasse diagram for treatment factors in Example 10.5.

U 1, 1

A

4, 3

B

4, 3

C

4, 3

(a)

U 1, 1

A

4, 3

B

4, 3

C

4, 3

E 16, 6

(b)

~

FIGURE 10.16
Two possible Hasse diagrams for factors in a main-effects-only plan. (a) Assuming no interactions. (b) Allowing
the possibility of interactions.

Figure 10.15 also shows that there are zero degrees of freedom for Ẽ in Example 10.5.
Zero degrees of freedom are always possible if the structure is not a poset block structure.
In this case, all treatment contrasts are covered by the factors C, M, P, T and R.

It is not obligatory to include Ẽ in an orthogonal treatment structure. For example, con-
sider a main-effects-only plan for three four-level treatment factors A, B and C in a quarter
replicate. Then |�| = 16. If we are certain that there are no interactions among A, B and
C, then we obtain the Hasse diagram in Figure 10.16a. If we think that there might be
interactions but we are content not to estimate them, then we have the Hasse diagram in
Figure 10.16b; the six degrees of freedom for WẼ will be excluded from the residual sub-
space in Section 10.5.2, so that the interaction effects do not inflate the estimation of spectral
components of variance.

10.4.2 Expectation Subspaces

For the rest of this section, it is supposed, temporarily, that there is one observation on each
treatment, so that Y ∈ R

�. Put E(Y) = τ. The usual linear-model assumption is that τ is
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an unknown vector in a known subspace of R�. More generally, we consider a family of
known subspaces as candidate models for the expectation, or expectation models in brief.

For example, if the treatments consist of the six non-control treatments in Table 10.3, then
one of the candidate models is the subspace VU consisting of constant vectors: if τ ∈ VU,
then there is no difference between treatments. Another candidate is VS: ifτ ∈ VS, then only
the level of S affects the response and so the level of T is irrelevant. The space WS, and the
corresponding vector QSτ, show how the expected responses differ with different levels
of S: this is called the main effect of S. The spaces VT and WT have a similar interpretation.
The space VS + VT, which consists of all vectors of the form x + z with x in VS and z in
VT, is another candidate model: if τ ∈ VS + VT, then the effects of S and T are additive. If
τ /∈ VS + VT, then we need to use the largest candidate model, which is VẼ, which can here
be written as VS∧T. The space WS∧T consists of all those vectors orthogonal to VS +VT. The
projection QS∧Tτ is the part of τ which is not explained by the additive effects of S and T:
it is called the S-by-T interaction.

If V1 and V2 are any two subspaces of the same vector space, then dim(V1 + V2) =
dim(V1) + dim(V2) − dim(V1 ∩ V2). In this example, dim(VS) = 3, dim(VT) = 2 and
dim(VS ∩ VT) = dim(VU) = 1, and so dim(VS + VT) = 3 + 2 − 1 = 4.

Now assume that G is an orthogonal treatment structure. For each F in G, put A(F) =
{G ∈ G : F � G}. If F ∈ G, then VF should be a candidate model. Because G is an orthogo-
nal treatment structure, VF = ⊕

G∈A(F) WG. The relation � is a partial order, and so (10.1)
shows that a subset H of G is ancestral if G ∈ H whenever F � G and F ∈ H. In particu-
lar, A(F) is ancestral. For each subset H of G, put A(H) = ⋃

F∈HA(F): then A(H) is also
ancestral.

If two subspaces are candidate models, then it is usual to include their sum as a further
candidate model (except in some experiments for screening a large number of factors). The
W-subspaces are mutually orthogonal, and so

∑
F∈H

VF =
⊕

G∈A(H)

WG

for every subset H of G. If H is itself ancestral, then
∑

F∈H VF = ⊕
G∈H WG, so we obtain

all models of the form
⊕

G∈H WG for ancestral subsets H of G. Write the latter as VH. If H1
and H2 are ancestral subsets, then so is H1 ∪ H2, and VH1 + VH2 = VH1∪H2 . In the 3 × 2
factorial experiment just discussed, G = {U, S, T, S∧T} and the ancestral subsets are ∅, {U},
{U, S}, {U, T}, {U, S, T} and {U, S, T, S ∧ T}. These give the model subspaces {0}, VU, VS, VT,
VS + VT and VS∧T, respectively. The zero subspace {0} is often ignored, unless data are
measured on a ratio scale.

To enable data to distinguish between overlapping candidate models, it is also advisable
for the set of model subspaces to include the intersection of any two of them. However, ifH1
and H2 are ancestral subsets of G, then so is H1 ∩H2, and VH1 ∩ VH2 = VH1∩H2 . Therefore,
the set {VH : H is an ancestral subset of G} of candidate models is closed under both sum
and intersection, and this remains true if the zero model is omitted.

The notation V1 ≤ V2 indicates that V1 is a subspace of V2. Now, ≤ is another par-
tial order, and so the model subspaces can also be shown on a Hasse diagram, with V1
joined by upwards lines to V2 if V1 < V2. Here we use small black squares to show
the subspaces, to avoid confusion with the previous types of Hasse diagram. We usually
omit the zero model. It is helpful to show the dimension of V1 next to the square for V1.
Figures 10.17 through 10.20 show such Hasse diagrams for the 3 × 2 factorial experiment,
Examples 10.4 and 10.5, and the fractional factorial design with the factors in Figure 10.16a.
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�VU 1
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�VS + VT 4

�VS∧T 6
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FIGURE 10.17
Family of expectation models for a 3 × 2 factorial.

�VU 1

�VC 2

�VS 4 �VT 3

�VS + VT 5

�VS∧T 7
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�

�
�

�
�
�
�

FIGURE 10.18
Family of expectation models for Example 10.4.

These Hasse diagrams are the opposite way up to the previous ones and usually include
models such as VS + VT which do not correspond to a single factor.

Under orthogonal treatment structure, each edge in the Hasse diagram of models corre-
sponds to a factor in G. If V1 < V2 and there is an edge between V1 and V2, then there is a
unique factor F in G such that V2 = V1 ⊕ WF. Moreover, dF = dim(V2) − dim(V1). Given
data y, QFy is the difference between the vectors of fitted values in the models V2 and V1.

In every case, QFτ is the difference between PFτ and the best that τ can be explained
by models smaller than VF. The inclusion of suprema and the presence of orthogonality
guarantee that fitting factors in different orders does not produce different results, so long
as G is fitted before F if G � F. Thus, in the 3 × 2 factorial, QSτ is equal to both PSτ − PUτ

and Pτ − PTτ, where Pτ is the projection of τ onto VS + VT.
In Example 10.4, WS corresponds to any differences between non-zero quantities of sul-

phur. Similarly, in Example 10.5, WP corresponds to differences among the three feeding
regimes whose basic method is to reduce the amount of protein. Some authors write this
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FIGURE 10.19
Family of expectation models for Example 10.5.
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FIGURE 10.20
Family of expectation models for the treatment structure in Figure 10.16a.

as P[M] (for P within M); others as P | M (for P given M), but there is no generally agreed
terminology or notation. In Example 10.4, WS∧T might still be referred to as the interac-
tion between S and T. In Example 10.5, there is no need for such terminology, because
VP + VT = VP∧T, and similarly for P and R and for T and R.

10.5 Orthogonal Designs

Sections 10.2 and 10.3 gave suitable conditions on the set F of factors on the set � of obser-
vational units which make assumption (10.4) about Cov(Y) reasonable. This leads to the
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decomposition of R� shown in the null ANOVA. Section 10.4 gave conditions on the set G
of factors on the set � of treatments which ensure a unique orthogonal decomposition of
R

�. To put this all together, we now need the actual design, which tells us which treatment
is applied to which observational unit. Under two further conditions, this leads to the result
in Proposition 10.3 and hence to the expansion of the null ANOVA to the skeleton ANOVA
in Section 10.5.2. Hasse diagrams continue to be useful.

10.5.1 Definition

A design is a function φ : � → � allocating treatment φ(ω) to observational unit ω. We
shall say that the design is orthogonal if there is a collection F of factors on � which form an
orthogonal block structure, there is a collection G of factors on � which form an orthogonal
treatment structure, and, in addition, φ satisfies the following further conditions:

(D1) If G1 and G2 are in G, then G1 and G2 remain orthogonal to each other when
considered as factors on �;

(D2) If G ∈ G and F ∈ F then G is orthogonal to F.

Strictly speaking, when considered as a function, factor G in G gives the factor G(φ) on
�, but we usually retain the name G. Condition (D1) is always satisfied if φ is equirepli-
cate, because, if the replication is r, the numbers in Equation 10.5 are all multiplied by r.
However, many equireplicate designs are not orthogonal, because they do not satisfy
condition (D2).

We need to consider suprema of the form F ∨ G, where F ∈ F and G ∈ G. Since VF∨G ≤
VG, which is an expectation subspace, we need to consider F ∨ G to be a treatment factor or
pseudofactor (see Section 10.5.4). Put G∗ = {F ∨ G : F ∈ F , G ∈ G}. Then G ⊆ G∗, because
E ∈ F . Condition (D2) shows that if F ∈ F and G ∈ G, then PF∨G = PFPG and so F ∨ G is
orthogonal to all factors in F∪G∗. Moreover, G∗ is closed under taking suprema. Therefore,
we may replace G by G∗ without violating any of conditions (T1), (T2), (T3) in Section 10.4
or conditions (D1) and (D2) above. In the extreme case that G has not been given but φ is
orthogonal to all factors in F , it suffices to put G∗ = {φ ∨ F : F ∈ F}.

As we are about to show, these conditions ensure that each treatment W-subspace is con-
tained in a single stratum. Moreover, the combined Hasse diagram gives us an algorithm
for finding the appropriate stratum. If G = G∗, then this process is straightforward. If G has
to be augmented by any supremum F ∨ G which is not already in G, then there are subtle
complications: see Section 10.5.4.

Given an orthogonal design, the subspaces WF, for F in F , are calculated with no refer-
ence to G∗, and the subspaces WG, for G in G∗, are calculated without reference to F . There
then comes the problem of matching them up. The following is proved in Bailey (2008,
Chapter 10).

Proposition 10.3 Suppose that φ : � → � is an orthogonal design, with orthogonal block struc-
ture F on � and orthogonal treatment structure G on �. Then there is a function h : G∗ → F such
that, for all G in G∗,

(i) h(G) � G;
(ii) If F ∈ F and F � G, then F � h(G);

(iii) WG ≤ Wh(G).



Structures Defined by Factors 395

For example, in a randomized complete-block design with treatment factor T, we have
G = {U, T} and F = {U, B, BP}. Since all treatment contrasts are orthogonal to blocks,
WT < WBP. Thus, h(U) = U and h(T) = BP.

If F ∈ F , G ∈ G and h(G) = F, then G is said to be confounded with F.
For G in G∗, write QGτ as τG, so that E(QGY) = τG. The sum of squares for G is y′QGy,

and the corresponding expected mean square is E(||QGY||2). Recall from Section 10.2.4 that
dG = rank(QG) = dim(WG) and from Section 10.2.6 that ξh(G) is the spectral component of
variance for stratum Wh(G). It follows from Proposition 10.3 that

E(||QGY||2) = ||τG||2 + dGξh(G). (10.6)

10.5.2 Skeleton Analysis of Variance

The function h given in Proposition 10.3 shows how to expand the null ANOVA to the
skeleton ANOVA, which consists of as much of the ANOVA table as is possible to show in
advance of obtaining the data. Given F in F , the row for F is expanded to have a row for
every G in G∗ for which h(G) = F, and another for residual, which corresponds to the space

WF ∩
⎛
⎝⊕

G∈G
WG

⎞
⎠

⊥
,

which has dimension

dF −
∑

G:h(G)=F

dG.

If this last dimension is zero, then no residual is shown and there is no estimator for ξF;
this always happens when F = U. If F has the property that there is no G in G∗ with h(G) =
F, then the row for F does not need to be subdivided: see the row for field Locations in
Example 10.6.

A column for expected mean squares may be added to show the values which follow
from the right-hand side of Equation 10.6.

If preliminary sums of squares have been calculated from data as in Section 10.2.6, then
the skeleton ANOVA table can be expanded to include sums of squares, mean squares and
ratios of mean squares: this gives the complete ANOVA table. For G in G∗, the relevant sum
of squares is y′QGy. For F in F , the relevant sum of squares for residual is

y′QFy −
∑

G:h(G)=F

y′QGy.

Skeleton ANOVA tables give a useful way of comparing proposed designs with the same
F and G. They show how many residual degrees of freedom are available for estimating
each spectral component of variance ξF. If h(G) = F, then the variance of a normalized
contrast in WG is just ξF. A preliminary assessment of the likely relative magnitudes of the
spectral components of variance can be used to ensure that variances of important contrasts
are as small as possible.
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10.5.3 Combined Hasse Diagram

Of course, conditions (D1)–(D2) need to be checked before we carry out the procedures in
Section 10.5.2 or recommend the design. Then the function h must be identified. One way
to do this is to show the factors in F ∪G∗ on a combined Hasse diagram, using one symbol
for factors in F and another symbol for factors in G∗. Here we use a filled circle for each
factor in F and an open circle for each factor in G∗. Some factors, such as U, belong to both
F and G∗, and so a combined symbol must be used for them. For simplicity, the numbers
like nF and dF are omitted from the combined Hasse diagram.

Now parts (i) and (ii) of Proposition 10.3 show how to read h(G) off the combined Hasse
diagram, for G in G∗: find the filled circle which is as far up the diagram as possible subject
to being below (or equal to) the dot for G. If the dot for G has the combined symbol, then
G is aliased with the factor h(G) in F , which is usually a sign of false replication.

Example 10.6 (A split-plot experiment)

Twelve treatments were applied to the 24 plots with the structure in Figure 10.8a. For
clarity, the fields have been renamed as locations. The treatments were all combinations
of Cultivar (with three levels), Nitrogen fertilizer (with two levels) and Potash (K, with
two levels). Thus, both structures are poset block structures, with the panel diagrams
shown in Figure 10.21.

Each level of C was applied to one Strip per field Location; each combination of levels
of N and K was applied to one Plot per Strip. The design is orthogonal, and G = G∗. If
G ∈ G, then all levels of G occur on each field location, so G ∨ L = U. Apart from U, no
other treatment factor is coarser than L. If G does not involve C, then all levels of G occur
on each strip, so G ∨ LS = U; otherwise, G ∨ LS = C. The only treatment factors which
are coarser than LS are C and U. These considerations give the combined Hasse diagram
in Figure 10.22. This shows that h(U) = U, h(C) = LS and that h(G) = LSP for all other
factors G in G. Hence, we obtain the skeleton ANOVA in Table 10.5.

Example 10.7 (A strip-plot experiment)

Sometimes it is convenient to apply more than one treatment factor to units larger than
the observational units. An agricultural experiment described by Clarke and Kempson
(1997) had four rectangular Blocks, each with four Rows and three Columns. The treat-
ments were all combinations of four Times of cultivation with three Pesticides. In each
block, one row was cultivated at each time, and one pesticide was applied to each
column.

Again, both structures are poset block structures; the panel diagrams are in
Figure 10.23. The design is orthogonal, and G = G∗. Figure 10.24 gives the combined
Hasse diagram, which shows that h(T) = BR, h(P) = BC and h(TP) = BRC. This leads to
the skeleton ANOVA in Table 10.6.

3     Cultivars
2     Nitrogen fertilizers
2     K (potash)

Treatments

2     (field) Locations
3     Strips in L
4     Plots in L, S
Observational units

FIGURE 10.21
Panel diagrams for Example 10.6.
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U

L C N K

LS CN CK NK

CNK

LSP

FIGURE 10.22
Combined Hasse diagram for Example 10.6.

TABLE 10.5

Skeleton Analysis of Variance for Example 10.6

Stratum df Source df EMS

U 1 mean 1 ||τU||2 + ξU

Field Locations 1 1 ξL

Strips[L] 4 Cultivar 2 ||τC||2/2 + ξLS

residual 2 ξLS

Plots[S ∧ L] 18 Nitrogen 1 ||τN||2 + ξLSP

K (potash) 1 ||τK||2 + ξLSP

C#N 2 ||τCN||2/2 + ξLSP

C#K 2 ||τCK||2/2 + ξLSP

N#K 1 ||τNK||2 + ξLSP

C#N#K 2 ||τCNK||2/2 + ξLSP

residual 9 ξLSP

Total 24

4     Times of cultivation
3     Pesticides

Treatments

4     Blocks
4     Rows in B
3     Columns in B

Observational units

FIGURE 10.23
Panel diagrams for Example 10.7.
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U

T B P

BR TP BC

BRC

FIGURE 10.24
Combined Hasse diagram for Example 10.7.

TABLE 10.6

Skeleton Analysis of Variance for Example 10.7

Stratum df Source df EMS

U 1 mean 1 ||τU||2 + ξU

Blocks 3 3 ξB

Rows[B] 12 Times 3 ||τT||2/3 + ξBR

residual 9 ξBR

Columns[B] 8 Pesticides 2 ||τP||2/2 + ξBC

residual 6 ξBC

R#C[B] 24 T#P 6 ||τTP||2/6 + ξBRC

residual 18 ξBRC

Total 48

Example 10.8 (Repeated splitting of the experimental units)

Sometimes apparent replication is achieved by repeated splitting, or subsampling, of the
units to which the treatments are applied. An example in environmental toxicology is
described by Gardner and Grue (1996). There were three treatments, one of which was
a do nothing control. Thus, G = {U, T, C} where T has three levels and C has two levels,
distinguishing the control treatment from the other two.

The experiment was performed on two Lakes. Each lake was divided into four
Quadrants. The control treatment was applied to two quadrants per lake, the other two
treatments each to one quadrant per lake. Four experimental Sites were established in
each quadrant, and three Jars of daphnia were put into the water at each site. After a
prescribed time, the amount of daphnia was measured in each jar. Figure 10.25 shows
the panel diagram for the observational units.

The combined Hasse diagram in Figure 10.26 shows clearly that h(C) = h(T) = LQ.
Thus, the repeated subdivision did not increase the numbers of degrees of freedom
for testing these effects, even though it decreased the size of the standard errors: see
Table 10.7.
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2     Lakes
4     Quadrants in L
4     Sites in L, Q
3     Jars in L, Q, S

FIGURE 10.25
Panel diagram for the observational units in Example 10.8.

U

C

T

L

LQ

LQS

LQS J

FIGURE 10.26
Combined Hasse diagram for Example 10.8.

TABLE 10.7

Skeleton Analysis of Variance for Example 10.8

Stratum df Source df EMS

U 1 mean 1 ||τU||2 + ξU

Lakes 1 1 ξL

Quadrants[L] 6 Control 1 ||τC||2 + ξLQ

Treatments[C] 1 ||τT||2 + ξLQ

residual 4 ξLQ

Sites[L ∧ Q] 24 24 ξLQS

Jars[L ∧ Q ∧ S] 64 64 ξLQSJ

Total 96

10.5.4 Pseudofactors

Although the preceding three examples may look complicated, in none of them did the
original treatment structure G need to be augmented. This complication arises most often
in factorial experiments where treatment factors have numbers of levels which are not
co-prime. This is now illustrated on an artificially small example.
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Example 10.9 (Confounded factorial)

There are two treatment factors, A and B, both with two levels, which are coded by the
integers modulo 2. As Table 10.8 shows, these define the four-level genuine factor A ∧ B,
and also the two-level pseudofactor A + B, whose levels are obtained by adding levels of
A and B modulo 2. It is a pseudofactor because its levels are not inherently meaningful.

Suppose that four People each conduct two Tests. Two of the people both test the two
treatments where A + B has level 0, and the other two people both test the other two
treatments. The structure on the tests is a poset block structure, with F = {U, P, PT}. The
initial treatment structure G is the factorial one {U, A, B, A ∧ B}. Figure 10.27 gives the
panel diagrams. Conditions (D1) and (D2) are satisfied. However, P ∨ (A ∧ B) = A + B,
and so the pseudofactor A + B needs to be included in G∗. Although G is a poset block
structure, G∗ is not.

Figure 10.28 gives the Hasse diagram for the augmented treatment structure G∗. Now
WA+B is orthogonal to WU, WA and WB, so it corresponds to the A-by-B interaction. It
has dA+B = 1. Now that the pseudofactor A + B is included, the space WA∧B is zero and
has dA∧B = 0. As always, interpretation of the W-subspaces depends on knowledge of
all factors in G∗.

The combined Hasse diagram is in Figure 10.29. This shows that h(A) = h(B) = PT,
while h(A + B) = P. Thus, A + B is confounded with P. Since WA∧B = {0}, h(A ∧ B)

TABLE 10.8

Factors and a Pseudofactor in Example 10.9

Treatment

1 2 3 4

Factor A 0 0 1 1

Factor B 0 1 0 1
Factor A ∧ B (0, 0) (0, 1) (1, 0) (1, 1)

Pseudofactor A + B 0 1 1 0

2     A
2     B

Treatments

4     People
2     Tests in P

Observational units

FIGURE 10.27
Panel diagrams for Example 10.9.

U 1, 1

A
2, 1

B
2, 1

A + B
2, 1

4, 0A   B

FIGURE 10.28
Hasse diagram for augmented treatment structure in Example 10.9.
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U

A B A + B

P

PT

A   B

FIGURE 10.29
Combined Hasse diagram for Example 10.9.

is not relevant. (However, in the analogous case with all powers of 2 replaced by pow-
ers of 3, WA∧B would consist of two degrees of freedom for the A-by-B interaction, and
h(A ∧ B) = PT.)

The pseudofactor A+B is needed to construct the design. It is needed for the analysis,
because the standard error of the difference between levels of A+B is not the same as the
standard error of the difference between levels of A. However, this does not imply that
VA+B should be included in the list of expectation models, which should remain similar
to that in Figure 10.17.

In general, whenever pseudofactors have to be included in G∗, they have a role to play
in the construction of the design and in the ANOVA. However, the family of candidate
models for expectation should be based on the original treatment structure G, excluding
pseudofactors.

10.6 Design Key

Conditions (T2), (T3) and (D2) can be tedious to check, and the combined Hasse diagram
becomes more difficult to work with as the number of factors increases. When the structures
on the observational units and the treatments are both poset block structures, an alternative
way of constructing and understanding orthogonal designs is to use the design key, which
was introduced by Patterson (1965): see also Patterson and Bailey (1978); Kobilinsky et al.
(2014); and Cheng (2014).

In the simplest case, there is a prime p such that the number of levels of every pre-factor
on �, and every pre-factor on �, is a power of p. If pre-factor F has pr levels and r > 1, replace
F by pseudofactors F1, …, Fr, each with p levels, so that each level of F is a combination
of levels of F1, …, Fr. If r = 1, regard F itself as a pseudofactor. Then treat all levels as
integers modulo p, so that they may be added modulo p, as in Example 10.9, to give further
pseudofactors.

A design key � equates each treatment pseudofactor G with �(G), which is a linear
combination of the pseudofactors on �. In Example 10.10, �(T) = R2 + C2, which means
that the level of T on observational unit ω is given by T(ω) = R2(ω)+C2(ω) for all ω in �.



402 Handbook of Design and Analysis of Experiments

2     Irrigation
2     Soil-type
2     Time of sowing
2     Variety of plant

2     Houses
4     Rows in H
4     Columns in H
2     Pots in H, R, C

Treatments Observational units

FIGURE 10.30
Panel diagrams for Example 10.10.

Because all addition is performed modulo p, if F and G are two treatment pseudofactors,
then �(F + G) = �(F) + �(G).

Example 10.10 (An experiment in plant houses)

An experiment on plants in pots is to be conducted in two plant Houses. Each has the pots
arranged in four Rows by four Columns, with two Pots in each row–column intersection.

The treatments are all combinations of levels of four two-level factors: Irrigation,
Soil-type, Time of sowing and Variety of plant. Panel diagrams for treatments and for
observational units are in Figure 10.30.

Water is supplied from overhead pipes which run along the rows, so each level of
irrigation must be applied to whole rows. To avoid disturbance to plants already there,
the two pots in each row–column intersection must be sown at the same time.

The pseudofactors for the observational units are H (for Houses), R1 and R2 (for Rows
in H), C1 and C2 (for Columns in H) and P (for Pots in H, R, C), all with two levels. Those
for treatments are I, S, T and V, all with two levels.

The houses are labelled 0 and 1. Within each house, the rows are labelled by the combi-
nations of levels of R1 and R2 and the columns are labelled by the combinations of levels
of C1 and C2. The two pots within each row–column combination are distinguished by
the levels of P.

The constraints on the design key are that �(I) must not involve any of C1, C2 or P
and that �(T) must not involve P. One possibility is that

�(I) = R1, �(S) = P, �(T) = R2 + C2, �(V) = R1 + R2 + C1 + P. (10.7)

Now the design key � in (10.7) gives the algorithm for constructing the design. For
example, on each pot ω, the variety is given by V(ω) = R1(ω) + R2(ω) + C1(ω) + P(ω),
all arithmetic being done modulo 2.

The construction using a design key gives an orthogonal design. There is a simple algo-
rithm for identifying the confounding. Each pseudofactor L defines a W-subspace with p−1
degrees of freedom. To find out which genuine effect e(L) this belongs to, write down all
the letters in the pseudofactor and then find the smallest ancestral subset which contains
them all. In Example 10.10, the pseudofactor R1 + R2 + C2 gives the subset {R, C}, and the
smallest ancestral subset containing this is {H, R, C}, so e(R1 + R2 + C2) = HRC. Similarly,
e(I + T) is part of the I-by-T interaction (in fact, the whole of the interaction, since p = 2).
Using the design key � guarantees that h(G) = e(�(G)) for each treatment pseudofactor G:
in other words, G is confounded with e(�(G)). This confounding can be calculated system-
atically for each treatment pseudofactor. In Example 10.10, �(I + T) = R1 + R2 + C2, and
so h(I + T) = HRC. Working in this way gives the skeleton ANOVA in Table 10.9 (expected
mean squares are not shown).
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TABLE 10.9

Skeleton Analysis of Variance for Example 10.10

Pseudofactor

Stratum df Units Treatments Source df

U 1 0 0 mean 1

Houses 1 1

Rows[H] 6 R1 I I 1

residual 5

Columns[H] 6 C1 + C2 I + S + T + V I#S#T#V 1
residual 5

R#C[H] 18 R2 + C2 T T 1
R1 + R2 + C2 I + T I#T 1
R1 + R2 + C1 S + V S#V 1

R2 + C1 I + S + V I#S#V 1
R1 + C1 + C2 S + T + V S#T#V 1

residual 13

Pots[H ∧ R ∧ C] 32 P S S 1
R1 + R2 + C1 + P V V 1

R1 + P I + S I#S 1
R2 + C1 + P I + V I#V 1
R2 + C2 + P S + T S#T 1

R1 + C1 + C2 + P T + V T#V 1
R1 + R2 + C2 + P I + S + T I#S#T 1

C1 + C2 + P I + T + V I#T#V 1
residual 24

Total 64

If the numbers of levels of the factors are not all powers of the same prime, then use all
the primes which divide the number of levels of any factor. Use pseudofactors to separate
the primes: for example, a factor with six levels gives two pseudofactors, one with two
levels and one with three levels. Then use a separate design key for each prime. Construct
a separate design for each prime, and then take all combinations of the results.

If p1 and p2 are two different primes, then effects are combined as follows. For i = 1, 2,
let Ti be a linear combination of treatment pseudofactors for prime pi. Suppose that e(Ti) =
F(Ki), where Ki is an ancestral subset of the set of all treatment pre-factors, so that the effect
of Ti accounts for pi − 1 degrees of freedom in WF(Ki), and that key �i gives h(Ti) = F(Li),
where Li is an ancestral subset of the set of all pre-factors on the observational units. Then
T1 ∧ T2 has (p1 − 1)(p2 − 1) degrees of freedom for the treatment subspace WF(K1∪K2), and
these are confounded with stratum WF(L1∪L2). This extends to three or more primes in the
obvious way.

Example 10.11 (An experiment on turf grass)

Blouin et al. (2009) describe an experiment to investigate the effects of factorial treatments
on weed infestation in turf. The observational units were defined by the panel diagram
on the right of Figure 10.31. The treatments were all combinations of Grass type (with
two levels), Mowing height (with three levels) and Fertilizer quantity (with three levels).
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2     Grass type
3     Mowing height
3     Fertilizer quantity

Treatments

2     Rows
4     Columns
3     Strips in R
3     Lines in C

Observational units

FIGURE 10.31
Panel diagrams for Example 10.11.

TABLE 10.10

Skeleton Analysis of Variance for Example 10.11

Stratum df Source df

U 1 mean 1

Rows 1 1

Columns 3 3

R#C 3 Grass type 1

residual 2

Strips[R] 4 Mowing height 2
residual 2

Lines[C] 8 Fertilizer quantity 2

residual 6

C#S[R] 12 G#M 2
residual 10

R#L[C] 8 G#F 2

residual 6

S#L[R ∧ C] 32 M#F 4
G#M#F 4

residual 24

Total 72

For the prime 2, the pseudofactors are R (for Rows), C1 and C2 (for Columns) and G
(for Grass types). For the prime 3, they are S (for Strips in R), L (for Lines in C), M (for
Mowing height) and F (for Fertilizer quantity). The design described can be obtained
from the design keys �2 and �3 for the primes 2 and 3, respectively, where

�2(G) = R + C1, �3(M) = S, �3(F) = L.

The three-level pseudofactors for the M-by-F interaction are M + F and M + 2F, both
of which are confounded with RCSL. It is clear that h(G) = RC and h(M) = RS. Since
different primes are involved, it follows that h(GM) = RCS. Similar arguments give the
skeleton ANOVA in Table 10.10.

10.7 Other Designations of Factors as Fixed and Random

So far, we have assumed that structure on the observational units gives rise to a
variance-covariance structure justified by randomization. For poset block structures, this is
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equivalent to the assumption that each genuine factor in F gives random effects, possibly
with negative components of variance. We have also assumed that the treatment structure
defines the expectation part of the linear model—in other words, that its factors have fixed
effects.

In practice, this is not always the correct dichotomy. For example, if sex is an inherent
factor on the observational units, then it may be deemed to have fixed effects. On the other
hand, in plant or animal breeding experiments, the treatments are different breeding lines,
and these are often regarded as random.

To stay within the framework of this chapter, let F denote the set of random factors and
G the set of fixed factors. We assume that Cov(Y) is given by Equation 10.4. In order for
the matrices QF to be defined, it is necessary that F satisfy conditions (O2), (O3), (O4) and
(O5). In practical situations, it is usually wise to consider explicitly whether (O6) should
be satisfied: for example, should the correlation between responses on the two tests in a
homemaker-week combination in Example 10.3 be allowed to differ from the sum of the
within-homemaker and within-week correlations? However, (O6) is not needed to derive
the subspaces WF for F in F .

For the fixed factors, in order to obtain a family of expectation models with no ambiguity
caused by the order of fitting effects, G must satisfy (T2) and (T3). Although (T1) is not
always needed, it is usual to include U in G so that the overall mean can be excluded from
treatment differences. Again, if G contains G1 and G2 but not G1 ∧G2, then it is usually wise
to consider whether this is reasonable in the given context; in other words, do not simply
assume that the interaction is zero without explicitly considering it.

For orthogonality, the fixed and random factors together need to satisfy (D1) and (D2).
As in Section 10.5.4, it may be necessary to introduce pseudofactors in G∗ for some fixed
effects, and then care is needed in interpreting the data.

10.8 MultiStage Experiments

In a multistage experiment, the same experimental material is used throughout but differ-
ent sets of treatments are applied in different stages. For example, samples of blood may
be collected under various conditions in Stage 1 and then stored under various conditions
in Stage 2. For practical reasons, it may be necessary to apply treatments in Stage i to whole
batches, rather than to individual observational units. See also Chapter 8.

Let Bi be the factor for Batches in Stage i. If the batch factors correspond to inherent
differences in the observational units, then no new concepts are involved. However, there
are other situations where the factors Bi are chosen simply so that the treatments can be
applied economically, easily or quickly.

Example 10.12 (Batch processing of silicon wafers)

Mee and Bates (1998) describe an experiment where three two-level treatment factors T1,
T2 and T3 are applied to silicon wafers, factor Ti being applied to batches in Stage i, for
i = 1, 2, 3. There is freedom to choose the partition into batches at each stage. Two designs
for 16 silicon wafers are compared.

In the first design, the wafers are grouped into two Lots of eight. Within each lot, a
completely randomized design is used for the eight treatments, and the ith batch factor
Bi is aliased with Ti ∧ L. This gives the partition into batches shown in Table 10.11a.
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TABLE 10.11

Two Possible Partitions of 16 Wafers into Four Batches of Size Four in
Each of the Three Stages in Example 10.12

(a)

Lot 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

Stage 1 batch 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
Stage 2 batch 1 1 2 2 1 1 2 2 3 3 4 4 3 3 4 4

Stage 3 batch 1 2 1 2 1 2 1 2 3 4 3 4 3 4 3 4

(b)
Stage 1 batch 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
Stage 2 batch 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
Stage 3 batch 1 3 4 2 4 2 1 3 2 4 3 1 3 1 2 4

U 1, 1

L 2, 1

B1

4, 2
B2

4, 2

B3

4, 2

E 16, 8

(a)

U 1, 1

B1

4, 3
B2

4, 3
B3

4, 3

E 16, 6
(b)

FIGURE 10.32
Hasse diagrams for two choices for partitions into batches in the three-stage design in Example 10.12. (a) Partition
(a) in Table 10.11. (b) Partition (b) in Table 10.11.

The Hasse diagram for the non-treatment factors is in Figure 10.32a. This is not a poset
block structure, so it cannot be shown on a panel diagram. Infima such as B1 ∧ B2 are not
included, but conditions (O1), (O2), (O3), (O4) and (O5) in Section 10.3 are satisfied.

In the second design, the wafers are imagined to be in a 4 × 4 array. The first-stage
batches are the rows; the second-stage batches are the columns; the third-stage batches
are given by the letters of a 4 × 4 Latin square: see Table 10.11b for the layout given by
Mee and Bates (1998). Figure 10.32b shows the Hasse diagram. Now {U, B1, B2, B3, E} is
an orthogonal block structure, similar to the one in Example 10.2.

The structure in Figure 10.32(b) can be generalized. Suppose that there are n2 observa-
tional units, which need to be grouped into batches of size n in each of m stages, where
2 ≤ m ≤ n + 1. The observational units are considered to form an abstract n × n array:
factors B1 and B2 correspond to the partitions into rows and columns, while B3, …, Bm are
defined by the letters of m − 2 mutually orthogonal Latin n × n squares. See Mee and Bates
(1998) and Butler (2004).

With conditions (O1)–(O5) satisfied, it is reasonable to assume that Cov(Y) has the form
given in (10.4). Multistage experiments are often full factorials with no replication, or
fractional factorials. If there are too few degrees of freedom in the various strata for a mean-
ingful ANOVA, then the relative importance of different treatment effects may be assessed
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from half-normal plots, one for each stratum. Then the purpose of the skeleton ANOVA
table is to show which treatment effect is in which stratum.

In some experiments, practical constraints imply that not every combination of levels of
batches from different stages can occur. Then we need to consider suprema such as Bi ∨ Bj.

Example 10.13 (An experiment on production of battery cells)

In an experiment reported by Vivacqua and Bisgaard (2009), electric battery cells were
assembled in 16 batches in Stage 1. Four two-level treatment factors were applied at this
stage, one treatment combination per batch. In the second stage, the battery cells were
cured in batches of size eight, because of space limitations in the curing room: two further
two-level treatment factors were applied to these batches.

Figure 10.33 shows two possible configurations for the batches. In (a), there are eight
batches in Stage 2, and it is possible to have the full factorial set of treatments. In (b), there
are only four batches in Stage 2, and so a half-fraction is required overall, even though
each stage individually can have full replication. Vivacqua and Bisgaard (2009) call this
post-fractionation. In both cases, we need to take account of the two-level factor B1 ∨ B2,
so the design must specify what treatment effect is confounded with B1 ∨ B2.

When constraints on batch-size force B1 and B2 to have a non-trivial supremum, this
must be included in the set of factors on � even though it is not, strictly speaking, inherent.
For both possibilities in Example 10.13, put H = B1 ∨ B2 and F = {U, H, B1, B2, E}. Then
F is a poset block structure. For i = 1, 2, let Si be the pre-factor for Stage i batches within H.
Then the panel diagrams for the two possibilities are shown in Figure 10.34, and the Hasse
diagrams in Figure 10.35.

Since both possibilities in Example 10.13 give poset block structures, the randomiza-
tion argument in Section 10.2.5 gives Cov(Y) of the form (10.4). On the other hand, the
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FIGURE 10.33
Two possible configurations for batches in Example 10.13: • denotes one battery.
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2     H
8     S1 in H
2     S2 in H

2     H
8     S1 in H
4     S2 in H

(a) (b)

FIGURE 10.34
Panel diagrams for two possible configurations in Example 10.13.
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FIGURE 10.35
Hasse diagrams for two possible configurations in Example 10.13.

assumption that E, B1 and B2 (but not H) have random effects gives (10.4) with the
constraint that ξH is a particular linear combination of ξE, ξB1 and ξB2 . If the spectral
components of variance (see Section 10.2.6) are to be estimated, or to be used in hypothe-
sis testing, then this linear dependence can be problematical. However, half-normal plots
are not meaningful for strata with very few degrees of freedom, so the stratum WH would
be omitted from such an analysis, and then the question of linear dependence among the
spectral components of variance does not arise.

10.9 MultiPhase Experiments

In the first phase of a two-phase experiment, the set � of treatments is applied to a set �1 of
units using a design φ1 : �1 → �. In the second phase, produce from the units of �1 (e.g.,
food made from the crops, or machine parts manufactured during the runs) is applied to
a second set �2 of units, where responses are measured. A design φ2 : �2 → �1 is used
for the second phase. Here we assume that there is an orthogonal treatment structure G
on �, and, for i = 1, 2, an orthogonal block structure Fi on �i. Further, both designs are
orthogonal.

Example 10.14 (An experiment on food processing)

Figure 10.36 shows the panel diagrams for the structures on �, �1 and �2 in a simpli-
fied version of an experiment discussed by Brien and Bailey (2009). The six treatments
consisted of three quantities of Irradiation in combination with two levels of Rosemary



Structures Defined by Factors 409

3     Irradiation
2     Rosemary

Treatments

3     Batches
6     Loaves in B

First-phase units

3    Sessions
6    Tasters in S
6    Orders in S

Second-phase units

FIGURE 10.36
Panel diagrams for Example 10.14.

(the herb was present or not). In the first phase, these treatments were applied in the
baking of meat loaves: in each of three Batches, one Loaf received each treatment.
The second phase had one Session per batch: in each session, pieces of the six
meat-loaves were tasted, using a Latin square in which the rows corresponded to Order
in the tasting sequence and the columns corresponded to Tasters.

As in Section 10.5, G is augmented to G∗ and F1 is augmented to F∗
1 . Then Proposi-

tion 10.3 shows that there is a function h1 : G∗ → F1 and a function h2 : F∗
1 → F2 such that

WG ≤ Wh1(G) for G in G∗ and WF ≤ Wh2(F) for F in F∗
1 .

When F1 = F∗
1 , it follows that WG ≤ Wh1(G) ≤ Wh2(h1(G)) for all G in G∗. For H

in F2, the subspace WH is the direct sum of the subspaces WF for those factors F in F1 for
which h2(F) = H and (usually) a residual subspace. In turn, WF is the direct sum of those
subspaces WG for which G ∈ G∗ and h1(G) = F and (usually) a residual, as in Section 10.5.2.

In Example 10.14, h1(I) = h1(R) = h1(IR) = BL, h2(B) = S and h2(BL) = STO. Thus,
WI < WBL < WSTO and similarly for WR and WIR. The residual in WBL has 15 − 5 = 10
degrees of freedom. The further residual in WSTO has 75 − 15 = 60 degrees of freedom.

Assume that E(Y) is determined by G, as in Section 10.4.2, and that Cov(Y) is a sum
of two matrices like that on the right-hand side of (10.4), one for F1 and one for F2. This
is a natural assumption if both designs are randomized as in Section 10.2.5. For G in G∗,
three quantities now contribute to the expected mean square for WG: the expectation part,
τG; the spectral component of variance, ξh1(G); and the spectral component of variance,
ξh2(h1(G)). Thus, in Example 10.14 the standard error for the estimator of each treatment
contrast depends on ξBL as well as ξSTO.

Matters are not quite so straightforward when F∗
1 �= F1. For overall orthogonality, we

now need to insist that the design φ1 is orthogonal when taking account of G and F∗
1 , not

just G and F . On the other hand, the extra W-subspaces for F∗
1 do not contribute any extra

spectral components of variance.

Example 10.15 (Laboratory measurement)

In an experiment on laboratory animals, the structures on �, �1 and �2 had the panel
diagrams shown in Figure 10.37. The 32 Animals were housed in Cages of four animals
each. In the first phase, the animals were fed one of two Diets: these had to be allocated

2     Diets
2     Injections
Treatments

8     Cages
4     Animals in C
First-phase units

8     Runs
8     Labels

Second-phase units

FIGURE 10.37
Panel diagrams for Example 10.15.
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to whole cages. They were also Injected, or not, with a special vaccine: two animals per
cage were vaccinated.

In the second phase, some of a certain bodily fluid was extracted from each animal:
samples of this were subject to analysis. Each run of the machine could accommodate
eight samples, and these were distinguished by labelling each sample with a drop of
coloured liquid, using eight colours per run.

An 8 × 8 Latin square was used to allocate the cages to combinations of Runs and
Labels. With 64 observations, 32 animals and 8 runs, it is impossible to have every animal
represented in each run. Instead, the runs were partitioned into four pairs by a four-level
pseudofactor PR, and each animal was allocated to one such pair. Similarly, the labels
were partitioned into four pairs by a pseudofactor PL. The experimental layout consisted
of a 4 × 4 grid of 2 × 2 subsquares of the following form.

Cage a Cage b
Animal 1 Animal 2

Cage b Cage a
Animal 2 Animal 1

Adjacent subsquares had different levels of I. Since PR and PL had no inherent meaning,
being merely devices to construct the design and being ignored in the randomization,
this confounding of I with the 2 × 2 subsquares was not problematic.

Now G = G∗ = {U, D, I, DI}, F1 = {U, C, CA} and F2 = {U, R, L, RL}. Also, CA ∨ R =
PR and CA ∨ L = PL, and so F∗

1 = {U, C, CA, PR, PL}. Figure 10.38 gives the combined
Hasse diagram, using white squares for factors in F2. This gives the skeleton ANOVA in
Table 10.12.

For those who prefer formulae to pictures, this design may also be constructed using
the following pair of design keys (see Section 10.6).

�1(D) = C3 �1(I) = C2 + A1

�2(C1) = R1 + L1 �2(C2) = R2 + L2 �2(C3) = R3 + L3 �2(A1) = R1 �2(A2) = R2

The confounding shown in Table 10.12 follows directly from this. For example,
�2(C1 + A1)= L1, �2(C2 + A2) = L2 and �2(C1 + C2 + A1 + A2) = L1 + L2,

U

D

C

CA

PR PL

DI

I LR

RL

FIGURE 10.38
Combined Hasse diagram for Example 10.15.
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TABLE 10.12

Skeleton Analysis of Variance for Example 10.15

Second-Phase Units First-Phase Units Treatments

U 1 U 1 Mean 1

Runs 7 PR (part of A[C]) 3 3
residual 4 4

Labels 7 PL (part of A[C]) 3 3

residual 4 4

R#L 49 Cages 7 Diets 1
residual 6

rest of animals[C] 18 Irradiation 1
D#I 1

residual 16

residual 24 24

Total 64

so these three degrees of freedom for Animals[C] are confounded with Labels.
Likewise, �1(D + I) = C2 + C3 + A1 and �2(C2 + C3 + A1) = R1 + R2 + R3 + L2 + L3, and
so the D-by-I interaction is confounded with the part of Animals[C] that is confounded
with R#L.

This approach extends to three or more phases in the obvious way.

10.10 Orthogonality

This chapter has concentrated on orthogonality. Why is orthogonality desirable?
If the inherent factors on � (or, more generally, the factors with random effects) are not

uniform and mutually orthogonal, then the eigenspaces of Cov(Y) are not known unless
all of the variance components are already known. This means that there is no uniformly
best estimator of treatment effects.

If the structure on � (or, more generally, on the factors with fixed effects) is not orthog-
onal, then, in the Hasse diagram of expectation models, different edges which correspond
to the same factor G can have different sums of squares associated with them, in each case
being the difference between the sums of squares of fitted values in the larger and smaller
models at the ends of the edge. This has the consequence that different routes down from
the top of the Hasse diagram can lead to different decisions about which model to fit to the
data.

Even if the structures on � and � are both orthogonal, the design φ may not be. Let Xφ

be the N × |�| matrix whose (ω, i)-entry is equal to 1 if φ(ω) = 1 and is equal to 0 oth-
erwise. If treatment effects are estimated using only QFy, which is the data projected onto
stratum WF, then the variance–covariance matrix of the estimators is ξF(X′

φQFXφ)−. The
matrix X′

φQFXφ is called the information matrix for stratum WF. As discussed in Chapter 3,
knowledge of the eigenvectors and eigenvalues of the information matrix is important for
understanding the design and assessing its properties.
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If there are more than two strata apart from WU, the eigenvectors of the information
matrices for different strata may be different. There are some simplifications when all of
the information matrices have common eigenvectors. In this case, the design is said to
have general balance: see Nelder (1965b) and Houtman and Speed (1983). If, moreover, those
common eigenspaces are the subspaces WG for G in G∗, the design is said to have structure
balance: see Brien and Bailey (2009).

Of course, many experiments in practice lack orthogonality in some aspect. For example,
many designs in Chapter 3 are not orthogonal, and some of the supersaturated designs in
Chapter 9 are not orthogonal. Each pair of factors in an orthogonal array (also Chapter 9)
is orthogonal with supremum U, but often infima are not included. However, it is helpful
to understand the orthogonal case fully before considering non-orthogonal ones.

10.11 Notes on Terminology and Conventions

The theory of poset block structures was fully developed by Kempthorne et al. (1961) and
Zyskind (1962) under the name complete balanced response structures. However, their dia-
grams show E and U as well as the pre-factors, and so are somewhere in between the panel
diagrams and Hasse diagrams shown here. Nelder (1965a) developed a much more algo-
rithmic approach with iterated crossing and nesting, calling his structures simple orthogonal
block structures. Speed and Bailey (1982) generalized both of these to lattices of commut-
ing uniform equivalence relations, which are here called orthogonal block structures. These
approaches, and more, were discussed and named by Bailey (1996).

Houtman and Speed (1983) generalized the family of variance–covariance matrices
given by (10.4). They defined such a family to be an orthogonal block structure if it consists of
all positive semi-definite linear combinations of a known set of matrices like {QF : F ∈ F}
which are mutually orthogonal symmetric idempotents summing to the identity. In gen-
eral, their definition does not require the idempotents to be defined by factors, unlike the
definition in Section 10.3.

Whenever there is a partial order, there are two opposite conventions for what is meant
by “bigger.” For example, the partial order ⊆ on the set of ancestral subsets in Example 10.3
gives a Hasse diagram the opposite way up to that in Figure 10.5. The partial order � used
in this chapter is consistent with the usual notion of refinement of partitions, but some
statistical authors prefer to think of a factor as “bigger” if it has more levels. Either approach
works perfectly well if used consistently, but the words infimum and supremum have to be
interchanged if the partial order is given in the other direction.

Some authors call ancestral subsets upsets; some call them filters.
This chapter introduces two partial orders (in addition to is a subset of and is a subspace

of): nesting of pre-factors and refinement of genuine factors. Some statistical authors mix
these up and call them both nesting.

As pointed out in Sections 10.2 through 10.4, each factor F defines two subspaces—VF
and WF—and it can be hard to provide a succinct but clear notation for WF in ANOVA
tables. It may be because of this that some authors do not distinguish between (1) F ∧ G,
which is a factor, (2) the interaction between F and G, which consists of the values in the
vector QF∧Gτ when the levels of F ∧ G have fixed effects, and (3) the effects of the levels
of F ∧ G when these are random. When pseudofactors are used, it is common to write FG
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rather than F + G, and this may be confused with all of (1)–(3) as well as the vector of fitted
values in QF+Gy, or just one of those values if all factors have two levels.
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11.1 Introduction

Most readers will be familiar with the use of polynomials throughout statistics. Much of
this handbook is concerned with design for polynomial regression (see, e.g., Chapters 2
and 5). Thus, we have polynomial terms in variables x1, x2, . . ., such as

x1, x2
2, x1x2, . . . .

The first, but very important, algebraic point is that polynomials are made up of lin-
ear combinations of monomials. The next example will help to outline the scope of this
chapter.

415
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Example 11.1

Consider a central composite design of nine points in two factors (see also Chapter 5)
composed of factorial points (±1, ±1) and axial points (0, ±√

2), (±√
2, 0) together with

the origin (0, 0). The second-order polynomial response surface in two factors is

f (x1, x2) = θ00 + θ10x1 + θ01x2 + θ20x2
1 + θ11x1x2 + θ02x2

2, (11.1)

where the coefficients θ00, . . . ,θ02 are fixed but unknown constants. A direct computation
of the 9 × 6 design–model matrix X using the aforementioned design and the second-
order model (11.1) shows that the model is identifiable by the design, leaving three
degrees of freedom available for estimation of the error. We now add monomial terms
to the model to exhaust these three degrees of freedom while respecting the hierarchy
principle of polynomial terms, that is, we can only add a term if its divisors are already
in the model. After a few attempts by trial and error, we note that the design has five lev-
els in each factor, so we could augment terms x3

1, x4
1 and, finally, the term x2

1x2 (see Table
11.1). A different possibility, suggested by the design symmetry, would be to instead add
x3

2, x4
2 and x1x2

2. No other hierarchical models are found, and thus for this design, we have
two possible saturated models. The first model has terms 1, x1, x2, x2

1, x1x2, x2
2, x3

1, x4
1, x2

1x2,
while the second model is 1, x1, x2, x2

1, x1x2, x2
2, x3

2, x4
2, x1x2

2.

The search earlier is known as a direct problem, where the design is assumed known in
advance and an identifiable model is sought. The algebraic method of this chapter provides
a structured framework to solve the direct problem of identification of saturated hierarchi-
cal polynomial models for a given design. In the example earlier, we built the design-model,
matrix while balancing the hierarchy principle. This same example will be expanded using
algebraic techniques in Example 11.13. However, the algebraic method goes beyond this
initial task and provides a comprehensive way of understanding aliasing of model terms.
The scope of designs that can be analysed with algebraic techniques is vast (see Section
11.4 for a sample of applications to design). For analysing designs, we only consider the
minimal support set as replications are not considered.

The central object required for this analysis is the design ideal. This is a polynomial ideal,
familiar from commutative algebra. The design ideal is generated by a finite set of poly-
nomials called a Gröbner basis. This special basis is used to identify models and also to
study confounding, as it encodes information about confounding induced by the design.
Computation of Gröbner bases requires the specification of a term order.

TABLE 11.1

Design-Model Matrix for Central Composite Design of Example 11.1

Points 1 x1 x2 x2
1 x1x2 x2

2 x3
1 x4

1 x2
1x2

(−1, −1)

(−1, 1)

(1, −1)

(1, 1)

(0, 0)

(0, −√
2)

(0,
√

2)

(−√
2, 0)

(
√

2, 0)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 −1 1 1 1 −1 1 −1
1 −1 1 1 −1 1 −1 1 1

1 1 −1 1 −1 1 1 1 −1
1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0
1 0 −√

2 0 0 2 0 0 0

1 0
√

2 0 0 2 0 0 0
1 −√

2 0 2 0 0 −2
√

2 4 0
1

√
2 0 2 0 0 2

√
2 4 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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In the motivating example earlier, we already see several elements that are studied later
in this chapter. First, there is the general problem of identifying a model for a given design.
Second, we may obtain different models. Note that the main interest is in linking a set of
monomial terms with the design in such a way that the corresponding design-model matrix
will be square and full rank. A statistician may not necessarily want to use a saturated
model in practice, and therefore, this may be the starting point to apply model selection
techniques. For example, the first interpolator model stemming from Example 11.1 has
the form

f (x1, x2) = θ00 + θ10x1 + θ01x2 + θ20x2
1 + θ11x1x2 + θ02x2

2 + θ30x3
1 + θ40x4

1 + θ21x2
1x2, (11.2)

from which terms could be dropped in a later model selection stage. Throughout this
chapter, one main interest is for a given design, to produce a list of estimable polynomial
terms which form the support of a saturated model.

This chapter starts by outlining the basic theory behind ideals in Section 11.2. The
core background material of this chapter is that of the Gröbner basis which is covered
in Section 11.3. Throughout the chapter we show some examples using the software
CoCoA, which is introduced in Section 11.3.3. We collect the results as an algorithm in
Section 11.4 and present a series of examples of the algebraic method using different designs
in Section 11.5. Aliasing of monomial terms is discussed in Section 11.6, whereas the role of
indicator functions and orthogonality is presented in Section 11.7. In Section 11.8, we dis-
cuss the impact of different term orderings in the collection of models. In Section 11.9, we
give a brief survey of other topics including recent work on inverse problems on design.

11.2 Ideals and Varieties: Introducing Algebra

The basic reference for material covering algebra, definitions of objects used in this chap-
ter (such as fields, polynomials, rings, ideals and Gröbner bases), is Cox et al. (2007),
Chapters 1, 2, 6 and 9. We first define monomials and polynomials.

Definition 11.1 Consider a set of k variables x1, . . . , xk and a row vector of non-negative integers
α = (α1, . . . ,αk); a monomial is

xα = xα1
1 xα2

2 · · · xαk
k .

The degree of the monomial xα is the sum of its exponents, which we denote as |α| := ∑k
i=1 αi.

A polynomial is a finite linear combination of m monomials

f (x) =
m∑

i=i

θα(i)x
α(i) ,

where the coefficients θα(1)
, . . . ,θα(m)

take values over a base field K and α(i) = (α(i)1, . . . ,α(i)k).
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When we use the term polynomial we typically mean a polynomial, in one or more vari-
ables, and unless it is required, we refer to a polynomial as f rather than f (x). Note that
contrary to most of the material in the book, we will not use bold font for the vector of
exponents α, and we will distinguish between a vector and a component in that the com-
ponent will have a subindex. Variables such as x1, a, a2c are used throughout this chapter,
and no bold font has been used to refer to them, unless we specifically refer to a point such
as x which is to be interpreted as a row vector.

A monomial xα can be represented by its exponent vectorα, and we can list the monomi-
als in a model either directly or by listing a set of exponents. We shall often use the notation
{xα,α ∈ M}, for some set of exponents, M. For example, the set M for the polynomial model
in (11.1) is {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2)}.

This chapter is largely concerned with the link between a design and the list M of
estimable terms. We know from classical factorial design (Chapter 7) that only some mod-
els are estimable for a given design and so any such theory must be intimately related to
the problem of aliasing and we shall cover this in Section 11.6.

The set of all polynomials over a base field is a ring. Thus, given a base field K, we obtain
the ring of polynomials, K[x1, . . . , xk], which is the set of all polynomials with coefficients in
the base field (see Cox et al. 2007). Our “α” notation involving exponents allows a generic
polynomial to be written compactly as

f (x) =
∑
α∈M

θαxα,

where M is a finite set of distinct exponents. The element θα ∈ K is the coefficient of term
xα; thus clearly f (x) ∈ K[x1, . . . , xk]. The quantity θα has the same meaning of a parameter
in a statistical polynomial model and usually θα will be allowed to be a real number so
K = R.

Given that we have launched into algebra, we need to introduce the first two essentials:
ideals and varieties. In what follows we present only the basic ideas of the theory, point-
ing the reader to Cox et al. (2007) and Pistone et al. (2001) for further details. For a ring
K[x1, . . . , xk], we have special subsets of it called ideals.

Definition 11.2 A subset I ⊂ K[x1, . . . , xk] is an ideal if for any f , g ∈ I, we have f + g ∈ I, and
for any f ∈ I and g ∈ K[x1, . . . , xk], we have fg ∈ I.

The ideal generated by a finite set of polynomials {f1, . . . , fm} is the set of all polynomial
combinations of f1, . . . , fm, which we define as

〈f1, . . . , fm〉 = {f1g1 + · · · + fmgm : g1, . . . , gm ∈ K[x1, . . . , xk]}.

To have some immediate intuition, consider a single point d ∈ R

k. If the point has compo-
nents d = (d1, d2, . . . , dk), then 〈x1 − d1, x2 − d2, . . . , xk − dk〉 contains all polynomials that
vanish over d. If say d = (0, 1, −1) ∈ R

3, clearly f (x1, x2, x3) = x1x2+x2
2−x2x3−x1−x2+x3 ∈

〈x1, x2−1, x3+1〉 because f (x1, x2, x3) = (x2−1)(x1+x2−x3). The ideal generated by a single
point as previously mentioned is known as a maximal ideal (see Cox et al. 2007). Maximal
ideals are the building blocks of design ideals as will be seen in Section 11.4.
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The set of all polynomials f (x) ∈ K[x1, . . . , xk] such that f (x) = 0 is an ideal, since for
any polynomial g(x) if f (x) = 0, we have g(x)f (x) = 0. The Hilbert basis theorem says that
any (polynomial) ideal I is finitely generated, that is, for any ideal I, we can find a finite
collection of polynomials f1, . . . , fm ∈ K[x1, . . . , xk] such that I = 〈f1, . . . , fm〉, and for some
integer m, recall the notation 〈·〉 as defined earlier.

Readers will be familiar with linear varieties expressed by setting a linear polynomial
function equal to zero. Thus a straight line can be written as the collection of points (x1, x2)

in two dimensions such that

ax1 + bx2 + c = 0,

for constants a, b, c. An affine variety is the extension of this concept to simultaneous
solutions of a set of polynomial equations, as stated in the following definition.

Definition 11.3 Let f1, . . . , fm ∈ K[x1, . . . , xk] be a set of polynomials. The associated affine vari-
ety is the solution (also called the zero set) of a set of simultaneous equations defined by these
polynomials:

V(f1, . . . , fn) = {(a1, . . . , ak) ∈ Kk : fi(a1, . . . , ak) = 0, i = 1, . . . , m} .

Every affine variety V has an associated ideal which we write I(V). It is the set of all
polynomials which are zero on the variety:

I(V) = {f ∈ K[x1, . . . , xk] : f (a1, . . . , ak) = 0, for all (a1, . . . , ak) ∈ V}.

What appears to be a straightforward relationship between ideals and varieties is actually
very subtle. If we start with polynomials f1, . . . , fm and construct the corresponding vari-
ety V and form the ideal I(V), is it true that I(V)= 〈f1, . . . , fm〉? For example, take the ideal
I = 〈x1 − 1, x2

1 + 1〉. If we work on the polynomial ring over the real field K =R, the poly-
nomial equation x2

1 + 1 = 0 cannot be solved, and the variety V(I) consists of the single
point {1}. We can always claim that 〈f1, . . . , fm〉⊂ I(V), but the converse may not be true;
refer to Cox et al. (2007) for a detailed discussion. Following the idea earlier, the ideal gen-
erated by the single point is 〈x1 − 1〉 which does not equal I, yet the following contention
holds 〈x1 − 1, x2

1 + 1〉 ⊂ 〈x1 − 1〉. Fortunately, for a design with real points as will be seen
in Section 11.4, the variety is collection of isolated single points and the equivalence holds
and we may move freely between ideals and designs.

11.3 Gröbner Bases

At the core of this chapter, we have the concept of Gröbner bases (see Buchberger 2006).
We will use them to define in a compact way the property of linear independence of model
terms for a given design, and they will be used later on to study confounding in designs.

To start our study, we require the notion of quotient, which is perhaps the most important
construction in abstract algebra. Given two polynomials f , g ∈ K[x1, . . . , xk] and an ideal
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I ⊂ K[x1, . . . , xk], define the equivalence class f ∼I g if and only if f − g ∈ I. The members
of the quotient K[x1, . . . xk]/I are the equivalence classes. Since f1 ∼I f2 and g1 ∼I g2 imply
f1 + g1 ∼I f2 + g2 and f1g1 ∼I f2g2, then K[x1, . . . xk]/I is also a ring. Finding K[x1, . . . xk]/I
in a particular case requires a division algorithm.

11.3.1 Term Orderings

We require term ordering to perform the division. The following simple example recalls
division of polynomials in one dimension over the real field K = R.

Example 11.2

If we divide 1 + 3x + 2x2 + x3 by 2 + x, we obtain the tableau

x2 + 3
x + 2 | x3 + 2x2 + 3x + 1

−(x3 + 2x2)

3x + 1
−(3x + 6)

−5

giving x3 + 2x2 + 3x + 1 = (x2 + 3)(x + 2) − 5.
We give this example to remind ourselves that at each stage of the division, we

need to use the leading terms of the intervening polynomials. The leading term is the
largest monomial of a polynomial. To obtain the leading term, we need an ordering for
monomials. In one dimension, the ordering is

1 ≺ x ≺ x2 ≺ · · · ,

that is, we order by degree and division is unique. This is generalised to a special total
ordering on the set of all monomials xα where the exponent vector α has non-negative
integer entries.

Definition 11.4 A monomial term ordering, ≺, is a total ordering of monomials such that (i)
1 ≺ xα for all α ≥ 0, α 
= 0 and (ii) for all γ ≥ 0, xα ≺ xβ implies xα+γ ≺ xβ+γ.

The notation α ≥ 0 means that all elements of α are simultaneously greater than or equal
to zero. There are a number of standard monomial orderings:

1. Lexicographic ordering, Lex: xα ≺Lex xβ when the leftmost nonzero entry of β− α is
positive.

Graded orderings are orderings in which the first comparison between monomials is
determined by their degree. The aforementioned degree lexicographic and degree reverse
lexicographic term orders fall in this class.

2. Degree lexicographic ordering, DegLex: xα ≺DegLex xβ if (i) the degree of xα is less
than that of xβ, that is, |α| < |β| or (ii) |α| = |β| and α ≺Lex β.

3. Degree reverse lexicographic ordering, DegRevLex: xα ≺DegrevLex xβ if (i) |α| < β| or
(ii) |α| = |β| and α ≺Lex β, where the overline means reverse the entries.
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Example 11.3

Under a lexicographic term ordering, x3
2x4

3 ≺Lex x1 because β−α = (1, −3, −4), while for
a degree lexicographic ordering, x1 ≺DegLex x3

2x4
3 since |(1, 0, 0)| = 1 < |(0, 3, 4)| = 7.

11.3.2 Matrix- and Vector-Based Term Orderings

Monomial term orderings can be defined using products with matrices and element-wise
comparisons. If the exponents of monomials xα, xβ are considered as row vectors, we say
that xα ≺M xβ if αM′ < βM′, where M is a non-singular matrix, and the inequality is tested
in a lexicographic manner, starting from the leftmost element. We refer to M as an ordering
matrix. It satisfies certain conditions which are stated in the following theorem taken from
Pistone et al. (2001).

Theorem 11.1 Let M be a full rank matrix of size k × k such that the first non-zero entry in each
column is positive. Then M defines a term ordering in the following sense:

1. For every vector of non-negative integers α with α 
= (0, . . . , 0), (0, . . . , 0) < αM′.
2. For any non-negative vectors α,β,γ such that αM′ < βM′, (α + γ)M′ < (β + γ)M′.

Example 11.4

The identity matrix of size k corresponds to the lexicographic term ordering. For k = 3
and monomials of Example 11.3, we test whether x3

2x4
3 ≺ x1 by comparing row vectors

(0, 3, 4) and (1, 0, 0) (after right multiplication by the identity). As the first entry is smaller
on the left vector, then the ordering is true.

Note that the relationship between ordering matrices and term orderings is not one to
one. A matrix M2 defining the same ordering as M can be obtained by multiplying each row
of M by a positive constant, so, for instance, the matrix with diagonal 1, 2, . . . , k and zeroes
elsewhere also defines a lexicographic term ordering. Usually only integer entries are used
for computations although the theory does not preclude using, for instance, matrices with
rational or real entries (see Cox et al. 2007).

An important case of ordering matrices is that of matrices for graded orderings. Any
full rank matrix M in which all elements of the first row are a positive constant defines a
graded ordering. The degree lexicographic term ordering is built with a matrix M with all
entries one in its first row, and the remaining rows are the top k − 1 rows of an identity
matrix.

A more specialised and efficient instance of matrix orderings is produced by using
a single row matrix with positive integer entries, in which case we say ordering vector.
An ordering vector defines only a partial but not a total ordering over K[x1, . . . , xk]. For
example, the vector w = (1, 1, 1) naturally produces the ordering xy2 �w xz because

(1, 2, 0)(1, 1, 1)′ = 3 > 2 = (1, 0, 1)(1, 1, 1)′,

yet it cannot distinguish between monomials of the same degree such as xy2 and z3 because
(1, 2, 0)(1, 1, 1)′ = (0, 0, 3)(1, 1, 1)′ = 3.
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The main utility of vector orderings comes when noting that Gröbner bases of Section
11.3.6 are computed over finite sets of monomials rather than over all monomials with
exponents in Z

k
≥0. This last fact, together with a careful selection of the ordering vector, is

at the core of a special algorithm to compute Gröbner bases (see Babson et al. 2003; Maruri-
Aguilar 2005).

11.3.3 Software Computations: CoCoA

The free software CoCoA is useful to perform computations in commutative algebra. The
package has extensive documentation for functions and allows the user to program in
its own language (see CoCoATeam 2009). Versions of the software for different plat-
forms are downloadable from the url cocoa.dima.unige.it. Here and elsewhere in the
chapter we give code examples which can be run either in the command line version or the
graphical user interface (GUI).

We create the ring Q[x, y, z] and specify a degree lexicographic term ordering with the
CoCoA command

Use T::=Q[x,y,z], DegLex;

This ring is the set of all polynomials with rational coefficients, that is, K = Q. We can
specify the same ring and ordering using matrix orderings; the command Mat is used to
create a matrix which then defines a term order with the command Ord shown as follows:

M:=Mat([[1,1,1],[1,0,0],[0,1,0]]);

Use T::=Q[x,y,z], Ord(M);

Using this ordering, the query “xyˆ2>xˆ2z;” yields output FALSE, which means that
xy2 ≺ x2z under the graded lexicographic order in which x � y � z. The standard ordering
in the software system CoCoA is the degree reverse lexicographic (DegRevLex), which is
implicit in the following ring definition:

Use T::=Q[x,y,z];

xyˆ2>xˆ2z;

The output of the query is now TRUE, and this is interpreted as xy2 � x2z under a degree
reverse lexicographic term ordering in which x � y � z. Note the reversal of the ordering
between the two monomials obtained for the previous graded order.

11.3.4 Other Software Tools

Some popular computational algebra packages relevant for this chapter are CoCoA
(introduced earlier), macaulay2 (Grayson and Stillman 2009), gfan (Jensen 2009) and
Singular (Decker et al. 2012). A rough list of capabilities relevant to this chapter is as
follows:
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1. Construction of monomial orderings: the standard ones are usually named and
immediately available.

2. Ideal operations such as unions, intersections and elimination.
3. Buchberger algorithm and modern improvements, quotienting and computing

normal forms.
4. Special algorithms for ideals of points.
5. Gröbner fan computations.

We use most of capabilities 1–4 in examples in Section 11.4. Buchberger’s algorithm is not
used explicitly, yet it is at the core of Gröbner basis computations. The computations of
Gröbner fan are used in Section 11.8.

11.3.5 Monomial Ideals and Hilbert Series

Now that we have defined a total ordering, any finite set of monomials has a leading term.
In particular, since a polynomial, f , is based on a finite set of monomials, it has a unique
leading term. We write it LT≺(f ), or, if ≺ is assumed, just LT(f ). A monomial ideal is an
ideal generated by monomials.

Definition 11.5 Let f1(x), . . . , fm(x) be a collection of monomials. The monomial ideal generated
by f1(x), . . . , fm(x) is the set of all polynomials g(x) that can be expressed as a sum

g(x) =
m∑

i=1

gi(x)fi(x), (11.3)

where g1(x), . . . , gm(x) are polynomials in K[x1, . . . , xk].

Multiplication of monomials is just achieved by adding exponents:

xαxβ = xα+β.

The set of all monomials in a monomial ideal is the union of all positive orthants whose
corners are given by the exponent vectors of the generating monomials f1(x), . . . , fm(x).

Example 11.5

Consider the monomial ideal I ⊂ Q[x, y] generated by monomials xy and y3, that is,
I = 〈xy, y3〉. All monomial terms such as x2y, x3y, x3y3 or y4 belong to I as they can be
divided by at least one of xy or y3. Note that besides monomials, the monomial ideal
I also contains polynomials, for example, 4xy + y3 and x2y + xy3 − xy2 + y3 are both
in I. Note that this second polynomial equals (1 + x)y3 + (x − y)xy. Polynomials such as
x − xy, y − 1 or y4 − 1 do not belong to I as they cannot be written as in (11.3).

For a given monomial ideal, a complete degree-by-degree description of the monomials
inside the ideal or, equivalently, those outside the ideal is given by the Hilbert function
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and series. In an important paper, Hilbert studied the distribution of monomials outside
an ideal to determine the dimension of the variety associated with the ideal (see Hilbert
(1890)). Here we only give the basic idea, referring the reader to references Cox et al.
(1998, 2007) for a full description.

Definition 11.6 Let I be a monomial ideal in K[x1, . . . , xk].
1. For a non-negative integer j, the Hilbert function HFI(j) is the number of monomials not

in I of degree j.

2. The Hilbert series of I is the formal series HSI(s) = ∑∞
j=0 sjHFI(j).

The Hilbert series is the generating function of the Hilbert function and it is used to count
monomials which are not in the monomial ideal I. In what follows, unless it is required, we
omit the subindex referring to the monomial ideal.

Example 11.6

Consider the monomial ideal I = 〈x3, xy2, y4〉 ⊂ K[x, y]. The monomials which do not
belong to I are 1, x, x2, y, xy, x2y, y2 and y3, so the Hilbert function equals 1, 2, 3, 2 for j =
0, 1, 2, 3 and zero for all j ≥ 4. The Hilbert series is thus HSI(s) = 1 + 2s + 3s2 + 2s3.
The Hilbert function and Hilbert series are defined in an opposite manner in CoCoA in
that we need to ask for the Hilbert function of the quotient K[x1, . . . , xk]/I. The following
commands will produce the results named earlier:

Use T::=Q[x,y];

I:=Ideal(xˆ3,x*yˆ2,yˆ4);

Hilbert(T/I);

HilbertSeries(T/I);

The Hilbert function for monomials inside I is thus obtained by the command
Hilbert(I).

Example 11.7

For the monomial ideal I of Example 11.5, the Hilbert function equals 1, 2, 2 for j = 0, 1, 2,
corresponding to 1, x, y, x2, y2, and takes value one for j ≥ 3 which corresponds to xj for
j ≥ 3. Therefore, the Hilbert series is

HSI(s) = 1 + 2s + 2s2 +
∞∑

j=3

sj = 1 + s − s3

1 − s
.

As this example shows, the Hilbert series can have an infinite number of non-zero terms.
Later in this chapter, we will work with monomial ideals stemming from zero-dimensional
polynomial ideals which in practical terms implies that the Hilbert series will be finite. The
total number of monomials in the first orthant is counted with the formal series

∞∑
j=0

(
j + k − 1

j

)
sj = 1

(1 − s)k
,
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where k is the number of variables. Then, by subtracting the Hilbert series HSI(s) from the
last expression, we have a generating function to count monomials inside I.

Example 11.8

Using k = 2 dimensions to continue Example 11.6, the formal series for monomials in the
first orthant is

∞∑
j=0

(
j + 1

j

)
sj =

∞∑
j=0

(j + 1)sj = 1
(1 − s)2 ,

which counts the monomials in the first quadrant. The generating function for the
number of monomials in I for each degree is found by subtraction:

1
(1 − s)2 − (1 + 2s + 3s2 + 2s3) = 2s3 + s4 − 2s5

(1 − s)2 .

The signs in the polynomial in the numerator are related to inclusion–exclusion rules.
Those rules in monomial ideals have been applied to compute bounds for reliability of
systems (see Sáenz-de Cabezón and Wynn 2009, 2011).

Example 11.9

Consider the monomial ideal in K[x1, . . . , x7] generated by monomials x2
1, . . . , x2

7 and all
pairs xixj, 1 ≤ i < j ≤ 7. This ideal has Hilbert function with values 1 and 7 for j = 0, 1 and
zero for j ≥ 2 so its Hilbert series is HS(s) = 1 + 7s, that is, one monomial of degree zero
and seven monomials of degree one outside the ideal. The monomials outside this ideal
are 1, x1, x2, x3, x4, x5, x6, x7, which later will be understood as a model for the Plackett–
Burman design in Examples 11.19 and 11.30 and is also covered in Chapter 9. See also
first row of Table 11.7 in Section 11.8.

11.3.6 Gröbner Bases

Dickson’s Lemma (Cox et al. 2007) states that, even if we define a monomial ideal with
an infinite set of monomials fi, we can find a finite set of monomials h1, . . . , hl such that
I = 〈h1, . . . , hl〉. But there are, in general, many ways to express an ideal I as being generated
from a basis I = 〈g1, . . . , gm〉. We define now a special basis for an ideal called the Gröbner
basis (see Buchberger 2006; Cox et al. 2007).

Definition 11.7 Given an ideal I ⊂ K[x1, . . . , xk], a set of polynomials {g1, . . . , gm} ⊂ I is called a
Gröbner basis of I if

〈LT(g1), . . . , LT(gm)〉 = 〈LT(I)〉,

where 〈LT(I)〉 is the ideal generated by the leading terms of all the polynomials in I, that is, 〈LT(I)〉 :=
〈LT(f ) : f ∈ I〉.

We refer to 〈LT(I)〉 as the leading term ideal of I. Although the aforementioned definition
only requires specification of leading terms and thus not term orders, in order to compute
a Gröbner basis, we do need to specify a term ordering.
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Example 11.10

Consider the ideal I ⊂ Q[x1, x2] whose variety is the set of four points in Q

2 with coordi-
nates (±1, ±1). The ideal I is the set of all polynomials that vanish on those four points.
For any term ordering, the set {x2

1 − 1, x2
2 − 1} is a Gröbner basis for I. This computation

can be performed using the following CoCoA commands:

Use T::=Q[x[1..2]];

I:=IdealOfPoints([[-1, -1], [-1, 1], [1, -1], [1, 1]]);

GBasis(I);

The last command retrieves the two polynomials x2
1 − 1, x2

2 − 1 which form the
Gröbner basis of I. The list of points in the second line previously can be substituted by
the following CoCoA instruction which generates all pairs of two numbers using values
+1 and −1:

I:=IdealOfPoints(Tuples([-1,1],2));

The following result is from Cox et al. (2007).

Lemma 11.1 Any ideal I ⊂ K[x1, . . . , xk] has a Gröbner basis and any Gröbner basis in the ideal I
is a basis of I.

Note that Gröbner bases do not operate as minimal spanning sets in the sense of a linear
basis of a vector space. Polynomials in the Gröbner basis are used to generate polynomials
in the ideal and thus redundancy is allowed. We can augment a given Gröbner basis with
the product of two elements of it, and this set will remain to be a Gröbner basis in the
sense of Definition 11.7. As an example of the redundancy allowed in Gröbner bases, a
Gröbner basis for the monomial ideal I of Example 11.6 is {x3, xy2, y4}. The augmented set of
monomials {x3, xy2, x3y4, y4} is also a Gröbner basis for this ideal I. We achieve uniqueness
in the basis when computing a reduced Gröbner basis, which is defined next.

Definition 11.8 Let ≺ be a term order. A reduced Gröbner basis of an ideal I is a Gröbner basis G≺
such that

1. The coefficient of LT≺(g) is one for all g ∈ G≺
2. For all g ∈ G≺, no monomial of g lies in 〈LT(f ) : f ∈ G≺ \ g〉

Given an ideal I ⊂ K[x1, . . . , xk] and a term ordering ≺, we can compute the reduced
Gröbner basis of I. If this set of polynomials is g1, . . . , gm, then by Lemma 11.1, this Gröbner
basis generates I, that is, I = 〈g1, . . . , gm〉. Now consider a polynomial f (x) ∈ K[x1, . . . , xk]
and the same term ordering ≺. The polynomial f (x) has a unique remainder, r(x) with
respect the quotient operation K[x1, . . . , xk]/I, that is,

f (x) =
m∑

i=1

si(x)gi(x) + r(x). (11.4)
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We call the remainder r(x) the normal form of f (x) with respect to I and write r(x) = NFI(f ).
Or, to stress the fact that it may depend on ≺, we write NFI(f , ≺).

The division of a polynomial in (11.4) is the generalisation of simple polynomial division
such as that of Example 11.2, where the result is s1(x) = x2 + 3 with remainder r = −5. In
other words, the normal form of 1 + 3x + 2x2 + x3 with respect to the ideal generated by
g1(x) = 2 + x is −5. The CoCoA commands are

Use T::=Q[x];

NF(1+3*x+2*xˆ2+xˆ3,Ideal(x+2));

The normal form can be equivalently determined using polynomial division directly:

DivAlg(1+3*x+2*xˆ2+xˆ3,[x+2]);

In general, however, the results of polynomial division depend on the order of opera-
tions performed (see, e.g., Cox et al. 2007, Chapter 2.3, Exercise 5). Division by Gröbner
bases avoids this lack of uniqueness.

Subtraction of the normal form from a given polynomial will cause this difference to
belong to the ideal. This is the basis of congruence between a polynomial and its normal
form. The following lemma formalises this relation.

Lemma 11.2 Given an ideal I and a monomial ordering ≺, for every f (x) ∈ K[x1, . . . , xk], there is
a unique normal form NF(f ) such that f − NF(f ) ∈ I.

In what follows, we collect the main facts relating (1) Grobner bases, (2) the division
algorithm and (3) the nature of the normal form and the congruence generated by an ideal.
The basic reference for this material is Cox et al. (2007).

1. Given an ideal, I, a monomial ordering ≺ and a polynomial f (x), there are algo-
rithms which deliver the remainder r(x) by successively dividing by the Gröbner
basis terms g1, . . . , gm. The best known is the Buchberger algorithm (see Buchberger
2006; Cox et al. 2007).

2. The remainder of f (x) divided by I takes the form r(x) = NFI(f ) = ∑
α∈L θαxα. The

set {xα,α ∈ L} is precisely the set of monomials not divisible by any of the leading
terms of the Gröbner basis of I, namely, {LT(gi), i = 1, . . . , m}.

3. The remainder r(x)= NF(f ) depends on the term ordering used, but does not
depend on which order the Gröbner basis terms gi(x) are used in the division
algorithm.

4. The set {xα,α ∈ L}, which appears in remainder r(x), is a basis of the quotient ring
considered as a vector space of functions over K[x1, . . . , xk]/I. This set of monomials
is also referred to as quotient basis. The terms are linearly independent over I, that
is, the congruence

∑
α∈L

θαxα ∼I 0, (11.5)

implies θα = 0 for all α ∈ L (see Cox et al. 2007, Chapter 5.3).



428 Handbook of Design and Analysis of Experiments

11.4 Experimental Design

We have indicated already that for applications to design, we should think of design as a
list of points,

D = {x(1), . . . x(n)},

with each point x(i) ∈ Kk for i = 1, . . . , n. The design ideal is the set of all polynomials that
vanish over the design points

I(D) = {f (x) : f (x) = 0, x ∈ D}.

In most cases, we use design points that have rational coordinates and thus set K = Q. If
designs are meant to have real coordinates, then the coefficient field should be set to K = R.
Even when most packages, for instance, CoCoA, work with rationals or modular integer
fields, we can still define the real objects we want. For example, the variety associated with
the ideal 〈x1, x2

2 −2〉 achieves the desired result of adding star points (0, ±√
2); see Example

11.13. See also Example 11.18 for a case of working in modular integer field.
The use of polynomials to define design is clearly not new. For example, a 2k full factorial

design with points {±1, . . . , ±1} is expressed as the solution of the simultaneous equations:

{x2
i − 1 = 0, i = 1, . . . , k}.

To obtain fractions we impose additional equations the points in the fraction must satisfy,
for example, x1x2 · · · xk = 1.

Operations between varieties as geometric objects have a counterpart with ideals, which
are algebraic objects. For example, the ideal of a union of points is the intersection of the
ideals of single points; the ideal of an intersection of varieties is the radical of the sum of
the ideals for individual varieties. These relations form the algebra-geometry dictionary
(see Cox et al. 2007). A practical implication of such results is the direct generation of ide-
als for regular fractions of factorial designs (see Examples 11.16 through 11.18). A further
reference for the generation of design ideals is Abbott et al. (2000).

Example 11.11

The generation of the design ideal for a given design can be achieved in CoCoA simply
by using the command “IdealOfPoints” as is done in Example 11.10 for the design
with coordinates (±1, ±1). This command implements the intersection of ideals corre-
sponding to single points. For this same design (±1, ±1), the design ideal can also be
written as the intersection of four ideals I(D) = 〈x1 + 1, x2 + 1〉 ∩ 〈x1 + 1, x2 − 1〉 ∩ 〈x1 − 1,
x2 +1〉∩〈x1 −1, x2 −1〉. The intersection gives precisely what we would intuitively expect
from Example 11.10, that is, I(D) = 〈x2

1 − 1, x2
2 − 1〉. The following CoCoA commands

implement the intersection:

Use T::=Q[x[1..2]];

I:=Intersection(Ideal(x[1]+1,x[2]+1),Ideal(x[1]+1,x[2]-1),

Ideal(x[1]-1,x[2]+1),Ideal(x[1]-1,x[2]-1));
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Alternatively, the design ideal can be specified by a system of equations whose solution
give the design points. For the same example, noting that the design points are the inter-
section of the circle x2

1 + x2
2 = 2 and the cross created by union of lines x1 + x2 = 0 and

x1 − x2 = 0 suggests the following design ideal, which can be verified to coincide with
ideal I(D) earlier:

Ideal(x[1]ˆ2+x[2]ˆ2-2)+Ideal((x[1]+x[2])*(x[1]-x[2]));

We now give what can loosely be described as the algebraic method in the title of this chap-
ter. The goal is to identify estimable model(s) for a given design D and study confounding
induced by the design. The estimable model is given as a list of polynomial terms.

1. Choose a design D of size n with no replications.
2. Select a monomial term ordering, ≺.
3. Build the design ideal I(D) and compute the reduced Gröbner basis for I(D)

for the given monomial ordering ≺.
4. The quotient ring

K[x1, . . . , xk]/I(D)

of the ring of polynomials K[x1, . . . , xk] in x1, . . . , xk is a vector space spanned
by a special set of monomials: {xα,α ∈ L}. These are all the monomials not
divisible by the leading terms of the Gröbner basis. There are n such mono-
mials, which is the size of the list of vectors L and the number of points
in D.

5. The set of integer vectors L has the “order ideal" property: α ∈ L impliesβ ∈ L
for any 0 ≤ β ≤ α. For example, if exponent for x2

1x2 is in L so are exponents
for its divisors 1, x1, x2, x1x2 and x2

1.
6. Any function y(x) on D has a unique polynomial interpolator given by

f (x) =
∑
α∈L

θαxα,

such that y(x) = f (x), x ∈ D. In other words, the polynomial model in the
right-hand side previously is estimable for the given design D.

7. The design-model matrix X for design D and model with basis terms {xα :
α ∈ L} has rank n. This matrix is of size n×n with rows indexed by the design
points in D and columns indexed by terms in the basis:

X = {xα}x∈D,α∈L. (11.6)

For further explanation of the relation between the representation of linear
independence as congruence in (11.5) and as linear independence of columns
in the design-model matrix (11.6), see Babson et al. (2003) and Cox et al.
(2007).

When doing computations for items 1–3 previously, there are several possibili-
ties. If design points are known and have rational coordinates, the CoCoA function
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IdealOfPoints can be used to generate the design ideal I(D) from the point coordinates.
Alternatively, I(D) can be built with the function Ideal and the system of equations whose
solution gives the design points. Ideal operations can be used as well to construct I(D), as
will be described in examples as follows. The support of the model in items 4–5 is given
by the command QuotientBasis. Interpolation of a function in item 6 is not necessarily
required, but if so, the CoCoA command Interpolate can be used. The design-model
matrix in item 7 is not explicitly computed as part of CoCoA analysis, but it is a conse-
quence of the methodology developed. The following simple example intends to present
the application of the algebraic method in a simple example.

Example 11.12

Consider the ideal I generated by polynomials x2
1 − 1 and x2

2 − 1 of Example 11.10. This
is the design ideal for a factorial design 22 with point coordinates (±1, ±1), that is, I =
I(D) = 〈x2

1 − 1, x2
2 − 1〉. For any term ordering ≺, the set of polynomials {x2

1 − 1, x2
2 − 1} is

a reduced Gröbner basis for I; see CoCoA commands in Example 11.12. The leading term
ideal for this design is 〈LT(I)〉 = 〈x2

1, x2
2〉, so the set of monomials that do not belong to

the ideal of leading terms is {1, x1, x2, x1x2}. These monomials cannot be divided by the
leading terms of the Gröbner basis of I and are obtained with the command

QuotientBasis(I);

See Figure 11.1 for a depiction of exponents of monomials in the model {1, x1, x2, x1x2}
and monomials in the ideal of leading terms 〈LT(I)〉. As stated previously, the set of
monomials in the model is linearly independent modulo I, and this property translates
in the fact that the design-model matrix X for points (±1, ±1) and monomial columns
{1, x1, x2, x1x2} is full rank. We give the explicit version of this well-known design-model
matrix as follows:

Monomials
Points 1 x1 x2 x1x2

(−1,−1)
(−1, 1)
( 1,−1)
( 1, 1)

⎛
⎜⎜⎝

1 −1 −1 1
1 −1 1 −1
1 1 −1 −1
1 1 1 1

⎞
⎟⎟⎠

(a) (b)

FIGURE 11.1
Staircase diagrams for (a) Example 11.12 and (b) Example 11.13. Black dots represent exponents of model terms
and gray dots are exponents of monomials in the ideal of leading terms.
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The implications of the method are considerable. But at its most basic it says that we can
always find a saturated polynomial f (x) interpolating data over an arbitrary design D. Indeed, the
monomials {xα : α ∈ L} form a vector basis for K-valued functions defined over D, and thus
the method retrieves polynomial functions which form a very flexible class (see Cox et al.
2007).

For example, suppose the vector y has hypothetical values y′ = (2, 2.8, −0.5, 3.3), where
the values are listed in the same order as design points D of Example 11.12. Those values
could be observations at design points in D or values from a function y(x) taken at design
points. For both cases, the objective is to produce an interpolator with a simple hierarchical
structure. Following the basis obtained in the same example, we build the saturated model
to fit data values:

y(x1, x2) = θ00 + θ10x1 + θ01x2 + θ11x1x2.

This model has no degrees of freedom left for error and we obtain the matrix system y = Xθ,
where y is the vector of hypothetical response values, X is the design-model matrix of
Example 11.12 and θ = (θ00,θ10,θ01,θ11)

′. Solving the system θ = X−1y yields the fitted
model ŷ(x1, x2) = 1.9 − 0.5x1 + 1.15x2 + 0.75x1x2 that agrees with the response values over
the design. Recall that the main interest is to study potential estimable models for a design
rather than suggesting the use of interpolator models in data analysis.

The structure of the model index set L arising from the order ideal property is important.
This property of item 5 earlier gives exactly the shape which in statistical literature has been
called variously: staircase models, hierarchical models, well-formulated models, or marginality
condition (see Nelder 1977; Peixoto 1990). It can be seen easily from the fact that the multi-
index terms given by L are the complement in the non-negative integer orthant of those
given by the monomials in the monomial ideal of leading terms: the complement of a union
of orthants has the staircase property. Figure 11.1 depicts two bidimensional examples with
exponents of monomials in the model and in the complement of the model. Figures 11.2
and 11.3 also exhibit the staircase property in three dimensions.

11.5 Examples

An estimable model for a simple factorial design 22 was already identified in Example
11.12. In what follows, we give survey of applications of the algebraic method for differ-
ent designs. We start in Section 11.5.1 with response surface designs (see also Chapter 5),
then cover regular and non-regular fractional factorial designs in Section 11.5.2 (see also
Chapters 7 and 9 for background). In Section 11.5.3, we study other design structures such
as block designs (see also Chapter 3) and latin hypercube sampling (see Chapter 17). In the
first example, we highlight the steps of the algebraic method giving full CoCoA commands,
while in other examples, we concentrate on description of models identified.

11.5.1 Response Surface Designs

Example 11.13

Central composite design. Consider the central composite design of Example 11.1. This
design is the union of four factorial points, four axial points and the origin; therefore,



432 Handbook of Design and Analysis of Experiments

FIGURE 11.2
Algebraic fan of design L1 of Example 11.23.

its design ideal is the intersection of ideals (cf. Example 11.11) corresponding to each
subdesign:

I(D) = 〈x2
1 − 1, x2

2 − 1〉 ∩ 〈x2
1 − 2, x2〉 ∩ 〈x1, x2

2 − 2〉 ∩ 〈x1, x2〉.

For example, the variety associated with the ideal 〈x2
1 − 2, x2〉 is the simultaneous

solution of x2
1 − 2 = 0 and x2 = 0 which yields the axial points (±√

2, 0). The CoCoA
commands are

Use T::=Q[x[1..2]];

I:=Intersection(Ideal(x[1]ˆ2-2,x[2]), Ideal(x[1],x[2]ˆ2-2)); -- axial

I:=Intersection(I,Ideal(x[1]ˆ2-1,x[2]ˆ2-1)); -- factorial

I:=Intersection(I,Ideal(x[1],x[2])); -- origin

I;

GBasis(I);
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FIGURE 11.3
Algebraic fan of design L2 of Example 11.23.

LT(I);

QuotientBasis(I);

Leaving term ordering unspecified in the first line earlier automatically selects degree
reverse lexicographic. The reduced Gröbner basis is {x3

1+x1x2
2−2x1, x2

1x2+x3
2−2x2, x1x3

2−
x1x2, x5

2 −3x3
2 +2x2} with leading terms x3

1, x2
1x2, x1x3

2, x5
2 so that the ideal of leading terms

is 〈x3
1, x2

1x2, x1x3
2, x5

2〉. The monomials which cannot be divided by the leading terms are
1, x1, x2, x2

1, x1x2, x2
2, x3

2, x4
2, x1x2

2. They are precisely one of the bases detected in Example
11.1. The model cannot contain x3

1 under this ordering. However, by rearranging the first
polynomial in the Gröbner basis, we obtain the equality x3

1 = −x1x2
2 + 2x1, which holds

over the design and the terms x1x2
2 and x1 are included in the model. This type of aliasing

or confounding between terms will be further covered in Section 11.6.
The ideal of leading terms can be used to count distribution of terms by total degree,

as counted by the CoCoA command “Hilbert(T/LT(I));” which retrieves the Hilbert
function of the complement of LT(I) in the first orthant. It takes values 1, 2, 3, 2, 1 for
j = 0, 1, 2, 3, 4 and zero for j ≥ 5. All the aforementioned results depend on the assumed
term ordering. In Section 11.8, we study results under different term orderings.

Example 11.14

Screening designs. A class of designs for main effect estimation while simultaneously
avoiding biases caused by the presence of second-order effects and avoiding confound-
ing of any pair of second-order effects was recently proposed by Jones and Nachtsheim
(2011). The authors produced designs of size n = 2k + 1 for different dimensions ranging
from k = 4 up to k = 30, and their construction is based on foldover (see Chapter 7) of
a certain small fraction of size k of a 3k design with levels −1, 0, 1 and then adding the
center point. Naturally, after foldover and adding the origin, the screening design still
remains a special fraction of a 3k design. Points to be folded over can be related to the
rows of a matrix called a conference matrix, (see Xiao et al. 2012).

Here we consider the designs for k = 4, 7 and 10. For k = 4, points in the screening
design are creating by the foldover of the matrix
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⎛
⎜⎜⎝

0 1 −1 −1
−1 0 −1 1
−1 −1 0 −1
−1 1 1 0

⎞
⎟⎟⎠

together with center point (0, 0, 0, 0) for a total of 9 points. For a lexicographic term
ordering, we retrieve the model 1, x3, x4, x2

4, x3x4, x3x2
4, x2

3, x2
3x4, x2

3x2
4, while with a degree

reverse lexicographic term ordering, we retrieve the model 1, x1, x2, x3, x4, x2
3, x3x4,

x2
4, x2x4. Note the flexibility of the design which can identify either a full product model

in two variables or a more balanced model with all four variables.
If we instead set a term order which eliminates x1 and then orders x2, x3, x4 using a

graded order, we retrieve the model 1, x2, x3, x4, x2x4x3x4, x2
3, x2

4, x3x2
4. This is achieved in

CoCoA using the following ring definition:

W:=Mat([[1,0,0,0],[0,1,1,1],[0,1,0,0],[0,0,1,0]]);

Use T::=Q[x[1..4]], Ord(W);

For k = 7, the design is obtained by adding the center point to a foldover of the
points shown in the left panel of Table 11.2 to give a total of 15 points. Under the usual
degree reverse lexicographic ordering in CoCoA, we retrieve the estimable model with
terms 1, x1, x2, x3, x4, x5, x6, x7, x2

6, x2
7, x2x7, x3x7, x4x7, x5x7 and x6x7. We note that use of

a graded order allows for the inclusion of all terms of degree one before the addition
of terms of second degree, and the total degree of this model (addition of all degrees
of exponents in the model) is 21. If a degree lexicographic order is used, the model
remains with the same total degree, but it interchanges one interaction for a quadratic
term 1, x1, x2, x3, x4, x5, x6, x7, x2

5, x2
6, x2

7, x5x6, x4x7, x5x7, x6x7. Lexicographic term order-
ings work in rather the opposite manner than graded orderings. For a lexicographic
ordering, all terms with x7 are included first. As this cannot go further than 1, x7, x2

7
because x3

7 = x7, then term inclusion adds terms and interactions with x6. Once these
are exhausted, terms involving x5 are included. This process ends with a model with
terms 1, x7, x2

7, x6, x6x7, x6x2
7, x2

6, x2
6x7, x2

6x2
7, x5, x5x7, x5x6, x5x6x7, x2

5, x2
5x7 and total degree

31. Looking at all possible term orderings is in general a complex and expensive task. In
Section 11.8, we discuss and comment on the whole set of models identified by the four
and seven factor designs, when considering all possible term orderings.

TABLE 11.2

Points to Be Folded Over for Two Screening Designs in Example 11.14

x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

0 1 −1 1 −1 1 −1 0 1 1 1 1 1 1 1 1 1

−1 0 1 −1 1 1 −1 1 0 −1 −1 −1 −1 1 1 1 1
1 −1 0 1 1 1 1 1 −1 0 −1 1 1 −1 −1 1 1
1 −1 −1 0 1 −1 −1 1 −1 −1 0 1 1 1 1 −1 −1

−1 −1 1 1 0 −1 −1 1 −1 1 1 0 −1 −1 1 −1 1
−1 1 −1 1 1 0 1 1 −1 1 1 −1 0 1 −1 1 −1

1 1 1 1 1 −1 0 1 1 −1 1 −1 1 0 −1 −1 1
1 1 −1 1 1 −1 −1 0 1 −1

1 1 1 −1 −1 1 −1 1 0 −1
1 1 1 −1 1 −1 1 −1 −1 0
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For k = 10, the points to be folded are given in the right panel of Table 11.2.
The standard term ordering in CoCoA was used to identify with this design
a model of total degree 30 with constant, all ten linear terms x1, . . . , x10, two
quadratic terms x2

9, x2
10 and eight two-factor interactions between x10 and one of

x2, . . . , x9. A lexicographic term ordering produces a model of much higher total
degree (44) which contains monomials in four variables only (x7, x8, x9 and x10):
1, x7, x8, x9, x10, x2

8, x2
9, x2

10, x7x8, x7x9, x7x10, x8x9, x8x10, x9x10, x7x8x10, x7x9x10, x8x9x10,
x2

8x10, x9x2
10, x2

9x10 and x2
9x2

10. The distribution of terms by degree in this case is counted
by the Hilbert function of the leading term ideal which equals 1, 4, 9, 6, 1 for j = 0, 1, 2, 3, 4
and zero for j ≥ 5.

Example 11.15

Response surface design, non-standard. We take a 16-point design which is a 52 facto-
rial with variable levels −2, −1, 0, 1, 2 with all internal points (forming a 32 design with
levels −1, 0, 1) removed:

(2, 0) (2, 1) (2, 2) (1, 2) (0, 2) (−1, 2) (−2, 2) (−2, 1)

(−2, 0) (−2, −1) (−2, −2) (−1, −2) (0, −2) (1, −2) (2, −2) (2, −1)

If I1 is the ideal of the full 52 factorial and I2 is the ideal of the 32 factorial, then the design
ideal corresponding to removal of internal points is given by the ideal quotient I1 : I2
(see the algebra–geometry dictionary in Cox et al. 2007). This ideal quotient is generated
by the polynomials x5

2 − 5x3
2 + 4x2, x5

1 − 5x3
1 + 4x1 and x2

1x2
2 − 4x2

1 − 4x2
2 + 16. It can be

shown that, for any term ordering, these polynomials form a reduced Gröbner basis, and
thus the design identifies a single model with terms 1, x2, x2

2, x3
2, x4

2, x1, x1x2, x1x2
2, x1x3

2,
x1x4

2, x2
1, x2

1x2, x3
1, x3

1x2, x4
1, x4

1x2. This is an example of a design which is a complement of
points with respect to a factorial grid (see Maruri-Aguilar et al. 2013).

11.5.2 Two-Level Designs

Example 11.16

Regular fraction. Let us take a 26−2 fractional factorial design in six variables with reso-
lution III (all main effects estimated independently of interaction) (see Chapters 1 and 7).
In classical notation, this has defining contrasts: {ABCD, CDEF}. We select the fraction
with ABCD = CDEF = 1 as generators of the defining contrast subgroup, and instead of
A, . . . , F, we use variables x1, . . . , x6. The design ideal is

I(D) = 〈x2
1 − 1, x2

2 − 1, x2
3 − 1, x2

4 − 1, x2
5 − 1, x2

6 − 1〉 + 〈x1x2x3x4 − 1, x3x4x5x6 − 1〉.
This is another instance of using the algebra–geometry dictionary in Cox et al. (2007).
The variety corresponding to the left ideal previously is the full factorial design 26 with
64 points. Adding the left ideal previously corresponds to the geometric intersection
of varieties, with the effect that we only keep those points that satisfy the two gener-
ators. The design ideal is created in the following CoCoA code as the sum of the ideal
defining the full factorial design and the ideal with defining equations of the desired
fraction:

Use T::=Q[x[1..6]];

I:=Ideal([Aˆ2-1|A In Indets()])

+Ideal(x[1]*x[2]*x[3]*x[4]-1, x[3]*x[4]*x[5]*x[6]-1);
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TABLE 11.3

Aliasing Table for Example 11.16

1 x1x2x3x4 x3x4x5x6 x1x2x5x6

x1 x2x3x4 x1x3x4x5x6 x2x5x6
x2 x1x3x4 x2x3x4x5x6 x1x5x6
x3 x1x2x4 x4x5x6 x1x2x3x5x6
x4 x1x2x3 x3x5x6 x1x2x4x5x6
x5 x1x2x3x4x5 x3x4x6 x1x2x6
x6 x1x2x3x4x6 x3x4x5 x1x2x5
x1x4 x2x3 x1x3x5x6 x2x4x5x6
x1x6 x2x3x4x6 x1x3x4x5 x2x5
x2x4 x1x3 x2x3x5x6 x1x4x5x6
x2x6 x1x3x4x6 x2x3x4x5 x1x5
x3x6 x1x2x4x6 x4x5 x1x2x3x5
x4x6 x1x2x3x6 x3x5 x1x2x4x5
x5x6 x1x2x3x4x5x6 x3x4 x1x2
x1x4x6 x2x3x6 x1x3x5 x2x4x5
x2x4x6 x1x3x6 x2x3x5 x1x4x5

The CoCoA command QuotientBasis(I); gives the basis of the quotient ring:

[1, x[6], x[5], x[5]x[6], x[4], x[4]x[6], x[3],

x[3]x[6], x[2], x[2]x[6],

x[2]x[4], x[2]x[4]x[6], x[1], x[1]x[6], x[1]x[4], x[1]x[4]x[6]]

If the aliasing relation is desired for a given monomial, this is computed using the nor-
mal form. For example, NF(x[2]*x[3]*x[6],I);with outputx[1]x[4]x[6] shows
that over the design, the term x2x3x6 is aliased with x1x4x6, equivalently x2x3x6−x1x4x6 ∈
I(D), and thus both terms appear in the same row of the aliasing (Table 11.3). The
aliasing table is read row-wise, for example, the first row implies that over the design
1 = x1x2x3x4 = x3x4x5x6 = x1x2x5x6. Note that the first column of Table 11.3 contains
the monomials in the quotient basis computed earlier and that the row containing the
monomial 1 has the generators of the defining contrast subgroup.

For regular fractions like this case, the effect of different term orderings in the model
means selecting (possibly) a different representative per row of the aliasing table. If
the command “Use T::=Q[x[1..6]], Lex;” is used instead of the first line in the
previous CoCoA code, the model is now selected using a lexicographic term order-
ing. Ten terms 1, x2, x4, x5, x6, x2x4, x2x6, x4x6, x5x6, x2x4x6 of the model coincide with
the model identified earlier, and six terms x1, x3, x1x4, x1x6, x3x6, x1x4x6 are replaced by
x2x5x6, x4x5x6, x2x4x5x6, x2x5, x4x5, x2x4x5. In each case, the replacement monomial is
taken from the same row.

Example 11.17

Regular fraction. Consider the 29−4 regular fraction of Chapter 7, Section 7.2.3. This frac-
tion is defined by generating words 1236, 1247, 1258 and 13459. Sixteen fractions are
possible depending on the signs allocated to the generating words. Here we generate
one possible fraction by adding 〈x1x2x3x6 − 1, x1x2x4x7 − 1, x1x2x5x8 − 1, x1x3x4x5x9 − 1〉
to the ideal of the full factorial design with levels ±1. This is achieved by the following
CoCoA commands:
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TABLE 11.4

Hilbert Function for Regular Fraction 29−4 of Example 11.17

Degree

Ordering 0 1 2 3 4 5

Lex 1 5 10 10 5 1
DegRevLex 1 9 21 1 0 0

Use T::=Q[x[1..9]],Lex;

I1:=Ideal([Aˆ2-1|A In Indets()]); -- factorial

J:=Ideal(x[1]*x[2]*x[3]*x[6]-1,

x[1]*x[2]*x[4]*x[7]-1,

x[1]*x[2]*x[5]*x[8]-1,

x[1]*x[3]*x[4]*x[5]*x[9]-1); -- generator

I:=I1+J; -- design ideal

Hilbert(T/LT(I)); -- count of monomials in model

The Hilbert function for the lexicographic order selected is shown in the first row of Table
11.4. We observe that the model identified has one monomial term of total degree five.
Due to the square-free nature of terms in a two-level design, this means the model has
one-five factor interaction. If instead a degree reverse lexicographic order is selected, the
model contains 21 two-factor interactions and only one three-factor interaction. This is
shown in the second row of the same table.

Given that this design is a regular fraction, selecting models is equivalent to selecting
representatives from each row in the alias table, according to the term ordering selected.
For example, the term five-factor interaction x5x6x7x8x9 that appeared under a Lex term
ordering is replaced by term x1x8 using a degree reverse lexicographic ordering. All
monomials whose normal form equals one coincide precisely with the entire defining
contrast subgroup given in (7.8) of Chapter 7. The following are those elements:

1 x4x5x7x8 x3x5x6x8 x3x4x6x7 x2x6x7x8x9 x2x4x5x6x9
x2x3x5x7x9 x2x3x4x8x9 x1x5x6x7x9 x1x4x6x8x9 x1x3x7x8x9 x1x3x4x5x9

x1x2x5x8 x1x2x4x7 x1x2x3x6 x1x2x3x4x5x6x7x8

These monomials are equal over the fraction and we say that they are aliased. As for
every term ordering, the monomial 1 satisfies 1 ≺ xα for α 
= 0; then for the aforemen-
tioned elements, the representative obtained by the algebraic techniques will always be
the monomial 1. In Section 11.6, we further discuss aliasing under the perspective of
ideals.

Example 11.18

Consider the design D = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)}. This design is a half fraction
of a 23 design with factor levels 0, 1. For a degree reverse lexicographic ordering and
working in the ring Q[x1, x2, x3], its design ideal has reduced Gröbner basis {x2

1 − x1x2
2 −

x2, x2
3 − x3, x1x2 − 0.5x1 − 0.5x2 − 0.5x3 + 0.5, x1x3 − 0.5x1 − 0.5x2 − 0.5x3 + 0.5, x2x3 −

0.5x1 − 0.5x2 − 0.5x3 + 0.5} The first three polynomials form the full factorial design,
while the latter three select points and express the confounding relation between the three
two-factor interactions. For example, the polynomial x1x2 −0.5x1 −0.5x2 −0.5x3 +0.5 = 0
earlier leads into the confounding x1x2 = 0.5x1 + 0.5x2 + 0.5x3 − 0.5. The model for this
design has terms {1, x1, x2, x3}.
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Now consider the same design and term ordering, but now work over the ring
Z2[x1, x2, x3], which implies that operations are performed with arithmetic modulo 2.
In this setting the design is a regular fraction with generator x1 + x2 + x3 = 1 (mod 2).
The reduced Gröbner basis is {x2

2 + x2, x2
3 + x3, x1 + x2 + x3 + 1} and the model identified

for this design is {1, x3, x2, x2x3}. The effect of modulo 2 arithmetic is evident in the first
two polynomials of the Gröbner basis corresponding to the full factorial part of D. The
polynomial x2

1 + x1 would complete the full factorial part of D but is redundant and thus
it is not included in the Gröbner basis. The last polynomial in the basis is the expected
generator which prevents the inclusion of term x1 in the model. The following CoCoA
commands perform the required operations:

Use T::=Z/(2)[x[1..3]];

I:=IdealOfPoints(Tuples([0,1],3));

J:=I+Ideal(Sum(Indets())+1);

GBasis(J);

QuotientBasis(J);

Example 11.19

Plackett–Burman, PB(8). Consider the Plackett–Burman design (Plackett and Burman
1946) with 8 points in k = 7 dimensions generated by circular shifts of (+1, +1, +1, −1, +1,
−1, −1) together with the point (−1, −1, −1, −1, −1, −1, −1). Using the standard order-
ing in CoCoA (degree reverse lexicographic), we retrieve the usual first order model
for this design: 1, x1, x2, x3, x4, x5, x6, x7. If a lexicographic term ordering in which
x1 � · · · � x7 is used, the model retrieved is a “slack" model in only four variables
with terms 1, x5, x6, x7, x5x7, x5x6, x6x7, x5x6x7.

11.5.3 Other Designs

Example 11.20

Græco-Latin square. It is a straightforward exercise to code up combinatorial designs
using indicator variables that associate treatment (Greek, Latin) and plot (row, column)
factors with vector spaces. Let us take as an example the 4×4 Graeco-Latin square derived
via the standard Galois field method (see Bailey 2008). The square is

Aα Bβ Cγ Dδ

Bγ Aδ Dα Cβ
Cδ Dγ Aβ Bα
Dβ Cα Bδ Aγ

The first step is to code the design with indicator functions: xij = 1 for the jth level of
factor i (and zero otherwise) for i, j = 1, . . . , 4. Here i indexes the factors: rows, columns,
Latin and Greek letters, respectively. This results in an array of 16 rows (total of cells)
and 16 columns (4 columns by each of factors row, column, Latin and Greek). The design
points are shown as rows in Table 11.5, where vertical lines are only added for clarity. For
example, the top-left cell in the Græco-Latin square has row and column equal to one
and treatment factors Aα so it corresponds to point (1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0)

in the first row of Table 11.5. The design ideal I(D) is generated for the aforementioned
point configuration. Using the degree lexicographic term ordering in CoCoA, the model
identified for the design has terms

1, u2, u3, u4, t2, t3, t4, r2, r3, r4, c2, c3, c4, t4u2, t4u3, t4u4,
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TABLE 11.5

Design Points for Graeco-Latin Design of Example 11.20

Row r Column c Factor u Factor t

1 2 3 4 1 2 3 4 A B C D α β γ δ

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0
1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0

1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1
0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0

0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0

0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0
0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1
0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0

0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0

0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0
0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0

0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1
0 0 0 1 0 0 0 1 1 0 0 0 0 0 1 0

where the variables u, t identify treatments (Latin and Greek letters) and the variables
r, c identify rows and columns of the design (see heading of Table 11.5). Note in the fol-
lowing exhibit the neat decomposition of model terms that coincides with the standard
analysis of variance for this orthogonal design (with df = degrees of freedom), where
the interaction between treatment factors (three terms involving t and u earlier) is often
allocated to the residual:

Source df
Mean 1
u (treatment factor 1) 3
t (treatment factor 2) 3
r (row factor) 3
c (column factor) 3
Interactions 3

Total 16

Example 11.21

Balanced incomplete block design (BIBD). Consider the following BIBD: {1, 2, 4}, {2, 3, 5},
{3, 4, 6}, {4, 5, 0}, {5, 6, 1}, {6, 0, 2} and {0, 1, 3}, that is, the first block b0 contains treatments
t1, t2 and t4. This design has n = 21 runs, t = 7 treatments t0, . . . , t6 and b = 7 blocks
b0, . . . , b6. Using a degree reverse lexicographic ordering, we retrieve the following model
terms:

1, t1, t2, t3, t4, t5, t6, b1, b2, b3, b4, b5, b6, t1b6, t2b5, t3b6, t4b2, t5b3, t5b4, t6b4, t6b5,
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while for a lexicographic term ordering, we retrieve

1, t0, t1, t2, t3, t4, t5, b0, b1, b2, b3, b4, b5, t0b3, t1b0, t1b4, t2b0, t2b1, t3b1, t3b2, t4b2.

In both cases, we retrieve t − 1 = 6 treatment terms and b − 1 = 6 block terms while
having 8 interaction terms.

Example 11.22

Incomplete block design (Chapter 3). Consider an incomplete block design with n = 12
runs and t = 6 treatments t1, . . . , t6 arranged in b = 6 blocks of size two (ti, tj) for the fol-
lowing pairs (i, j): (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (1, 6). Using the standard term ordering
in CoCoA gives the following model:

1, t6, t5, t4, t3, t2, b6, b6t6, b5, b4, b3, b2.

This model has t − 1 = 5 degrees of freedom for treatments, b − 1 = 5 for blocks plus
the interaction b6t6. A possibility for analysis would be to allocate the interaction b6t6 to
the residual error, with only one degree of freedom. Under a lexicographic ordering, we
retrieve the same model as the previous. This result is not extremely surprising given the
highly restricted range of monomial terms for the model for this design.

Example 11.23

Latin hypercube sample (Chapter 17). Latin hypercubes (McKay et al. 1979) are widely
used schemes in the design and analysis of computer experiments. The design region is
often the hypercube [0, 1]k and designs of interest are often those that efficiently cover
the design region. Latin hypercubes have at least two clear advantages over a random
selection of points: univariate projections of the design are uniform and they are simple
to generate.

The design L1 with points (0, 0, 0), (1/5, 1, 4/5), (2/5, 3/5, 2/5), (3/5, 4/5, 1/5), (4/5,
1/5, 1) and (1, 2/5, 3/5) is an example of randomly generated latin hypercube in k = 3
dimensions and n = 6 runs. Under the standard term ordering in CoCoA, the design
L1 identifies the model 1, x1, x2, x3, x2x3, x2

3. Experimentally, some latin hypercubes have
been found to identify certain types of models which are of minimal degree called cor-
ner cut models, (see Onn and Sturmfels 1999 and also Berstein et al. 2010). The design L1
belongs to such a class and will be discussed further in Section 11.8.

A second example of latin hypercube is L2 with points (0, 0, 4/5), (1/5, 1/5, 2/5),
(2/5, 2/5, 1), (3/5, 3/5, 0), (4/5, 4/5, 3/5) and (1, 1, 1/5). Under the same ordering as pre-
vious, L2 identifies the model 1, x2, x3, x2x3, x2

3, x3
3.

11.6 Understanding Aliasing

The algebraic method is not only a way of obtaining candidate models for a given design,
but it does, we claim, deliver considerable understanding of the notion of aliasing. Aliasing
is close to the idea of equivalence used in Section 11.3.6 to define the quotient operation and
is not restricted to factorial designs. Let I(D) be the design ideal and for two polynomials
f , g ∈ K[x1, . . . , xk], define

f (x) ∼D g(x),
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to mean the polynomials have the same value at the design points; that is,

f (x) = g(x), x ∈ D.

This is equivalent to f (x)−g(x) ∈ I(D) (see Section 11.4). Equivalently, we have, with respect
to any monomial ordering,

NF(f (x)) = NF(g(x)),

for x ∈ D since by Lemma 11.2, f (x) = NF(f (x)) for x ∈ D and similarly for g(x). We call this
algebraic aliasing. However, this is not quite the same as the statistical idea of aliasing that
f (x) = cg(x) over the design for some non-zero constant c, because scalar multiples can be
absorbed into constants in a regression model. That is, both f (x) and g(x) should not both
be in the same regression model.

We want to link this notion with vectors which span the same space. The values of a
polynomial f (x) on the design expressed as a (column) vector are defined as suppD(f (x)) :=
(f (x) : x ∈ D)′. Then f (x) ∼D g(x) is equivalent to suppD(f (x)) = suppD(g(x)). For example,
consider the design (±1, ±1, ±1) and the standard ordering of design points (−1, −1, −1),
(−1, −1, 1), . . . , (1, 1, 1), we have supp(x1x2x3) = (−1, 1, 1, −1, 1, −1, −1, 1)′ that is, the
column for x1x2x3 which would appear in the X matrix.

Definition 11.9 Collections of polynomials F and G are said to be statistically aliased if

span{supp(f ), f ∈ F} = span{supp(g), g ∈ G}. (11.7)

This aliasing is written as F ≈D G. Here the span of a set of vectors is the collection of all
linear combinations of them with real coefficients. This is a standard vector space.

Example 11.24

Consider the design in k = 2 dimensions with points (1, 1/2), (−1/2, 1), (−1, −1/2) and
(1/2, −1). Two models are {1, x1, x2

1, x3
1} and {1, x1, x2, x1x2}: the first was obtained with

a lexicographic term order, and the second was not retrieved by algebra but only by
checking that its design-model matrix is full rank. Notice that the first two terms in both
models are the same. We now convert the design-model matrix for the first model to an
orthogonal matrix using Gram–Schmidt orthogonalisation; see, for example, the package
far in R (R Core Team 2014). The original matrix and the orthogonal matrix are given
in Table 11.6, where the headings indicate (a) the monomials involved and (b) the lin-
ear transformations applied to achieve orthogonality. The orthogonal version of the first
model is {1, x1, x2

1 − 5/8, x3
1 − 17x1/20}, while the second model is already orthogonal.

Since the first two terms of the models are the same, the last two terms must span the
same bidimensional subspace, so we can write

{x2, x1x2} ≈D {x2
1 − 5/8, x3

1 − 17x1/20}.
We refine these statements by careful observation of the columns of the orthogonal ver-
sion of the design-model matrix for the aforementioned first model and that for the
second model (not shown). We see that {x2} ≈D {x3

1 − 17x1/20} and {x1x2} ≈D {x2
1 − 5/8}.

The orthogonality is needed: it is not true that {x2, x1x2} ≈D {x2
1, x3

1}.
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TABLE 11.6

(a) Design-Model Matrix for Model {1, x1, x2
1, x3

1} and (b) Its Orthogonal Version

(a) (b)

1 x1 x2
1 x3

1⎛
⎜⎜⎜⎜⎝

1 1 1 1

1 −0.5 0.25 −0.125
1 −1 1 −1

1 0.5 0.25 0.125

⎞
⎟⎟⎟⎟⎠

1 x1 x2
1 − 5/8 x3

1 − 17x1/20⎛
⎜⎜⎜⎜⎝

1 1 0.375 0.15

1 −0.5 −0.375 0.3
1 −1 0.375 −0.15

1 0.5 −0.375 −0.3

⎞
⎟⎟⎟⎟⎠

Given that any polynomial and its normal form satisfy f (x) = NF(f (x)) for x ∈ D, we
can rewrite (11.7) as

span{supp(NF(f )), f ∈ F} = span{supp(NF(g), g ∈ G}.

This means that any aliasing statement between collections of polynomials is equivalent to
one for the normal forms (Section 11.3.6). For f ∈ F, let

f =
∑
α∈L

θα,f xα,

where L is as defined in Section 11.4 and depends on the design D and the term ordering.
Let θf be the vector of θα,f and define θg similarly. Then since the design-model matrix X
is non-singular, by construction, we have

F ≈D G ⇔ span{θf , f ∈ F} = span{θg, g ∈ F}.

Thus, statistical aliasing can be thought of in two stages: (1) First reduce to expressing
each polynomial in F and G to its normal form using the algebra, and then (2) compare the
coefficient subspaces. In the regular factorial fraction case, the normal form of a monomial
is itself a monomial, which makes the interpretation easier, but in the general case, it is a
polynomial.

We can often find the alias classes by inspection, once we have the normal form. Con-
sider Example 11.15 and the monomials {x2

1x2
2, x4

1x4
2, x6

1x6
2, x8

1x8
2}. The normal forms are,

respectively,

4x2
1 + 4x2

2 − 16, 16x4
1 + 16x4

2 − 256,

320x4
1 + 320x4

2 − 256x2
1 − 256x2

2 − 4096,

5376x4
1 + 5376x4

2 − 5120x2
1 − 5120x2

2 − 65536.

Because of linear transformations, the span of 1, x2
1+x2

2, x4
1+x4

2 can be transformed to become
the span of 1, x2

1x2
2, x4

1x4
2. This is because over the design, the following two statements

are true:
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x2
1x2

2 = 4x2
1 + 4x2

2 − 16 = 4(x2
1 + x2

2) − 16(1) and

x4
1x4

2 = 16x4
1 + 16x4

2 − 256 = 16(x4
1 + x4

2) − 256(1).

The statements are built using Lemma 11.11 in Section 11.3.6 and the normal forms of mono-
mials previously. A similar operation can be performed to show that the span of monomials
1, x6

1x6
2, x8

1x8
2 is also equivalent to the span of 1, x2

1 + x2
2, x4

1 + x4
2. Therefore, we see that

{1, x2
1x2

2, x4
1x4

2} ≈D {1, x6
1x6

2, x8
1x8

2}.

The equivalence continues to all {1, x2k
1 x2k

2 , x2(k+1)

1 x2(k+1)

2 }. To retain the link to classical nota-
tion such as that in Chapter 7, Section 7.10, we might say that the collection {I, A2B2, A4B4}
is aliased with the collection {I, A6B6, A8B8}, and we might write

{I, A2B2, A4B4} ≈D {I, A6B6, A8B8}.

This arises because A2B2 ≈ A2 + B2 − 4I and A4B4 ≈ A4 + B4 − 16, and both the
reduced forms are estimable. In this example, odd terms also pair up. The normal forms

of
{

x3
1x3

2, x5
1x5

2, x7
1, x7

2, x9
1x9

2

}
are, respectively, 4x3

1x2 + 4x1x3
2 − 16x1x2, 80x3

1x2 + 80x1x3
2 −

384x1x2 1344x3
1x2 + 1344x1x3

2 − 6656x1x2 and 21760x3
1x2 + 21760x1x3

2 − 108544x1x2, so

that
{

1, x3
1x3

2, x5
1x5

2

}
≈D

{
1, x7

1x7
2, x9

1x9
2

}
and so on. In classical notation,

{
I, A3B3, A5B5} ≈{

I, A7B7, A9B9}.

11.7 Indicator Functions and Orthogonality

At times it is convenient to see the design D as a subset of a full factorial design N . This
is most usual when we start with some basic design, such as a full factorial, and consider
a fraction as in Example 11.16. In such case, an algebraic description of the fraction can be
made via an indicator function FD, rather than via a Gröbner basis. The design ideal of D
is unique, but the objects that change are the generating equations we choose to describe
I(D). These encode different information on D. An indicator function is a single additional
polynomial function which we add to the generators of the ideal of the full factorial design
to form the ideal of D.

Example 11.25

Consider the design ideal generated by regular fractional factorial 23−1 design, that is,
I(D) = 〈x2

1 − 1, x2
2 − 1, x2

3 − 1, x1x2x3 + 1〉. The first three terms form the Gröbner basis
of the full factorial {(±1, ±1, ±1)}. From the equation x1x2x3 + 1 = 0, we can deduce the
indicator functions of D in N as follows. We know that x1x2x3 = −1 over points in D. By
the regularity of the fraction, we have

x1x2x3 =
{−1 for x ∈ D

1 for x ∈ N \ D
.
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A straightforward transformation of this is used to build the indicator

g(x1, x2, x3) = 1 − x1x2x3

2
=

{
1 for x ∈ D
0 for x ∈ N \D.

Then, on the full factorial,

x1x2x3 + 1 = 0 ⇔ g(x1, x2, x3) = 1.

More generally, let N be the basic design which is not necessarily a full factorial
design, and let D ⊂ N be a fraction. Sometimes N is called a candidate set. Fix a monomial
order and, via the I(N ), construct a vector space basis for interpolation over N . Then the
indicator function of D interpolates the 0, 1 values as required:

g(x) =
{

1, x ∈ D
0, x ∈ N \D

.

In this example, since N is a full factorial design, there is only one basis for interpolation,
{xα1

1 xα2
2 xα3

3 : αi ∈ {0, 1} for i = 1, 2, 3}, and the indicator involves only terms for α =
(0, 0, 0) and α = (1, 1, 1). This last fact is a consequence that the design is a regular half
fraction.

Example 11.26

The indicator function for the regular fraction 26−2 of Example 11.16 is

g(x1, x2, x3, x4, x5, x6) = 1 + x3x4x5x6 + x1x2x5x6 + x1x2x3x4

4
,

which takes the value one at points in the fraction and zero in the rest of the 26

design. Thus adding the ideal 〈g(x1, x2, x3, x4, x5, x6) − 1〉 to the ideal of the full facto-
rial yields the ideal of the same fraction as described in Example 11.16. Conversely, to
retrieve the 48 points which are the complement of the regular fraction, we would add
〈g(x1, x2, x3, x4, x5, x6)〉 to the ideal of the full factorial design.

The coefficients of the indicator functions expressed over the interpolation basis embed
information on the geometric/combinatoric properties of the fraction. We exemplify this
as follows in the binary case where N is the full factorial design 2d with coding {−1, 1} (see
Fontana et al. 2000). For factors with mixed levels, coding with complex numbers can be
used (see Pistone and Rogantin 2008). Two monomials xα, xβ are said to be orthogonal over
D ⊂ N if the corresponding columns in the design-model matrix X are orthogonal:

∑
x∈D

xαxβ =
∑
x∈D

xα+β = 0.

We can express this in terms of the indicator function g(x) for the design N and write

∑
x∈N

xα+βg(x) = 0

because g(x) = 0 for points x ∈ N \D and g(x) = 1 over the design, that is, for x ∈ D.
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Following Example 11.25, we want to check whether two-way-factor interactions are
orthogonal or not to the factor missing from the interaction. Setting α = (1, 0, 0) and β =
(0, 1, 1), we are checking orthogonality between x1 and x2x3. We use the previous indicator
g(x1, x2, x3) and obtain

∑
x∈N

x1x2x3
1 − x1x2x3

2
=

∑
x∈N

x1x2x3 − 1
2

=
∑
x∈N

1
2

x1x2x3 − 4 = −4 
= 0,

thus showing that there is no orthogonality between x1 and x2x3. Note that the calculations
and result would be the same if we checked instead orthogonality between x2 and x1x3 or
between x3 and x1x2. In the previous text, we used the fact that the full factorial design N
has 8 points. In the following CoCoA code, the normal form of x1x2x3 is a constant which
when summed over the four design points does not equal zero, that is, x1 and x2x3 are
non-orthogonal:

Use T::=Q[x[1..3]];

G:=(1-x[1]*x[2]*x[3])/2; -- indicator function

J:=Ideal([Aˆ2-1|A In Indets()])

+ Ideal(G-1); -- ideal of fraction D

NF(x[1]*x[2]*x[3],J);

It is no coincidence of the aforementioned that the coefficient of x1x2x3 in the indicator
function is not zero. This idea generalises for designs over ={−1, 1}k, all non-zero square-
free monomials sum to zero, so orthogonality holds if and only if the constant term is zero.

A practical advantage of the indicator function is that we can take union and intersec-
tions of design by considering g(x) as a Boolean function over the basic design N :

gD1∩D2 = gD1 gD2 , gD1∪D2 = gD1 + gD2 − gD1 gD2 .

Again the zero coefficients of the normal form of gD1∩D2 and gD1∪D2 over the interpolation
monomial basis of N are informative of the geometry of the intersection and union designs.
This is an alternative to operations with ideals as suggested from the algebra-geometry
dictionary in Cox et al. (2007) (see also Examples 11.11, 11.13 and 11.16).

Example 11.27

Take N to be the full factorial design 23 with levels ±1. The indicator function for the half
fraction D1 ⊂ N defined by the design ideal I(D1) = 〈x2

1 −1, x2
2 −1, x2

3 −1〉+〈x1x2x3 −1〉 is
gD1 = (1+x1x2x3)/2. Set D2 ⊂ N to be the design with points (−1, −1, −1) and (1, 1, −1).
The indicator function for D2 is gD2 = (1 + x1x2 − x3 − x1x2x3)/4. We now build the
indicator of the union D1 ∪D2. This design is a 3/4 fraction of the full design N , and after
simplification, the indicator is

gD1∪D2 = 3 + x1x2 − x3 + x1x2x3

4
.

Orthogonality of factorial effects can be checked as illustrated.
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11.8 Fans, State Polytopes and Linear Aberration

The computations of Gröbner bases and model identification with Gröbner bases described
in Sections 11.3 and 11.4 depend upon the term ordering selected. Recall that for a
given term order ≺, the Gröbner basis algorithm produces a basis for the quotient ring
K[x1, . . . , xk]/I(D) which consists precisely of the smallest monomials under ≺ that are lin-
early independent under the congruence (11.5). This set of monomials forms the support
of a saturated model we search for. For this reason, setting a particular term order ≺ allows
the analyst to put preference over terms which will be identified by the model, for instance,
a graded ordering will include as many terms of order one as possible in all variables
before adding terms of second degree in the model. On the other end of the spectrum,
a lexicographic order selects as many terms in the first variable in the selected order before
adding terms in the second variable and so on. In other instances, the experimenter might
be interested in exploring the range of all models identifiable by the design using algebraic
techniques and different term orders.

This collection of models obtained by varying term orders is termed the fan of the design
and allows assessment of design properties like estimation capacity in Chen and Cheng
(2004) and Cheng and Mukerjee (1998) or the minimal linear aberration of the design
in Berstein et al. (2010) and its general case of non-linear aberration (see Berstein et al.
2008). Fan computations have been applied, among others, to industrial experiments (see
Holliday et al. 1999 and systems biology in Dimitrova et al. 2007).

11.8.1 Algebraic Fan of a Design

Given a design ideal I(D) and ranging over all possible term orderings, we have a col-
lection of reduced Gröbner bases for I(D). A crucial fact is that despite the collection of
different term orderings being an infinitely countable set (excluding the trivial case of one
dimension), the collection of reduced Gröbner bases has always a finite number of distinct
elements (see Mora and Robbiano 1988). Associated to this collection of Gröbner bases,
there is a collection of polyhedral cones, called the Gröbner fan (see Mora and Robbiano
1988). We use the term algebraic fan of the design for the collection of different bases for the
quotient ring K[x1, . . . , xk]/I(D). In other words, the algebraic fan is a collection of saturated
models.

For some relatively simple designs, such as factorial designs, the algebraic fan has
only a single model. The general class of designs with a single model is called the class
of echelon designs (see Pistone et al. 2001). However, in general, computing the alge-
braic fan of a design is an expensive computation. Reverse search techniques are at the
core of state-of-the-art software gfan (Jensen 2009), while other approaches remain under
investigation, such as the polynomial-time approach based on partial orderings, matrix
operations and zonotopes (see Babson et al. 2003; Maruri-Aguilar 2005). The well-known
link between Gröbner basis calculations and matrix operations for design ideals allows
these methodologies to be efficient (see De Loera et al. 2009; Lundqvist 2010).

Example 11.28

For the central composite design in two dimensions and axial points at
√

2, the algebraic
fan has only two models. The models are listed in Example 11.1.
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Example 11.29 (Continuation of Example 11.23)

The collection of all models identifiable by the design L1 (algebraic fan of L1) is com-
puted. Design L1 identifies 27 different models which can be classified into six types of
models, up to permutations of variables: 1, x1, x2

1, x3
1, x4

1, x5
1 (3 models); 1, x1, x2

1, x3
1, x4

1, x2

(6 models); 1, x1, x2
1, x3

1, x2, x1x2 (6 models); 1, x1, x2, x2
1, x1x2, x2

2 (3 models); 1, x1, x2, x3,
x2

1, x3
1 (3 models), and 1, x1, x2, x3, x2

1, x1x2 (6 models). We say that this fan has a complete
combinatorial structure, meaning that each class of models is closed under permutations
of variables, for example, if the model 1, x1, x2

1, x3
1, x4

1, x5
1 is in the class, so are models

1, x2, x2
2, x3

2, x4
2, x5

2 and 1, x3, x2
3, x3

3, x4
3, x5

3. The algebraic fan of L1 is depicted in Figure 11.2,
where each model is represented as a staircase diagram using one small box for each
monomial term, and axes for variables are x1, x2, x3 in counterclockwise direction start-
ing from bottom left. The figures and Gröbner basis computations were performed with
the software gfan Jensen (2009). The models are presented by classes following the order
described previously (row-wise from top left). For instance, the first diagram shows the
model 1, x3, x2

3, x3
3, x4

3, x5
3, the second is 1, x1, x2

1, x3
1, x4

1, x5
1 and the third is 1, x2, x2

2, x3
2, x4

2, x5
2.

Now we turn our attention to the other latin hypercube L2 in Example 11.23. From the
design coordinates we note that this design has complete confounding between x1 and
x2, and we should expect a much more limited collection of models. Indeed, this design
identifies only 11 models which are depicted in Figure 11.3. Only one of the models con-
tains terms with x1 (first from left in second row), while the rest of the models have
monomials in x2 and x3. The models can be classified in three classes, only one of which
is closed under permutation of variables (shown in the left column in Figure 11.3).

Example 11.30 (Continuation of Example 11.19)

In total there are 218 different hierarchical models identifiable by the Plackett–Burman
design. Those models belong to 6 different classes obtained by permutations of variables.
As the design has only two levels in each factor, the models identified by this design are
all multilinear with total degree of models ranging between 7 and 12. See Table 11.7 for

TABLE 11.7

Summary of the Algebraic Fan of the Plackett–Burman Design

Simplicial Example

Complex Degree HS(s) Class Size Vertex/Model

7 1 + 7s 1 (1, 1, 1, 1, 1, 1, 1)

1, x1, x2, x3, x4, x5, x6, x7

8 1 + 6s + s2 21 (1, 1, 1, 2, 1, 2, 0)

1, x1, x2, x3, x4, x5, x6, x4x6

9 1 + 5s + 2s2 84 (1, 0, 2, 2, 1, 0, 3)

1, x1, x3, x4, x5, x7, x3x7, x4x7

10 1 + 4s + 3s2 56 (0, 0, 0, 2, 4, 2, 2)

1, x4, x5, x6, x7, x4x5, x5x6, x5x7

28 (0, 0, 1, 3, 3, 0, 3)

1, x3, x4, x5, x7, x4x5, x4x7, x5x7

12 1 + 3s + 3s2 + s3 28 (0, 0, 0, 0, 4, 4, 4)

1, x5, x6, x7, x5x6, x5x7, x6x7, x5x6x7
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details and examples for each class. The Hilbert series HS(s) was included to count the
number of terms by degree in each class.

Example 11.31 (Continuation of Example 11.16)

The fan of the regular 26−2 fraction with generators {ABCD, CDEF} is of relatively modest
size: 132 models which belong to six equivalence classes whose sizes range from 12 to
24. Models range from total degree 26 to 32 and none of the equivalence classes is closed
under permutation of variables.

Despite this apparent fan simplicity, these six classes share only three different total
degrees and Hilbert functions. For instance, three different model classes share the same
total degree 26, while other two different model classes have total degree 28. Table
11.8 shows a summary of the fan computations for this design, and Figure 11.4 shows
simplicial representation of models in each class (vertices refer to single variables, edges
to two-factor interactions and so on).

TABLE 11.8

Summary of the Algebraic Fan of Regular Fraction 26−2

Total Class Example

Class Degree HS(s) Size Vertex/Model

I 26 1 + 6s + 7s2 + 2s3 24 (5, 5, 6, 2, 1, 7)

1, x1, x2, x3, x4, x5, x6, x1x2, x1x3, x1x6,
x2x3, x2x6, x3x6, x4x6, x1x3x6, x2x3x6

II 24 (7, 1, 4, 4, 3, 7)

1, x1, x2, x3, x4, x5, x6, x1x3, x1x4, x1x5,

x1x6, x3x6, x4x6, x5x6, x1x3x6, x1x4x6

III 24 (4, 4, 6, 2, 2, 8)

1, x1, x2, x3, x4, x5, x6, x1x3, x1x6, x2x3,
x2x6, x3x6, x4x6, x5x6, x1x3x6, x2x3x6

IV 28 1 + 5s + 7s2 + 3s3 24 (6, 6, 2, 6, 0, 8)

1, x1, x2, x3, x4, x6, x1x2, x1x4, x1x6, x2x4,

x2x6, x3x6, x4x6, x1x2x6, x1x4x6, x2x4x6

V 24 (4, 8, 0, 8, 4, 4)

1, x1, x2, x4, x5, x6, x1x2, x1x4, x2x4, x2x5,
x2x6, x4x5, x4x6, x1x2x4, x2x4x5, x2x4x6

VI 32 1 + 4s + 6s2 + 4s3 + s4 12 (8, 0, 8, 8, 0, 8)

1, x1, x3, x4, x6, x1x3, x1x4, x1x6, x3x4, x3x6,
x4x6, x1x3x4, x1x4x6, x1x3x6, x3x4x6, x1x3x4x6

FIGURE 11.4
Depiction of simplicial models for fan classes I–VI (left to right), design 26−2.
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Example 11.32 (Continuation of Example 11.14)

For k = 4 dimensions, the algebraic fan of this screening design has 54 models. Models
in the fan belong to only three equivalence classes, each of which is closed under permu-
tation of variables. Representatives of each class are shown in Example 11.14: the model
obtained with a lexicographic order belongs to a class of size 6; the model obtained under
degree lexicographic belongs to a class of size 24, while the class of models obtained with
an elimination ordering has also size 24.

The algebraic fan of the screening design for seven factors k = 7 and n = 15 runs is
a complicated and large object which nevertheless exhibits in some instances combina-
torial symmetry. The design identifies 18, 368 staircase models which can be classified
in 25 equivalence classes. The class sizes range from 7 to 2520, while the total degree
of models ranges from 21 to 31. Six equivalence classes are closed under permutation
of variables, and this includes the classes of models identified by degree lexicographic
(420 models) and by degree reverse lexicographic (210 models); examples of models for
each ordering are computed in Example 11.14. Two other equivalence classes are almost
closed under permutations of variables; each can be paired with another small
equivalence class.

11.8.2 State Polytope and Linear Aberration

The state polytope of I(D) is a geometric object which is associated with the Gröbner fan of
I(D) (see Bayer and Morrison 1988; Mora and Robbiano 1988). The state polytope is con-
structed as the convex hull of state vectors, and each state vector is built from a model in
the algebraic fan by simply adding the exponents of the model. Aside from a proportion-
ality constant, each state vector is indeed the centroid of the staircase diagram represented
by the model and thus the state polytope is the convex hull of all those centroids (see the
following example).

Example 11.33

For the central composite design of Examples 11.1, 11.13 and 11.28, the state vector of
the model with terms 1, x1, x2, x2

1, x1x2, x2
2, x3

1, x4
1, x2

1x2 is (0, 0) + (1, 0) + (0, 1) + (2, 0) +
(1, 1) + (0, 2) + (3, 0) + (4, 0) + (2, 1) = (13, 5). The other model in the fan is the conjugate
of the earlier, that is, it is obtained by permuting the variables thus its state vector is
(5, 13). Therefore, the state polytope of the central composite design is the convex hull
conv({(13, 5), (5, 13)}).

The state polytope of I(D) encodes information in terms of each variable about the
weighted total degree of each model in the fan of design D. A simple argument of lin-
ear programming shows that models in the algebraic fan are those that minimise a simple
linear cost function on the weighted degree of the model. This is the idea of linear aberration
defined in Berstein et al. (2010). This concept of associating cost functions to staircase poly-
nomial models has been generalised to nonlinear cost functions in Berstein et al. (2008) and
De Loera et al. (2009).

Example 11.34

For the Latin hypercube design L1 of Example 11.23 the state polytope of its design
ideal is built with state vectors for each of the 27 models enumerated in Example 11.29.
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For instance, the model 1, x1, x2
1, x3

1, x4
1, x5

1 has state vector (15, 0, 0), and as the other two
models in this class are created by permutations of variables, the same action is per-
formed on the state vectors, so for this class, we have three vectors: (15, 0, 0), (0, 15, 0)

and (0, 0, 15). A similar construction and arguments are used for each model in the fan of
L1, and we have 6 vectors for each of the permutations of (10, 1, 0), (7, 2, 0) and (4, 2, 1),
three permutations for each of (4, 4, 0) and (6, 1, 1).

There is a special type of polynomial model which is of minimal weighted degree. Such
models are termed corner cut staircases (see Onn and Sturmfels 1999), as their exponents
can be separated by their complement by a single hyperplane. The properties of corner
cut staircases and their cardinality have been studied in literature (see Corteel et al. 1999;
Wagner 2002).

A design that identifies all corner cut models is termed a generic design (see Onn and
Sturmfels 1999), and automatically a generic design is of minimal linear aberration (see
Berstein et al. 2010). The collection of models identified by design L1 (of Examples 11.23,
11.29 and 11.34) is the set of all corner cut staircases for k = 3, n = 6, and thus L1 is a generic
design. State polytopes associated with corner cuts and generic designs are described in
Müller (2003).

In addition to information about degrees of models in the fan, the state polytope also
encodes information to compute Gröbner bases. To each vertex of the state polytope, a
normal cone is associated (see Ziegler 1995). The collection of all those cones is precisely
the Gröbner fan of I(D), in the sense that the interior of each full dimensional cone contains
ordering vectors necessary to compute the Gröbner basis (and identify the model) for the
corresponding vertex.

In Figure 11.5, cones in the fan of state polytopes for designs L1 and L2 are depicted. As
in each case the tridimensional cones form a partition of the first orthant, the figures show
a slice of the cones when intersected with the standard simplex. The diagram for design L1
(a) shows 27 cells, one for each model. The central symmetry of the diagram corresponds
to symmetry of models under permutation of variables. Ordering vectors taken from the
same cell will yield the same vertex (and corresponding model). Design L2 produced the
(b) in Figure 11.5. The diagram shows still some symmetry, but not central symmetry.

(a) (b)

FIGURE 11.5
Gröbner fan for designs L1 (a) and L2 (b) of Example 11.23.
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This symmetry reflects the range of models computed for L2 in Example 11.29, where only
11 models are identifiable by L2, and 10 models are in terms of x2 and x3.

11.9 Other Topics and References

The algebraic method in the form discussed here started with Pistone and Wynn (1996),
Diaconis and Sturmfels (1998) and Dinwoodie (1998), and the basic ideas are presented
in the monograph by Pistone et al. (2001). A short review is in Riccomagno (2009). More
extensive work on the computation of universal Gröbner bases with zonotopes appears in
Babson et al. (2003). Recent work showed the relation between minimal aberration models
and the border description of models in terms of Betti numbers of monomial ideals (see
Maruri-Aguilar et al. 2012). For the link between Gröbner basis methods and projection
properties of factorial designs, see Evangelaras and Koukouvinos (2006). Applications to
mixture designs are found in Giglio et al. (2001) and Maruri-Aguilar et al. (2007). Often,
design coordinates are not known or perhaps are measured with some error in which case
numerically stable computations have been studied using border bases rather than Gröbner
bases (see Heldt et al. (2009); Robbiano and Torrente (2013)). Industrial applications were
performed, perhaps surprisingly early (Holliday et al. 1999; Pistone et al. 2000).

For an excellent summary of the wider work in the field of algebraic statistics, see Drton
et al. (2009). One topic omitted from this chapter, but important for conducting exact con-
ditional test for contingency tables via Markov chain Monte Carlo is, the construction of
Markov bases; see Hara et al. (2010); Hara et al. (2012); Hara and Takemura (2010) and
Carlini and Rapallo (2011). Important applications to biology, which continue, are covered
in Pachter and Sturmfels (2005). Related and of considerable recent interest is the algebraic
study of boundary exponential models (Rauh et al. 2011; Cena and Pistone 2007; Drton and
Sullivant 2007).

In this chapter we study direct problems in design of experiments, that is, given a design,
the properties it has. Inverse problems in design have also been studied from the perspec-
tive of algebra. From a starting configuration of points and a given set of monomial terms
of interest (model), algorithms have been developed to retrieve subsets of the original con-
figuration that are able to identify the given model. The starting configuration is typically
a full factorial equally spaced grid. Here we only give an example, adapted from Fontana
et al. (2013).

Example 11.35

Consider the full factorial design 24 with levels 0 and 1 and the model with all lin-
ear terms and all two-factor interactions. This model has 11 terms: 1, x1, x2, x3, x4,
x1x2, x1x3, x1x4, x2x3, x2x4 and x3x4. Simple but expensive enumeration techniques would
allow to detect that out of

(16
11

) = 4368 possible subsets of the full design; there are 3008
fractions that identify the model, while the remaining 1360 cannot identify it.

The techniques using circuits of matrices in Fontana et al. (2013) avoid computing
ranks of design-model matrices thus making the search very efficient. Results for the
inverse problem have also been given using border bases (see Caboara and Robbiano 2001;
Robbiano 2006). Recall that the emphasis of these results is in obtaining design-model
matrices that are full rank.
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12.1 Introduction

The topic of this part of the handbook—optimal design for nonlinear and spatial models—
allows for a very broad range of subtopics. We should first distinguish these from those
formulated for linear models. A salient feature of design problems for linear models is
that the common functions expressing the experimenter’s loss, when estimating the mean
response, do not depend on the unknown parameters being estimated. In this chapter, a
number of design problems are introduced in which this very convenient feature is absent,
and ways of dealing with its absence are discussed in general terms. Thus, although we
treat classical nonlinear regression models in which a response variable y is measured with
additive error and E [y|x] is a nonlinear function of parameters θ to be estimated after the
experiment is conducted, there is a multitude of other applications. In this chapter, these
subjects will be introduced in broad generality only, and some historical context provided;
precise details and examples are given in the three chapters which follow:

• Designs for Generalized Linear Models (Chapter 13)
• Designs for Selected Nonlinear Models (Chapter 14)
• Optimal Design for Spatial Models (Chapter 15)

Chapters 22, 24 and 25 deal with special applications that use nonlinear models.

12.2 Generalized Linear Models

For a book-length treatment of generalized linear models (GLMs), we refer the reader to
the now classic text McCullagh and Nelder (1989). Briefly, the response variable y, given a
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covariate vector x chosen by the experimenter, follows a distribution from the exponential
family, with (canonical) density

p
(
y|θ,φ, x

) = exp
{

yθ − b (θ)

a (φ)
+ c

(
y,φ

)}
,

for scalar functions a (·) , b (·) and c (·, ·). The canonical parameter θ relates the systematic
linear component η (x) = f ′

(x)β, with regressors f (x) and regression parameters β, to the
mean μ = db(θ)/dθ via an invertible link function g, namely, η = g (μ). We write h = g−1;
h(1) and h(2) are the first and second derivatives with respect to η.

The parameters are typically estimated by maximum likelihood, computed from obser-
vations

{
yi

}n
i=1 made at points {xi}n

i=1 chosen from a design spaceχ. The asymptotic variance
of β̂ is the inverse I−1 (β) of the information matrix:

I (β) = X′UX,

where X is the model matrix, with ith row f ′
(xi) (i = 1, . . . , n) and U is the diagonal matrix

of weights, with ith diagonal element
(
h(1) (η (xi))

)2
/Var [y|xi].

If the designer is primarily interested in precise estimation ofβ, then he or she will aim to
maximize, in some sense, I (β); this leads to the adoption of classical alphabetic optimality
criteria—notably D-optimality, in which the goal is maximization of det (I (β)).

The mean is estimated by

μ̂ (x) = h
(

f ′
(x) β̂

)
,

with asymptotic variance and asymptotic bias given by (Robinson and Khuri 2003)

Var [μ̂ (x)] =
(

h(1) (η (x))
)2

f ′
(x) I−1 (β) f (x) ,

Bias [μ̂ (x)] = h(1) (η (x)) f ′
(x) I−1 (β) X′Uψ + 1

2
h(2) (η (x)) f ′

(x) I−1 (β) f (x) ,

where ψn×1 has elements

ψi = −h(2) (η (xi))

2
f ′

(xi) I−1 (β) f (xi) .

If interest focusses on prediction of mean values, then the designer will aim to minimize
some function of the mean squared errors (MSEs)

MSE [μ̂ (x)] = Var [μ̂ (x)] + Bias2 [μ̂ (x)] ,

an obvious choice is the integral or average of MSE [μ̂ (x)] over the design space χ.
The class of GLMs spawns a wealth of particular applications and related design issues.

Prominent among these is logistic regression, in which a binary response y has

P
(
y = 1

) def= π = L (α + βx) ,
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for L(η) = 1/
(
1 + e−η

)
, the logistic distribution. Here μ = π and η = g (μ) = ln (π/(1 − π)),

the logit. One might seek a design—a choice of values of x and a specification of the fre-
quencies with which y is to be observed at these values—in order to estimate the linear
parameters efficiently, or to study functions of these parameters. For instance, in bioassay
and dose–response problems, interest often focusses on the covariate value

xπ0 = L−1 (π0) − α

β
,

required to attain a response y = 1 in a specified proportion π0 of the population.
The role of the logistic distribution in the aforementioned may of course be played by

other distributions; if L is replaced by the Gaussian distribution function, then one is deal-
ing with probit regression, and similar design problems are of interest. One of the earliest
instances of nonlinear regression design is for the exponential regression GLM—Fisher
(1922) considered a dilution-series problem, with P

(
y = 1

) = exp(−θx) with θ, x > 0. This
problem is also the subject of an example by Fedorov (1972, pp. 121–122), who notes that
the information matrix for θ is a scalar, maximized by placing all observations at the
solution x (≈1.6/θ) of the equation 2e−θx + θx = 2.

In the Poisson count model, y follows a Poisson distribution with mean μ = f ′
(x)β,

and the experimenter is typically interested in efficiently estimating functions of β. The
optimal design will of course depend on which such function is of interest. Particular
examples are discussed, for response surface exploration in an environmetric setting, by
Myers (1999).

In these problems, and indeed in virtually all design problems for GLMs, one begins by
determining an optimal design under the assumption that certain parameters—even those
to be estimated from the experimental data—are known beforehand. This, clearly unten-
able, assumption might then be dropped in a number of ways, all discussed in detail in the
chapters which follow. One can content oneself with a locally optimal design, in which opti-
mality is sought only at, or in a small neighbourhood of, these assumed parameter values.
Alternatively one might design so as to minimize the maximum loss, with the maximum
evaluated over a set of parameters—a mild robustness criterion which is also discussed
in Chapter 20. Another approach is to choose the design points sequentially, at each stage
using parameter estimates derived from the preceding observations.

A further possibility, when the loss function being minimized depends on unknown
parameters, is to integrate them out, with respect to a prior, and to then minimize the aver-
age loss so obtained. This ‘pseudo’ Bayesian criterion is discussed in Chapter 13 and is a
topic to which we return in Section 12.3.

The field of optimal design for GLMs seems to have blossomed in the 1980s, and many
contributors acknowledge a debt to Ford et al. (1989), who surveyed the then current state
of research in a more general context of nonlinear design. Burridge and Sebastiani (1992)
obtained locally D-optimal designs, that is, designs maximizing det (I (β)) for fixed values
of β. For this, they pointed out that if the parameters are known, then the problem can
be transformed to the D-optimality problem for a linear model with model matrix U1/2X;
they applied methods developed for linear design theory to derive optimal designs in this
transformed problem and then translated these back to the original problem. In a small
simulation study, with a bivariate linear predictor η and canonical link η = μ1/k for vari-
ous values of k, the efficiencies turned out to be relatively insensitive to the settings of the
parameter values.
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Ford et al. (1992) refer to this transformed problem, in terms of U1/2X, as the canonical
form of the problem. They consider the structure of the induced design space in some depth
and use methods of Elfving (1952) to obtain locally D-optimal and c-optimal designs; the
latter are designs minimizing c′I−1 (β) c for fixed c. As do Burridge and Sebastiani (1992),
they concentrate on examples with two linear parameters (β0,β1); in both of these papers,
the optimal designs turn out to be concentrated on one, two or three points. Atkinson and
Haines (1996) apply this canonical approach to, among others, examples of multifactor
experiments.

A class of attractive alternatives to local optimality is given by sequential designs. The
asymptotic theory related to this is most well developed for the case of D-optimality. Here
it is supposed that one will obtain n1 observations from an initial, static design. These are
used to give initial estimates of the parameters, following which the remaining n − n1
observations are made sequentially, at each stage choosing the next design point so as
to maximize the determinant of the information matrix evaluated at the current param-
eter estimates. Chaudhuri and Mykland (1993) show that, under certain conditions, the
sequence of designs so obtained converges to the D-optimal design for the true parameters.
These conditions include the requirement that n1/n → 0 as both n and n1 tend to infinity
and an assumption that the parameter estimates be consistent. A consequence is that infer-
ences made from a sequentially constructed design have the same asymptotic properties
as if they were made following a static design—an observation previously made by Wu
(1985) in a related context. Sinha and Wiens (2002) extend the ideas of Chaudhuri and
Mykland, and incorporate some uncertainty as to the nature of the parametric model.
Dror and Steinberg (2008) introduce significant improvements to these methods; in par-
ticular their sequential procedure for design construction is easily adapted to multifactor
experiments and to a range of possible models.

One likely reason for the popularity of the D-optimality criterion in these problems is its
invariance under non-singular transformations of the design space, leading to the possibil-
ity of transforming to the aforementioned canonical form of the problem. Failing this, other
methods are available. Yang (2008) takes a direct algebraic approach to obtain A-optimal
designs (minimizing trace

(
I−1 (β)

)
) for logistic, probit and Laplace models with two linear

parameters. Other criteria—minimizing the integrated MSE [μ̂ (x)], for instance—rely more
heavily on numerical methods of design construction. One sequential approach of consid-
erable interest involves stochastic approximation—see the discussion in Khuri et al. (2006)
and, in a dose-finding framework, Cheung (2010). Once a design is constructed—by this or
another method—it is of obvious interest to compare its performance with other candidate
designs; the quantile dispersion graphs of Robinson and Khuri (2003) provide a possible
means for doing this.

Here, but a few of the many facets of design for GLMs have been touched upon; these,
and the broad spectrum of topics discussed in Chapter 13, illustrate that design theory for
GLMs continues to be an active and exciting area of research.

12.3 Selected Nonlinear Models

Part of the richness of the theory of design for nonlinear models stems from the physi-
cal settings in which the various models arise, each resulting in unique approaches to the
design problems. Some particular nonlinear regression models, of the form
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y = η (x;θ) + ε,

where ε is random error and η (x;θ) is an at least partially nonlinear function of a
p-dimensional parameter vector θ, correspond to the following response functions:

• The response

η (x;θ) = θ1

θ1 − θ2

(
e−θ2x − e−θ1x

)
, θ1,θ2 > 0, x > 0,

for which the design problem was studied by Box and Lucas (1959), is used in
chemometrics to model reactions in which a substance decomposes from a state A
to a state B and finally to a state C. The parameters θ1 and θ2 measure the rates of
these two decompositions, and η is the mean yield in state B. The design variable x
represents time; a consequence is that, in contrast to many other design problems,
there is no possibility of replication—only one observation can be made at a specific
value of x.

Here and elsewhere, we define f (x;θ) to be the gradient

f (x;θ) =
(

∂η (x;θ)

∂θ1
, . . . ,

∂η (x;θ)

∂θp

)′
, (12.1)

and F (θ) to be the n × p matrix with ith row f ′
(xi;θ), where xi denotes the settings

of the variables in the ith run of the experiment. Box and Lucas make preliminary
guessesθ∗ = (

θ∗
1,θ∗

2

)
and adopt the local D-optimality criterion, which aims to max-

imize the determinant
∣∣F′ (θ∗) F

(
θ∗)∣∣. A motivation is that when the asymptotic

distribution of the parameter estimates is employed and if the initial guesses are
correct, then such a design results in confidence ellipsoids of minimum volume.
When the de la Garza phenomenon holds or is assumed—this is expanded upon and
exploited in Chapter 14—an optimal design will have only p support points and
thus

∣∣F′ (θ∗) F
(
θ∗)∣∣ = ∣∣F (

θ∗)∣∣2; this simplifies the search for the optimal points, at
least when p is small and when analytic rather than numerical, methods are being
used. Box and Lucas obtained optimal points (x1, x2) through a combination of
geometric and analytic arguments, and used this example to illustrate a stepwise
journey to the optimum, through fitting a sequence of quadratic models, in x1 and
x2, very similar to common practice in response surface exploration.

• The Michaelis–Menten enzyme kinetic function is

η (x;θ) = θ1x
θ2 + x

, θ1,θ2 > 0, x > 0,

where x is the concentration of substrate, θ1 the maximum reaction velocity (i.e.,
the horizontal asymptote as x → ∞), and θ2 is the half-saturation constant, that is,
the value of x at which the mean velocity η attains one-half of its asymptotic value.

An important feature of this model from a design standpoint is that it is nonlin-
ear in θ2 but not in θ1, and then the loss function for D-optimality depends (up to a
constant of proportionality) only on θ2. Currie (1982) discusses various designs for
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this model. Assuming homoscedastic normal errors, the maximum likelihood esti-
mates are obtained by least squares, leading to the D-optimal design which places
half of the observations at θ2 and the other half at as large a value of x as possible.
(Bates and Watts 1988, p. 126) state instead that the two locations are x1 = xmax,
the maximum allowable value, and x2 = θ2/(1 + 2 (θ2/xmax)), in agreement with
Currie if x2 is evaluated at xmax = ∞.)

An obvious drawback to this design, shared by others in which the number of
distinct locations of the explanatory variables is no larger than p, is that there is
no possibility to check the validity of the model—a point which is also discussed
in Chapter 20. Thus Currie discusses as well more ad hoc, but sensible, designs
in which the majority of the design points are spread out over the low range of
concentration, with the rest distributed throughout the higher range. He finds that
the value of

∣∣F′ (θ) F (θ)
∣∣ (evaluated at the assumed value of θ2) can be substan-

tially smaller than that for the locally D-optimal design, but that the performance
of this latter design can itself deteriorate markedly if the experimenter’s guess at
the value of θ2 is inaccurate. An obvious remedy, if conditions permit, is to design
sequentially, with past observations used to give improved estimates of θ2.

The Michaelis–Menten model is used throughout Chapter 14 for illustration of
the concepts there.

• The rational function response

η (x;θ) = θ1θ3x1

1 + θ1x1 + θ2x2
, x1, x2 > 0,

models chemical reactions of the type R → P1 + P, with η representing the speed
of the reaction, x1 the partial pressure of the sought product P, x2 the partial
pressure of the product P1, θ2 the absorption equilibrium constant for P1, θ3 the
effective constant of the speed of reaction (appearing linearly) and θ1 the absorp-
tion equilibrium constant for the reagent R (Fedorov 1972, pp. 193–199). Box and
Hunter (1965) propose a sequential approach with, at each stage, new locations

x = (x1, x2)
′ chosen to maximize the resulting value of

∣∣∣F′
(
θ̂
)

F
(
θ̂
)∣∣∣ evaluated at

the current estimates θ̂. Fedorov (1972) discusses this example in detail. Initial esti-
matesθ∗ of the parameter values are obtained from a preliminary experiment, with
observations made at the four combinations of x1, x2 ∈ {1, 2}. Given a design speci-
fying n observations, and resulting in parameter estimates θ̂(n), the next location is
given by

xn+1 = arg max
x

f ′ (x; θ̂(n)

) [
F′ (θ̂(n)

)
F

(
θ̂(n)

)]−1
f
(

x; θ̂(n)

)
,

stopping once the changes in the parameter estimates become insignificant. The
asymptotic optimality results of Chaudhuri and Mykland (1993) and Wu (1985),
mentioned in Section 12.2, apply.

Recall that the volume of a confidence ellipsoid on the parameters is proportional
to

∣∣F′F
∣∣−1/2. Even under exact normality, the coverage probability of such regions

equals the nominal value only for linear response surfaces. Hamilton et al. (1982)
obtain corrected, second-order expressions for the volume of such regions, with the
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correction term, which is Op(n−1), depending on the degree of nonlinearity of the
response. Hamilton and Watts (1985) then reconsider the sequential design proce-
dure for this rational function example as an illustration of their quadratic design
criterion, which aims to minimize the corrected value of the volume. They find that
each subsequent observation diminishes the effect of the nonlinearity and also that
the designs can be quite different from those of Box and Hunter.

As in these examples, a preliminary goal of the experimenter might be to design for effi-
cient estimation of the parameters; in this case, the same alphabetic optimality criteria as
in linear regression are available. Or the experimenter might seek a design which aids in
the selection of an appropriate model. When this is phrased as a discrimination problem,
the mathematical goal could be the maximization of the power of a test of a hypothesis
η = η0 versus η = η1, each specified up to its parameter values. If the densities p0

(
y;η0 (x)

)
and p1

(
y;η1 (x)

)
of y under the two models are both Gaussian, this leads to the notion of

T-optimality (Atkinson and Fedorov 1975a,b). More generally (López-Fidalgo et al. 2007),
it leads to KL-optimality, in which the goal is to find a design ξ maximizing

inf
θ0

�
I (η0 (x|θ0) ,η1 (x|θ1))ξ (dx) , (12.2)

here

I (η0 (x) ,η1 (x)) =
∞�

−∞
p1

(
y;η1 (x)

)
log

{
p1

(
y;η1 (x)

)
p0

(
y;η0 (x)

)
}

dy,

is the Kullback–Leibler divergence, measuring the information which is lost when p0
is used to approximate p1. In (12.2), θ1 is assumed known. Both static and sequential
approaches are available; robustifications of this approach are discussed in Chapter 20.

Whatever might be the parameter-dependent loss function, a possibility is to seek a
design minimizing the average loss; namely,

ξ0 = arg min
ξ

�
�

L (ξ;θ)π (θ) dθ, (12.3)

where L (ξ;θ) is the loss corresponding to a design ξ when the true model is param-
eterized by θ and π (·) is a user-chosen function assigning greater weight to parameter
values thought to be most plausible or perhaps values against which one desires greater
protection.

For instance, the choice L (ξ;θ) = − log |M (ξ;θ)|, where

M (ξ;θ)p×p =
�
χ

f (x;θ) f ′
(x;θ) ξ (dx) ,

gives an analogue of classical D-optimality. For this choice, an equivalence theorem (Läuter
1974; see also Section 7.3 of Cox and Reid 2000) applies and states that, under mild
conditions, ξ0 satisfies (12.3) if and only if

d (x; ξ0) =
�
�

f ′
(x;θ) M−1 (ξ0;θ) f (x;θ)π (θ) dθ ≤ p,
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at all points x in the design space, with equality at the support points of ξ0. As a simple yet
instructive example, suppose that one intends to fit an exponential response

η (x;θ) = e−θx, (12.4)

with additive error, by least squares. Then in (12.1), p = 1, f (x;θ) = −xe−θx and the
requirement becomes, in an obvious notation,

Eπ

[
x2e−2θx

Eξ0

[
x2e−2θx

]
]

≤ 1, (12.5)

with equality at the support points. With a design region χ = (0, 1], (12.5) applied to a
one-point design with all mass at x0 ∈ χ becomes

Eπ

[
e−2θ(x−x0)

]
≤ (x0/x)2 .

Some calculus yields x0 = min
{
1, 1/Eπ [θ]

}
, as given in Chaloner (1993) and restated in

Dette and Neugebauer (1997), where, as well, conditions on π are given under which this
one-point design is optimal, that is, satisfies (12.3), within the class of all designs. These
conditions fail if, for instance, π is uniform on � = [1, θmax], for θmax sufficiently large.
Then numerical methods must be used to obtain the maximizer in (12.3) directly, with (12.5)
checked for verification of the optimality.

An overview of this approach to design, in which the weight functions π (·) are chosen
according to a Bayesian paradigm, is given in Chaloner and Verdinelli (1995). For multi-
parameter models and priors, the integrations in (12.3) can become a significant part of
the problem, requiring methods such as Markov chain Monte Carlo—see, for instance, the
discussions in Atkinson and Haines (1996) and Atkinson et al. (1995).

Another possibility is to design so as to test the assumed response function for lack of
fit (O’Brien 1995). Designs optimal for discrimination or for lack of fit testing are typically
not very efficient for estimating the parameters of the final model; this leads to designs
which optimize some mixture of these goals—see Hill et al. (1968) and the discussion in
Chapter 14 of the approach of Dette et al. (2005).

Similar in nature to calibration problems in linear regression are dose finding stud-
ies, which are also discussed in Chapter 24. Here one seeks the value of x resulting in a
specified mean response η (x;θ). If η is explicitly invertible—in particular, if it is linear in
the parameters—then estimates of x may be obtained from those of θ, and so the design
problem is concentrated on efficient estimation of a function of the parameters. Other-
wise, a possible approach is to design sequentially, guided by stochastic approximation
(Cheung 2010).

A class of design problems, apparently first studied by Chernoff (1962), arises in quality
control and concerns accelerated life testing. One assumes a, typically nonlinear, response
relating the lifetime (y) of a product to stress levels (x) and possibly to other covariates.
The experimenter can usually not wait for a product on test to fail under normal stress
levels, and so attempts to obtain inferences upon subjecting the product to abnormally
high stresses. The goal is accurate prediction of product lifetime at normal stress levels, so
that there is a natural link here to the more general problem of designing experiments for
purposes of extrapolation.
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The list of design problems and applications goes on; these and others are expanded
upon in Chapter 14, where as well the mathematical theory is outlined. Other useful refer-
ences include Bates and Watts (1988) and Seber and Wild (1989), each of which discusses
modelling, inference, computations and to some extent design, in a comprehensive manner.

12.4 Spatial Models

Spatial models pose some unique problems, both in inference and in design. Cressie (1993,
p. 313) distinguishes between spatial experimental design, in which locations are fixed and
the design consists of an allocation of treatments to these locations, and spatial sampling, in
which the designer is faced with a spatial stochastic process (a random field), from which he
or she is to choose locations at which to make observations.

Much of the impetus for spatial experimental design derived from agricultural experi-
mentation, and hence a large debt is owed to R. A. Fisher, who introduced in the 1920s and
1930s the now common notions of replication, randomization, blocking, etc.; see Martin
(1996). Randomized designs came to be replaced by more systematic layouts, the analy-
sis of which led to particular requirements in accounting for the spatial dependence. One
of such is neighbour balance—the requirement that, for instance, each treatment occurs the
same number of times next to each other treatment. This might arise because of competition
or interference between treatments.

The achievement of neighbour balance in a design can lead to interesting combinatorial
problems; see, for instance, Druilhet and Walter (2012). Typically, efficiency of estimation
of model parameters is not a particularly important goal in spatial studies; this is however
the aim of many designs which take account of spatial information by instead adopting a
particular structure of dependence between nearby observations. Commonly, the ensuing
analysis utilizes generalized least squares estimates, tailored for the particular dependence
structure assumed. An optimal design then might be one which minimizes a particular loss
function associated with these estimates or predictions.

In all these cases, there might be dependence on covariates besides location; a possible
model of the mean response at location t, with treatment covariates x, might be

E[y|x,t] = f ′(x)θ1 + g′(t)θ2.

In this case the locations are fixed but the covariates x are to be chosen by the designer. That
this is a nonlinear model arises from the spatial dependence between observations, hence
the dependence of the loss on the unknown parameters of the correlation structure.

In spatial sampling, as in spatial experimental design, efficiency might take a back seat
to other goals dictated by the physical setting of the problem; see Thompson (1997) and
Müller (2005). Geometry-based designs, often intended for exploratory purposes, might aim
to be space filling. If model-free imputation of missing observations is the primary goal, then
the designer might use probability sampling (Matérn 1960). When the probabilistic structure
is known and prediction is the goal, then an information theoretic approach might be apt—
see Caselton and Zidek (1984), who propose the maximization of mutual information based
on Shannon’s entropy, and the environmental application in Zidek et al. (2000).
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On the other hand, when efficient parameter estimation and parametric inference is the
aim, we are in the realm of optimal sampling design. The first step is often the choice of a
correlation function specifying the nature and degree of the dependencies between obser-
vations made at various locations. This function plays a central role in the prediction of
the response at unsampled locations—typically through kriging (i.e. best linear unbiased
prediction)—and hence on the construction of designs. The choice of a particular spatial
model is discussed at length in the companion handbook Gelfand et al. (2010), and so we
do not discuss this here.

A common aim of the designer is to minimize the integral (or sum, if the set of loca-
tions is discrete) of the MSEs of the predictions over all locations in the region of interest.
Minimizing the maximum MSE is another possibility. This MSE might arise from the spa-
tial variation and its estimation; another contributing factor might be the estimation of the
mean response E[y|x,t], modelled parametrically. When a regression response is modelled,
the usual alphabetic optimality criteria become germane. In some applications, physical
interpretations of covariance function parameters are also important and can become the
objective of the design.

To give some idea of the flavour of the techniques, consider the following design prob-
lem studied by Müller (2005). A region in the Danube river basin in Austria currently has
a network of 36 water quality monitoring stations. The locations are labelled relative to a
grid overlying the region. To predict chloride concentration (y) at location x, the experi-
menter fits a regression model with spatially correlated errors and a parametric covariance
function:

y (x) = f ′
(x)β + ε (x) ,

Cov
[
ε (x) , ε

(
x′)] = c

(
x, x′;θ

)
.

For illustrative purposes, Müller redesigns this network of 36 stations in several ways.
In all cases, an important feature is that there is no notion of replication—only one monitor-
ing station may be placed at a particular location. The first design illustrated is D-optimal,
maximizing the determinant of the information matrix for β (with f (x) = (

1, x′)′); this
matrix of course depends on the covariance function, taken to be

c
(
x, x′;θ

) =

⎧⎪⎪⎨
⎪⎪⎩

θ1 + θ2, x = x′,

θ2

{
1 − 3

2

(‖x−x′‖
θ3

)
+ 1

2

(‖x−x′‖
θ3

)3
}

, 0 <
∥∥x − x′∥∥ ≤ θ3,

0,
∥∥x − x′∥∥ > θ3.

Exchange algorithms are introduced to carry out the optimization. The resulting design is
in Figure 12.1; a notable feature is that the design calls for all stations to be concentrated at

FIGURE 12.1
D-optimal network of chlorine monitoring stations. (From Muller, W.G., Environmetrics, 16, 495, 2005.)
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FIGURE 12.2
Network of chlorine monitoring stations obtained via an expansion of the covariance kernel, followed by
D-optimality. (From Muller, W.G., Environmetrics, 16, 495, 2005.)

the boundary of the region, but to be somewhat evenly distributed on this boundary. Pre-
sumably the managers of such a network would be asked if they were perhaps duplicating
efforts of others immediately across the geographic boundary of their region.

Another method of D-optimal design construction in Müller (2005) relies on an expan-
sion of the covariance function in terms of eigenfunctions {φl (x)}, resulting in an approxi-
mation of the process as

y (x) = f ′
(x)β +

p∑
l=1

γlφl (x) + e (x) ,

with uncorrelated errors {e (x)}. Here the {γl} are uncorrelated random variables with vari-
ances given by the eigenvalues corresponding to the φl. This representation allows for an
analysis by random coefficient regression, leading to the design in Figure 12.2, exhibiting
a greater coverage of the region than that of Figure 12.1.

There is a close relationship between spatial sampling and the design of computer exper-
iments. Although there is no random error, in the usual sense, in such experiments, it is
common to model the dependencies between the outputs of experiments, with distinct
inputs, via spatial correlation structures. This then engenders a certain similarity in the
design problems—the inputs to the computer experiment, to be chosen by the designer,
play much the same role as do the locations in spatial sampling. Designs for computer
experiments are discussed in Section V.

The computational demands involved in constructing spatial designs can be immense.
Some techniques which have been attempted, with varying measures of success, are
exchange algorithms, simulated annealing and genetic algorithms. These, and many of
the topics touched on previously, are discussed at length in Chapter 15.
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13.1 Introduction

The methods of experimental design described in the majority of the earlier chapters are
appropriate if the continuous response, perhaps after transformation, has independent
errors with a variance that is known up to a multiplicative constant. (An exception is
Chapter 6, which describes designs for correlated errors.) However, this is not a character-
istic of the Poisson and binomial distributions, where there is a strong relationship for these
discrete random variables between mean and variance. The main emphasis of this chapter
is on designs for generalized linear models (GLMs) appropriate for data from these and
other distributions.

The classic account of GLMs is McCullagh and Nelder (1989). Issues in the design of
experiments for these models are reviewed by Khuri et al. (2006); in addition to the meth-
ods of optimal experimental design, they consider stochastic approximation (Robbins and
Monro 1951) and adaptations of response surface methodology (Box and Draper 1963 and
Chapter 5). Their emphasis is mainly on models with a single explanatory variable. On
the other hand, the review of Atkinson (2006) focuses on optimal design and models with
several explanatory variables as, to some extent, does the more recent review of Stufken
and Yang (2012b), where the emphasis is towards analytical results. Here, we follow the
approach of Atkinson but focus on more recent results and on computational methods.

The assumptions of normality and constancy of variance for regression models enter
the criteria of optimal design through the form of the information matrix X′X, where, as in
other chapters, X is the n×p model, or extended design, matrix. Other forms of information
matrix arise from other distributions (see Atkinson et al. 2014). Given the appropriate infor-
mation matrix, the principles of optimal design are the same as those described in earlier
chapters. In designs for GLMs, the asymptotic covariance matrix of the parameters of the
linear model is of the form X′UX, where the n × n diagonal matrix of weights U depends
on the parameters of the linear predictor, on the error distribution and on the link between
them. The dependence of the designs on parameters whose values are unknown prior to
experimentation means that, in general, designs for GLMs require some specification of
prior information.

In Section 13.2, we briefly review the class of GLMs, with particular emphasis on mod-
els for binomial, Poisson and gamma data. Some fundamental ideas in optimal design
of experiments are reviewed in Section 13.3, and the optimality criteria employed in this
chapter are introduced. We emphasize the reliance of optimal designs on the unknown
parameter values and discuss methods of overcoming this dependence. Locally optimal
designs are introduced in Section 13.4 for logistic models for binomial data with a single
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explanatory variable. In Section 13.5, we move on to designs for binomial, Poisson and
gamma data with several explanatory variables. This latter section also includes results on
Bayesian designs. In Section 13.6, we discuss designs for dependent non-normal data, for
example, arising from blocked experiments, and demonstrate optimal design for general-
ized linear mixed models (GLMMs) through an example. In Section 13.7, we give some
extensions and suggestions for further reading.

13.2 Generalized Linear Models

13.2.1 Family of Models

The family of GLMs extends normal theory regression to any distribution belonging to
the one-parameter exponential family. As well as the normal (with known variance), this
includes the gamma, Poisson and binomial distributions, all of which are important in the
analysis of data. The three components of a GLM are

1. A distribution for the univariate response y with mean μ

2. A linear predictor η = f ′(x)θ where f (x) is a p-vector of known functions of the k
explanatory variables, x, and θ is a p-vector of unknown model parameters

3. A link function g(μ) = η, relating x to the mean μ

The distribution of y determines the relationship between the mean and the variance of the
observations. The variance is of the form

Var(y) = φV(μ), (13.1)

where φ is a dispersion parameter, equal to σ2 for the normal distribution and equal to one
for the binomial and Poisson distributions. The variance function V(μ) is specific to the
error distribution.

The information matrix for a single observation at a point x is

M(x; θ) = u(x)f (x)f ′(x), (13.2)

with the weights for individual observations given by

u(x) = V−1(μ)

(
dμ
dη

)2

. (13.3)

These weights depend both on the distribution of y and on the link function.

13.2.2 Normal Distribution

The linear multiple regression model can be written as

E(y) = μ = η = f ′(x)θ, (13.4)



474 Handbook of Design and Analysis of Experiments

where μ, the mean of y for given x, is equal to the linear predictor η. In (13.1), V(μ)=
u(x) = 1, and in this simple case, φ = σ2.

Important design problems arise with extensions to this model, particularly those
in which the variance is parameterized through a link function and linear predic-
tor, that may include parameters in common with the linear predictor for the mean
(Muirhead 1982; Magnus and Neudecker 1988; Atkinson and Cook 1995; Fedorov and
Leonov 2014, Section 6.3.1). Some references for designs related to the extension of the
model to include transformation of the response and to transformation of both sides of the
model are in Section 13.7.

13.2.3 Binomial Data

For the binomial distribution, the variance function (13.1) is

V(μ) = μ(1 − μ). (13.5)

In models for binomial data with R successes in n observations, the response y is defined
to be R/n. The link function should be such that, however, the values of x and θ vary, the
mean μ satisfies the physically meaningful constraint that 0 ≤ μ ≤ 1. We list four link
functions that have been found useful in the analysis of data.

1. Logistic

η = log
(

μ

1 − μ

)
. (13.6)

The ratio μ/(1 − μ) is the odds that y = 1. In the logistic model, the log odds is
therefore equal to the linear predictor. Apart from a change of sign, the model is
unaltered if success is replaced with failure. For this canonical link, it follows from
calculation of dη/dμ that

u(x) = μ(1 − μ), (13.7)

a simpler form than for the other three link functions we shall discuss.
2. Probit

η = �−1(μ), (13.8)

where � is the normal cumulative distribution function. This link has very similar
properties to those of the logistic link. In this case,

u(x) = φ2(η)

�(η){1 − �(η)} . (13.9)

Here, φ is the standard normal density.
3. Complementary log–log

η = log{− log(1 − μ)}, (13.10)
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for which

u(x) = (1 − μ)

μ
{log(1 − μ)}2. (13.11)

The complementary log-log link is not symmetric in success and failure, so pro-
viding a model with properties distinct from those of the logistic and probit links.
Interchanging success and failure gives the following log–log link.

4. Log-log

η = log(− logμ). (13.12)

A plot of these four link functions is in Figure 4.1 of McCullagh and Nelder (1989).
Atkinson and Riani (2000, Section 6.18) describe a fifth link, the arcsine link, which has some
desirable robustness properties for binary data. In our examples, we only calculate designs
for the logistic link. Atkinson et al. (2007, Section 22.4.3) compare designs for logistic and
complementary log-log links when there is a single explanatory variable.

13.2.4 Poisson Data

For Poisson data, where V(μ) = μ, we require thatμ > 0. The log link, logμ = η, is standard
for the analysis of Poisson data in areas such as medicine, social science and economics;
see, for example, Agresti (2002, Chapter 9), Winkelmann (2008) and von Eye et al. (2011).
This link leads to models with μ = expη, which satisfy the constraint on values of μ, and
weights u(x) = μ.

13.2.5 Gamma Data

The gamma family is one in which the correct link is often in doubt. The physical require-
ment is again that μ > 0. A useful, flexible family of links that obeys this constraint is the
Box and Cox family, in which

g(μ) =
{
(μλ − 1)/λ (λ �= 0)

logμ (λ = 0).
(13.13)

See Box and Cox (1964) for the use of this function in the transformation of data.
Differentiation of (13.13) combined with (13.1) shows that the weight for the gamma

distribution with this link family is

u(x) = μ−2λ. (13.14)

When λ = 0, that is, for the log link, the weights in (13.14) are equal to one. It therefore
follows that optimal designs for gamma models with this link and λ = 0 are identical to
optimal designs for regression models with the same linear predictors. Unlike designs for
binomial and Poisson GLMs, the designs when λ = 0 do not depend on the parameter θ.

This link is seemingly equivalent to the power family of links

g(μ) = μκ, (13.15)
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for which differentiation shows that

u(x) = 1
κ2

1
μ2κ = 1

κ2
1
η2 . (13.16)

Since 1/κ2 is constant overX , the optimal design depends on η, but not on κ. The situation is
similar to that for normal theory regression, in which D-optimal designs are independent of
the value of the varianceσ2, although the information matrix is a function of that parameter.
In Section 13.5.2, we discuss the relationship of the designs produced by these two links.

The gamma model is often an alternative to response transformation (Section 13.7). In
particular, with a log link, it may be hard to distinguish the gamma from a linear regression
model with logged response. A discussion is in Sections 8.1 and 8.3.4 of McCullagh and
Nelder (1989) with examples of data analyses in Section 7.5 of Myers et al. (2010).

13.3 Optimal Experimental Designs

13.3.1 Theory

The first exposition of optimal design in its modern form is Kiefer (1959), although the
subject goes back to Smith (1918) (see Chapter 1, especially Section 1.9.3). Book length
treatments include Fedorov (1972), Pázman (1986) and Pukelsheim (1993). The focus of
Silvey (1980) and Fedorov and Hackl (1997) is on the mathematical theory; Atkinson
et al. (2007) and Berger and Wong (2009) are more concerned with applications, whereas
Goos and Jones (2011) introduce theory and examples via the JMP software. Pronzato and
Pázman (2013) present the theory of optimal design for nonlinear models, whilst Fedorov
and Leonov (2014) illustrate their theory with pharmaceutical applications, particularly
dose finding.

As in Chapter 2, Section 2.3.1.2, where interest was in linear models, we let an experi-
mental design ξ place a fraction wi of the experimental trials at the conditions xi. A design
with t points of support is written as

ξ =
{

x1 x2 . . . xt
w1 w2 . . . wt

}
, (13.17)

where wi > 0 and
∑t

i=1 wi = 1. There are thus two sets of weights: wi which determine the
proportion of experimentation at xi and u(xi) which, from (13.2), partially determine the
amount of information from observations at that point. Any realizable experimental design
for a total of n trials will require that the weights are ratios of integers, that is, wi = ri/n,
where ri is the number of replicates at condition xi. Such designs are called exact and are
labelled dn. The mathematics of finding optimal experimental designs and demonstrating
their properties is greatly simplified by consideration of continuous designs in which the
integer restriction is ignored.

The resulting design is a list of conditions under which observations are to be taken. The
order in which the observations are made is usually also important; for example, the order
should be randomized subject to any restrictions imposed by, for example, blocking factors
(Section 13.6.2).
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Optimal experimental designs minimize some measure of uncertainty of the parameter
estimators, typically a function of the information matrix. They require the specification of
the following:

1. Amodel, or set of models, of interest. For GLMs, the specifications will include a set
of parameter values θ ∈ �, perhaps with an accompanying prior distribution p(θ).

2. A design criterion, for example, the minimization of a function of one or more
information matrices.

3. A design region X ⊆ �k to which the xi belong.

The information matrix for the design ξ with t support points is, from (13.2),

M(ξ; θ) =
t∑

i=1

wiM(xi; θ) =
t∑

i=1

wiu(xi)f (xi)f
′(xi). (13.18)

As we are concerned with GLMs, the parameter values enter only through the GLM
weights u(xi).

For continuous designs, we consider minimization of the general measure of imprecision
�{M(ξ; θ)}. Under very mild assumptions, the most important of which are the compact-
ness of X and the convexity and differentiability of �, designs that minimize � also satisfy
a second criterion. The relationship between these two provides a general equivalence the-
orem, one form of which was introduced by Kiefer and Wolfowitz (1960). See Chapter 2,
Section 2.3 for a discussion of such theorems for linear models.

Let the measure ξ̄ put unit mass at point x and let the measure ξα be given by

ξα = (1 − α)ξ + αξ̄ (0 ≤ α ≤ 1). (13.19)

Then, from (13.18),

M(ξα; θ) = (1 − α)M(ξ; θ) + αM(ξ̄; θ). (13.20)

Accordingly, the derivative of � in the direction ξ̄ is

ψ(x, ξ; θ) = lim
α→0+

1
α

[
�

{
(1 − α)M(ξ; θ) + αM(ξ̄; θ)

} − � {M(ξ; θ)}] . (13.21)

The values of M(ξ; θ) and of the Fréchet derivative ψ(x, ξ; θ) depend on the parameter
value θ, as may the design ξ∗ minimizing �{M(ξ; θ)}. Variation of ξ∗ with θ is one of
the themes of this chapter. In order to incorporate uncertainty in θ, we define (pseudo)
Bayesian criteria and state the equivalence theorem in a form that incorporates the prior
distribution p(θ) through use of

�{ξ} = Eθ�{M(ξ; θ)} =
�
�

�{M(ξ; θ)}p(θ) dθ, (13.22)
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and

ψ(x, ξ) = Eθψ(x, ξ; θ). (13.23)

The general equivalence theorem states the equivalence of the following three conditions
on ξ∗:

1. The design ξ∗ minimizes �(ξ).
2. The design ξ∗ maximizes the minimum over X of ψ(x, ξ).
3. The minimum over X of ψ(x, ξ∗) is equal to zero, this minimum occurring at the

points of support of the design.

As a consequence of 3, we obtain the further condition:

4. For any non-optimal design ξ, the minimum over X of ψ(x, ξ) < 0.

The proof of this theorem follows Whittle (1973). See Chaloner and Larntz (1989) and
Woods and Lewis (2011) for general equivalence theorems developed for, and applied to,
optimal designs for GLMs.

As we illustrate later, the theorem provides methods for the construction and checking
of designs. However, it says nothing about t, the number of support points of the design.
If p(θ) is a point prior, putting all mass at a single value θ0, the designs are called locally
optimal. A bound on t can then be obtained from the nature of M(ξ; θ0), which is a sym-
metric p × p matrix. Due to the additive nature of information matrices (13.18), it follows
from Carathéodory’s theorem that the information matrix of a design can be represented
as a weighted sum of, at most, p(p + 1)/2 + 1 rank-one information matrices. The maxi-
mum number of support points is therefore p(p + 1)/2 + 1. A careful discussion is given
by Pukelsheim (1993, Section 8.3), with a shorter treatment by Fedorov and Leonov (2014,
Section 2.4.1) who state a simple and usually satisfied condition under which the maximum
number of support points reduces to p(p + 1)/2. In the examples that follow, the number
of support points of optimal designs is usually appreciably less than this; often as few as
p is optimal. Of course, such designs with minimum support provide no means of model
checking (see Section 13.7). For more general priors p(θ), the number of support points
may be larger, increasing with the variance of the prior. Atkinson et al. (2007, p. 300) give
examples for one-parameter nonlinear normal models in which the optimal designs have
up to five support points.

13.3.2 D-Optimal Designs

The most widely used design criterion is that of D-optimality (see Chapter 2) in which
� {M(ξ; θ)} = −log |M(ξ; θ)|, so that the log determinant of the information matrix is to
be maximized. Then (13.22) becomes

�(ξ) = −Eθ log |M(ξ; θ)|. (13.24)

This (pseudo) Bayesian D-optimality criterion has been used to find designs for GLMs by
Chaloner and Larntz (1989) and Woods et al. (2006), amongst others. See Section 13.3.4
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for a comment on the distinction between designs under such criteria and truly Bayesian
designs.

Fedorov and Leonov (2014, p. 68 and Section 10.1) provide the mathematical results,
including matrix differentiation, required for calculation of the Fréchet derivative (13.21).
The expected derivative (13.23) then becomes

ψ(x, ξ) = Eθ

{
p − u(x)f ′(x)M−1(ξ; θ)f (x)

}
,

= p − Eθ

{
u(x)f ′(x)M−1(ξ; θ)f (x)

}
. (13.25)

For locally D-optimal designs, the number of support points t may be between p and
p(p + 1)/2 + 1. If t = p, the optimal design weights are wi = 1/p.

13.3.3 Design Efficiency

Efficiencies of designs can be compared through the values of the objective function (13.22).
If ξ∗

0 is the optimal design for the prior p0(θ), comparison is of the values of �{ξ∗
0} and of

�{ξ}, where ξ is some other design to be compared, and both expectations are taken over
the prior p0(θ).

There is a particularly satisfying form of efficiency for D-optimality when p(θ) is a
point prior. Then from (13.24), the locally D-optimal design maximizes |M(ξ; θ0)|, and the
efficiency of the design ξ is

EffD =
{ |M(ξ; θ0)|

|M(ξ∗
0; θ0)|

}1/p

. (13.26)

Raising the ratio of determinants to the power 1/p results in an efficiency measure which
has the dimension of variance; a design with an efficiency of 50% requires twice as many
trials as the D-optimal design to give the same precision of estimation. If only one parame-
ter is of interest, (13.26) reduces to comparison of the variances of the estimated parameters
under different designs (see Chapter 1, Sections 1.9.1 and 1.9.2 for a discussion of efficiency
for wider classes of designs and for functions of parameter estimates including contrasts).

If the prior is not concentrated on a single point, the optimal design has to be found by
taking the expectation of the determinant over the prior distribution. Usually this requires
a numerical approximation to the value. The efficiency in (13.26) in addition requires cal-
culation of the expectation of the determinant for the design ξ. An informative alternative,
which we illustrate in Section 13.5.1 is to look instead at the distribution of efficiencies
found by simulation from the prior distribution. This procedure avoids taking expectations,
since we calculate (13.26) for each sampled value of θ0.

13.3.4 Parameter Uncertainty

In Section 13.4.1, we illustrate the dependence of the locally optimal design on the value
of θ for logistic regression with a single explanatory variable. An example for two-
variable logistic regression is in Section 13.5.1.5 and for two-variable gamma regression in
Section 13.5.2.3. In addition to the Bayesian design of Section 13.3.4.1, which we exemplify
in Section 13.5.1.6, we here list some other approaches to parameter uncertainty.
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13.3.4.1 Bayesian Designs

Bayesian designs are found to maximize expectations such as (13.22). The ease of calcu-
lation depends on the form of the prior p(θ) and of �(.) as well as, often crucially, on
the region of integration �. The easiest case is when the θ has a multivariate normal
distribution over Rp, although numerical approximation is still needed. Sometimes a trans-
formation of the parameters is required to achieve this simple structure for multivariate
priors. For less amenable cases, a standard solution is to sample from the prior distri-
bution and to use an average objective function. An example for a nonlinear model is in
Section 18.5 of Atkinson et al. (2007).

Designs maximizing expectations such as (13.22) ignore the additional effect of the prior
information about θ on the information matrix and make no assumption of a Bayesian
analysis. The designs are accordingly sometimes called pseudo-Bayesian. A discussion of
Bayesian experimental design is given by Chaloner and Verdinelli (1995).

13.3.4.2 Sequential Designs

Where possible, sequential experimentation can provide an efficient strategy in the absence
of knowledge of plausible parameter values. The usual steps are as follows:

1. Start with some preliminary information providing an estimate, or guess, of the
parameter values. This may lead to either a point prior θ0 or a prior distribu-
tion p(θ).

2. One or a few trials of the optimal design are executed and analysed. If the new esti-
mate of θ is sufficiently accurate, the process stops. Otherwise, step 2 is repeated
for the new estimate, and the process continues until sufficient accuracy is obtained
or the experimental resources are exhausted.

An early example, for nonlinear regression, is Box and Hunter (1965), extended by
Atkinson et al. (2007, Section 17.7). Dror and Steinberg (2008) developed a Bayesian
sequential design methodology for GLMs.

13.3.4.3 Minimax and Maximin Designs

The minimax approach overcomes dependence of designs on the unknown value of θ by
finding the best design for the worst case when the parameter θ belongs to a set �. A design
ξ∗ is found for which

�{M(ξ∗)} = min
ξ

max
θ∈�

�{M(ξ; θ)}. (13.27)

In (13.27), the criterion �(·) needs to be chosen with care. Suppose interest is in
D-optimality, with ξ∗(θ′) the locally D-optimal design for parameter value θ′. Unlike with
linear models, the value of |M{ξ∗(θ′); θ′}| depends on the value of θ′. Accordingly, max-
imization of the related design efficiencies is often used as a criterion, when the maximin
design ξ∗ is found to maximize the minimum efficiency:

EffD(ξ∗) = max
ξ

min
θ′∈�

EffD(ξ;θ′).
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A potential objection to these designs is that the minimax or maximin design is often close
to a combination of locally optimal designs for values of θ at the edges of the parameter
space. If a prior distribution is available, such points may have a very low probability; their
importance in the design criterion may therefore be overemphasized by the minimax crite-
rion. Providing adequate performance in these unlikely worst-case scenarios may greatly
affect overall design performance.

A computational difficulty is that such designs can be hard to find. Numerical proce-
dures are described by Nyquist (2013), Fedorov and Leonov (2014, p. 82 and p.130) and,
in greatest detail, by Pronzato and Pázman (2013, Section 9.3). Minimax designs for GLMs
have been found by Sitter (1992) and King and Wong (2000). A practical difficulty is that the
designs may have an appreciable number of support points, some with very low weights.
Of course, approximations to the optimal design with fewer support points can always be
evaluated, provided the optimal design has been found.

13.3.4.4 Cluster Designs

Some of the computational issues associated with finding Bayesian or minimax designs can
be alleviated through the use of clustering of design points, or other less formal techniques,
to find designs that incorporate the overall structure of the set of locally optimal designs.
Cluster designs are found by (1) sampling parameter vectors θ from a prior distribution, (2)
finding a locally optimal design for each sampled vector, (3) clustering the support points
of these designs and (4) forming a new, robust design having equally weighted support
points that are the cluster centroids. See Dror and Steinberg (2006). Such methods are par-
ticularly effective in reducing computation when the locally optimal designs are available
analytically (Russell et al. 2009).

13.3.5 Small Effects

If the effects of the factors are slight, the means of observations at different xi will be simi-
lar, and so will each corresponding model weight u(xi). The information matrix will then,
apart from a scaling factor, be close to the unweighted information matrix X′X, and the
optimal designs for the weighted and unweighted matrices will be close. Since the designs
minimizing functions of X′X are the optimal regression designs, these will be optimal, or
near optimal, for GLMs with small effects (Cox 1988). This is in addition to the result of
Section 13.2.5 that regression designs are optimal for the gamma model with log link.

13.4 Locally Optimal Designs

13.4.1 Binomial Data: Logistic Regression in One Variable

The logistic model is widely used for dose–response data when the response is binomial.
For example, Bliss (1935) gives data from subjecting groups of around 60 beetles to eight
different levels of an insecticide. The response is the number of beetles killed. The data are
reported in numerous textbooks, including Agresti (2002), Collett (2002), Dobson (2001)
and Morgan (1992). The original analysis used a probit model, with more recent analyses
preferring a logistic link. Atkinson and Riani (2000, Section 6.14) use a goodness of link test
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FIGURE 13.1
Logistic regression on a single explanatory variable. Response functions for θ1 = 0.5, 1, and 2 (the steepest curve).
The D-optimal design points • are clearly highly dependent on the value of θ1.

to argue that a complementary log–log link is preferable; Atkinson et al. (2007, Section 22.4)
present locally optimal designs for both models.

With a single explanatory variable and the logistic link,

log
{

μ

(1 − μ)

}
= η = θ0 + θ1x. (13.28)

Figure 13.1 shows these response curves for θ0 = 0 and θ1 = 0.5, 1 and 2. As θ1 increases,
so does the rate of increase of the response at x = 0.

It is clear that optimal designs for the three sets of parameter values will be rather dif-
ferent: experiments for values of x for which the responses are virtually all 0 or 1 will be
uninformative about the values of the parameters. This intuitive result also follows from
the weight u(x) in (13.7) which goes to zero for extreme values of μ. Further, this result
is related to the phenomenon of separation in the analysis of binary data (see Firth 1993,
Woods et al. 2006), where a hyperplane of the design space separates the observed data
into zeroes and ones.

We start by finding the locally D-optimal design for the canonical case of θ = (0, 1)′.
From Section 13.3.2, we know that the D-optimal design will have either two or three sup-
port points. A standard way to proceed is to assume that there are two, when, again from
Section 13.3.2, each wi = 0.5. Further, with a response symmetrical about zero, the design
can also be assumed symmetrical about zero. It is thus simple to calculate the D-optimal
design within this class. The equivalence theorem is then used to check whether the design
is indeed optimal. In this case, see Figure 13.2, this is the correct form and the D-optimal
design for a sufficiently large design region X is

ξ∗ =
{−1.5434 1.5434

0.5 0.5

}
, (13.29)

that is, equal weights at two points symmetrical about x = 0. At these support points,
μ = 0.176 and 1−0.176 = 0.824.

Although designs for other values of the parameters can likewise be found numerically,
design problems for a single x can often be solved in a canonical form, yielding a structure
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FIGURE 13.2
Logistic regression on a single explanatory variable. Equivalence theorem: derivative functions for three
D-optimal designs for different values of θ1 assessed for θ1 = 1. Curves labelled by value of θ1; • design points.

for the designs independent of the particular parameter values (see Section 13.5.1.1). The
translation into a design for other parameter values depends, of course, on the particular θ.

For the upper design point in (13.29), the linear predictor η = 0 + 1 × x has the value
1.5434, which is the value we need for the optimal design whatever the parameterization. If
we solve (13.28) for the η giving this value, the upper support point of the design is given by

x∗ = (1.5434 − θ0)

θ1
. (13.30)

For linear regression, the D-optimal design puts half of the design weight at the two
extreme values of X , whereas, for logistic regression, the design does not span X , provided
the region is sufficiently large. Note that as θ1 → 0, the value of x∗ increases without limit.
This is an example of the result of Cox (1988) mentioned earlier that for small effects of
the variables, the design tends to that for homoscedastic regression. In practice, the design
region will not be unlimited, and depending onθ, the optimal design may put equal weight
on one boundary point and an internal point or on the two boundary points of X .

In addition to the plots of the probability of success μ against x for three values of θ1,
0.5, 1 and 2, Figure 13.1 also shows the D-optimal design points. For the three parameter
values, we obtain design points of ±3.0863, ±1.5434 and ±0.7717. The D-efficiencies of each
for the other set of parameter values are in Table 13.1. The most striking feature of the table
is that the design at ±3.0863, that is, for θ1 = 0.5, has an efficiency of only 5.72% when
θ1 = 2. The explanation of this low efficiency is clear from Figure 13.1; the design point
is so extreme that the value of μ when θ1 = 2 is virtually 0 or 1, so that the experiment
yields little information. Clearly we need a compromise design when the parameters are
not approximately known. Note that this comparison does not include the value of θ0,
changes in which will make the design asymmetrical about zero. A design robust to the
values of θ typically involves more support points than does the locally optimal design.
We give an example in Section 13.5.1.

We conclude by showing how condition 3 of the equivalence theorem in Section 13.3.1
can be used both to check the optimality of designs and to suggest improvements to
non-optimal designs.
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TABLE 13.1

D-Efficiencies (%) of Designs for One-Variable Logistic
Regression as θ1 Varies with θ0 = 0

Design Point x∗ (13.30)

θ1 3.086 1.5434 0.7717

0.5 100 74.52 41.52
1 57.56 100 74.52

2 5.72 57.56 100

Figure 13.2 plots the derivative functions ψ(x, ξ) in (13.25) for the three designs, assessed
for θ1 = 1. The results therefore relate to the second line of Table 13.1. For θ1 = 1, the min-
imum of the function is at zero, the minimum occurring at the points of support of the
design. The design is therefore D-optimal.

For the other two designs, the minima are both well below zero. The most central set
of design points is for θ1 = 2. Here, the minima are around ±2, indicating that the design
points should be more extreme than they are. Likewise, for θ1 = 0.5, the design points are
too extreme, and the minimum of the function at the centre of the design region indicates
that the design should be shrunk. An important feature of the plot is that, for all three
designs, ψ(x, ξ) = 0 at the points of support of the design. In order to check the optimality
of designs, it is necessary to search over X and determine the minimum of the function,
rather than just checking at the design points.

Although we have illustrated the use ofψ(x, ξ) in the assessment of designs, it can also be
used in their construction. Sequential addition of design points at the minimum of ψ(x, ξ)

leads to the D-optimal design. An example of such sequential design construction is in
Section 11.2 of Atkinson et al. (2007). A straightforward extension is to the adaptive con-
struction of designs mentioned in Section 13.3.4 where the parameters are re-estimated as
observations become available and one, or a few, trials added at the point maximizing the
criterion function. For D-optimality and addition of single observations, this is achieved
after N trials by addition of the point minimizing ψ(x, ξN) (Box and Hunter 1965).

13.5 Optimal Designs for Two or More Explanatory Variables

13.5.1 Binomial Data

13.5.1.1 Induced Design Region

As the information matrix (13.18) is of a weighted form, design for the additive linear
predictor,

η(x) = θ0 +
k∑

j=1

θjxj, (13.31)
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is equivalent to (unweighted) design for the linear model

E(y) = θ0
√

u(x) +
k∑

j=1

θj
√

u(x)xj, = θ0z0 +
k∑

j=1

θjzj, (13.32)

where u(x) is defined in (13.3). Hence, the original design region X can be transformed
to the induced design region Z for the induced variables z0, . . . , zk. Clearly, Z depends on
both X and θ.

Ford et al. (1992) used this relationship with linear model design to provide geometric
insight into the structure of designs for single-variable GLMs. With one explanatory vari-
able, X is a line segment a ≤ x ≤ b. However, because in (13.32) z0 = √

u(x), Z is of
dimension 2. For the models for binomial data of Section 13.2.3 and x ∈ R, Z is a closed
curve similar to the design locus in Figure 2 of Box and Lucas (1959), the exact shape of which
will vary with θ. The results of Ford et al. (1992) require the careful enumeration of a large
number of criteria and special cases. For D-optimality, they use results on the relationship
between D-optimal designs and the ellipse of minimum volume centred at the origin that
contains Z (Silvey and Titterington 1973; Sibson 1974; Silvey 1980).

Ford et al. (1992) are concerned with exponential family linear models with a single
explanatory variable. Wu and Stufken (2014) provide results for a single-variable model
with a quadratic predictor. Mathematical results for the linear predictor (13.32) with more
than one explanatory variable are not generally available. An important limitation on the
class of models for which results can be expected comes from the form of (13.32) which
excludes interaction and higher-order polynomial terms. We have written zj = √

u(x)xj
and so zk = √

u(x)xk. But zjzk �= u(x)xjxk.
In Section 13.5.1.2, we compute locally optimal designs for binomial data with linear

predictor (13.31) for two variables. Views of the designs in X and in Z are quite distinct,
but both are informative about the structure of the designs. Those in X relate the design
points to the values of the response, whereas those in Z show that the design points are
at the extremes of the region and, for second-order models, near centres of edges and at
the centre of the region. The relationship with response surface designs is clear, even if the
mirror is distorted.

13.5.1.2 First-Order Models

The properties of designs for response surface models, that is, with two or more continuous
explanatory variables, depend much more on the experimental region than those where
there is only one factor.

Although it was assumed in the previous section that the experimental region X was
effectively unbounded, the design was constrained by the weight u to lie in a region in
which μ was not too close to zero or one. But with more than one explanatory variable,
constraints on the region are necessary. For example, for the two-variable first-order model

log
{

μ

(1 − μ)

}
= η = θ0 + θ1x1 + θ2x2, (13.33)

with θ′ = (0,γ,γ), all design points for which x1 +x2 = 0 yield a value of 0.5 for μ, however
extreme the values of x.
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We now explore designs for the linear predictor (13.33) with the logistic link for a variety
of parameter values and X = [−1, 1]2. These and succeeding designs were found by a
numerical search with a quasi-Newton algorithm. The constraints to ensure that x ∈ X
and on the design weights were enforced using the trigonometric transformations listed in
Atkinson et al. (2007, Section 9.5).

Four sets of parameter values are given in Table 13.2. D-optimal designs for the sets
B1 and B2 are listed in Table 13.3. The parameter values of B1 (0, 1, 1) are closest to zero.
The table shows that the design has support at the points of the 22 factorial, although the
design weights are not quite equal. They are so for the normal theory model and become
so for the logistic model as θ1 and θ2 → 0 with θ0 > 0. At those factorial points for which
x1 + x2 = 0,μ = 0.5 since θ1 = θ2. At the other design points, μ = 0.119 and 0.881, slightly
more extreme values than the values of 0.176 and 0.824 for the experiment with a single
variable.

An interesting feature of our example is that the number of support points of the design
depends upon the values of the parameter θ. From the discussion of Carathéodory’s the-
orem in Section 13.3.1, the maximum number of support points required by an optimal
design is usually p(p + 1)/2 (Pukelsheim 1993, Section 8.3). Our second set of parameters,
B2 in which θ′ = (0, 2, 2), gives two four-point optimal designs, with weights given by w(1)

i

and w(2)

i in Table 13.3 and support points where μ = 0.146, 0.5 and 0.854. Any convex com-
bination of these two designs, αw(1)

i + (1 −α)w(2)

i with 0 ≤ α ≤ 1, will also be optimal, and
will have six support points, which is the value of the usual bound when p = 3. These two
component designs arise from the symmetry of the design problem; not only does θ1 = θ2
but also the design region is symmetrical in x1 and x2.

TABLE 13.2

Sets of Parameter Values for First-Order Linear
Predictors in Two Variables with the Logistic Link

Set θ0 θ1 θ2

B1 0 1 1
B2 0 2 2

B3 2 2 2
B4 2.5 2 2

TABLE 13.3

D-Optimal Designs for Logistic Models with the Sets of Parameter Values B1 and B2 of Table 13.2;
wi Design Weights

Design for B1 Design for B2

i x1i x2i wi μi x1i x2i w(1)
i w(2)

i μi

1 −1 −1 0.204 0.119 0.1178 −1.0000 0.240 0.146
2 1.0000 −0.1178 0.240 0.854
3 1 −1 0.296 0.500 1.0000 −1.0000 0.327 0.193 0.500

4 −1 1 0.296 0.500 −1.0000 1.0000 0.193 0.327 0.500
5 −1.0000 0.1178 0.240 0.146

6 1 1 0.204 0.881 −0.1178 1.0000 0.240 0.854
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TABLE 13.4

D-Optimal Designs for Logistic Models with the Parameter Values B3 and B4 of Table 13.2; wi
Design Weights

Parameter Set B3 Parameter Set B4

i x1i x2i wi μi x1i x2i wi μi

1 −1.0000 −0.7370 0.169 0.186 −1.0000 0.5309 0.333 0.827

2 −1.0000 0.7370 0.331 0.814 −1.0000 −1.0000 0.333 0.182
3 −0.7370 −1.0000 0.169 0.186 0.5309 −1.0000 0.333 0.827
4 0.7370 −1.0000 0.331 0.814

The D-optimal designs for the two remaining sets of parameters in Table 13.2 are given
in Table 13.4. These designs have, respectively, 4 and 3 points of support. When θ′ =
(2, 2, 2), the design points are where μ = 0.186 and 0.814. For θ′ = (2.5, 2, 2), the mini-
mum value of μ is 0.182 at (−1, −1), and the experimental values of μ are 0.182 and 0.827.
For this three-point design for a three-parameter model, the design weights wi = 1/3. A
useful general indication is that an informative experiment should have 0.15 < μ < 0.85.
This bound is included in the plots of designs in Figure 13.3.

The relationship between the design points and the values of μ are shown, for parameter
values B2 and B3, in Figure 13.3. For θ′ = (0, 2, 2), one four-point design for B2 is depicted
by open circles and the other by filled circles; the symmetry of the designs is evident. For
θ′ = (2, 2, 2), there are again four support points of the design, which now lie somewhat
away from the boundaries of the regions of high and low values of μ.

13.5.1.3 Induced Design Region for the Logistic Link

For the first-order model in k = 2 factors (13.33), for which p = 3, the induced design
space Z is of dimension three. Two examples, projected onto z1 and z2 and thus ignoring
z0 = √

u(x), are given in Figure 13.4 for X the unit square. In the left-hand panel of the
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FIGURE 13.3
Support points for D-optimal designs for logistic models with parameter values B2 and B3 in Table 13.2. In the
lightly shaded area, μ ≤ 0.15, whereas in the darker region, μ ≥ 0.85. In the left-hand panel, one four-point design
for B2 is depicted by open circles and the other by filled circles. The symmetry of the designs is evident.
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FIGURE 13.4
Support points for D-optimal designs for logistic models with parameter values B2 (a) and B3 (b) of Table 13.2 in
the induced design region Z . For these first-order models, all design points lie on the boundary of Z .

figure, θ′ = (0, 2, 2) so that at the corner of X for which x1 = x2 = 1, η= 4 and μ= 0.982.
This is well beyond the range for informative experiments, and the projection of the
induced design space appears to be folded over. As a consequence, experiments at extreme
positions in Z are not at extreme points in X . The results in the other panel for θ′ = (2, 2, 2)

are similar but more extreme. For both sets of parameter values, the design points lie, as
they should, on the boundary of the induced design region.

These examples show the importance of both the design region and the value of μ in
determining the optimal design. In order to reveal the structure of the designs as clearly
as possible, the designs considered have all had θ1 = θ2 and so are symmetrical in x1
and x2. When θ1 �= θ2, both the design region and the values of μ are important in the
resulting asymmetrical designs. Asymmetrical designs also arise when the log-log and
complementary log–log links are used, since these links are not symmetrical functions.

13.5.1.4 Theoretical Results for a First-Order Predictor

Various authors have derived optimal designs for k > 1 for first-order linear predic-
tor (13.31) for some special cases; see Sitter and Torsney (1995a,b) and Torsney and Gunduz
(2001). Yang et al. (2011) considered the case when the assumption of a bounded design
region X is relaxed by allowing one variable, say xk, to take any value in R. As the
D-optimality objective function is still bounded in this case, the authors were able to pro-
vide a methodology to obtain a locally D-optimal design analytically. We restate their
corollary 1 for the special case of logistic regression and D-optimality.

Theorem 13.1 (Yang et al. 2011) For the logistic model with linear predictor (13.31) and X =
[−1, 1]k−1 × R, a D-optimal design has 2k equally weighted support points,

x�
l =

{
(x1l, . . . , x(k−1)l, a�

l ) for l = 1, . . . , 2k−1

(x1l, . . . , x(k−1)l, −a�
l ) for l = 2k−1 + 1, . . . , 2k,
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where

xjl =
{

−1 if � l
2k−1−j  is odd

1 if � l
2k−1−j  is even

j = 1, . . . , k − 1,

�a is the smallest integer greater than or equal to a, the numerator of the fractions is l and a�
l =

η� − η�
l (k). Here, η� maximizes

η2
{

dh(η)/dη
h(η)[1 − h(η)]

}k+1

,

where h = g−1, the inverse of the logistic link function, and η�
l (k) = θ0 + ∑k−1

j=1 θjxjl.

This result has a fairly straightforward interpretation. If we fix the values of k − 1 vari-
ables in the support points at the level combinations of a 2k−1 factorial design, then the
selection of an optimal design reduces to a one-variable problem (the choice of the values
to be taken by xk). Note that X is such that each variable lies in an interval, rather than just
taking the two values ±1.

To illustrate this result, Table 13.5 gives D-optimal designs on [−1, 1] × R for the sets
of parameter values in Table 13.2. These designs are quite different from the designs in
Tables 13.3 and 13.4, where the restriction of x2 to the interval [−1, 1] results in the designs
having different numbers of support points, different values for the support points and
different weights.

TABLE 13.5

D-Optimal Support Points from Theorem 13.1 (Yang et al. 2011)
for Parameter Values in Table 13.2

Support Points

Parameters x1 x2

B1 −1 −2.2229
−1 2.2229

+1 −0.2229
+1 0.2229

B2 −1 1.6115
−1 −1.6115

+1 −0.3886
+1 0.3886

B3 −1 0.6115

−1 −0.6115
+1 −1.3886

+1 1.3886
B4 −1 −0.3615

−1 0.3615

+1 −1.6386
+1 1.6386

Note: For each design, the support points are equally weighted.
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13.5.1.5 Second-Order Response Surface

This section extends the results of earlier sections to the second-order response surface
model, again with two factors and again with the logistic link. The purpose is to show
the relationship with, and differences from, designs for regression models. The D-optimal
designs are found, as before, by minimizing − log |M(ξ; θ)|. With n = 9 and 2D x, the
numerical search is in 26 dimensions. However, once the structure of the designs is estab-
lished, with 8 of the design points on the edges of X (see Figure 13.5), the search can
be reduced to 18 dimensions, with the equivalence theorem providing a check on this
reduction.

To explore how the design changes with the parameters of the model, we look at a series
of designs for the family of linear predictors

η = θ0 + γ(θ1x1 + θ2x2 + θ12x1x2 + θ11x2
1 + θ22x2

2) with γ ≥ 0, (13.34)

and design region X = [−1, 1]2. The parameter γ provides a family of similarly shaped
linear predictors which increasingly depart, in a proportional way, from a constant value
as γ increases. When γ = 0, the result of Cox (1988) shows that the design is the D-optimal
design for the second-order regression model, the unequally weighted 32 factorial design
given in Section 13.5.2.

For numerical exploration, we take θ0 = 1, θ1 = 2, θ2 = 2, θ12 = −1, θ11 = −1.5 and
θ22 = 1.5. As γ varies from 0 to 2, the shape of the response surface becomes increasingly
complicated.

Figure 13.5 shows the support points of the D-optimal designs as γ increases from zero
in steps of 0.1. The design points are labelled, for γ = 0, in standard order for the 32 fac-
torial, with x1 changing more frequently. The figure shows how all but one of the design
points stay on the boundary of the design region; the circles and black dots are the support
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FIGURE 13.5
D-optimal designs for second-order logistic model as γ varies (0 ≤ γ ≤ 2). Support points: numbers, γ = 0;
circles, γ = 1; black dots, γ = 2; grey dots, intermediate values.
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points for γ = 1 and 2, respectively, with the grey dots indicating intermediate values.
There is little change in the location of the centre point, point 5, over this range of values
for γ. Initially, the design has nine points, but the weight on point 8 decreases to zero when
γ = 0.3. Thereafter, the design has eight support points until γ = 1.4 when the weight on
observation 6 becomes zero.

Figure 13.6 serves to help interpret the behaviour of the design as γ increases, showing
the values of x2 for the three design points (3, 6 and 9) in Figure 13.5 for which x1 = 1.
Initially, the values of x2 are those for the 32 factorial, and they remain virtually so until
γ = 0.6. Thereafter, they gradually converge towards three more central values.

The relationship between the support points of the design and the values of μ is high-
lighted in Figure 13.7 where, as in Figure 13.3, the pale areas are regions in which μ ≤ 0.15,
with the dark regions as the complementary ones where μ ≥ 0.85. The left-hand panel of
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FIGURE 13.6
D-optimal designs for second-order logistic model. The values of x2 for support points 3, 6 and 9 of Figure 13.5
as γ varies between zero and two. The coding of the symbols is the same as in the earlier figure.
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FIGURE 13.7
Support points for D-optimal designs for the second-order logistic model. (a) γ = 1, (b) γ = 2. In the lightly
shaded area, μ ≤ 0.15, whereas in the darker region, μ ≥ 0.85.
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Figure 13.7, for γ = 1, shows that the 8-point design is a distortion of a standard response
surface design, with most points in the white area and the remainder on the boundary
of the design region, some close to the contours of μ = 0.15 or 0.85. In the numbering of
Figure 13.5, points 2 and 6 are on the edge of the design region where μ is close to 0.5.
Points 3 and 9 are at higher values of μ.

A similar pattern is clear in the seven-point design for γ = 2 in the right-hand panel of
the figure; four of the seven points are on the edges of the white region, one is in the centre
and only points 3 and 9 are at more extreme values of μ.

The two panels of Figure 13.7 taken together explain the trajectories of the points in
Figure 13.5 as γ varies. For example, points 1 and 4 move away from (−1, −1) as the value
of μ at that point decreases, point 3 remains at (1, −1) until γ is close to one and point 8 at
(0, 1) is rapidly eliminated from the design as the value of μ there increases with γ.

Further insight into the structure of the designs can be obtained from consideration of the
induced design region introduced in Section 13.5.1. Although, as stated earlier, extension
of the procedure based on (13.32) to second-order models such as (13.34) is not obvious,
it is still informative to look at the plot of the designs in Z space. The left-hand panel of
Figure 22.8 of Atkinson et al. (2007) shows the eight-point design for γ = 1 plotted against
z1 and z2; seven points lie on the edge of this region, well spaced and far from the centre,
which is where the eighth point is. The right-hand panel forγ = 2 shows six points similarly
on the edge of Z ; the centre point is hidden under the seemingly folded-over region near
the origin.

In the induced design region, these designs are reminiscent of response surface designs,
with a support point at the centre of the region and others at remote points. However, the
form of Z depends on the unknown parameters of the linear predictor, so this description is
not helpful in constructing designs. In the original space X , we have described the designs
for this second-order model as a series of progressive distortions of designs with support
at the points of the 32 factorial. For small values of γ, the unweighted 32 factorial provides
an efficient design, with a D-efficiency of 97.4% when γ = 0. However, the efficiency of
this design declines steadily with γ, being 74.2% for γ = 1 and a low 38.0% when γ = 2. If
appreciable effects of the factors are expected, the special experimental design methods of
this section need to be used. Further discussion of designs for two-variable logistic models
is given by Sitter and Torsney (1995a) with particular emphasis on the structure of Z .

13.5.1.6 Bayesian D-Optimal Designs

We can also find Bayesian D-optimal designs, maximizing (13.24), for response surface
designs and binomial data. Motivated by a food technology example, Woods et al. (2006)
found designs for logistic regression with linear predictor

η(x) = θ0 +
3∑

i=1

θixi +
3∑

i=1

3∑
j≥i

θijxixj,

with xi ∈ [−1.2782, 1.2782]. Here, we find a Bayesian D-optimal design assuming indepen-
dent uniform prior densities for the parameters in θ, defined on the support

θ1,θ2 ∈ [2, 6], θ0,θ3,θij ∈ [−2, 2] for i, j = 1, 2, 3.
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FIGURE 13.8
Two-dimensional projections of the Bayesian D-optimal design for a logistic regression model (lower diagonal)
and a CCD (upper diagonal).

We approximate the expectation (13.24) by the sample average across a 20-run Latin hyper-
cube sample (see, e.g., Chapter 17 and Santner et al. 2003, Chapter 6). Gotwalt et al. (2009)
and Woods and van de Ven (2011) discuss and compare some alternative approaches for
this approximation.

For this example, a simulated annealing algorithm (Woods 2010) was used to find an
exact design, d16, with n = 16 points. The design is given in Figure 13.8 and, in fact, has t =
n = 16 support points and no replication. For reference, Figure 13.8 also gives the design
points of a 16-run central composite design (CCD; see Chapter 5), dccd, with 8 factorial
points, 6 axial points with xj = ±1.2782 and two centre points; see, for example, Box and
Draper (2007). This design is standard for normal theory response surface studies and is
an obvious comparator for the Bayesian GLM design. In fact, a CCD had been employed
for the food technology example in previous experimentation.

Whilst there are some familiar features to the Bayesian D-optimal design, including
(near) centre points, there are also some distinct differences from the CCD. These include
the presence of extreme corner points in the D-optimal design and, for x1 and x2, fewer
distinct levels (∼3 for each of these two variables).

The relative performance of the designs was assessed via a simulation study. A sample of
1000 parameter vectors, θ(l), was drawn from the prior distribution for θ. For each vector,
we calculated the relative D-efficiency

EffD(l) =
{

|M(d16); θ(l)|
|M(dccd); θ(l)|

} 1
10

, l = 1, . . . , 1000. (13.35)

The empirical cumulative distribution of the relative efficiency, Figure 13.9, shows a
dramatic difference in performance between the two designs. The Bayesian D-optimal
design is more efficient than the CCD for about 85% of the sampled parameter vectors
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FIGURE 13.9
Empirical cumulative distribution function of the relative D-efficiency of the Bayesian D-optimal design compared
to the CCD.

and has efficiency of 1.75 or more for 50% of the sampled vectors. The maximum relative
efficiency is close to 7.

13.5.2 Gamma Data

13.5.2.1 Theoretical Results for First-Order Designs with the Power Link

We use numerical examples to illustrate the great difference between designs for gamma
models and those for binomial responses of Section 13.5.1. The examples are calculated
using the power link. In this introductory section, we present the theoretical results of
Burridge and Sebastiani (1994) for first-order models. Our numerical example of a first-
order model is in Section 13.5.2 with an example for a response surface model in
Section 13.5.2. We conclude with a brief comparison of designs for the power link with
those for the Box–Cox link.

If the design region for uncoded variables is of the form aj ≤ xu
j ≤ bj, the region can be

coded so that 0 ≤ xj ≤ 1 for j = 1, . . . , k. The requirement that μ > 0 for all non-negative
x leads to a canonical form of the original problem with θj ≥ 0 for all j = 0, . . . , k, with
at least one inequality. Since the weights (13.16) are monotonic in η, the support points of
D-optimal designs as θ varies must then be some of the points of the 2k factorial. Which
points have non-zero weights depends on the values of the θj. For effects large relative to
θ0, Burridge and Sebastiani (1994) provide the following theorem.

Theorem 13.2 (Burridge and Sebastiani 1994) For the coded design variables xj, the design
which puts weights 1/(k+1) at each of the k+1 points

(0, . . . , 0)′, (1, 0, . . . , 0)′, (0, 1, 0, . . . , 0)′, . . . , (0, . . . , 0, 1)′
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is D-optimal for gamma regression, the power link and a first-order linear predictor if, and only if,
for all i, j = 1, . . . , k,

θ2
0 ≤ θiθj.

Thus, for large effects, a one-factor-at-a-time approach is optimal. However, as the effects
become smaller, the design approaches the 2k factorial in line with the result of Cox (1988)
discussed in Section 13.3.5. Of course, the weights wi have to be found numerically. How-
ever, the numerical search is greatly simplified by being restricted to the support of the 2k

factorial. It is also a great simplification that, as we showed in Section 13.2.5, the designs
do not depend on the value of the power κ.

13.5.2.2 Examples of First-Order Designs with the Power Link

In both examples, there are two explanatory variables. We only look at symmetrical designs
generated with θ1 = θ2 having the three values 0.1, 0.5 and 1. In all calculations, θ0 = 1.
The resulting designs are in Table 13.6.

These results nicely illustrate the theoretical results of Section 13.5.2. We have parame-
terized the problem with θ1 = θ2 = χ. For χ = 0.1, that is, with small effects, the design is
virtually the 22 factorial, with weights close to 1/4 ranging from 0.225 to 0.271. Increasing
χ to 0.5 leaves the support points unchanged, but now the weights range, symmetrically of
course in x1 and x2, from 0.125 to 0.3125, with the lowest weight on (1,1). When χ = 1, we
have θ2

0 = θ1θ2, so that we are at the lowest value of χ for which we obtain a design with
three support points. All weights are, of course, equal.

These designs were found numerically using a quasi-Newton algorithm combined with
the transformations given in Section 9.5 of Atkinson et al. (2007). The general equivalence
theorem was used to check the designs by evaluation of the derivative function ψ(x, ξ)

over a fine grid in X . One point in the construction of these designs is that with χ = 1, the
optimization algorithm had not quite converged to the theoretical value after the default
limit of 100 iterations, whereas around 10 iterations were needed for the other values of χ.
The effect on the minimum value of ψ(x, ξ) was negligible. A second point is that, to five
significant values, the weights for χ = 0.5 were exactly 5/16, 9/32, 9/32 and 1/8. Such
simple weights can be an indication that theoretical results are possible. See Atkinson (2010)
and Dette et al. (2012) for an example in discrimination between polynomial regression
models.

TABLE 13.6

D-Optimal Designs for Two-Variable First-Order Model for Gamma
Responses with the Power Link; θ = (1,χ,χ)′

Design Weights wi

x1 x2 χ = 0.1 χ = 0.5 χ = 1

0 0 0.271 0.313 1/3

0 1 0.252 0.281 1/3
1 0 0.252 0.281 1/3

1 1 0.225 0.125 0
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FIGURE 13.10
Support points in the induced design region Z of D-optimal designs for two-variable first-order model for gamma
responses with the power link; • design points.

To conclude our discussion of this example, we look at the plots of the design in the
induced design region Z defined in (13.32). As the results of Burridge and Sebastiani (1994)
show, the boundary of Z is formed, for k = 2, by straight line segments, as is shown in
Figure 13.10. There is none of the curving over of the space of X that is caused by the
nonlinear nature of the GLM weights u(xi) for the binomial distribution that is evident in
Figure 13.4.

For small χ, the induced design region is virtually square, becoming less so as χ

increases. The left-hand panel of Figure 13.10 is for χ = 0.5, for which the weight at
x = (1, 1)′ is 1/8. As χ increases, the weight on this value decreases. Insight about the
case χ = 1 comes from the results of Silvey and Titterington (1973) relating D-optimality
to minimum volume ellipsoids enclosing design regions. It follows that when χ = 1, the
values of z1 and z2 at x = (1, 1)′, say z1(1, 1) and z2(1, 1), must be the same distance from the
origin as z1(1, 0) and z2(1, 0) (or z1(0, 1) and z2(0, 1)). Hence, z1(1, 1) = z2(1, 1) = (

√
2)/4. For

larger values of χ, the values of z1 and z2 lie inside the circle, and Z becomes increasingly
triangular. The design does not change as χ increases above 1.

In these calculations, we have taken κ = 1. From the form of u(x) in (13.16), other values
of κ lead to identical figures, but with different numerical values on the axes.

13.5.2.3 Second-Order Response Surface with the Power Link

Atkinson and Riani (2000, Section 6.9) use a gamma model to analyse data from Nelson
(1981) on the degradation of insulation due to elevated temperature at a series of times.
A second-order model is required in the two continuous variables, and a gamma model
fits well with a power link with κ = 0.5. We scale the variables to obtain design region
X = [−1, 1]2. The linear predictor is the quadratic

η = θ0 + θ1x1 + θ2x2 + θ11x2
1 + θ22x2

2 + θ12x1x2, (13.36)

that is, (13.34) with γ = 1. Then the standard D-optimal design for the normal theory
regression model has unequally weighted support at the points of the 32 factorial: weight
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TABLE 13.7

Parameter Values for Linear Predictor (13.36) with κ = 0.5

Parameter Set θ0 θ1 θ2 θ11 θ22 θ12

G1 3.7 −0.46 −0.65 −0.19 −0.45 −0.57
G2 3.7 −0.23 −0.325 −0.095 −0.225 −0.285

0.1458 at the four corners of the design region, 0.0802 at the centre points of the sides and
0.0960 at the centre of the region. This design is optimal for the gamma model with log link
and for the model with the power link as the parameters in (13.36), apart from θ0, become
small. We take θ to have the values given in Table 13.7, G1 being rounded from an analysis
of Nelson’s data.

The exact optimal 9-trial design for G1, found by searching over a grid of candidates
with steps of 0.01 in x1 and x2, is in Table 13.8. This shows that, at the points of the design,
the minimum value of μ is 1.90 and the maximum 14.59. The parameter values are thus
such that we satisfy the requirement μ > 0.

As the left-hand half of Table 13.8 shows, the design has seven support points. The points
of the 22 factorial are in the upper part of the table. All are included in the design, two
being replicated. The other three support points are slight distortions of some remaining
points of the support of the 32 factorial. Figure 13.11 makes clear the virtually symmetri-
cal nature of the design, although the parameters are not quite symmetrical in value for
x1 and x2.

To illustrate the approach of the design to the 32 factorial as the parameter values
decrease, we also found the D-optimal 9-point design for the set of parameter values G2 in
Table 13.7 in which all parameters, other than θ0, have half the values they have for design
G1. As Table 13.8 shows, the range of means at the design points is now 6.45 – 14.71, an
appreciable reduction in the ratio of largest to smallest response. The support points of the
design for G2 are shown in Figure 13.11 by the symbol X. There are now nine distinct sup-
port points close to those of the 32 factorial. For G2, the three design points in the lower
half of the table for G1 are moved in the direction of the full factorial design. For linear
regression, the unweighted 32 factorial is D-optimal.

TABLE 13.8

Exact D-Optimal Designs for the Parameter Sets G1 and G2 of Table 13.7

Design for G1 Design for G2

i x1i x2i ni μi x1i x2i ni μi

1 −1.00 −1.00 1 12.96 −1.00 −1.00 1 13.32

2 −1.00 1.00 2 11.83 −1.00 1.00 1 12.74
3 1.00 −1.00 2 14.59 1.00 −1.00 1 14.14

4 1.00 1.00 1 1.90 1.00 1.00 1 6.45
5 0.11 0.15 1 12.46 −1.00 0.00 1 14.71
6 0.26 1.00 1 5.38 −0.01 −1.00 1 14.44

7 1.00 0.29 1 7.07 0.07 0.09 1 13.33
8 0.08 1.00 1 9.66

9 1.00 0.09 1 11.01
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FIGURE 13.11
Points for D-optimal 9-point designs for gamma models in Table 13.8: +, the points of the 32 factorial; �, G1 and
×, G2. Points for G1 which are replicated twice are darker.

13.5.2.4 Efficient Standard Designs for Gamma Models

We conclude our analysis of designs for the gamma model with second-order predictor and
a power link by briefly exploring how well the unweighted 32 factorial performs when there
are nine trials by comparing both it and the design for G2 with that for G1.

The D-optimal design for the less extreme parameter set G2 of Table 13.7 has effi-
ciency 97.32%, whist the equi-replicated 32 factorial has efficiency 96.35%. The main feature
of these designs is how efficient they are for the gamma model, both efficiencies being
greater than 95%. The design for parameters G2 is for a model with smaller effects than G1,
so that the design and its efficiency are between those for G1 and the factorial design.

An indication of this example with a gamma response is that standard designs may be
satisfactory for second-order response surfaces. However, Burridge and Sebastiani (1994)
show that, for first-order models, full 22 factorial designs, or their regular fractions (see
Chapter 7), can be very inefficient when the effects are strong and the optimal designs
have only k + 1 points of support.

13.5.2.5 Designs for the Power Link and for the Box–Cox Link

We now briefly explore the relationship between designs for the power link with weights
given by (13.16) and those for the Box–Cox link (13.14). We relate the two through their
dependence on the linear predictor η.

From (13.16), the weights for the power link can be written as

{u(x)}−0.5 = η, (13.37)

since the constant value of κ is ignored. For the Box-Cox link, on the other hand,

{u(x)}−0.5 = μλ. (13.38)
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However, from (13.13),

μ = (1 + λη)1/λ,

so that for the Box–Cox link,

{u(x)}−0.5 = (1 + λη) = 1 + λ(θ0 + θ1x1 + · · · + θkxk).

The condition in Theorem 13.2 of Section 13.5.2.1 that the one-factor-at-a-time design is
optimal therefore becomes

(1 + λθ0)
2 ≤ λ2θiθj. (13.39)

An advantage of the Box–Cox link in data analysis is that it is continuous at λ = 0,
becoming the log link. The search over suitable links to describe the data therefore does not
contain any discontinuity. In designing experiments, on the other hand, a locally optimal
design will be selected for a particular λ. The results of Section 13.2.5 show that, if the power
link is used, a value of κ does not have to be stated a priori. However, prior values will be
required for θ. These will typically be ascertained from guessed responses as the factors
vary. Despite the absence of explicit reference to κ in the design criterion, the value will
enter implicitly through the relationship between μ and η (13.15). Finally, (13.39) shows
that as λ → 0, the one-factor-at-a-time design will not be optimal. Further, from (13.38), it
follows that under these conditions, the weights u(x) → 1 and the design will tend to the
2k factorial, even for large values of the θj.

13.5.3 Poisson Data

D-optimal designs for Poisson regression with the log link, logμ = η, share some similar-
ities with the gamma designs in Section 13.5.2. In particular, for log linear models with a
first-order linear predictor,

logμ = η = θ0 +
k∑

i=1

θixi, (13.40)

the optimal design has a similar structure to those from Theorem 13.2.
There are only a moderate number of results on designs for Poisson regression in the

literature. For (13.40) and k = 1, Minkin (1993) found locally optimal designs for estimat-
ing θ1; see also Chapter 14 and the references therein for more general results on models
with one variable. For k = 1, 2, Wang et al. (2006) investigated the dependence of locally
optimal designs on functions of the parameter values, and Wang et al. (2006) developed
sequential designs. For a single variable, Ford et al. (1992) used a transformation of the
design space to a canonical form, together with geometrical arguments along the lines of
Section 13.5.1.1, to find locally optimal designs for a class of nonlinear models that included
Poisson regression.
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Russell et al. (2009) addressed the problem of D-optimal design for (13.40) with k ≥ 1
and provided the following theorem.

Theorem 13.3 (Russell et al. 2009) A D-optimal design for Poisson regression (13.40) with li ≤
xij ≤ ui and |θi(ui − li)| ≥ 2 (i = 1, . . . , k; j = 1, . . . , t) has the t = k + 1 equally weighted support
points,

xi = c − 2
θi

ei, i = 1, . . . , k

xk+1 = c, (13.41)

for ei the ith column vector of the k × k identity matrix, i = 1, . . . , k, and c = (c1, . . . , ck)
′, where

ci = ui if θi > 0 and ci = li if θi < 0.

The proof of Theorem 13.3 is via a canonical transformation and an application of the
general equivalence theorem. Note that the D-optimal design does not depend on the value
of the intercept, θ0, and is invariant to permutation of the factor labels. The requirement
|θi(ui−li)| ≥ 2 is not overly restrictive in practice; X = [−1, 1]k requires |θi| ≥ 1, i = 1, . . . , k.
In Figure 13.12, we give the support points for k = 2 and a number of example parameter
vectors, θ = (0,χ,χ)′. Notice the one-factor-at-a-time structure of the design and how the
support points tend towards (1, 1) as χ increases. Figure 13.13 gives the support points in
the induced design space Z , projected into z1, z2 and defined from (13.32). The optimal
support points lie on the boundary of the induced space. Not only do the values of the
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FIGURE 13.12
Support points for locally D-optimal designs for Poisson regression with (13.40) and θ = (0,χ,χ). Key: � χ = 1;
� χ = 2; + χ = 3; × χ = 4; ♦ χ = 5. All designs include the point (1, 1).
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FIGURE 13.13
Support points in the induced design space Z for D-optimal designs for Poisson regression with (13.40) and
θ = (0,χ,χ). (a) χ = 2; (b) χ = 3; (c) χ = 4; (d) χ = 5.

zi increase with χ, but also the induced design region itself becomes more elongated as χ

increases.
For |θi(ui − li)| < 2, numerical investigation has found that both the optimal support

points and weights depend on θ0, in addition to the other parameters. As expected, as
|θi/θ0| tends to zero, for i = 1, . . . , k, the D-optimal design tends to the equally weighted
factorial design.

For more general linear predictors, for example, containing interactions or quadratic
terms, numerical search is required to find optimal designs. This is also the case for
Bayesian D-optimal designs except for the special case of minimally-supported designs
for (13.40), that is, designs with t = k + 1 support points. McGree and Eccleston (2012)
provided theoretical results for minimally supported designs robust to a set of models of
the form (13.40) defined through a discrete set of parameter vectors. We extend their result
to Bayesian minimally supported D-optimal designs.

Theorem 13.4 Assume a Poisson regression model with linear predictor (13.40). The Bayesian
D-optimal design amongst the class of minimally supported designs, minimizing (13.24), is the
locally D-optimal design (13.41) for the parameter vector θ� = E(θ) provided |E(θi)(ui − li)| ≥ 2.

Proof : For a minimally-supported design, the model matrix

X = [f (x1), . . . , f (xp)]′,
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is p × p. Now the objective function (13.24) can be written as

�(ξ) = −
�
�

log |M(ξ; θ)|p(θ)dθ (13.42)

= −
�
�

2 log |X|p(θ)dθ −
�
�

log
t∏

j=1

wj exp(ηj)p(θ) dθ

= −2 log |X| −
t∑

j=1

[
log wj +

�
�

ηjp(θ)dθ

]

= −2 log |X| −
t∑

j=1

[
log wj − η�

j

]

= − log |M(ξ; θ�)|, (13.43)

where θ� = E(θ) and η�
j = θ�

0 + ∑k
i=1 θ

�
i xij. The fourth line above follows as ηi is a linear

function of θ. The equality of (13.42) and (13.43) establishes that, provided |E(θi)(ui − li)| ≥
2, design (13.41) is Bayesian D-optimal amongst the class of minimally supported designs.

To illustrate Theorem 13.4, we find a Bayesian minimally supported D-optimal design
for (13.40) and k = 5 factors with xi ∈ [−1, 1], θ0 = 0 and each θi ∼ U(a, b) (i = 1, . . . , 5).
The values of a and b are given in Table 13.9 in terms of a common parameter α. Increasing
α leads to more diffuse prior densities. However, for any α ≥ 2, the Bayesian minimally
supported D-optimal design is given by the locally D-optimal design for θ0 = 0 and θi =
(a + b)/2 = (−1)(i+1)(1 + α/2); see Table 13.10.

We assess the performance of these designs through simulation of 10,000 parameter
vectors from the uniform distributions defined by Table 13.9 for α = 2, 5, 10 and 20. For
each parameter vector, we derive the locally D-optimal design from Theorem 13.3 and
then calculate the D-efficiency (13.26) for the design in Table 13.10. The induced empirical
cumulative distribution functions are given in Figure 13.14.

For relatively precise prior information (α = 2), high efficiency is maintained for all the
samples from the prior distribution, with minimum efficiency of 79% and median of 93%.
As the prior distribution becomes more diffuse (with increasing α), the induced efficiency
distribution also becomes more diffuse. For α = 5, the minimum and median efficiencies

TABLE 13.9

Bayesian Minimally Supported D-Optimal Design: Ranges for the
Uniform, U(a, b), Prior Densities for θ1, . . . ,θ5

Limits

Parameter a b

θ1 1 1 + α

θ2 −1 − α −1

θ3 1 1 + α

θ4 −1 − α −1
θ5 1 1 + α
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TABLE 13.10

Bayesian Minimally Supported D-Optimal Design: Equally Weighted
Support Points; β= [(α − 2)/(α + 2)] for α = 2, 5, 10, 20

x1 x2 x3 x4 x5

1 β −1 1 −1 1
2 1 −β 1 −1 1
3 1 −1 β −1 1

4 1 −1 1 −β 1
5 1 −1 1 −1 β

6 1 −1 1 −1 1
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FIGURE 13.14
Empirical cumulative distributions for the D-efficiency of the Bayesian minimally supported D-optimal design
for four different prior distributions; see Tables 13.9 and 13.10.

are 53% and 85%, respectively; the corresponding summaries for α = 10 are 34% and 80%
and for α = 20 are 21% and 75%. The high median efficiencies maintained for more diffuse
distributions are not typical of minimally supported designs in general (e.g., see van de Ven
and Woods 2014, for binary data designs). However, it seems the structure of the Poisson
designs, with all the support points on the boundary, makes Bayesian minimally supported
designs an efficient choice (see also McGree and Eccleston 2012).

13.6 Designs with Dependent Data

There is a variety of practical experiments in which the observed responses may be
dependent; see also Chapter 6. Most obviously, and perhaps most importantly, are
experiments where there is a natural grouping in the experimental units such that,
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given the same treatment, two observations from within the same group are expected
to be more similar than two observations in different groups. Common examples
for non-normal data include longitudinal studies in clinical and pharmaceutical trials
(Diggle et al. 2002) and blocked experiments in industry (Robinson et al. 2004). Our expo-
sition in this section focuses on block designs but is equally appropriate for other grouped
experiments.

For experiments involving the observation of a continuous response that is appro-
priately described by a normal distribution, there is, of course, a wealth of literature
on the design and analysis of blocked experiments for linear models (see Section II).
There is also a considerable literature on design for nonlinear models and dependent
data, much of it stemming from the world of pharmacokinetics/pharmacodynamics
(PK/PD) and the seminal work of Mentré et al. (1997). For experiments with discrete
data, with a binary or count response, there are rather fewer results available, although
the results we describe below naturally share some similarities with the PK/PD litera-
ture, particularly the so-called first-order approximation (see Retout and Mentré 2003;
Bazzoli et al. 2010).

As with linear models, the first decision is whether to model the block effects as fixed
or random. We will choose the latter option and take a mixed model approach as: (1) in
industrial experiments, the blocks are usually a nuisance factor and not of interest in them-
selves; (2) random block effects allow prediction of the response for unobserved blocks and
(3) pragmatically, when finding optimal designs for nonlinear models, the use of random
block effects reduces the number of unknown parameters for which prior information is
required. For example, with b blocks, a fixed-effect design would require the specification
of b − 1 block effects. See Stufken and Yang (2012a) for locally optimal designs with fixed
group effects and a single variable.

13.6.1 Random Intercept Model

To model the responses from a blocked experiment, we adopt the framework of GLMMs
(Breslow and Clayton 1993) and, in particular, apply random intercept models. We develop
our framework for b blocks, each of equal size m. For the jth unit in the ith block,

yij|γi ∼ π(μij), for i = 1, . . . , b; j = 1, . . . , m,

where π(·) is a distribution from the exponential family with mean μij and

g(μij) = f ′(xij)θ + γi.

Here, g(·) is the link function, and xij is the i, jth combination of variable values. As ear-
lier, the vector f (xij) holds known functions of the k variables, and θ holds the p unknown
regression parameters. The unobservable random block effects γi are assumed to follow
independent N(0,σ2

γ) distributions, with σ2
γ known. Under this model, observations in dif-

ferent blocks are independent. More general models including additional random effects,
such as random slopes, may also be defined.
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13.6.2 Continuous Block Designs

We choose to generalize (13.17) to include blocks of fixed size m through

ξ =
{
ζ1 . . . ζt
w1 . . . wt

}
,

where ζl ∈ Xm is the set of design points that form the lth block (or support point) and
0 < wl ≤ 1 is the corresponding weight;

∑t
l=1 wl = 1. See Cheng (1995) and Woods and

van de Ven (2011). For example, if k = m = 2, a possible continuous design is

ξ =
{
ζ1 = {(−1, −1), (1, 1)} ζ2 = {(1, −1), (−1, 1)}

0.5 0.5

}
,

that is, one-half of the b blocks in a realized exact design would contain design points x1 =
x2 = −1 and x1 = x2 = 1, and the other half would contain design points x1 = 1, x2 = −1
and x1 = −1, x2 = 1.

13.6.3 Information Matrix for a Random Intercept Model

To apply the usual design selection criteria, for example, D-optimality, we need to
derive and evaluate the information matrix for θ. As observations in different blocks are
independent,

M(ξ; τ) =
t∑

l=1

wl M(ζl; τ),

where τ = (θ′,σ2
γ), and the information matrix for the lth block is, by definition,

M(ζl,τ) = Eyl

{
−∂2 log p(yl|τ, ζl)

∂θ∂θ′

}
, (13.44)

where the m-vector yl = (yl1, . . . , ylm)′ holds the responses from block ζl.
Direct calculation of the expectation in (13.44) is possible for small experiments with

binary data through

M(ζl,τ) =
∑

yl∈{0,1}m

−∂2 log p(yl|τ, ζl)

∂θ∂θT p(yl|τ, ζl),

although both the marginal likelihood and its derivative will require numerical approx-
imation (see Waite, 2013). For more practically sized experiments, this direct calculation
will be computationally infeasible.
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13.6.4 Approximating the Information Matrix Using Estimating Equations

For model estimation, the marginal likelihood can be approximated using methods such
as quadrature, Markov chain Monte Carlo or the EM algorithm (McCulloch et al. 2008).
However, for the purposes of finding an optimal design using numerical search, repeated
evaluation of the information matrix, or some alternative, is required. Hence, a fast
approximation to (13.44) is needed.

An approximate variance–covariance matrix for θ is available from the theory of esti-
mating equations (see, e.g., Godambe 1991). For a GLMM, standard unbiased estimating
equations are an extension of the score equations for a GLM and have the form

t∑
l=1

wlX′
l�lV

−1
l (yl − μl) = 0,

where �l = diag
[
dμlj/dηlj

]
, ηlj = f ′(xlj)θ, Xl and μl are the m × p model matrix and m × 1

mean vector defined for the lth block and V l is a m × m weight matrix for the observations
from the lth block. Depending on the approximation, μl may be either the marginal mean
response or the conditional mean response given γl = 0.

The approximate variance–covariance matrix of the resulting estimators is given by

Var
(
θ̂
)

≈
( t∑

l=1

wlX′
l�lV

−1
l �lXl

)−1

. (13.45)

The inverse of this variance–covariance matrix can be used as an approximation to the
information matrix M(ξ,τ).

Various different choices of V l and μl have been proposed, of which we will discuss the
following three:

1. Quasi-likelihood (QL): V l = Var
(
yl

)
andμl = E(yl), the marginal variance and mean;

see Wedderburn (1974). The marginal variance–covariance matrix for yl is gener-
ally not available in closed form for non-normal data. One notable exception is for
the Poisson distribution, for which Niaparast (2009) and Niaparast and Schwabe
(2013) used QL to find D-optimal designs.

2. Marginal quasi-likelihood (MQL): V l = diag
[
Var(ylj)

] + �lJ�lσ
2
γ, with J = 11′, and

μl = E(yl|γl = 0); see Breslow and Clayton (1993). Here, a linear mixed model
approximation is used for the marginal variance–covariance matrix of yl. This
approximation has been used to find designs for binary data by authors such as
Moerbeek and Maas (2005), Tekle et al. (2008) and Ogungbenro and Aarons (2011).

3. Generalized estimating equations (GEEs):

V l = {
diag

[
Var(ylj)

]}1/2 R
{
diag

[
Var(ylj)

]}1/2 ,

with R as an intra-block marginal working correlation matrix, and μl = E(yl|γl = 0);
see Liang and Zeger (1986). The matrix R is assumed to be independent of x and
usually chosen to have a standard form, for example, exchangeable or known
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up to a small number of correlation parameters. For discrete data, it is in fact
often impossible for either of these two assumptions to hold, but the resulting
estimators can be relatively efficient compared to a full maximum likelihood
approach (Chaganty and Joe 2004). Methodology for D-optimal designs using this
approach was developed by Woods and van de Ven (2011).

Note that for each of these approximations, if σ2
γ → 0 (or equivalently, R → I), the variance–

covariance matrix for yl reverts to that for a simple GLM. Waite and Woods (2015)
developed, assessed and compared a variety of methods of approximating M to find
D-optimal designs for a GLMM.

13.6.5 Comparison of Approximations

We use a small example to perform a simple comparison of designs from the three approx-
imations in the previous section. Consider an experiment in blocks of size m = 2 with a
single variable x to collect count data. Conditional on the random block effect, we assume
yij|γi ∼ Poisson(μij) (i = 1, . . . , b; j = 1, . . . , m), and we choose a second-order predictor
and the log link

log(μij) = ηij = γi + θ0 + θ1xij + θ2x2
ij,

for xij ∈ [−1, 1]. For the purposes of finding designs, we assume point prior information
and set θ0 = 0, θ1 = 5 and θ2 = 1. The random block effect has distribution γi ∼ N(0,σ2

γ)

for i = 1, . . . , b and σ2
γ = 0.5.

For the log link, �l = diag
{
μlj

}
. We consider each of the three approximations, with μlj

representing either the marginal or conditional mean response for the jth point in the lth
block of support (l = 1, . . . , t ; j = 1, . . . , m).

Quasi-likelihood (QL): Here, μlj = E(ylj)= exp
(
ηlj + σ2

γ/2
)
, the marginal mean

response, and

V l = diag
{
exp

(
ηlj + σ2

γ/2
)}

+
{
exp

(
σ2
γ

)
− 1

}
μ̄lμ̄

′
l,

where μ̄′
l = {

exp
(
ηlj + σ2

γ/2
)}m

j=1.

Marginal quasi-likelihood (MQL): For this approximation, μlj = exp
(
ηlj

)
, the conditional

mean response given γl = 0, and

V l = diag
{
exp

(
ηlj

)} + σ2
γμlμ

′
l,

where μ′
l = {

exp
(
ηlj

)}m
j=1.

Generalized estimating equations (GEEs): Now, μlj = exp
(
ηlj

)
, the conditional mean response

given γl = 0, and

V l = diag
{
exp

(
ηlj

)} 1
2 Rdiag

{
exp

(
ηlj

)} 1
2 ,
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TABLE 13.11

D-Optimal Continuous Block Designs with Blocks of Size m = 2 for a Poisson
Example and QL, MQL and GEE Approaches (to 2 Decimal Places)

Support Blocks

Block 1 Block 2 Block 3

QL/MQL (0.88, 0.10) (1, 0.75) —

Weights 0.5 0.5 —
GEE (0.84, 0.02) (0.72, 1) (1, 0.26)
Weights 0.38 0.35 0.27

where the working correlation matrix for this example is

R =
(

1 α

α 1

)
.

For the GEE design, we redefine τ = (θ′,α).

Locally D-optimal designs under the three approximations are given in Table 13.11. Note
that the same design was found under the QL and MQL approximations and that, for
the GEE design, α = 0.5 was chosen so that the working correlation closely matched
the average intra-block correlation (≈0.49) from the other design. Table 13.12 gives the
D-efficiencies (13.26) of each design under each approximation; the GEE design is 87% effi-
cient under the QL and MQL approximations, whilst the QL/MQL design is 90% efficient
under the GEE approximation.

Optimality of these designs can be confirmed, as in Section 13.3.1, via the application
of a multivariate equivalence theorem; see Atkinson (2008b) and Woods and van de Ven
(2011). A necessary and sufficient condition for a design ξ� to be locally D-optimal is

ψ(x, ξ�; τ) = p − trace
{

M (ζ ;τ) M−1 (
ξ� ;τ

)} ≥ 0, (13.46)

for all ζ ∈ Xm. This condition can be verified numerically; Figure 13.15 plots the deriva-
tive function for each of the three approximations, with the support points of the optimal
designs marked. Notice that (1) the support points occur at minima of the derivative sur-
face, with ψ(x, ξ�; τ) = 0; (2) with blocks of size m = 2, the derivative function must be
symmetric about the line xl1 = xl2; and (3) the derivative surfaces for QL and MQL are very
similar.

TABLE 13.12

Efficiencies of Three Optimal Designs under Three Approximations to the
Information Matrix

Approximation

Design QL/MQL GEE

QL/MQL 1 0.90

GEE 0.87 1
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FIGURE 13.15
Derivative surfaces, ψ(x, ξ�; τ), and D-optimal designs for QL (a), MQL (b) and GEE (c) approximations.

13.7 Extensions and Further Reading

Although we have described designs for three types of response and several link func-
tions, interest in designs for GLMs continues to focus on binary responses and the logistic
link. Much of this reflects the rapid growth of applications of the discrete choice models
described in detail in Chapter 22.

There is also appreciable interest in design for logistic regression in medical statistics,
particularly drug development. A typical problem is to find the dose giving a speci-
fied probability of toxicity. The natural way to proceed is the use of a sequential design
as described in Section 13.3.4.2. The appropriate design criterion is c-optimality, which
designs to estimate this dose with minimum variance. Such designs for nonlinear regres-
sion models are exemplified by Atkinson et al. (2007, Section 17.5) and by Ford et al. (1992)
for GLMs. Often, however, the locally optimal design has a single support point at the esti-
mated dose. The sequential design may then fail to provide sufficient information to guar-
antee identification of the required dose (Pronzato 2000; O’Quigley and Conaway 2010).



510 Handbook of Design and Analysis of Experiments

The designs need to provide sufficient perturbation in the experimental conditions to
ensure convergence.

The designs we have exemplified, particularly for first-order models, often have the
number of support points equal to the number of parameters. They therefore fail to pro-
vide any information for model checking and choice. Designs for discriminating between
two regression models were introduced by Fedorov and Malyutov (1972) and by Atkinson
and Fedorov (1975) who called them T-optimal. Ponce de Leon and Atkinson (1992) and
Waterhouse et al. (2008) extend T-optimality to GLMs. A general design criterion for dis-
crimination between models using Kullback–Leibler distances is that of López-Fidalgo
et al. (2007). A potential disadvantage of these designs is that they focus exclusively on
model discrimination. Compound designs for the joint problem of parameter estimation
and model discrimination, called DT-optimal, are given, for regression models, by Atkin-
son (2008a). Waterhouse et al. (2008) also attend to the quality of parameter estimates, but
not through use of a compound criterion. D-optimal designs robust to the form of the linear
predictor were developed by Woods et al. (2006) and Woods and Lewis (2011).

In some applications, it is not necessary to establish a model that holds globally. In the
context of dose finding, O’Quigley and Conaway (2010) recommend the use of a model
that has adequate local behaviour. A more formal approach to model uncertainty is in
Chapter 20. In particular, Li and Wiens (2011) consider approximate models in dose–
response experiments, whereas Wiens (2009) provides robust designs for discrimination
between regression models.

In Section 13.2.5, we mentioned that response transformation is sometimes an alternative
to the use of a gamma model. Atkinson and Cook (1997) find optimal designs for estima-
tion of the transformation in linear models, whereas Atkinson (2005) studies designs for
transforming both sides of a nonlinear model.

Finally, we note that some interesting models for non-normal responses have a structure
as in Section 13.2.1 but with a predictor which is nonlinear in the parameters. Optimal
designs for one particular generalized nonlinear model are given by Biedermann and
Woods (2011).
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14.1 Introduction

This chapter is an example-based guide to optimal design for nonlinear regression models.
For clarity, we restrict ourselves to models with only one continuous explanatory variable.
The classical theory presented in Section 14.2 also holds for multivariable models, whereas
the results shown in Section 14.3 have been developed for single-variable models. In prac-
tice, designs for multivariable models are usually found numerically due to the increased
complexity (see, e.g., Yu 2011, or Yang et al. 2013 for some recent developments on algo-
rithms). Further information on algorithms for design search is given in Chapters 13 and 21.
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Some analytical results on finding optimal designs for multivariable models can be found
in Biedermann et al. (2011), Yang et al. (2011) and references therein.

Throughout this chapter, we assume that we can make n observations y1, . . . , yn, from a
nonlinear model, at experimental conditions x1, . . . , xn ∈ X , respectively. More specifically,

yi = η(xi,θ) + εi, εi ∼ N (0,σ2), σ2 > 0, i = 1, . . . , n, (14.1)

where η(xi,θ) is the nonlinear regression function, known up to a vector of m unknown
parameters, θ, and the errors εi, i = 1, . . . , n, are independent and identically distributed.
The design space X is usually an interval on the real axis, and the variance parameter σ2 is
assumed to be a nuisance parameter.

Suppose without loss of generality that x1, . . . , xt, t ≤ n, are the distinct points among
x1, . . . , xn. We consider approximate designs of the form ξ = {(x1, w1), . . . , (xt, wt)}, where
the weight wi gives the proportion of observations to be made at the corresponding sup-
port point xi, i = 1, . . . , t. We thus require 0 < wi ≤ 1, for i = 1, . . . , t, and

∑t
i=1 wi = 1. Note

that nwi is not restricted to be an integer to avoid cumbersome discrete optimization prob-
lems. In order to run an approximate design in practice, a rounding procedure (see, e.g.,
Pukelsheim and Rieder 1992), is used. Approximate designs are also known as continuous
designs in the literature (see Chapter 13).

We are concerned with the optimal choice of a design. A decision rule stating what is
deemed optimal is provided by an optimality criterion, which is selected to reflect the pur-
pose of the experiment. In what follows, we assume that we want to estimate the mean
model parameters θ as accurately as possible and that the estimation is either through max-
imum likelihood or nonlinear least squares. It is therefore natural to consider optimality
criteria that are concerned with minimizing some function of the (asymptotic) covari-
ance matrix of the estimator θ̂ or, equivalently, maximizing some function of the Fisher
information matrix, Mξ, which for model (14.1) is given by

Mξ =
t∑

i=1

wif (xi,θ)f ′(xi,θ) = X′WX, (14.2)

where

f (x,θ) =
(

∂η(x,θ)

∂θ1
, . . . ,

∂η(x,θ)

∂θm

)′
(14.3)

is the vector of partial derivatives of η(x,θ) with respect to θ, X = [f (x1,θ), . . . , f (xt,θ)]′,
and W is the diagonal matrix holding the weights.

Example 14.1

The Michaelis–Menten model is typically used to describe the rate of an enzymatic
reaction as a function of the concentration of a substrate. This model has expected
response

η(x,θ) = θ1x
θ2 + x

, θ1, θ2 > 0, x ≥ 0,
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FIGURE 14.1
Plot of the expected response η(x,θ) for the Michaelis–Menten model with parameter vector θ′ = (1, 0.6). For
x → ∞, η(x,θ) is asymptoting at θ1 = 1, and half of its supremum is attained at x = θ2 = 0.6.

which is depicted in Figure 14.1 for parameter valuesθ′ = (1, 0.6). The parameter θ1 gives
the supremum of the curve, whereas θ2 can be interpreted as the value of x at which half
the supremum is attained.

For the Michaelis–Menten model, the Fisher information of a design ξ is

Mξ =
t∑

i=1

wi
x2

i

(θ2 + xi)
2

⎡
⎣ 1 −θ1

(θ2+xi)

−θ1
(θ2+xi)

θ2
1

(θ2+xi)
2

⎤
⎦ . (14.4)

There is no total ordering on the nonnegative definite matrices of size (m × m). Hence,
they are mapped to the real axis through an objective function to make them comparable.
A popular class of optimality criteria is the φp-criteria (see, e.g., Pukelsheim 1993), which
maximize the corresponding matrix means. The pth matrix mean, p ∈ [−∞, 1], is defined as

φp(ξ) =

⎧⎪⎪⎨
⎪⎪⎩

(
1
m traceMp

ξ

)1/p

p 	= −∞, 0

|Mξ|1/m p = 0
λmin(Mξ) p = −∞,

where λmin(Mξ) is the minimal eigenvalue of Mξ. Well-known special cases are the D-,
A-, and E-criteria, where p = 0, −1, −∞, respectively. A D-optimal design minimizes the
volume of an asymptotic confidence ellipsoid for θ̂, and an A-optimal design minimizes the
average of the asymptotic variances for the estimators of the individual parameters. For an
interpretation of the φp-criteria in terms of the eigenvalues of the information matrix, see
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Chapter 3. Note that the values for p therein correspond to −p in the preceding definition,
since the inverse of the information matrix is considered.

If interest is in estimating a linear combination of the parameters, c′θ, for a given vector
c, we use the c-optimality criterion, which minimizes the objective function φc(ξ) = c′M−

ξ
c,

where M−
ξ

is a generalized inverse of the information matrix Mξ. This corresponds to

minimizing the asymptotic variance of c′θ̂.
We note that in nonlinear models at least some of the partial derivatives, and thus the

Fisher information, depend on the unknown parameter vector θ. An optimal design with
respect to some optimality criterion will therefore only be optimal for a specific value
of θ and is called a locally optimal design (see, e.g., Chernoff 1953 or Chapter 13). An
important subclass of nonlinear models, the partially nonlinear models, are defined by
Hill (1980) and Khuri (1984) as models where some of the parameters appear linearly. For
D-optimality, these linear parameters do not affect the maximization problem, and thus D-
optimal designs depend only on the nonlinear parameters. The Michaelis–Menten model,
for example, is a partially nonlinear model where the parameter θ1 appears linearly.

This chapter is organized as follows. In Section 14.2, we review three classical methods
for finding optimal designs. Section 14.3 is devoted to a recent approach, shedding light on
optimal design problems from a more general perspective. All these methods are illustrated
through a running example, the Michaelis–Menten model. Further models are discussed
in Section 14.4. For each of these, only the most suitable method is applied, including a dis-
cussion of the drawbacks of the other methods for this particular situation. While the main
focus of this chapter is optimal design for parameter estimation, Section 14.5 gives a brief
overview of optimal design when the purpose of the experiment is discrimination between
two or more models. All designs provided in this chapter are locally optimal in the sense
of Chernoff (1953), that is, they depend on a best guess of the unknown model parameters.
In Section 14.6, we briefly discuss approaches to overcome this problem. In each section, we
point the interested reader to further relevant articles from the recent literature on optimal
design for nonlinear models.

14.2 Classical Methods

In this section, we distinguish between three approaches to facilitate the computation of
optimal designs.

The standard method in many situations is the use of an appropriate equivalence theo-
rem in order to find certain properties, usually the number of support points and possibly
the inclusion of end points of X in the support of the optimal design. Equivalence theorems
are available for all commonly applied optimality criteria based on the Fisher information,
for example, the φp-criteria or c-optimality (see Pukelsheim 1993). The practical applica-
tions of an equivalence theorem are not restricted to design construction, but it also allows
a check of the optimality of a given candidate design.

Similarly powerful methods, summarized as the geometric approach, use the visual-
ization of what is called the induced design space, a combination of the model and the
design space X . Again, this often leads to finding the number of support points of an
optimal design and to results concerning the inclusion of boundary points of X . Results
are available for φp- and c-optimality; see Biedermann et al. (2006) and Elfving (1952),
respectively. Since the plots used for visualization have as many axes as the underlying
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model has parameters, this approach is most useful for models with two or at most three
parameters.

A further method is the functional approach (see, e.g., Melas 2006). The main idea of
this approach is to express the support points (and sometimes also the weights) of optimal
designs as implicit functions of some auxiliary parameters. In many cases these functions,
being real and analytic, can be expanded into Taylor series, and recursive formulae are
available for the coefficients of these. Results in this area cover the D-, E-, and c-criteria and
some parameter robust criteria.

Unlike some more recent methods, see Section 14.3, which aim at finding complete
classes of optimal designs that are dominating with respect to the Loewner order-
ing, the classical methods usually solve one design problem at a time. Some of these
approaches, however, allow conclusions for a particular class of optimality criteria, the
φp-criteria.

In some situations, the first two methods provide (some of) the support points of an
optimal design, but usually no characterization of the optimal weights. For the situation
where the optimal design has the minimal number of support points, m, to estimate θ,
Pukelsheim and Torsney (1991) have developed a method to find optimal weights given the
support points, applicable to many optimality criteria including the φp-criteria. A similar
result is available for c-optimality.

Recall the definition of X = [f (x1,θ), . . . , f (xm,θ)]′, and let V = (XX′)−1X. Then, for
p ∈ (−∞, 1], the φp-optimal weights wi of a design with support points x1, . . . , xm can be
obtained by solving the system of equations

wi =
√

uii∑m
j=1

√ujj
, i = 1, . . . , m, (14.5)

where uii is the ith diagonal element of the matrix U = VMp+1
ξ

V ′. Using (14.2), for
p = − 1 (i.e., A-optimality), we get an explicit solution since U reduces to (XX′)−1, and
thus the right-hand side of (14.5) does not depend on the weights. Similarly, for p = 0 (i.e.,
D-optimality), U simplifies to W; hence, all weights are equal to 1/m. For c-optimality with
respect to a vector c, we also obtain an explicit solution wi = |vi|/

∑m
j=1 |vj|, i = 1, . . . , m,

where the vector v is defined as v = Vc.

14.2.1 Methods Based on the Equivalence Theorem

The idea behind an equivalence theorem is the following. From real variable calculus, we
know that if a function, h(x) say, has a local maximum at x = x0, then its derivative h′(x)

equals zero at x0. A similar reasoning can be applied to the objective functions of optimality
criteria, which take information matrices as their argument. In this case, the Fréchet direc-
tional derivative is used, and at the optimal information matrix, it has to be nonpositive in
all directions. (From the top of the mountain, you cannot go further up.)

In what follows, we consider the situation where interest is in the whole parameter vec-
tor θ. Moreover, we restrict attention to the φp-optimality criteria where p > −∞. Specific
equivalence results for subsets of θ and further criteria that are information functions in the
sense of Pukelsheim (1993) can be found, for example, in Chapter 7 of that book. A general
version of the equivalence theorem is also presented in Chapters 2 and 13.

The equivalence theorem for φp-optimality is as follows.
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Theorem 14.1 The design ξ∗ is φp-optimal on X if and only if

f ′(x,θ)Mp−1
ξ∗ f (x,θ) − trace(Mp

ξ∗) ≤ 0 ∀ x ∈ X . (14.6)

Moreover, equality applies in (14.6) for the support points of ξ∗.

Note that while the φp-optimal information matrix is unique for p > −∞, there may be
more than one design to achieve this matrix. In this situation, equality in (14.6) is attained
at the support points of any of these designs.

Example 14.2 (Example 14.1 continued)

Suppose we seek a D-optimal design for the Michaelis–Menten model. This problem is
tackled in three standard steps:

• Step 1: Use the equivalence theorem to find the number of support points of the
D-optimal design on X = [0, B] (for any value of θ).

• Step 2: Show that the larger support point of the D-optimal design is given by
B, the upper boundary of the design region X .

• Step 3: Find the smaller support point of the D-optimal design.

Step 1: We require that ξ has at least two support points to have nonsingular Fisher
information Mξ. For D-optimality, Theorem 14.1 simplifies to the following.

Corollary 14.1 The design ξ∗ is D-optimal for θ if and only if the inequality

d(ξ∗, x,θ) = f ′(x,θ)M−1
ξ∗ f (x,θ) − m ≤ 0 (14.7)

holds for all x ∈ X , with equality in the support points of ξ∗.

Consider inequality (14.7) for the Michaelis–Menten model with arbitrary parameter
value θ and a D-optimal design ξ∗. In this case,

d(ξ∗, x,θ) = x2

(θ2 + x)2 m1,1 − 2θ1x2

(θ2 + x)3 m1,2 + θ2
1x2

(θ2 + x)4 m2,2 − 2,

where mi,j, i, j = 1, 2, denotes the (i, j)-element of M−1
ξ∗ and m2,1 = m1,2. Multiplying (14.7)

through with (θ2 +x)4, we obtain a polynomial of degree four, p4(x) say, on the left-hand
side. We now count its possible number of roots, the support points. A polynomial of
degree four can have at most four roots. However, if p4(x) had four roots, at least the two
middle ones would have to be turning points, since p4(x) must not become positive on X .
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FIGURE 14.2
Plot of a polynomial of degree four, which is nonpositive on [0, 1] and attains its maximum, zero, at three points,
including the end points 0 and 1.

Hence, the derivative of p4(x), a polynomial of degree three, would have at least five
roots, which is a contradiction. Now suppose p4(x) has three roots on X . By the same
argument as before, only the middle root may be a turning point, so the other two
roots have to be the end points of X . A schematic of such a polynomial is depicted in
Figure 14.2. Now substitute the lower end point into d(ξ∗, x,θ). Since f (0,θ) = 0, we
find that d(ξ∗, 0,θ) = −2 	= 0, so 0 cannot be a support point of the D-optimal design,
which contradicts the assumption of a three-point design. Hence, the D-optimal design
is supported on exactly two points.

Step 2: By (14.5), a D-optimal design with the number of support points t equal to m, the
number of model parameters, (often called a saturated design) must have equal weights
w1 = · · · = wm = 1/m. Hence, using (14.4), the objective function becomes

φD(ξ,θ) = |Mξ| = 1
4

θ2
1x2

1x2
2(x2 − x1)

2

(θ2 + x1)4(θ2 + x2)4 . (14.8)

We note that the linear parameter θ1 comes out as a factor and does therefore not affect
the maximization of (14.8) with respect to the design. Without loss of generality, let x2 be
the larger support point, that is, x2 > x1. For the derivative of φD with respect to x2, we
obtain

∂φD(ξ,θ)

∂x2
= θ2

1x2
1x2(x2 − x1)[θ2(x2 − 0.5x1) + 0.5x1x2]

(θ2 + x1)4(θ2 + x2)5 > 0,

so φD is increasing in x2 and is thus maximized at the upper boundary, B, of X .
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FIGURE 14.3
Plot of d(ξ∗, x,θ) for the Michaelis–Menten model with parameter vector θ′ = (1, 0.6) and the D-optimal design
ξ∗ on the design space X = [0, 1].

Step 3: Substitute x2 = B into (14.8) and solve ∂φD(ξ,θ)/∂x1 = 0 for x1. There are
three solutions: 0, Bθ2/(B + 2θ2), and B. For both x1 = 0 and x1 = B, the objective
function becomes zero, so these points correspond to local (and global) minima. Hence,
the point x1 = Bθ2/(B + 2θ2), situated between the two, has to correspond to the only
local maximum, which is also global on X since the values attained at the end points are
minima.

We finally check for one example that the design obtained is indeed D-optimal.
Figure 14.3 shows d(ξ∗, x,θ) for the D-optimal design ξ∗ with parameter vector θ′
= (1, 0.6) and design region X = [0, 1]. The conditions of the equivalence theorem are
clearly satisfied.

Note that the same strategy can be applied to search for other φp-optimal designs.
One major difference is that, unlike the D-optimal design, other φp-optimal designs may
depend on the value of the linear parameter θ1. The other difference is that the optimal
weights are not readily available in closed form, which requires either the use of formula
(14.5) or a further variable over which to optimize in Step 3.

14.2.2 Geometric Approach

Elfving’s theorem (see Elfving 1952) is a powerful tool for characterizing c-optimal designs.
Namely, the optimal design can be found at the intersection of a straight line representing
the vector c and the boundary of a convex set referred to as the Elfving’s set. Elfving’s
set is determined by the design space X and the regression model. Similar results were
established for the D-optimality criterion (Dette 1993) and for Bayesian optimality crite-
ria (Dette 1996). A related approach based on covering ellipses was introduced by Sibson
(1972), Silvey (1972), and Silvey and Titterington (1973) for D-optimality and subsequently
used by, for example, Ford et al. (1992) and Haines (1993). This method was extended
to E-optimality for linear and nonlinear models by Dette and Studden (1993a,b) and
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FIGURE 14.4
Parametric plot of the induced design space G (solid line) for the Michaelis–Menten model with parameter vector
θ′ = (1, 0.6) and design space X = [0, 1] and its reflection −G (dotted line). Horizontal axis, ∂η(x,θ)/∂θ1; vertical
axis, ∂η(x,θ)/∂θ2.

Dette and Haines (1994). In an integrated approach, Biedermann et al. (2006) general-
ized this method, for two-parameter models, to the class of φp-optimality criteria. We will
briefly review the results by Biedermann et al. (2006) and Elfving (1952), and illustrate them
through an example.

Both approaches use the concept of an induced design space, G, where G = {f (x,θ),
x ∈X } with f (x,θ) defined in (14.3). In what follows, we require G to be compact and, for
every admissible value ofθ, f (x,θ) to be continuous in x. The former assumption is trivially
satisfied if the latter assumption holds and if X is compact.

Figure 14.4 shows a parametric plot of the induced design space for the Michaelis–
Menten model with parameter vector θ′ = (1, 0.6) and design space X = [0, 1] as a solid
line. Its reflection −G has been added as a dotted line. The axes are given by the entries
of the vector f (x,θ), that is, the horizontal axis is ∂η(x,θ)/∂θ1, and the vertical axis is
∂η(x,θ)/∂θ2.

14.2.2.1 Elfving’s Theorem and Its Implications for c-Optimality

Consider a vector c and designs ξ such that c ∈ range(Mξ) to ensure estimability of c′θ (see,
e.g., Pukelsheim 1980). Define Elfving’s set, E , by

E = co(G ∪ −G),

where co(A) means the convex hull of a set A ⊂ IRm. Elfving’s theorem characterizes a
c-optimal design in terms of the intersection of {γc | γ > 0} with the boundary of E .
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Theorem 14.2 A design ξ∗ = {(x1, w1), . . . , (xt, wt)} is c-optimal for estimating c′θ if and only
if there exists a positive number γ∗ > 0 and real numbers ε1, . . . , εt ∈ {−1, 1} such that the point
γ∗c = ∑t

i=1 wiεif (xi,θ) is a boundary point of Elfving’s set E .

To see how this result can be used to find c-optimal designs, consider the following
example.

Example 14.3 (Example 14.1 continued)

Suppose an experimenter is interested in estimating percentiles xr of the Michaelis–
Menten curve, that is, values of x, for which one expects a proportion r of the supremum
of the reaction rate, θ1, to be attained. For r ∈ (0, 1), we solve the equation

θ1x
θ2 + x

= rθ1

for x to obtain xr = rθ2/(1 − r). The problem of estimating xr for fixed but arbitrary
r ∈ (0, 1) is therefore equivalent to estimating θ2, and we seek a c-optimal design where
c = (0, 1)′.

Now consider the shape of Elfving’s set E depicted in Figure 14.5 (for θ = (1, 0.6)′ and
X = [0, 1]). Note that {γ(0, 1)′ | γ > 0} intersects the boundary of E for some positive γ∗
at the point (0,γ∗)′ on the vertical axis. This point is a convex combination of two points
(shown as circles): one at the right end point of G and one on −G, since they are all on
the same straight line.
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FIGURE 14.5
Parametric plot of Elfving’s set, E , for the Michaelis–Menten model with parameter vector θ′ = (1, 0.6) and
design space X = [0, 1]. Solid line, induced design space G; dotted line, its reflection −G; dashed line, convex
hull of G ∪ −G; vertical arrow, vector c; circles, c-optimal support points (or their reflections). Horizontal axis,
∂η(x,θ)/∂θ1; vertical axis, ∂η(x,θ)/∂θ2.
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This tells us that the c-optimal design must have two support points, x1 and x2
(without loss of generality, let x1 < x2), satisfying

(
0
γ∗
)

= w1ε1

⎛
⎝

x1
θ2+x1
−θ1x1

(θ2+x1)2

⎞
⎠+ (1 − w1)ε2

⎛
⎝

x2
θ2+x2
−θ1x2

(θ2+x2)2

⎞
⎠

= −w1

⎛
⎝

x1
0.6+x1
−x1

(0.6+x1)2

⎞
⎠+ (1 − w1)

⎛
⎝

1
0.6+1
−1

(0.6+1)2

⎞
⎠ .

We have used that x2 = 1 since the right end point of G is attained at the upper bound of
X and ε1 = −1, ε2 = 1 since they correspond to points on −G and G, respectively. As we
do not know the value of γ∗, we cannot use this system of equations to find x1 and w1,
but we can substitute x2 = 1 into the objective function, φc(ξ) = c′M−

ξ
c (see Section 14.1),

and minimize either analytically or numerically with respect to x1 and w1. Alternatively,
we can use the weight formula by Pukelsheim and Torsney (1991) to find the optimal
weight w1 in terms of x1 to reduce the number of variables in the optimization problem.
For θ = (1, 0.6)′ and X = [0, 1], we obtain x1 = 0.210 and w1 = 0.707 (to three decimal
places).

14.2.2.2 Characterization of φp-Optimal Designs via Covering Ellipses

Biedermann et al. (2006) express the φp-optimal design problem for two-parameter models
in terms of a dual problem. They define a weighted volume, called v2q-content, for ellipses
where the weight depends on the choice of p. They then show that finding a φp-optimal
design is equivalent to finding a centered ellipse, which covers the induced design space
and which has minimal v2q-content.

Theorem 14.3 Let N be a nonnegative definite matrix with eigenvalues λ1 and λ2, and let q be
determined by the equation p + q = pq. Define the v2q-content of the ellipse EN = {u ∈ IR2

|u′Nu ≤ 1} as

v2q(EN) = Vol(EN)

l2q(EN)
= π/

√
λ1λ2

{[(2/
√
λ1)

2q + (2/
√
λ2)

2q]/2}1/(2q) ,

where Vol(EN) denotes the volume of the ellipse EN and l2q(EN) is the l2q-mean of the lengths of its
major and minor diameters.

Then the φp-optimal design problem is the dual of finding a centered ellipse EN , which covers
the induced design space G and has minimal v2q-content. Moreover, if x∗

i is a support point of a
φp-optimal design, the ellipse EN touches G at f (x∗

i ,θ).

For p = 0, we have q = 0 where l2×0(EN) is defined as limq↓0 l2q(EN). Using L’Hôpital’s
rule, we can show that limq↓0 l2q(EN) = 2(λ1λ2)

−1/4 = 2
√

Vol(EN)/π. In this case, the
dual problem reduces to the well-known geometric interpretation of the D-optimal design
problem.

We consider the following example in order to illustrate how the calculation of optimal
designs can be facilitated by this method.
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Example 14.4 (Example 14.1 continued)

For arbitrary p ∈ [−∞, 1], suppose the aim is to find a φp-optimal design for the
Michaelis–Menten model. From Figure 14.4, we can see that a centered ellipse that cov-
ers the induced design space G must touch G in exactly two points to have minimal
v2q-content. One of these points is the right end point of G corresponding to the upper
boundary of the design space X . This general form of design does not depend on the
value of p. An example showing the D-optimal (p = 0) covering ellipse is depicted in
Figure 14.6.

This approach provides a geometric characterization of the optimal support points,
but not of the optimal weights. Biedermann et al. (2006) present an example where allφp-
optimal designs have the same covering ellipse with minimal v2q-content, but different
weights. The standard strategy for finding a φp-optimal design would therefore follow
similar steps as we have seen in the section on the equivalence theorem:

1. Establish the number of support points by visual inspection (two, in this
example).

2. Identify as many support points as possible (the upper boundary of X , in this
example).

3. Substitute this information into the objective function, and optimize with
respect to the remaining support points and the weights.

Again, if the optimal design is saturated, the method by Pukelsheim and Torsney (1991)
can be used to find the optimal weights.
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FIGURE 14.6
Parametric plot of the induced design space G (solid line) for the Michaelis–Menten model with parameter vector
θ′ = (1, 0.6) and design space X = [0, 1], its reflection −G (dotted line), with D-smallest covering ellipse (dashed
line) and D-optimal support points. Horizontal axis, ∂η(x,θ)/∂θ1; vertical axis, ∂η(x,θ)/∂θ2.
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14.2.3 Functional Approach

The idea behind the functional approach is the following. Suppose the design problem has
been reduced to an optimization problem, for which the optimum is attained in the interior
of its domain. Hence, the solution can be found by setting the gradient (with respect to the
design variables) of the objective function to zero and solving for the design variables. By
design variables we mean all support points and weights of the optimal design that require
calculation. Now this gradient, g(τ,θ) say, depends on two sets of variables, the design
variables, τ say, and the model parameters held in the vector θ. Under some regularity
assumptions, the implicit function theorem implies that in the neighborhood U of an arbi-
trary vector θ0 for which we have a vector τ0 with g(τ0,θ0) = 0, there exists a function
τ = τ(θ) such that for all θ ∈ U, we obtain g(τ(θ),θ) = 0, and τ(θ) can be expanded
into a Taylor series. The coefficients for this series can be obtained by recursive formulae
provided in Melas (2006).

This means that once we have found an optimal design τ0 with respect to one parameter
vectorθ0, we can approximate optimal designs τ(θ) for different values ofθ by the first few
terms of their Taylor polynomials about θ0. An essential assumption for this approach is
that there are as many design variables as there are model parameters to make the Jacobian
of τ(θ) invertible. A natural application is therefore to find saturated D-optimal designs. In
many other situations, the approach can still be applied after using some properties of the
optimal design and/or restricting/transforming the parameter space. More details can be
foundinMelas(2006)andthereferencestherein. Themethodiseasytoimplementinsoftware
allowing symbolic calculations, such as Mathematica (Wolfram 2012) or Maple (Monagan
et al. 2005), and usually only a few coefficients are required for a good approximation to the
true function τ(θ), provided the interval for each component of θ is not too wide.

Example 14.5 (Examples 14.1, 14.2, 14.4 continued)

Suppose we seek D-optimal designs for the Michaelis–Menten model on the design space
X = [0, 1], for different values of the parameter vectorθ. Further assume we have already
established that 1, the upper bound of X , is a support point and that the optimal designs
depend only on θ2. Hence, we aim to approximate the smaller support point x1 = τ(θ2)

as a function of θ2. We note that for this particular example, τ(θ2) = θ2/(1 + 2θ2) can
be found explicitly by a simple calculation (see, e.g., Step 3 in Example 14.2), so an
approximation would not be necessary in practice. It is still useful for illustration of the
method.

From (14.8), with x2 = 1, we have to maximize x2
1(1 − x1)

2/(θ2 + x1)
4, so we set its

derivative with respect to x1 equal to zero, which, after some algebra and observing that
x1 	= 0, 1 − x1 	= 0, and θ2 + x1 	= 0, is equivalent to

g(x1, θ2) = x1(1 + 2θ2) − θ2 = 0.

Assume we expand g(x1, θ2) about θ2,0 = 0.6 (a different value could be chosen here);
then the corresponding τ0 = τ(θ2,0) is 3/11. The recursive formulae from Melas (2006,
p. 34), yield for the (s + 1)th coefficient of the Taylor expansion

τ̃s+1 = −J−1
0

1
(s + 1)!

∂s+1g(τ̂s(θ2), θ2)

∂θs+1
2

, s = 0, 1, . . . ,

where J0 is the Jacobian of g(τ, θ2) with respect to τ, evaluated at (τ0,θ2,0), and

τ̂s(θ2) = τ̃0 +
s∑

j=1

τ̃j(θ2 − θ2,0)
j
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FIGURE 14.7
Taylor series approximations to the smaller support point, x1, of the D-optimal design for the Michaelis–Menten
model with design space X = [0, 1] in terms of the parameter θ2. Solid line, true curve; dotted line, Taylor
polynomial of degree four; dashed line, Taylor polynomial of degree two. The Taylor series are centered about
θ2 = 0.6.

is the Taylor expansion from the sth step. Therefore, the function g(τ̂s(θ2), θ2) depends
on θ2 in both components (the first component is a polynomial in θ2), which must be
taken into account when working out its partial derivatives with respect to θ2.

We obtain J0 = 1 + 2θ2,0 = 2.2, so −J−1
0 = −1/2.2 = −0.4̄5 and τ̃1 = −0.4̄5(2τ0 − 1) =

0.2066 to 4 decimal places. Hence, τ̂1(θ2) = 3/11 + 0.2066(θ2 − 0.6). For τ̃2 we require the
second derivative of g(3/11 + 0.2066(θ2 − 0.6), θ2) = 3/11 + 0.2066(θ2 − 0.6)+ 2θ2[3/11 +
0.2066(θ2−0.6)]+θ2 with respect to θ2. This is given by 4×0.2066 = 0.8264, and we obtain
for the second coefficient τ̃2 = −J−1

0 ×0.8264/2! = −0.1878 (4 decimal places). Continuing
in this manner yields the next coefficients τ̃3 = 0.1708, τ̃4 = −0.1552, τ̃5 = 0.1411, and
τ̃6 = −0.1283.

Figure 14.7 shows two Taylor approximations about θ2 = 0.6 to the true function
x1 = τ(θ2) on the domain θ2 ∈ [0.1, 1.1]. The Taylor polynomial of degree four is virtually
identical to τ(θ2) across this interval. On a smaller interval, for example, θ2 ∈ [0.4, 0.8],
the Taylor polynomial of degree two is already a good approximation.

14.3 General Solutions

The classical methods have in common that design problems are solved on a case-by-case
basis. Each combination of model and optimality criterion requires its own proof. There is a
recent development toward more general solutions of design problems. Yang and Stufken
(2009) considered nonlinear models with two parameters, and algebraically derived con-
ditions, under which for each design ξ there is a design ξ̃ from a simple class, which is
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at least as good as ξ in terms of the Loewner ordering of the corresponding information
matrices, that is, M

ξ̃
− Mξ is positive semidefinite. For any reasonable optimality criterion

maximizing an objective function φ(ξ), M
ξ̃

≥ Mξ implies that φ(ξ̃) ≥ φ(ξ), that is, opti-
mality criteria should be isotonic relative to the Loewner ordering. The objective functions
in the sense of Pukelsheim (1993) satisfy this condition.

These results were subsequently generalized to models with an arbitrary number of
parameters by Yang (2010), using algebraic methods, and Dette and Melas (2011), using
properties of Chebyshev systems (see, e.g., Karlin and Studden 1966). In particular, for
large classes of models and arbitrary optimality criteria based on the information matrix,
these papers provide considerably tighter upper bounds on the maximal number of sup-
port points than Carathéodory’s bound, which is m(m + 1)/2 + 1 (see, e.g., Silvey 1980,
or Pukelsheim 1993). These results greatly reduce the computational effort required to find
optimal designs. In many situations, the optimal designs are saturated, that is, they have as
many support points as the model has parameters to be estimated. For a pth degree poly-
nomial model, de la Garza (1954) showed that for any n-point design where n > p+1, there
exists an alternative design with exactly p+1 support points such that the two designs have
identical information matrices. This result has subsequently been named the de la Garza
phenomenon. A further extension of the algebraic method, which can result in finding even
smaller complete classes for optimal designs, can be found in Yang and Stufken (2012). An
alternative proof for these results, based on Chebyshev systems, is presented in Dette and
Schorning (2013).

14.3.1 Algebraic Method

The method proposed in Yang and Stufken (2009) and Yang (2010) uses a transformation
of the information matrix for a design ξ, of the form

Mξ = P(θ)

[ t∑
i=1

wiC(θ, zi)

]
P(θ)′, (14.9)

where

C(θ, zi) =
⎡
⎢⎣

�1,1(zi) · · · �1,m(zi)
...

. . .
...

�1,m(zi) · · · �m,m(zi)

⎤
⎥⎦ ,

say, and P(θ) is a m × m nonsingular matrix that may depend on the value of θ, but on no
other parameters. For fixed θ and an interval design space X , the map from x ∈ X to z ∈
[Zl, Zu] is one to one and onto, and a design ξ can be expressed in terms of its transformed
support points zi, i = 1, . . . , t, and its weights. The functions �l,s, l, s = 1, . . . , m, depend
on θ, except, perhaps, for models where optimal design questions do not depend on θ.
This dependence could occur just through z. The matrices P(θ) and C(θ, z) are not unique,
and are chosen in such a way that the functions in C(θ, z) are as simple as possible.

We now reduce the number of functions �l,s we need to consider. To this end, keep only
a maximal set of nonconstant linearly independent functions �l,s, 1 ≤ l ≤ s ≤ m. Rename
these to �1, . . . , �k, such that the last one, �k, is one of the diagonal elements of C(θ, z)
and that there is no other function �l,s = �k in the matrix C(θ, z). The idea behind this
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approach is to show that for each design ξ = {(z1, w1), . . . , (zt, wt)}, there exists a design

ξ̃ = {(z̃1, w̃1), . . . , (z̃t̃, w̃t̃)} from a simple class, for which
∑t̃

i=1 w̃i�j(z̃i) = ∑t
i=1 wi�j(zi)

for j = 1, . . . , k − 1 and
∑t̃

i=1 w̃i�k(z̃i) ≥ ∑t
i=1 wi�k(zi), which makes ξ̃ at least as good

as ξ in the Loewner ordering. A simple class of designs here means a class of designs that
have a considerably tighter upper bound on the number of support points than given by
Carathéodory’s bound and in some cases also include one or both of the boundary points
of the design space; see also Theorem 14.4.

If �1, . . . , �k are differentiable arbitrarily often, define the functions ψl,s recursively as

ψl,s(z) =
{

� ′
l (z), s = 1, l = 1, . . . , k,(
ψl,s−1(z)

ψs−1,s−1(z)

)′
, 2 ≤ s ≤ k, s ≤ l ≤ k.

(14.10)

A more detailed chart describing how to obtain the functions ψl,s(z) in (14.10) is provided
in Yang (2010). If the functions ψl,l, l = 1, . . . , k, have no root in the transformed design
space [Zl, Zu], the following result holds (see Yang 2010).

Theorem 14.4 Let �(z) = ∏k
l=1 ψl,l(z), z ∈ [Zl, Zu]. For any given design ξ there exists a design

ξ̃, such that Mξ ≤ M
ξ̃

in the Loewner ordering.

(a) When k is odd and �(z) < 0, ξ̃ can be taken to have at most (k + 1)/2 support points
including point Zl.

(b) When k is odd and �(z) > 0, ξ̃ can be taken to have at most (k + 1)/2 support points
including point Zu.

(c) When k is even and �(z) > 0, ξ̃ can be taken to have at most k/2 + 1 support points
including points Zl and Zu.

(d) When k is even and �(z) < 0, ξ̃ can be taken to have at most k/2 support points.

Note that the general formula for computing �(z) can easily be implemented in software
that is capable of symbolic calculations. Furthermore, even if �(z) has a complicated struc-
ture, making it impossible to check directly if this function is positive/negative on [Zl, Zu],
we can easily obtain this information from visual inspection of its graph.

The extension by Yang and Stufken (2012) uses a similar idea where, instead of just one
entry, �k(z), a lower principal submatrix (of arbitrary size m1 × m1 where 1 ≤ m1 < m) of
the matrix C(θ, z) is considered. Thus, the results presented earlier are included as a special
case where m1 = 1. The more general method can be applied to many models, which do
not satisfy the conditions in Yang (2010). Moreover, for some models for which answers
could be obtained by earlier work, the extension finds smaller simple classes of designs.

To fix ideas on how to apply Theorem 14.4, consider the following example.

Example 14.6 (Example 14.1 continued)

Consider the Michaelis–Menten model. After some algebra, we find that the information
matrix (14.4) can be written in form (14.9) with

P(θ) =
[

1/θ1 0
−1/θ2 1/(θ1θ2)

]
, C(θ, z) =

[
z2 z3

z3 z4

]
,
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where z = θ1x/(θ2 + x). Let �1(z) = �1,1(z) = z2, �2(z) = �1,2(z) = z3, and �3(z) =
�2,2(z) = z4. Then k = 3, �k = �l,l for l = 2, and there is no l < s with �l,s = �k.
From (14.10), we find that

ψ1,1 = � ′
1(z) = 2z

ψ2,2 =
(
ψ2,1(z)
ψ1,1(z)

)′
=
(

� ′
2(z)

� ′
1(z)

)′
=
(

3z2

2z

)′
= 3

2

ψ3,3 =
(
ψ3,2(z)
ψ2,2(z)

)′
=
( [ψ3,1(z)/ψ1,1(z)]′

3/2

)′
=
( [� ′

3(z)/� ′
1(z)]′

3/2

)′
=
(

[4z3/2z)]′
3/2

)′
= 8

3
.

Hence, from Theorem 14.4, �(z) = 2z × 3/2 × 8/3 = 8z > 0 if z > 0. Since an observation
in x = 0 (so z = 0) does not give any increase in information, we can choose X = [A, B]
where A is small but positive instead of the interval [0, B] we used before. Therefore
x > 0, and we obtain that z > 0 since θ1 > 0 and θ2 > 0. That means we are in the situation
of case (b) in Theorem 14.4. Hence, for each optimality criterion based on the information
matrix, there exists an optimal design with no more than (k + 1)/2 = 2 support points,
one of which is Zu, which translates into B by the inverse map. This confirms our results
from Examples 14.2 and 14.4. It remains to select an appropriate optimality criterion, and
to use analytical or numerical search to obtain an optimal design from the class found.

Note that for larger values of k, we do not necessarily obtain the existence of a satu-
rated optimal design. For example, if m = 6, k can be as large as 21, provided all �l,s,
1 ≤ l ≤ s ≤ m are linearly independent. If �(z) 	= 0 on [Zl, Zu], there exists an optimal
design with at most (k + 1)/2 = 11 support points, one of which is already determined.
This leaves an optimization problem in 20 dimensions, 10 for the remaining support
points and 10 for the weights. This is still a considerable improvement on Carathéodory’s
bound, where in the preceding situation we would have to solve an optimization prob-
lem in 41 dimensions (21 support points and 20 weights). However, for many models,
some �l,s occur repeatedly in the information matrix, and replicates can be excluded due
to linear dependence. For example, for polynomials of degree five, we have m = 6, and
the information matrix holds only 11 different functions of z = x, the monomials up to
degree ten. The monomial of degree zero, that is, the function constant to 1, does not
depend on the design, and hence, k = 10, and there exists an optimal design with six
support points, two of which are the end points of the design interval X . This result
extends the result given by the de la Garza phenomenon. In the next subsection, we will
further investigate for which classes of models the de la Garza phenomenon holds.

14.3.2 Method Based on Chebyshev Systems

Roughly speaking, Dette and Melas (2011) use properties of Chebyshev systems to establish
the de la Garza phenomenon (or substantial improvements over Carathéodory’s bound
on the number of support points). Following Karlin and Studden (1966), a set of k + 1
continuous functions {u0, . . . , uk} is called a Chebyshev system on the interval [Zl, Zu] if

∣∣∣∣∣∣∣
u0(z0) · · · u0(zk)

...
. . .

...
uk(z0) · · · uk(zk)

∣∣∣∣∣∣∣
> 0 (14.11)

for all Zl ≤ z0 < · · · < zk ≤ Zu. Note that if the determinant in (14.11) is negative, then the
set {u0, . . . , −uk} is a Chebyshev system on [Zl, Zu].
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As in Section 14.3.1, denote the linearly independent elements of the transformed infor-
mation matrix C(θ, z) defined in (14.9) as �1, . . . , �k, such that �k is one of the diagonal
elements, and that there is no �l,s = �k for l < s. Assume that �1, . . . , �k are all continu-
ous, so infinite differentiability of the �i as in Yang (2010) is not required. Furthermore, let
�0(z) = 1, and define the index, I(ξ), of a design ξ on the interval [Zl, Zu] as the number of
support points, where the boundary points, Zl and Zu, are only counted by 1/2.

Suppose that the sets {�0, �1, . . . , �k−1} and {�0, �1, . . . , �k} are Chebyshev systems.
Then the following result holds; see Theorem 3.1 in Dette and Melas (2011).

Theorem 14.5 For any design ξ there exists a design ξ̃ with at most (k + 2)/2 support points such
that M

ξ̃
≥ Mξ. If I(ξ) < k/2, then ξ̃ = ξ. Otherwise:

(a) If k is odd, so that ξ̃ has at most (k + 1)/2 support points, one point can be taken as Zu.

(b) If k is even, so that ξ̃ has at most k/2 + 1 support points, two points can be taken as Zl
and Zu.

If the sets {�0, �1, . . . , �k−1} and {�0, �1, . . . , −�k} are Chebyshev systems, a similar result
holds, with the point Zu in (a) replaced by Zl, k/2 + 1 in (b) replaced by k/2, and assurance
about end points being part of the support removed in (b).

Several sets of functions, for example, the monomials up to degree m for any integer m,
are known to be Chebyshev systems. If this information is not available, using the definition
given in (14.11) can be unwieldy, in particular if k is large. In this situation, it is usually easier
to check the condition on �(z) from the algebraic method described in Section 14.3.1.

Example 14.7 (Examples 14.1 and 14.6 continued)

To apply this result to the Michaelis–Menten model, we need to check if the sets of func-
tions S2 = {�0(z), �1(z), �2(z)} and S3 = S2 ∪ {�3(z)} are Chebyshev systems on [Zl, Zu]
where Zl ≥ 0, �0(z) = 1, �1(z) = z2, �2(z) = z3, and �3(z) = z4. For S2 we obtain

∣∣∣∣∣∣∣∣

1 1 1

z2
0 z2

1 z2
2

z3
0 z3

1 z3
2

∣∣∣∣∣∣∣∣
= (z2 − z1)(z2 − z0)(z1 − z0)(z1z2 + z1z0 + z2z0) > 0

for Zl ≤ z0 < z1 < z2 ≤ Zu. Similarly, the determinant for S3 is (z3 − z1)(z3 − z0)

(z3 −z2)(z2 −z1)(z2 −z0)(z1 −z0)(z0z1z2 +z1z2z3 +z0z2z3 +z0z1z3), which is also positive
for Zl ≤ z0 < z1 < z2 < z3 ≤ Zu. Hence, S2 and S3 are both Chebyshev systems on
[Zl, Zu].

Here, k = 3, so (k + 2)/2 = 2.5, and for any design ξ, the dominating design ξ̃ has
at most 2 support points. Only a design ξ with support points Zl and Zu or a one-point
design can achieve an index I(ξ) < k/2 = 1.5. Hence, such a design is dominated by itself.
Any other design will be dominated by a design ξ̃ with at most (k + 1)/2 = 2 support
points, one of which is the upper bound of the transformed design interval, Zu, which
translates into the upper bound, B, of the original design space X . Note that if interest
is in estimating both model parameters, any dominating design must have exactly two
support points to ensure estimability. It remains to select an appropriate optimality cri-
terion and to use analytical evaluation or numerical search to obtain an optimal design
from the class found.
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14.4 Further Examples

In this section, we will apply the methods described earlier to further examples. Unlike
the previous sections, we will not apply every method to every model but present only a
combination of the most suitable methods for each situation.

14.4.1 Two-Parameter Exponential Model

Exponential growth models with expected response η(x,θ) of the form

η(x,θ) =
L∑

l=1

ale−blx, al > 0, l = 1, . . . , L, (14.12)

occur in chemical kinetics (see, e.g., Gibaldi and Perrier 1982), with particular emphasis on
toxicology (see Becka et al. 1992, 1993) and microbiology (see Alvarez et al. 2003). Locally
D-, c-, and E-optimal designs for this class of models have been found in Dette et al. (2006a),
Dette et al. (2006b), and Ermakov and Melas (1995).

Example 14.8

For the purpose of this example, we assume that L = 1 in (14.12), and for consistency
rename the parameters to obtain η(x,θ) = θ1e−θ2x. We further let θ2 > 0 and X = [0, B]
for some B > 0. Note that knowledge of the sign of θ2 is not a restrictive assumption,
since the experimenter will usually know whether to expect growth or decline. By (14.2),
the information matrix for this model for a design ξ is given by

Mξ =
t∑

i=1

wi

[
e−2θ2xi −θ1xie−2θ2xi

−θ1xie−2θ2xi θ2
1x2

i e−2θ2xi

]
. (14.13)

Before selecting an optimality criterion, we seek the complete class of dominating designs
in the Loewner ordering sense. Following the approaches presented in Section 14.3, we
simplify the functions in the information matrix (14.13) using the transformation z = θ2x,
z ∈ [0,θ2B], and defining

P(θ) =
[

1 0
0 −θ1/θ2

]
.

This yields the functions �1(z) = e−2z, �2(z) = ze−2z, and �3(z) = z2e−2z. The alge-
braic method from Section 14.3.1 involves checking if �(z) as defined in Theorem 14.4, a
function consisting of ratios of �1, �2, �3 and their derivatives, is positive/negative on
[0, θ2B]. We can see that the exponential term, e−2z, will cancel in these ratios and there-
fore expect �(z) to have a simple form. Alternatively, we could use the method described
in Section 14.3.2 and show that {1, �1, �2} and {1, �1, �2, ±�3} are Chebyshev systems,
which appears to be harder. It turns out that �(z) = −4e−2z, which is negative for all z.
Hence, we stick to the algebraic method for this example.

Here, k = 3 is odd and �(z) < 0 for all z ∈ [Zl, Zu]. Hence, from Theorem 14.4, we
obtain that the dominating designs have at most (k + 1)/2 = 2 support points, one of
which is Zl or zero in the original design space. It thus remains to find the other support
point (if necessary) and one weight. Note that if interest is in estimating both parame-
ters, any optimal design will have two support points. If, however, we seek a c-optimal
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design, this may have just one support point, zero, depending on where the vector c inter-
sects the boundary of Elfving’s set E . Observing that η(0,θ) = θ1, we find that only the
parameter θ1, that is, the single linear combination c′θ where c = (1, 0)′, will be estimable
by the one-point design supported at x = 0.

Assume the experimenter is only interested in estimating the rate, θ2, of exponential
decay. In this case, the c-optimality criterion with c = (0, 1)′ will be appropriate, and the
optimal design will have two support points. Recall the definition of X and V = (XX′)−1X
in Section 14.2. We find that the vector v = Vc is given by (1/(θ1x2), eθ2x2/(θ1x2))

′. There-
fore, from (14.5), the weight at x = 0 is w = |v1|/(|v1| + |v2|) = 1/(1 + eθ2x2). We note that
w does not depend on the value of θ1 and on θ2 only through the product θ2x2.

We substitute the expression for w into the objective function φc(ξ,θ) = c′M−
ξ

c and
obtain

φc(ξ,θ) = (1 − w)e−2θ2x2 + w

w(1 − w)e−2θ2x2θ2
1x2

2

= (1 + eθ2x2)2

θ2
1x2

2

.

Setting the derivative with respect to x2 equal to zero is equivalent to solving

eθ2x2(θ2x2 − 1) = 1,

which yields x2 = 1.278/θ2 (to 3 decimal places). Inspection of the second derivative
reveals that this is indeed a minimum. Hence, θ2x2 = 1.278 is constant, and the weight
w = 0.2178 is constant, too, for any combination of θ2 and the corresponding optimal
value of x2.

If θ2 is relatively small, the optimal x2 becomes large and may not be included in the
design interval X = [0, B]. In this case, inspection of the first derivative of the objective
function with respect to x2 reveals that φc is strictly decreasing on X , and therefore, the
second support point has to be B. The corresponding optimal weight is then given by
w = 1/(1 + eθ2B) and depends on the value of θ2.

In this example, substituting the expression for the optimal weight into the objective
function resulted in a considerable simplification of the optimization problem. This is not
necessarily always the case. For example, the objective function for A-optimality for the
exponential model appears to become rather more complicated, possibly because of the
square root terms involved in the weight formula (14.5).

14.4.2 Emax Model

Example 14.9

The Emax model is a generalization of the Michaelis–Menten model and is widely used
in dose–response studies. The expected response is given by

η(x,θ) = θ0 + θ1x
θ2 + x

, θ1, θ2 > 0, x ∈ [0, B],

where θ0 represents the placebo response, θ1 (often called Emax) is the maximum achiev-
able increase above the placebo response, and θ2 is the dose that produces 50% of the
Emax effect.

Dette et al. (2010) show that D- and EDr-optimal designs for this model have the
same support points but different weights, where EDr is the smallest effective dose that
achieves a proportion of r, 0 < r < 1, of the maximum effect in the observed dose range,
and an EDr-optimal design minimizes the variance of the ML-estimator for EDr. Optimal
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designs for estimating the minimum effective dose, that is, the smallest dose producing
a practically relevant response, are given in Dette et al. (2008).

Again, we start with writing the information matrix in the form (14.9). Following Yang
(2010), we use the transformation z = 1/(θ2 + x) and

P(θ) =
⎡
⎣1 0 0

1 −θ2 0
0 −θ1 θ1θ2

⎤
⎦

to obtain �1(z) = z, �2(z) = z2, �3(z) = z3, and �4(z) = z4. We know that the monomi-
als of degree 0, . . . , l form a Chebyshev system for every integer l; hence, we can apply
Theorem 14.5 immediately.

Here, k = 4, so for each design ξ, there exists a dominating design ξ̃ with at most
(k + 2)/2 = 3 support points. In particular, provided the index I(ξ) ≥ k/2 = 2, from
part (b), we obtain that Zl and Zu can be chosen as support points, which translate back
into the end points of the design interval X . A design with index strictly less than 2 has
strictly less than three support points, and thus produces a singular information matrix.
If interest is in estimating all parameters, we can thus restrict design search to designs
with three support points, including zero and B.

It may be of interest to know how well an optimal design for the Emax model per-
forms if the true model is the Michaelis–Menten model. This corresponds to a situation
where a placebo effect was anticipated and therefore taken into account when designing
the experiment, but then it turned out that this parameter was unnecessary in the model, so
a Michaelis–Menten model would be used in the analysis. For comparison with the designs
found in Example 14.2, we seek the D-optimal design for the Emax model, on a design space
X = [0, B]. Since this model is partially nonlinear, the D-optimal design will not depend
on the linear parameters θ0 and θ1.

We know that the weights of this saturated D-optimal design will be equal, that is, w1 =
w2 = w3 = 1/3 (see, e.g., Silvey 1980 or (14.5)). Substituting these weights, together with
the known support points, x1 = 0 and x3 = B, into the objective function, we obtain

φD(ξ,θ) = |Mξ| = 1
33

θ2
1B2x2

2(B − x2)
2

(θ2 + x2)4(θ2 + B)4 .

This is proportional to the objective function of the Michaelis–Menten model (14.8) and
thus is also maximized by x2 = θ2B/(B + 2θ2).

We find that two of the support points of the D-optimal design, ξ∗ say, for the Emax
model coincide with those of the D-optimal design for the Michaelis–Menten model. The
third support point of ξ∗, x1 = 0, however, does not provide any information for estimating
the Michaelis–Menten model, that is, the information matrix in this point is the zero matrix.
Another way to see this is by observing that η(0,θ) = 0 and thus does not depend on the
model parameters. To assess the performance of ξ∗ in the Michaelis–Menten model, we
compute its D-efficiency, where the D-efficiency of a design ξ is defined as

effD(ξ) =
( |Mξ|

|MξD |
)1/m

, (14.14)

with ξD the D-optimal design for the true scenario.
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For this example, ξD is the D-optimal design for the Michaelis–Menten model and m = 2.
We straightforwardly obtain that Mξ∗ = 2/3 × MξD for all eligible values of θ2 and B,
provided these are the same for both designs. Hence, regardless of the parameter values
or the upper end point of the design interval, we have that effD(ξ∗) = 2/3. This is not
surprising, since one-third of the observations, that is, those at x1 = 0, are not used for
inference of θ under the Michaelis–Menten model.

If the D-efficiency of a design ξ is equal to effD(ξ), then this means that the number
of observations in a D-optimal design can be limited to 100effD(ξ)% of that in ξ to obtain
the same accuracy under the D-optimality criterion. For example, if we conducted a clin-
ical trial with 300 patients, using the D-optimal design for the Emax model, but then it
turned out that there is no placebo effect and the Michaelis–Menten model is appropri-
ate, we could get estimates for θ1 and θ2 with the same precision from a trial with 200
patients using the D-optimal design for the Michaelis–Menten model. In practice, how-
ever, it would not be known before analyzing the data from the trial that the placebo effect
is not significant. At the planning stage, there are therefore two possible scenarios (placebo
effect/no placebo effect) and two possible decisions (design for Emax/Michaelis–Menten
model) for the experimenter to make. Taking into account that the D-optimal design for
the Michaelis–Menten model is not capable of estimating/testing the presence/absence of
the placebo effect, using design ξ∗ seems to be the safer bet, even if some efficiency is
lost if the smaller model is correct. In practice, a compromise design could be employed,
for example, putting only weight 0.2 at point zero and weight 0.4 at the other two sup-
port points. This design has 80% D-efficiency in the smaller model and is capable of
estimating/testing all parameters. There will, however, be some loss in efficiency if the
Emax model is correct.

14.4.3 Heteroscedastic Linear Model

In some situations, it is not realistic to assume that the variability of observations is
constant throughout the design region. The variance function may be of the form Var(εi) =
σ2(xi,α) for some parameter vector α, where the functional form of σ2(xi,α) is known.
If this is not taken into account when planning the experiment, inefficient inference may
result. Consider the class of heteroscedastic models where observations are described by

yi = η(xi,θ) + εi, εi ∼ N (0,σ2(xi,α)), i = 1, . . . , n. (14.15)

The function λ(xi,α) = 1/σ2(xi,α) is called the efficiency or intensity function. We con-
sider the situation where there is no overlap between the vector of mean parameters, θ,
and the vector of variance parameters, α. Moreover, we assume that α is a vector of nui-
sance parameters, and we are thus not interested in precise estimation of these; see also
Chapter 2, Section 2.3.2. The more general case where α may overlap θ, or may be of
interest, is beyond the scope of this text; see Fedorov and Hackl (1997) for an example.

For our situation, the information matrix for model (14.15) is block diagonal, where the
first block is equal to the information matrix for θ only, that is,

Mξ =
t∑

i=1

wiλ(xi,α)f (xi,θ)f ′(xi,θ),
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and the second block is the information matrix forα only. The covariance matrix of θ̂ is thus
the inverse of Mξ, so in order to estimate θ with high precision, we consider φp-optimality
with respect to Mξ and not the complete information matrix for all model parameters.

We note that even in this simple case, where the parameters in the efficiency function
do not overlap with the parameter vector θ in the expected response and are not of inter-
est, optimal designs will be affected by heteroscedasticity. In particular, design problems
for linear models with nonconstant variance resemble those for nonlinear models in that
they depend on the nuisance parameters in α. In what follows, we will consider a simple
example.

Example 14.10

Let η(x,θ) = θ0 +θ1x+θ2x2, and λ(x,α) = e−αx for some α > 0 and x ∈ X = [0, ∞). This
means that we assume that the model is a linear model and that the variance is increasing
exponentially as x increases. Here the information matrix for estimating θ = (θ0,θ1,θ2)

′
is given by

Mξ =
t∑

i=1

wiλ(xi,α)

⎡
⎢⎣

1 xi x2
i

xi x2
i x3

i

x2
i x3

i x4
i

⎤
⎥⎦ =

t∑
i=1

wie
−αxi

⎡
⎢⎣

1 xi x2
i

xi x2
i x3

i

x2
i x3

i x4
i

⎤
⎥⎦ ,

which clearly depends on α. Replacing αx = z, z ∈ [Zl, Zu) = [0, ∞), and letting

P(θ) =
⎡
⎣1 0 0

0 1/α 0
0 0 1/α2

⎤
⎦,

we obtain �1(z) = e−z, �2(z) = ze−z, �3(z) = z2e−z, �4(z) = z3e−z, and �5(z) = z4e−z.
We observe that the design problem closely resembles the problem for the exponential
model. In fact, if we dropped the squared term, θ2x2, from the model equation, we would
get a problem identical to that in Example 14.8 in terms of finding the simple complete
class of designs under the Loewner ordering.

Applying Theorem 14.4, we find that �(z) = −24e−z < 0, which implies that the
optimal design will have at most 3 support points, one of which is Zl, translating into x1 =
0 in the original design interval. Suppose interest is in estimating all three parameters
in θ, and we select the D-criterion. In this case, the optimal design will have exactly
three support points, one of which is zero, and equal weights. The objective function to
maximize is

|Mξ| = 1
27

e−α(x2+x3)x2
2x2

3(x3 − x2)
2.

A straightforward maximization yields the remaining D-optimal support points x2 =
(3 − √

3)/α and x3 = (3 + √
3)/α.

Lau and Studden (1988) show a more general result, finding D-optimal designs for
polynomials of any degree with efficiency function λ(x) = e−x and several further func-
tions commonly used to model heteroscedasticity. In particular, they find that D-optimal
designs on X = [0, ∞) for model (14.15) where η(x,θ) = θ0 +θ1x + · · ·+θkxk, k ≥ 1, and
λ(x) = e−x have k + 1 equally weighted support points. These are given by the roots
of xL(1)

k (x) where L(1)

k (x) is the kth generalized Laguerre polynomial. For more infor-
mation on generalized Laguerre and other classical orthogonal polynomials, see, for
example, Szegö (1975).
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By a simple transformation, we see that for efficiency function λ(x,α) = e−αx, the
support points of the D-optimal design are the roots of xL(1)

k (αx). We apply this to our
example for comparison. The generalized Laguerre polynomial L(1)

2 (x) is given by L(1)

2 (x) =
0.5x2 − 3x + 3. Solving

xL(1)

2 (αx) = x(0.5α2x2 − 3αx + 3) = 0

confirms the results we found before.
Note that Lau and Studden (1988) used a method not yet described in this chapter,

the method of expressing the objective function in terms of canonical moments. We will
only give a brief description of this approach. For further reading, the interested reader is
referred to Dette and Studden (1997) and the references therein.

The idea behind this approach is as follows. The entries in the information matrix Mξ

can be viewed as the moments of the design ξ. This is particularly evident for polynomial
models with constant variance. If we tried to maximize the determinant of Mξ with respect
to the moments, we would get into trouble due to the complicated structure of the moment
spaces. For example, the possible range for the second moment will depend on the value
of the first moment in a nontrivial way.

Canonical moments are transformations of the ordinary moments of a probability mea-
sure. Roughly speaking, a canonical moment determines the relative position of the
corresponding ordinary moment in its moment space, given the lower-order moments.
The big advantage of canonical moments is the simple structure of their moment spaces.
In particular, they do not depend on the values of the lower-order canonical moments. If it
is possible to express the objective function in terms of canonical moments, it can be opti-
mized over each of these quantities independently, which usually results in a considerable
simplification of the problem. Once the optimal canonical moments have been found, the
corresponding optimal design can be determined by applying results on continued frac-
tions, the Stieltjes transform, and orthogonal polynomials. The major limitation of canoni-
cal moments is that the objective function can only be expressed as a function of canonical
moments in a few special cases, for example, for D- or Ds-optimality for polynomial models
with certain efficiency functions or trigonometric models with constant variance.

14.5 Model Discrimination for Nonlinear Models

To discriminate between two nested models, a popular optimality criterion is Ds-
optimality; see also Chapter 2. Intuitively, this is related to D-optimality for those s entries
in the parameter vector θ by which the models differ. In particular, a Ds-optimal design
minimizes the volume of the confidence ellipsoid for these s parameters. Without loss of
generality, let θ′ = (θ′

(1),θ′
(2)) where the s additional parameters for the larger model are

held in θ(1). Then a Ds-optimal design maximizes

φDs(ξ) = |(K′M−
ξ

K)−1|, (14.16)

where K′=[Is 0s×(m−s)] and M−
ξ

denotes a generalized inverse of the information matrix
for θ.



Designs for Selected Nonlinear Models 539

The blocks in K′ are the identity matrix of size (s×s) and the zero matrix of size (s×(m−s)),
respectively.

To discriminate between more than two nested models, compound or constrained cri-
teria can be used. A compound criterion (see, e.g., Läuter 1974) typically optimizes a
combination of l objective functions of the form φ(ξ) = φ1(ξ)β1 × · · · × φl(ξ)βl , where
l > 1 is an integer and the weights β1, . . . ,βl sum to one. The weights are chosen to reflect
the importance of each criterion, and the objective functions should be appropriately stan-
dardized to avoid some of them dominating the others just because they take values on
different scales. In the context of model discrimination, the individual criteria could be Ds-
criteria for different pairs of models. Constrained criteria optimize one objective function
subject to the constraints that the resulting design achieves at least given efficiencies for all
the other criteria. A constrained optimal design may not exist for certain combinations of
lower bounds for the efficiencies. An application of this method to discriminate within a
class of linear models can be found in Biedermann et al. (2009).

Another popular optimality criterion for model discrimination, which does not require
the models to be nested and can be applied directly for discriminating between more than
two models, is T-optimality (see Atkinson and Fedorov 1975a,b). Suppose the aim of the
experiment is to discriminate between models η1(x,θ1) and η2(x,θ2) for any θ1 ∈ �1 and
θ2 ∈ �2. Atkinson and Fedorov (1975a) suggest to fix a model, η1(x,θ1) say. A T-optimal
design then maximizes the minimal deviation between the model η1 and the class of models
defined by η2, that is,

φT(ξ,θ1) = inf
θ2∈�2

�
X

(η1(x,θ1) − η2(x,θ2))
2 dξ(x).

If the models are not nested, it may be difficult to decide which of them should be fixed
and thus assumed to be the true model. In this situation, a compound design for the two
T-criteria with each model fixed in turn could be applied. If both models are linear, that is,
they can be expressed as η1(x,θ1) = θ′

1f1(x) and η2(x,θ2) = θ′
2f2(x), where f1(x) and f2(x)

are known vectors of regression functions, and if in addition f1(x) = ( f0(x), f ′
2(x))′, where

f0(x) is a scalar function, then the T-optimal design coincides with the D1-optimal design
for the coefficient of f0(x) (see Atkinson and Fedorov 1975a, and Dette and Titoff 2009 for a
derivation and further discussion). Further properties of T-optimal designs in the context of
approximation theory are derived in Dette and Titoff (2009). Generally, analytical results for
this criterion are hard to obtain, and usually optimal designs have to be found numerically.

A feature of both Ds- and T-optimal designs is that in some situations, these designs have
fewer support points than there are parameters in the larger model, so this model cannot be
estimated if found preferable by the likelihood ratio test. Sometimes not even the smaller
model can be estimated, as illustrated in Example 14.11. In such a situation, again com-
pound or constrained optimal designs, where the additional criteria are D-efficiencies for
estimating each model, can be useful. If these turn out to be difficult to find, hybrid designs
(see, e.g., Waterhouse et al. 2009) can be a good compromise. Hybrid designs include design
points from both the T-optimal design and the D-optimal designs in such a way that the
weight from each point is adjusted to account for the priority given to the criterion that
point represents. Compound optimal designs combining T-optimality for model discrim-
ination and D-optimality for estimation (also called DT-optimal designs) are described in
Atkinson (2008), which also gives an overview of similar criteria used in the literature.
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The optimal designs depend on the values of the unknown model parameters. For exam-
ples of discrimination designs for the Michaelis–Menten model and exponential models,
respectively, which have been made robust to parameter misspecifications, see Biedermann
et al. (2007) and Dette et al. (2005).

For models with nonnormal errors, López-Fidalgo et al. (2007) suggest an optimality
criterion based on the Kullback–Leibler distance and show that this is consistent with
T-optimality. To discriminate between different link functions for GLMs, see, for example,
Waterhouse et al. (2008), who consider the difference in deviances for the rival models.

Example 14.11 (Examples 14.1 and 14.9 continued)

We briefly discuss the discrimination problem between the Michaelis–Menten and the
Emax models with normally distributed errors. These are nested models, so either
the T- or the Ds-criterion can be used. For the T-criterion, an optimal design has to
be found numerically. We will focus on Ds-optimality, since this criterion is based on
the information matrix, so this will allow us to use results from previous sections.

For this example, K′ = (1, 0, 0). Hence, the Ds-criterion (14.16) corresponds to the
c-criterion for estimating θ0 in the Emax model. From Example 14.9, any optimal design
ξ∗ will have at most three support points, including the end points of X = [0, B], that
is, ξ∗ = {(0, w1), (x2, w2), (B, 1 − w1 − w2)} with x2, w1, and w2 to be determined. Substi-
tuting this design into the objective function (14.16) yields that φc(ξ) = 1/w1, which is
minimized for w1 = 1. The optimal design is thus a one-point design in x1 = 0.

We observe that this design does not allow estimation of either of the two models.
We consider hybrid designs, that is, weighted averages of the Ds-optimal design for
discrimination and the D-optimal designs in either model. In practice, the weighting
is often selected to achieve certain values for the individual efficiencies. For example, if
the resulting design has equal weights on the support points 0, θ2B/(2θ2 + B), and B,
its Ds-efficiency is 1/3, its D-efficiency for the Michaelis–Menten model is 2/3, and its
D-efficiency for the Emax model is 1. Giving more weight to the point 0, for example,
1/2 and 1/4 to each of the other two support points, improves the efficiency for model
discrimination to 1/2, at the expense of reducing the D-efficiencies for estimating the
Michaelis–Menten and the Emax model, respectively, to 1/2 and 0.945.

14.6 Parameter Robust Approaches

All design problems discussed so far have in common that the optimal designs found
depend on at least some of the unknown model parameters. This leads to a chicken and egg
situation: To get a good design and thus precise estimates, we need to know the very quan-
tities we actually want to estimate from the data before these are collected. In this section,
we will illustrate the effects of parameter misspecification when designing experiments and
then briefly discuss strategies to make designs robust. A more detailed investigation of this
issue can be found in Chapter 20; see also the discussion in Section 13.3.4 of Chapter 13.

Example 14.12 (Examples 14.1, 14.2, 14.8 continued)

Consider the Michaelis–Menten model, and suppose an experiment was designed to be
D-optimal for a specific value of θ2. However, the true value of this parameter is θ∗

2.
We can then find the D-efficiency of the misspecified design ξ, relative to the correct
D-optimal design ξ∗. Substituting
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ξ =
{(

θ2B
2θ2 + B

, 0.5
)

, (B, 0.5)

}
, ξ∗ =

{(
θ∗

2B
2θ∗

2 + B
, 0.5

)
, (B, 0.5)

}
,

into the expression (14.14) for D-efficiency, we obtain that

effD(ξ) = θ2θ
∗
2(θ2 + B)(θ∗

2 + B)

[θ2θ
∗
2 + B(θ2 + θ∗

2)/2]2 .

Similarly, the D-efficiency of a misspecified D-optimal design ξ for the exponential
model is given by

effD(ξ) = θ∗
2

θ2
e1−θ∗

2/θ2 .

Figure 14.8 shows D-efficiencies of the locally optimal designs for the Michaelis–
Menten model and the exponential model, respectively, when the value of θ2 has been
misspecified across a range of θ2 ∈ [0.1, 2]. In the upper panel, we see two scenarios for
the Michaelis–Menten model, where the true value, θ∗

2, is 0.3 and 0.6, respectively. We
see that the efficiencies appear to be reasonable even on this relatively wide range, with
0.764 and 0.628 the respective minimal efficiencies.
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FIGURE 14.8
Upper panel, efficiencies of the locally D-optimal designs for the Michaelis–Menten model with parameter θ2 ∈
[0.1, 2]. Left, true parameter θ∗

2 = 0.3. Right, true parameter θ∗
2 = 0.6. Lower panel, efficiencies of the locally

D-optimal designs for the exponential model with parameter θ2 ∈ [0.1, 2]. Left, true parameter θ∗
2 = 0.6. Right,

true parameter θ∗
2 = 1.2.
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The lower panel shows two scenarios for the exponential model, with θ∗
2 given by

0.6 and 1.2, respectively. Here, the drop in efficiency is dramatic. For example, if θ∗
2 =

1.2, but the experimenter designed the experiment for θ2 = 0.1, the efficiency of the
D-optimal design is only 0.0002. This is intuitive, since the observations are taken at
points 0 and 10, which is appropriate for a relatively slow decay with rate 0.1. However,
if the true rate of decay is 1.2, the mean response decreases much faster than expected and
is almost zero at x = 10. Hence, the design misses the interesting part of the experimental
region. This can also be seen from the information matrix, whose entries are almost zero
for x = 10 since e−1.2×10 = 6.144×10−6, and thus x = 10 provides almost zero information
for the estimation of the model parameters.

These results show that parameter misspecification can be a serious issue and robust
designs are sought for experiments in practice. There are several different approaches, of
which we will briefly introduce the four most common ones.

14.6.1 Response-Adaptive Sequential/Batch Sequential Experimentation

If the nature of the experiment permits observations to be taken sequentially, future experi-
mental conditions can be optimized based on the observations already made. Starting with
an initial design ξ0, which can, for example, be a locally optimal design, a robust design as
described in the following, or an equidistant uniform design, we take some observations,
from which the parameter vector θ is estimated. This estimate, θ̂1 say, is then substi-
tuted into the objective function, to find the design ξ1 for the next stage, such that the
combined design ξ0 + ξ1 optimizes φ(ξ, θ̂1). One or a whole batch of observations will be
made according to the design ξ1, from which an updated estimate for θ is obtained. This
procedure is repeated until the total sample size has been reached.

It is expected that by adopting this strategy, the quality of the design, and thus the
estimate, can be improved successively. However, there are a few drawbacks. For exam-
ple, observations at experimental conditions from ξ1 depend on the estimate θ̂1 obtained
from previous observations, that is, the data from a sequential experiment are dependent,
making inference more difficult. For many situations, it has been shown that under mild
conditions, the estimators obtained from such experiments are asymptotically efficient and
that the sequential designs converge to the locally optimal design for the true parameter
value (see, e.g., Roy et al. 2008). Dette et al. (2013) show analytically that one can expect
a benefit from two-stage adaptive designs over nonadaptive designs for sufficiently large
sample sizes. However, for small sample sizes, the adaptive design may still be outper-
formed by nonadaptive designs, in particular if the initial design has been chosen poorly.
Another open question in this context is how to choose the number of batches and obser-
vations per batch in the sequential procedure. Usually, extensive simulations are required
prior to experimentation to determine a good strategy.

14.6.2 Bayesian/Pseudo-Bayesian Designs

Bayesian (also called fully Bayesian) designs are optimized for Bayesian inference and are
beyond the scope of this chapter. In the frequentist literature, a Bayesian (often called
pseudo-Bayesian) φ-optimal design optimizes an objective function of the form

�
φ(ξ,θ)π(θ) dθ, (14.17)
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where φ(ξ,θ) is the objective function of a local optimality criterion and π(θ) is a prior
distribution summarizing the available knowledge for θ.

This means that the local objective function φ(ξ,θ) is averaged over the plausible values
for θ. The prior π(θ) is specified solely for the purpose of finding a design that performs
reasonably well across its domain and is not used for data analysis. For further reading on
relationships and differences of fully Bayesian and pseudo-Bayesian designs, we refer to
the review paper Chaloner and Verdinelli (1995). Chapter 13 provides further discussion
of Bayesian design methods in the context of generalized linear models.

A potential problem with pseudo-Bayesian designs is the choice of prior distribution. If
the domain is far from the true parameter value, the same problems as for locally optimal
designs arise. Moreover, even if the true value of θ is contained in the domain of π(θ), it
is not guaranteed that it can be estimated efficiently, since other values of the parameter
vector may dominate the weighted average in (14.17).

Pseudo-Bayesian D-optimal designs for the Michaelis–Menten model are found in
Matthews and Allcock (2004). Note that for numerical computation of a pseudo-Bayesian
optimal design, the integral in (14.17) is usually replaced by a finite sum that approximates
the integral. For guidance on the choice of values for θ to be used in the summation, see,
for example, Gotwalt et al. (2009).

14.6.3 (Standardized) Maximin Optimal Designs

This approach is more cautious than the pseudo-Bayesian and addresses the problem of
possibly low design efficiency in some regions within the domain of the prior π(θ) by opti-
mizing the design for the worst-case scenario. Moreover, it is not necessary to specify a
prior distribution on θ, but only a plausible range �.

Let φ(ξ,θ) be the objective function of a local optimality criterion, which without
loss of generality must be maximized. Then a maximin φ-optimal design maximizes
minθ∈� φ(ξ,θ). These designs have been criticized by Dette (1997) because the scale of
φ(ξ,θ) can be considerably affected by the value of θ. To address this issue, Dette
(1997) suggests a standardization approach. A standardized maximin φ-optimal design
maximizes

min
θ∈�

φ(ξ,θ)

φ(ξ∗
θ,θ)

, (14.18)

where ξ∗
θ

is the locally φ-optimal design for the value θ. Note that if φ(ξ,θ) were to be
minimized, the numerator and denominator in (14.18) would change places. For many local
optimality criteria, the ratio in (14.18) is also the definition of φ-efficiency of the design ξ,
or a one-to-one mapping to this quantity. For example, for D-optimality, the ratio would
be raised to the power 1/m to obtain the D-efficiency as defined in (14.14). Notice that
there is an alternative equivalent definition of maximin design called minimax design (see
Chapter 13, Section 13.3.4.3).

One drawback of standardized maximin optimal designs is that they do not necessar-
ily perform well if the true parameter value for θ is outside the range � specified by the
experimenter. If it is inside this range, we have a lower bound for the φ-efficiency of the
design for each value of θ ∈ �. However, the efficiencies of standardized maximin optimal
designs, in particular for large ranges �, tend to be flat, that is, they may be close to the
lower bound across the whole range. Another issue, preventing more widespread use of
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maximin and standardized maximin optimal designs, is that they are usually very hard to
compute (see Nyquist 2013 for a recent algorithm). Examples where standardized maximin
D-optimal designs with minimum support are found analytically for the Michaelis–Menten
model, the exponential model and polynomials with several different efficiency func-
tions are given in Dette and Biedermann (2003), Imhof (2001), and Biedermann and
Dette (2003).

14.6.4 Cluster Designs

These designs are used as an alternative if pseudo-Bayesian and standardized maximin
optimal designs are difficult to compute. A sample of J (J large, e.g., 1000) values of the
parameter vector θ is drawn according to a prior distribution π(θ). A clustering algorithm
is then applied to the support points of the corresponding J locally optimal designs. The
cluster design is formed by taking the centroids of the resulting clusters as equally weighted
support points.

This basic method was first introduced in Dror and Steinberg (2006) and later modified
by Biedermann and Woods (2011) to take non-equal weights of the locally optimal designs
into account. Cluster designs are easy to compute but suffer potentially from the same
drawbacks as pseudo-Bayesian designs. There is no general rule on how to select the num-
ber of support points for these designs. This is currently done through summary statistics
for efficiencies relative to a large number of locally optimal designs and simulations on a
case-by-case basis.

14.7 Summary

We have outlined the most popular methods for finding optimal designs for nonlinear
models and illustrated them through examples. Some methods are particularly useful in
specific situations. The general strategy, however, is as follows: First, apply one of the new
methods described in Section 14.3 to identify a simple class for the optimal design. Second,
select an appropriate optimality criterion and use one of the classical methods to further nar-
row down this class (if possible). Finally, use an optimization procedure, either analytically
or numerically, to find the optimal design. Some powerful new algorithms for numerical
calculation of optimal designs have been suggested in the recent literature; see, for exam-
ple, Yu (2011) for D-optimal designs and Yang et al. (2013) for φp-optimal designs, the latter
of which is also capable of finding response-adaptive optimal designs and optimal designs
for subsets or functions of the unknown model parameters.
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15.1 Introduction

Spatial sampling design plays an important role in many applications such as envi-
ronmental monitoring, natural resource survey, ecological studies, and water resource
management. For example, in the National Resources Inventory survey conducted by the
Natural Resources Conservation Service at USDA to monitor the status and change of the
soil, water, and related resources on nonfederal land in the United States, sample segments
were selected in space in the first stage of a two-stage area sample, and spatial sampling
design techniques were used to achieve geographic spread, which greatly increased the
design efficiency (Nusser et al. 1998). In another example described by Zidek et al. (2000),
the authors considered the problem of extending an existing pollutant monitoring network
in Southern Ontario by adding monitoring stations at new spatial locations. To reduce the
uncertainty in predicting multiple pollutants at unobserved locations, a model-based spa-
tial sampling design method was used that maximized an entropy criterion based on a
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Gaussian model. In both applications, spatial information is an important part of the data
and has to be taken into account in design.

Let X be the spatial domain of interest and let Z = {zx, x ∈ X} be the quantity of interest.
In most applications, X is a subset of two-dimensional Euclidian space R

2, though other
types of spatial domains do arise from different applications. For example, for those who
are interested in sampling stream networks, the spatial domains are one-dimensional tree-
structured curves. For those who are interested in environmental sampling on a global
scale, the spatial domain is a two-dimensional manifold (sphere). For meteorologists who
are interested in sampling the wind fields for modeling, the domain is R

3. In this chapter,
we will focus on the case when X ⊂ R

2, and the design concepts can be adapted to other
spatial domains as well.

In most applications, we can only observe zx on x ∈ d, where d is a discrete subset of
X with finite size. The optimal design problem is to select d under certain constraints such
that one can make good inference about Z based on the finite sample on d. There are two
major differences between spatial sampling and classical design problems: (1) an important
part of the modeling takes place in the correlation structure based on spatial locations, and
(2) it is often not possible to take repeated samples from the same location. For example,
in a typical agriculture survey, a segment of land is the sampling unit, and variables such
as acres of cultivated land on that segment are collected. There is no need to sample at
the same location more than once. Thus, many of the design strategies that are optimal for
independent observations may not be applicable for spatial sampling. Similar to classical
design problems, the objective for spatial sampling design is often optimal estimation and
prediction. Both of them take more complicated forms under spatial models due to the
spatial dependence in data and are more difficult to analyze. For example, the uncertainty
in estimation and spatial prediction often depends on parameters in a highly nonlinear
way, making both theoretical study and numerical optimization more challenging. In this
chapter, we review the general methodology and commonly used numerical methods for
spatial sampling design.

Broadly speaking, spatial sampling design strategies can be classified into two large
groups. One is the model-free approach, for which no specific spatial model is assumed for
the data except the assumption that they are spatially correlated. It includes geometrically
based space-filling designs and probability-based sampling for spatial data developed from
survey sampling methods. The latter includes approaches such as systematic sampling
(SYS), stratified sampling with random tessellation, and Markov sampling. The former
approach requires that a spatial model is assumed and the optimal sampling strategy is
designed under that model. In this chapter, we will introduce both approaches, with a focus
on the model-based approach. For the model-based approach, we restrict ourselves largely
to Gaussian random field (RF) models, though a generalization to spatial generalized linear
mixed model is briefly mentioned toward the end.

15.2 Model-Free Spatial Sampling Design

15.2.1 Space-Filling Designs

In many practical applications, there is little prior knowledge about zx on X, and it is
desirable to have a design that has good overall coverage of the study area with no big
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unsampled “holes.” Let dist(x, x′) be a distance function defined on X × X, and for design
d ⊂ X with fixed size n, define dist(x, d) = minx′∈d dist(x, x′). A design d∗ is defined as a
minimax distance design (Johnson et al. 1990) if

max
x∈X dist(x, d∗) = min

d
max
x∈X dist(x, d) = dist∗.

Intuitively, a minimax distance design guarantees that all points in X are within dist∗ of at
least one point in the design, that is, there are no “holes” with diameters bigger than dist∗.

Another viewpoint of spatial sampling is that because of the spatial dependence, points
sampled in close proximity provide redundant information. To increase the efficiency of
the design, it may be desirable to have the points in the design as far away from each other
as possible. One can define the maximin distance design (Johnson et al. 1990) as the design
d◦ such that

min
x,x′∈d◦ dist(x, x′) = max

d
min
x,x′∈d

dist(x, x′) = dist◦.

Both minimax and maximin distance designs are examples of space-filling design for
which the design points cover the whole study area with no big holes. The difference is that
maximin distance design pushes points to the boundary compared to minimax distance
design. Note that there are usually multiple designs that are minimax/maximin dis-
tance designs. Johnson et al. (1990) introduced the notion of index for maximin/minimax
designs based on the number of point pairs separated by the maximum/minimum dis-
tance and show that the designs with the highest/lowest index are asymptotically opti-
mal under G- and D-criteria. In practice, minimax distance design is typically better
for spatial prediction, and maximin distance design is better for estimating regression
parameters.

There are often multiple structurally different designs that have the minimax or maximin
property. The numerical problem of constructing the minimax/maximin distance design is
in general very difficult for arbitrary sample size and shape of the design region. Numerical
algorithms such as exchange (Royle and Nychka 1998), simulated annealing (Morris and
Mitchell 1995), and coffee-house algorithm (Müller 2001) can be used to find approximate
solutions. Royle and Nychka implemented the exchange algorithm for minimax design in
the R package fields (i.e., function cover.design). When the sample size is large, the regular
exchange algorithm becomes computationally infeasible, and short cuts such as the nearest
neighbor option can be used to speed up the computation. Figure 15.1 shows an example
of a minimax Euclidean distance design on [0, 1] × [0, 1] with n = 50.

In some applications of spatial sampling design, such as the design of computer experi-
ments, the design space X is typically a hypercube of higher dimension, corresponding to
multiple factors for the computer experiment. In this context, many of the factors may have
little effect on the outcome, and for the few factors that influence the outcome, the relation-
ship is typically nonlinear, and it is often useful to treat the factors the same as spatial loca-
tions in the statistical model. Thus, it is desirable to have a design that has good space-filling
properties not only in the original hypercube but also on its lower dimensional projections.
The original minimax distance designs do not have such properties, and minimax distance
Latin hypercube designs (Morris and Mitchell 1995) are preferred, in which a minimax
distance design is selected from all Latin hypercube designs to guarantee that its one-
dimensional projections have good space-filling properties (see also Chapter 17). A similar
approach can be applied to orthogonal array–based Latin hypercubes (Tang 1993) to control
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FIGURE 15.1
Example of minimax distance design.

higher dimensional projections. See Joseph and Hung (2008) for examples of orthogo-
nal Latin hypercube designs with good space-filling properties. See Chapter 17 for more
discussion on designs for computer experiments.

15.2.2 Spatial Probability-Based Sampling Design

In agriculture and natural resource surveys, there is a long history of spatial sam-
pling design in the form of area sampling. See, for example, King (1945), Das (1950),
Sukhatme (1957), and Monroe and Finkner (1959). The predominant method used in this
field is probability-based sampling, in which the underlining spatial process is assumed
to be fixed and the randomness is introduced by using a probability sampling design. A
probability sampling design consists of two parts: a well-defined frame, which is a set of
all elements in the population of interest, and a probability measure defined on the frame,
which gives the probability of selecting any subset. In this section, we will assume that the
population has finite number of elements. The statistical properties of the estimators for
functions of the population are solely based on the probability measure that defines the
design and are commonly referred to as design-based inference.

Typical probability-based sampling designs include simple random sampling (SRS),
SYS, stratified sampling, and cluster sampling. The fundamental building block of
probability-based sampling design is SRS, in which each element in the frame is selected
with equal probability and the selection is independent of the selection of any other ele-
ments. The primary objective of probability-based sampling in spatial sampling design is
to make inference about a population quantity such as a mean, total, variance, or propor-
tion, within a certain spatial domain. For example, one may be interested in estimating the
total area of wetland in a certain hydrologic unit or the average yield of corn in a county.
One main advantage of a probability-based design is that it does not require any model
assumptions about the underlining process, thus avoiding the possibility of selection bias
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based on a potentially incorrect model. See Cochran (2007) or Fuller (2011), for example,
for a more comprehensive introduction to the theory and practice of probability-based
sampling design.

In the context of spatial sampling design, it has long been recognized that in the presence
of spatial dependence, SRS is often an inefficient design because of its poor coverage in the
space, which leads to large estimation variance. One alternative is SYS. In one-dimensional
space, a SYS can be defined as follows. Let the length of the one-dimensional sample space
be l and the sample size be n. Let a = l/n be the interval length. The first element of the
SYS is selected from a uniform distribution on interval [0, a), and the rest of the sample
is drawn by taking every sample to have distance a away from the previous sample. In
d-dimensional space, the samples are taken from a regular grid to ensure they are equally
spaced, with the starting point of the SYS chosen from a uniform distribution on the first
cube [0, a)d, where a = 1/n1/d. Figures 15.2 and 15.3 show examples of SRS and SYS on
[0, 1] × [0, 1]. It is apparent that SYS is more spatially balanced and has better space-filling
properties compared to SRS. There is also theoretical evidence (Bellhouse 1977) that SYS is
optimal under certain superpopulation models in the sense of minimum average variance
when the sample mean is used to estimate the population mean.

One potential drawback of the SYS is that it may introduce significant bias if the popula-
tion being sampled has a periodic pattern that is aligned with the SYS. For example, if one
takes land use samples at 1 mile interval in an area in which the road grid is also designed
to be 1 mile apart, one would have no sample of the road if the starting point is not on a
road. One alternative is to compromise between SRS and SYS by using a one-per-stratum
sampling design, a form of stratified random sampling, in which the region of interest is
divided into n strata of equal size and an SRS of size one is selected from each stratum. A
special case of such design is the random-tessellation stratified (RTS) design (Overton and
Stehman 1993), which requires that each stratum has the same shape. These designs are
spatially balanced and do not have the potential alignment issue of SYS. Figure 15.4 gives
an example of an RTS design on [0, 1] × [0, 1].

FIGURE 15.2
Simple random sample on [0, 1] × [0, 1].
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FIGURE 15.3
Systematic sampling with random starting point.

FIGURE 15.4
Random-tessellation stratified design.

Note that RTS design does not necessarily have good space-filling properties. Because
the selection of the sample within each stratum is done independently, one may by chance
have points in the design that are arbitrarily close to each other, potentially reducing the
efficiency of the design. Markov chain designs for one-per-stratum sampling (Breidt 1995)
can be used to address this problem. In a Markov chain design on one-dimensional space,
each stratum is further divided into several smaller substrata, and the samples are selected
sequentially, starting with an SRS on the first stratum. A transition probability matrix
is specified to determine the selection probability of the next sample conditional on the
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FIGURE 15.5
Markov chain design.

location of the previous sample. This design includes both SYS and RTS as special cases,
and one can choose an appropriate transition matrix to have good space-filling properties
while avoiding the alignment problem of SYS. See Figure 15.5 for an example of Markov
chain design on one-dimensional space.

In practice, one often needs to allow the inclusion probability of elements in a frame to
vary based on relevant covariate information, sampling costs, and other considerations.
One drawback of the spatially balanced designs we have discussed so far (SYS, RTS, and
Markov chain designs) is that it is difficult to modify them to accommodate variable inclu-
sion probability. The generalized random-tessellation stratified (GRTS) design is a popular
spatially balanced design that allows for unequal inclusion probability (Stevens and Olsen
2004). The basic idea of GRTS is to find a function f that maps points in R

2 to an interval
in R and preserves the proximity relationships between points in R

2 as much as possi-
ble and to use a SYS with random start on the interval to select samples. The resulting
design would be spatially balanced due to the construction of the mapping. Without loss
of generality, let’s consider the problem of mapping points on [0, 1)× (0, 1] onto the unit
interval (0, 1]. A recursive approach can be defined as follows: divide the unit square
into 2 × 2 smaller squares of equal size, randomly permute them, and assign them to
intervals (0, 1/4], (1/4, 1/2], (1/2, 3/4], and (3/4, 1]. Keep dividing the squares into smaller
2 × 2 squares and randomly assign them to the corresponding subintervals until no square
contains more than one population element, and a proximity-preserving mapping is con-
structed by placing the points to the center of the assigned subintervals. Variable inclusion
probability can be accommodated by associating each point in the frame with an interval
that has length proportional to its inclusion probability. The GRTS design is implemented in
R package spsurvey (Kincaid and Olsen 2013). Figure 15.6 shows an example of GRTS with

FIGURE 15.6
GRTS design with unequal inclusion probability.
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unequal inclusion probability. The number of points on the upper half of the unit square is
one-third of those on the lower half.

15.3 Model-Based Spatial Sampling Designs

In this section, we discuss optimal spatial designs for geostatistical models. We distinguish
two types of designs: (1) designs for estimation of the variance parameters and (2) designs
for prediction of the spatial RF. We first give an overview of the geostatistical model before
we describe these designs in detail.

15.3.1 Model-Based Geostatistics

We consider a stochastic process Z = {zx, x ∈X} defined over X. In most geostatistics appli-
cations, X is a continuous spatial domain, Z is called the spatial RF, and zx denotes the
value of the RF at location x. Each component zx is decomposed into a linear mean f ′

xβ, a
zero-mean spatial term sx, and a zero-mean microscale (or nugget) term εx, that is,

zx = f ′
xβ + sx + εx, x ∈ X, (15.1)

where f x is a vector of k regressor functions at x and β is a k-dimensional vector of regressor
coefficients.

The term sx determines the spatial nature of the process. This process is characterized by
its correlation function �(x, x′) between two components sx and sx′ and is parametrized
by ψ. We denote by σ2 the variance of this process, which does not depend on x. We
also assume that the process sx is isotropic, namely, that the correlation function �(x, x′)
depends only on the distance h between the locations x and x′. Typically h would corre-
spond to the Euclidean distance between x and x′ although other choices are also possible,
for example, space deformation is used for modeling nonstationary fields. In this case, we
write the correlation function as �(h). A popular choice is the so-called Matérn correlation
function:

�(h) = {2κ−1�(κ)}−1(h/φ)κKκ(h/φ),

where � denotes the gamma function and Kκ is the modified Bessel function of order κ

(Abramowitz and Stegun 1965). In this case, ψ = (φ, κ) are the range and smoothness
parameters, respectively.

The microscale term εx will be used here to denote an uncorrelated error term with
variance τ2 termed the nugget. We will refer to the parameters associated with the spa-
tial and microscale components as the variance parameters and denote these by θ, that is,
θ = (σ2, τ2,ψ), and we denote the number of elements in θ by p.

Another relevant function that frequently arises in estimation is the semivariogram,

γ(h;θ) = 1
2

Var{zx+h − zx},
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and the variogram 2γ(h). It can be readily verified that if limh→∞ �(h) = 0,

lim
h→0+ γ(h;θ) = τ2 and lim

h→∞
γ(h;θ) = σ2 + τ2,

while the correlation function �(h) affects the shape of the semivariogram. The variogram
is useful for understanding the dependence structure of the RF and for inference (see next
section). In particular, the uncertainty in the estimation and prediction can be expressed in
terms of the variogram.

In practice, we can only make inference about Z over a finite subset X ⊂ X. To that end,
suppose Z is observed at locations d = {x1, . . . , xn} ⊂ X . The set d denotes the sampling
design or sampled sites. The data will be used to estimate the model parameters and predict
Z at the remaining locations dc = X \ d, the unsampled sites. Next, we discuss approaches
to these tasks.

15.3.1.1 Estimation of Variance Parameters

There are two main approaches in the estimation of the covariance parameters: the method
of moments estimator and the maximum likelihood (ML) estimator.

Consider estimation of the variogram at a given lag h by the method of moments. To
that end, let rh ⊂ d × d consist of the unique pairs of locations separated by distance h
(in practice, we use pairs whose distance falls within some neighborhood of h) and let
|rh| denote the number of elements in rh. Then the method of moments estimator for the
variogram 2γ(h;θ) under the constant mean model is

2γ̂(h) = 1
|rh|

∑
rh

(zx − zx′)2, (15.2)

where the summation is over (x, x′) ∈ rh. Realistically, we can compute (15.2) for those lags
h for which rh is of significant size. Suppose that there are m lags h1, . . . , hm for which the
variogram can be estimated and let γ̂ the m-dimensional vector with ith element γ̂(hi).
In practice, γ̂(hi) is plotted against hi, and the shape of the scatterplot determines the
correlation function to be used.

The vector γ̂ can be regarded as a random variable with meanγ(θ), the semivariogram at
the same lags when the true parameter value is θ, and variance V(θ), the m×m covariance
matrix of the estimator (15.2) corresponding to the m lags. In particular, the (i, j) element of
V(θ) is given by (Cressie 1993)

V(θ)ij = tr(Ahi�Ahj�),

where � denotes the n × n variance–covariance matrix of Z at d and Ah is a positive
semidefinite n × n matrix whose diagonal elements are the number of times the corre-
sponding location appears in rh and the off-diagonal is −1 or 0 depending on whether
the corresponding pair belongs to rh or not. Then we define the following:
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Definition 15.1 The generalized least squares estimator for the parameter θ is defined by

θ̂
GLS = argmin

θ

(γ̂ − γ(θ))′V(θ)−1(γ̂ − γ(θ)). (15.3)

An alternative method for estimating the covariance parameters is by the restricted ML
method. For this method, we assume that the processes sx and εx in (15.1) are normally
distributed. Let zd denote the value of Z over the design d, F the n × k matrix of covariates
associated with d, and let � = �(θ) be the corresponding variance–covariance matrix as
earlier. Then the restricted log-likelihood function for θ becomes, up to a constant (Harville
1974) (see Chapter 2),

�(θ) = −1
2

log |�| − 1
2

log |F′�−1F| − 1
2

W(θ)2,

where

W(θ)2 = z′
d{�−1 − �−1F(F′�−1F)−1F′�−1}zd

is the generalized residual sum of squares. Then the restricted ML estimator for θ is
obtained by maximizing

θ̂
ML = argmax

θ

�(θ). (15.4)

15.3.1.2 Spatial Prediction

We now shift focus to the question of predicting the value of the RF at the unsampled
locations dc, having observed it at the sampled locations d. The term kriging is used to
describe the methodology outlined in the following, pioneered by Krige (1951).

Fix x ∈ dc and consider the minimum mean square predictor ẑx of zx in the sense of
minimizing E(ẑx − zx)

2 subject to the unbiasedness constraint E(ẑx − zx) = 0. Denote by f x
the vector of covariates at x, by cx the variance Var zx, and by c the covariance between zx
and zd. Then the following result holds (Cressie 1993; Section 3.4.5).

Theorem 15.1 The minimum mean square unbiased predictor ẑx of zx for given data zd is ẑx =
λ′zd, where

λ = �−1[c + F(F′�−1F)−1(f x − F′�−1c)], (15.5)

with prediction variance

Var ẑx = cx − c′�−1c + (f ′
x − c′�−1F)(F′�−1F)−1( f x − F′�−1c). (15.6)

Remark: Note that the predictor ẑx as well as its variance (15.6) depends on the covariance
parameters θ. On the other hand, (15.6) does not depend on the possibly unobserved data
zd, which can be advantageous later when we consider optimal designs for prediction.
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15.3.2 Designs for Estimating the Covariance Structure

Consider the spatial domain of interest X over which we define an RF Z . We wish to choose
n locations in X from which we will observe Z and use these observations to estimate the
variance parameters of the model θ.

Designs for the purpose of estimating the covariance parameters aim in optimizing with
respect to some information functional associated with the estimator for θ in the sense
described in Chapter 2.

15.3.2.1 Designs Based on the Generalized Least Squares Method

Consider the generalized least squares estimator (15.3). Then the following result is given
in Bogaert and Russo (1999) and Müller and Zimmerman (1999).

Theorem 15.2 Let G(θ) be the m × p matrix with (i, j) element ∂γ(hi;θ)/∂θj. The information
matrix for the generalized least squares estimator (15.3) is

MGLS
d (θ) = G(θ)′V(θ)−1G(θ). (15.7)

On the other hand, any optimality criterion would depend on the unknown parameter
to be estimated θ. One way to overcome this is to replace it by some preliminary esti-
mate, say θ̂0. Thus, in practice, we derive a “locally” optimal design corresponding to θ̂0.
Another idea is to adopt a Bayesian model and compute the design criterion by integrating
with respect to the distribution of θ although this tends to be computationally intensive. In
the following, we will discuss mainly the first approach; we briefly describe the Bayesian
design at the end of Section 15.3.3 and in Section 15.3.4.

Consider, for example, the D-optimality criterion

φD = − log |MGLS
d |.

As noted by Müller and Zimmerman (1999), the assumed correlation function has little
impact in the optimal design, though the range parameter does have a considerable impact.
In particular, we note that smaller values of the range parameter tend to create clustered
designs. A typical D-optimal design is shown in Figure 15.7. There is an apparent clustering
of sampling locations in the design that accounts for the estimation of the variogram at
small lags.

On the other hand, there is a drawback in computing (15.7) directly for every design.
It requires the inversion of a large m × m matrix where m could potentially be as large as(n

2

)
. Consider, for example, the situation where a new site x is to be selected to augment

an existing design dn of size n to dn+1 = {x} ∪ dn. For every point that might be added in
the design, there are potentially n new pairs created, and the variance of the variogram
estimator changes from Vn of dimension m × m to Vn+1 with dimension at most (m + n) ×
(m + n). This can easily become computationally demanding. The trick here is to use a
well-known formula for computing the determinant of a partitioned matrix. Writing

Vn+1 =
(

Vx V ′
n,x

Vn,x Vn

)
Gn+1 =

(
Gx
Gn

)
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(a) (b)

FIGURE 15.7
D-optimal design for covariance estimation for the Matérn correlation function with κ = 0.5 and τ2/σ2 = 0.5.
Each design consists of 40 points. Optimal design with range being 20% of the domain length (a) and 150% of the
domain length (b).

for the matrices V(θ) and G(θ) corresponding to the design dn+1, and

Gx|n = Gx − V ′
n,xV−1

n Gn Vx|n = Vx − V ′
n,xV−1

n Vn,x,

then it is easy to see that

|Mdn+1 | = |Vx|n + G′
x|nM−1

dn
Gx|n|

|Vx|n| |Mdn |,

which makes calculations significantly faster. Note that this result can be easily generalized
when augmenting by more than one point.

15.3.2.2 Designs Based on the Maximum Likelihood Method

We now consider the ML estimator (15.4) and let �j(θ) = ∂�(θ)/∂θj. Then the (i, j) element
of the Fisher information matrix MML

d (θ) is (see Chapter 2)

MML
d (θ)ij = 1

2
trace

{
�(θ)−1�i(θ)�(θ)−1�j(θ)

}
. (15.8)

As in the GSL case, the information matrix depends on the unknown parameter to be esti-
mated. The solution to this problem is again to replace it by a preliminary estimate θ̂0.
Consequently, the D-optimality criterion becomes

Maximize
d⊂X

log |MML
d |. (15.9)
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However, there is a more significant problem that needs to be resolved. The use of the
Fisher information matrix is justified because asymptotically the variance of the ML estima-
tor is its inverse. In spatial statistics, it is far from clear whether this is true asymptotically
because, in theory, the notion of an infinite sample can occur in two different ways. In
the first, the sampling sites increase, but their minimum distance remains bounded away
from zero, so the domain over which the observations take place becomes unbounded.
This is known as the increasing domain asymptotic regime, and asymptotic results hold in
analogy to time series (Mardia and Marshall 1984). On the other hand, one may consider
the domain fixed and the sampling becoming denser as the sample size increases. This is
known as the infill asymptotic regime where eventually the minimum distance between
sites converges to zero resulting in a strong type of dependence between observations. It
has been shown (Zhang 2004) that under the infill regime, the established likelihood theory
does not hold, and the Fisher information matrix does not approach the variance of the ML
estimator asymptotically. Even so, it can be shown (Zhu and Stein 2005) that (15.9) ranks
candidate designs in roughly the correct order, making it an appropriate criterion to use.

Designs constructed using the ML approach have similar features to the ones derived
from GLS (Figure 15.7). It is also possible to consider estimation of the regressor coefficients
jointly. As discussed elsewhere in this handbook (e.g., Chapter 2), it is the case that the
Fisher information matrix for the joint estimators (β,θ) has a block-diagonal structure that
does not depend on β.

15.3.3 Designs for Spatial Prediction

In this case, we can choose to observe the RF Z at some locations d and predict it at differ-
ent locations dc. The measures used to assess discrepancy of prediction are not the same
measures used to assess estimation, and designs for this purpose can be very different from
the ones derived for the purpose of estimation. In this section, we will discuss two criteria
for deriving optimal designs for prediction.

15.3.3.1 Designs Based on the Prediction Variance

Recall from Theorem 15.1 that the prediction variance, or mean square prediction error
(MSPE), for predicting the RF at a given location given its value at other locations is given
by (15.6). Equation (15.6) can be used as a measure of the uncertainty in prediction, and
the goal is to make it as small as possible. In most circumstances, this can be achieved by
sampling very close to x. On the other hand, it is rarely the case that we want to predict at
only one location.

Often a finite set X ⊂ X of size N is prescribed out of which n sites d are to be sampled
and the remaining N − n unsampled sites are to be predicted. An overall criterion that
encompasses uncertainty over all unsampled sites is needed. Subsequently, we denote by
φ{v(x) : x ∈ X } the criterion chosen to minimize where v(x) is some measure of uncertainty
at location x, or simply by φ{X } when v(x) is understood.

One such criterion is the so-called integrated MSPE:

φ{X } = 1
N − n

∑
x∈dc

Var ẑx,
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which can be interpreted as minimizing the average uncertainty in the prediction. Another
criterion discussed in the literature is the maximum prediction variance,

φ{X } = max
x∈dc

Var ẑx,

while a third criterion is the average standard deviation,

φ{X } = 1
N − n

∑
x∈dc

√
Var ẑx,

which is interpreted as minimizing the average length of the prediction interval at locations
dc. For all three criteria mentioned earlier, the optimal design d ⊂ X will be the one that
gives the smallest value.

Of course, each criterion might suggest a different optimal design; however, the designs
that arise from each are very similar. Two typical designs for the minimization of the inte-
grated MSPE are shown in Figure 15.8. In the case where the mean is constant over the field,
these designs tend to be evenly spread in space as shown in the left part of Figure 15.8. In the
right, the optimal design when the mean increases linearly with the location from south-
west to northeast is shown. In this case, the criterion tends to push designs at the boundary
of the domain and mainly at the opposite corners where the mean differs the most.

In the discussion so far in this section, we implicitly assumed knowledge of the vari-
ance parameters of the RF. In practice, this is rarely the case, and the usual practice is to
replace it with some consistent estimator. In other words, let V0(x;θ) denote the prediction
variance (15.6) when the variance parameter is θ and let V0(x; θ̂) be the so-called plug-in
estimate of the variance. Then the following theorem is given in Zimmerman and Cressie
(1992).

(a) (b)

FIGURE 15.8
Optimal 18-point designs for prediction that minimize the integrated MSPE for constant mean (a), mean increasing
linearly from southwest to northeast (b).
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Theorem 15.3 Suppose that E�(θ̂) = �(θ). Then E V0(x; θ̂) < V0(x;θ).

The implication of Theorem 15.3 is that the plug-in method underestimates the true
MSPE of the RF.

To derive a correction, write ẑx(θ) for the prediction under θ and similarly ẑx(θ̂) for the
plug-in prediction. Then

E(ẑx(θ̂) − zx)
2 = E(ẑx(θ) − zx)

2 + E(ẑx(θ̂) − ẑx(θ))2

= V0(x;θ) + E(ẑx(θ̂) − ẑx(θ))2.

Using an approximation to the second term derived by Harville and Jeske (1992), we arrive
at the criterion

V1(x;θ) = V0(x;θ) + trace
{

M−1(θ)

(
∂λ

∂θ

)′
�(θ)

(
∂λ

∂θ

)}
,

where M(θ) = MML
d (θ) is given in (15.8) and ∂λ/∂θ denotes the matrix of derivatives of

the vector λ from (15.5) with respect to θ.
As it stands, V1(x;θ) is not directly useful because it still depends on the unknown para-

meter θ. In practice, we could replace θ by some preliminary estimate θ̂, so in practice we
obtain a “locally” optimal design corresponding to θ̂. However, by doing so, we ignore the
uncertainty in the estimation of θ. By an application of Taylor expansion, it can be shown
that (Zhu and Stein 2006) Var V0(x; θ̂) ≈ V2(x; θ̂), where

V2(x;θ) =
(

∂V0(x;θ)

∂θ

)′
M(θ)−1

(
∂V0(x;θ)

∂θ

)
.

This gives rise to a family of criteria of the form

φ
{

V1(x; θ̂) + κxV2(x; θ̂) : x ∈ X
}

, (15.10)

where κx, x ∈ X is a parameter of the criterion. A recommendation made by Zhu and Stein
(2006) is κx = 1/(2V0(x; θ̂)).

One might argue that κx should depend on the desired coverage probability α of the pre-
diction interval. For example, if we wish to predict with very high confidence (i.e., α is very
close to 1), we should give more weight to the uncertainty in the covariance matrix; hence,
the weight κx should be large. In accordance to this, we may choose as a penalty factor
κx = ζ2

α/(4V0(x; θ̂)) where ζα denotes the α-quantile of the standard normal distribution.
In this case, the choice κx = 1/(2V0(x; θ̂)) would give optimal designs that minimize the
length of the 84% prediction interval for the spatial RF. Designs produced by this criterion
tend to be evenly spread with small clusters (Figure 15.9).

Another possibility is to use V2(x; θ̂) to introduce constraints in the optimization.
Note that minimizing V1(x; θ̂) tends to spread the sampling locations uniformly, while
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FIGURE 15.9
Optimal 29-point predictive design with estimated parameters for the Matérn model with κ = 0.5 and τ2/σ2 = 0.1
using the criterion of Zhu and Stein (2006).

minimizing V2(x; θ̂) tends to create clusters. One may specify an upper bound L2 on
V2(x; θ̂) and then try to make V1(x; θ̂) as small as possible, that is,

Minimize
d⊂X

φ{V1(x; θ̂) : x ∈ X } subject to max
x∈dc

V2(x; θ̂) < L2.

15.3.3.2 Entropy-Based Designs

In this section, we describe the entropy-based approach to spatial design theory. This
approach is closely related to the information provided by an experiment proposed by
Lindley (1956) that we now describe.

Definition 15.2 The information pertaining to a random variable y with probability density/mass
function (pdf) f (y) is defined by

Inf y = E log f (y). (15.11)

In particular, for a normally distributed n-dimensional random variable z with variance
Var z = �,

Inf z = −n
2

log(2πe) − 1
2

log |�|. (15.12)

This definition can be extended to the conditional information of y given z with pdf f (y|z):

Inf (y|z) = E log f (y|z),
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where the expectation is taken with respect to the joint distribution of (y, z). Thus, we have
the following decomposition of the joint information about (y, z).

Lemma 15.1

Inf (y, z) = Inf (y|z) + Inf z. (15.13)

Remark: In fact, for a continuous random variable, (15.11) does not correspond to an infor-
mation measure since it does not attain some of the desired properties of information,
namely, it can become positive for certain random variables, and it is not invariant under
monotone transformations. To that end, Jaynes (1968) proposed using

Infm y = E log
f (y)

m(y)
,

where m is an appropriate reference measure representing complete ignorance. However,
m can be chosen somewhat arbitrarily in such a way so that it satisfies (15.13). In the
following, we will ignore the role of the measure m.

The connection between information theory and experimental design was made by
Lindley (1956). Suppose we are interested on a random quantity y with pdf f (y). An exper-
iment E will be conducted to gain information about the value of y, which will result
data z. This leads to the following definition.

Definition 15.3 The amount of information gained about y from the data z is defined to be

Inf (y|z) − Inf y. (15.14)

Bernardo (1979) showed that (15.14) can be interpreted, under some assumptions, as the
expected utility about the experiment. It is therefore sensible to rank designs according
to (15.14) and select the experiment that corresponds to the highest value.

Recall that in the context of spatial prediction, we are interested in predicting the RF over
X , zX , by sampling at n sites d = {x1, . . . , xn} ⊂ X where d corresponds to the experimental
design.

In the following, we partition zX = (zd, zdc) with variance partitioned similarly as

�X =
(

�d �ddc

�dcd �dc

)

and let

�dc|d = �dc − �dcd�
−1
d �ddc
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be the Schur complement of the block corresponding to dc. In the special case where zX is
normally distributed, �dc|d is the conditional variance of zdc |zd and

Inf zdc = −N − n
2

log(2πe) − 1
2

log |�dc |

and

Inf(zdc |zd) = −N − n
2

log(2πe) − 1
2

log |�dc|d|.

By (15.14), the optimal design for predicting zdc from zd is obtained by

Maximize
d⊂X

Inf (zdc |zd) − Inf zdc , (15.15)

which is interpreted as the gain in information about zdc from observing zd. Another way
to see (15.15) is as the mutual information between zd and zdc , which is interpreted as the
reduction in the uncertainty in zdc due to the knowledge of zd. In the case of the normal
distribution, this amounts to

Minimize
d⊂X

log |�dc|d| − log |�dc |. (15.16)

On the other hand, the criterion in (15.15) has the disadvantage that it ignores the
information at the sampled sites and only maximizes the information at the unsampled
locations. However, since we are interested in the RF in both the sampled and unsam-
pled locations, we should consider the gain in information compared to the uncertainty
over all sites of interest. To that end, the criterion (15.14) becomes

Inf(zdc |zd) − Inf zX . (15.17)

The optimal choice for d will then be the one that maximizes (15.17). Noting the decompo-
sition (15.13), we have

Inf(zdc |zd) − Inf zX = −Inf zd;

hence, according to criterion (15.17), the optimal choice for d is derived by

Minimize
d⊂X

Inf zd. (15.18)

A different interpretation of (15.18), derived from (15.13) by noting that Inf zX is constant
over different choices of d, is the design that maximizes Inf(zdc |zd), that is, the information
about zdc contained in zd, or the design that minimizes the entropy of zdc |zd, that is, the
uncertainty in zdc by observing zd. In the case where zX is normally distributed, by (15.12),
the criterion becomes simply

Maximize
d⊂X

|�d|.
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We can naturally extend this criterion by taking a Bayesian approach. Consider, for
example, the case where at location x

zx = f ′
xβ + sx, x ∈ X,

for k-dimensional f x and β, and sx being a zero-mean, isotropic Gaussian RF with Var sx =
σ2 for all x ∈ X. Denote by F the N × k matrix with rows f ′

x and s the N-dimensional
vector with elements sx, x ∈ X , and let Var s = σ2R where R is the correlation matrix of
s. If an error term is added to the model, then R is replaced by R∗ = R + (τ2/σ2)I where
τ2 is the error variance. Assume further that β is normally distributed with covariance
matrix Var β = υ2Ik. Then � = Var z = υ2FF′ + σ2R. Let �d, Rd, Fd be the blocks of the
corresponding matrices associated with the design d so that

|�d| = (σ2)n|Rd||Ik + αF′
dR−1

d Fd|,

where α= υ2/σ2 is the signal-to-noise ratio. When α= 0, we have the simple Gaussian
model. However, as α increases, the criterion behaves more like |F′

dR−1
d Fd|, which is the

D-optimality criterion for β, and as such, it tends to select sites toward the boundary of the
region of interest.

In the derivations previously, the knowledge of the covariance matrix of the RF is
assumed, but we may consider a fully Bayesian approach where the covariance matrix is
also unknown. We may also extend the model to allow for replicated measurements at each
location, possibly at different times. Such models could be used for spatiotemporal fields,
for example, air-pollution fields (Zidek et al. 2000). For example, consider the following
model:

ztx = f ′
tβx + stx, x ∈ X, t = 1, . . . , T,

where t denotes the time point, f t is a vector of k regressors that does not vary in X, βx is a
k-dimensional vector of regressor coefficients, and stx is a zero-mean Gaussian RF for
all t such that st1x is independent of st2x for t1 �= t2. Let zt, st be the N-dimensional vec-
tors containing the values of ztx and stx over X , respectively, and similarly define the N × k
matrix B with rowsβx for x ∈ X . Furthermore, let Var st = �. Assume further the following
conjugate prior distributions for the parameters B and � (Anderson 2003; Section 7.7):

B|� ∼ NN,k(B0, � ⊗ Q−1),

� ∼ W−1
N (�, δ),

with Q a k × k known matrix and where Nm,n(M, U ⊗ V) denotes the m × n matrix normal
distribution with mean M and variance U ⊗ V and W−1

m (U, δ) denotes the m-dimensional
inverse Wishart distribution with scale matrix U and degrees of freedom δ (Dawid 1981).

Suppose data are obtained at sites d ⊂ X that provide data ztd, t = 1, . . . , T. Then
the predictive distribution of zt∗ for some t∗ > T is the matrix t distribution (Dawid 1981).
The unconditional distribution of {ztd : t = 1, . . . , T} is also a matrix t with information

Inf({ztd : t = 1, . . . , T}) = −1
2

log |�| + constant.
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The details of the derivations are outlined in Le and Zidek (1992) and in Section 9.1 of Le
and Zidek (2006). Therefore, the optimal design is obtained by

Minimize
d⊂X

|�|.

Remark: It is worth pointing out that the design criterion does not depend on the time t∗
that we wish to predict that could potentially change in the future. This is a significant
advantage of entropy-based designs as they are optimal for every objective for which we
intend to use on the response on X .

15.3.4 Bayesian Design

Choosing a good design can be put into a decision-theoretic framework. Let d ⊂ X be a
sampling design and let z be the data on X according to the model f (z|θ) where θ denotes
the parameters of the model. Then one can define a utility function u(d, z,θ) for the given
triplet (d, z,θ), and the choice of the optimal d can be seen as a decision problem. With that
perspective, the optimal d would be the one that maximizes the expected utility E u(d, z,θ)

where the expectation is taken with respect to the distribution of z.
In the Bayesian context, the parameter θ is a random variable with prior density f (θ).

Then the best decision is the Bayes, rule, that is, the one that minimizes the Bayes risk,
defined by

U(d) = −
�

u(d, z,θ)f (z|θ)f (θ) dz dθ.

The view of optimal spatial sampling as a decision problem has been developed by Sansó
and Müller (1999) and Müller et al. (2004), among others. Suppose that we are interested
in the value of the RF at sites X and we observe zd at sites d ⊂ X . The sample will be used
for predicting zdc at the remaining sites dc = X \ d. Denote the prediction at site x ∈ dc by
ẑx and define the following utility function:

u(d, z,θ) = C
∑
x∈dc

I(|zx − ẑx| < δ) −
∑
x∈d

c(x) + C0, (15.19)

although other choices are possible depending on the objective of the network. In (15.19),
the expression I(A) denotes the indicator function, taking the value 1 if event A occurs and
the value 0 otherwise. For this particular choice, C is a parameter denoting the payout for
prediction accuracy within δ, c(x) for x ∈ X denotes the cost of sampling at site x, and
C0 is a fixed parameter chosen to make (15.19) positive. For example, suppose we wish
to design a network for monitoring air pollution. One of the aims is to be able to detect
sites where the pollution level exceeds a given standard z∗. We also wish to minimize the
overall prediction error, and finally, we wish to minimize the running cost of the network.
Following Müller et al. (2004), we deduce the following utility function:

u(d, z,θ) = C1
∑
x∈dc

I(zx > z∗)I(ẑx > z∗) + C2/
∑
x∈dc

(zx − ẑx)
2 −

∑
x∈d

c(x) + C0,

where the coefficients C1 and C2 denote the importance of each aim relative to the costs.
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We proceed by augmenting the original probability model for (z,θ) to include the design
d as a random variable. To that end, consider the joint density

h(d, z,θ) ∝ u(d, z,θ)f (z|θ)f (θ);

thus, the distribution of d is defined from its joint density h(d, z,θ) in terms of the utility
function. The idea is to use h(d, z,θ) to draw random samples of (d, z,θ) using, for example,
a Markov chain Monte Carlo (MCMC) algorithm. Even so, it is a nontrivial task to choose
the optimal design, that is, the design that minimizes the Bayes, risk. One approach is to
perform clustering on the random samples for d and choose a design that is a member of
the largest cluster. A better approach is to consider the proposal density

hJ(d, z1,θ1, . . . , zJ,θJ) ∝
J∏

j=1

u(d, zj,θj)f (zj|θj)f (θj),

where J increases regularly as the MCMC algorithm progresses, an idea inspired by the
simulated annealing algorithm with the cooling corresponding to T = 1/J. In this case
for the marginal density of d, hJ(d) ∝ U(d)J, which, for large J, is concentrated around its
maximum. Typically, an algorithm would start with J = 1 and gradually increment J to a
sufficiently large value. The random samples at the final J would correspond to the optimal
design. This has the advantage that there is no need to perform a separate maximization
step as this is incorporated into the sampling.

The advantages of this method are that it can be used for very complicated decision
problems, which combine parameter estimation, prediction, and cost constraints. Such
situations arise in the context of designing large monitoring networks for air pollution.
Although it is a very general method, it is also highly computationally intensive.

15.3.5 Dynamic Designs

The designs described in the previous sections were static, in the sense that the sampling
sites are decided before the experiment takes place and cannot be changed during the
experiment. This approach would be reasonable if the RF is constant over time; however,
there are examples, such as monitoring the weather or air pollution, where the RF is not
constant.

Here, we extend our definition of an RF and suppose that Z = {ztx, x ∈ X , t = 1, 2, . . .}
is a spatiotemporal process and let zt = {ztx, x ∈ X } denote the value of the RF at time t,
having dimension N. The process is observed with an error at times t = 1, 2, . . . and at sites
dt = {x1, . . . , xnt} ⊂ X giving data yt = {y(x1, t), . . . , y(xnt , t)}, according to the following
hidden Markov model:

yt = Ktzt + εt, (15.20)

zt = Htzt−1 + ηt, (15.21)

where εt is an nt-dimensional zero-mean measurement error process with variance–
covariance matrix �ε, ηt is an N-dimensional zero-mean spatial process with variance–
covariance matrix �η, the matrix Kt is an nt × N matrix of 0s and 1s indicating which
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components of the RF zt are observed, and Ht is a general N × N matrix related to changes
in the dynamic nature of the process with time.

In the context of air pollution, zt could denote the actual concentration of the pollutant at
all sites of interest at time t and yt the noisy measurement at the monitoring sites. Knowl-
edge of zt could help assess adherence to regulatory standards. However, for reasons of
economy, we may not operate the whole network simultaneously, especially if the process
exhibits high autocorrelation in time, so we may turn on sensors selectively. This motivates
the use of a dynamic design approach.

Consider the purpose of predicting the value of the RF zt given data y1, . . . , yt. Under
this model, the conditional prediction variance becomes (Wikle and Royle 1999)

At = Var(zt|y1, . . . , yt)

= Bt − BtK′
t(KtBtK′

t + �ε)−1KtBt (15.22)

Bt = Var(zt|y1, . . . , yt−1)

= HtAt−1H′
t + �η. (15.23)

These equations are evaluated recursively for t = 1, 2, . . .. To start the recursion, A0 is set
to �η, the unconditional variance of zt. For simplicity, assume that Ht = H for all t, which
is sensible if there is very little information about the underlying process.

Assuming that H, �ε, and �η are available up to time t − 1, Bt is obtained iteratively
from (15.22) and (15.23), which may be used in a design criterion either from a prediction
variance or from an information perspective.

15.4 Further Reading

Designs for estimating the covariance structure using generalized least squares were dis-
cussed in Bogaert and Russo (1999) and Müller and Zimmerman (1999), while the ML
approach is developed by Zhu and Stein (2005), Zimmerman (2006), and Xia et al. (2006),
among others.

Predictive designs by minimizing the prediction variance were considered by McBrat-
ney et al. (1981), Cressie et al. (1990), and Heuvelink et al. (2010), among others, while
Zhu and Stein (2006) and Smith and Zhu (2004) make further extensions to account for
parameter uncertainty. Information-based designs were originally proposed by Caselton
and Zidek (1984) and Shewry and Wynn (1987) with contributions by Caselton et al.
(1992) and Zidek et al. (2000). Bueso et al. (1998) provide an extension of this approach
to spatiotemporal fields.

Bayesian designs in the context of decision theory were developed by Sansó and Müller
(1999) and Müller et al. (2004), while dynamic designs were proposed by Wikle and
Royle (1999). The idea of integrating over the model parameters in computing the design
criterion was elaborated by Diggle and Lophaven (2006).

Texts covering spatial sampling design include Le and Zidek (2006), Müller (2007), and
Mateu and Müller (2012).
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16.1 Introduction

The traditional idea of an experiment involves observation of a system of interest under
controlled conditions, with the intent of learning something about that system. The sys-
tem of interest varies by discipline: engineers and physicists may be interested in systems
involving physical material, biologists may focus on living organisms (or collections or
components of them), while social scientists may be interested in experiments involving

577
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the behavior of human beings. In contrast, the system of interest in a computer experiment
is often a computer model, usually a mathematical description of a real system of interest,
represented as a computer program. While not critical to anything written here, the com-
puter representation is usually necessary due to the complexity of the model. Experimental
goals are often similar to those in traditional experiments. While the computer model must,
in principle, be fully known, it is generally so complex that a useful understanding of its
behavior requires the empirical approach of an experiment.

Computer experiments have been performed, in one form or another, throughout the
entire history of computers, with physicists being some of the earliest experimenters. One
early example, undertaken by Enrico Fermi and colleagues at Los Alamos National Labo-
ratory (LANL), was a simulation of the nonlinear interaction of atoms in a crystal (Fermi
et al. 1965). Some of the earliest active involvement of statisticians in analyzing the output
of computer models was also related to physics models. For example, in the mid-1970s, the
Nuclear Regulatory Commission funded work in LANL’s Statistical Sciences Group to col-
laborate with developers of nuclear reactor safety codes (models), to understand various
accident scenarios and potential consequences in nuclear power plants. Growing concern
with risk of accidents such as the one at the Browns Ferry Nuclear Plant in Alabama on
March 22, 1975, motivated interest in risk and safety assessment. At Browns Ferry, an acci-
dental fire was started by a candle that workers were using to search for air leaks in a
repair area of the cable spreading room. The fire subsequently spread to the Unit 1 reactor
building causing damage there as well as to control cables for the Unit 2 reactor. Statistical
analysis based on nuclear reactor safety codes represented a shift from using sampling as
an internal component of the calculations implemented in the computer model (e.g., Monte
Carlo numerics) to using sampling of the input space of a computer model to gain under-
standing of consequences of different accident scenarios with different associated risks.
Sampling to achieve good numerical calculation required substantial computing resources
for each execution of the code, and this in turn resulted in practical limits on the num-
ber of executions that could be included in a study. Hence, efficient experiment design
became a focus for sensitivity and uncertainty studies using a computer model to eval-
uate accident consequences for safety studies and risk assessment. From the early years
of research supporting nuclear safety studies, a rich statistical research area emerged for
developing statistical sampling, experimental design, and analysis methods for complex
computer experiments. Motivation for this fundamental work came from applications in
the areas of nuclear safety, environmental impact, weapon reliability assessment in the
test ban era, and homeland security assurance, all studied via computer models. Various
related publications and technical reports co-authored by Michael McKay are available at
http://cybermesa.com/∼michaelm/.

Our discussion is organized around four types of computer experiments. Numerical
integration (Section 16.2) and sensitivity analysis (SA) (Section 16.3) are most often set as
investigations of the properties of random outputs resulting from random inputs. In con-
trast, our introduction to metamodels (Section 16.4) and sequential experiments (Section
16.5) focuses on settings in which inputs are regarded as fixed.

16.1.1 Basic Notation

In this chapter, we shall denote model outputs as y (quantities to be regarded as observa-
tions), inputs as elements of a k-dimensional vector x (quantities defining the controlled
conditions to be simulated), and the model itself as the function M. The relationship
between these objects is
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y = M(x,φ), x ∈ X , (16.1)

where φ is a vector of model parameters that are part of the definition of the simulated sys-
tem and are regarded as constants in many applications and X denotes the space within
which x must lie for valid and/or meaningful use of M. For most of this chapter, we will
regard φ as simply being part of the definition of the model and shorten the notation
appropriately:

y = M(x), x ∈ X . (16.2)

We will focus attention on models that are deterministic—multiple executions of M for a
given x always yield the same y.

16.2 Numerical Integration

Numerical integration was the first, and perhaps the simplest, kind of computer exper-
iment in which statisticians were heavily involved. Suppose that the input vector x is
regarded as a random variable with a specified continuous probability distribution func-
tion F(x). The goal of the experiment is to evaluate, at least approximately, the expectation
of the model output with respect to the distribution induced by F:

�
X

M(x)dF(x). (16.3)

In the next section, this is generalized to the expectation of any transformation of the model
output:

�
X

g(M(x))dF(x). (16.4)

16.2.1 Stratified Sampling

One of the first topics encountered by many statisticians in learning about computer exper-
iments is the Latin hypercube sample (LHS), see Chapter 17 for an in-depth treatment. The
LHS was introduced by McKay et al. (1979) in the context of computer experiments in
which inputs are chosen randomly from some specified distribution, and analysis focuses
on estimating properties, such as the mean or specified quantiles, of the resulting distri-
bution of the outputs. In this kind of experiment, the values of inputs actually selected are
generally not used in the estimation exercise, that is, n input vectors are randomly selected,
the computer model is executed for each of them, and the analysis is based only on the
resulting random sample of output values. McKay et al. (1979) focused in particular on
averages of functions of the output:

T = 1
n

n∑
i=1

g(yi), (16.5)
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where yi, i = 1, 2, 3, . . . , n is the value of the output of interest resulting from execution
of the model with the ith selected set of inputs. In this setting, g is an arbitrary function
that accommodates a useful variety of output statistics. For example, g(y) = y leads to
the sample mean, g(y) = ym for integer m yields the mth noncentral sample moment,
and g(y) = 1 for y < y∗ and 0 otherwise results in the empirical distribution function
evaluated at y∗.

Latin hypercube sampling is based on the idea that a joint probability distribution has
been specified for the input vector, F(x), and that the elements of x are independent so that
the joint distribution can be written as the product of the marginals, F(x) = ∏k

i=1 Fi(xi). Val-
ues of the inputs are selected individually. For the ith input, the range of xi is partitioned
into n non-overlapping intervals, each of probability 1/n under Fi, and one value of xi is
drawn conditionally from each of these intervals. After n values have been thus chosen for
each input, they are combined randomly (with equal probability for each possible arrange-
ment) to form the n input vectors each of order k. When n is large, the conditional sampling
from equal-probability intervals is often ignored, and values are simply taken from a grid.
Figure 16.1a displays an LHS in k = 2 inputs and n = 48 points.

The basic result presented by McKay et al. (1979) compares the efficiency of estimation
for LHS to that for simple random sampling (SRS) and can be easily stated. For a fixed
sample size n, let TSRS be the quantity of interest calculated from outputs resulting from a
simple random sample of inputs and let TLHS be the same quantity resulting from an LHS.
Then if the computer model is such that y is a monotonic function of each of the inputs,
and g is a monotonic function of y, then Var(TLHS) ≤ Var(TSRS). Stein (1987) showed that
so long as E(g(y)2) is finite, the asymptotic (large n) variance of TLHS is no larger than that
of TSRS without the monotonicity requirements and that the asymptotic efficiency of TLHS
relative to TSRS is governed by how well the computer model can be approximated by a
linear function in x.

x1

1.00.0

(a) (b)

(c) (d)

0.0

1.0

x 2

FIGURE 16.1
Designs in k = 2 inputs and n = 48 runs. (a) Latin hypercube sample. (b) Sobol sequence. (c) 4 × 4 Orthogo-
nal array-based Latin hypercube with approximate maximin distance. (d) Approximate maximin distance Latin
hypercube.
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16.2.2 Low-Discrepancy Sequences

There are, of course, nonstatistical arguments for how a finite number of function eval-
uations should be selected so as to best approximate the integral of that function. One
approach is through specification of a so-called minimum discrepancy sequence, motivated
in the following way. Suppose the intent is to select a sampling design d = {x1, x2, . . . , xn}
in such a way as to spread the n design points throughout X as uniformly as possible (in
some useful sense). Thinking of the n points in k-dimensional space as a random sample
(even though, for these purposes, it actually is not), the Kolmogorov–Smirnov statistic for
characterizing the departure (or discrepancy) of this collection of points from any specified
probability distribution function F is

max
x∈X

|F̂(x) − F(x)|, (16.6)

where F̂ is the empirical probability distribution function for its argument.

F̂ = 1
n

n∑
j=1

I(xj < x). (16.7)

A more general measure of discrepancy indexed by p is

φp(d) =
⎡
⎣�
X

|F̂(x) − F(x)|p
⎤
⎦

1/p

, (16.8)

for which the Kolmogorov–Smirnov statistic, or star discrepancy, is recovered when
p → ∞. Motivation for this approach relies on a deterministic Koksma–Hlawka bound:

∣∣∣∣∣∣T −
�
X

g(y(x))dx

∣∣∣∣∣∣ ≤ φ∞(d) × ψ(g(y)), (16.9)

where ψ(g(y)), sometimes called the total variation of g, is a sum of integrated absolute
derivatives of the function and is not dependent on the design. Selecting a design that
minimizes φ thus minimizes the bound on this error (if not the error itself). Figure 16.1b
displays a k = 2 dimensional Sobol sequence of n = 48 points.

Quasi–Monte Carlo is a phrase often used to describe the approach presented here to select
design points for numerical integration. Niederreiter (1992) and Lemieux (2009), for exam-
ple, offer substantial background on quasi–Monte Carlo and a number of low-discrepancy
sequences for this purpose.

16.3 Sensitivity Analysis

Informally, the phrase “sensitivity analysis” generally refers to an investigation that
has as its goal the determination of which elements of x are most influential in deter-
mining the value of y (or changes in y). This kind of activity can be carried out in a
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number of different ways, with differences largely determined by how the word influ-
ential is interpreted and the assumptions about M that are acceptable. In the following
sections, we briefly describe two approaches to sensitivity analysis (SA) that have been
widely used across a number of application areas, both of which are based on the for-
mal assumption that the input vector can be regarded as a random variable. In this
setting, y = M(x) is also clearly random, and standard statistical measures of variabil-
ity and correlation may be used as the basis for SA. (And since variance and correlation
are defined as integrals when y is continuous, the goals of SA can be viewed as a
specialized form of those described in the previous section.) In practice, the distribu-
tion assigned to x may reflect knowledge of the physical system; in other cases, F(x)

is regarded as a formalism that represents neither physical noise nor any real expres-
sion of knowledgeable uncertainty, but is arbitrarily specified simply to provide a basis
for SA.

16.3.1 Sampling-Based SA

Suppose, as in Section 16.2, that F(x) = ∏k
i=1 Fi(xi) is the joint distribution assigned to x.

This implies that the variation observed among realizations of y that follow from inde-
pendent draws of x is actually propagated through M from the variation in the inputs,
individually and in combination. Unconditionally, suppose the induced distribution of y
has variance σ2 = Var(y). One way to assess the importance of each input is through a mea-
sure of how much variation in y is associated with that input. Two sets of unit less indices
are commonly used for this purpose:

1. Main effect sensitivity of xi: Si = Vari[E(i)(y)]/σ2

2. Total sensitivity of xi: Ti = E(i)[Vari(y)]/σ2

where by Vari, we mean the variance taken with respect to xi, and by E(i), we mean the
expectation taken with respect to all inputs except xi. For any i, Ti ≥ Si. This relation-
ship is made clear by considering the ANOVA decomposition of y as a function of x (e.g.,
Sobol 2001). In this expansion, Si reflects variability in y attributable to xi alone, while Ti
reflects variability transmitted to y from xi both alone and in conjunction with other inputs
(i.e., through interactions). Related to this,

∑k
i=1 Si ≤ 1 since variation associated with

interactions between inputs is not included. On the other hand,
∑k

i=1 Ti ≥ 1, because vari-
ation associated with interactions is included in the total sensitivity index of each involved
inputs. Hence, Ti is sometimes described as the more appropriate index when interest
centers on the effect of removing uncertainty associated with one input, while Si is more
appropriate where there is interest in knowing the variability attributable to only one input.
Chapter 18 describes the development of these indices and their use in more detail, and
Saltelli et al. (2000) offer a broader treatment of this approach to SA.

Simple sampling plans that support estimation of Si and/or Ti can be constructed based
on conditional sampling that follows the form of each index (e.g., Saltelli et al. 2010). For
example, Ti can be estimated using a hierarchical sampling scheme in which a value for
x(i) (including all inputs except xi) is randomly drawn, and with this fixed, several values
of xi are drawn. The sample variance of outputs resulting from these runs is an estimate
of Vari(y|x(i)). If the process is repeated, and several such estimates are computed, their
average is an estimate of Ti. A replicated LHS (McKay 1995), in which n draws of each input
value are collected, but randomly combined into input vectors a times (for a total of a × n
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input vectors), supports estimation of all main-effect sensitivity indices, Si, i = 1, 2, 3, . . . , k.
Saltelli (2002) shows how both sets of indices can be estimated using a combined sampling
design.

Morris (1991) described a different restricted random sampling procedure for screen-
ing inputs to computer models. This approach relies on clusters of input points that take
the structure of simple one-factor-at-a-time designs. Such plans are notoriously inefficient
in contexts involving random error in y. But in this context, they lead to unambiguous
information about the local effect of each input on y and are used repeatedly at randomly
selected locations in X to identify both linear and nonlinear effects.

16.3.1.1 OA-Based SA

As noted, replicated LHSs are constructed by repeatedly using a relatively small number
of unique values for each input, combined in different ways to specify different input vec-
tors. When this repeated combination of input values is accomplished through a simple
random process, some values of, say, two inputs can appear together in multiple input
vectors. This results in bias in the estimates of main-effect sensitivity coefficients, which
were characterized by Morris et al. (2006). The same authors (2008) examined how deter-
ministic assignment of input values in permuted column samples (which contain replicated
LHSs as a special case) can eliminate this bias. Specifically, they showed that permuted
column samples of a given size that lead to unbiased estimates of sensitivity coefficients
and that employ the smallest number of unique values for each input can be constructed
as orthogonal arrays (OAs) of strength 2.

16.3.2 Rank Regression

Another route to characterizing the sensitivity of a y to model inputs, based on an assumed
probability structure for the latter, is through correlations between each xi and y. Iman
and Conover (1980) used Latin hypercube sampling to generate input vectors and assessed
sensitivity by correlations or regression based on the ranks of the variables (to make the
process more robust to nonlinear relationships). Note that while this approach shares the
random-input structure with the other sampling-based SA methods, it is based on the tacit
assumption that y = M(x) is a continuous function and in fact can only be expected to
work well when the relationships between y and each xi are monotonic. The variance-based
approach described in Section 16.3.1 does not require this assumption but typically requires
substantially larger sample sizes to produce estimates of useful precision.

16.4 Metamodels

As described in the previous section, the goal of SA is to determine the degree to which
changes in individual inputs or groups of inputs influence model outputs and to summa-
rize these relationships with informative indices. In contrast, a metamodel, sometimes also
called a surrogate or an emulator, is a complete approximation of the function M over X .
Metamodels can be used for many purposes, but a driving motivation in most cases is the
need to compute an approximate y more quickly (sometimes much more quickly) than is
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possible through direct evaluation of M. Metamodels are constructed using a large vari-
ety of modeling techniques, including neural networks, spline representations, and least
squares fits of polynomials (e.g., Barton 1998), although when M is deterministic, the inter-
pretation of metamodels that do not interpolate known data is obviously problematic. In
this section, we will briefly outline how Gaussian stochastic processes (GaSP) are used for
this purpose. GaSP metamodels yield point predictions of y that do interpolate known data
and also provide a principled basis for quantifying the uncertainty of those predictions.

16.4.1 GaSP Introduction

For our purposes, a stochastic process is a functional generalization of a random variable. In
our case, the random function is defined with argument x ∈ X . A GaSP is fully defined by
a mean function μ(x) and a covariance function C(x1, x2); the representation of the random
function at x is a Gaussian random variable with mean μ(x) and variance C(x, x), and at
every finite collection of x’s in X , the representation of the random function is multivariate
Gaussian with covariances determined by C. In most applications to computer experi-
ments, the mean structure is simplified (as in linear regression) to a linear combination
of known basis functions,

μ(x) =
∑

i

βi fi(x), (16.10)

or further simplified to a single value (referred to as a stationary mean),

μ(x) = μ. (16.11)

Further common simplifications are the adoption of a single variance,

C(x, x) = σ2, (16.12)

and a stationary correlation structure

C(x1, x2) = σ2R(x1 − x2;θ), (16.13)

where elements of the vector θ are correlation parameters associated with the roughness of
the process realizations and the rate at which positive correlation dies off with distance in
each direction within X .

An experimental design for a computer experiment is a list of values of the input set,
d = {x1, x2, . . . , xn}; if each execution of the computer model results in one output, we may
summarize these as the n-element vector y. For known parameters (μ, σ, and θ), the trained
metamodel is the conditional Gaussian process fitted to the collected data. For an arbitrary
input x, the full prediction of the model output is a Gaussian random variable with mean
and variance:

E[y(x)|y] = μ + r′
xR−1(y − μ1) Var[y(x)|y] = σ2(1 − r′

xR−1rx). (16.14)

where elements of the vector rx and matrix R are correlations defined by C.
More realistically, since the parameter set is generally not known, estimates are often

substituted for the parameters (sometimes called the empirical Bayes or plug-in approach,
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e.g., Currin et al. 1991), or a more comprehensive Bayesian inference is performed
(e.g., Bayarri et al. 2007). Regardless of how the estimation-and-prediction inference is car-
ried out, the challenge of experimental design is the specification of d so that the metamodel
is effective for its intended application.

16.4.2 LHS as a Default Design

As described in Section 16.2, the original justification for the Latin hypercube was as a
stratified sampling plan, requiring a specified probability distribution for x. However,
the structure of the LHS is frequently used in metamodeling applications where x is not
regarded as random, resulting in the Latin hypercube design (Chapter 17). Intuitive appeal
for this approach to design for metamodeling includes the following:

1. One-dimensional stratification: In an LHS (or design), each input takes on n dis-
tinct values spread across its experimental range. This is not particularly appealing
in physical experimentation since it implies that the design cannot have factorial
structure or include replication. However, in experiments with deterministic mod-
els, there is no uncontrolled noise as such; replication is not needed to estimate
uncontrolled variation, and the benefits of factorial structure that come from max-
imizing signal to noise in the analysis are not relevant. The n-value one-dimensional
projections of a Latin hypercube provide (at least in some cases) the information
needed to map out more complex functional y-to-x behavior than can be supported
with designs that rely on a small number of unique values for each input.

2. Space-filling potential: The modeling techniques that are most appropriate in this
context are data interpolators rather than data smoothers; they generally perform
best when the n points of an experimental design fill the space, as opposed to
being arranged so that there are relatively large subregions of X containing no
points (as is the case, for example, with factorial designs with relatively few levels
attached to each input). While Latin hypercube designs do not necessarily have
good space-filling properties, they can be made to fill X effectively through judi-
cious (nonrandom) arrangement of the combinations of input values used. Section
16.4.3 describes a few more specific ways in which the space-filling character of
experimental designs can be defined and quantified.

16.4.3 Design Refinements

16.4.3.1 Additional Structure

Tang (1993) and Owen (1994) are among the authors who have proposed restrictions
on LHSs to make them more effective as experimental designs. The Latin hypercube
structure was originally proposed as a sampling plan, but its use in computer experi-
ments designed to create metamodels does not require the randomization necessary for
sampling inference. While every Latin hypercube offers good one-dimensional projec-
tions, both Tang and Owen restrict the construction of LHSs to improve coverage in
two-dimensional (or higher-dimensional) projections. Figure 16.1c displays an OA-based
Latin Hypercube arrangement of 48 points, constrained in such a way that 3 points lie
in each of 4 × 4 = 16 grid squares (forming an overall 42 pattern). Additionally, the design
displayed in Figure 16.1c is maximin (Euclidean) distance as described in the next section,
from among 10,000 randomly drawn samples with this 4×4 OA-based grid feature.



586 Handbook of Design and Analysis of Experiments

16.4.3.2 Maximin and Minimax Distance

The use of the GaSP provides a mathematical structure under which optimal design argu-
ments can be formulated. Specifically, we might want to consider designs that are optimal
in one of two ways:

1. D-optimal: Such that predictions of y made at any finite set of points in X have the
smallest possible generalized variance (determinant of the joint variance matrix)

2. G-optimal: Such that the largest prediction variance over all points in X is as small
as possible

While numerically challenging, such designs can be constructed for GaSP models in which
parameters are regarded as known, for example, Shewry and Wynn (1987) and Currin
et al. (1991) who constructed D-optimal designs (which are called entropy optimal) for such
processes.

A practical difficulty with constructing these optimal designs is the fact that they are
dependent on the parameter values, in particular, the parameters of the correlation func-
tion. Johnson et al. (1990) proposed an elegant extension to these ideas by developing
asymptotic forms of these criteria. In particular, write the covariance function C for a
stationary process as

C(x1, x2) = σ2e−θd(x1, x2), (16.15)

where d(x1, x2) is a correlation distance whose form determines the general character (e.g.,
differentiability) of the GaSP and the value of the parameter θ determines the rate at which
correlation dies off with increasing distance. They show that in the limit as θ approaches ∞
(i.e., all correlations become locally weak),

1. D-optimal designs approach maximin distance designs (those for which the closest
two points are as far apart as possible) of minimum index (with the smallest number
of point pairs separated by this minimum distance).

2. G-optimal designs approach minimax distance designs (those for which the greatest
distance between the design and any point not included in the design is mini-
mized) of minimum index (with the smallest number of unsampled points separated
from the design by this maximum distance).

These distance-based criteria are intuitive in that they lead to designs that fill X in their
respective senses and provide a convenient, although asymptotic, link between this intu-
ition and the performance of the GaSP metamodel. Figure 16.1d displays the maximin
(Euclidean) distance Latin hypercube arrangement of n = 48 points, from among 10,000
randomly drawn samples.

To summarize, the four designs displayed in Figure 16.1 have the following minimum
(Euclidean) distance values of 0.030 for design A (LHS), 0.046 for design B (Sobol sequence),
0.077 for design C (4×4 grid OA-based LHS, with maximin distance), and 0.067 for design D
(maximin distance). The 4×4 grid structure for the four designs are described in Table 16.1,
which lists the number of n = 48 design points in each of the 16 grid cell.
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TABLE 16.1

Numbers of Points in Each 4 × 4 Cell of the Designs Displayed in Figure 16.1

Design A Design B Design C Design D

2 4 3 3 4 2 3 3 3 3 3 3 4 2 2 4

5 1 3 3 3 4 2 3 3 3 3 3 4 3 1 4
2 3 2 5 3 3 3 2 3 3 3 3 2 3 6 1
3 4 4 1 3 3 3 4 3 3 3 3 2 4 3 3

(A) Latin hypercube sample; (B) Sobol sequence; (C) 4×4 OA-based Latin Hypercube with approximate maximin
distance; (D) Approximate maximin distance Latin Hypercube.

16.4.3.3 Uniform Design Theory

A more direct approach to constructing a design that fills X is that taken with uniform
design theory. Here, the design is constructed as a k-dimensional minimum discrepancy
sequence of n points, as described in Section 16.2.2, often minimizing the discrepancy mea-
sure of the design with respect to the k-dimensional uniform distribution. As is the case
with LHSs used as designs, the original justification for uniform designs is less directly
relevant for the purpose of fitting metamodels than it is for numerical integration, but
the result often leads to an arrangement of points that is effective for fitting Gaussian
process metamodels. The uniform design criterion (as well as the maximin distance cri-
terion) is often applied within a class of attractive designs, such as Latin hypercubes. One
less-than-desirable characteristic of uniform designs not shared by distance-based designs
is that uniform designs are not generally rotation or reflection invariant. For example, if
X = [0, 1]k, d1 = {x1, x2, . . . , xn}, and d2 = {1 − x1, x2, . . . , xn}, designs d1 and d2 are not nec-
essarily equivalent under uniform design criteria. In contrast, most criteria based on the
quality of inference that might be expected from a stationary GaSP model would regard d1
and d2 as equivalent. Nonetheless, the uniform design approach typically results in point
arrangements that, for practical purposes, fill the design space effectively.

16.5 Sequential Experiments

Sequential experimentation has distinct advantages over one-stage experimentation in a
number of different contexts. To the extent that timely analysis is possible and in the inter-
est of conserving computational resources, it is desirable to collect as few runs as required,
possibly one at a time until sufficient information is gained to address problems of inter-
est. Of course defining a stopping rule for sufficient data collection is often difficult, and
it is generally agreed that some minimal ensemble of runs is initially required, although
the minimal required number is not obvious. The goal of SA inherently suggests the value
of sequential experimentation and analysis as a way to reduce the dimensionality of the
input space and thereby improve the quality of a fitted metamodel. Further, assessed lack
of predictive capability of a metamodel demands improvement that requires additional
samples, and sequential experimentation in this context can be focused on areas in which
the metamodel is initially least accurate. Another possible circumstance of computer exper-
iments is the availability of new information such as field data and physical experimental
data that are a basis for model validation or calibration or for reduction of the input space
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to a region of greater relevance. The circumstance of available field data poses questions
of resource allocation in that the aggregate experimental budget must be divided based
on a limited, fixed budget and differential costs and benefits of physical and computer
experiments. Although the resource allocation problem based on availability of physical
data is beyond our scope, a similar resource allocation problem for sequential computer
experimentation arises when dividing an experimental budget between an initial experi-
ment, possibly for conducting SA, and additional sampling, possibly in sequential batches
of runs, for metamodel construction and evaluation. The batch size (number of runs in a
batch) of a sequential strategy is more commonly dictated by the complexity of setup of an
experiment or availability of computing resources than by experiment design optimality.

16.5.1 Inverse Problems and Sequential Improvement

As described earlier, computer models are written to compute an output value y that fol-
lows from an input vector x—what is sometimes called a forward problem. In many applied
settings, however, the question of real interest poses an associated inverse problem; given
conditions on y, what values of x satisfy these conditions? In many cases, inverse models can-
not be written to solve this problem directly, and sequential strategies based on evaluations
of the forward model are employed.

Function optimization is a widely encountered inverse problem; what value or values
of x within X lead to the largest (or smallest) value of y? Schonlau et al. (1998) and Jones
et al. (1998) each described sequential strategies for function optimization based on the
concept of expected improvement. In the setting of function maximization, if a new run of the
computer model yields an output value that is greater than the largest previously observed
output, the difference between these values is the improvement; if the output at the new run
is no greater than what has been observed, the improvement is zero. Before the new run is
executed, the improvement obviously cannot be evaluated, but using a GaSP metamodel
trained to the data already acquired, the expected improvement can be computed for any
new run that might be contemplated. Both Schonlau et al. and Jones et al. use the expected
improvement as a criterion to sequentially select runs that, in this sense, are most likely to
yield the greatest improvement (increase) in y.

The concept of expected improvement has been extended and adapted to a number of
different inverse problems; see Chapter 19 for an in-depth treatment of this topic. One
interesting example was given by Ranjan et al. (2008), who developed a sequential design
strategy for estimating a level set for model output, essentially a contour map in inputs x
associated with a selected value of the output y. The motivating application for this work
was based on a model of a computer network, where the output of interest was the average
delay for user jobs in the system. In this setting, a maximum acceptable value of the average
delay may be specified, and the level set used to separate regions of the input space that
correspond to acceptable and unacceptable performance.

16.5.2 Models and Reality

All that has been discussed to this point has focused on the computer model and experi-
ments that are designed to understand its behavior, approximate its outputs, etc. However,
the greatest interest in most computer models stems from their value in explaining or
predicting physical processes or systems. The joint consideration of data from physical
processes or systems and the computer models written to mimic them leads to model
validation and calibration.
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A widely used framework for dealing with computer models and the reality they rep-
resent was described by Kennedy and O’Hagan (2001). Briefly, they develop a Bayesian
analysis around a model of the following form:

R(x) = M(x,φ) + δ(x), (16.16)

where R represents the reality that would occur under conditions specified by x, φ is a set of
model parameters that are not known with certainty, and discrepancy δ represents the error
of model M to accurately represent reality (even with the correct value of φ). By observing
physical data, generally modeled as R plus measurement error, and executing runs of M for
various values of x and φ, joint inferences for model calibration and correction are made,
leading to improved prediction of R at untried values of x.

Williams et al. (2011) and Ranjan et al. (2011) developed a number of sequential design
strategies for the Kennedy and O’Hagan framework, in which values of both x and φ are
controlled via criteria based on expected improvement and integrated mean square error
of prediction, respectively. In each case, the aim is that of reaching model maturity, which
Williams et al. define as “stability [that] is reached when the collection of additional field
data results in minimal changes to the predictive density as measured by an appropriate
metric.”

16.6 Conclusion

The field of design for computer experiments is rapidly growing and offers numerous
challenges for researchers. For readers interested in more detailed descriptions of the top-
ics described here, the books by Saltelli et al. (2000) and Santner et al. (2003) offer good
background in the areas of sampling-based SA and metamodels, respectively.

The following three chapters of this volume offer current and in-depth treatments of
three topics briefly introduced here. Chapter 17 discusses Latin hypercube designs, espe-
cially the extensions and generalizations that have been made since introduction of Latin
hypercube sampling by McKay et al. (1979). Chapter 18 focuses on SA, which is especially
important in examining models with relatively large numbers of inputs. The fundamental
idea of expected improvement and the numerous ways in which it has been exploited in
computer experiments is the topic of Chapter 19.
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17.1 Introduction

This chapter discusses a general design approach to planning computer experiments,
which seeks design points that fill a bounded design region as uniformly as possible. Such
designs are broadly referred to as space-filling designs.

The literature on the design for computer experiments has focused mainly on deter-
ministic computer models; that is, running computer code with the same inputs always
produces the same outputs (see Chapter 16). Because of this feature, the three fundamental
design principles, randomization, replication, and blocking, are irrelevant in computer exper-
iments. The true relationship between the inputs and the responses is unknown and often
very complicated. To explore the relationship, one could use traditional regression mod-
els. But the most popular is Gaussian process models; see Chapter 16 for details. However,
before data are collected, quite often little a priori or background knowledge is available
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about which model would be appropriate, and designs for computer experiments should
facilitate diverse modeling methods. For this purpose, a space-filling design is the best
choice. The design region in which to make prediction may be unspecified at the data col-
lection stage. Therefore, it is appropriate to use designs that represent all portions of the
design region. When the primary goal of experiments is to make prediction at unsampled
points, space-filling designs allow us to build a predictor with better average accuracy.

One most commonly used class of space-filling designs for computer experiments is that
of Latin hypercube designs. Such designs, introduced by McKay et al. (1979), do not have
repeated runs. Latin hypercube designs have one-dimensional uniformity in that, for each
input variable, if its range is divided into the same number of equally spaced intervals as
the number of observations, there is exactly one observation in each interval. However,
a random Latin hypercube design may not be a good choice with respect to some opti-
mality criteria such as maximin distance and orthogonality (discussed later). The maximin
distance criterion, introduced by Johnson et al. (1990), maximizes the smallest distance
between any two design points so that no two design points are too close. Therefore, a
maximin distance design spreads out its points evenly over the entire design region. To
further enhance the space-filling property for each individual input of a maximin distance
design, Morris and Mitchell (1995) proposed the use of maximin Latin hypercube designs.

Many applications involve a large number of input variables. Finding space-filling
designs with a limited number of design points that provide a good coverage of the
entire high-dimensional input space is a very ambitious, if not hopeless, undertaking.
A more reasonable approach is to construct designs that are space filling in the low-
dimensional projections. Moon et al. (2011) constructed designs that are space filling in the
two-dimensional projections and demonstrated empirically that such designs also perform
well in terms of the maximin distance criterion in higher dimensions. Other designs that are
space filling in the low-dimensional projections are randomized orthogonal arrays (OAs)
(Owen 1992) and OA-based Latin hypercubes (Tang 1993). Another important approach is
to construct orthogonal Latin hypercube designs. The basic idea of this approach is that
orthogonality can be viewed as a stepping stone to constructing designs that are space
filling in low-dimensional projections (Bingham et al. 2009).

Originatingaspopulartoolsinnumericalanalysis, low-discrepancynets, low-discrepancy
sequences, and uniform designs have also been well recognized as space-filling designs
for computer experiments. These designs are chosen to achieve uniformity in the design
space based on the discrepancy criteria such as the Lp discrepancy (see Section 17.3.2).

As an alternative to the use of space-filling designs, one could choose designs that per-
form well with respect to some model-dependent criteria such as the minimum integrated
mean square error and the maximum entropy (Sacks et al. 1989; Shewry and Wynn 1987).
One drawback of this approach is that such designs require the prior knowledge of the
model. For instance, to be able to construct maximum entropy designs and integrated mean
square error optimal designs, one would need the values of the parameters in the correla-
tion function when a Gaussian process is used to model responses. One could also consider
a Bayesian approach (Leatherman et al. 2014). A detailed account of model-dependent
designs can be found in Santner et al. (2003), Fang et al. (2006), and the references therein.

This chapter is organized as follows. Section 17.2 gives a detailed review of Latin
hypercube designs and discusses three important types of Latin hypercube designs
(Latin hypercube designs based on measures of distance OA-based Latin hypercube
designs; orthogonal and nearly orthogonal Latin hypercube designs). Section 17.3 describes
other space-filling designs that are not Latin hypercube designs. Concluding remarks are
provided in Section 17.4.
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17.2 Latin Hypercube Designs

17.2.1 Introduction and Examples

A Latin hypercube of n runs for k factors is represented by an n × k matrix, each column of
which is a permutation of n equally spaced levels. For convenience, the n levels are taken
to be −(n − 1)/2, −(n − 3)/2, . . . , (n − 3)/2, (n − 1)/2. For example, design L in Table 17.1 is
a Latin hypercube of 5 runs for 3 factors. Given an n × k Latin hypercube L = (lij), a Latin
hypercube design D in the design space [0, 1)k can be generated, and the design matrix of
D is an n × k matrix with the (i, j)th entry being

dij = lij + (n − 1)/2 + uij

n
, i = 1, . . . , n, j = 1, . . . , k, (17.1)

where uij’s are independent random numbers from [0, 1). If each uij in (17.1) is taken
to be 0.5, the resulting design D is termed lattice sample due to Patterson (1954). For
each factor, Latin hypercube designs have exactly one point in each of the n intervals
[0, 1/n), [1/n, 2/n), . . . , [(n − 1)/n, 1). This property is referred to as one-dimensional unifor-
mity. For instance, design D in Table 17.1 is a Latin hypercube design based on the L in the
table, and its pairwise plot in Figure 17.1 illustrates the one-dimensional uniformity. When
the five points are projected onto each axis, there is exactly one point in each of the five
equally spaced intervals.

The popularity of Latin hypercube designs was largely attributed to their theoretical jus-
tification for the variance reduction in numerical integration. Consider a function y = f (x)

where f is known, x = (x1, . . . , xk) has a uniform distribution in the unit hypercube [0, 1)k,
and y ∈ R. (More generally, when xj follows a continuous distribution with a cumulative
distribution function Fj, then the inputs of xj can be selected via the quantile transformation
F−1

j (uj) where uj follows a uniform distribution in [0, 1).) The expectation of y,

μ = E(y), (17.2)

is of interest. When the expectation μ cannot be computed explicitly or its derivation is
unwieldy, one can resort to approximate methods. Let x1, . . . , xn be a sample of size n. One
estimate of μ in (17.2) is

μ̂ = 1
n

n∑
i=1

f (xi). (17.3)

TABLE 17.1

5 × 3 Latin Hypercube L and a Latin Hypercube Design D Based on L

L D

2 0 −2 0.9253 0.5117 0.1610
1 −2 −1 0.7621 0.1117 0.3081

−2 2 0 0.1241 0.9878 0.4473
0 −1 2 0.5744 0.3719 0.8270

−1 1 1 0.3181 0.7514 0.6916
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FIGURE 17.1
The pairwise plot of the Latin hypercube design D in Table 17.1 for the three factors x1, x2, and x3.

The approach that takes x1, . . . , xn independently from the uniform distribution in [0, 1)k is
simple random sampling. McKay et al. (1979) suggested an approach based on a Latin hyper-
cube sample x1, . . . , xn. Denote the estimator μ̂ in (17.3) ofμ under simple random sampling
and Latin hypercube sampling by μ̂srs and μ̂lhs, respectively. Note that μ̂srs and μ̂lhs have
the same form, but μ̂srs uses a simple random sample and μ̂lhs a Latin hypercube sample.
Both samples are denoted by x1, . . . , xn, for convenience. McKay et al. (1979) established
the following theorem.

Theorem 17.1 If y = f (x) is monotonic in each of its input variables, then Var(μ̂lhs) ≤ Var(μ̂srs).

Theorem 17.1 says that when the monotonicity condition holds, Latin hypercube
sampling yields a smaller variance of the sample mean than simple random sampling.
Theorem 17.2 (Stein 1987) provides some insights into the two methods of sampling.
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Theorem 17.2 We have that for x ∈ [0, 1)k,

Var(μ̂srs) = 1
n

Var[f (x)]

and

Var(μ̂lhs) = 1
n

Var[f (x)] − 1
n

k∑
j=1

Var[fj(xj)] + o
(

1
n

)
,

where xj is the jth input of x, fj(xj) = E[f (x)|xj] − μ, and o(·) is little o notation.

The term fj(xj) in Theorem 17.2 is the main effect of the jth input variable. Theorem 17.2
tells us that the variance of the sample mean under Latin hypercube sampling is smaller
than the counterpart under simple random sampling by an amount contributed by main
effects. The extent of the variance reduction depends on the extent to which the function
f is additive in the inputs. Asymptotic normality and a central limit theorem of Latin
hypercube sampling were established in Stein (1987) and Owen (1992), respectively. A
related approach is that of quasi–Monte Carlo methods, which select design points in a
deterministic fashion (see Niederreiter 1992 and Chapter 19, Section 19.3.2).

A randomly generated Latin hypercube design does not necessarily perform well with
respect to criteria such as those of space filling or orthogonality alluded to in Section 17.1.
For example, when projected onto two factors, design points in a random Latin hyper-
cube design may roughly lie on the diagonal as in the plot of x1 versus x2 in Figure 17.1,
leaving a large area in the design space unexplored. In this case, the corresponding two
columns in the design matrix are highly correlated. Examples of Latin hypercube designs
with desirable properties are maximin Latin hypercube designs, OA-based Latin hyper-
cube designs, and orthogonal or nearly orthogonal Latin hypercube designs; these will be
discussed throughout the chapter.

17.2.2 Latin Hypercube Designs Based on Measures of Distance

To construct space-filling Latin hypercube designs, one natural approach is to make use of
distance criteria. In what follows, we review several measures of distance.

Let u = (u1, . . . , uk) and v = (v1, . . . , vk) be two design points in the design space χ =
[0, 1]k . For t > 0, define the interpoint distance between u and v to be

d(u, v) =
⎛
⎝ k∑

j=1

|uj − vj|t
⎞
⎠

1/t

. (17.4)

When t = 1 and t = 2, the measure in (17.4) becomes the rectangular and Euclidean dis-
tances, respectively. The maximin distance criterion seeks a design D of n points in the design
space χ that maximizes the smallest interpoint distance; that is, it maximizes

min
u,v ∈ D
u �= v

d(u, v), (17.5)
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where d(u, v) is defined as in (17.4) for any given t. This criterion attempts to place the
design points such that no two points are too close to each other.

A slightly different idea is to spread out the design points of a design D in such a way
that every point in the design space χ is close to some point in D. This is the minimax dis-
tance criterion that seeks a design D of n points in χ that minimizes the maximum distance
between an arbitrary point x ∈ χ and the design D; that is, it minimizes

max
x ∈χ

d(x, D),

where d(x, D), representing the distance between x and the closest point in D, is defined as
d(x, D) = minxi∈D d(x, xi) and d(x, xi) is given in (17.4) for any given t.

Audze and Eglais (1977) introduced a distance criterion similar in spirit to the maximin
distance criterion by using

∑
1≤i<j≤n

d(xi, xj)
−2, (17.6)

where x1, . . . , xn are the design points. This criterion of minimizing (17.6) was used by
Liefvendahl and Stocki (2006).

Moon et al. (2011) defined a two-dimensional maximin distance criterion. Let the inter-
point distance between two design points u = (u1, . . . , uk) and v = (v1, . . . , vk) projected
onto dimensions h and l be

d(2)

h,l (u, v) = (|uh − vh|t + |ul − vl|t
)1/t, t > 0.

Then the minimum interpoint distance of a design D over all two-dimensional subspaces is

d(2)

min = min
u,v ∈ D

u �= v,h�=l

d(2)

h,l (u, v). (17.7)

The two-dimensional maximin distance criterion selects a design that maximizes d(2)

min in
(17.7). Moon et al. (2011) showed by examples that optimal Latin hypercube designs based
on this criterion also perform well under the maximin distance criterion (17.5).

17.2.2.1 Maximin Latin Hypercube Designs

We now focus on maximin distance criterion. The Gaussian process model was introduced
in Chapter 16 and can be written as

y(x) = μ + Z(x), (17.8)

where μ is the unknown but constant mean function and Z(x) is a stationary Gaussian
process with mean 0, variance σ2, and correlation function R(·|θ).
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A popular choice for the correlation function is the power exponential correlation:

R(h|θ) = exp

⎛
⎝−θ

k∑
j=1

|hj|p
⎞
⎠ , 0 < p ≤ 2,

where hj is the jth element of h. Johnson et al. (1990) showed that as the correlation para-
meter θ goes to infinity, a maximin design maximizes the determinant of the correlation
matrix, where the correlation matrix refers to that of the outputs from running the com-
puter model at the design points. That is, a maximin design is asymptotically D-optimal
under the model in (17.8) as the correlations become weak. Thus, a maximin design is also
asymptotically optimal with respect to the maximum entropy criterion (Shewry and Wynn
1987).

The problem of finding maximin designs is referred to as the maximum facility disper-
sion problem (Erkut 1990) in location theory. It is closely related to the sphere packing
problem in the field of discrete and computational geometry (Melissen 1997; Conway et al.
1999). The two problems are, however, different as explained in Johnson et al. (1990).

An extended definition of a maximin design was given by Morris and Mitchell (1995).
Define a distance list (d1, . . . , dm) and an index list (J1, . . . , Jm) respectively in the following
way. The distance list contains the distinct values of interpoint distances, sorted from the
smallest to the largest, and Ji in the index list is the number of pairs of design points in the
design separated by the distance di, i = 1, . . . , m. Note that 1 ≤ m ≤ (n

2

)
. In Morris and

Mitchell (1995), a design is called a maximin design if it sequentially maximizes dis and
minimizes Jis in the order d1, J1, d2, J2, . . . , dm, Jm. They further introduced a computationally
efficient scalar-value criterion

φq =
( m∑

i=1

Ji

dq
i

)1/q

, (17.9)

where q is a positive integer. Minimizing φq with a large q results in a maximin design.
Values of q are chosen depending on the size of the design searched for, ranging from 5 for
small designs to 20 for moderate-sized designs to 50 for large designs.

Maximin designs tend to place design points toward or on the boundary. For example,
Figure 17.2 exhibits a maximin Euclidean distance design and a maximin rectangular dis-
tance design, both of seven points. Maximin designs are likely to have clumped projections
onto one dimension. Thus, such designs may not possess desirable one-dimensional uni-
formity, which is guaranteed by Latin hypercube designs. To strike the balance, Morris and
Mitchell (1995) examined maximin designs within Latin hypercube designs. Although this
idea sounds simple, generating maximin Latin hypercube designs is a challenging task par-
ticularly for large designs. The primary approach for obtaining maximin Latin hypercube
designs is using the algorithms summarized in Table 17.2. These algorithms search for max-
imin Latin hypercube designs that have uij in (17.1) being a constant. For example, Moon
et al. (2011) used uij = 0.5, which corresponds to the midpoint of the interval [(i − 1)/n, i/n]
for i = 1, . . . , n. For detailed descriptions of these algorithms, see the respective references.

Some available implementations of the algorithms in Table 17.2 include the Matlab code
provided in Viana et al. (2010), the function maximinLHS in the R package lhs (Carnell 2009),
and the function lhsdesign in the Matlab statistics toolbox. The function in R uses random
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FIGURE 17.2
Maximin designs with n = 7 points on [0, 1]2: (a) Euclidean distance and (b) rectangular distance.

TABLE 17.2

Algorithms for Generating Maximin Latin Hypercube Designs

Article Algorithm Criterion

Morris and Mitchell (1995) Simulated annealing φq
a

Ye et al. (2000) Columnwise–pairwise φq and entropy
Jin et al. (2005) Enhanced stochastic evolutionary φq, entropy, and L2 discrepancy

algorithm
Liefvendahl and Stocki (2006) Columnwise–pairwise and Maximin and the Audze–Eglais

genetic algorithm functionb

van Dam et al. (2007) Branch-and-bound Maximin with Euclidean distance
Forrester et al. (2008) Evolutionary operation φq

Grosso et al. (2009) Iterated local search heuristics φq

Viana et al. (2010) Translational propagation φq

Zhu et al. (2011) Successive local enumeration Maximin

Moon et al. (2011) Smart swap algorithm d(2)
min

c
, φq

Chen et al. (2013) Particle swarm algorithm φq

a φq is given as in (17.9).
b The Audze–Eglais function in (17.6).
c d(2)

min is given in (17.7).

uijs in (17.1), while the function in Matlab allows both random uijs and uij = 0.5. It should
be noted, however, that these designs are approximate maximin Latin hypercube designs.
No theoretical method is available to construct exact maximin Latin hypercube designs of
flexible run sizes except Tang (1994) and van Dam et al. (2007). These two articles provided
methods for constructing exact maximin Latin hypercube designs of certain run sizes and
numbers of input variables. Tang (1994) constructed a Latin hypercube based on a single
replicate full factorial design (see Chapter 1 and also Wu and Hamada 2011, Chapter 4)
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and showed that the constructed Latin hypercube has the same rectangular distance as the
single replicate full factorial design, where the rectangular distance of a design is given
by (17.5) with t = 1. Van Dam et al. (2007) constructed two-dimensional maximin Latin
hypercubes with the distance measures with t = 1 and t = ∞ in (17.4). For the Euclidean
distance measure with t = 2, van Dam et al. (2007) used the branch-and-bound algorithm
to find maximin Latin hypercube designs with n ≤ 70.

17.2.3 Orthogonal Array–Based Latin Hypercube Designs

Tang (1993) proposed OA-based Latin hypercube designs, also known as U designs, which
guarantee multidimensional space filling. Recall the definition of an s-level OA of n runs,
k factors, and strength r, denoted by OA(n, sk, r) in Chapter 9. The s levels are taken to be
1, 2, . . . , s in this chapter. By the definition of OAs, a Latin hypercube of n runs for k factors
is an OA(n, nk, 1).

The construction of OA-based Latin hypercubes in Tang (1993) works as follows. Let A be
an OA(n, sk, r). For each column of A and m = 1, . . . , s, replace the n/s positions with entry
m by a random permutation of (m − 1)n/s + 1, (m − 1)n/s + 2, . . . , mn/s. Denote the design
after the aforementioned replacement procedure by A′. In our notation, an OA-based Latin
hypercube is given by L = A′ − (n + 1)J/2, where J is an n × k matrix of all 1s. An OA-
based Latin hypercube design in the design space [0, 1)k can be generated via (17.1). In
addition to the one-dimensional uniformity, an OA(n, sk, r)-based Latin hypercube has the
r-dimensional projection property that when projected onto any r columns, it has exactly
λ = n/sr points in each of the sr cells Pr where P = {[0, 1/s], [1/s, 2/s), . . . , [1 − 1/s, 1)}.
Example 17.1 illustrates this feature of an OA(9, 34, 2)-based Latin hypercube.

Example 17.1

Table 17.3 displays an OA-based Latin hypercube L based on the OA(9, 34, 2) in the table.
Figure 17.3 depicts the pairwise plot of this Latin hypercube. In each subplot, there is
exactly one point in each of the nine dot-dash line boxes.

A generalization of OA-based Latin hypercubes using asymmetrical OA (see
Chapter 9) can be readily made. For example, Figure 17.4a displays a Latin hypercube
design based on an asymmetrical OA of six runs for two factors with three levels in the

TABLE 17.3

OA(9, 34, 2) and a Corresponding OA-Based Latin Hypercube

OA(9, 34, 2) L

1 1 1 1 −2 −2 −4 −2

1 2 2 3 −4 0 1 2
1 3 3 2 −3 4 2 1

2 1 2 2 −1 −4 −1 −1
2 2 3 1 1 −1 4 −3
2 3 1 3 0 2 −3 4

3 1 3 3 3 −3 3 3
3 2 1 2 2 1 −2 0

3 3 2 1 4 3 0 −4
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FIGURE 17.3
The pairwise plot of an OA-based Latin hypercube design based on the Latin hypercube in Table 17.3 for the four
factors x1, . . . , x4.

first factor and two levels in the second factor. Note that each of the six cells separated by
dot-dash lines contains exactly one point. By contrast, in the six-point randomly generated
Latin hypercube design displayed in Figure 17.4b, two out of six such cells do not contain
any point.

OA have been used directly to carry out computer experiments (see, e.g., Joseph et al.
2008). Compared with OA, OA-based Latin hypercubes are more favorable for computer
experiments. When projected onto lower dimensions, the design points in OAs often have
replicates. This is undesirable at the early stages of experimentation when relatively few
factors are likely to be important.

The construction of OA-based Latin hypercubes depends on the existence of OAs. For
the existence results of OAs, see, for example, Hedayat et al. (1999) and Mukerjee and
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FIGURE 17.4
Plots of six-point Latin hypercube designs: (a) a Latin hypercube design based on an asymmetrical OA and
(b) a random Latin hypercube design.

Wu (2006). A library of OAs is freely available on the N.J.A. Sloane website and the MktEx
macro using the software SAS (Kuhfeld 2009). It should be noted that for certain given run
sizes and numbers of factors, OAs of different numbers of levels and different strengths
may be available. For instance, an OA(16, 45, 2), an OA(16, 25, 4), and an OA(16, 25, 2) all
produce OA-based Latin hypercubes of 16 runs for 5 factors. However, OAs with more lev-
els and/or higher strength are preferred because they lead to designs with better projection
space-filling properties.

Given an OA, the construction of Tang (1993) can produce many OA-based Latin hyper-
cubes. There arises the problem of choosing a preferable OA-based Latin hypercube. Leary
et al. (2003) presented an algorithm for finding optimal OA-based Latin hypercubes that
minimize (17.6) using the Euclidean distance between design points. The optimization
was performed via the simulated annealing algorithm (Morris and Mitchell 1995) and the
columnwise–pairwise algorithm (Li and Wu 1997).

Recall the problem of estimating the mean μ in (17.2) of a known function y = f (x)

using a design with n points x1, . . . , xn in Section 17.2.1. Latin hypercube sampling stratifies
all univariate margins simultaneously and thus achieves a variance reduction compared
with simple random sampling, as quantified in Theorem 17.2. Theorem 17.3 from Tang
(1993) shows that a further variance reduction is achieved by OA-based Latin hypercube
sampling.

Theorem 17.3 Suppose that f is continuous on [0, 1]k. Let μ̂oalhs denote the μ̂ in (17.3) with a
randomly selected OA-based Latin hypercube design of n points. Then we have that

Var(μ̂oalhs) = 1
n

Var[f (x)] − 1
n

k∑
j=1

Var[fj(xj)] − 1
n

k∑
i<j

Var[fij(xi, xj)] + o
(

1
n

)
,

where xj is the jth input of x, fj(xj) = E[f (x)|xj]−μ, and fij(xi, xj) = E[f (x)|xi, xj]−μ−fi(xi)−fj(xj).
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To better understand this result, we write

f (x) = μ +
k∑

j=1

fj(xj) +
k∑

i<j

fij(xi, xj) + r(x),

where the terms on the right side of the equation are uncorrelated with each other. Thus,
the variance decomposition of the function f is

Var[f (x)] =
k∑

j=1

Var[fj(xj)] +
k∑

i<j

Var[fij(xi, xj)] + Var[r(x)].

We see that Latin hypercube sampling achieves a variance reduction by removing the vari-
ances of the main effects fj(xj) from Var[f (x)], and OA-based Latin hypercube sampling
further removes the variances of the interactions fij(xi, xj).

We conclude this section by mentioning that randomized OAs proposed by Owen (1992)
also enjoy good space-filling properties in the low-dimensional projections. Results similar
to Theorem 17.3 are given in Owen (1992).

17.2.4 Orthogonal and Nearly Orthogonal Latin Hypercube Designs

This section discusses the properties and constructions of Latin hypercube designs that
have zero or small columnwise correlations in all two-dimensional projections. Such
designs are called orthogonal and nearly orthogonal Latin hypercube designs. Orthogonal
Latin hypercube designs are directly useful in fitting data using main effect models because
they allow uncorrelated estimates of linear main effects. Another rationale of obtaining
orthogonal or nearly orthogonal Latin hypercube designs is that they may not be space
filling, but space-filling designs should be orthogonal or nearly orthogonal. Thus, we can
search for space-filling designs within the class of orthogonal or nearly orthogonal Latin
hypercube designs. Other justifications are given in Iman and Conover (1982), Owen (1994),
Tang (1998), Joseph and Hung (2008), among others.

Extensive research has been carried out on the construction of orthogonal or nearly
orthogonal Latin hypercube designs. Ye (1998) initiated this line of research and con-
structed orthogonal Latin hypercubes with n = 2m or 2m + 1 runs and k = 2m − 2 factors
where m ≥ 2. Ye’s construction was extended by Cioppa and Lucas (2007) to obtain more
columns for given run sizes. Steinberg and Lin (2006) constructed orthogonal Latin hyper-
cubes of the run sizes n = 22m

by rotating groups of factors in two-level 22m
-run regular

fractional factorial designs. This idea was generalized by Pang et al. (2009) who constructed
orthogonal Latin hypercubes of p2m

runs and up to (p2m − 1)/(p − 1) factors by rotating
groups of factors in p-level p2m

-run regular factorial designs, where p is a prime. Lin (2008)
obtained orthogonal Latin hypercube designs of small run sizes (n ≤ 20) through an algo-
rithm that adds columns sequentially to an existing design. More recently, various methods
have been proposed to construct orthogonal Latin hypercubes of more flexible run sizes and
with large factor-to-run-size ratios. Here we review constructions in Lin et al. (2009), Sun
et al. (2009), and Lin et al. (2010). These methods are general and simple to implement and
cover the results in Table 17.10. For other methods, see Georgiou (2009), Sun et al. (2010),
and Yang and Liu (2012).
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We first give some notation and background. A vector a = (a1, . . . , an) is said to be bal-
anced if its distinct values have equal frequency. For an n1 × k1 matrix A and an n2 × k2
matrix B, their Kronecker product A ⊗ B is the (n1n2) × (k1k2) matrix:

A ⊗ B =

⎡
⎢⎢⎢⎣

a11B a12B . . . a1k1B
a21B a22B . . . a2k1B

...
...

. . .
...

an11B an12B . . . an1k1B

⎤
⎥⎥⎥⎦

with aijB itself being an n2 × k2 matrix. For an n × k design or matrix D = (dij), define its
correlation matrix to be a k × k matrix R(D) = (rij) with

rij =
∑n

m=1(dmi − d̄i)(dmj − d̄j)√∑
m(dmi − d̄i)

2
∑

m(dmj − d̄j)
2

(17.10)

representing the correlation between the ith and jth columns of D, where d̄i = n−1 ∑n
m=1 dmi

and d̄j = n−1 ∑n
m=1 dmj. A design or matrix D is column orthogonal if R(D) is an identity

matrix. A design or matrix D = (dij) is orthogonal if it is balanced and column orthogonal.
To assess near orthogonality of design D, Bingham et al. (2009) introduced two mea-

sures, the maximum correlation ρM(D) = maxi<j|rij| and the average squared correlation
ρ2

ave(D) = ∑
i<j r2

ij/[(k(k − 1)/2], where rij is defined as in (17.10). Smaller values of ρM(D)

and ρ2
ave(D) imply near orthogonality. Obviously, if ρM(D) = 0 or ρ2

ave(D) = 0, then an
orthogonal design is obtained. For a concise presentation, we use OLH(n, k) to denote an
orthogonal Latin hypercube of n runs for k factors. Lin et al. (2010) established the following
theorem on the existence of orthogonal Latin hypercubes.

Theorem 17.4 There exists an orthogonal Latin hypercube of n ≥ 4 runs with more than one factor
if and only if n �= 4m + 2 where m is an integer.

Theorem 17.4 says that a Latin hypercube of run size 2, 3, 6, 10, 14,. . . cannot be
orthogonal. For smaller run sizes, this can be readily verified by exhaustive computer
search. When orthogonal Latin hypercubes of certain run sizes exist, we want to construct
such designs with as many columns as possible. We review three general construction
methods. To generate design points in the region [0, 1]k from a Latin hypercube, one can
use (17.1) with uij = 0.5, which corresponds to the midpoints of the cells.

17.2.4.1 Construction Method Based on an Orthogonal Array and a Small Orthogonal
Latin Hypercube

Lin et al. (2009) constructed a large orthogonal, or nearly orthogonal, Latin hypercube
by coupling an OA of index unity with a small orthogonal, or nearly orthogonal, Latin
hypercube. Let B be an n × q Latin hypercube, where as in Section 17.2.1, the levels
are −(n − 1)/2, −(n − 3)/2, . . . , (n − 3)/2, (n − 1)/2. Then the elements in every column
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of B add up to zero, while the sum of squares of these elements is n(n2 − 1)/12. Thus, the
correlation matrix whose elements are defined as in (17.10) is

R(B) =
[

1
12

n(n2 − 1)

]−1

B′B. (17.11)

Let A be an OA(n2, n2f , 2). The construction proposed by Lin et al. (2009) proceeds as
follows.

Step I: Let bij be the (i, j)th element of B introduced earlier. For 1 ≤ j ≤ q, obtain an n2 ×
(2f ) matrix Aj from A by replacing the symbols 1, 2, . . . , n in the latter by b1j, b2j, . . . , bnj,
respectively, and then partition Aj as Aj = [Aj1, . . . , Ajf ], where each of Aj1, . . . , Ajf has
two columns.

Step II: For 1 ≤ j ≤ q, obtain the n2 × (2f ) matrix Lj = [Aj1V , . . . , Ajf V] , where

V =
[

1 −n
n 1

]
.

Step III: Obtain the matrix L = [L1, . . . , Lq] of order N × k, where N = n2 and k = 2qf .

For q = 1, this construction is equivalent to that in Pang et al. (2009). However, by
Theorem 17.4, we have q ≥ 2 when n is not equal to 3 or 4m + 2 for any non-negative
integer m. Thus, the earlier method provides orthogonal or nearly orthogonal Latin
hypercubes with an appreciably larger number of factors as compared to the method
in Pang et al. (2009). For example, Pang et al. (2009) obtained OLH(25, 6), OLH(49, 8),
OLH(81, 40), OLH(121, 12), and OLH(169, 14), while the aforementioned construction
produces OLH(25, 12), OLH(49, 24), OLH(81, 50), OLH(121, 84), and OLH(169, 84).

Theorem 17.5 shows how the correlation matrix of the large Latin hypercube L
depends on that of the small Latin hypercube B.

Theorem 17.5 For the matrix L constructed from B in the previous steps I, II, and III, we have the
following:

(i) The matrix L is a Latin hypercube.

(ii) The correlation matrix of L is given by

R(L) = R(B) ⊗ I2f ,

where R(B), given in (17.11), is the correlation matrix of a Latin hypercube B, I2f is the
identity matrix of order 2f , and ⊗ denotes Kronecker product.
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Corollary 17.1 If B is an orthogonal Latin hypercube, then so is L. In general, the maximum
correlation and average squared correlation of L are given by

ρM(L) = ρM(B) and ρ2
ave(L) = q − 1

2qf − 1
ρ2

ave(B).

Corollary 17.1 reveals that the large Latin hypercube L inherits the exact or near orthog-
onality of the small Latin hypercube B. As a result, the effort for searching for large
orthogonal or nearly orthogonal Latin hypercubes can be focused on finding small orthogo-
nal or nearly orthogonal Latin hypercubes that are easier to obtain via some general efficient
robust optimization algorithms such as simulated annealing and genetic algorithms, by
minimizing ρ2

ave or ρM.
Example 17.2 illustrates the actual construction of some orthogonal Latin hypercubes

using the method of Lin et al. (2009). Example 17.3 is devoted to the construction of a nearly
orthogonal Latin hypercube.

Example 17.2

Let n be a prime or prime power for which an OA(n2, nn+1, 2) exists (Hedayat et al. 1999).
For instance, consider n = 5, 7, 8, 9, 11. Now if we take B to be an OLH(5, 2), an OLH(7, 3),
an OLH(8, 4), an OLH(9, 5), or an OLH(11, 7), as displayed in Table 17.4 and take A,
respectively, to be an OA(25, 56, 2), an OA(49, 78, 2), an OA(64, 88, 2), an OA(81, 910, 2),
or an OA(121, 1112, 2), then the construction described in this section provides an

TABLE 17.4

Orthogonal Latin Hypercubes OLH(5, 2), OLH(7, 3), OLH(8, 4), OLH(9, 5), and OLH(11, 7)

OLH(5, 2) OLH(7, 3) OLH(8, 4) OLH(9, 5)

1 −2 −3 3 2 0.5 −1.5 3.5 2.5 −4 −2 0 −3 3
2 1 −2 0 −3 1.5 0.5 2.5 −3.5 −3 4 2 1 −2

0 0 −1 −2 −1 2.5 −3.5 −1.5 −0.5 −2 −3 −4 −1 −3
−1 2 0 −3 1 3.5 2.5 −0.5 1.5 −1 3 −2 3 4

−2 −1 1 −1 3 −3.5 −2.5 0.5 −1.5 0 −4 4 4 0
2 1 −2 −2.5 3.5 1.5 0.5 1 2 −1 0 −4
3 2 0 −1.5 −0.5 −2.5 3.5 2 0 3 −2 −1

−0.5 1.5 −3.5 −2.5 3 1 1 −4 2
4 −1 −3 2 1

OLH(11, 7)

−5 −4 −5 −5 −3 0 0

−4 2 −1 3 4 5 4
−3 −2 4 5 −4 −2 −1

−2 3 −3 4 1 −4 −2
−1 4 2 −4 3 2 −4

0 −5 5 −2 5 −3 2
1 5 3 −3 −5 −1 5
2 −1 1 1 −2 3 −5

3 0 0 −1 0 1 −3
4 1 −4 0 2 −5 1

5 −3 −2 2 −1 4 3
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TABLE 17.5

Nearly Orthogonal Latin Hypercube with 13 Rows and 12 Columns

−6 −6 −5 −4 −5 −2 2 1 −3 −2 −1 −2
−5 5 3 −5 3 4 −6 0 −4 1 −3 −1

−4 2 −4 1 2 6 5 −5 6 0 1 1
−3 1 2 4 −6 1 −2 6 2 3 2 6
−2 −2 6 −3 6 −5 3 4 4 −3 3 0

−1 −5 4 6 1 −1 0 −4 0 6 −5 −3
0 6 0 3 −4 −6 −3 −3 3 −5 0 −4

1 0 −3 5 5 0 1 2 −5 −6 −4 5
2 −1 −6 0 4 −4 −5 −2 −1 5 6 2

3 4 1 2 −1 2 6 3 −6 2 5 −6
4 −4 5 −2 −3 3 −1 −6 −2 −4 4 3
5 3 −1 −6 −2 −3 4 −1 1 4 −6 4

6 −3 −2 −1 0 5 −4 5 5 −1 −2 −5

OLH(25, 12), an OLH(49, 24), an OLH(64, 32), an OLH(81, 50), or an OLH(121, 84),
respectively.

Example 17.3

Through a computer search, Lin et al. (2009) found a nearly orthogonal Latin hyper-
cube with 13 rows and 12 columns, as given in Table 17.5. This Latin hypercube has
ρave = 0.0222 and ρM = 0.0495. Together with an OA(132, 1314, 2), the aforementioned
procedure provides a nearly orthogonal Latin hypercube of 169 runs and 168 factors with
ρave = 0.0057 and ρM = 0.0495, by Corollary 17.1.

Before ending this section, we comment on the projection space-filling property of Latin
hypercubes built earlier using a Latin hypercube B and an OA A. Any pair of columns
obtained using different columns of A retains the two-dimensional projection property of
A. When projected to those pairs of columns associated with the same column of A, the
design points form clusters and these clusters are spread out as the corresponding two
columns of B.

17.2.4.2 Recursive Construction Method

Orthogonal Latin hypercubes allow uncorrelated estimates of main effects in a main effect
regression model. Sun et al. (2009) extended the concept of orthogonal Latin hypercubes
for second-order polynomial models.

For a design D with columns d1, . . . , dk, let D̃ be the n×[k(k+1)/2] matrix whose columns
consist of all possible products di 	 dj, where 	 denotes the element-wise product of
vectors di and dj, i = 1, . . . , k, j = 1, . . . , k, and i ≤ j. Define the correlation matrix between
D and D̃ to be

R(D, D̃) =

⎛
⎜⎜⎜⎝

r11 r12 . . . r1q
r21 r22 . . . r2q

...
...

. . .
...

rk1 rk2 . . . rkq

⎞
⎟⎟⎟⎠ , (17.12)
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where q = k(k + 1)/2 and rij is the correlation between the ith column of D and the jth
column of D̃. A second-order orthogonal Latin hypercube D has the following properties:
(1) the correlation matrix R(D) is an identity matrix, and (2) R(D, D̃) in (17.12) is a zero
matrix.

Sun et al. (2009) proposed the following procedure for constructing second-order orthog-
onal Latin hypercubes of 2c+1 + 1 runs in 2c factors for any integer c ≥ 1. Throughout this
section, let X∗ represent the matrix obtained by switching the signs in the top half of the
matrix X with an even number of rows.

Step I: For c = 1, let

S1 =
(

1 1
1 −1

)
and T1 =

(
1 2
2 −1

)
.

Step II: For an integer c ≥ 2, define

Sc =
(

Sc−1 −S∗
c−1

Sc−1 S∗
c−1

)
and Tc =

(
Tc−1 −(T∗

c−1 + 2c−1S∗
c−1)

Tc−1 + 2c−1Sc−1 T∗
c−1

)
.

Step III: Obtain a (2c+1 + 1) × 2c Latin hypercube Lc as

Lc =
⎛
⎝ Tc

02c

−Tc

⎞
⎠ ,

where 02c denotes a zero row vector of length 2c.

Example 17.4

A second-order orthogonal Latin hypercube of 17 runs for 8 factors constructed using the
earlier procedure is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 8
2 −1 −4 3 6 −5 −8 7
3 4 −1 −2 −7 −8 5 6
4 −3 2 −1 −8 7 −6 5
5 6 7 8 −1 −2 −3 −4
6 −5 −8 7 −2 1 4 −3
7 8 −5 −6 3 4 −1 −2
8 −7 6 −5 4 −3 2 −1
0 0 0 0 0 0 0 0

−1 −2 −3 −4 −5 −6 −7 −8
−2 1 4 −3 −6 5 8 −7
−3 −4 1 2 7 8 −5 −6
−4 3 −2 1 8 −7 6 −5
−5 −6 −7 −8 1 2 3 4
−6 5 8 −7 2 −1 −4 3
−7 −8 5 6 −3 −4 1 2
−8 7 −6 5 −4 3 −2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Sun et al. (2010) further constructed second-order orthogonal Latin hypercubes of 2c+1

runs in 2c factors by modifying Step III in the earlier procedure. In Step III, let Hc = Tc−Sc/2
and obtain Lc as

Lc =
(

Hc
−Hc

)
.

Then Lc is a second-order orthogonal Latin hypercube of 2c+1 runs in 2c factors.

17.2.4.3 Construction Method Based on Small Orthogonal Designs and Small
Orthogonal Latin Hypercubes

This section reviews the construction from Lin et al. (2010) for constructing orthogonal and
nearly orthogonal Latin hypercubes. All the proofs can be found in Lin et al. (2010). Let
A = (aij) be an n1 × k1 matrix with entries aij = ±1, B = (bij) be an n2 × k2 Latin hypercube,
E = (eij) be an n1 × k1 Latin hypercube, and F = (fij) be an n2 × k2 matrix with entries
dij = ±1. Lin et al. (2010) construct designs via

L = A ⊗ B + n2E ⊗ F. (17.13)

The resulting design L in (17.13) has n = n1n2 runs and k = k1k2 factors and becomes an
orthogonal Latin hypercube, if certain conditions on A, B, E, and F are met.

Theorem 17.6 Design L in (17.13) is an orthogonal Latin hypercube if

(i) A and F are column-orthogonal matrices of ±1,

(ii) B and E are orthogonal Latin hypercubes,

(iii) At least one of the two, A′E = 0 and B′F = 0, is true,

(iv) At least one of the following two conditions is true:
(a) A and E satisfy that for any i, if p1 and p2 are such that ep1i = −ep2i, then ap1i = ap2i.

(b) B and F satisfy that for any j, if q1 and q2 are such that bq1j = −bq2j, then fq1j = fq2j.

Condition (iv) in Theorem 17.6 is needed for L to be a Latin hypercube. To make L orthog-
onal, conditions (i), (ii), and (iii) are necessary. Choices for A and F include Hadamard
matrices and OAs with levels ±1 (see Chapter 9). Because of the orthogonality of A and
F, n1 and n2 must be equal to two or multiples of four (Dey and Mukerjee 1999, p. 33).
Theorem 17.6 requires designs B and E to be orthogonal Latin hypercubes. All known
orthogonal Latin hypercubes of run sizes that are two or multiples of four can be used. As a
result, Theorem 17.6 can be used to construct a vast number of orthogonal Latin hypercubes
of n = 8k runs. Example 17.5 illustrates the use of Theorem 17.6.

Example 17.5

Consider constructing an orthogonal Latin hypercube of 32 runs. Let A = (1, 1)′, B
be the 16 × 12 orthogonal Latin hypercube in Table 17.6, E = (1/2, −1/2)′, and F be a
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TABLE 17.6

16 × 12 Orthogonal Latin Hypercube from Steinberg and Lin (2006)

B = 1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−15 5 9 −3 7 11 −11 7 −9 3 −15 5
−13 1 1 13 −7 −11 11 −7 −1 −13 −13 1

−11 7 −7 −11 13 −1 −1 −13 9 −3 15 −5
−9 3 −15 5 −13 1 1 13 1 13 13 −1
−7 −11 11 −7 11 −7 7 11 5 15 −3 −9

−5 −15 3 9 −11 7 −7 −11 13 −1 −1 −13
−3 −9 −5 −15 1 13 13 −1 −5 −15 3 9

−1 −13 −13 1 −1 −13 −13 1 −13 1 1 13
1 13 13 −1 −9 3 −15 5 11 −7 7 11

3 9 5 15 9 −3 15 −5 3 9 5 15
5 15 −3 −9 −3 −9 −5 −15 −11 7 −7 −11
7 11 −11 7 3 9 5 15 −3 −9 −5 −15

9 −3 15 −5 −5 −15 3 9 −7 −11 11 −7
11 −7 7 11 5 15 −3 −9 −15 5 9 −3

13 −1 −1 −13 −15 5 9 −3 7 11 −11 7
15 −5 −9 3 15 −5 −9 3 15 −5 −9 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

matrix obtained by taking any 12 columns from a Hadamard matrix of order 16. By The-
orem 17.6, L in (17.13) with the chosen A, B, E, and F constitutes a 32 × 12 orthogonal
Latin hypercube.

When n1 = n2, a stronger result than Theorem 17.6, as given in Theorem 17.7, can be
established. It provides orthogonal Latin hypercubes with more columns than those in
Theorem 17.6.

Theorem 17.7 If n1 = n2 and A, B, E, and F are chosen according to Theorem 17.6, then design
(L, U) is an orthogonal Latin hypercube with 2k1k2 factors, where L is as in Theorem 17.6 and
U = −n1A ⊗ B + E ⊗ F.

Example 17.6

To construct orthogonal Latin hypercubes of 64 runs, let n1 = n2 = 8 and take

A = F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1
1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and B = E = 1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −3 7 5
3 1 5 −7
5 −7 −3 −1
7 5 −1 3

−1 3 −7 −5
−3 −1 −5 7
−5 7 3 1
−7 −5 1 −3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then design (L, U) in Theorem 17.7 is a 64 × 32 orthogonal Latin hypercube.



612 Handbook of Design and Analysis of Experiments

Theorem 17.8 Suppose that an OLH(n, k) is available, where n is a multiple of 4 such that a
Hadamard matrix of order n exists. Then the following orthogonal Latin hypercubes, an OLH(2n, k),
an OLH(4n, 2k), an OLH(8n, 4k), and an OLH(16n, 8k), can all be constructed.

We give a sketch of the proof for Theorem 17.8. The proof provides the actual con-
struction of these orthogonal Latin hypercubes. The theorem results from an application
of Theorem 17.6 and the use of orthogonal designs in Table 17.7. Note that each of the four
matrices in Table 17.7 can be written as (X′, −X′)′. From such an X, define S to be the matrix
obtained by choosing xi = 1 for all is. Let A = (S′, S′)′. Further let E be an orthogonal Latin
hypercube derived from a matrix in Table 17.7 by letting xi = (2i − 1)/2 for i = 1, . . . , n/2.
Now we choose B to be a given OLH(n, k) and F be the matrix obtained by taking any k
columns from a Hadamard matrix order n. Such matrices A, B, E, and F meet conditions
(i), (ii), (iii), and (iv) in Theorem 17.6, from which Theorem 17.8 follows.

Theorem 17.8 is a very powerful result. By repeatedly applying Theorem 17.8, one can
obtain many infinite series of orthogonal Latin hypercubes. For example, starting with an
OLH(12, 6), we can obtain an OLH(192, 48), which can be used in turn to construct an
OLH(768, 96) and so on. For another example, an OLH(256, 248) in Steinberg and Lin (2006)
can be used to construct an OLH(1024, 496), an OLH(4096, 1984), and so on.

Another result from Lin et al. (2010) shows how the method in (17.13) can be used to
construct nearly orthogonal Latin hypercubes.

Theorem 17.9 Suppose that condition (iv) in Theorem 17.6 is satisfied so that design L in (17.13)
is a Latin hypercube. If conditions (i) and (iii) in Theorem 17.6 hold, we then have that

TABLE 17.7

Four Orthogonal Designs

n

2 4 8 16

x1
−x1

x1 x2
x2 −x1

−x1 −x2
−x2 x1

x1 −x2 x4 x3
x2 x1 x3 −x4
x3 −x4 −x2 −x1
x4 x3 −x1 x2

−x1 x2 −x4 −x3
−x2 −x1 −x3 x4
−x3 x4 x2 x1
−x4 −x3 x1 −x2

x1 −x2 −x4 −x3 −x8 x7 x5 x6
x2 x1 −x3 x4 −x7 −x8 −x6 x5
x3 −x4 x2 x1 −x6 −x5 x7 −x8
x4 x3 x1 −x2 −x5 x6 −x8 −x7
x5 −x6 −x8 x7 x4 x3 −x1 −x2
x6 x5 −x7 −x8 x3 −x4 x2 −x1
x7 −x8 x6 −x5 x2 −x1 −x3 x4
x8 x7 x5 x6 x1 x2 x4 x3

−x1 x2 x4 x3 x8 −x7 −x5 −x6
−x2 −x1 x3 −x4 x7 x8 x6 −x5
−x3 x4 −x2 −x1 x6 x5 −x7 x8
−x4 −x3 −x1 x2 x5 −x6 x8 x7
−x5 x6 x8 −x7 −x4 −x3 x1 x2
−x6 −x5 x7 x8 −x3 x4 −x2 x1
−x7 x8 −x6 x5 −x2 x1 x3 −x4
−x8 −x7 −x5 −x6 −x1 −x2 −x4 −x3
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(i) ρ2
ave(L) = w1ρ

2
ave(B) + w2ρ

2
ave(E),

(ii) ρM(L) = max{w3ρM(B), w4ρM(E)},

where w1, w2, w3, and w4 are given by w1 = (k2 − 1)(n2
2 − 1)2/[(k1k2 − 1)(n2 − 1)2], w2 =

n4
2(k1 −1)(n2

1 −1)2/[(k1k2 −1)(n2 −1)2], w3 = (n2
2 −1)/(n2 −1), and w4 = n2

2(n
2
1 −1)/(n2 −1).

Theorem 17.9 says that if B and E are nearly orthogonal Latin hypercubes, the resulting
Latin hypercube L is also nearly orthogonal. An example, illustrating the use of this result,
is given in the following.

Example 17.7

Let A = (1, 1)′ and E = (1/2, −1/2)′. Choose a 16 × 15 nearly orthogonal Latin hyper-
cube B = B0/2 where B0 is displayed in Table 17.8, and B has ρ2

ave(B) = 0.0003 and
ρM(B) = 0.0765. Taking any 15 columns of a Hadamard matrix of order 16 to be F
and then applying (17.13), we obtain a Latin hypercube L of 32 runs and 15 factors.
As ρ2

ave(E) = ρM(E) = 0, we have ρ2
ave(L) = (n2

2 − 1)2ρ2
ave(B)/(n2 − 1)2 = 0.00002 and

ρM(L) = (n2
2 − 1)ρM(B)/(n2 − 1) = 0.0191.

17.2.4.4 Existence of Orthogonal Latin Hypercubes

A problem, of at least theoretical importance, in the study of orthogonal Latin hypercubes
is to determine the maximum number k∗ of columns in an orthogonal Latin hypercube of a
given run size n. Theorem 17.4 tells us that k∗ = 1 if n is 3 or n = 4m+2 for any nonnegative
integer m and k∗ ≥ 2 otherwise. Lin et al. (2010) obtained a stronger result.

TABLE 17.8

Design Matrix of B0 in Example 17.7⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−15 15 −13 13 −5 −13 5 3 −1 5 −7 5 −9 −9 5

−13 −15 −3 3 7 3 15 −11 13 −5 7 −13 −7 −3 −3

−11 −9 −5 −11 −15 13 −5 11 −9 9 9 3 −5 −1 −11

−9 −1 9 −15 −11 1 −1 −13 5 −1 −15 7 1 3 15

−7 1 −7 7 15 15 −13 9 −5 −13 −3 −1 −1 7 13

−5 13 11 −5 9 −7 −3 −9 −13 11 13 −9 −3 13 1

−3 −5 13 15 −9 −9 −11 1 7 −9 15 11 9 1 −1

−1 −11 3 −7 11 −15 13 15 −7 −3 −9 9 7 9 −5

1 3 −9 −3 −1 −5 −15 −1 11 3 −11 −15 15 5 −15

3 −3 15 11 3 9 1 −7 −15 1 −13 −3 3 −15 −9

5 9 7 −1 5 11 9 13 15 15 5 1 11 −7 9

7 7 −1 −13 13 −1 −7 −5 9 −7 3 15 −13 −11 −13

9 5 −11 −9 −7 −3 7 −3 −11 −15 11 −7 13 −13 7

11 11 5 5 −13 7 11 5 3 −11 −5 −5 −11 15 −7

13 −7 −15 9 1 5 3 −15 −3 13 1 13 5 11 3

15 −13 1 1 −3 −11 −9 7 1 7 −1 −11 −15 −5 11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Theorem 17.10 The maximum number k∗ of factors for an orthogonal Latin hypercube of n =
16m + j runs has a lower bound given in the following:

(i) k∗ ≥ 6 for all n = 16m + j where m ≥ 1 and j �= 2, 6, 10, 14.

(ii) k∗ ≥ 7 for n = 16m + 11 where m ≥ 0.

(iii) k∗ ≥ 12 for n = 16m, 16m + 1 where m ≥ 2.

(iv) k∗ ≥ 24 for n = 32m, 32m + 1 where m ≥ 2.

(v) k∗ ≥ 48 for n = 64m, 64m + 1 where m ≥ 2.

Theorem 17.10 provides a general lower bound on the maximum number k∗ of factors for
an orthogonal Latin hypercube of n runs. We now summarize the results on the best lower
bound on the maximum number k∗ in an OLH(n, k∗) from all existing approaches for n ≤
256. Table 17.9 lists the best lower bound on the maximum number k∗ in an OLH(n, k∗)
for n ≤ 24. These values except the case n = 16 were obtained by Lin (2008) through an
algorithm. For n = 16, Steinberg and Lin (2006) obtained an orthogonal Latin hypercube
with 12 columns. Table 17.10 reports the best lower bound on the maximum number k∗ in

TABLE 17.9

Best Lower Bound k on the Maximum Number k∗ of Factors in OLH(n, k∗) for n ≤ 24

n 4 5 7 8 9 11 12 13 15 16 17 19 20 21 23 24

k 2 2 3 4 5 7 6 6 6 12 6 6 6 6 6 6

TABLE 17.10

Best Lower Bound k on the Maximum Number k∗ of Factors in OLH(n, k∗) for n > 24

n k Reference n k Reference

25 12 Lin et al. (2009) 144 24 Lin et al. (2010)

32 16 Sun et al. (2009) 145 12 Lin et al. (2010)
33 16 Sun et al. (2009) 160 24 Lin et al. (2010)

48 12 Lin et al. (2010) 161 24 Lin et al. (2010)
49 24 Lin et al. (2009) 169 84 Lin et al. (2009)
64 32 Sun et al. (2009) 176 12 Lin et al. (2010)

65 32 Sun et al. (2009) 177 12 Lin et al. (2010)
80 12 Lin et al. (2010) 192 48 Lin et al. (2010)

81 50 Lin et al. (2009) 193 48 Lin et al. (2010)
96 24 Lin et al. (2010) 208 12 Lin et al. (2010)

97 24 Lin et al. (2010) 209 12 Lin et al. (2010)
112 12 Lin et al. (2010) 224 24 Lin et al. (2010)
113 12 Lin et al. (2010) 225 24 Lin et al. (2010)

121 84 Lin et al. (2009) 240 12 Lin et al. (2010)
128 64 Sun et al. (2009) 241 12 Lin et al. (2010)

129 64 Sun et al. (2009) 256 248 Steinberg and Lin (2006)
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an OLH(n, k∗) for 24 < n ≤ 256 as well as the corresponding approach for achieving the
best lower bound.

17.3 Other Space-Filling Designs

Section 17.2 discussed various Latin hypercube designs that are suitable for computer
experiments. A Latin hypercube design does not have repeated runs and each of its fac-
tors has as many levels as the run size. Bingham et al. (2009) argued that it is absolutely
unnecessary to have the same number of levels as the run size in many practical applica-
tions. They proposed the use of orthogonal and nearly orthogonal designs for computer
experiments, where each factor is allowed to have repeated levels. This is a rich class of
orthogonal designs, including two-level orthogonal designs and orthogonal Latin hyper-
cubes as special cases. This section reviews the concept and constructions of orthogonal
designs. We also review another class of orthogonal designs provided by Moon et al. (2011).
Other classes of space-filling designs that do not fall under Latin hypercube designs are
low-discrepancy sequences and uniform designs. Both types of designs originate from the
field of numerical analysis and give rise to attractive space-filling designs. We provide a
brief account of low-discrepancy sequences and review various measures of uniformity in
uniform designs.

17.3.1 Orthogonal Designs with Many Levels

Consider designs of n runs for k factors each of s levels, where 2 ≤ s ≤ n. For convenience,
the s levels are chosen to be centered and equally spaced; one such choice is −(s − 1)/2,
−(s−3)/2, . . . , (s−3)/2, (s−1)/2. Such a design is denoted by D(n, sk) and can be represented
by an n × k design matrix D = (dij) with entries from the earlier set of s levels. A Latin
hypercube of n runs for k factors is a D(n, sk) with n = s.

Let A = (aij) be an n1 × k1 matrix with entries aij = ±1 and D0 be a D(n2, sk2). Bingham
et al. (2009) constructed the (n1n2) × (k1k2) design

D = A ⊗ D0. (17.14)

If A is column orthogonal, then design D in (17.14) is orthogonal if and only if D0 is
orthogonal. This provides a powerful way to construct a rich class of orthogonal designs
for computer experiments, as illustrated by Example 17.8.

Example 17.8

Let D0 be the orthogonal Latin hypercube OLH(16, 12) constructed by Steinberg and Lin
(2006). The construction method in (17.14) gives a series of orthogonal designs of 16m
runs for 12m factors by letting A be a Hadamard matrix of order m, where m is an integer
such that a Hadamard matrix of order m exists.

Higher order orthogonality and near orthogonality of D in (17.14) were also discussed
in Bingham et al. (2009). They considered two generalizations of the method (17.14).
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Let Dj be a D(n2, sk2), for each j = 1, . . . , k1. One generalization is

D = (aijDj) =

⎡
⎢⎢⎢⎣

a11D1 a12D2 . . . a1k1 Dk1
a21D1 a22D2 . . . a2k1 Dk1

...
...

. . .
...

an11D1 an12D2 . . . an1k1 Dk1

⎤
⎥⎥⎥⎦ . (17.15)

The following results study the orthogonality of design D in (17.15).

Theorem 17.11 Let A be column orthogonal. We have that

(i) ρM(D) = max{ρM(D1), . . . , ρM(Dk1)};
(ii) ρ2

ave(D) = w[ρ2
ave(D1) + · · · + ρ2

ave(Dk1)]/k1, where w = (k2 − 1)/(k1k2 − 1);

(iii) D in (17.15) is orthogonal if and only if D1, . . . , Dk1 are all orthogonal.

The generalization (17.15) constructs designs with improved projection properties
(Bingham et al. 2009). The research on orthogonal designs was further pursued by Georgiou
(2011) who proposed an alternative construction method and obtained many new designs.

Another class of orthogonal designs is Gram-Schmidt designs constructed by Moon et al.
(2011). A Gram–Schmidt design for n observations and k inputs is generated from an n × k
Latin hypercube design D = (dij) = (d1, . . . , dk) as follows:

Step 1: Center the jth column of D to have mean zero:

vj = dj −
n∑

i=1

dij/n, for j = 1, . . . , k.

Step 2: Apply the Gram–Schmidt algorithm to v1, . . . , vk from Step 1 to form orthogonal
columns:

uj =
{

v1, j = 1;
vj − ∑j−1

i=1
uivj

||ui||2 ui, j = 2, . . . , k,

where ||ui|| represents l2 norm of ui.
Step 3: Scale uj from Step 2 to the desired range and denote the resulting column by xj. Set

X = (x1, . . . , xk).

Any two columns of design X constructed via the three steps earlier have zero correlation.

17.3.2 Low-Discrepancy Sequences and Uniform Designs

Many problems in various fields such as quantum physics and computational finance
require calculating definite integrals of a function over a multi dimensional unit cube. It is
very common that the function may be so complicated that the integral cannot be obtained
analytically and precisely, which calls for numerical methods of approximating the integral.
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Recall the numerical integration problem discussed in Section 17.2.1. The quantity μ̂

in (17.3) is used to approximate μ in (17.2). Respecting the common notations, we use s
to denote the number of factors and χ = [0, 1]s the design region in this section. Let P =
(x1, . . . , xn) be a set of n points in χ. The bound of the integration error is given by Koksma–
Hlawka inequality:

∣∣∣μ − μ̂
∣∣∣ ≤ V(f )D∗(P), (17.16)

where V(f ) is the variation of f in the sense of Hardy and Krause, and D∗(P) is the star
discrepancy of the n points P (Weyl 1916) described in the following. Motivated by the fact
that the Koksma–Hlawka bound in (17.16) is proportional to the star discrepancy of the
points, different methods for generating points in χ with as small a star discrepancy as
possible have been proposed. Such methods are referred to as quasi–Monte Carlo methods
(Niederreiter 1992).

For each x = (x1, . . . , xs) in χ, let Jx = [0, x) denote the interval [0, x1) × · · · × [0, xs),
N(P , Jx) denote the number of points ofP falling in Jx, and Vol(Jx) be the volume of interval
Jx. The star discrepancy D∗(P) of P is defined by

D∗(P) = max
x∈ χ

∣∣∣N(P , Jx)

n
− Vol(Jx)

∣∣∣. (17.17)

A sequence S of points in χ is called a low-discrepancy sequence if its first n points have

D∗(P) = O(n−1(log n)s),

where O(·) is big O notation. As a comparison, if the set P is chosen by the Monte Carlo
method, that is, x1, . . . , xn are independent random samples from the uniform distribution,
then D∗(P) = O(n−1/2), which is considered too slow in many applications (Niederreiter
2012).

Construction of low-discrepancy sequences is a very active research area in the study
of quasi–Monte Carlo methods. There are many constructions available; examples are the
good lattice point method, the good point method, Halton sequences, Faure sequences, and
(t, s)-sequences. For a comprehensive treatment of low-discrepancy sequences, see Nieder-
reiter (1992). Here we provide a brief account of two popular and most widely studied
methods, (t, s)-sequences and uniform designs.

17.3.2.1 (t,m,s)-Nets and (t,s)-Sequences

The definitions of (t, m, s)-nets and (t, s)-sequences require a concept of elementary inter-
vals. An elementary interval in base b is an interval E in [0, 1)s of the form

E =
s∏

i=1

[ ai

bdi
,

ai + 1
bdi

)
(17.18)
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with integers ai and di satisfying di ≥ 0 and 0 ≤ ai < bdi . For i = 1, . . . , s, the ith axis
of an elementary interval has length b−di , and thus, an elementary interval has a volume
b−∑s

i=1 di .
For integers b ≥ 2 and 0 ≤ t ≤ m, a (t, m, s)-net in base b is a set of bm points in [0, 1)s

such that every elementary interval in base b of volume bt−m contains exactly bt points. For
given values of b, m, and s, a smaller value of t leads to a smaller elementary interval and
thus a set of points with better uniformity. Consequently, a smaller value of t in (t, m, s)-nets
in base b is preferred.

An infinite sequence of points {xn} in [0, 1)s is a (t, s)-sequence in base b if for all k ≥ 0 and
m > t, the finite sequence xkbm+1, . . . , x(k+1)bm forms a (t, m, s)-net in base b. Example 17.9
illustrates both concepts.

Example 17.9

Consider a (0, 2)-sequence in base 2. Its first 8 points form a (0, 3, 2)-net in base 2 and are
displayed in Figure 17.5 with t = 0, m = 3, s = 2. There are four types of elementary
intervals in base 2 of volume 2−3 with (d1, d2)’s in (17.18) being (0, 3), (3, 0), (1, 2), and
(2, 1). Figure 17.5a through d shows a (0, 3, 2)-net in base 2 when elementary inter-
vals are given by (d1, d2) = (0, 3), (d1, d2) = (3, 0), (d1, d2) = (1, 2), and (d1, d2) = (2, 1),
respectively. Note that in every elementary interval of the form
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FIGURE 17.5
A (0, 3, 2)-net in base 2 seen using four types of elementary intervals.
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A (0, 4, 2)-net in base 2 seen using (a–e) five types of elementary intervals; the first and second 8 points are
represented by ◦ and •.

[ a1

2d1
,
(a1 + 1)

2d1

)
×

[ a2

2d2
,
(a2 + 1)

2d2

)
, 0 ≤ ai < 2di , i = 1, 2,

there is exactly one point. The next 8 points in this (0,2)-sequence in base 2 also form a
(0, 3, 2)-net in base 2. The totality of all 16 points is a (0, 4, 2)-net in base 2. Analogous to
Figure 17.5, Figure 17.6(a) through (e) exhibit the (0, 4, 2)-net in base 2 when elementary
intervals are given by all (d1, d2)s that satisfy d1 + d2 = m = 4.

A general theory of (t, m, s)-nets and (t, s)-sequences was developed by Niederreiter
(1987). Some special cases of (t, s)-sequences are as follows. Sobol’ sequences (Sobol’ 1967)
are (t, s)-sequences in base 2. Faure sequences (Faure 1982) are (0, s)-sequences in base
q where q is a prime with s ≤ q. Niederreiter sequences (Niederreiter 1987) are (0, s)
sequences in base q where q is a prime or a prime power with s ≤ q. Niederreiter–Xing
sequences (Niederreiter and Xing 1996) are (t, s)-sequences in base q for some certain t
where q is a prime or a prime power with s > q. For constructions of all these sequences,
we refer the readers to Niederreiter (2008). Results on existing (t, s)-sequences are available
in Schürer and Schmid (2010).

17.3.2.2 Uniform Designs

Motivated by the Koksma–Hlawka inequality in (17.16), Fang (1980) and Wang and Fang
(1981) introduced uniform designs, and by their definition, a uniform design is a set of
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design points with the smallest discrepancy among all possible designs of the same run
size. One choice of discrepancy is the star discrepancy in (17.17). More generally, one can
use the Lp discrepancy,

Dp(P) =
⎡
⎣�
χ

∣∣∣∣N(P , Jx)

n
− Vol(Jx)

∣∣∣∣
p

dx

⎤
⎦

1/p

,

where N(P , Jx) and Vol(Jx) are defined as in (17.17). Two special cases of the Lp discrepancy
are the L∞ discrepancy, which is the star discrepancy, and the L2 discrepancy. While the L∞
discrepancy is difficult to compute, the L2 discrepancy is much easier to evaluate because
of a simple formula given by Warnock (1972):

D2(P) = 2−s − 21−s

n

n∑
i=1

s∏
l=1

(1 − x2
il) + 1

n2

n∑
i=1

n∑
j=1

s∏
l=1

[1 − max(xil, xjl)],

where xil is the setting of the lth factor in the ith run, i = 1, . . . , n and l = 1, . . . , s.
The Lp discrepancy aims to achieve uniformity in the s-dimensional design space.

Designs with the smallest Lp discrepancy do not necessarily perform well in terms of pro-
jection uniformity in low dimensions. Hickernell (1998) proposed three new measures of
uniformity: the symmetric L2 discrepancy (SL2), the centered L2 discrepancy (CL2), and the
modified L2 discrepancy (ML2). They are all defined through

Dmod(P) =
∑
u�=∅

�
χu

∣∣∣N(Pu, Jxu)

n
− Vol(Jxu)

∣∣∣2
du, (17.19)

where ∅ represents the empty set, u is a nonempty subset of the set {1, . . . , s}, |u| denotes
the cardinality of u, χu is the |u|-dimensional unit cube involving the coordinates in u, Pu
is the projection of the set of points P on χu, Jxu is the projection of Jx on χu, N(Pu, Jxu)

denotes the number of points of Pu falling in Jxu , and Vol(Jxu) represents the volume of Jxu .
The symmetric L2 discrepancy chooses Jx such that it is invariant if xil is replaced by 1−xil,
i = 1, . . . , n and l = 1, . . . , s, and it has the formula

(SL2(P))2 =
(

4
3

)s

− 2
n

n∑
i=1

s∏
l=1

(1 + 2xil − 2x2
il) + 2s

n2

n∑
i=1

n∑
j=1

s∏
l=1

(
1 − |xil − xjl|

)
.

The centered L2 discrepancy chooses Jx such that it is invariant under the reflections of
P around any hyperplane with the lth coordinate being 0.5. Let As denote the set of 2s

vertices of the unit cube χ and a = (a1, . . . , as) ∈ As be the closest one to x. The centered L2
discrepancy takes Jx in (17.19) to be

{d = (d1, . . . , ds) ∈ χ | min(aj, xj) ≤ dj < max(aj, xj), j = 1, . . . , s}.
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TABLE 17.11

Uniform Designs U(6; 32) and U(6; 62)

U(6; 32) U(6; 62)

1 1 1 3
2 2 2 5

3 3 3 1
1 3 4 6

2 1 5 2
3 2 6 4

The formula for the centered L2 discrepancy is given by

(CL2(P))2 =
(

13
12

)2

− 2
n

n∑
i=1

s∏
l=1

(
1 + 1

2
|xil − 0.5| − 1

2
|xil − 0.5|2

)

+ 1
n2

n∑
i=1

n∑
j=1

s∏
l=1

(
1 + 1

2
|xil − 0.5| + 1

2
|xjl − 0.5| − 1

2
|xil − xjl|

)
.

The modified L2 discrepancy takes Jx = [0, x) and has the formula

(ML2(P))2 =
(

4
3

)s

− 21−s

n

n∑
i=1

s∏
l=1

(3 − x2
il) + 1

n2

n∑
i=1

s∑
j=1

s∏
l=1

[2 − max(xil, xil)] .

For other discrepancy measures such as the wrap-around discrepancy, see Fang et al. (2006).
Finding uniform designs based on a discrepancy criterion is an optimization problem.

However, searching uniform designs in the entire unit cube is computationally prohibitive
for large designs. Instead, it is convenient to find uniform designs within a class of
U-type designs. Suppose that each of the s factors in an experiment has q levels, {1, . . . , q}.
A U-type design, denoted by U(n; qs), is an n × s matrix in which the q levels in each col-
umn appear equally often. Table 17.11 displays a U(6; 32) and a U(6; 62). For q = n, uniform
U-type designs can be constructed by several methods such as the good lattice method, the
Latin square method, the expanding OA method, and the cutting method (Fang et al. 2006).
For general values of q, optimization algorithms have been considered, such as simulated
annealing, genetic algorithm, and threshold accepting (Bohachevsky et al. 1986; Winker
and Fang 1997). For more detailed discussions on the theory and applications of uniform
designs, see Fang et al. (2000) and Fang and Lin (2003).

17.4 Concluding Remarks

We have provided an expository account of the constructions and properties of space-filling
designs for computer experiments. Research in this area remains active and will continue
to thrive. Recently, a number of new directions have been pursued. He and Tang (2013)
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introduced strong OAs and associated Latin hypercubes, while Tang et al. (2012) studied
uniform fractional factorial designs. Research has also been conducted to take advantage
of many available results from other design areas such as factorial design theory, one
such work being multilayer designs proposed by Ba and Joseph (2011). Another impor-
tant direction is to develop methodology for the design regions in which input variables
have dependency or constraints; see Draguljic et al. (2012) and Bowman and Woods (2013)
for more details.
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18.1 Introduction

Sensitivity analysis is the study of how uncertainty in the output of a model can be
apportioned to different sources of uncertainty in the model input (Saltelli et al. 2004).
Sometimes the term is also used to indicate simply the quantification of the uncertainty
in the model’s prediction, although strictly speaking, this is the closely related discipline
of uncertainty analysis. In general, sensitivity analysis is used to test the robustness of

627
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model-based inference, that is, how much the results of the model depend on the assump-
tions made in its construction and in particular on the specification of model input values.
In engineering and risk analysis, sensitivity analysis mostly involves an exploration of the
multidimensional space of the input variables.

Sensitivity analysis may also take slightly different meanings dependent on the field: in
econometrics, sensitivity analysis has been advocated first in the form of extreme bounds
analysis, measuring the sensitivity of regressor coefficients to the omission or inclusion of
other regressors in a regression model (Leamer 1985, 2010). A form of derivative-based
sensitivity analysis is also used to check the sensitivity of regression models to misspecifi-
cation (Magnus 2007). In engineering, design sensitivity analysis uses the gradient of the error
function between a model output and experimental measurements to estimate unknown
model parameters, such as the stiffness parameters in a structural model (Tortorelli and
Michaleris 1994). A succinct review of sensitivity analysis methods for use in impact assess-
ment, that is, in relation to models used for policy, is in Saltelli and D’Hombres (2010). In
this chapter, however, the focus will be on sensitivity analysis in the context of uncertainty
in the inputs and outputs of a model.

Very often, in chemistry, physics, biology and so on, one sees sensitivity analysis per-
formed by changing one input at a time, the so-called one-at-a-time (OAT) design. This
practice is not recommended because it only examines the sensitivity of model inputs
at nominal (average) values and does not allow the possibility of exploring the model
response at other values of input variables, which could produce very different results if
the model is nonlinear (Saltelli and Annoni 2010). Instead, current best practice involves
designs based on a multidimensional exploration of the space of the input variables, as in
classic experimental design.

An important point to note from the start is that sensitivity analysis does not typically
examine structural uncertainty, which is the uncertainty due to the model’s approxima-
tion to reality. As such, the results of a sensitivity analysis, which relate to uncertainty
in the input variables, are conditional on the model. Structural uncertainty can often rep-
resent the largest source of uncertainty, so it is important to recognise that a sensitivity
analysis is only half the story in a thorough analysis of uncertainty. Techniques for manag-
ing structural uncertainty will not be addressed here, but two approaches are noted with
some references as a starting point: First, model ensemble averaging (Tebaldi and Knutti 2007;
Rougier et al. 2013) which uses the results of a number of different but plausible models
to approximate a distribution over models (an application to climate modelling can be found
in Murphy et al. 2009) and second, an approach which considers the discrepancy between
a single calibrated model and the true observed value (Kennedy and O’Hagan 2001;
Strong et al. 2012). A discussion of model uncertainty in a wider context can be found in
Saltelli and Funtowicz (2013).

18.1.1 Black-Box Perspective

In this chapter, the term model refers to a computer program which represents a mathe-
matical construct built to simulate some physical, economic or other real-world process—
examples could be models to predict climate change, engineering models to analyse the
response of a component under loading or economic models forecasting the behaviour of
markets.

Since any numerical model has quantifiable inputs and outputs, it is helpful in sensitivity
analysis to consider it from the black-box perspective (see Figure 18.1). This views the model
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FIGURE 18.1
Black-box view of an engineering computer model, with typical model inputs and outputs.

as a function f (x) of k inputs, where x = {xi}k
i=1. The model will typically return a large

number of output quantities, but in this chapter, for simplicity it shall be assumed that the
output is a scalar y, such that y = f (x). Note that although the x and y will often appear as
random variables, they will always be expressed in lower case. Importantly, the models in
this chapter will be assumed to be deterministic, such that f is fixed, and the structure of
the model does not contain random components. The uncertainty in the output therefore
is due uniquely to randomness in x.

Although the function (model) f is known in the sense that it represents a computer pro-
gram based on mathematical equations, it will generally be complex enough as to be only
accessible via simulation (i.e. not analytically tractable). Therefore in practice, all sensitiv-
ity analysis approaches involve sampling the inputs a number of times according to an
experimental design, evaluating the model for each selected input vector, and estimating
useful properties from the resulting outputs/data. With this in mind, it is useful to think
of a particular set of model input values x as a point in a k-dimensional hyperspace, which
is bounded by the maximum and minimum values of each input variable.

18.1.2 Types of Problem

There is no one-size-fits-all solution in sensitivity analysis, due to the fact that each problem
has its own unique characteristics and challenges, such as a large number of model inputs,
model nonlinearities, correlations or other relationships between model inputs and limi-
tations in CPU time to name but a few. As such, there exist a great number of approaches
that are designed for use under particular circumstances. Here a (non-exhaustive) taxon-
omy is attempted of some of the most common settings encountered in sensitivity analysis,
and the tools that are available for each. One of the first defining features is whether or
not the model is actually accessible to the analyst (the person performing the sensitivity
analysis)—two main cases arise in this respect:
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Case 1: The analyst can run the model. In other words, the model is available to the ana-
lyst, such that it can be evaluated at chosen input values and the corresponding results
recorded. A design can be specified in this case where, for example, n model input points
{x1, x2, . . . , xn} are selected in the k-dimensional input space, to obtain corresponding
model outputs {y1, y2, . . . , yn}. In this case, the sample of the input space is customarily
generated without correlation among the input variables, although designs for corre-
lated inputs are also available (Jacques et al. 2006; Xu and Gertner 2008; Li et al. 2010;
Kucherenko et al. 2012). The output y could represent, for example, some modelled prop-
erty of an engineering design such as an aeroplane wing or of a natural system such as
groundwater flow through a geologic region.

Case 2: The sample points are given and the analyst can neither control their positioning
nor generate additional points. Such data might come either from measurements or
experiments or from a design that is not specifically intended for sensitivity analysis.
The form of the model could be unknown, and the input variables could be correlated
with one another in the sample. To give a simple example, y could be the Human Devel-
opment Index computed over k countries and the xi could be the indicators used in the
construction of the index (Paruolo et al. 2013). In this case one cannot generate additional
points/countries.

In Case 1 (when the design points can be specified), the best approach to performing
a sensitivity analysis is determined by the cost of the model runs required to perform the
analysis. In this context, cost refers to the total computational time required to evaluate the
model at all the sample points, which is the product of the total number of model runs and
the time required for each run. Since complex models can take minutes, hours or longer to
evaluate for a single input point, it is not always feasible to sample a large number of input
points (see, e.g. Becker et al. 2011; Batterbee et al. 2011). The strategies available for case I
are as follows:

Case 1A: For cheap models (for which a single model evaluation will take a matter of sec-
onds or less), a fully fledged quantitative sensitivity analysis can be performed using
Monte Carlo estimators, estimating all k first-order indices and all k total order indices
directly from model output values (see Section 18.3). This approach requires a large
number of sample points (typically hundreds or thousands per input variable), but is
preferred where possible since all sensitivity indices can be estimated with an accuracy
related to the number of sample points. Furthermore, no assumptions are required about
the functional form of the model (apart from that the model f (x) is square-integrable,
though this should not be a limitation in the vast majority of cases).

Case 1B: For expensive models, a design based on Fourier analysis can be used to com-
pute all first-order indices at a cost which is weakly dependent on the number of input
variables (see Section 18.4). The cost is of the order of some hundreds of model simula-
tions. Alternatively, a space-filling design can be used in conjunction with an emulator
(see Section 18.6 and Chapter 16). Although computationally cheaper, both of these
approaches introduce a data-modelling problem which involves making assumptions
about the functional form of the model, such as smoothness and continuity. Addition-
ally, the use of certain types of emulators becomes rapidly infeasible as the number of
sample points and the dimensionality of the problem increase.

Case 1C: In the case where the model is computationally expensive and one has many input
variables, a set of methods known as screening can be applied to sort variables into
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FIGURE 18.2
Case 1 sensitivity analysis problems based on dimensionality of model and run time.

influential and non-influential groups: this is known as factor fixing in some literature
(Saltelli et al. 2008). A more detailed sensitivity analysis based on Monte Carlo or the use
of emulators can then be applied on the set of influential variables, while non-influential
variables are kept fixed (see Section 18.5).

A summary of Cases 1A–1C is shown in Figure 18.2: Monte Carlo methods scale well
with dimensionality but need many runs per variable, so are not appropriate for expen-
sive models. Emulators can deal with expensive models, but only for a limited number of
input variables. In the case where the model has many input variables and is expensive to
run, screening methods can help to reduce dimensionality to bring the problem in reach of
emulators. Another possibility is to re-examine the model itself to see whether its runtime
can be reduced, therefore allowing a Monte Carlo analysis. Although this is not a method
of sensitivity analysis, it is an important consideration, since most models are not built
with sensitivity analysis in mind and therefore are not necessarily optimised for speed.
However, this requires access to the model and a deep understanding of it, which is not
always possible.

For Case 2, when data are given, two approaches are considered in this chapter:

1. Use an emulator either to generate additional points and then perform a Monte
Carlo sensitivity analysis or to directly estimate sensitivity indices from the avail-
able data (depending on the method—see Section 18.6).

2. Estimate directly the k first-order indices by univariate regression on the sorted
model evaluations y1, y2, . . . , yn (see Section 18.7). In effect, this involves making
one-dimensional scatter plots of y against each xi and then fitting (nonlinear) trend
curves. In simple problems, even a visual inspection of scatter plots may be useful
for qualitative analysis.



632 Handbook of Design and Analysis of Experiments

First-order
indices (S)

Total-order
indices (ST)

Other
measures

Scatter plot smoothingEmulatorRBDMonte Carlo Screening

Expensive modelCheap model

Case I
Analyst can choose

points
Case II

Points are given

M
et

ho
d

O
ut

pu
t

Se
tti

ng

FIGURE 18.3
Various approaches to sensitivity analysis: when they can be used and what they produce. The dotted line here
indicates that STi can only be estimated with certain types of emulators, and the acronym RBD stands for random
balance designs.

The various approaches discussed here and the context in which they can be applied
are summarised in Figure 18.3. Note that in this chapter, only three measures of sensitivity
are proposed:

1. First-order sensitivity index (see Section 18.2)
2. Total-order sensitivity index (see Section 18.2)
3. Elementary effects (see Section 18.5)

The following section gives a brief description of variance-based sensitivity analysis which
underpins measures 1 and 2 earlier, after which in Section 18.3, Monte Carlo numeri-
cal procedures will be described for estimating them (this is the domain of Case 1A). In
Section 18.4, an alternative way of estimating the same measures is described, using an
approach based on the Fourier series. Section 18.5 deals with screening approaches (see
Case 1C), while Section 18.6 explains the concepts of emulation and Section 18.7 scatter
plot smoothing to deal with computationally expensive models (Case 1B), or the case where
points are given (Case 2). Finally, some concluding remarks are given in Section 18.8.

18.2 Variance-Based Sensitivity Indices

Many measures of sensitivity have been proposed in the literature. For example, a well-
known measure is to regress the data against each input variable xi and take the coefficients
of determination R2

i as measures of sensitivity. An obvious drawback of this is that
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linear regression (linear in x) can only meaningfully interpret a linear model response
(model response refers to the effect on the model output of changing its inputs). While
this approach can be extended by more sophisticated forms of regression, it is prefer-
able not to rely on any modelling of a functional relationship between y and x, since
unwanted assumptions would thus be introduced. Variance-based approaches to mea-
suring sensitivity, which consider the uncertainty in the model inputs and output from
a probabilistic perspective, have become very popular in recent years, since they allow for
highly nonlinear model responses, and account for variations in the output over the full
input space.

In variance-based sensitivity analysis, it is required that the uncertainty in each model
input x1, x2, . . . , xk is characterised by known probability distributions p1(x1), p2(x2), . . . ,
pk(xk) and furthermore that these distributions are independent of one another, such that∏k

i=1 pi(xi)= p(x). In fact this first step may often pose major challenges to the analyst
because it is rarely the case that enough information exists to characterise the input dis-
tributions to a great degree of confidence, and correlations are not uncommon in many
problems. This chapter will not however address these difficulties since the focus is on
the statistical aspects of sensitivity analysis as commonly practiced, although some brief
discussion of the practical aspects of sensitivity analysis is given at the end of Section 18.8.

Given known and independent input distributions then, a useful sensitivity measure for
a given input variable xi is

Varxi[Ex∼i(y | xi)]. (18.1)

The meaning of the inner E operator is the expected value of the model output y taken
over all possible values of variables other than xi (i.e. over x∼i) while keeping xi fixed (the
conditional mean). The outer Var is the variance taken over all possible values of xi.

The associated normalised sensitivity measure, known as a first-order sensitivity coeffi-
cient, is defined as

Si = Varxi[Ex∼i

(
y | xi

)]
Var(y)

. (18.2)

The measure Si gives the fraction of model output variance which is caused by the input
xi alone, averaged over variations in all other input variables. Formula (18.2) has a long
history, the foundations having been laid by Karl Pearson in the form of the product-
moment correlation coefficient in 1895 (Pearson 1895) (a further discussion of this is given in
Section 18.7). However, the use of partial variances (i.e. (18.2)) as measures of sensitivity in
computer models appears to have been first proposed in 1973 in the context of the Fourier
amplitude sensitivity test (FAST) (Cukier et al. 1973), which uses a Fourier series repre-
sentation of the model (see Section 18.4). The idea was further developed by Ilya Sobol’ in
1990 who also introduced an approach to estimate Si by the Monte Carlo method, thereby
bypassing the need to use a Fourier series approximation (Sobol’ 1993) (see Section 18.3).

The numerator of Si is in fact the first term in a variance decomposition whereby
the unconditional model output variance Var(y) is decomposed as the sum of a set
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of conditional variances of first, second, . . . , up to the kth order (Sobol’ 1993). Such a
decomposition holds only if the input variables xi are independent, in which case,

Var(y) =
∑

i

Vi +
∑

i

∑
j>i

Vi,j + · · · + V1,2,...,k, (18.3)

where Vi = Varxi[Ex∼i(y|xi)], Vi,j = Varxi,xj[Ex∼i,j(y|xi, xj)]−Varxi[Ex∼i(y|xi)]−Varxj[Ex∼j(y|xj)],
and so on for the higher order terms. The terms in (18.3) derive from an analogous
functional decomposition of f (x) into orthogonal functions of increasing dimensionality:

f (x) = f0 +
∑

i

fi(xi) +
∑

i

∑
j>i

fi,j(xi, xj) + · · · + f1,2,··· ,k(x1, x2, . . . , xk) (18.4)

where f0 = E(y), fi = Ex∼i(y|xi) − f0, and fi,j = Ex∼i,j(y|xij) − fi − fj − f0. Taking the variance
of (18.4) gives the variance decomposition in (18.3), noting that, for example, Varxi(fi) =
Varxi[Ex∼i(y|xi) − E(y)] = Varxi[Ex∼i(y|xi)]. A discussion of the importance of the first-order
terms fi = Ex∼i(y|xi) − E(y) is returned to in Section 18.7.

Dividing all terms in (18.3) by Var(y) gives

∑
i

Si +
∑

i

∑
j>i

Si,j + · · · + S1,2,...,k = 1, (18.5)

where the Si are the first-order sensitivity coefficients defined in (18.2) and higher order
terms are generalisations of these to multiple inputs. For example, Si,j measures the vari-
ance due to the interaction between xi and xj, additional to the variance caused by each
input alone. A knowledge of all the sensitivity indices in (18.5) gives a detailed picture of
how each input contributes to the uncertainty of the model output and the interactions
between inputs in the model. Note that the case where

∑k
i=1 Si = 1 is known as an additive

model, in which there are no interactions between model inputs. This is however rarely the
case in complex models, for which reason the calculation of the first-order indices alone is
not usually sufficient.

In the ideal case then, one would like to know all sensitivity indices of all orders in
(18.5). Due to computational limitations however, estimating all terms in (18.3) is often
impractical for larger k given that they number 2k − 1 in total. For this reason, a measure
known as the total-order sensitivity index, ST, may be estimated, which measures the total
effect of an input, including its first-order effect and interactions of any order (Homma and
Saltelli 1996):

STi = 1 − Varx∼i [Exi

(
y | x∼i

)]
Var(y)

= Ex∼i[Varxi

(
y | x∼i

)]
Var(y)

(18.6)

where x∼i denotes the vector of all variables but xi. In Ex∼i [Varxi

(
y | x∼i

)], the inner vari-
ance, the scalar output of interest, is taken over all possible values of xi while keeping x∼i
fixed, while the output expectation E is taken over all possible values x∼i (Homma and
Saltelli 1996).

One can see that Exi

(
y | x∼i

)
is the main effect of x∼i, and therefore Varx∼i[Exi

(
y | x∼i

)]
is the variance caused by the main effects and interactions of all the variables and sets
of variables not involving xi. The remaining variance, Var(y) − Varx∼i[Exi

(
y | x∼i

)], is the
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variance due to all terms in the decomposition (18.3) including xi, that is, the variance of
its main effect and all interactions of any order involving xi, giving

STi = Si +
∑
j>i

Si,j +
∑

l>j>i

Si,j,l + · · · + S1,2,...,k. (18.7)

As an example, consider a function of three input variables, f (x1, x2, x3). The standard-
ised variance decomposition in (18.5) would in this case consist of

S1 + S2 + S3 + S1,2 + S1,3 + S2,3 + S1,2,3 = 1. (18.8)

In this case, the STi can be expressed as the sum of any indices involving the index i:

ST1 = S1 + S1,2 + S1,3 + S1,2,3

ST2 = S2 + S1,2 + S2,3 + S1,2,3

ST3 = S3 + S1,3 + S2,3 + S1,2,3 (18.9)

from which one can note that in general
∑k

i=1 STi �= 1, unless all the interaction terms are
zero. Observe also that the STi could in fact be calculated from evaluating and summing
all component sensitivity indices as in (18.9), but in practice, this is rarely done, since it
involves a much higher computational effort—for this reason, the expression in (18.6) is
usually used as the basis for estimation unless one is particularly interested in the precise
nature of the interactions.

In the next section, the design and estimation procedures for the cases detailed in
Section 24.1 are described.

18.3 Monte Carlo Estimation of Sensitivity Indices

Monte Carlo estimation of sensitivity indices is generally considered as the preferred
approach to sensitivity analysis where possible, since it makes no assumptions about the
functional form of the model (unlike emulators and FAST—see Sections 18.4 and 18.6). It is
however only possible under the circumstances of Case 1, that is, when the analyst has full
control over the placement of input points and possibly thousands of model runs can be
executed without difficulty. Monte Carlo estimation involves sampling the model at a large
number of points in the input space using random or quasi-random numbers as a basis. In
this section, the use of quasi-random numbers is described, specifically the LPτ sequences
of Sobol’ (Sobol’ 1967, 1976) (also known simply as Sobol’ sequences) coupled with a Monte
Carlo design described in Section 18.3.2 (Saltelli 2002; Saltelli et al. 2010). In the following,
therefore, the focus will be on the Sobol’ sequence. However, the approaches described are
also valid with random numbers and other low-discrepancy sequences—see Niederreiter
(1992) for a summary of many common approaches.
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18.3.1 Input Distributions and Sampling

It is assumed here that all random variables x1, x2, . . . , xk are sampled uniformly in the
k-dimensional unit hypercube X :

x ∈ X : X = [0, 1]k. (18.10)

Different distributions can easily be generated by mapping the points in (18.10) onto the
desired probability density function (uniform, normal, log-normal, etc.). This involves the
use of the inverse cumulative distribution function of the variable of interest (also known as
the quantile function), which allows uniformly distributed points in [0, 1] to be transformed
into points distributed as required (Saltelli et al. 2008). An example is shown in Figure 18.4
in which a set of equally spaced points are transformed into normally distributed points
(equally spaced points are used here rather than random sampling to more clearly illustrate
the transformation).

The Monte Carlo estimators presented in the following section rely on the use of ran-
dom or quasi-random numbers—in particular, the approach recommended in this chapter
is to use the Sobol’ sequence. The Sobol’ sequence and other quasi-random number
sequences (also known as low-discrepancy sequences) are fixed sequences of numbers which
are designed to fill hypercubes as uniformly as possible—in the context of sensitivity anal-
ysis, they can be used as a list of model input values that explore the model response
with a high efficiency. Figure 18.5 shows a comparison of the Sobol’ sequence against ran-
dom (strictly speaking, pseudo-random) numbers—observe the clusters and large holes in
the random design compared to the relatively well-spaced points in the Sobol’ design.
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FIGURE 18.4
Generating normally distributed points using equally spaced points and the inverse cumulative distribution of the
normal distribution. Vertical and horizontal lines illustrate the mapping of sample points from one distribution
to another.
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FIGURE 18.5
128 points in two-dimensional space: (a) random numbers and (b) Sobol’ sequence.

The use of quasi-random sequences is motivated by their good space-filling proper-
ties; these sequences outperform both pseudo-random Monte Carlo sampling and Latin
hypercube sampling (LHS) in the estimation of multidimensional integrals (Sobol’ and
Kucherenko 2005)—for details on LHS, see Chapter 17. Recent extensive testing with a
large variety of functions spanning different degrees of dimensionality, linearity and addi-
tivity has demonstrated their suitability for sensitivity analysis (Kucherenko et al. 2011).
An additional desirable property of Sobol’ sequences when compared to LHS is that with
the former, additional points can be added sequentially to the analysis until a desired tar-
get accuracy is achieved (note that the points follow increasingly fine divisions of the input
space—see the first four rows of Figure 18.6 for an example of the first four points in a
six-dimensional Sobol’ sequence). With LHS, the sample size cannot be extended once the
analysis is performed, without starting again from the beginning, because the positioning
of all points is dependent on the sample size. Sobol’ sequences can be generated using freely
available software both in FORTRAN and MATLAB (see European Commission 2012).

18.3.2 Steps for Estimating Sensitivity Indices

The steps needed to estimate a full set of first-order and total-order sensitivity indices via
the Monte Carlo method are as follows (see Figure 18.6 for an illustration of the construction
of the matrices):

1. Generate n points of a 2k-dimensional Sobol’ sequence as in Figure 18.6, such that
it is arranged in an n × 2k matrix with each row giving the coordinates of each
point in the sequence. Call the first k-column submatrix A (i.e. the first k columns)
and the remaining k-column submatrix B. The generic coordinates of A and B can
be indicated, respectively, as x(a)

ji and x(b)
ji , where the index i runs from 1 to k (the

number of input variables) and the index j runs from 1 to n, the number of rows.∗

∗ Note that in this chapter, although j is in general an index over samples, it is also sometimes used to index over
input variables, for example, in the variance decomposition in (18.3). The meaning should however be clear
given the context.
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FIGURE 18.6
Construction of the A, B and Ai

B matrices, using the Sobol’ LPτ sequence with k = 3 and N = 4. Grey columns
correspond to those taken from the matrix B.

2. Generate additional k matrices Ai
B, i = 1, 2, . . . , k, such that the ith matrix is entirely

composed of coordinates from A except for its ith column, which is the ith column
of B. A total of k + 2 sets of coordinates (matrices) have thus been generated.

3. Evaluate the computer model for each of the n(k + 2) input vectors generated as
the rows of each of the matrices A, B and Ai

B, i = 1, 2, . . . , k.

4. Compute the sample mean f̂0 of output associated with rows from both matrices of
quasi-random points A and B combined, that is, using f̂0 = 1

2n
∑n

j=1
(

f (A)j + f (B)j
)

where, for example, f (A)j indicates values of y computed from running the model
f using the input values given by row j of matrix A. The unconditional sam-
ple variance is also calculated using the unbiased estimator V̂ar(y) = 1

2n−1
∑n

j=1

[(f (A)j − f̂0)2 + (f (B)j − f̂0)2].
5. To estimate Si (see (18.2)), one needs first to estimate Varxi[Ex∼i(y | xi)]. Denot-

ing Varxi[Ex∼i(y | xi)] = Vi, model outputs associated with coordinates from A, B
and Ai

B are used in the following estimator (Saltelli 2002; Sobol’ et al. 2007; Saltelli
et al. 2010):

V̂i = 1
n

n∑
j=1

f (B)j

(
f
(

Ai
B

)
j
− f (A)j

)
. (18.11)

A rationale for estimator (18.11) is given below. Si is estimated by dividing (18.11)
by the sample variance V̂ar(y).

6. For STi, one needs first to estimate Ex∼i[Varxi

(
y | x∼i

)] (see (18.6)). Letting
Ex∼i[Varxi

(
y | x∼i

)] = VTi, this can be estimated using model evaluations from the
couple A and Ai

B (Jansen 1999):
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V̂Ti = 1
2n

n∑
j=1

(
f (A)j − f (Ai

B)j

)2
, (18.12)

with a similar meaning of symbols as earlier. Again, STi is estimated by dividing
(18.12) by the sample variance V̂ar(y).

Note that each matrix Ai
B is used twice for estimating sensitivity indices associated with

xi, once to compute Ŝi and once to compute ŜTi. A derivation of estimators (18.11) and
(18.12) can be found in Saltelli et al. (2008, 2010)—these designs are also called substituted
column sampling (Morris et al. 2008). One can notice that the estimators make use of sums
of products of model output values and that in each product the two function values being
multiplied by one another have some symmetry. In the case of Ŝi, the two function values

f (B)j and f
(

Ai
B

)
j
have identical values for coordinate xi, whereas in the case of ŜTi the two

function values f (A)j and f
(

Ai
B

)
j

have identical values for all coordinates except xi. Take

the case of Ŝi for illustration: if xi is influential, then the two function values being multi-

plied, f (B)j and f
(

Ai
B

)
j
, will be correlated, such that high values will tend be multiplied by

high values and low values by low values. The resulting sum of these products will tend
to be greater than the sum of the products of f (B)j and f (A)j (the two terms of which are

uncorrelated), giving a value of Ŝi greater than zero. In contrast, if xi is non-influential, high

and low values of f (B)j and f
(

Ai
B

)
j

will be randomly coupled, resulting in an estimation

of Si which will tend to zero.
To see where the estimators (18.11) and (18.12) come from, refer back to (18.2) and (18.6).

In the case of Si, the numerator Varxi[Ex∼i(y|xi)] can be expressed as

Varxi[Ex∼i(y|xi)] =
�

E2
x∼i

(y|xi) dxi −
(�

Ex∼i(y|xi) dxi

)2
(18.13)

using the variance identity Var(y) = E(y2) − E2(y). The second term in (18.13) reduces to
E2(y) (since E[E(y|xi)] = E(Y)) which is denoted as f 2

0 (refer back to (18.4)). The first term
can be written as the following:

�
E2

x∼i
(y|xi) dxi =

�
Ex∼i(y|xi)Ex∼i(y|xi) dxi

=
� (� �

f (x∼i, xi)f (x′
∼i, xi)dx∼idx′

∼i

)
dxi

=
� �

f (x∼i, xi)f (x′
∼i, xi)dxdx′

∼i. (18.14)

Now one can see that the integral in (18.14) can be estimated by Monte Carlo integration

using the first product f (B)j f
(

Ai
B

)
j

of (18.11).

Finally, it is worth briefly examining the experimental design generated in Steps 1 and
2 of this section. In the description given, matrices have been used to facilitate the pro-
gramming of this procedure. However, one should note that any row of the sample matrix
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Aj is simply a (quasi) random point in the input space, and the corresponding row (Ai
B)j

describes a point which has the same coordinates, except for the ith input variable, which
takes its value x(b)

ji from the jth row and ith column of B. Considering the set of points

{Aj, (A1
B)j, (A2

B)j, . . . , (Ak
B)j}, one can see that this subset of the design forms a star in the input

space, with a centre point Aj and each subsidiary point (Ai
B)j a step away in the xi direction.

The example design given in Figure 18.6 is plotted for illustration in Figure 18.7. One can
see that the design is nothing more than a number of OAT designs replicated at various
locations in the input space. However, by performing multiple OAT experiments, one can
begin to understand the global behaviour of the model—that is to say, the sensitivity of the
model averaged over the full input space. Note that screening methods also use replicated
OAT designs—(see Section 18.5). A shortcoming of the use of the Sobol’ sequence is in fact
evident in Figure 18.7—one can see that the top left star is missing a step in the x2 direction,
and another has no steps at all. Going back to the design in Figure 18.6, the reason can be
understood: the coordinate values in the Sobol’ sequence tend to repeat, which results in
some instances where a coordinate value is substituted with the same number, resulting in
Aj = Ai

B,j. These duplicates can however be accounted for, for example, by excluding them
from the design when running the model (to avoid unnecessary runs), then adding the

f
(

Ai
B

)
j
= f (A)j values where necessary. A further discussion on this point in the context

of screening is given in Section 18.5.3.

18.3.3 Example

To show how the Monte Carlo estimators described earlier perform at different values of
n, consider a simple polynomial example:

0 0
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0.6
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1
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FIGURE 18.7
Sample design used for estimating sensitivity indices–example points as in Figure 18.6.
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y = 3x2
1 + 2x1x2 − 2x3, (18.15)

where the coefficients have been chosen quite arbitrarily. To illustrate the behaviour of the
function with respect to its inputs, Figure 18.8 shows the scatter plots of y against x1, x2
and x3, using random uniform sampling over [0, 1]3. It is evident that x1 has quite a strong,
slightly nonlinear effect on y. Variable x2 has apparently quite a weak effect (there is little
discernable trend), whereas x3 has a slight negative effect. These trends are clearly reflected
in the coefficients of (18.15)—of course, normally one would not have the coefficients of an
analytical equation to examine. The analytical values of Si and STi are given in columns
3 and 5 of Table 18.1.

To estimate the sensitivities of the variables, a Sobol’ design is created in three dimen-
sions, assuming uniform distributions for x1, x2 and x3 for simplicity, and estimators (18.11)
and (18.12) are used. The only choice is what value of n, the number of sample points,
to use. Given that the Sobol’ sequence allows sequential addition of new points, one can
start with a small number of points, then gradually increase until numerical convergence
is observed. Figure 18.9 shows the convergence of these measures with n ranging from 8 to
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FIGURE 18.8
Scatter plots of the variables in the test equation (18.15).
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TABLE 18.1

Monte Carlo Estimates and Analytical Values of Si and STi of Polynomial
Function with n = 128

Variable Ŝi (MC) Si (Analytic) ŜTi (MC) STi (Analytic)

x1 0.7517 0.7568 0.7781 0.7720
x2 0.0503 0.0456 0.0604 0.0608
x3 0.1870 0.1824 0.1829 0.1824
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FIGURE 18.9
Convergence of the Si and STi of the polynomial equation (18.15) with increasing n. Lines represent, from top to
bottom, x1, x3 and x2, respectively.

1024. It is evident that the estimators converge quite quickly to an accurate estimate of the
sensitivity indices; even at the lowest n, the variables are already correctly sorted, and at
n ≥ 128, the indices have converged to two decimal places. For most applications of sen-
sitivity analysis, this would be sufficient accuracy. Table 18.1 shows the results at n = 128
compared to analytical values. Note that since there is a weak interaction between x1 and
x2, the STi of these variables is slightly higher than their respective Si values, due to the fact
that both ST1 and ST2 additionally include the interaction effect S1,2 (refer back to (18.8) and
(18.9) to see why). The value of S1,2 is not estimated here, though it can be deduced from
the table, noticing that x3 does not interact with any variables since S3 = ST3 (and hence
S1,3 = S2,3 = S1,2,3 = 0 ), therefore S1,2 = ST2 − S2 = ST3 − S3.

Despite the flexibility of Monte Carlo estimators, one should remember that the cost
is n(k + 2) model runs (see again Figure 18.6)—that is, in the previous example the total
number of model runs required was 128 × 5 = 640. While this is fine for fast models, for
large models which are slower to run, it may be impractical. In the following sections, some
alternative approaches are discussed that have lower computational requirements.
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18.4 FAST and the Random Balance Design

The FAST (Cukier et al. 1973, 1978), which was actually proposed around 20 years before
the Monte Carlo estimators described in the previous section, uses a transformation of the
input variables of the function (model) to represent a multivariate function as a periodic
function of a single frequency variable, s, which allows the function to be analysed using
the Fourier series. The transformation of each input variable into s uses a unique char-
acteristic sampling frequency which allows the contribution of each input to be assessed
using the tools of Fourier analysis, which give analytical expressions for variance-based
sensitivity indices (based on the Fourier series approximation). The advantage, com-
pared to the Monte Carlo method, is that the integrals required to calculate the sensitivity
indices, mean and variance (which are k-dimensional, see, e.g. (18.14)) can be expressed
as univariate integrals with respect to s. Thus, a full set of Si can be estimated from a sin-
gle FAST sample, which means that the computational cost can be lower. However, the
FAST approach relies on using the Fourier series to approximate the model output, which
requires assumptions of smoothness, and furthermore uses truncated series to estimate sen-
sitivity indices, which introduces estimation bias. A hybrid approach combines the concept
of FAST with random balance designs (RBDs), a form of experimental design first proposed by
Satterthwaite (1959)—this is described in Section 18.4.4. In the following, a description
of the transformation functions is given in Section 18.4.1, followed by the estimation of
sensitivity indices in Section 18.4.2. A recent overview of FAST literature can be found in
Xu and Gertner (2011).

18.4.1 Sampling Designs and Transformation of Variables

In order to apply the tools of Fourier analysis to the model, each input variable xi is
transformed into a periodic function of a single variable, s, in the following way:

xi = G (sin(ωis), ) i = 1, 2, . . . , k, (18.16)

where s is a variable in [−π,π], G is a specified transformation function, and ωi is an inte-
ger. The effect of this transformation is that uniformly sampling s within its range (i.e.
taking equally spaced values) results in oscillations in the corresponding sampled values
of each xi over its respective range. Figure 18.10 shows this effect on the following three
transformation functions:

xi = ai exp(bi sin(ωis)) (18.17)

xi = ai (1 + bi sin(ωis)) (18.18)

xi = 1
2

+ 1
π

arcsin (sin(ωis)) (18.19)

proposed, respectively, by Cukier et al. (1973), Koda et al. (1979) and Saltelli et al. (1999)
as functions that are intended to approximate uniform sampling over the sample space
X . Note, however, that functions (18.17) and (18.18) give higher densities of points at the
edges of the sample space; therefore, for truly uniform sampling, (18.19) is preferred. For
non-uniform input distributions, other transformation functions would be necessary. The
parameters a and b can be altered to give different ranges over xi, for example, in Figure
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FIGURE 18.10
Examples of transformations from s to x: (a) Equation 18.17, (b) Equation 18.18 and (c) Equation 18.19.

18.10, they have been adjusted to give xi ∈ [0, 1]. Note also that by varying ωi, one can
control the number of oscillations over the range of xi; therefore, ωi represents the search
frequency of each variable.

When all input variables are determined as functions of s, sampling uniformly over s
produces samples along a search curve over the input space of the xi. Figure 18.11 shows as
an example the search curve produced for two input variables, using the triangular trans-
formation given in (18.19), with ω1 = 1 and ω2 = 4. Notice that taking evenly spaced
values of s over [−π,π] results in values of x1, x2 that oscillate once over the range of x1 and
four times over the range of x2.

Clearly, a desirable property of the search curve is that it should be able to explore the
input space as efficiently as possible, in other words to generate a space-filling design.
Given a choice of transformation function, the extent to which the sampled points along the
search curve fill the input space is dependent on the choices of the ωi and n, the number of
sample points. To illustrate this, Figure 18.12 shows the points generated by transforming
s into two input variables with three different sets of search frequencies. Although in all
three cases n is the same, the space-filling properties of the three curves are very different.
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FIGURE 18.11
A two-dimensional example of a FAST search curve using a triangular basis function (18.19) and with ω1 = 1 and
ω2 = 4.

In particular, when the two frequencies share common factors (such as in Figure 18.12a,
where ω1 = 10 and ω2 = 20 = 2ω1), the input space is explored very poorly because the
curve repeats itself with a period of π/5. In contrast, in Figure 18.12c, where ω1 = 10 and
ω2 = 21, the only common factor is 1, which results in a better search curve because the
points are unique over the whole range of s. The problem of frequency selection is not as
simple as simply choosing, for example, large prime number values of ωi, because more
sample points are then required to adequately represent the search curve due to the Nyquist
criterion—this is explained in a little more detail in the following section. In fact, the choice
of the ωi requires a balance between higher frequency and lower sample size. Sets of ωi
that optimise the space-filling properties of the search curve, for given dimensionality and
sample size, can be found in Schaibly and Shuler (1973).

18.4.2 Calculation of Sensitivity Index Estimates

Given the transformation of variables, f (x) is now expressed as a function f (s) which is
periodic over 2π. As such it can be expanded as a Fourier series:

f (s) = A0

2
+

∞∑
r=1

(Ar sin(rs) + Br cos(rs)) (18.20)

with coefficients given as,

Ar = 1
2π

π�
−π

f (s) cos(rs) ds

Br = 1
2π

π�
−π

f (s) sin(rs) ds, (18.21)
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FIGURE 18.12
Search curves in two-dimensional space using transformation function (18.18): (a) ω1 = 10, ω2 = 20; (b) ω1 = 15,
ω2 = 21; and (c) ω1 = 10, ω2 = 21.

which can also be viewed as the amplitudes of f (s) at a given frequency r, or in other words,
the contribution of frequency r to the function. This provides the basis for FAST—the coeffi-
cients of the Fourier terms at r = ωi can be interpreted as a measure of sensitivity, because if
the function output has a strong component at frequency ωi, this implies that it is strongly
affected by input xi. The corresponding estimators for the coefficients in (18.21) are:

Âr = 1
n

n∑
j=1

f (sj) cos(rsj)

B̂r = 1
n

n∑
j=1

f (sj) sin(rsj). (18.22)
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The use of the Fourier series allows expressions for the variance and partial variances
of the output y. The expression for Var(y) can be given in terms of the coefficients of the
Fourier series as follows (Koda et al., 1979):

Var(y) = 1
2π

π�
−π

(
f 2(s)ds − E(y)2

)
ds

= 2
∞∑

r=1

(
A2

r + B2
r

)
. (18.23)

In practice, this expression is truncated to a maximum frequency R and is therefore an
approximation to the variance. Similarly, the partial variance of y, Varxi[Ex∼i(y|xi)] (as
discussed in Section 18.2), can be expressed in terms of the coefficients that correspond
to the frequency ωi and its multiples (harmonics) pωi, where p is a positive integer
(Koda et al. 1979):

Varωi = 2
∞∑

p=1

(
A2

pωi
+ B2

pωi

)
, (18.24)

which will again be truncated to a maximum order p = M, that is, the Mth harmonic
(multiple) of ωi. The calculation of first-order sensitivity indices proceeds by noting that
Si = Vωi/Var(y). A problem with (18.24) is that of interference: for higher values of p, there
will inevitably exist some pth harmonic ofωi that is the same frequency as a qth harmonic of
ωj (the sampling frequency of another input variable xj), such that pωi = qωj. This means
that the coefficients of this frequency would be counted in both Si and Sj, resulting in esti-
mation bias. However, the amplitudes of higher harmonics in (18.24) generally decrease,
so that if the ωi are carefully chosen, any interferences up to the truncation order will be
minimal.

As with Monte Carlo methods, the precision of the FAST estimates increases as n, the
number of sample points, increases. For FAST, n should be at least 2Rωmax + 1, where
ωmax is the highest frequency considered in the estimators (18.23) and (18.24), a limit which
is imposed by the Nyquist criterion (Nyquist 1928). The required n can therefore become
quite high as k increases, since higher frequencies are required to avoid interference. FAST
additionally suffers from a number of sources of bias—first, that the Fourier series used to
approximate the model must be truncated and, second, that for any given set of ωi, there
will be points in the input space that can never be sampled no matter how many sample
points are used. Although the Fourier series is known to converge to any periodic function
that is square-integrable (Carleson 1966) (the same property as the Monte Carlo estimators),
the existence of bias suggests that the Monte Carlo method should generally be preferred
when possible. Some further discussion on bias in FAST can be found in Xu and Gertner
(2011) and Tissot and Prieur (2012).

18.4.3 Extended FAST

An extension to FAST was proposed in Saltelli et al. (1999), which additionally allows the
estimation of the total effect indices discussed in Section 18.2. It proceeds by the obser-
vation that the set of frequencies not in the set of search frequencies and their harmonics
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(i.e. ω �∈ {pωi}; p = 1, 2, 3, . . . .; i = 1, 2, . . . , k) contains information on the residual vari-
ance that is unaccounted for by first-order effects, which means that it contains information
on the variance due to interactions of any order between variables (see again (18.3)). In the
configuration described earlier, however, there is no obvious way to attribute this residual
variance to interactions of particular inputs.

The proposal (known as extended FAST) is therefore to use a high-frequency ωi for the
ith variable and then to assign a set of low frequencies to all the remaining variables, such
that their frequencies and harmonics {pωj}M

p=1, j �= i, will be lower than ωi/2. The result
is that the information about the output variance explained by the x∼i variables, including
all interactions between them, is isolated in the frequencies below ω/2. By summing the
variances from all these frequencies, an estimator for Varx∼i[Exi

(
y | x∼i

)] is obtained, which
can be directly used to estimate STi—see (18.6).

The obvious drawback to this method is that, whereas the estimation of all the Si
can be performed with one search curve, to estimate all the STi requires k search curves.
However, the approach has still been shown to be of at least comparable efficiency to the
Monte Carlo approach given in Section 18.3 (Saltelli et al. 1999), although the sources of bias
discussed in the previous section mean that the Monte Carlo method may still be preferable
in some cases.

18.4.4 Random Balance Designs

Since different frequencies must be used to investigate each variable, the computational
cost of FAST quickly rises with k (albeit less than with the Monte Carlo approach), because
higher frequencies are required to avoid interferences between harmonics. Due to the
Nyquist criterion, this requires more sample points. The RBD approach to FAST (Tarantola
et al. 2006) circumvents this to some extent by using a single frequency ω for all inputs.
With no further modifications here, the points would be very poorly distributed in the
sample space—in fact they would be limited to a straight line (see Figure 18.13). The key
to RBD, which was first proposed as an approach to experimental design back in 1959 by
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FIGURE 18.13
A two-dimensional example of an RBD sample before and after scrambling of coordinates, with ω1 = ω2 = 1.
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Satterthwaite (1959) and Budne (1959), is to then take random permutations of the coordi-
nates of these points. As an example, seven points for two input variables are generated
using transformation (18.18). Scrambling involves independently randomly permuting
columns as follows:

x1 x2 x1 x2
0.50 0.50 0.50 0.59
0.18 0.18 0.18 0.18
0.14 0.14 0.14 0.77
0.45 0.45 =⇒ 0.45 0.14
0.77 0.77 0.77 0.45
0.91 0.91 0.91 0.50
0.59 0.59 0.59 0.91

where the first two columns represent the sample before scrambling and the last two show
the sample after scrambling. These points are also illustrated in Figure 18.13—notice that
the scrambled points fill the input space quite well because the design is very similar to a
Latin hypercube (see Chapter 17).

In order to calculate sensitivity indices, the model is run at the points given by the RBD,
and then for a given input i, the points are sorted into increasing order with respect to xi,
which recreates a periodic function of xi. Then the first-order sensitivity indices can be cal-
culated using (18.22) through (18.24) in the same way as the standard FAST method. The
advantage of RBD is that, since the same frequency can be used for all inputs (which can
be low, e.g. ω= 1), the number of sample points required is less than conventional FAST.
However, the drawback is that when estimating the effect of xi, the random scrambling of
the input variables generates random noise in the signal of xi, resulting in a biased estima-
tion of Si. A bias-corrected estimator for sensitivity indices of any order has in fact been
proposed by Tissot and Prieur (2012), where a more detailed discussion on bias in RBD can
also be found. Readers might also want to refer back to the original extensive discussion
on bias and other issues surrounding RBD (in the general context) after Satterthwaite’s
original paper (Youden et al. 1959). RBD has also been extended to compute total effect
indices—readers are referred to Mara (2009) for more details.

18.5 Screening Designs

In the case where the user has access to the model, but it is expensive to run and there are
a large number of input variables (Case 1C, see Section 18.1.2), screening methods offer
a computationally efficient way of identifying influential and non-influential variables.
In this setting, it is not possible to use emulators (see Section 18.6) because they become
increasingly expensive to fit as the number of model inputs increases, so are not suit-
able for high-dimensionality problems. Typically, screening methods are used in the factor
fixing setting, that is, to eliminate uninfluential variables before applying a more infor-
mative analysis to the remaining set (thus reducing the dimensionality—see again
Figure 18.2), although they can also be used as a sensitivity analysis in their own right.
The reason a user might prefer a variance-based measure, however, is because screening
measures do not have a clear interpretation in terms of contribution the output variance,
in contrast to Si and STi.
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FIGURE 18.14
Basic OAT design in two dimensions; red crosses indicate design points.

The most common screening approach, suggested by Morris (1991), is an extension of a
basic method of sensitivity analysis, the OAT design. Basic OAT designs simply involve
varying one input while keeping all other inputs fixed at nominal (mean) values (see
Figure 18.14). While this gives some information about the behaviour of the model, it is
a very limited analysis because the sensitivity of input variables is only seen at the nom-
inal value of the remaining inputs, and the extremities of the input space (i.e. the corners
in Figure 18.14) are not explored. Morris’s approach, which will be called the elementary
effects method, overcomes this problem by performing a number of OAT designs at random
locations in the input space, rather than being restricted to nominal values. In this way
nonlinearities and interactions can be accounted for by observing how the sensitivity of an
input variable varies when moving about the input space.

18.5.1 Winding Stairs Design

The elementary effects design begins by dividing the range of each input into M equally
spaced intervals (M being chosen by the analyst), such that the input space is divided into
a grid of points. The design then proceeds by selecting a random point from this grid as a
starting point, then moving in steps of � in each coordinate direction, where � is a prede-
termined multiple of 1/(M − 1). This design was stated in general terms by Morris (1991),
but one implementation, known as the winding stairs design in some literature (Campolongo
et al. 2011), is given here as an example. The design proceeds as follows:

1. A random point on the grid is selected as the first design point.
2. The first input, x1, is varied by an amount �j, which is a randomly chosen multiple

of the intervals in the grid, while keeping all other inputs fixed. This is the second
design point.

3. Using the previous design point as a starting point, the next input, x2, is varied by
the same amount �j, keeping all other inputs fixed.
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FIGURE 18.15
A trajectory screening design in three dimensions, with n = 5.

4. Step 3 is repeated for all k inputs.
5. Steps 1–4 are repeated for j = 1, 2, . . . , n (n is selected by the user).

This design results in n trajectories, each consisting of k + 1 points (see Figure 18.15 for an
example in three dimensions with n = 5). Because each trajectory is built by moving just
one variable at a time, it is essentially a form of an OAT design. However, in the elementary
effects design, there are n OAT designs in each xi direction, at different points in the input
space, which is much more informative than a single OAT design. The efficiency of the
winding stairs design can be improved slightly by using the last point of the jth trajectory
as the starting point of the (j + 1)th trajectory. This would then form a single continuous
trajectory with cost nk + 1 instead of n(k + 1) in the case of the design stated here in Steps
1–5, although this may come at the expense of exploring the input space less thoroughly.
Other variations of these OAT designs are discussed by Morris (1991), including clustered
designs which can use fewer sample points to calculate the same number of elementary
effects—readers are referred to the original article for more details.

18.5.2 Measures

Let x(i)
j and x(i′)

j be, respectively, a point in the input space and a point that differs from x(i)
j

only in the value of xi. The point x(i)
j will therefore be the preceding point to x(i′)

j in the five
steps just described. Sensitivity is then estimated for the ith input using the n elementary
effects {ξji}n

j=1, where

ξji =
f
(

x(i′)
j

)
− f

(
x(i)

j

)
�j

=
f
(

x(i′)
j

)
− f

(
x(i)

j

)
∣∣∣x(i′)

ji − x(i)
ji

∣∣∣ (18.25)
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where j is the index over trajectories. The first measure of sensitivity for the ith input is thus
estimated as the mean of the ξji:

μ̂i = 1
n

n∑
j

ξji. (18.26)

A further useful measure of nonlinearity and interaction is given by the variance σ2
i of the

elementary effects, which is estimated as follows:

σ̂2
i = 1

n − 1

n∑
j

(ξji − μ̂i)
2. (18.27)

The logic here is that if the response of the output to a given input were perfectly linear, the
elementary effects would be identical anywhere in the input space (and hence σ̂2

i would be
zero); in the nonlinear case, the opposite would be true.

A drawback with the sensitivity measure given in (18.26) is that if the main effect of an
input is non-monotonic, the average of the elementary effects may be close to zero even
though, individually, they may be significant positive or negative values. The result is that
the measure μ̂i could potentially miss influential variables (although one would observe a
high value of σ̂2

i ). A modified measure μ∗, proposed in Campolongo et al. (2007), suggests
the use of the mean of the absolute values of the elementary effects, that is,

μ̂∗
i = 1

n

n∑
j

|ξji|. (18.28)

By using μ̂i, μ̂∗
i and σ̂2

i in conjunction, one can assemble a picture of the strength and nature
of the effect of each input at a low computational cost.

18.5.3 Radial Design

A drawback of the winding stairs design is that there is no guarantee that the trajectories
are well spaced and that the input space has been well explored given the number of runs.
A glance at the design in Figure 18.15 shows that points can sometimes be close to one
another, therefore inefficiently exploring the input space. An alternative implementation of
this design uses a so-called radial configuration based on Sobol’s LPτ sequence to achieve
a screening design with better-spaced trajectories (Campolongo et al. 2011). This design is
in fact almost exactly the same as that used in variance-based sensitivity analysis but will
be repeated here for clarity.

To construct the radial design, an LPτ sequence of n points in 2k dimensions is generated
and written as an n×2k array (k being the number of model inputs). Let the first k columns
be called the baseline points, that is, n points in k dimensions which will be denoted as a
matrix A, with rows (individual points) {Aj}n

j=1. The remaining k columns are called the
n auxiliary points in a matrix B of the same size, with rows {Bj}n

j=1. For a given baseline
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point Aj and auxiliary point Bj, a radial configuration of k + 1 points is constructed as the
following:

Aj,1, Aj,2, Aj,3, . . . , Aj,k

Bj,1, Aj,2, Aj,3, . . . , Aj,k

Aj,1, Bj,2, Aj,3, . . . , Aj,k

Aj,1, Aj,2, Bj,3, . . . , Aj,k

...
Aj,1, Aj,2, Aj,2, . . . , Bj,k

where, for example, Aj,1 is the first coordinate of Aj, the jth row of A. This configuration
is repeated for j = 1, 2, . . . , n, resulting in n sets of k + 1 points: a total of n(k + 1) model
runs altogether. Notice that each set of k + 1 points (as shown earlier) defines a star with
Aj as its centre and the other points at steps in each coordinate direction, defined by the
coordinates of Bj. Figure 18.17 shows an example of the radial design in three dimensions,
with n = 5, and Figure 18.16 shows the construction using the A and B matrices. Comparing
Figures 18.15 and 18.17, one can see the strengths of each design: the spacing between
trajectories/stars is better in the radial design because the centre points are guaranteed to
be well spaced, being drawn from the Sobol’ sequence. On the other hand, the spacing of
points within each trajectory/star is arguably better with the winding stairs design, since
points are allowed to differ in more than one variable. Which of these properties is more
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Construction of the first three points of the radial design based on the Sobol’ sequence (design shown in
Figure 18.17). Values from the B matrix are shown in grey.
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FIGURE 18.17
A radial screening design in three dimensions, with n = 5.

important, and whether there is perhaps an advantage in combining the two designs, is left
as an open question.

Since in Sobol’ sequences the values of coordinates tend to repeat (see the example of the
sequence in Figure 18.6), it is recommended that the baseline point Aj is not paired with Bj,
but rather with a different row; otherwise, there could be no perturbation in certain dimen-
sions (this problem is also mentioned in Section 18.3). It has been suggested that pairing
Aj and Bj+δ, where δ = 4 gives good results (Campolongo et al. 2011), although there is
no reason not to consider higher values of δ or to program the algorithm to skip any repli-
cated values. In any case, this row shift means that for a design of n radial configurations,
one needs a Sobol’ sequence of n+δ points in 2k dimensions. This still has a computational
cost of n(k + 1) runs because the first δ rows of B and the last δ rows of A are discarded.
Indeed, this row-shift strategy could also be applied to the estimators for the variance-based
sensitivity indices discussed in Section 18.3, but is not generally deemed to be an issue since
when estimating STi, one is in the domain of Case 1A (a cheap computer model that can be
run thousands of times) where an extra few model runs make little difference, whereas in
the screening setting (Case 1C), one has to conserve model runs as much as possible.

The elementary effects method is often used in the factor fixing setting (identifying input
variables that have little or no effect on the model output), with the possible intention of
estimating sensitivity indices on the remaining set of important variables via Monte Carlo
methods. An advantage therefore of using the radial design, noted in Campolongo et al.
(2011), is that since it is effectively the same as the Monte Carlo design, the points can be
re-used as the basis of a Monte Carlo design for estimating sensitivity indices. Alternatively
(and perhaps more realistically), one might want to fit an emulator to the reduced set of
input variables, since the computational cost of Monte Carlo methods is likely still pro-
hibitive even after screening. In that case, the OAT-type designs discussed in this section
(both winding stairs and radial) are wasteful since if they are projected onto the reduced-
dimensionality subspace of the set of screened inputs, for every input that is discarded,
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FIGURE 18.18
Collapse of radial design when projected onto a subspace: (a) a radial design in three dimensions; (b) the same
design projected onto the subspace of x1 and x3.

n model runs are lost. To see why this is, consider the example in Figure 18.18. A radial
design is built in three dimensions, the elementary effects method is applied, and x2 is
found to be unimportant. It is desired to examine the remaining inputs (x1 and x3) in more
detail using an emulator. When the design is projected into the subspace of x1 and x3, the
points that differ only by a step in the x2 direction, a total of n points, one for each star, are
now duplicate points. A recent approach that overcomes this problem uses a set of sim-
plex designs to estimate screening measures (Pujol 2009), which have the property that all
design points are retained after screening out unimportant variables.

18.5.4 Example

To show a simple example, the design shown in Figure 18.17 is used to estimate the μi, μ∗
i

and σ2
i measures on a test function which is defined as

y = 3x2
1 + 2x1x2 − 4π sin(x3). (18.29)

Figure 18.19 shows scatter plots of the function values against each input, using random
uniform sampling from [0, 1]3 to give a visual idea of the behaviour of the function. The
screening design is run with n = 5 and k = 3 (exactly as in Figure 18.17); a cost of 20 model
runs. Figure 18.20 shows the results of the screening analysis. Input x2 is clearly the least
influential by any measure, and is relatively linear, having a small value of σ̂2

i . Similarly,
x1 is quite linear (having also a small value of σ̂2

i ) but is judged to be more important by
its μ̂i and μ̂∗

i measures. In both these cases, μ̂i = μ̂∗
i , which indicates monotonicity. For x3,

one can observe a much higher σ̂2
i value, indicating a strong nonlinearity. Finally, the fact

that μ̂3 �= μ̂∗
3 indicates that the model is non-monotonic with respect to x3. These results

are reflected by the scatter plots in Figure 18.19.
Note that the screening measures do not have an interpretation with regard to the vari-

ance of the output (as compared to the Si and STi measures from Section 18.2), but they
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Scatter plots for test function (18.29). Note that these are generated using random uniform sampling from
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allow the user to sort between influential and uninfluential variables. Consider also that
the example given is trivial, since screening is generally for use with high-dimensional
problems, but even with 20 runs, the order and to some extent the magnitude of impor-
tance of each variable can be distinguished with these relatively simple measures, as well
as information regarding the linearity and monotonicity.

18.5.5 Discussion

It is interesting to consider briefly the similarity of the estimator of μ∗ in (18.28) and the
estimator for STi given in (18.12). Let xj be the jth point of a random or quasi-random

sequence in the input space, and let x(i′)
j be a point that differs from xj only by the ith vari-

able. Let Ex∼i[Varxi

(
y | x∼i

)], the numerator of STi, also be denoted as VTi as before. Then
the estimators for μ∗

i and VTi can be stated in similar terms as follows:

μ̂∗
i = 1

n

n∑
j=1

∣∣∣ f (x(i′)
j ) − f (xj)

∣∣∣
|x(i′)

ji − xji|

V̂Ti = 1
2n

n∑
j=1

∣∣∣ f (x(i′)
j ) − f (xj)

∣∣∣2
(18.30)

where the estimator for μ∗
i has been written slightly differently compared to (18.25) and

(18.28) since in the radial design all k elementary effects in each star use the same centre
point, xj. Notice that both measures rely on averages of model outputs from multiple OAT
designs conducted at different points in the input space. The only differences (up to a pro-
portional constant) are that μ̂∗

i uses the absolute value of (f (x(i′)
j ) − f (xj)), whereas ŜTi uses

the square, and μ̂∗
i also incorporates the information about the distance between x(i′)

j and

xj, which is instead discarded by ŜTi.
Another very similar related measure of sensitivity that has been recently the subject

of interest, under the heading of derivative-based global sensitivity measures (DGSMs), is the
integral of squared derivatives, that is, a measure νi = �

X (∂f/∂xi)
2dx (Kucherenko et al.

2009). Using the notation just defined, its estimator is stated as

ν̂i = 1
n

n∑
j=1

∣∣∣ f (x(i′)
j ) − f (xj)

∣∣∣2

|x(i′)
ji − xji|

, (18.31)

with the difference that the x(i′)
j and xj points are defined to be very close to each other to

provide as close an approximation as possible to the partial derivative at xj. Some further
observations on the similarities of these three measures, and further information on DGSM,
are found in Sobol and Kucherenko (2009).

Connections can also be found between the radial design (Figure 18.17) and the Monte
Carlo design for estimating Si and STi (Figure 18.7) and their respective design matrices
(Figures 18.6 and 18.16). One can see that the two designs are conceptually identical, with
the only difference being that the screening design here uses a shift of the B matrix to avoid
replacing a coordinate with an identical value. Recalling the discussion on the similarity of
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the estimators of μ∗
i and STi in the previous section, it is evident that the elementary effects

method and the Monte Carlo estimation of sensitivity indices have much in common.
Finally, in some cases, the number of input variables may be so large or the cost of run-

ning the model so high that even the designs here may be too expensive. In that case, one
option available to the analyst is to use grouped designs, where inputs are grouped and
designs are built with respect to each group rather than to each input. In that case, one
would have a measure of sensitivity for each group but be ignorant of the relative sensi-
tivity of inputs inside each group. This concept is discussed more in Watson (1961), Morris
(1991), Campolongo et al. (2007) and Moon et al. (2012).

18.6 Emulators

In Case 1B (the model is expensive to run but the dimensionality is not too high) and Case 2
(points are given and the analyst cannot specify new points—refer back to Section 18.1.2) a
general method is presented here which adopts a data-modelling approach. The concept is
to fit an emulator (a relatively simple mathematical function, also known as a metamodel) to
the data, which behaves in the same way as the model itself. The emulator can then be used
to estimate the model output at any point in the input space, allowing analytical or Monte
Carlo estimation of the Si and STi (see Section 18.3) at a considerably lower computation
cost. An alternative approach is to project the data onto a single axis xi (i.e. create k one-
dimensional scatter plots) and attempt to infer the main effect E(y|xi) using a smoothing
regression approach, for example, kernel regression. This latter approach is discussed in
Section 18.7.

The central idea of emulation is to find some relatively simple function η (the emulator)
such that it closely approximates the output of the model f at any point in the input space,
that is, η(x) ≈ f (x), ∀ x ∈ X . If η is considerably cheaper to evaluate at a given x than the
original model but produces sufficiently similar results for any point in the input space,
then it can be used to generate a very large number of estimated model output values, for
example, at the points specified by a Monte Carlo design for estimating Si and STi (see
Section 18.3). Even better, if η is analytically tractable, it can be used to calculate sensitivity
indices analytically, because (18.2) and (18.6) can be expressed as integrals which can be
solved if η(x) is sufficiently simple. This then bypasses Monte Carlo methods altogether
and the associated approximation error of numerical integration.

The four steps associated with building an emulator are as follows:

1. Select a type of emulator, η, that is appropriate for emulating the model f (x).
Options could be as simple as a linear regression, to more complex methods such as
Gaussian processes (GPs), neural networks or smoothing splines. A brief descrip-
tion of some emulators follows in this section, but for a more detailed treatment,
one should refer to one of the many books on the subject, such as Bishop (2006).

2. Sample (run) the model f at appropriate points in the input space to provide
training data for the emulator. This will be a set of n points {x1, x2, . . . , xn} and n
corresponding model outputs {y1, y2, . . . , yn} where the location of the inputs is
usually chosen to be a space-filling design or optimal design (see Section 18.6.3).
Emulators can however be fit to any sample of data (thus can be used for Case 2
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problems) although in areas of the input space with very few training data they
will be less accurate.

3. Use the training data to estimate any parameters or hyperparameters associated
with the model (this is called training the emulator).

4. Check the accuracy of the estimator using methods such as cross-validation (an
approach which involves training the emulator on a subset of the training data
and then comparing the predictions of the emulator with the known model runs
in the remaining set of data).

A large number of different emulators are available—see, e.g. Bishop (2006); a comparison
of some of these methods in the context of sensitivity analysis can be found in Storlie and
Helton (2008). Once an appropriate emulation method is selected, the accurate estimation
of parameters can be achieved provided that a sufficiently large sample of training data
(the given points) is available. How large this sample needs to be is dependent on the type
of emulator and the complexity of the model f and increases dramatically with the number
of input variables (the so-called curse of dimensionality). For this reason, emulator-based
approaches are best suited to situations with few input variables—perhaps fewer than
thirty, depending on the emulator—which demand fewer model evaluations for training
data. Higher dimensionality problems can sometimes be brought into the reach of emula-
tors by a precursory screening analysis (see Section 18.5) to reduce the number of variables
(refer back to Figure 18.2). While there are many emulators available in the literature, the
following sections give some brief information on only a small subset to give a flavour of
the field.

18.6.1 High-Dimensional Model Representation

A significant proportion of emulation methods rely on a technique known as high-
dimensional model representation (HDMR), which seeks to approximate the model by
performing a functional decomposition of f into orthogonal terms and then truncating the
series (Rabitz and Alis 1999; Li et al. 2002). This has already been given in (18.4) and is
restated as

f (x) = f0 +
∑

i

fi(xi) +
∑

i

∑
j>i

fi,j(xi, xj) + · · · + f1,2,...,k(x1, x2, . . . , xk)

≈ f0 +
∑

i

fi(xi) +
∑

i

∑
j>i

fi,j(xi, xj) (18.32)

where the series is truncated after the second-order terms, based on the (empirical) observa-
tion that the effect of third-order and higher interactions on the model output is negligible
in many models. The task then remains to find suitable orthogonal functions to approxi-
mate the fi(xi) and fi,j(xi,j) (some approaches are discussed in Li et al. (2002)). Orthogonality
is satisfied for any two components fu(xu), fv(xv) of the functional decomposition in (18.32)
when

�
X fu(xu)fv(xv)dx = 0, where u, v ⊆ {1, 2, . . . , k} and, for example, xu = {xi}i∈u. The

advantage of HDMR is that it alleviates to some extent the problem of dimensionality, since
a model with many inputs can be approximated by a sum of one- and two-dimensional
terms which are relatively easy to fit.
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One method for approximating the terms in the functional decomposition (18.32) which
is relatively simple is to use a series of orthogonal polynomial functions (Draper and Smith
1981; Li et al. 2002; Sudret 2008). These take the form

fi(xi) =
∞∑

r=1

α(i)
r φr(xi)

fi,j(xi, xj) =
∞∑

p=1

∞∑
q=1

β
(i,j)
p,q φp,q(xi, xj) (18.33)

where φ are terms from a suitable series of orthogonal polynomials and α and β are their
corresponding coefficients. Of the many series of orthogonal polynomials, it is typical to
use either the Legendre or the Hermite types (Bayin 2006). Clearly, it is necessary to truncate
the infinite series of each of the equalities in (18.33) to a certain order M, which is usually
done by discarding terms after the third order based on a heuristic assumption that higher
orders are negligible (Li et al., 2002) or, in some cases, by sequentially adding terms and re-
estimating coefficients until estimated sensitivity indices appear to converge (Zuniga et al.
2013). This gives the approximated functions as follows:

fi(xi) ≈
M∑

r=1

α̂(i)
r φr(xi)

fi,j(xi, xj) ≈
M∑

p=1

M∑
q=1

β̂
(i,j)
p,q φp,q(xi, xj) (18.34)

where the estimates of the coefficients α and β are obtained by minimising the squared dif-
ference between the terms in (18.34) and their counterparts in the HDMR decomposition
one at a time. This minimisation problem can be expressed as a series of integrals which can
be solved by Monte Carlo integration (Li et al. 2002). The HDMR emulator can then be built
by assembling the terms from (18.34) into the truncated representation in (18.32). How-
ever, due to the simplicity of the orthogonal polynomials, it is possible to derive analytical
expressions for Si and Si,j, which are as follows:

Ŝi =
∑∞

r=1(α̂
(i)
r )2

V̂ar(y)
(18.35)

Ŝi,j =
∑∞

p=1
∑∞

q=1(β̂
(ij)
pq )2

V̂ar(y)
(18.36)

where the summations are again truncated to the same orders used in (18.34). STi may
be approximated from the sum of Si and its second-order interactions, based on the same
assumption used in (18.33) that interactions above the second order do not contribute sig-
nificantly to the model output (and therefore by extension to Var(y)). The variance term
V̂ar(y) can be calculated either from an analytical expression similar to those for the sen-
sitivity indices, or from the original sample data. The drawbacks to the use of orthogonal
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polynomials are that the HDMR representation must be truncated, then a further trunca-
tion is necessary of the polynomial series. Higher order polynomials can be used, but this
requires the estimation of more coefficients, each of which has an associated Monte Carlo
error, and tends to increase the error rather than diminish it (Li et al. 2002).

A somewhat related method to HDMR with orthogonal polynomials is called polynomial
chaos expansion, which is an approach which involves representing the random variable of
the model output, y, as a function of other random variables (the model inputs x) via a
polynomial expansion in orthogonal polynomials. The details of this method will not be
explored here, but the reader is referred to Sudret (2008) for details on the methodology in
the context of sensitivity analysis.

Another more complex approach for approximating functions that has been used with
considerable success is the use of smoothing splines (Ratto and Pagano 2010). Smoothing
splines are most commonly used on univariate data but can be extended to the multivariate
case by the use of HDMR decompositions. In the following short introduction, the univari-
ate case is therefore described for simplicity. A smoothing spline model assumes that the
underlying function to be emulated is continuous and has a continuous first derivative
and further that the second derivative is square-integrable. The smoothing spline estimate
arises from considering the function g that minimises the following:

1
n

n∑
j=1

{yj − g(xj)}2 + λ

1�
0

{g′′(x)}2dx. (18.37)

The first term in this trade-off expression is simply the sum of squared errors between the
training data and the emulator g—if the function were to pass through every data point
(exact interpolation), this term would be zero. The second term expresses the integral of
the square of the second derivative of g, which is a global measure of roughness, and λ is
a tuning parameter that controls the weighting between the two terms. Overall therefore,
the expression summarises the trade-off between interpolation and model simplicity. The
solution to this minimisation problem can be shown to be a natural cubic spline, with knots
(joins between the local cubic functions) at each of the data points. Natural cubic splines
are simply local cubic polynomial functions between each data point and the next, with the
constraints that the global function is continuous and the first derivative is continuous at
knots. Since multivariate spline emulators rely on HDMR decompositions, however, esti-
mates of total effect indices STi are difficult since the HDMR series is truncated (usually
neglecting third-order and higher interactions), so higher order interactions that may con-
tribute to STi are not accounted for. A common approximation is therefore to assume that
STi ≈ Si + ∑k

j=1 Si,j.
The basis functions of splines as described earlier are not mutually orthogonal and there-

fore cannot be used in their standard form as the components of an HDMR emulator
(Li et al. 2002). However, a class of spline methods known as smoothing spline ANOVA models
allows the construction of mutually orthogonal spline basis functions via the reproducing
kernel Hilbert space approach, which is discussed extensively in Gu (2002).

An extension of multivariate splines, known as adaptive component selection and
shrinkage operator (ACOSSO), uses a modified version of (18.37) that uses norms rather
than square-norms and also includes the integral of the first derivative of g (Lin and Zhang
2006). The result is that terms in the HDMR decomposition that contribute very little to the
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function are eliminated, resulting in a simpler and more computationally efficient emula-
tor. This approach has also been combined with state-dependent parameter regression, as
described in Ratto et al. (2007). MATLAB� scripts for performing sensitivity analysis with
this approach can be found in European Commission (2012).

18.6.2 Gaussian Processes

Another emulator that is widely used in sensitivity and uncertainty analysis is a GP, oth-
erwise known as kriging. GPs are widely used in the machine learning community as a
sophisticated form of nonlinear regression and classification (Rasmussen and Williams
2006). In short, a GP is a distribution over functions, that is, the random variable of the
distribution is a function rather than a single number or fixed-length vector. Instead of
returning only a point estimate ŷ for any given input point x (as in a standard regres-
sion), the GP returns a specification for a Gaussian probability distribution (a mean and a
variance). Figure 18.21 shows an example of a simple one-dimensional GP fitted to a few
points from a sine wave. Notice that at any value of x the output y is estimated by the GP
as a predicted mean value (which forms a curve over the range of x) and a variance, here
plotted as plus/minus two standard deviations of the predictive distribution.

GPs are fitted to training data following a Bayesian procedure. A prior distribution over
functions is specified, which is then conditioned on the training points to give a poste-
rior distribution over functions. Figure 18.21 shows an example of this process applied to
data from a noisy sine wave—Figure 18.21a shows samples from the prior distribution
over functions, and Figure 18.21b shows the posterior distribution over functions after
conditioning on the training data.

The specification for the GP includes a number of hyperparameters. These may be esti-
mated, for example, by plug-in estimators, for example, by using maximum likelihood
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FIGURE 18.21
GP examples: (a) samples from the prior distribution over functions and (b) the GP conditioned on randomly
generated points from a sine wave. The dotted line is the underlying sine function, the solid line is the fitted mean
of the GP, and the grey region represents 95% prediction intervals.
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estimation—this effectively treats the hyperparameters as known. Alternatively, one can
assign prior distributions to hyperparameters and then integrate them out (marginalise
them) either analytically or using Markov chain Monte Carlo methods—(see Bishop 2006
for more information on Bayesian inference). In this full Bayesian framework, the confidence
intervals of the GP also include the uncertainty in the estimation of the hyperparameters.

GPs have the advantage that they do not invoke the HDMR assumption (of neglect-
ing higher order interactions; see (18.32)) and as result can be used to estimate sensitivity
indices of all orders, including the STi. A further useful property of the GP is that, given
certain assumptions, estimated sensitivity indices can be calculated analytically (Oakley
and O’Hagan 2004; Becker et al. 2012). Another extremely useful property is that, since the
GP is a probabilistic emulator, sensitivity indices can be stated with confidence intervals
which account for the uncertainty in the fit of the emulator (and also the uncertainty in
the hyperparameter estimation, when Bayesian inference is used). However, perhaps the
main weakness of GPs is that the cost of training scales poorly with n, the number of train-
ing data, since it involves the inversion of a n × n covariance matrix at a cost of the order
of n3. This limitation impacts on the dimensionality of the problems to which GPs can be
applied, since more training data are required as the dimensionality increases. Added to the
fact that the estimation of hyperparameters becomes increasingly expensive as the dimen-
sionality increases, GPs tend to encounter problems emulating models with k > 30 inputs
or so, depending on computational resources (this is however the case with all emulators,
to some extent). A number of techniques are being developed to alleviate this problem (see
Rasmussen and Williams (2006) for some examples). Some fairly recent additions in the
field of GPs with respect to sensitivity analysis include a method of automatically screening
out unimportant variables using the correlation parameter in the covariance function (see
Linkletter et al. 2006, based on Welch et al. 1992), a method based on screening variables in
groups using GPs (Moon et al. 2012) and the use of multiple GPs divided by decision trees to
allow for discontinuous responses (Gramacy and Taddy 2010; Becker et al. 2013) (available
as an R package). A very good general online resource on many aspects of GPs, emula-
tion and sampling can be found at the Managing Uncertainties in Complex Models (MUCM)
Toolbox (2013).

As an example of how an emulator may reduce the number of model runs required for
sensitivity analysis, consider again the simple polynomial from (18.15). Using 128 points
of the Sobol’ sequence over the unit cube, a GP was trained (i.e. the hyperparameters
of the mean and covariance functions were estimated using the training data) and esti-
mated sensitivity indices inferred analytically from the resulting posterior distribution.
Table 18.2 shows the results. The GP is achieving accuracies of three or more decimal places
on only 128 points—recall that the Monte Carlo estimator, for a similar level of accuracy,
requires several thousands of runs per variable; therefore, the GP is at least an order of
magnitude more efficient. However, the GP and other emulators are only as good as their

TABLE 18.2

Comparison of Si and STi Estimates from a GP Regression against Analytical Values

Variable Ŝi (GP) Si (Analytic) ŜTi (GP) STi (Analytic)

x1 0.7566 0.7568 0.7715 0.7720
x2 0.0456 0.0456 0.0605 0.0608

x3 0.1829 0.1824 0.1830 0.1824
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fit to the data: here the polynomial function is a smooth, well-behaved function, which is
an easy data-modelling problem. For data that are heteroscedastic, discontinuous or of
varying smoothness, the emulators are likely to be much less reliable. Additionally, they
scale poorly with dimensionality. However, in the cases where the model gives a relatively
smooth output (which appears to be the majority of physical models), emulators can offer a
powerful solution to the problem of analysing uncertainty and sensitivity for computation-
ally expensive models. For more detailed information on GPs, please refer to Rasmussen
and Williams (2006) and Chapter 16.

Overall, there is no “best” emulator available. The approach will depend on com-
putational resources, sample size and model dimension, amongst other things. Both
Bishop (2006) and Storlie and Helton (2008) are recommended as background reading. Fur-
thermore, it is essential to test the fit of any emulator by methods such as cross-validation.

18.6.3 Custom Sampling for Emulators

Although the points were considered as given in the discussion earlier, it can happen
that the analyst has the possibility to design their own set of training data for fitting an
emulator. This can be the case when, for example, the analyst only has a small number of
input variables but a very computationally expensive model (Case 1B in Section 18.1.2).
In this scenario, it makes sense to go directly to an emulator approach, since pure Monte
Carlo would be too expensive and screening too inaccurate.

Experimental designs for fitting emulators can be divided into two categories—space-
filling designs and model-based designs. In the former, the design is constructed to fill
the sample space as evenly as possible, which is to say that points should be as far apart
from each other as possible. The reasoning for this is that first, it is required to capture
the behaviour of the model over the whole input space with as few points as possible.
Second, assuming that the output of the model is deterministic and smooth with respect to
its inputs, little information can be gained by having points close to each other (since the
outputs will be very similar). For this reason, purely random sampling is not an efficient
design.

For a general-purpose design for fitting an emulator, a space-filling design such as the
Sobol’ sequence discussed in Section 18.3 is a good choice. Sobol’ designs have a low-
discrepancy property that avoids clumping of points and allow the sequential addition
of new points. For other space-filling designs, the reader is referred to Chapter 17 or
Niederreiter (1992).

An even more sophisticated approach is to use optimal design. In this approach, the design
is constructed so as to optimise some emulator-dependent criterion of interest, thus tailor-
ing the design to the requirements of the emulator. For example, a popular criterion, called
D-optimality, is to select design points which minimise the variance of the estimators of the
emulator parameters. Another way to select design points is to minimise the maximum
variance of the emulator prediction at any given input point (G-optimality). Note however
that for emulators based on linear models or stationary GP, these designs are not depen-
dent on the output of the model, only on the form of the emulator and the values of its
parameters. See Section 2.3 for more information on D-optimality.

A further approach to building designs for emulators is to construct them sequentially.
One starts with an initial design with a few input points (e.g. a space-filling or optimal
design) and runs the model at these points. The emulator is fitted to this training data
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(i.e. its hyperparameters are estimated), then the next input point is selected as the point
which optimises some criterion of interest. An example, for a GP, would be to choose the
point which returns the highest predictive variance. This new point is then run through the
model and used to re-estimate the hyperparameters. The procedure is repeated, choosing
each time the point with the highest predictive variance, until a design with a sufficient
number of points is created. The advantage of the sequential approach (known as adaptive
design) is twofold—first, the output values will influence the optimum placement of new
points, so knowledge of previous points will produce a more effective design than one that
is constructed in one go. Second, by proceeding in small steps, one can generate exactly the
required number of points to reach some level of accuracy of interest, perhaps measured
by cross-validation. More information on adaptive sampling can be found in Gramacy and
Lee (2009).

The theory of model-based designs is a large field of research that is beyond the remit
of this chapter; therefore, the reader is referred to Atkinson et al. (2007) for a good general
resource. There is also a strong interest in Bayesian approaches to optimal design; a review
can be found in Chaloner and Verdinelli (1995).

18.7 Scatter Plot Smoothing

A useful approach for estimating first-order sensitivity indices with given data is based
on one-dimensional nonlinear smoothing regression. From a computational point of view,
this method is less vulnerable to the curse of dimensionality, although it cannot be used to
calculate the total-order sensitivity indices STi.

A first visual indication of the effects of input variables can be gained by making k plots
of xi against y (see Figure 18.8). If the data show any kind of trend (or shape) with respect to
xi, this indicates that xi has some effect on the output. Indeed, the effect of xi on the output is
described by the curve Ex∼i(y|xi)—in other words, the expected value of the model output
if we were to fix xi at some value. Over the range of xi, Ex∼i(y|xi) is equivalent to a moving
weighted average of the points in the xi against y plot. As long as the xj, j = 1, 2, . . . , n, have
been randomly drawn from their specified distribution p(x), Si can be estimated by taking
the variance of the y values of this curve (since Si = Varxi[Ex∼i(y|xi)]).

To estimate such a moving average, it is a matter of using any of a number of smooth-
ing regression approaches. Kernel regression has been already used for sensitivity analysis
(Paruolo et al. 2013). As with any smoothing regression, the data are modelled as

y = m(xi) + ε (18.38)

where m(xi) is the smoothed curve (ideally equivalent to Ex∼i(y|xi)) and ε is an independent
error term with mean 0 and a variance that may be dependent on xi. Although most nonlin-
ear regression approaches assume a fixed variance over xi, the smoothing curves that result
when this assumption does not hold are still valid, albeit less efficient. However, nonlinear
regression that accounts for heteroscedasticity is still a field of active research; therefore,
this chapter does not venture into this territory and readers are referred to a discussion in
Ruppert et al. (2003) as a starting point for further information.
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In the kernel regression setting, m(xi) is typically chosen to be either a local mean or
local linear kernel. The local mean estimator first proposed by Nadaraya (1964) and Watson
(1964), for a single input variable xi, is expressed as

m̂(xi) =
∑n

j=1 w(xji − xi; h)yj∑n
j=1 w(xji − xi; h)

(18.39)

where w is a weighting function and h is a tuning parameter. The weighting function typi-
cally gives the strongest weight to points close to xi, which reflects the belief that the closer
the two points are to each other in xi, the more likely they are to have similar values in
y. A commonly used function that fulfils this requirement is a Gaussian density function
with standard deviation h. The local linear estimator is expressed in a similar fashion—see
Bowman and Azzalini (1997) for details—and is generally regarded as preferable to the
local mean, due to its improved properties near the edges of the data cloud. In all cases,
the smoothing parameter h can be optimised by cross-validation. Following the simple
polynomial example from (18.15), Figure 18.22 shows an illustration of local linear kernel
regression applied to scatter plots of y against each xi. The resulting estimates of sensitivity
are given in Table 18.3.
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Local linear kernel regression applied to the polynomial function.
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TABLE 18.3

Comparison of Si Estimates from Local-Linear Kernel Regression of Polynomial
Function against Analytical Values

Variable Ŝi (Kernel) Si (Analytic)

x1 0.7345 0.7568
x2 0.0494 0.0456
x3 0.1821 0.1824

In order to estimate sensitivity from the fitted kernel regression, the estimated variance
of the conditional expectation can be calculated using a standard variance identity (the
domain of the expected value is explicitly stated as a subscript here for clarity):

Varxi{Ex∼i(y|xi)} = Exi{Ex∼i(y|xi)
2} − Exi{Ex∼i(y|xi)}2. (18.40)

Then denoting Vi = Varxi[Ex∼i(y | xi)] as before, Vi is estimated by the smoothed curve
m̂(xi) to give

V̂i = Exi{m̂(xi)
2} − Exi{m̂(xi)}2. (18.41)

To evaluate (18.41), one simply calculates a large number of values of m̂(xi) at different
locations and uses the standard estimator for sample variance for each term.

Note here that since the expectation of a random variable A is defined as
�

A p(A)dA,
the expected values in (18.40) should be evaluated with respect to p(xi), the probability
distribution of xi. The simplest way of doing this is to make kernel predictions at the
same xi values as the training data. A more sophisticated approach would be to estimate
p(xi) with kernel density estimation or a similar technique. In both cases, the practitioner
should ensure that the given data have been sampled with respect to the correct under-
lying distributions—this may not necessarily be the case if the points have come from an
optimisation process, for example.

While the examples here have focused on kernel smoothing, this is by no means the
only viable approach to estimating Ex∼i(y|xi). The problem is essentially an emulation/
regression problem in one dimension, which can be tackled by any number of methods
such as smoothing splines (see, e.g. Ruppert et al. 2003 or earlier in Section 18.6) or GP
(Rasmussen and Williams 2006). Even basic linear regression will provide a good esti-
mate if the data are sufficiently linear. Good references on parametric and nonparametric
regression can be found in Bishop (2006) and Ruppert et al. (2003).

The estimation of Si using smoothing techniques is very closely related to the well-
known coefficient of determination, R2. The standard R2 is the square of the Pearson correlation
coefficient and measures linear correlation between two variables. The nonlinear R2 mea-
sure, which measures correlation when nonlinear regression is used, can be stated in
general terms as R2

nonlin = SSreg/SStot, where SSreg = ∑
j(m̂(xi,j)−ȳ)2 and SStot = ∑

j(yj−ȳ)2.
It can be seen therefore as the ratio of the variance explained by the regression of y on xi and
the total variance of y. Therefore, if the function m(xi) is equal to Ex∼i(y|xi), the nonlinear
R2 measure is exactly equivalent to Si.

Finally, it should be pointed out that while the idea of reducing a multidimensional
problem to a series of one-dimensional problems is very appealing from a computational
point of view, it is not a silver bullet solution. The estimation is dependent on a good



668 Handbook of Design and Analysis of Experiments

approximation of Ex∼i(y|xi), which can be difficult to obtain depending on the data and
smoothing method used. Moreover, as the dimensionality of the problem increases, trends
in scatter plots can be increasingly biased and/or less precise due to variation in other
dimensions.

18.8 Conclusions and Discussion

In this chapter, a number of best practice methods have been outlined that address many
of the various situations that can confront an analyst. It is neither claimed nor intended
by the authors that an exhaustive review of all methods has been addressed here, but the
reader should have found here enough material to apply or adapt to a practical case, with
references to other material to direct the reader to more in-depth descriptions.

It is however useful to summarise some areas not covered by the chapter. What did this
chapter leave out? An incomplete list is as follows:

• Gradient-based sensitivity measures (mentioned in Section 18.5.1) use a measure
similar to μ∗

i given in (18.28), which is the integral of the squared partial derivative
as a measure of sensitivity, which has been shown to have a relationship with STi—
(see Sobo’ and Kucherenko 2009; Kucherenko et al. 2009).

• Polynomial chaos expansions, briefly mentioned in Section 18.6, constitute a sig-
nificant branch of emulator-based sensitivity analysis but were omitted from the
chapter due to space limitations and with the intention of focusing more on the
sampling aspect of sensitivity analysis. More information can be found in Sudret
(2008).

• Moment independent methods form a class of sensitivity analysis approaches that
examine how fixing an input variable modifies the entire empirical probability dis-
tribution function of y—(see Borgonovo 2007). The rationale behind these methods
is that variance is but one of several possible moments that can indicate sensi-
tivity. Such methods focus on measures of distance between the unconditional
distribution of y and the conditional distribution of y|xi.

• A sensitivity analysis approach based on plots of how the sample mean varies as
successively greater quantiles of the distribution xi are included is known as the
contribution to the sample mean (Bolado-Lavin et al. 2009), with a similar method
based on the contribution of the sample variance (Tarantola et al. 2012).

• Correlated input variables: variance-based sensitivity analysis (the variance
decomposition given in (18.3)) is based on the assumption that the probability
distributions of input variables are independent. Quite often, however, a mod-
eller encounters the situation where this assumption is not valid. In such cases,
other methods must be considered, although this is a relatively immature field
of research and (arguably) no one definitive approach exists. Some examples of
methods in the literature include (1) a method based on linear regression (Xu and
Gertner 2008), (2) a method based on decomposition of the input covariance matrix
(Li et al. 2010), (3) a copula-based approach (Kucherenko et al. 2012) and (4) an
approach based on grouping inputs into sets which are independent of one another
but variables may be correlated inside each group (Jacques et al. 2006).
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This chapter has in particular stressed the fact that a design should be explorative, in con-
trast to approaches that rely on a single OAT experiment, a practice which is so often seen in
the literature but so poor at exploring nonlinear non-additive problems (Saltelli and Annoni
2010). It should always be noted, however, that the designs that have been described
here only explore the uncertainty due to the input variables of the model. This ignores
the extremely significant structural uncertainty that results in the model’s simplification of
reality, which is extremely difficult to quantify.

All the sensitivity analysis techniques here assume some knowledge of the probability
distributions of the input variables, from simple ranges in the elementary effects method
to full probability distributions in variance-based sensitivity analysis. As any practitioner
of sensitivity and uncertainty analysis knows, finding reliable information on distributions
of input variables can be the most challenging task in the whole process. Some literature
gives details on eliciting distributions from experts (O’Hagan et al. 2006), although this in
itself assumes that there are knowledgable experts available to consult. This issue is left as
an open problem.

Lastly, every sensitivity analysis is a case apart (since every model has its idiosyncrasies),
and the choice of which technique to apply is highly dependent on factors such as the model
runtime, dimensionality, linearity and whether the analyst can access the model and run it
at chosen input values or not. The outline that has been presented here should however be
helpful in devising a suitable approach to sensitivity analysis for a wide variety of models.
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19.1 Introduction

In the study of complex physical and engineering processes, it is sometimes impossible,
infeasible, or very expensive to observe the actual systems. Examples of such processes
include climate change, spread of infectious diseases, and car crashes—(see Jones et al.
1998 and Santner et al. 2003). In such situations, we can sometimes use computer codes
(simulators) to mimic the process that we desire to investigate. Values of the input variables
are supplied to the computer code, and the code produces the corresponding values of the
output variable. To study the nature of the relationship between the input variables and
the output variable, it would be ideal if we could observe the code output for all possible
values of the input variables. Often, however, the computer code itself is very complex
and each run of the simulator turns out to be highly expensive or very time-consuming.
This limits the number of times we can run the simulator. In what follows, we assume the
computer code runs slowly and that the number of times we can observe the simulator is
“small.”

Experimenting with the simulator rather than the actual physical or engineering pro-
cess the simulator is intended to approximate is called a computer experiment. A computer
experiment differs from a traditional physical experiment in a number of ways. For one,
the output from a computer experiment is (usually) assumed to be deterministic. That is,
repeated runs of the simulator at the same settings of the input variables will result in
identical values of the output. Thus, random errors are (usually) not a concern in a com-
puter experiment. Also, in a physical experiment, all the factors that affect the response
may not be known. In a computer experiment, the output comes from a simulator; hence,
all the factors that affect the output are known. Owing to these differences, the principles
of blocking, randomization, and replication that are of great importance in the traditional
designs of experiments are not relevant to computer experiments.

19.1.1 Goals

There are a variety of goals in the area of computer experiments, such as code validation,
(i.e., ensuring that the code is a reasonable approximation to the physical process), cali-
bration (finding values of certain tuning parameters in the code that produce output that
best approximates physical data), the investigation of the overall input–output relationship
(finding a predictor, or emulator, that provides good overall fit to the output), uncertainty
analysis, sensitivity analysis, global optimization, determination of all values of the inputs
that produce a given value of the output, and estimation of percentiles of the distribution
of the output for a given distribution of the inputs. See Santner et al. (2003) and Bayarri
et al. (2007) for further discussion.

19.1.2 Modeling

We use a statistical model to estimate the input–output relationship, so that the fitted model
(or emulator) can serve as a relatively inexpensive substitute for the complex and expensive
computer simulator. Since we are dealing with output from computer code, the responses
are considered to be deterministic (but see Section 19.3.5 where we consider simulators that
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produce output with noise). Due to the lack of random error, Sacks et al. (1989) propose that
any uncertainty in the code output y(x) at any d-dimensional input x = (x1, x2, . . . , xd)

′ can
be assumed to be a result of systematic departure from a regression model; so the input–
output relationship can be modeled by the following equation:

Y(x) =
k∑

j=1

βjfj(x) + Z(x), (19.1)

where
∑k

j=1 βjfj(x) is the model for the mean and Z(x) is the systematic departure (see Sacks
et al. 1989). We assume that Z(x) is a stochastic process with E(Z(x)) = 0, Var(Z(x)) = σ2

z ,
and that the covariance between Z(x1) and Z(x2) is given by

cov(Z(x1), Z(x2)) = σ2
zR(x1, x2;λ),

where R(x1, x2;λ) denotes the correlation between Z(x1) and Z(x2) and this correlation may
depend on one or more parameters, denoted here by λ. It is popular in computer exper-
iments to further assume Z(x) is a stationary Gaussian stochastic process (GASP), with
unknown variance, σ2

z , so that

cov(Z(xi), Z(xj)) = σ2
zR(xi, xj;λ) = σ2

zR(xi − xj;λ),

for xi, xj ∈ X ,

andX ⊂ R

d is the experimental or design region. HereRk denotes k-dimensional Euclidean
space. We refer to this model as the GASP model.

In practice, it is not uncommon to use a special case of the GASP model, modeling the
responses as realizations of a constant mean stationary GASP, that is,

Y(x) = β + Z(x) for x ∈ X , (19.2)

where β is the unknown overall mean and Z(x) is a zero-mean stationary GASP with
unknown variance, σ2

z . We refer to this model as the GASP model with constant mean. Empiri-
cal evidence (see Sacks et al. 1989) shows that any simplification in the usual regression part,
that is,

∑k
j=1 βjfj(x), is compensated for by the systematic departure part, that is, Z(x). This,

typically, holds when we are using an interpolator and the true responses are realizations
of a stationary process.

At this point, when using the GASP model with constant mean, we have three unknowns
in our model: the overall mean β, the process variance σ2

z , and the correlation function
R(·, ·;λ). Because we assume that Z(x) is a stationary stochastic process, the correlation
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between two points xi = (xi1, xi2, . . . , xid)
′ and xj = (xj1, xj2, . . . , xjd)

′ is a function of xi and
xj through xi − xj. Also, we assume that the product correlation rule is used. Thus,

R(xi, xj;λ) = R(xi − xj;λ) =
d∏

t=1

Rt
(
xit − xjt;λt

)
,

where λ = (λ′
1, . . . ,λ′

d)
′ with λt the correlation parameters for the tth input variable and

Rt (·;λt) , itself a correlation function defined on the set of real numbers R and dependent
on λt. In general, λt will be different for different coordinates of x. However, if we believe
our GASP model is isotropic, that is, the one-dimensional correlation structure is the same
in every direction, then λ1 = · · · = λd. For an example of the use of an isotropic model,
see Welch et al. (1992).

When specifying the correlation structure, we require R(x, x) = 1 and that R(·; ·;λ) is
positive semidefinite, that is,

n∑
i,j=1

cicjR(xi, xj;λ) ≥ 0,

for all finite n, all x1, . . . , xn, and all real c1, . . . , cn.
For a stationary process with a product correlation structure, one very popular correla-

tion function, called the power exponential correlation function, takes the form

Rt(xit − xjt;θt, pt) = exp(−θt|xit − xjt|pt), (19.3)

where 0 < pt ≤ 2 and θt ∈ (0, ∞). Here λt = (θt, pt)
′
. For the special case of pt = 2 for all t,

this corresponds to the Gaussian correlation function. Taking pt = 1 for all t gives the expo-
nential correlation function. As θt increases, the dependence between two sites decreases
but does not go to zero. See Sacks et al. (1989) for an application with this correlation
function.

Another popular correlation function is the cubic correlation function that takes the form

Rt((xit, xjt;θt) = Rt((xit − xjt;θt)

= 2
(

1 − hijt

θt

)3

1(θt
2 <hijt<θt

)

+
[

1 − 6
(

hijt

θt

)2

+ 6
(

hijt

θt

)3
]

1(
hijt<

θt
2

), (19.4)

where hijt = |xit − xjt|, that is, the distance between the ith and jth observation on the tth
dimension, for i, j = 1, . . . , n and t = 1, . . . , d, and 1(·) is the indicator function: if A is true,
then 1A = 1; otherwise, 1A = 0. The θt’s are the correlation parameters (here λt = θt); small
θt’s imply that only data with very similar values of x are used in prediction. Points (in the
tth dimension) that are farther apart than θt units have zero correlation.
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Under this setup, the parameters that need to be estimated are β, σ2
z , and the correlation

parameters λ = (λ
′
1, . . . ,λ

′
d)

′
. Several approaches are possible such as maximum likelihood

(ML), restricted ML, and Bayesian approaches. Bayesian methods are becoming increas-
ingly popular, and for a discussion of a fully Bayesian approach, see, for example, Higdon
et al. (2003).

For purposes of this article, we use ML estimation to estimate the parameters. The ML
estimates can be written as

β̂ = β̂(λ) = (1
′
nR−11n)−11

′
nR−1y, (19.5)

and

σ̂2
z = σ̂2

z(λ) = 1
n

(y − 1nβ̂)
′
R−1(y − 1nβ̂), (19.6)

where 1n is an n × 1 vector of 1s, Y denotes all the available responses for the current
design, and R is the n × n matrix whose i, jth entry is R(xi, xj;λ), the correlation between

the response at the design sites xi and xj. We substitute β̂ and σ̂2
z in the likelihood and, as in

Jones et al. (1998), use the profile likelihood to find estimates of the correlation parameters,
λ1, . . . ,λd, and thus an estimate of R.

The GASP model assumes stationarity of the stochastic process. Realizations of a station-
ary GASP with a correlation function such as the Gaussian or cubic correlation function will
display a certain regularity in terms of variation in the values of Y(x) and the frequency of
variation (sometimes referred to as the roughness of the realization, and a parameter con-
trolling this frequency of variation, such as the θt in (19.3), is sometimes called a roughness
parameter). For example, when d = 1, the realizations remind one of the behavior of a peri-
odic function with constant amplitude and frequency. The amplitude is determined by the
process variance σ2

z . If, for example, the amplitude increases as x increases, this suggests
that the process variance σ2

z depends on x and hence the process is nonstationary. The fre-
quency, or roughness, is determined by the rate at which the correlation decreases as a
function of the distance | x1 − x2 | between two points x1 and x2. The frequency is small
(and the realization appears to be relatively smooth) when the correlation between two
points x1 and x2 decreases slowly as | x1 − x2 | increases. The frequency is high (and the
realization appears to be “rougher”) when the correlation between two points x1 and x2
decreases rapidly as | x1 − x2 | increases. In the limit as the correlation between any two
points x1 �= x2 goes to 0, the realization looks very rough or noisy. If the frequency depends
on the location of x1 and x2 rather than just | x1 − x2 |, so that some regions exhibit high
frequency variation and others low frequency variation, this suggests the process is nonsta-
tionary. In theory, the GASP model would seem to be ill suited for modeling functions that
look nonstationary, and a challenging research area is investigating nonstationary models
that are computationally tractable.

19.1.3 Prediction

Consider any untried input setting x∗. Then, in the GASP model with constant mean, the
best linear unbiased predictor (BLUP) of the response at x∗ is given by

Ŷ = Ŷ(x∗) = β̂ + r
′
R−1(y − 1

′
nβ̂), (19.7)
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where β̂ is as in (19.5) and is the usual generalized least-squares estimator of β and
r = r(x∗) = [R(x∗, x1;λ), . . . , R(x∗, xn;λ)]′ is the vector of correlations between x∗ and the
observed input sites. The mean squared prediction error (MSPE), denoted by s2(x∗), when
β is unknown but σ2

z and λ are known, is given by

s2(x∗) = σ2
z

(
1 − r

′
R−1r + (1 − 1

′
nR−1r)2

1′
nR−11n

)
. (19.8)

In practice r and R are not known, and their estimates are used instead. In such situa-
tions, the BLUP is called the empirical BLUP (EBLUP). The behavior of the EBLUP depends
on the correlation function one assumes. For the power exponential correlation function
with 0 < p < 2, the EBLUP is continuous but not differentiable. For the Gaussian correlation
function (p = 2 in the power exponential correlation function), the EBLUP is infinitely dif-
ferentiable. This would be desirable if one knows that the physical process being modeled
by the computer simulator is smooth. The cubic correlation function is known to produce
a predictor that is a cubic spline interpolator (see Currin et al. 1991). Compared with the
Gaussian correlation function, the cubic correlation function seems less prone to numerical
problems (perhaps because for small values of the correlation parameter, the correlation
matrix will have many zero entries).

One reason for the popularity of the GASP model and the EBLUP as a statistical predic-
tor (or emulator) of output from a computer simulator is that the EBLUP interpolates the
data. In other words, for points at which we have observed the simulator (and have used in
constructing the EBLUP), the EBLUP predicts the observed values. For deterministic simu-
lators that yield the same output for repeated evaluations at a given set of inputs, it seems
reasonable to insist that a statistical predictor be an interpolator.

Although one might argue that one should not use a stationary GASP model for a sim-
ulator that produces output that appears nonstationary, this may not be a serious problem
in practice. This is because the EBLUP is an interpolator and with sufficient data should
be a good approximation to the actual output, even if the output does not look station-
ary. See Lam and Notz (2008) for an example where the EBLUP based on the GASP model
with constant mean does a good job of approximating a function that looks nonstationary.
In our experience, if the points at which the simulator is observed are selected carefully,
nonstationary-looking functions can be reasonably well approximated by the EBLUP even
with moderate sample sizes.

19.1.4 Design

For computer codes that can be run a relatively small number of times, the inputs at
which to observe the code must be chosen carefully. The selection of the input settings
at which the computer code is to be observed is the design of the computer experiment.
If we observe the code at the set Sn = {x1, x2, . . . , xn} of n points in X , we will refer to
Sn as the design. What strategies have been proposed for selecting designs in computer
experiments?

One strategy is to select a design that spreads points “evenly” throughout X .
Such designs are sometimes called space-filling designs. Examples include Latin hyper-
cube designs, uniform designs, maximin distance designs, minimax distance designs,
and designs used in quasi–Monte Carlo methods. Intuitively, the idea is that the shape
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of the true response surface (the functional form of the simulator output as a function of
the inputs) is unknown and that important features of the response surface may occur any-
where in X . Thus, it is important to observe the output in all regions of X . It may also be
desirable that projections of the design onto subspaces of X remain space filling. Thus, if
the output is found to be insensitive to some inputs, the design when projected onto the
subspace of X that does not include these inputs will be space filling for purposes of fitting
a response surface that does not include these inputs. See Chapter 17 for more about Latin
hypercube and space-filling designs.

Another strategy for selecting a design is that it be orthogonal or nearly orthogonal.
Orthogonality is usually applied in a subclass of space-filling designs. For example, one
might select an orthogonal design within the set of Latin hypercube designs. Orthogonal
designs themselves are often space-filling, so the property of orthogonality may be compat-
ible with various space filling criteria. In the traditional linear model, orthogonality allows
independent estimates of model effects, and this may be useful in computer experiments
if the goal is to conduct a sensitivity analysis.

In general, the selection of a design should depend on (1) the goals of the experiment
and (2) the statistical model used to analyze the data from the experiment. In traditional
optimal design, this is accomplished through a design criterion. A design criterion is a
function from the space of designs to the positive real numbers. Typically, the smaller the
value of this function, the better the design for achieving the goals of the experiment, and a
design achieving the minimum value of this function is called an optimal design. An example
of a popular design criterion in regression is the D-optimality criterion.

Many popular designs for computer experiments, such as space-filling designs, are
“fixed” designs in the sense that the design fixes in advance all the runs (sets of inputs
at which the computer code is to be observed). However, for designs based on criteria such
as entropy, MSPE, or D-optimality, knowledge of the unknown parameters (e.g., the cor-
relation parameters) is required in order to evaluate the criterion. One approach for such
designs is to select a locally optimal design, namely, a design that is optimal under the
design criterion for specific values of the unknown parameters. Asecond, related, approach
is to place a prior distribution on the unknown parameters and use the expected value
of the criterion with respect to this distribution. A third possibility is to adopt a sequen-
tial design strategy. Based on a small initial design, estimate the values of the unknown
parameters and then select observations for the next stage based on these estimates. This
can be repeated several times, each time updating estimates of the unknown parameters. A
sequential approach has other advantages, allowing one to use what one learns about the
true response surface to guide the selection of the next design point(s). In regression, this
might include modifying the order of the response surface one is fitting and selecting addi-
tional points to facilitate fitting this new model. In the context of computer experiments,
this is important. The actual response is the result of running a computer simulation. The
statistical model we use (here we assume this is the GASP model) is simply a device for
developing a useful statistical predictor (in particular, a predictor that is a smooth interpo-
lator of the data). A sequential approach allows one to sample more heavily from areas of
interest, for example, if the true response is nonstationary, regions in which the response
varies more rapidly might benefit from a more dense sample.

We agree with the following comments in Box et al. (1978):

Scientific research is a process of guided learning. The object of statistical methods is to
make that process as efficient as possible. (p. 1)
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In exploring a functional relationship it might appear reasonable at first sight to adopt
a comprehensive approach in which the entire range of every factor was investigated.
The resulting design might contain all combinations of several levels of all factors. How-
ever, when runs can be made in successive groups, this is an inefficient way to organize
experimental programs. The situation relates to the paradox that the best time to design
an experiment is after it is finished, the converse of which is that the worst time is at
the beginning, when the least is known. If the entire experiment was designed at the
outset, the following would have to be assumed known: (1) which variables were the
most important, (2) over what ranges the variables should be studied, (3) in what metrics
the variables and responses should be considered (e.g., linear, logarithmic, or reciprocal
scales), and (4) what multivariable transformations should be made (perhaps the effects
of variables x1 and x2 would be most simply expressed in terms of their ratio x1/x2 and
their sum x1 + x2.

The experimenter is least able to answer such questions at the outset of an investiga-
tion but gradually becomes more able to do so as a program evolves.

All the above arguments point to the desirability of a sequence of moderately sized
designs and reassessment of the results as each group of experiments becomes available.
(p. 303)

As a rough general rule, not more than one quarter of the experimental effort (budget)
should be invested in a first design. (p. 304)

It is possible to develop sequential versions of space-filling designs. For certain run sizes
and numbers of inputs, one can occasionally add points to a Latin hypercube design in
such a way that the result is also a Latin hypercube. Also, one can develop algorithms to
add points to an existing space-filling design so that the result optimizes some space filling
criterion. Although these are sequential designs, this is not what we suggest. We advocate
the use of sequential designs for computer experiments in conjunction with a quantitative
design criterion consistent with the goals of the experiment.

19.2 Expected Improvement as an Approach to Designing
Computer Experiments

Several criteria have been used as optimality criteria for selecting designs in computer exper-
iments. These include entropy (Shewry et al. 1987) and maximum and integrated MSPE
(Sacks et al. 1989, Lim et al. 2002). These can be used to generate either fixed or sequential
designs.

Another approach for generating designs sequentially is the use of an improvement cri-
terion. We assume that the computer experiment has a well-defined goal, for example,
finding the global optimum of the output of the computer simulator (assuming the out-
put is univariate and real valued). Given n runs of the simulator, we wish to determine the
inputs at which to perform the next run. An improvement criterion is a real-valued func-
tion of the inputs that reflects the improvement that will be achieved in reaching our goal if
a given set of inputs is used in the next run. Larger values are better. Ideally, the next run
is taken at those inputs that maximize this improvement. Typically, an improvement crite-
rion is a function of Y(x) based on some statistical model for the simulator output, such as
the GASP model. Because Y(x) is a random variable, one takes the expected value of the
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improvement function given the data and given estimates of the unknown model parame-
ters. Hence, the actual criterion used for selecting the next run is based on the expectation
of the improvement criterion, called the expected improvement.

For any given goal, there may be many improvement criteria that are sensible. Improve-
ment criteria are analogous to optimality criteria in optimal experimental design. For exam-
ple, in classical regression, A-optimality, D-optimality, and E-optimality are reasonable
design criteria if the goal is to estimate all the regression coefficients with small standard
errors. One way of formulating an improvement criterion is the following. Given n runs of
the simulator, imagine fitting a statistical predictor Ŷ(x) to the data. Based on this predictor
and the goals of the experiment, where would you next like to observe the simulator? Pre-
sumably, certain regions appear more promising than others based on the response surface
defined by the predictor Ŷ(x). An attempt to quantify what values of Ŷ(x) correspond to
promising sites x at which to observe the simulator can lead one to an improvement crite-
rion. For example, if the goal is to find the minimum of the simulator, small values of Ŷ(x),
in particular values smaller than any observed so far, would be potential sites at which to
next observe the simulator. If the goal is overall global fit, perhaps regions where Ŷ(x) is
changing rapidly (has large absolute value of the derivative) would be potential sites at
which to observe the simulator.

The notion of expected improvement was first discussed in Mockus et al. (1978) and
Journel and Huijbregts (1989) and more fully developed in Schonlau (1997), Schonlau et al.
(1998), and Jones et al. (1998). To further clarify the concept of expected improvement, we
look more closely at the development in Schonlau (1997), Schonlau et al. (1998), and Jones
et al. (1998).

19.2.1 Example: Global Minimization

In Schonlau (1997), Schonlau et al. (1998), and Jones et al. (1998), the goal is to determine the
inputs for which the simulator output is a global minimum. The model for the output is
the GASP model with constant mean. We assume that we have observations of the output
from the simulator for n runs yn = (y(x1), . . . , y(xn))′ at the n inputs {x1, . . . , xn} in X . We
refer to these n runs (both yn and {x1, x2, . . . , xn}) as the training data and wish to know at
what input xn+1 ∈ X to make the next run of the simulator.

To find xmin = arg minx∈X y(x), where y(x) is an unknown function, we need an
improvement criterion that reflects how much improvement we achieve toward finding
the global minimum by taking the next observation at x∗, given the training data. The
approach developed by Schonlau (1997), Schonlau et al. (1998), and Jones et al. (1998)
assumes a Gaussian prior for y(x), say Y(x), of the form on the right-hand side of (19.2)
with process variance σ2

z and a uniform prior distribution for the parameter β. Let Yn

denote the prior associated with the vector of outputs yn. Their approach is based on the
fact that

[Y (x) | Yn = yn] ∼ N
(

Ŷ(x), s2(x)
)

, (19.9)

where Ŷ(x) is the EBLUP and s2(x) is the MSPE of the BLUP given in (19.8). The correlation
parameters of both quantities are estimated by ML or restricted ML.
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Their notion of improvement is defined as follows. Let

yn
min = min

i=1,...,n
y(xi)

denote the minimum output that has been observed after the n runs of the computer code.
Consider a potential site x∗ at which to evaluate the code. Compared with the current small-
est known minimum value of y(·), define the amount of improvement in y(·) at x to be zero
if y(x∗) ≥ yn

min, that is, y(x∗) provides no improvement over yn
min. Similarly, if y(x∗) < yn

min,
the amount of improvement at x∗ is defined to be the difference yn

min − y(x∗). Hence, in
principle, the improvement possible at x∗ is

Improvement at x∗ =
{

yn
min − y(x∗), yn

min − y(x∗) > 0

0, yn
min − y1(x∗) ≤ 0

.

We say “in principle” because y(x∗) is unknown, although yn
min is known from the training

data. However, we have an idea of y(x∗) from its prior Y(x∗) (and a better one from the
updated prior—the posterior of Y(x∗) given Yn in (19.9)). Hence, a probabilistically based
improvement criterion can be defined by

In(x∗) =
{

yn
min − Y(x∗), yn

min − Y(x∗) > 0

0, yn
min − Y(x∗) ≤ 0

(19.10)

for x∗ ∈ X . The random In(x∗) depends solely on the random quantity Y(x∗). We sum-
marize the amount of improvement possible at each potential input site x∗ by its expected
improvement with respect to the posterior distribution of [Y(x∗)|Yn].

It is straightforward to show that the conditional expected improvement satisfies
E { In(x∗) | Yn } = 0 for x∗ in the input training data. This result coincides with our intu-
ition that for deterministic simulators, there is no benefit in recomputing the output at sites
x∗ where we know y(x∗). If x∗ is not in the training data, some algebra shows that

E{ In(x∗) | Yn }

= s(x∗)
{

yn
min − Ŷ(x∗)

s(x∗)
�

(
yn
min − Ŷ(x∗)

s(x∗)

)
+ φ

(
yn
min − Ŷ(x∗)

s(x∗)

)}
, (19.11)

where �(·) andφ(·) are the N(0, 1) distribution and density function, respectively. By exam-
ining the terms in (19.11), we see that the posterior expected improvement is “large” for
those x∗ having either a predicted value at x∗ that is much smaller than the best minimum
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computed so far, that is, Ŷ(x∗) � yn
min, or having much uncertainty about the value of

y(x∗), that is, when s(x∗) is large. Candidate inputs x∗ are judged attractive if there is high
probability that their predicted output is below the current observed minimum and/or there
is a large uncertainty in the predicted output.

Another way to think about this is to imagine constructing a prediction interval for
Ŷ(x∗). If the lower bound of this interval is less than yn

min, then there is a some possibil-
ity that improvement could be achieved at x∗. The lower bound will be less than yn

min
if either Ŷ(x∗) < yn

min or s(x∗) is sufficiently large. This raises the question of whether
something like

In(x∗) =
{

yn
min − (Y(x∗) − αs(x∗)), yn

min − (Y(x∗) − αs(x∗)) > 0

0, yn
min − (Y(x∗) − αs(x∗)) ≤ 0

would be a reasonable variation on the improvement criterion, where α is a user-defined
parameter.

Our next run of the computer simulation would be at the xn+1 that maximizes
E{ In(x) | Yn } as given in (19.11). Once we obtain the output y(xn+1), we can redefine the
training data to be yn+1 = (y(x1), . . . , y(xn+1))

′
at the n + 1 inputs {x1, . . . , xn+1}, recom-

pute the expected improvement based on this training data, and determine the xn+2 that
maximizes the expected improvement. If the EBLUP is used for Ŷ(x∗), one could reesti-
mate the EBLUP at each iteration, or after a small block of iterations. This determines an
algorithm for generating a design sequentially. This algorithm can begin with a randomly
chosen single point or, more commonly, with an initial design of n0 runs, for example, an
n0-run space-filling design.

In examples discussed in Schonlau (1997), Schonlau et al. (1998), and Jones et al. (1998),
this algorithm for generating a sequential design based on expected improvement performs
quite well. Designs display both local and global search characteristics. By local search we
mean that the algorithm tends to select points near the location of minima, eventually clus-
tering around these minima. By global search we mean that the algorithm occasionally
selects points in regions that have not been previously visited. This behavior is consistent
with our comments following (19.11). This appears in other settings where improvement
criteria have been used and we will discuss this more in subsequent sections.

19.2.2 General Approach

The use of improvement criterion and expected improvement for generating designs in
computer experiments has several components. First, we must have a statistical model
for the output of the computer experiment. This may be the GASP model, but one could
use other models, for example, a standard response surface model. Second, we must have
some well-defined goal for the computer experiment, such as finding the global optimum
of the output. We examine other goals later in this article. Third, we must have an improve-
ment criterion that is related to our goal. Larger values are better in our example, but the
improvement criterion in (19.10) can be transformed into a criterion for finding the global
maximum by replacing yn

min by a corresponding yn
max and then multiplying by −1. Fourth,

we require training data. In practice, the training data are obtained from some fixed design
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such as a Latin hypercube design. However, one can implement a fully sequential proce-
dure that begins with a randomly selected point (without training data, all points in X
provide the same improvement) and then use the improvement criterion for selecting sub-
sequent points. In the author’s experience, using a small space-filling initial design has
performed better than a fully sequential implementation, but this needs to be explored fur-
ther. Fifth, we require a stopping rule. This could simply be to stop after a total of N runs, or
to stop after some criteria (e.g., the improvement does not exceed some minimal threshold)
are met. We consider some stopping criteria in the next section.

These components form the basis for an algorithm for generating a design. In practice,
the algorithm will need to be implemented numerically. We next consider several settings
in which sequential design via expected improvement has been employed. Our primary
purpose is to discuss the types of improvement criteria that have been proposed to meet
a variety of goals for a computer experiment. We also hope that this inspires readers to
develop new improvement criteria. Thus, in the interest of space, in some cases, we sim-
ply present the improvement criterion and refer readers to the appropriate references for
details.

19.3 Global Optimization

As mentioned previously, global optimization of an unknown function (or a simulator
with a single response) appears to be the first setting to employ expected improvement
for generating a design. This use of expected improvement is surprisingly effective for
locating the inputs at which an unknown function attains its global optimum. Examples
discussed in Schonlau (1997), Schonlau et al. (1998), and Jones et al. (1998) are compelling
and include functions with multiple optima. As we mentioned previously, points selected
using expected improvement cluster around the locations of the optima with occasional
excursions into regions that have not been previously observed, displaying both local and
global search characteristics. In particular, the method avoids being trapped in a local opti-
mum. The success of expected improvement in finding the location of a global optimum
of an unknown function suggests that using expected improvement criteria might be an
effective approach for experimental design for computer experiments in other settings.

The method in Schonlau (1997), Schonlau et al. (1998), and Jones et al. (1998) has been
extended to many other settings for finding the location of a global optimum. In fact, global
optimization appears to be the most popular goal for implementing improvement criteria.
We discuss several applications in this section.

19.3.1 Schonlau, Schonlau, and Jones’ Method Continued

The method of Schonlau (1997), Schonlau et al. (1998), and Jones et al. (1998) can be stated
as an algorithm with a stopping rule. Starting with a space-filling design, the expected
improvement algorithm updates the current training data Sn = {x1, . . . , xn} as follows.

Given a specified absolute tolerance εa, if

max
x∗∈X

E{ In(x∗) | Yn } < εa, (19.12)
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then stop and predict xmin by an input site x̂min ∈ {x1, . . . , xn} satisfying

y(̂xmin) = min
i=1,...,n

y(xi).

Otherwise, select the point xn+1 ∈ X to maximize E{ In(x) | Yn }. Set Sn+1 = Sn ∪ {xn+1}, Yn+1 =((
Yn)′ , y (xn+1)

)′
, and increment n. Continue with the next update.

Among the obvious modifications of this algorithm are the following. At stopping, one can
predict xmin to be the minimizer of the predictor Ŷ(·) (based on the data available). The
absolute stopping criterion in (19.12) can be replaced by the relative stopping criterion

maxx∈X E{ In(x) | Yn }
|yn

min| < εr,

where εr is a specified relative tolerance. In either case of the stopping criterion, the idea is
that the algorithm should continue until the maximum possible improvement is small.

In implementing their algorithm, Schonlau (1997), Schonlau et al. (1998), and Jones et al.
(1998) use the power exponential correlation structure of (19.3) for the Gaussian process
Y(·). They estimate the correlation parameters θt and pt by the method of ML. Upon com-
pletion of each update step, the correlation parameters of the GASP model can optionally
be updated. The updating procedure can be computationally expensive, particularly for
large designs. With this in mind, Schonlau et al. (1998) discuss a modification of their algo-
rithm in which a correlation parameter is not updated after each iteration of the algorithm.
Specifically, given a current design of size n and q iterates to be added, Schonlau et al. (1998)
recommend updating the s(x) coefficient in (19.11) after each iterate, but not updating the
s(x) term in the expressions (yn

min − Ŷ(x))/s(x). This heuristic forces all previously sam-
pled inputs to be avoided, including the previous iterates of the current stage, as s(·) is 0 at
these inputs. The EBLUP and MSPE are updated subsequent to the correlation parameters
at the completion of each stage. If X is finite, the expected improvement algorithm will
converge to the global minimum under the assumption that εa (or εr) = 0. Schonlau (1997)
demonstrates the effectiveness of this algorithm for a suite of test problems where εa (or
εr) > 0.

Schonlau (1997) and Schonlau et al. (1998) consider a generalization of the expected
improvement criterion in which the improvement in (19.10) is replaced by

Ig
n(x) =

{
(yn

min − Y(x))g, if Y(x) < yn
min

0, otherwise
(19.13)

for some g ∈ {0, 1, 2, . . .}. Larger values of g are associated with a more global search. Pro-
vided In(x) ≥ 1, one can show Ig1

n (x) ≥ Ig2
n (x) for each input x when g1 ≥ g2. Therefore,

greater weight will be placed on the tails of the conditional distribution of Y(·) given Yn

for larger values of g, so that the global potential for large improvement is given increased
quantitative importance. The quantity E { In(·) | Yn } in the stopping rule for the expected
improvement algorithm is replaced by E { Ig

n(·) | Yn }1/g so that the tolerance limits εa and
εr have approximately the same interpretation for any g. Schonlau et al. (1998) provide
recursive relations for computing E { Ig

n(x) | Yn }.
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Schonlau (1997) mentions that g = 1 may be undesirable and that larger g that pro-
duce a more global search may be preferable. To support this, Schonlau (1997) shows in an
example that g = 2 and g = 5 outperform g = 1.

19.3.2 Batch Sequential Design

Suppose we have m > 1 computers available, each of which is able to run the computer
simulation. In this case, it makes sense to run the simulations sequentially in stages of
batches of m simultaneous runs instead of sequentially using a one-run-at-a-time algorithm.
Schonlau (1997) extends the approach discussed in the previous section to computer exper-
iments performed in batches of m simultaneous runs, one run for each of the m computers.
Given training data consisting of n runs of the simulator, one would like to find the next
m design points xn+1, xn+2, . . . , xn+m ∈ X at which to run these computers. For the GASP
model and assuming the goal is to find the global minimum, Schonlau (1997) proposes
selecting these m points to maximize

EY1 EY2 . . . EYm(Im
n (xn+1, xn+2, . . . , xn+m)) (19.14)

where Y1, Y2, . . . , Ym are the random variables corresponding to the m points xn+1, xn+2, . . . ,
xn+m and the m-step improvement Im

n over yn
min is defined as

Im
n (xn+1, xn+2, . . . , xn+m) = max(0, yn

min − Y1(xn+1), yn
min − Y2(xn+2), . . . , yn

min − Ym(xn+m)).
(19.15)

This m-step improvement function is a natural extension of (19.10). However, analyti-
cally and computationally, this is a much harder problem than the one-at-a-time global
minimization algorithm, because calculating the expected improvement involves multi-
ple integrals with normal densities. Rather than computing these integrals numerically,
Schonlau (1997) proposes some simplifications. He then demonstrates how these perform
in an example (finding the global minimum of the logarithm of the Goldstein–Price func-
tion, a function of two inputs, in batches of m = 10 points). Once again, the use of expected
improvement selects points both locally (near the true minimum) and globally. An initial
design of n0 = 21 is used and 13 batches of points are added, resulting in a total of 151 runs.
Compared with the one-at-a-time expected improvement algorithm applied to the same
example with a similar starting design, the batch method used more runs (151 vs. 127 for
the one-at-a-time algorithm) to achieve the same degree of accuracy. However, selecting
points in batches produced a design with a greater spread of points. Schonlau (1997) does
not mention whether there were significant differences in overall computational times for
the two methods.

Recently, there has been considerable work on computing the expected improvement
in (19.14) more efficiently. See, for example, Ponweiser et al. (2008), Taddy et al. (2009),
Roustant et al. (2012), and Viana et al. (2013). Roustant et al. (2012) include R code.

19.3.3 Global Optimization for Control and Environmental Inputs

In some applications, it is useful to distinguish two types of inputs to a simulator. One type
of input variable that we may encounter is a control variable. If the output of the computer



Expected Improvement Designs 689

experiment is some performance measure of a product or process, then control variables
are those variables that can be set by an engineer or scientist to control the actual product or
process being simulated. Some authors use the terms engineering variables or manufacturing
variables rather than control variables. We use the generic notation xc to denote control vari-
ables. Control variables are present in physical experiments as well as in many computer
experiments.

A second type of variable that can be present in both computer and physical experiments
is an environmental variable. In general, environmental variables affect the output y(·) but
depend on (uncontrolled) conditions present at the time a response is measured on the
product or process. Environmental variables are sometimes called noise variables. We use
the notation xe to denote the vector of environmental variables for a given problem. In
practice, we typically regard environmental variables as random with a distribution that is
known or unknown. To emphasize situations where we regard the environmental variables
as random, we use the notation Xe.

An example of both types of variables might be found in a manufacturing setting where
the speed at which a machine is run and the ambient humidity in the shop affect some
response. Assuming the machine speed can be set by the user, machine speed would be a
control variable. Assuming the humidity in the shop cannot be controlled, humidity would
be viewed as an environmental variable.

Suppose x consists of both control and environmental components, that is, x = (xc, xe).
For the goal of optimization, we may wish to determine the values of the control vari-
ables that, on average (averaged over the values of the noise variables), optimize the
output.

In particular, suppose also that the environmental variables have a known probability
distribution, which is specified either by the probability mass function wj = P{ Xe = xe,j }
on ne support points {xe,j}j or by the probability density function w(·). Then the quantities
of interest are

μ(xc) ≡
ne∑

j=1

wj y(xc, xe,j)
(

or ≡
�

y(xc, xe) w(xe) dxe

)
, (19.16)

which is the mean of y(·) with respect to the distribution of the Xe variables.
Williams et al. (2000) extend the expected improvement algorithm of Schonlau et al.

(1998) and Jones et al. (1998) to settings involving both control and environmental inputs.
For discrete environmental variable distributions as used in the left-hand side of (19.16), the
goal of their revised algorithm was to find a control variable input that minimized the mean
function μ(·) for applications with “expensive” y(·) outputs. The mean μ(xc) is the output
y(xc, xe,j) averaged, with weights {wj}, over these ne values. The function μ(xc) inherits the
prior process defined by

M(xc) ≡
ne∑

j=1

wj Y(xc, xe,j) (19.17)

where Y(xc, x) has the Gaussian prior used by Schonlau et al. (1998) and Jones et al. (1998).
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Let (xc,i, xe,i), 1 ≤ i ≤ n, denote a generic n-point experimental design. Then {xc,i} denotes
the control variable portion of this design. Williams et al. (2000) extend the improvement
criterion (19.10) to this setting by defining their improvement criterion to be

In(xc) =
{

Mn
min − M(xc), if Mn

min − M(xc) > 0

0 otherwise
,

where

Mn
min = min

i=1,...,n
M(xc,i).

In contrast to the known value of yn
min used in (19.10), the quantity Mn

min must be treated as
a random variable with a prior distribution because (19.17) is never directly calculated. This
fact makes estimating the expected improvement more cumbersome than in Schonlau et al.
(1998) and Jones et al. (1998), as will subsequently be discussed. In outline, the algorithm
to minimize μ(·) consists of the following steps:

1. Select an initial experimental design Sn = {(xc,i, xe,i); 1 ≤ i ≤ n}, and compute the
vector of model outputs Yn at each design point.

2. Estimate the vector of correlation parameters via ML or restricted ML, under the
Bayesian framework, by the mode of their joint posterior distribution.

3. Select xc,n+1 to maximize the expected improvement,

xc,n+1 = arg max
xc∈Xc

E{ In(xc) | Yn },

where Xc denotes the domain of the control variables and X = Xc × Xe, where Xe
denotes the domain of the environmental variables.

4. Select xe,n+1 corresponding to xc,n+1 to minimize the MSPE given Yn,

xe,n+1 = arg min
xe∈Xe

E
{[

M̂n+1(xc,n+1) − M(xc,n+1)
]2 | Yn

}
,

where M̂n+1(·) is the conditional mean of M(·) based on the data Yn and the latent
observation Y(xc,n+1, xe).

5. Determine if the algorithm should be stopped. If not, set Sn+1 = Sn∪(xc,n+1, xe,n+1),
calculate the output y(·) at (xc,n+1, xe,n+1), increment n to n + 1, and go to step 2
(correlation parameter estimation). Otherwise, the global minimizer in the control
variable space is predicted to be the global minimizer of the EBLUP based on Sn.

The mean squared error of prediction criterion for environmental variable selection,
required in step 4 of the algorithm, has a computationally convenient closed-form
expression.

The expected improvement required in step 3 cannot be expressed in closed form
because Mn

min is not known. However, because the posterior of Mn
min given Yn is known,

the expected improvement can be approximated using the following Monte Carlo method.
Let Mn = (M(xc,1), . . ., M(xc,n)), and let (mc, vc) denote the mean and scale parameters of
the tractable conditional distribution of M(·) given Yn and Mn.
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(a) Generate r Monte Carlo samples Mn from the conditional distribution [Mn| Yn ].
(b) For each sampled Mn, compute the conditional expectation of In(·) given Yn and

Mn from the formula

E
{

In(xc) | Yn, Mn } = (
Mn

min − mc
)

T2n−1

(
Mn

min − mc√
vc

)

+ 1
2(n − 1)

[
(2n − 1)

√
vc + (Mn

min − mc)
2

√
vc

]
t2n−1

(
Mn

min − mc√
vc

)
,

where Tν(·) and tν(·) denote the univariate t cumulative distribution and density
functions, respectively, and average the results.

(c) Average the r conditional expectations calculated in step b.

This approximation method allows one to see that, in this case, the expected improvement
criterion balances local and global improvements as did (19.11) in the Schonlau et al. (1998)
algorithm. The first term in E{In(xc) | Yn, Mn } is “large” when mc � Mn

min, in other words,
when the predicted objective at xc suggests the potential for large local improvement. The
second term is “large” when

√
vc is large relative to |Mn

min − mc|, necessarily when there is
a high degree of prediction uncertainty at the candidate xc. The global search component
of this algorithm is provided by the capacity to select control sites with the potential for
large improvement. One significant computational advantage of using the Monte Carlo
method, (a) through (c) earlier, to calculate E{In(xc) | Yn } is that a single Monte Carlo sample
of Mn suffices to determine the expected improvement for all choices of xc because the
distribution [Mn| Yn ] is independent of xc.

The correlation parameter estimation in step 2 can be extremely time consuming, par-
ticularly for “large” experimental designs and/or high-dimensional inputs. A sensible
modification of this algorithm is to update the correlation parameters frequently in the
initial iterations and reduce the update rate as additional design points are added. In this
way, the correlation parameters are repeatedly updated at the stage of the algorithm when
they are least stable and the most substantial learning about the response surface occurs.
As the response surface in the region of the optimum becomes predicted more accurately,
correlation parameter updates become less necessary.

Because the correlation parameters are reestimated at each stage, the sequence of max-
imum expected improvements need not be monotone decreasing. The stopping rules
recommended in Williams et al. (2000) are therefore based on observing a sequence of
“small” maximum expected improvements relative to the history of such improvements
established as the algorithm progresses. For example, moving averages and ranges of
groups of observed expected improvements can be tracked, and the algorithm stopped,
when these statistics reach a problem-specific threshold established relative to their initial
observed values. The stopping criteria should ideally be met by two or more successive val-
ues of the moving average and range, suggesting stabilization of the expected improvement
sequence.

19.3.4 Multiple Responses

Many computer experiments involve simulations that produce multiple outputs. Sup-
pose the computer simulator generates m responses y1(·), . . . , ym(·), all functions of the
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same inputs. Let y(·) = (y1(·), . . . , ym(·)). y(·) be an m-dimensional vector valued function
(m > 1) from X to Y , where Y ⊆ R

m. To model multivariate output from our simulator, we
need a multivariate model that specifies a joint distribution for the yi(·). The simplest model
assumes independence. In this case, we view y(·) = (y1(·), . . . , ym(·)) as the realization of
a random process Y(·) = (Y1(·), . . . , Ym(·)) and assume Y1(·), . . . , Ym(·) follow independent
GASP models.

A model that assumes dependence is

Yi(x) = ρiY1(x) + γi(x), i = 2, . . . , k + 1, (19.18)

where γi(·) is independent of Y1(·). This model says that Y2(·), . . . , Ym(·) are each associated
with Y1(·) (positively or negatively) plus an independent refinement.

There are several other models that do not assume independence. We do not discuss
these here, but see Higdon (2002), Gelfand et al. (2004), Banerjee and Johnson (2006),
Banerjee et al. (2008), Conti and O’Hagan (2010), and Fricker et al. (2013) for a variety of
dependence models.

The goal is to optimize y(·) over the input space X . Ideally, we would like to find a single
x that minimizes each yi(x), 1 ≤ i ≤ m. In general, the same x will not optimize all the yi(x)

simultaneously. Instead, one attempts to find a set of compromise or trade-off solutions.
One compromise solution is to optimize y1(·) subject to y2(·), . . . , ym(·), each taking values
in reasonable intervals expressed as constraints. Another compromise solution is to define
a partial ordering on y(·) and find the inputs that produce outputs that are not dominated
by any other possible set of outputs. We discuss both of these approaches.

In what follows we assume that optimization means minimization. It is straightfor-
ward to modify what we say to include maximization or a mixture of minimization and
maximization.

19.3.4.1 Constrained Global Optimization

Schonlau et al. (1998) propose a version of the expected improvement algorithm for use in
problems of constrained optimization. Here we assume that the computer output consists
of multiple responses y1(·), …, ym(·) The goal is to minimize y1(x) subject to x satisfying
m − 1 constraints li ≤ yi(·) ≤ ui for i = 2, . . . , m.

Schonlau et al. (1998) propose using the improvement function

Ig
c,n(x) =

⎧⎪⎨
⎪⎩

(yn
min − Y1(x))g if Y1(x) < yn

min and li ≤ Yi(x) ≤ ui
for i = 2, . . . , m

0 otherwise
(19.19)

so that any constraint violation leads to zero improvement. As usual, yn
min is the minimum

of the responses observed on the current experimental design and Yi(·) denotes the stochas-
tic process prior for the ith output function. Schonlau et al. (1998) assume that the objective
and constraint processes were mutually independent; under this assumption, the conditional
expected improvement is given by

E
{

Ig
c,n(x) | Yn

1, . . . , Yn
m

}
= E

{
Ig
n(x) | Yn

1

}

× P
{

l2 ≤ Y2(x) ≤ u2 | Yn
2
} · · · P

{
lm ≤ Ym(x) ≤ um | Yn

m
}

,
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where conditionally given the observed data Yn
i , Yi(x) has a Gaussian distribution, which

is the analog of (19.9).
This methodology can be extended to accommodate correlated response functions. The

expanded statistical model requires a valid cross-correlation structure. The additional
model complexity increases the computational burden involved in fitting the statistical
model, with possible benefits including increased flexibility in modeling the physical sys-
tem and increased efficiency in finding a constrained optimum. Next, we describe an
algorithm introduced by Williams et al. (2010) that uses correlated outputs for a more
complicated problem involving control and environmental variables.

Williams et al. (2010) use the spatial autoregressive model in (19.18). This model says that
each constraint function is associated with the objective function (positively or negatively)
plus an independent refinement.

They apply this spatial autoregressive model to the bivariate (m = 2) response con-
strained optimization problem where the objective (i = 1) and constraint (i = 2) functions
μi(·) are given as in (19.16), with the corresponding output priors defined by

Mi(xc) ≡
ne∑

j=1

wj Yi(xc, xe,j).

Their goal was to minimize μ1(·), subject to an upper bound u2 on μ2(·). The technique
employed for solving this problem extends without difficulty to lower bound or two-sided
constraints.

The improvement function used by Williams et al. (2010) is a modified version of (19.19)
that accounts for the focus on integrated outputs,

Ic,n(x) =
{

Mn
min − M1(xc) if M1(xc) < Mn

min and M2(xc) ≤ u2

0 otherwise

where

Mn
min = min

{
M1(xc,i) : 1 ≤ i ≤ n and M0.05

2 (xc,i) ≤ u2

}

with M0.05
2 (·) denoting the lower fifth quantile function of the distribution of M2(·). Small

values of M1(·) on the current experimental design are not included in the computation of
the improvement function when the distribution of M2(·) shows that there is only small
probability that the constraint is satisfied (here, no more than 5%). This restriction elimi-
nates the scenario involving a global minimum in μ1(·), at which the constraint on μ2(·) is
violated, from being included in the computation of expected improvement. Inclusion of
such points results in an expected improvement function of approximately zero throughout
the control variable space, and the constrained optimum would never be found.

The algorithm proceeds in a fashion similar to the single-objective optimization algo-
rithm of Williams et al. (2000) described in Section 19.3.3: obtain an initial experimental
design, estimate the correlation parameters, determine the next control variable site by
maximizing the conditional expected improvement, determine the corresponding environ-
mental variable site by minimizing the conditional mean squared error of prediction (as in
step 4 of the algorithm in Section 19.3.3), generate responses at the newly chosen exper-
imental design site, and iterate until the stopping criteria are met. Once the algorithm is
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stopped, the constrained optimizer is predicted by solving the constrained optimization
problem with the EBLUPs of M1(·) and M2(·). The correlation parameters can be inter-
mittently estimated as the algorithm progresses, substantially reducing computation time
while sacrificing little in terms of prediction accuracy.

In applications where the simulator does not generate y1(·) and y2(·) simultaneously, the
efficiency of the constrained optimization algorithm can be improved by utilizing an addi-
tional statistical criterion to select which one of the outcomes should be generated at each
stage, rather than generating both outcomes. This feature is implemented in conjunction
with choosing the environmental variable site for the subsequent iteration of the algorithm.
Let Yn1

1 and Yn2
2 denote the vectors of outcomes calculated on the current experimental

designs of n1 and n2 sites for the first and second outcomes, respectively, and let n denote
the current total number of experimental design sites. Note that n may be less than n1 + n2
if the two responses are in some cases generated at the same input. Set Yn = (Yn1

1 , Yn2
2 ),

Y j
e = (Yj(xc,n+1, xe), Yn) and let M̂j

i(xc) denote the conditional mean of Mi(xc) given Y j
e. The

control variable site that maximizes conditional expected improvement given the current
n-point experimental design is designated xc,n+1. For j = 1, 2, define the MSPE function by

MSPEj(xe) = E
{[

M̂j
1(xc,n+1) − M1(xc,n+1)

]2 | Yn
}

+ P
{
M2(xc,n+1) > u2 | Yn} E

{[
M̂j

2(xc,n+1) − M2(xc,n+1)
]2 | Yn

}
.

For each outcome j, calculate

x∗
e,j = arg min

xe∈Xe
MSPEj(xe).

If MSPE1(x∗
e,1) ≤ MSPE2(x∗

e,2), augment the experimental design corresponding to the first
outcome with (xc,n+1, x∗

e,1) and compute y1(·) at this location; otherwise, augment the exper-
imental design corresponding to the second outcome with (xc,n+1, x∗

e,2) and compute y2(·)
at this location. This criterion selects the next outcome to be generated based on minimiz-
ing a weighted sum of prediction errors in the objective and constraint functions. The error
in predicting the constraint function is weighted by the probability that the constraint is
exceeded given the current data; if this probability is low, then constraint satisfaction is
currently determined with certainty and minimizing prediction error in the constrained
outcome is unnecessary. On the other hand, if constraint satisfaction is less certain, the
need to reduce prediction error in the objective function is balanced against the desire to
reduce prediction uncertainty in the constraint function.

19.3.4.2 Pareto Optimization

For purposes of multiple response optimization, we define partial orderings of vectors. For
two inputs x1 and x2, we say x1 weakly dominates x2 (x1 � x2) if yi(x1) ≤ yi(x2) for all i =
1, . . . , m. If at least one inequality is strict, then x1 is said to dominate x2 (x1 � x2). Similarly,
for two elements y(x1) and y(x2) in Y , we say y(x1) weakly dominates y(x2) (y(x1) � y(x2))
if yi(x1) ≤ yi(x2) for all i = 1, . . . , m. If at least one inequality is strict, then y(x1) is said to
dominate y(x2) (y(x1) � y(x2)). An input vector x ∈ X is Pareto optimal if and only if there is
no x′ ∈ X such that x ≺ x′. (Such x are also referred to as nondominated inputs. The image
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y(x) of a nondominated input is sometimes referred to as a nondominated output.) The set
of all Pareto optimal points in X is referred to as the Pareto set. Denote this set as PX . The
corresponding image of PX in Y is referred to as the Pareto front, and it is denoted PY .
In multiresponse optimization, the goal is to find (or, more realistically, approximate) the
possibly uncountable sets PY and PX .

Given two solutions (approximations) to PY or PX , how do we compare them? Several
metrics exist for comparing solutions to multiresponse optimization problems. These met-
rics rely on a the notion of an approximation set and a generalization of dominance for sets
of points, rather than just single points, in the input space X or the output space Y .

Let A be a set of points in the output space. A is an approximation set if none of its
elements dominate each other. In a one-dimensional setting (m = 1), an approximation
set would just be our best estimate of the true minimum of some function. In this situation,
it is easy to compare two competing minima, because of the inherent ordering of the real
numbers R. In a multiresponse problem, though, this is much more complicated, and we
must rely on the notion of dominance to compare sets.

A set A in the output space weakly dominates the set B in the output space (A � B) if
every vector in B is weakly dominated by some vector in A. Set A dominates B (A � B)
if every vector in B is dominated by a vector in A. These terms can be defined analogously
for sets of points in the input space. Obviously, an approximation set B that is weakly
dominated or dominated by another approximation set A would be considered an inferior
approximation to the Pareto front.

Unfortunately, for any two approximation sets A and B, neither one need dominate the
other. To help determine how “good” an approximation set is, researchers studying mul-
tiresponse optimization have introduced several Pareto set approximation quality indicators.
A detailed survey of this topic can be found in Zitzler et al. (2008).

Pareto set approximation quality indicators play two important roles. First, they serve as
metrics for comparing various approaches to approximating the Pareto front of a computer
experiment with multiple outputs. Second, many proposed approaches for the multire-
sponse optimization of computer experiments are based on these Pareto set approximation
quality indicators. Here we only discuss one of these quality indicators, the hypervol-
ume indicator. This quality indicator was first introduced in Zitzler and Thiele (1998) and
remains one of the most popular quality indicators in the multiresponse optimization lit-
erature. To calculate the hypervolume indicator for a set A in the objective space, we first
need to define a reference point υ, which is a point weakly dominated by all vectors in Y .
Define the hypervolume indicator of A as

IH (A, υ) =
�
Y

1{y | y�υ , A�{y}}dy.

Basically, it is the Lebesgue measure of the set of points in the output space that are
dominated by A but also dominate some reference point υ.

The hypervolume indicator’s main advantage is that it is strictly monotonic with respect
to dominance. This means that if we have two approximation sets A and B and A � B,
then IH (A, υ) > IH (B, υ) . While there are many Pareto set approximation indicators that
are monotonic, that is, A � B, then IH (A, υ) ≥ IH (B, υ), Zitzler et al. (2008) state that the
hypervolume indicator and a related indicator, the weighted hypervolume indicator, are
the only known Pareto set approximation quality indicators that are strictly monotonic.
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However, there are three disadvantages of the hypervolume indicator: One, it is depen-
dent on the scaling of the various outputs. Two, it requires some additional problem
knowledge, as it requires one to specify a suitable upper bound υ on the output space.
Three, it has a high computational cost. According to Fonseca et al. (2006), the best known
algorithms for calculating the hypervolume indicator have running times that are expo-
nential in m, the number of response functions. Therefore, for even moderate-sized output
spaces, one must usually resort estimating the hypervolume indicator via Monte Carlo
methods.

We now generalize the notion of expected improvement as given in Schonlau et al. (1998).
First, we replace, yn

min, the current minimum among n function evaluations, by the cur-
rent Pareto front, denoted P

n
Y , which is the set of nondominated outputs among the set

of n function evaluations of the m-dimensional function y(·). Next, we must define some
sort of improvement function to quantify how much an output y(x) improves upon P

n
Y .

Possible improvement functions have been proposed by Emmerich et al. (2006), Keane
(2006), Bautista (2009), and Svenson (2011).

Before discussing specific improvement criteria, we describe a general algorithm for
solving our multiresponse optimization.

19.3.4.3 Outline of the Algorithm

We assume that the m-dimensional function y(·) is a realization of an m-variate GASP model
Y(·). For simplicity, we also assume independent GASP models for the Yi(·) The algorithm
is as follows:

1. Evaluate y(·) at an initial space-filling design Sn = (x1, . . . , xn) ⊂ X . Let ym,n =
(y

′
(x1), . . . , y

′
(xn))

′
.

2. Estimate the unknown parameters using ML or REML based on the prior distribu-
tion associated with ym,n = (y

′
(x1), . . . , y

′
(xn))

′
.

3. Calculate the current Pareto set Pn
X and current Pareto front Pn

Y . These are the set of
nondominated inputs among all inputs in Sn and all nondominated outputs among
all function evaluations in ym,n, respectively.

4. Find xn+1 by maximizing a given quality improvement measure QI (x). The func-
tion QI(·) will depend on the specific improvement criterion I∗(y(x)), that is, the
multivariate generalization of I(x) in (19.10). In the following, we present two
ways that QI (x) has been defined in the literature. Note that QI(x) is more com-
monly referred to as the expected improvement at x, but in the literature, it has
not always been defined as the expectation of the selected improvement criterion.
Hence, we use here the notation QI(·) to emphasize that it is not necessarily an
expectation.

5. Evaluate y(xn+1). If our budget has been exhausted or a stopping criterion has been
met, terminate the algorithm. Otherwise, repeat steps 2 through 5 with ym,n+1 =
(y′(x1), . . . , y′(xn), y′(xn+1))

′.

Two methods have been proposed in the literature for defining QI (x) in terms of a given
improvement function I∗(y(x)):
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• Method 1: Define the quality improvement associated with I∗(·) to be

QI (x) = E [I∗(Y(x))|Ym,n = ym,n] . (19.20)

QI (·) is an expectation of the posterior predictive distribution, and thus it
is natural to refer to this improvement measure as an expected improvement
function.

• Method 2: Define the quality improvement associated with I∗(·) to be

QI (x) = P
(
Y(x) ∈ Rn|Ym,n = ym,n) I∗

(
Y(x)

)
(19.21)

where

Rn = {
y : y �� z, ∀ z ∈ P

n
Y
}

(19.22)

is the region of the output space that is nondominated by the current Pareto front
and Y(x) is the mean of the distribution of [Y(x)|Ym,n = ym,n, Y(x) ∈ Rn], which can
be expressed as

Y(x) =
E
[
Y(x)1[Y(x)∈Rn]|Ym,n = ym,n

]
P
(
Y(x) ∈ Rn|Ym,n = ym,n

) . (19.23)

Notice that Y(x) is an m-dimensional vector.

Method 1 is the more natural multivariate extension of the improvement criterion given
in (19.10) and the corresponding expected improvement in (19.11). We define an improve-
ment function and compute its expectation conditional on the function evaluations we have
already observed. In practice, one attempts to find analytic expression for (19.20). If this
is not possible, one can turn to Monte Carlo methods by simulating a large number of
draws from the distribution of [Y(x)|Ym,n = ym,n], evaluating the improvement function at
each draw, and averaging these values. The strong law of large numbers will guarantee
convergence to (19.20) at any give x.

Method 2 is less natural. First and foremost, (19.21) is a function of expectations, but
generally is not an expectation. Therefore, referring to it as an expected improvement function
can be misleading. However, it plays a role similar to the expected improvement in (19.11),
so we will refer to it as an expected improvement.
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For output with only a single response, (19.21) is equivalent to (19.10). In particular,
when m = 1,

E
[
I(y(x))|Yn,1 = yn,1

]

= E
[(

ymin − Y(x)
)

1[Y(x)−ymin<0]|Yn,1 = yn,1
]

= yminE
[
1[Y(x)−ymin<0]|Yn,1 = yn,1

]

− E
[
Y(x)1[Y(x)−ymin<0]|Yn,1 = yn,1

]

= E
[
1[Y(x)−ymin<0]|Yn,1 = yn,1

]

×
⎛
⎝ymin − E

⎡
⎣ Y(x)1[Y(x)−ymin<0]

E
[
1[Y(x)−ymin<0]|Yn,1 = yn,1

] |Yn,1 = yn,1

⎤
⎦
⎞
⎠

= P
(

Y(x) �≥ ymin
∣∣∣Yn,1 = yn,1

)
I
(

Y(x)
)

.

Aside from its equivalence to the usual single-objective expected improvement function,
there are three reasons why Method 2 is considered. First, it has made its way into the
literature. Keane (2006) essentially uses Method 2 to define QI(x) in a proposed expected
improvement algorithm to be discussed shortly. Second, in situations where we must cal-
culate expectations via Monte Carlo integration and I∗(·) is expensive to compute, using
Method 1 can be computationally demanding because I∗(·) must be computed for every sin-
gle draw from the predictive distribution. For example, the improvement criteria defined
by Emmerich et al. (2006) require a calculation of the hypervolume indicator that has a
very high computational cost for larger m. Finally, the most compelling reason to study
Method 2 is that it can work surprisingly well in practice and, when paired with certain
improvement functions, can even outperform Method 1.

To keep notation simple, we will use the simplified expressions QIM1 and QIM2 for
Method 1 and Method 2, respectively.

19.3.4.4 0–1 Improvement

Keane (2006) introduced the simplest of all multiresponse expected improvement algo-
rithms, the probability of improvement. Essentially, we sequentially add inputs by maximiz-
ing P

(
Y(x) ∈ Rn|Ym,n = ym,n), and so we are using the improvement criterion

IPI
(
y(x)

) = 1[y(x)∈Rn]

where 1[y(x)∈Rn] is the indicator function and equals 1 if y(x) ∈ Rn and 0 otherwise. We will
refer to IPI(·) as the 0–1 improvement criterion, as it returns a 0 if y(x) is dominated by the cur-
rent Pareto front and a 1 otherwise. Notice that, for this particular improvement criterion,
QIM1 and QIM2 are equivalent. For the case where m = 2 and the outputs are mod-
eled as independent Gaussian processes, Keane (2006) derives a closed-form expression
for P

(
Y(x) ∈ Rn|Ym,n = ym,n).
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While relatively simple, the probability of improvement is not a very effective expected
improvement. Keane (2006), Forrester et al. (2007), and Bautista (2009) point out, based
on numerical studies, that the probability of improvement tends to add outputs that are
“clumped” together. Essentially, this particular choice for QI(x) does not explore the input
space very efficiently. This is not surprising, since the improvement criterion IPI (Y(x)) only
takes into account whether or not an improvement occurs and ignores the magnitude of
the improvement.

19.3.4.5 Keane’s Distance-Based Improvement

Keane (2006) also introduces a distance-based expected improvement algorithm in the case
where m = 2, with the goal of balancing exploration of the input space and exploitation of
the surrogate approximation in the search for nondominated sets. This approach employs
a QIM2-based QI (x). While only presented for 2D outputs, it is not difficult (at least in
principle) to generalize for arbitrary m ≥ 2. Let

QI (x) ≡ P
(
Y(x) ∈ Rn|Ym,n)

× min
xi∈Pn

X

√√√√ m∑
k=1

(
Yk(x) − yk(xi)

)2

= min
xi∈Pn

X

√√√√ m∑
k=1

(
E
[(

Yk(x) − yk(xi)
)

1[Y(x)∈Rn]|Ym,n
])2

. (19.24)

The improvement function implicit in this formulation is

IK
(
y(x)

) =

⎧⎪⎪⎨
⎪⎪⎩

min
xi∈Pn

X

√√√√ m∑
k=1

(
yk(x) − yk(xi)

)2 if y(x) ∈ Rn,

0 otherwise.

Just like P
(
Y(x) ∈ Rn|Ym,n = ym,n), Keane (2006) derives a closed-form expression for Y(x)

in the two-response, independent-output case.
This expected improvement can substantially outperform the probability of improve-

ment, as the distance-based improvement criterion is larger for outputs that are farther from
the current Pareto front. Therefore, the magnitude of improvement is taken into consider-
ation. This encourages the sequentially added points to be more spread out in the output
space than when using the probability of improvement. However, IK

(
y(x)

)
has some theo-

retical disadvantages that are discussed in Svenson (2011). Also, Svenson (2011) shows that
IK
(
y(x)

)
is relatively inefficient when compared to many other methods.

19.3.4.6 Pareto Improvement

Bautista (2009) introduces the EMAX algorithm, which follows the general algorithm
outlined previously and, in particular, the QIM1 interpretation of QI(x). The Pareto
improvement criterion is explicitly defined as
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IP
(
y(x)

) = − max
xi∈Pn

X
min

j=1,...,m

(
yj(x) − yj(xi)

)
.

Bautista (2009) shows that IP
(
y(x)

)
is an attractive improvement criterion because it

allows one to easily distinguish whether or not a given point in the output space is non-
dominated. If IP

(
y(x)

)
> 0, then y(x) is not dominated by any vectors in P

n
Y . If IP

(
y(x)

)
< 0,

then y(x) is dominated by at least one vector inP

n
Y . If IP

(
y(x)

) = 0, then y(x) is weakly dom-
inated by at least one vector in P

n
Y . This improvement criterion is based on the modified

maximin fitness function

fitness
(
y(x)

) = max
xi∈Pn

X
min

j=1,...,m

(
yj(x) − yj(xi)

)
(19.25)

presented in Balling (2003), which was originally introduced as a component of a multire-
sponse evolutionary algorithm. One can interpret the Pareto improvement (and the closely
related maximin fitness function) as a distance metric from an output space vector to the
Pareto front.

A potential drawback of this particular improvement criterion, discussed in Svenson
(2011), is that it is not equal to zero in the currently dominated region, and one conse-
quence of this definition is that the improvement criterion for single-response optimization
employed in Jones et al. (1998) and Schonlau (1997) is not a special case of the Pareto
improvement criterion.

This issue can be easily resolved by introducing the maximin improvement function, which
Svenson (2011) defines as

IM
(
y(x)

) = − max
xi∈Pn

X
min

j=1,...,m

(
yj(x) − yj(xi)

)
1⎡
⎣− max

xi∈Pn
X

min
j=1,...,m

(
yj(x) − yj(xi)

)
< 0

⎤
⎦.

See Svenson (2011) for more discussion.

19.3.4.7 Hypervolume Improvement

Emmerich et al. (2006) incorporated the hypervolume indicator into an improvement cri-
terion. The idea is to choose the next input x in our sequential design so that we get the
largest possible expected increase in the hypervolume indicator. To do this, we define the
hypervolume improvement criterion as

IH(y(x)) =
{

0 if y(x) � P

n
Y or y(x) �� υ,

IH

({
y(x)

} ∪ P

n
Y , υ

)
− IH

(
P

n
Y , υ

)
otherwise,

for some suitable reference point υ.
Svenson (2011) discusses additional improvement functions, the Gaussian weighted

hypervolume improvement function, and the completeness indicator improvement func-
tion, based on the Gaussian weighted hypervolume and the completeness quality indica-
tors. In addition, he discusses the QIM1 and QIM2 implementations of these and other
improvement functions for Pareto optimization.

For more discussion of Pareto optimization than we give here, see Coello et al. (2006). See
Svenson (2011) for a detailed discussion of improvement functions for Pareto optimization
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as well as performance comparisons of improvement functions. Pareto optimization has
been extensively studied and here we hope to give a sense of how improvement criteria
have been utilized.

19.3.5 GASP Model with Measurement Error

The GASP model in (19.1) can be modified to allow for measurement or random error. This
might occur in computer simulations with a noise component. Assume we have n runs of
our simulator. Let Ỹi(x) denote the output for the ith run of the simulator at input x. In this
case, the GASP model for run i at input x becomes

Ỹi(x) =
k∑

j=1

βjfj(x) + Z(x) + εi(x), (19.26)

where βj, fj, and Z have the same values as given previously and εi(x) is normally dis-
tributed with mean 0 and variance δ2 independent of Z(x). We assume εi(·) and εj(·),
corresponding to runs i �= j, are independent, and thus, the covariance between Ỹi(x1)

and Ỹj(x2) is given by

cov(Ỹi(x1), Ỹj(x2)) = σ2
zR(x1, x2) + δ21i=j,

where 1i=j is the indicator function and equals 1 if i = j; otherwise, it equals 0.
We wish to predict the output Y(x) of a hypothetical “noiseless” version of the simulator,

which we model as

Y(x) =
k∑

j=1

βjfj(x) + Z(x) (19.27)

with

cov(Y(x1), Ỹj(x2)) = σ2
zR(x1, x2).

If we restrict to the GASP model with constant mean for both the noisy and noiseless cases,
the EBLUP Ŷ(x) and corresponding (empirical) MSPE described in (19.7) and (19.8) and
the discussion following are still valid for predicting Y(x∗), provided we replace σ2

zR by V,
where V is the n × n matrix of covariances between the responses at the observed design
sites, and we replace σ2

zr by v = v(x∗) = [cov(Y(x∗), Ỹ1(x1)), . . . , cov(Y(x∗), Ỹn(xn))]′
, the

vector of covariances between Y(x∗) and the Ỹi(·) at the observed input sites. In addition to
modeling output from computer simulations with noise, some authors advocate using this
GASP model with random error (sometimes referred to as a GASP model with a nugget
effect) because it has certain numerical advantages (R can sometimes be nearly singular,
whereas this will not be the case with V) and because it accommodates the use of correla-
tion functions that produce very smooth predictors, even if the computer simulation is not
actually a smooth function.
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Huang et al. (2006b) consider the goal of optimization and consider the expected
improvement and algorithm of Jones et al. (1998) in the GASP model with constant mean
and with random error. They use independent diffuse priors for the constant mean β as
well as for σ2

z , δ2, and the correlation parameters. Let Yp(x) denote the posterior distribu-
tion of the output of the hypothetical noiseless simulator as a function of the input x, and let
Ŷ(x) be its posterior mean and s2(x) its posterior variance. They use an augmented expected
improvement criterion at a potential site x∗:

E(I(x∗)) = (E{max(Ŷ(x0) − Yp(x∗), 0)}) ×
(

1 − δ√
s2(x∗) + δ2

)
, (19.28)

where x0 denotes the current effective best solution. The current effective best solution is
defined to be the point among all those that have been observed so far that maximizes the
utility function

u(x) = −Ŷ(x) − cs(x), (19.29)

where c is a user-specified constant. The constant c reflects the relative importance of a
predicted small value of the hypothetical noiseless simulator at x versus a small prediction
standard deviation. Another way to interpret this utility is that we seek the point x0 that
minimizes the upper end point of a prediction interval of the form Ŷ(x) ± cs(x) for a given c.
Taking c = 0 corresponds to the utility used by Jones et al. (1998). Huang et al. (2006b) use
c = 1.

The second term on the right side of (19.28) is a factor intended to account for diminish-
ing returns of additional replicates as the prediction becomes more accurate. It is equal to
the proportion of the reduction in the posterior standard deviation after a new replicate is
added. It approaches 1 when the variance of the random errors approaches 0.

As in Jones et al. (1998), one can show that the conditional expected improvement in
(19.28) given the past data and estimates of the correlation parameters is

E(I(x∗)) = s(x∗)
{

Ŷ(x0) − Ŷ(x∗)
s(x∗)

�

(
Ŷ(x0) − Ŷ(x∗)

s(x∗)

)
+ φ

(
Ŷ(x0) − Ŷ(x∗)

s(x∗)

)}

×
(

1 − δ√
s2(x∗) + δ2

)
(19.30)

where, as previously, � and φ are the standard normal probability cumulative distribution
and density functions, respectively.

Not surprisingly, this approach works very well in the examples discussed in Huang
et al. (2006b). Forrester and Bressloff (2006) independently propose a similar approach and
demonstrate that it is effective in an airfoil example.

Picheny et al. (2013) also consider optimization in computer experiments with noise.
They propose an expected improvement criterion based on quantiles. The goal is similar
to the modified goal in Huang et al. (2006b). Based on training data from n observations
x1, . . . , xn, they seek the point x0 that minimizes

qn(x) = Ŷ(x) + �−1(γ)s(x) (19.31)
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for a given quantile γ ∈ [0.5, 1). Notice that this looks similar to u(x) in (19.29). The
improvement at a point x∗ is then defined to be

I(x∗) = min
x∈{x1,...,xn}qn(x) − qn+1(x∗). (19.32)

Replacing Ŷ(·) with Yp(·) in the (19.31) and taking expectations yields the expected
improvement

EI(x∗) =
(

qmin
n − Ŷ(x∗)

)
�

(
qmin

n − Ŷ(x∗)
s(x∗)

)
+ s(x∗)φ

(
qmin

n − Ŷ(x∗)
s(x∗)

)
, (19.33)

where

qmin
n = min

x∈{x1,...,xn}qn(x)

and Ŷ(·) and s2(·) are the appropriate conditional mean and variance (see the appendix
of Picheny et al. 2013 for details). Properties, performance, and some variations of this
expected improvement are discussed in Picheny et al. (2013), and the criterion performs
well.

19.3.5.1 Multiple Simulators of Differing Fidelity

Huang et al. (2006a) consider the situation in which there are m computer simulations
available to observe of differing accuracy or fidelity. Those of low fidelity are cheaper (run
more quickly) than those of higher fidelity; thus, for a give budget, one can observe the
lower-fidelity simulations more frequently than the higher fidelity simulations. On the
other hand, the higher fidelity simulations more accurately represent some physical process
of interest, so the higher fidelity simulations are more informative than the lower fidelity
simulations. Denote observations from these simulators in increasing order of fidelity by
Ỹ1(x), Ỹ2(x), . . . , Ỹm(x). Let Y1(x), Y2(x), . . . , Ym(x) denote hypothetical “noiseless” versions
of these simulator outputs.

For l = 1, 2, . . . , m, define

ζl(x) = βl + Zl(x), (19.34)

Yl(x) = Yl−1(x) + ζl(x), (19.35)

and

Ỹl(x) = Yl + εl(x) (19.36)

where we take Y0(x) = 0. The Zl(x) are mean 0 stationary GASP with var[Zl(x)] = σ2
l and

are assumed to be all independent of each other. The εl(x) are normally distributed with
mean 0 and variance δ2

l , independent of each other and of the Zl(x). A Gaussian correlation
structure (as in (19.3) with p = 2) is assumed for each Zl(·). Each Yl(·) is modeled as a
refinement (through the addition of ζl(·)) of the previous (lower fidelity) one.
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This model is inspired by Kennedy and O’Hagan (2001). However, the goal in Kennedy
and O’Hagan (2001) is calibration. They consider the situation in which one has data from
both a computer simulator and the actual physical process being simulated. The output
from the simulator is modeled by a stationary GASP. The model for the physical process is
the sum of a term corresponding to the model for the simulator output, a term representing
model uncertainty (arising from the fact that the computer simulator only approximates the
physical process), and a term representing random error. Kennedy and O’Hagan (2001)
construct a predictor for observations from the physical process based on data from both
the computer simulator and the physical process. In Kennedy and O’Hagan (2001), the
model for the data from the physical process is a refinement of the model for the simulator
output and was the basis for the model in Huang et al. (2006b).

The goal in Huang et al. (2006a) is to find the optimum (minimum) of the highest-fidelity
hypothetical noiseless simulator. Huang et al. (2006a) use independent diffuse priors for the
βl,σ2

l , δ2
l , and the correlation parameters. Let Yl,p(x) denote the posterior distribution of the

output of hypothetical noiseless simulator l as a function of the input x, and let Ŷl(x) be its
posterior mean and s2

l (x) its posterior variance. Using an improvement criterion similar to
that in Jones et al. (1998), Huang et al. (2006a) show that the conditional expected improve-
ment in Ym,p(·), based on the model for the highest level of fidelity, at a potential site x∗ as
compared to the current minimum Ŷm(x0) (assumed to occur at x0), is

E{max(Ŷm(x0) − Yp
m(x∗), 0)}

= sl(x∗)
{

Ŷm(x0) − Ŷ(x∗)
sm(x∗)

�

(
Ŷm(x0) − Ŷm(x∗)

sm(x∗)

)
+ φ

(
Ŷm(x0) − Ŷm(x∗)

sm(x∗)

)}
. (19.37)

In order to modify this improvement criterion to select both the next site x∗ at which to
observe a simulator and the site at which simulator (which level of fidelity) to use, Huang
et al. (2006a) multiply E{max(Ŷm(x0) − Ym,p(x∗), 0)} by three terms. The first of these is the
correlation between Ym,p(x∗) and Yl,p(x∗):

α1(x, l) = corr(Ym,p(x), Yl,p(x)),

and this favors the simulators that are most highly correlated with the highest-fidelity
simulator. The second term is

α2(x, l) =
⎛
⎜⎝1 − δl√

s2
l (x) + δ2

l

⎞
⎟⎠ ,

and at a given input x, this favors simulators whose random error variance δ2
l is small

relative to the prediction variance s2
l (x). In other words, at a given input x, this favors

simulators that are relatively “nonnoisy.” The third term is

α3(l) = Cm

Cl
,
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where Ci is the cost of observing simulator i. This favors the “cheapest” simulators. Notice
that this improvement criterion requires the user to specify the error variances δ2

l and the
costs Cl.

The expected improvement algorithm is the following:

1. Perform an initial experiment of sample size n = n1 + n2 +· · ·+ nm, where nl is the
number of points in the initial design allocated to simulator l, to obtain training
data

ỹ1(x1), . . . , ỹ1(xn1), ỹ2(xn1+1), . . . , ỹ2(xn1+n2), . . . , ỹm(xn1+n2+···+1), . . . , ỹm(xn1+···+nm).

2. Fit the Ŷl(x)s and compute the sl(x). Verify, through cross validation, that the Ŷl(x)s
are satisfactory. If not, try transformations of the ys to improve the quality of the
fits of the EBLUPs.

3. Identify the point xn+1 ∈ X and the simulator l that maximizes the expected
improvement, and run simulator l at this point to obtain ỹl(xn+1).

4. Update the training data by adding xn+1 and ỹl(xn+1) to the training data and
setting n to n + 1.

5. Iterate between steps 2 and 4 until the experimental budget has been exhausted or
some stopping criterion is met.

6. Estimate the minimum of the highest-fidelity simulator from the final Ŷm(x).

Huang et al. (2006a) suggest that the initial design has the following properties. The initial
design for the lowest-fidelity simulator should be a Latin hypercube design. For higher
fidelity simulators, the initial design should be a subset of the designs used for lower
fidelity simulators. Ideally, one would like these subsets to themselves be Latin hyper-
cubes, but this is not generally possible. If these subset designs cannot be selected to be
Latin hypercubes, then choose the subset of specified size with maximal minimum distance
between points.

Huang et al. (2006a) propose that instead of using the minimum of Ŷm(·), the current
best site x0 be the site satisfying

x0 = arg max
x∈{x1,...,xn}

[u(x)],

where u(x) = −Ŷm(x) − csm(x) is a utility function that is determined by a user-specified
constant c that reflects the relative importance of a predicted small value of simulator m
at x versus a small prediction standard deviation. Another interpretation of this utility is
that we seek the site x0 that minimizes the upper end point of a sort of prediction interval of
the form Ŷm(x) ± csm(x). Taking c = 0 corresponds to the utility (global minimum) used by
Jones et al. (1998). Huang et al. (2006a) use c = 1.

This expected improvement algorithm is applied to several numerical examples and
performs sensibly.

Forrester et al. (2007) also consider optimization in a multiple fidelity model setting.
They focus on settings with two levels of fidelity (although their results can be extended
to more than two levels of fidelity), a cheap and an expensive simulator, and use cokriging
methods for developing predictors of the simulator output. Their methods are applied to
an example involving the optimization of an aircraft wing.
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19.4 Contour Estimation

In Ranjan et al. (2008), the goal is to determine the set of all inputs x ∈ X for which the
output y(x) = a, where a is a user-specified constant. This set defines a contour on the
response surface determined by y(x). A GASP model with constant mean is adopted for
the output, and an approach, analogous to that used by Schonlau et al. (1998) and Jones
et al. (1998), as expressed in (19.9), is employed.

The improvement criterion they use to sequentially add design points to the existing
design is the following:

I(x) = ε2(x) − min
{
(Y(x) − a)2, ε2(x)

}
(19.38)

or equivalently, as pointed out by Roy and Notz (2013),

I(x) =
{
ε2(x) − (Y(x) − a)2, if Y(x) ∈ (a − ε(x), a + ε(x))

0 , otherwise
, (19.39)

where ε(x) = αs(x) for some positive constant α. There is no improvement if Y(x) is “far
away from” a, that is, more than ε(x) away from a. However, if Y(x) is “close to” a, that
is, within ε(x) of a, there is improvement and the amount of improvement is a function of
how close Y(x) is to a. In particular, the improvement is ε2(x) − (Y(x) − a)2. The maximum
possible improvement is ε2(x).

As expressed in (19.39), the improvement function has a confidence interval interpretation.
One sees that there is improvement if the interval Y(x)±ε(x) for the actual value y(x) of the
computer code includes a. In other words, there is improvement if a is not an “implausible”
value for y(x).

With some algebra, one can show that the expected improvement is

E[I(x)] =
[
(αs(x))2 − (Ŷ(x) − a)2

] [
�

(
a − Ŷ(x)

s(x)
+ α

)
− �

(
a − Ŷ(x)

s(x)
− α

)]

+ 2(Ŷ(x) − a)s2(x)

[
φ

(
a − Ŷ(x)

s(x)
+ α

)
− φ

(
a − Ŷ(x)

s(x)
− α

)]

−
a+αs(x)�

a−αs(x)

(y − Ŷ(x))2φ

(
y − Ŷ(x)

s(x)

)
dy, (19.40)

where �(·) and φ(·) denote the cumulative distribution function and probability density
function of the standard normal distribution, respectively. Although not immediately obvi-
ous, it turns out that the expected improvement at a potential input x∗ has both a local
search component (values of x∗ for which Ŷ(x∗) is close to a yield improvement) and a
global search component (values of x∗ for which the uncertainty s(x∗) is large, which typi-
cally occurs at values of x∗ that are far from the training data, can yield improvement). The
greatest improvement is achieved for points x∗ at which s(x∗) is large but for which Ŷ(x∗)
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is close to a. We note that the constant α in the definition of ε(x) determines the extent to
which the search is local versus global. Larger values of α produce a more global search.

Ranjan et al. (2008) use this improvement criterion as the basis for an algorithm for
contour estimation. Their algorithm is as follows:

1. Perform an initial experiment of sample size n to obtain training data.
2. Fit the EBLUP and compute s(x) as in (19.7) and (19.8).
3. Identify the point xn+1 ∈ X that maximizes E[I(x)] (shown in (19.40)), and run the

computer simulator at this point to obtain y(xn+1).
4. Update the training data by adding xn+1 and y(xn+1) to the training data and

setting n to n + 1.
5. Iterate between steps 2 and 4 until the experimental budget has been exhausted or

some stopping criterion is met.

6. Estimate the desired contour Ĉ = {x; Ŷ(x) = a} from the final EBLUP.

This algorithm is illustrated by examples that show it to be effective in estimating the con-
tour. The examples also show the improvement criterion adding points that are near the
true contour (local search) and occasionally points that are in regions of high uncertainty
(global search).

19.5 Percentile Estimation

Roy and Notz (2013) extend the results in Ranjan et al. (2008) to estimating percentiles. Sup-
pose the inputs x to the computer simulator represent characteristics of members of some
population. For example, x could be physical characteristics of American adults. The val-
ues of x are thus distributed in some fashion in this population. We assume this distribution
is known and we can view x as a random variable. We use upper case X if we want to think
of the inputs as random. The distribution of X induces a distribution on y(X). It may be of
interest to estimate percentiles of this distribution. For example, we may wish to estimate
the median or a reasonably large value such as the 90th percentile. In fact, when the actual
range of values of the output y(x) is not well known, it may not be possible to specify what
one means by a “large” value of y(x) other than through specifying a large percentile.

Roy and Notz (2013) take as their goal the estimation of the pth percentile value, ζp, of
this induced distribution on y(X). For simplicity, X is assumed to be uniformly distributed
over X , but the results in Roy and Notz (2013) can be easily modified to handle any known
continuous distribution. As in Ranjan et al. (2008), the GASP model with constant mean
is assumed for the output and an approach as expressed in (19.9) is employed. The cubic
correlation function (see (19.4)) is used to model the correlation structure.

Roy and Notz (2013) discuss two types of improvement criteria. One is a confidence
interval–inspired approach and is thus motivated: given we have a fair idea about the loca-
tion of the pth percentile ζp, we should look at inputs for which the output lies in an interval
about ζp to refine our estimate of ζp. The other approach is a hypothesis testing–inspired
approach, namely, we try to select design points at which the response is not significantly
different from ζp.
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For either approach, an important component is estimating ζp from a given set of training
data. Roy and Notz (2012) use the following method:

1. Generate a large random sample from the distribution of the input variables.
(They use a large maximin distance Latin hypercube sample in their examples.)

2. Use the EBLUP based on the training data to predict the values of the output for
this large sample.

3. Numerically estimate ζp from the ordered vector of predicted values obtained in
step 2.

19.5.1 Confidence Interval: Based Criterion

Given the current estimate of the pth percentile value, ζp, of the induced distribution of the
output variable, define the improvement at any untried x to be

I(x) =
{

h
(

Y(x) − ζp, 1
s(x)

)
, if Y(x) ∈ (ζp − αs(x), ζp + αs(x))

0 , otherwise
, (19.41)

where h(·) is a decreasing function of |(Y(x) − ζp| and 1
s(x)

. According to this improvement
criterion, if the current estimate of the pth percentile, ζp, lies within αs units of the response

at input site x, the improvement at that design point is set equal to h
(

Y(x) − ζp, 1
s(x)

)
.

Else, the improvement is set equal to 0. Taking

h
(

Y(x) − ζp,
1

s(x)

)
= (αs)g − (Y − ζp)

g

yields the following improvement criterion:

Ig(x,α) =
{
(αs(x))g − (Y(x) − ζp)

g, if Y(x) ∈ (ζp − αs(x), ζp + αs(x))

0 , otherwise , (19.42)

where ζp is the current estimate of the pth percentile value of the induced distribution of
the output variable, g is a positive even integer, and α > 0. It is clear that the improvement
function of Ranjan et al. (2008) given by (19.39) is a special case of the improvement function
in (19.42), with ζp = a and g = 2. To average the improvement over the uncertainty in the
predicted response surface, we take an expectation over the distribution of the response
variable, which is N(Ŷ(x), s2(x)), conditioned on the training data and parameter estimates.
Here, Ŷ(x) is the EBLUP. The design site for which the expected improvement is maximized
is added to the existing design.

Roy and Notz (2013) show that the relative amounts of local versus global search in their
improvement criterion Ig(x,α) can be controlled by changing g andα. From (19.42) it is clear
that increasing α results in a wider interval of candidate design points (leading to a more
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global search) from which we may pick the most “informative”, at any iteration. The use
of g to control the relative amount of local versus global search was inspired by Schonlau
et al. (1998).

The expected improvement (given the training data and parameters) at any design site
x is given by

E[Ig(x,α)] = E
[{

((αs(x))g − (Y(x) − ζp)
g) · 1ζp−αs(x)<Y(x)<ζp+αs(x)

}]
,

where 1· is the indicator function: if A is true, then 1A = 1; otherwise, 1A = 0. For g = 2,
the associated expected improvement at any design site x can be written as

E[I2(x,α)] = [(αs)2(x) − (Ŷ(x) − ζp)
2]
[
�

(
ζp − Ŷ(x)

s(x)
+ α

)
− �

(
ζp − Ŷ(x)

s(x)
− α

)]

+ 2(Ŷ(x) − ζp)s2(x)

[
φ

(
ζp − Ŷ(x)

s(x)
+ α

)
− φ

(
ζp − Ŷ(x)

s(x)
− α

)]

−
ζp+αs(x)�
ζp−αs(x)

(y − Ŷ(x))2φ

(
y − Ŷ(x)

s(x)

)
dy, (19.43)

where �(·) and φ(·) denote the cumulative distribution function and probability density
function of the standard normal distribution, respectively.

In general, for any positive even g, the expected improvement at any design site x can
be written as

E[Ig(x,α)] = (αs(x))g

[
�

(
ζp − Ŷ(x)

s(x)
+ α

)
− �

(
ζp − Ŷ(x)

s(x)
− α

)]

−
g∑

k=0

(
g
k

)
(Ŷ(x) − ζp)

g−k
� ζp+αs(x)

ζp−αs(x)
(y − Ŷ(x))kφ

(
y − Ŷ(x)

s(x)

)
dy.

19.5.2 Hypothesis Testing–Based Criterion

Roy and Notz (2013) propose another criterion that may be used to select new input set-
tings to be observed and sequentially added to the existing design. The inspiration for
this selection criterion comes from the idea of hypothesis testing. They define the discrep-
ancy between the current estimate of the pth percentile, ζp, and Y = Y(x), the response (as
modeled by a GASP model) at any untried input setting, x, to be

Dε(x) =
{

(Y(x)−ζp)
2+ε

s2(x)
, if s(x) �= 0

∞ , otherwise
, (19.44)

where ε > 0. The idea is to choose that design site at which the response is not significantly
different from the pth percentile, ζp. One wants to select points for which the discrepancy is
minimized. The negative of Dε(x) would be an improvement criterion. It is to be noted that
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if a particular design site has already been observed, the MSPE, s2, at that point is zero; since
we are working with output from computer experiments and do not want replications, we
set the discrepancy of previously observed input sites to be high.

Note that if ε is set equal to zero in the discrepancy function given in (19.44), the
expression looks like an F-statistic. The reason for the inclusion of a positive ε term in
the expression is simple. Suppose we have two competing design sites x1 and x2, and the
responses at both x1 and x2 are equal to the current estimate of the pth percentile, ζp. The
value of the discrepancy function as given in (19.44) sans the ε term is zero for both x1
and x2. The question that arises is: Which design site should we pick in such a situation?
Naturally, we prefer the design site where there is more uncertainty, that is, the design
site that has a higher value of s2. The inclusion of an ε(>0) results in nonzero values of
the discrepancy function; more specifically, among competing design points, those with
higher values of s2(x) will have smaller values of discrepancies associated with them. Thus,
selecting the design site with the least value of the discrepancy function ensures that we
pick the design site with the highest mean square prediction error from a set of competing
design sites.

Increasing the value of ε leads to a more global search. As discussed earlier, the inclusion
of ε ensures that design sites with higher values of s2 are selected over other candidate sites.
Increasing ε allows us to put more weight on s2(x), relative to (Y(x) − ζp)

2.
We have seen that conditional on the observed data and parameter estimates, the

response at any selected design site x is normally distributed with mean Ŷ(x) and variance
s2(x). Thus, the expected discrepancy at any design site, x, is given by

E[Dε(x)] =
⎧⎨
⎩
(

Ŷ(x)−ζp
s(x)

)2

+ ε
s2(x)

+ 1, if s(x) �= 0

∞ , otherwise
. (19.45)

The design site x, at which E[Dε(x)|y,β = β̂,σ2
z = σ̂2

z ,λ = λ̂, ζp = ζ̂p] is minimized, is
added to the existing design.

Regardless of whether one uses the improvement criterion or the discrepancy criterion
given in (19.41) and (19.44), respectively, Roy and Notz (2013) propose the following algo-
rithm to obtain a design that would allow one to estimate the pth percentile of the induced
distribution of the response variable, where the value of p is predetermined:

1. Obtain observations on an initial design.
2. Estimate the input–output relationship using all the available data, and estimate

the pth percentile, ζp.
3. Use the estimated input–output relationship and a criterion to choose a design site

at which we will next observe the output.
4. Update the data with the new design site and the corresponding observed output;

update the estimates of the input–output relationship and the estimate of the pth
percentile, ζp.

5. Iterate steps (3) and (4) until a stopping criterion is met. If the stopping criterion is
satisfied, go to step (6).

6. Use the updated data to obtain the final estimate of the pth percentile value, ζp, of
the induced distribution of the output variable. Call it ζ∗

p.



Expected Improvement Designs 711

Roy and Notz (2013) use examples to demonstrate the effectiveness of their method.
They note that both the improvement criterion and the discrepancy criterion given in
(19.41) and (19.44), respectively, are based on the assumption that our current estimate
of the pth percentile, ζp, is correct. This makes it very important that the improvement
criterion has a strong global search component. They mention that, in practice, it is also
important to have a good initial design.

19.6 Global Fit

A very challenging problem is developing criteria for the goal of producing a predictor of
the simulator output that has “good” overall fit, that is, it gives “good” predictions over all
of X. Popular criteria are integrated MSPE, maximum MSPE, methods based on cross val-
idation, and entropy. See Lam and Notz (2008) for more discussion. Can one development
improvement criteria that are effective for the goal of good overall fit?

Lam and Notz (2008) propose the following improvement criterion:

I(x) = (Y(x) − y(xj∗))
2, (19.46)

where y(xj∗) refers to the observed output at the sampled point, xj∗ , that is closest (in dis-
tance) to the candidate point x. They determine this nearest sampled design point using
the Euclidean distance.

The intuition behind this criterion is to place high value on informative regions in the
domain that will help improve the global fit of the model. By informative Lam and Notz
(2008) mean regions with significant variation in the response values.

The expected improvement for this criterion is

E(I(x)) = (Ŷ(x) − y(xj∗))
2 + s2(x). (19.47)

The expected improvement in (19.47) consists of two search components—local and
global. The local component of the expected improvement will tend to be large at a point
where it has the largest (response) increase over its nearest sampled point. The global com-
ponent is large for points with the largest prediction error as defined in (19.8), that is, points
about which there is large uncertainty, and these tend to be far from existing sampled
points.

Lam and Notz (2008) compare the performance of this criterion with sequential and fixed
sample implementations of design criteria based on MSPE, changes in measures based on
cross validation error, entropy, and a space-filling design. Their method performs well on
response surfaces that look nonstationary, in particular, surfaces that have regions of high
variability as well as regions that are very flat. It performs satisfactorily in examples where
the response surface looks stationary.

19.6.1 Emulator Maturity

Loeppky et al. (2010) investigate strategies for adding design points in batches for the
goal of improving overall global fit of the GASP model. They refer to this as emulator
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maturity, the idea being that we seek to improve our emulator (predictor) of the physi-
cal process by adding observations from the computer simulation (and, perhaps, from the
physical process itself). They consider several strategies. One is the one-at-a-time sequen-
tial strategy using the expected improvement criterion of Lam and Notz (2008). Others are
batch sequential implementations of the entropy criterion, integrated MSPE, maximum
MSPE, and two proposed distance-based strategies that add points in batches to maintain
some degree of space fillingness. The surprising result is that in the examples considered by
Loeppky et al. (2010), entropy and the proposed distance-based strategies perform best.
The reason this is surprising is that neither entropy nor the distance-based strategies make
use of the observed values obtained from the computer simulator. It seems counterintuitive
that ignoring data should lead to improved performance. The reasons are unclear, but the
following may be relevant.

First, under the GASP model, it may be that (asymptotically) one cannot do better than a
design that is space filling in some reasonable sense. So to the extent that the output from the
computer simulator resembles a realization of a GASP model, space-filling designs should
perform well in terms of producing predictors with good overall global fit. However, one
reason why EBLUPs and other predictors based on the GASP model perform well is that
they are interpolators. Even if the output of the simulator does not resemble a realiza-
tion of a GASP model (e.g., the response surface produced by the simulator has distinct
nonstationary features), EBLUPs will often provide good global fit with enough data.
Whether theoretical results about the asymptotic performance of space-filling designs for
the GASP model are valid when the true response does not resemble a realization of a GASP
model is not clear. And to what extent asymptotic results provide insight into performance
for smaller sample sizes is also not clear. More research is probably needed. The improve-
ment criterion of Lam and Notz (2008) appears to perform well for response surfaces
that appear nonstationary and satisfactorily when the response surface appears station-
ary. More extensive testing on a variety of response surfaces with differing features (some
that appear to be realizations of a GASP model and some that have distinctly nonstationary
features) might improve understanding of the behavior of different design criteria.

Second, it may be that there are better design criteria for obtaining good global fit than
those studied by Loeppky et al. (2010). A challenging research question is whether there
are better improvement criteria for the goal of good overall fit of the predictor than those
that currently appear in the literature.

19.7 Questions for Further Study

19.7.1 Additional Improvement Criteria and Expected Improvement Algorithms

For many of the problems we have discussed, only a single improvement criterion has been
investigated. In global optimization, for example, many of the improvement criteria in the
literature are based on that proposed by Schonlau (1997), Schonlau et al. (1998), and Jones
et al. (1998). Are there other plausible improvement criteria, and how do they perform
compared to existing criteria?

In developing new criteria, it is our opinion that improvement criteria based on simple,
intuitive notions (possibly motivated by statistical considerations) of improvement are most
appealing. The basic improvement criterion of Schonlau (1997), Schonlau et al. (1998), and
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Jones et al. (1998) is an example, as are those of Ranjan et al. (2008) (using the confidence
interval interpretation) and of Roy and Notz (2013) (using the confidence interval and test-
ing interpretations). Unfortunately, in settings such as constrained optimization or Pareto
optimization, criteria tend to be less intuitive simply because of the complexity of the goal.

Any criterion can be modified to incorporate additional features. For example, that used
in Huang et al. (2006b) for simulators of varying fidelity multiplies a criterion analogous to
that in Schonlau (1997), Schonlau et al. (1998), and Jones et al. (1998) by several extra terms
to capture the effects of observing different simulators. One could multiply any criterion by
indicator functions that penalize points that are too close to points already observed. Such
modifications may produce more effective hybrid improvement criteria, but the resulting
criteria may be less intuitively appealing.

Two problems where we believe new improvement criteria are needed are those where
the goal is global fit (emulator maturity) and calibration. As far as we know, there are no
improvement criteria in the literature for the problem of calibration.

Another question that has not been studied in the literature is the possibility of a sort
of adaptive improvement criterion. The criteria in (19.13), (19.38), (19.41), and (19.44) all
contain user-defined constants that control the trade-off between local and global fit. One
can imagine an algorithm that changes these constants at each stage. For example, the con-
stant at early stages might be chosen to favor global search but at later stages favor local
search. Popular optimization techniques, such as simulated annealing, do this automat-
ically. How to adaptively modify these constants is unclear. One possibility might be to
assess the quality of the fit of the EBLUP at each stage in the algorithm. If the fit is poor, use
a value of the constant that favors global fit for purposes of selecting the next input for the
simulator.

Another issue is selection of good stopping criteria. Some authors propose possible stop-
ping criteria, but in most examples the expected improvement algorithm is stopped after a
certain sample size is reached.

19.7.2 Suite of Test Functions

As research on criterion-based designs, including those based on improvement functions,
continues to grow, it would be helpful to develop standards for evaluating and compar-
ing designs. These standards should include a variety of run sizes, a variety of input sizes
(values of the dimension of the input space, d), and a variety of test functions. The latter
might include test functions whose shapes resemble realizations of a (stationary) GASP
model. It might include functions with shapes that are clearly nonstationary in a variety
of ways (the magnitude and frequency of variation in the response surface differs in dif-
ferent regions of the input space X , e.g., the response is relatively flat in some regions
but oscillates rapidly in other regions with oscillations varying in magnitude). It might
include functions reflecting different correlation structures, for example, response surfaces
that can be approximated by a first-order response surface and response surfaces that look
a bit more like white noise. An extensive suite of test functions would also help researchers
identify the sorts of response surfaces that proposed designs work well on, as well as those
that they do not work well on.

In some of the early papers on global optimization, the test functions used in examples
come from the literature on optimization. These include many functions with multiple
optima that are either equal or nearly so. Examples are the Branin function, the three-
dimensional and six-dimensional Hartman function, the Goldstein–Price function, and the
Shekel function. These are discussed in Schonlau (1997). There are several online sites that
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contain extensive lists of test functions for global optimization. A list of test functions for
evaluating designs for computer experiments would be welcome and would provide a
standard for authors seeking to introduce new designs.

19.7.3 Numerical Issues

Using a sequential design strategy (algorithm) based on an improvement criterion requires
one to write code to implement the strategy. There are many nontrivial numerical problems
one faces, for example, nearly singular correlation matrices in calculating the EBLUP. We
have not discussed these in detail, but some of the papers cited do address these problems.
Good solutions are not always available, but are important. In assessing any improvement
criterion (or any criterion for selecting a design), it is important to know that it has been
implemented accurately and effectively. At each stage, has one really found the point that
maximizes the expected improvement? How good is the predictor (EBLUP or otherwise) at
each stage? As more points are added, it sometimes happens that the quality of the EBLUP
suddenly changes (perhaps because of numerical problems) and it is suddenly a poor pre-
dictor. It would be unfortunate to reject a criterion because it appeared to be inferior to
competitors, only to discover that the poor performance was due to a poor implementation.

19.8 Concluding Remarks

In the spirit of optimal design, we encourage the development of sequential designs based
on optimality criteria relevant to the goals of the experiment. Improvement functions are
one approach to developing such criteria. They have been extensively employed for the
purpose of identifying the optimum of an unknown function or functions. They have been
introduced, but to a much lesser extent, for other purposes. Perhaps the most challeng-
ing application is overall global fit. I encourage those interested in design to develop new
improvement criteria in new settings. This is a promising, but largely unexplored, area
of experimental design. This area will benefit from improvements in numerical methods
to insure that sequential designs are implemented accurately. The area will also benefit
from the development of suites of test cases for comparing designs, avoiding the danger
of a researcher selecting only examples that showcase a proposed method and ignoring
examples in which the proposed method appears to perform poorly.
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20.1 Introduction

Robustness of design is a vast topic – the Current Index to Statistics lists over 700 arti-
cles purporting to discuss it – and so we shall first clarify our restricted interpretation
of the term. By robustness of design we shall mean the scenario outlined in the next few
paragraphs.

An investigator anticipates planning a study that will result in a number of observations
on a random variable y, whose probability distribution – often merely through its expected
value – depends on a vector x of covariates that can be set by the investigator, hence the
design. After the data are gathered, the relationship between y and x is to be assessed.
This will generally involve both estimation and prediction and is often done in the context
of a particular model of which the experimenter might have only partial knowledge and in which
he might have little faith – hence the robustness requirement.

719
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Robustness has numerous meanings in statistics. The notion appears to have been intro-
duced by Box (1953) and was given a firm mathematical basis by Huber (1964, 1981), for
whom it generally – but certainly not exclusively – meant the relative insensitivity of a sta-
tistical procedure to departures from the assumed Gaussian error distribution. In design,
the usual performance measures depend on the error distribution only through the first
two moments, and beyond this, the distributional shape is not so relevant. One does how-
ever have in mind a particular model to be fitted once the data are gathered. In classical
optimal design theory, one believes explicitly that the model one fits is the correct one and
measures the quality of a design through a loss function such as the determinant, or trace,
or maximum eigenvalue of the covariance matrix, corresponding to the well-known D, A
and E-optimality criteria discussed in Chapters 1 and 2. In model robust design theory, one
instead anticipates that the model that will be fitted by the experimenter is not necessarily
the true one – a simple example to bear in mind is that of fitting a straight line regression
when the true response function is possibly not exactly linear in the covariate – and so the
loss function highlights some more general feature such as the mean squared error (mse).
This will of course depend on the true, rather than fitted, model, and so one seeks a design
minimizing some scalar quantity summarizing the increased loss – perhaps the maximum,
or average, of the mse over the predicted values – as the true model varies.

It is the notion of model robustness on which this chapter is primarily focussed. An
experimenter plans to fit a particular model to his data while realizing that any model is
at best an approximation. He seeks protection, at the design stage, from increased loss
incurred by model misspecification.

Some other robustness concepts – certainly worthy of discussion, but which space
limitations prevent us from discussing more fully here – are as discussed as follows:

• Criterion robustness: Here, one aims to find a design optimizing a mixture of crite-
ria, for instance, discriminatory power to identify a true model among a class of
competitors, and estimation efficiency at this model. In some cases – for instance,
if the competing models are all only vaguely specified – this can be viewed as a
sub-topic of model robustness and will be discussed in such a context. For other
notions of criterion robustness – for instance, designing to minimize some mixture
of the D, A and E-optimality measures applied to the covariance matrix when the
model is not in doubt – a pioneering reference is Kiefer (1975).

• Robustness of designs for comparative experiments: The robustness issues, and tech-
niques for handling them, are very different for block designs, factorial designs,
etc. than for regression-based experiments. The robustness issues tend to revolve
around effects whose estimation is precluded by the design – because of blocking,
or aliasing, for instance – and the concentration is more on assessing the robust-
ness of existing designs, and choosing among them, than on constructing optimally
robust designs.

In the next two sections of this chapter, we discuss model robustness in some generality,
classifying by the types of model departures of particular interest. Such a classification is
quite crude, and so in Section 20.4 we look at a number of special applications in which
robustness is sought. Several, evidently open, problems of potential interest are noted.
Our coverage of the field is of necessity quite selective, and we apologize to those whose
contributions we have had to omit.
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20.2 Robustness against a Misspecified Response Function

In planning a design strategy that is to be robust against response functions other than
those which will be fitted by the analyst, one must first characterize the class of alterna-
tives. The seminal work here is by Box and Draper (1959), who considered, among others,
the problem of designing for a polynomial response when the class of alternatives con-
sists of all such functions of a given higher degree. As a simple yet motivating example of
their results, suppose that one is to fit a straight line in an independent variable x ∈ [−1, 1]
when in fact the mean response is E [y (x)] = φ0 + φ1x + φ2x2 for parameters φ. Assume
uncorrelated errors with common variance σ2

ε. With (not necessarily distinct) design points
x1, . . . , xn, and with X denoting the model matrix with the ith row f ′

(xi) = (1, xi), the model
to be fitted to the vector y of observations is E [y] = Xθ for some θ = (θ0,θ1)

′; neither θ0
nor θ1 need equal the corresponding parameter in the φ-parameterization describing the
true model. The least squares estimate (lse) is θ̂ = (

X′X
)−1 X′y. Define τk = ∑

xk
i /n and

assume that τ1 = τ3 = 0, as, for instance, is the case if the design is symmetric. Then
one finds that, under the true quadratic model, the mean vector and covariance matrix

of θ̂ are (φ0 + τ2φ2,φ1)
′ and

(
σ2
ε/n

)
diag

(
1, τ−1

2

)
, respectively, so that the predictions

ŷ (x) = (1, x) θ̂ have mse

mse [ŷ (x)] = E
[{

ŷ (x) − E [y (x)]
}2

]
= σ2

ε

n

(
1 + x2

τ2

)
+

(
φ2

(
τ2 − x2

))2
.

A common measure of performance is the integrated mean squared error (imse) of the
predictors, which in this instance is

imse =
1�

−1

mse [ŷ (x)] dx =
{

2σ2
ε

n

(
1 + 1

3τ2

)}
+

{
2φ2

2

((
τ2 − 1

3

)2

+ 4
45

)}
. (20.1)

The first term in braces in (20.1) is the integrated variance and is minimized by the
design – simultaneously optimal with respect to several criteria (D-, A-, E-, etc.) – with
half of the observations made at each of x = ±1. The second – the integrated bias, domi-
nating the first once n is sufficiently large – is minimized if τ2 = 1/3. This can be attained in
many ways, but we note that it is in particular the second moment of the (continuous) uni-
form distribution on [−1, 1]. If higher order alternatives are considered, then minimization
of this second term requires correspondingly higher order moments to agree with those
of the uniform distribution. A design approximating the uniform is the equally spaced
design xi = −1 + 2 (i − 1) / (n − 1), with τ2 = (1/3) + 2/(3(n − 1)). The conclusion that
can be drawn here and that was drawn in the other cases considered is that “... the optimal
design in typical situations in which both variance and bias occur is very nearly the same as
would be obtained if variance were ignored completely and the experiment designed so as to
minimize the bias alone” (Box and Draper 1959, p. 622).

To generalize the setup of this example and to set notation to be used throughout this
chapter, suppose that one has a p-vector f (x) of regressors, each element of which is a
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function of q functionally independent variables x = (
x1, . . . , xq

)′, with x to be chosen from
a design space X . Then the fitted model is E [y (x)] = f ′

(x)θ, with alternatives

E [y (x)] = f ′
(x)θ + ψ (x) , (20.2)

for some function ψ. There is an immediate problem concerning the interpretation of θ,
since in the alternate models, one might equally well write E [y (x)] = f ′

(x) (θ + φ) +(
ψ (x) − f ′

(x)φ
)

for arbitrary φ, whence the parameter vector is not identifiable. This is
avoided by first defining the target parameter, for instance, by

θ = arg min
η

�
X

(
E [y (x)] − f ′

(x)η
)2 dx, (20.3)

and then defining

ψ (x) = E [y (x)] − f ′
(x)θ; (20.4)

this leads to the orthogonality requirement

�
X

f (x)ψ (x) dx = 0. (20.5)

Under the very mild assumption that the matrix A = �
X f (x) f ′

(x) dx be invertible – equiv-
alent to the statement that if c′f (x) = 0 (a.e. x ∈ X ), then c = 0 – the parameter defined by
(20.4) and (20.5) is unique:

θ = A−1
�
X

f (x) E [y (x)] dx.

In the motivating example given earlier, f (x) = (1, x)′ and (20.5) applied to quadratic
alternatives forces ψ (x) = φ2

(
1/3 − x2) for some φ2.

In what follows, we identify a design, denoted ξ, with its design measure – a probability
measure ξ (dx) on X . If ni of the n observations are to be made at xi, we also write ξi =
ξ (xi) = ni/n. Define

Mξ =
�
X

f (x) f ′
(x) ξ (dx) , (20.6a)

bψ,ξ =
�
X

f (x)ψ (x) ξ (dx) , (20.6b)

and assume that Mξ is invertible. The covariance matrix of the lse θ̂ is
(
σ2
ε/n

)
M−1

ξ , the bias

is E
[
θ̂ − θ

]
= M−1

ξ bψ,ξ, and the general version of (20.1) is found to be

imse =
�
X

mse [ŷ (x)] dx = σ2
ε

n
trace

(
AM−1

ξ

)
+ b′

ψ,ξM−1
ξ AM−1

ξ bψ,ξ +
�
X

ψ2 (x) dx. (20.7)
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It is obvious from (20.7), and true even if imse is not the loss function, that one must bound
the influence of ψ (·), to complete the definition of a class � of alternatives in (20.2). For
straight line regression, Huber (1975) defines � by (20.5) together with

�
X

ψ2 (x) dx ≤ τ2/n, (20.8)

for a given constant τ; this class was generalized to other scenarios by Wiens (1992). That
the bound be O

(
n−1) is required for a sensible asymptotic treatment based on the mse – it

forces the bias of the estimates to decrease at the same rate as their standard error. Marcus
and Sacks (1976), Pesotchinsky (1982) and Li and Notz (1982) instead take

|ψ (x)| ≤ φ (x) , (20.9)

for a specified function φ (·). The resulting optimal minimax designs (maximize over ψ and
then minimize over ξ) depend on the form of φ, but commonly – as in the three articles just
mentioned – the design mass is concentrated on a small number of extreme points of X .
This precludes an investigation of the response function in the interior of X and so is clearly
not robust.

The class � defined by (20.5) and (20.8) is not immune from criticism – it is so rich that
any design with finite maximum loss is necessarily absolutely continuous, hence must be
approximated in order to be implemented. That this is so is intuitively clear: the Lebesgue
integrals defining � may be modified on sets of Lebesgue measure zero; thus, if ξ places
mass on any such set – as does any discrete measure – then one can choose ψ to be arbi-
trarily large there, thus exploding the elements of bψ,ξ. A formal proof may be found in
Heo et al. (2001). However, as in Wiens (1992), “Our attitude is that an approximation to a
design which is robust against more realistic alternatives is preferable to an exact solution
in a neighbourhood which is unrealistically sparse.” To implement a continuous design
on an interval, one might place the design points at the quantiles: xi = ξ−1 ((i − 0.5)/n),
i = 1, . . . , n; this empirical approximation is optimal in a minimum Kolmogorov discrep-
ancy sense (Fang and Wang 1994, §1.2) and approaches ξ weakly as n → ∞. For this case,
and especially for multidimensional designs, there is a variety of such approximation meth-
ods (see, e.g., Xu and Yuen 2011). Rounding strategies for implementing discrete designs
with continuous weights ξi are discussed by Pukelsheim and Rieder (1992).

To obtain a design, robust with respect to (20.5) and (20.8), one first maximizes (20.7)
under these constraints. In contrast to the next step – minimization over the class of
designs – this can be done in complete generality. Let m (x) be the density of ξ and define
Hξ = MξA−1Mξ, Kξ = �

X f (x) f ′
(x) m2 (x) dx and

Gξ = Kξ − Hξ =
�
X

[(
m (x) Ip − MξA−1

)
f (x)

] [(
m (x) Ip − MξA−1

)
f (x)

]′
dx.

The matrix Gξ is clearly positive semidefinite; assume for the moment that it is positive
definite and define a function r(x) = (

τ/
√

n
)

G−1/2
ξ

(
m (x) Ip − MξA−1) f (x). We have the

following identities:

1.
�
χ r(x)r′(x) dx = (

τ2/n
)

Ip.

2.
�
χ f (x)r′(x) dx = 0p×p.
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3.
�
χ f (x)r′(x)m (x) dx = (

τ/
√

n
)

G1/2
ξ .

4.
�
χ r(x)ψ(x) dx = (

τ/
√

n
)

G−1/2
ξ bψ,ξ.

As in Wiens (1992), it follows from (1) and (2) that the class �0 = {
ψβ(x) = r′(x)β |

‖β‖ = 1
}

is a subclass of � (with equality in (20.8)) that is least favourable in that the
supremum, over �, of (20.7) is attained by a member of �0. To see this last point, let ψ ∈ �

be arbitrary and set β∗ = G−1/2
ξ bψ,ξ

/∥∥∥G−1/2
ξ bψ,ξ

∥∥∥ . By (3), (20.7) evaluated at ψβ∗ gives

imse|ψβ∗
= σ2

ε

n
trace

(
AM−1

ξ

)
+ τ2

n

b′
ψ,ξHξ

−1bψ,ξ∥∥∥G−1/2
ξ bψ,ξ

∥∥∥2 + τ2

n
. (20.10)

The Cauchy–Schwarz inequality, followed by (4), gives

τ2

n
≥

∣∣∣∣∣∣
�
χ

ψ (x)ψβ∗ (x) dx

∣∣∣∣∣∣ = τ√
n

∥∥∥G−1/2
ξ bψ,ξ

∥∥∥ ,

so that the imse (20.10) is at least as large as that – (20.7) – evaluated at ψ.
Evaluating (20.7) at ψβ for arbitrary β gives

imse|ψβ
= σ2

ε

n
trace

(
AM−1

ξ

)
+ τ2

n
β′ [G1/2

ξ H−1
ξ G1/2

ξ + Ip

]
β;

now maximizing over β yields the result that max� imse is
(
σ2
ε + τ2)/n times

Lν (ξ) = (1 − ν) trace
(

AM−1
ξ

)
+ νchmax

(
KξH−1

ξ

)
, (20.11)

where ν = τ2/
(
σ2
ε + τ2) and chmax denotes the maximum eigenvalue. If G is singular,

then one first perturbs it to make it nonsingular and then passes to the limit – details in
Heo et al. (2001).

One is now to choose ν ∈ [0, 1], reflecting the relative importance to the experimenter
of errors due to bias rather than to variance, and minimize Lν (ξ). This step is highly
dependent on the form of the model being fitted. In some simple cases, it can be done
analytically, using variational methods to minimize Lν (ξ) over ξ′ = m subject to vari-
ous side conditions. For instance, in straight line regression – under the restriction that
the design be symmetric – the maximization can be carried out in two stages. At the first
stage, one imposes the conditions that m has an integral of one and a fixed second moment
γ = �

X x2m(x)dx; this fixes Mξ and hence the first term in (20.11), and one then seeks a non-
negative, symmetric function minimizing the second term subject to these side conditions.
The result is a partially minimized value minLν (ξ|γ); at the second stage, a minimization
over γ is performed. See Huber (1981) for details. For bivariate regression (without inter-
actions) on a spherical design space, details are in Wiens (1990) – see Figure 20.1 for a plot
of m (x), minimizing Lν (ξ) when ν = 0.36. We note that in both of these cases, a proof that
the optimal design is necessarily symmetric is still outstanding.

In these and the other examples in Wiens (1990, 1992), a difficulty encountered is that it
is not clear which of the eigenvalues e1 (ξ) , . . . , ep (ξ) of KξH−1

ξ – note that these depend
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FIGURE 20.1
Minimax design density for bivariate regression without interaction on a spherical design space.

on the design – will turn out to be the maximum one when evaluated at the final, min-
imizing design. The usual approach is to attempt to guess correctly which one is to be
optimized and to then verify at the end that the guess was correct. There are cases how-
ever in which this approach fails. One of the simplest of these is quadratic regression
(p = 3), where for a large range of values of ν, it happens that each design ξk derived

to minimize lk (ξ) = (1 − ν)trace
(

AM−1
ξ

)
+νek (ξ) turns out to result in a maximum eigen-

value in (20.11) that is not the one that was minimized: chmax
(

Kξk H−1
ξk

)

= ek (ξk). In

such cases, a possible approach, detailed in Daemi and Wiens (2012), is to find designs
ξk minimizing the kth of the competing forms

{
l1 (ξ) , . . . , lp (ξ)

}
of Lν (ξ) subject to the

side condition that ek (ξk) exceed ei (ξk) for i 
= k; the optimal design is that for which
lk (ξk) = min

{
l1 (ξ1) , . . . , lp

(
ξp

)}
.

Shi et al. (2003) instead minimize the nondifferentiable functional Lν (ξ) using nons-
mooth optimization methods. Another approach is to restrict to a smaller but more tractable
class of designs. Heo et al. (2001) consider the class of designs with densities of the form

mβ (x) = max
(

0,
∑

j βjfj
(

x2
1, . . . , x2

q

))
, where f (x) = (

f1 (x) , . . . , fp (x)
)′ in (20.2), and min-

imize (20.11) numerically over β subject to the requirement that the arguments of m be
exchangeable. Design points are then chosen in such a way that the resulting design has
empirical moments matching those of the optimal mβ (x), to as high an order as possible.
For fitting a full second-order model, including linear, quadratic and interaction terms, in
two variables x1 and x2 with n = 48 and ν = 1/6, this yields the design in Figure 20.2.

The situation is somewhat simpler, with little loss of generality, in a finite design space.
In practice, one is very often restricted to choosing from a finite, if large, set of levels of
the independent variables. Li (1984) proposed designs for straight line regression, robust
against departures satisfying (20.5) and (20.9) with constant φ, concentrated on sets of
equally spaced points in the interval of interest. The resulting minimax designs spread
out their mass near the end points of this interval. This is a recurring theme – a naive yet
sensible and near optimal method of robustifying a design is to take the replicates in the clas-
sically optimal design for the model in question and spread these out into nearby clusters.
This paradigm is also exemplified in Figure 20.2.

Fang and Wiens (2000) continue the approach of Li (1984). They take an N-element
design space X and discretize the definition of � by replacing the integrals in (20.3),
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Restricted minimax design for fitting a full second-order model. (From Heo, G. et al., Can. J. Stat., 29, 117, 2001.)

(20.5) and (20.8) by sums over X . To maximize the imse N−1 ∑N
i=1 E

[{
ŷ (xi) − E [y (xi)]

}2
]
,

it is convenient to temporarily transform to an orthogonal basis. Let Q1 be an N × p matrix
whose columns form an orthogonal basis for the column space of the matrix with rows{
f ′

(x) | x∈X }
; this is computed in the QR decomposition of this matrix. Augment Q1 by

Q2 : N × (N − p) whose columns form an orthogonal basis for the orthogonal complement

of this space. Then
(

Q1
...Q2

)
is an orthogonal matrix and ψ = (ψ (x1) , . . . ,ψ (xN))′ is nec-

essarily of the form ψ = (
τ/

√
n
)

Q2c, where ‖c‖ ≤ 1. Define Ã = N−1 ∑N
i=1 f (xi) f ′

(xi),
M̃ξ = ∑N

i=1 ξif (xi) f ′
(xi) and Dξ = diag (ξ1, . . . , ξN). Then the analogue of (20.7) is

imse = σ2
ε

n
trace

(
ÃM̃

−1
ξ

)
+ τ2

nN
c′ [Q′

2DξQ1
(
Q′

1DξQ1
)−2 Q′

1DξQ2 + IN−p

]
c. (20.12)

Carrying out the maximization over c and returning to the original notation gives a direct

analogue of (20.11): in terms of K̃ξ = ∑N
i=1 ξ

2
i f (xi) f ′

(xi) and H̃ξ = M̃ξÃ
−1

M̃ξ, the
maximum loss is

(
σ2
ε + τ2)/n times

L̃ν (ξ) = (1 − ν) trace
(

ÃM̃
−1
ξ

)
+ νchmax

(
K̃ξH̃ξ

−1
)

. (20.13)

The minimization is carried out numerically – by simulated annealing, or via a genetic
algorithm – yielding exact, that is, integer-valued, designs. See Figure 20.3 for an example,
with N = 40, n = 20 and ν = .5; this again illustrates the aforementioned paradigm.

This summary of possible approaches is by no means exhaustive. For instance, the use
of imse to measure loss, while attractive, is not universal – one can instead apply the usual
D-, G-, A- or E-criteria to the mse matrix of the regression parameters, rather than to the
covariance matrix alone. Pesotchinsky (1978, 1982) measures the loss via a general Lp norm
of the eigenvalues of the mse matrix; Marcus and Sacks (1976) and Li and Notz (1982) use
a weighted trace of this matrix. Wiens (1993) maximizes the coverage probability of confi-
dence ellipsoids. Zhou (2008) assumes a finite design space and obtains minimax D-optimal
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Minimax design (n = 20) for approximate cubic regression when bias and variance receive equal weight.

designs, with the maximum taken over the discrete version of � described earlier. Adewale
and Wiens (2006) average the imse (rather than maximizing it) with respect to a uniform prior
on c in (20.12). Exact designs are then obtained by simulated annealing.

Various approaches, besides those described thus far, have been proposed with the aim
of restricting � while still hoping to capture a broad spectrum of alternatives. Fedorov
et al. (1998) take ψ (x) to be a linear combination of additional regressors

{
vj (x)

}
, that

is, functions other than the elements of f (x). Notz (1989) places a prior distribution
on possible departures from the assumed model, and Rychlik (1987) assumes a finite-
dimensional � constrained by (20.5) and (20.8); both go on to specialize to polynomial
responses with polynomial alternatives, a class of applications that will be discussed in
more detail in Section 20.2.2. Yue and Hickernell (1999) assume that ψ comes from a repro-
ducing kernel Hilbert space. The definition of such alternatives is quite technical, and it
can be difficult to see just how broad the class is; the approach is however promising in
that, in the examples given, it leads to designs affording a full exploration of the design
space.

Some attempts have been made to construct designs tailored to estimates that are linear
in the observations, but are not necessarily lse’s. Karson et al. (1969) revisit the setup of
Box and Draper (1959) and propose linear estimates that minimize the integrated squared
bias (isb) resulting from fitting a low-order polynomial when the true response function
contains higher order terms. For such estimates, they go on to propose designs that mini-
mize the integrated variance. Draper and Sanders (1988) continue the design aspects of this
approach and search for parsimonious designs meeting these criteria. Sacks and Ylvisaker
(1984) study designs, robust against certain very broad classes � of nonparametric alter-
natives, to be used with linear estimates. They comment that “...when � is an infinite
dimensional class ... it is by no means certain that the optimal choice of both design and
linear estimates leads to least squares nor is there much a priori justification for adherence
to least squares”. Their approach is summarized in Chang and Notz (1996, Section 3.2) and
extended in Tang (1993).
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20.2.1 Minimum Bias Designs: Uniformity

In the development of Box and Draper (1959) described earlier, a motivating goal was the
maximization of the power of a test of lack of fit (lof ); this led in a natural way to consid-
erations of bias as well as variance, thence to the prescription of choosing a near uniform
design if consideration focusses on bias alone. Subsequent researchers have been led by
this to investigate various optimality properties of the design with continuous uniform
measure λ (x), that is, Lebesgue measure on the design space X , normed to have unit total
mass. Implicit here is an assumption that the optimality will carry over to appropriate dis-
cretizations of this uniform measure; exactly how this should be done seems to be an area
where further investigation could be fruitful (but see Fang and Wang 1994).

To describe the current situation, recall that the usual test of lof takes replicates at each of

several locations, with covariates
{
xj

}
, and compares the unstructured full model E

[
yj

]
=

μj with the restricted model μj = f ′ (xj
)
θ being fitted. If the class of full models is written in

the form (20.2), with θ defined by (20.3), then the power of the F-test of lof is an increasing
function of the noncentrality parameter

(
n/σ2

ε

)
B (ψ, ξ), where

B (ψ, ξ) =
�
X

{
E [ŷ (x) − y (x)]

}2
ξ (dx) =

�
X

ψ2 (x) ξ (dx) − b′
ψ,ξM−1

ξ bψ,ξ.

Maximizing the power is equivalent to maximizing B (ψ, ξ). This goal is closely related
to the observation that the expectation of the regression-based estimate of σ2

ε – the mean
square of the residuals – is given by σ2

ε + nB (ψ, ξ)/(n − p). We note as well that the isb of
ŷ (x) in the full model is, as at (20.7),

isb (ψ, ξ) =
�
X

{
E [ŷ (x) − y (x)]

}2 dx =
�
X

ψ2 (x) dx + b′
ψ,ξM−1

ξ AM−1
ξ bψ,ξ.

Now denote by �− the class given by (20.5) and (20.8) and by �+ the class that has
the inequality reversed in (20.8). For testing lof, which we now express through the null
hypothesis that ψ ≡ 0, it is necessary to separate the null and alternate hypotheses; hence,
we restrict to �+. In Wiens (1991), it is shown that the uniform design has a maximin
property – it maximizes the minimum (over �+) power of the test of lof, with B (ψ, λ) =�
X ψ2 (x) λ (dx) ≥ τ2

0
def= τ2/

�
X dx. The proof consists of showing that if the design ξ is non-

uniform, then one can construct ψ ∈ �+ with B (ψ, ξ) ≤ τ2
0. The same method of proof

establishes a dual, minimax property of λ – it minimizes the maximum (over �−) bias of
the mean square of the residuals as an estimate of σ2

ε. Similarly, λ is also a minimax (over
�−) design with respect to isb(ψ, ξ), with isb(ψ, λ) = �

X ψ2 (x) λ (dx).
Xie and Fang (2000) obtain similar optimality results in a nonparametric regression

setting. They assume that E [y (x)] = g (x) is to be estimated by a linear combination of
the members of a set �k = {ψi}k

i=1 of square-integrable and functionally independent but
otherwise arbitrary functions and show that the maximum, over all such approximations,
of isb is minimized by the continuous uniform design. They study examples in which �k
consists of Fourier regression functions, or Haar wavelets.

Wiens (2000) works with the class �− and allows weighted least squares (wls)
estimates (while continuing to assume homoscedastic errors), with weights w (x).
The analogues of bψ,ξ and Mξ at (20.6) are bψ,w,ξ = �

X f (x)ψ (x) w (x) ξ (dx) and
Mw,ξ = �

X f (x) f ′
(x) w (x) ξ (dx). It follows that if ξ has a density k (x) with w (x) k (x) ∝ λ (x)



Robustness of Design 729

(implying that Mw,ξ ∝ A), then bψ,w,ξ ≡ 0, that is, E
[
θ̂ − θ | ψ

]
≡ 0. Within the class of

such unbiased designs, a member minimizing the integrated variance of ŷ (x) is found. This
integrated variance is

σ2

n

�
X

1
w (x)

dx
�
X

f ′
(x) A−1f (x) w (x) dx,

minimized by weights

w (x) ∝ 1√
f ′

(x) A−1f (x)

. (20.14)

Examples of the resulting minimum variance unbiased (mvu) designs and weights are shown
in Figure 20.4, for approximate polynomial regression.

Figure 20.4 illustrates another recurring feature that occurs not only in robust design the-
ory but also in optimal design theory when the model is not in doubt and only the variance
is minimized. This is the similarity of the I and D-optimal designs to each other and the
quite different nature of the A-optimal designs. (In Figure 20.4 I-optimality is referred to as

1.0

0.8

0.6

0.4

–1.0(a) –0.5 0.0 0.5

Q
D
A

1.0

1.5

1.0

0.5

(c)
–1.0 –0.5 0.0 0.5 1.0

0.5

1.0

1.5

2.0

2.5

3.0

(d)
–1.0 –0.5 0.0 0.5 1.0

1.8

1.4

1.0

0.6

(b) –1.0 –0.5 0.0 0.5 1.0

Q
D
A

Q
D
A

Q
D
A

FIGURE 20.4
mvu design densities and weights for degree-q approximate polynomial regression and various loss functions:
(a) design densities, q = 2; (b) weights, q = 2; (c) design densities, q = 5; (d) weights, q = 5. The loss functions
corresponding to Q- (=I-), D- and A-optimality are respectively imse, the determinant of the mse matrix and the
trace of the mse matrix. (From Wiens, D.P., J. Stat. Plan. Interference, 83, 395, 2000.)
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Q-optimality, a term that is now out of fashion.) This seems to be related to the fact that the
former criteria are range invariant, whereas the latter is not – a linear transformation of the
design space incurs not merely a linear transformation of the A-optimal design points but
a change in the design weights as well. See the discussion in Wierich (1988).

Biedermann and Dette (2001) extend the results of Wiens (1991, 2000) in several direc-
tions. They introduce a function v (x) whose role can be characterized by replacing (20.3)
by θ = arg minη

�
X

(
E [y (x)] − f ′

(x)η
)2 v (x) dx and allow for heteroscedastic errors with

variance σ2 (x). Using the method of proof in Wiens (1991), they show that the minimum
powers of each of several tests of lof are maximized by weights inversely proportional to
σ2 (x) and by a design density with w (x) k (x) ∝ v (x). Bischoff and Miller (2006) extend
Wiens (1991) and Biedermann and Dette (2001) – they propose that one design to minimize
the variance, subject to a lower bound on the power of the lof test.

We see from this that the unique, bias-minimizing role of the uniform design is deter-
mined, through (20.3), by the experimenter’s specification of just what bias is to mean –
indeed, Biedermann and Dette (2001, p. 223) state that “...the optimality property of a
particular design with respect to Wiens (1991) maximin criterion is intimately related to
the particular measure used in the definition of the set �”. A comprehensive study of
other measures used to define the target model would no doubt yield interesting unbiased
designs.

20.2.2 Polynomial Models of Uncertain Degree

When the target response function being fitted is a polynomial in a single covariate x, a
more focussed form of model robustness is to entertain only other polynomials, of differ-
ent degrees than that being fitted. Then the matrices Mξ under all models and the bias
vector bψ,ξ (with ψ containing the powers of x of interest but not being fitted) defined in
Section 20.2 depend solely on the moments ck (ξ) = Eξ

[
Xk] (hence the common use of

moment matrix to refer to Mξ in polynomial regression). Consequently, the mathematical
development is closely related to the theory of moment spaces and of canonical moments.
Roughly speaking, the canonical moment pn+1 (ξ) describes the possible values of cn+1 (ξ),
among all distributions ξ with given values of ck (ξ) for 1 ≤ k ≤ n. For a book-length
treatment, see Dette and Studden (1997).

Studden (1982) considered the following problem (extending a proposal of Stigler 1971).
One intends to fit a polynomial of degree r to observations at x ∈ [0, 1], but wishes to be
able to determine whether or not the coefficients βr+s of xr+s (1 ≤ s ≤ m − r) would be
statistically significant were these coefficients to be assessed. With f 1 (x) = (1, x, . . . , xr)′,
f 2 (x) = (

xr+1, . . . , xm)′ and Mij (ξ) = � 1
0 f i (x) f ′

j (x) ξ (dx), the moment matrix for the model
of degree m is partitioned as

Mm (ξ) =
1�

0

(
f 1 (x)

f 2 (x)

) (
f ′

1 (x) , f ′
2 (x)

)
ξ (dx) =

r + 1 m − r(
M11 (ξ) M12 (ξ)

M21 (ξ) M22 (ξ)

)
r + 1
m − r . (20.15)

Note that M11 (ξ) = Mr (ξ) is the moment matrix for the fitted model of degree r. Were

β̂r+1, . . . , β̂m to be fitted, their covariance matrix would be the inverse of M22.1
def= M22 −

M21M−1
11 M12, and so an extended D-optimality criterion is to maximize det (M11 (ξ)),

subject to a lower bound
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det (M22.1) ≥ ρm−r sup
η

det (M22.1 (η)) , (20.16)

for given ρ ≤ 1. Studden (1982) phrases and solves this problem in terms of the canonical
moments and then finds the design ξrm with the optimal canonical moments. For instance,
ξ12, for fitting a straight line with a quadratic alternative, is of the form

ξ = {(0,α) , (1/2, 1 − 2α) , (1,α)} , (20.17)

with α = (
1 + √

1 − ρ
)
/4.

Dette and Studden (1995) consider designs for polynomial regression when the exper-
imenter seeks reasonable efficiency for all degrees r = 1, 2, . . . , K. They define the
D-efficiency

eff r (ξ) =
(

det (Mr (ξ))

supη det (Mr (η))

)1/r+1

. (20.18)

They then seek designs maximizing the weighted p-norm

�p,w =
( K∑

r=1

wr
(
eff r (ξ)

)p

)1/p

, −∞ ≤ p ≤ 1, (20.19)

for nonnegative weights w1, . . . , wK. Again the problem is first formulated and solved
in terms of canonical moments. For instance, suppose that K = 2 (linear or quadratic

regression), x ∈ [0, 1] and the weights are uniform: (w1, w2) = (1/2, 1/2)
def= w0. Then

the �p,w0 -optimal design maximizing (20.19) is of the form (20.17) with α depending on
p. In fact for each p ∈ [−∞, 1], there is ρ ≤ 1 – recall (20.16) – such that the design of
Studden (1982) is the �p,w0 -optimal design of Dette and Studden (1995) given here. This
is an instance of a more general result – that any discrete design is �p,w-optimal for some
choices of p and w – due to Dette (1991).

When the fitted polynomial response of degree m is in doubt, one might seek a high
D-efficiency eff m (ξ) and simultaneously a high power for the t-test of the hypothesis that
the coefficient of xm, in a model of degree m, is zero. This latter quantity is maximized
by a design maximizing the D1-efficiency eff D1

m (ξ). In the notation leading to (20.15), with
r = m − 1, the D1-efficiencies can be defined by

eff D1
m (ξ) =

(
det (M22.1 (ξ))

supη det (M22.1 (η))

)1/m−r

.

(In the present case, the exponent is 1 and M22.1 is a scalar; we present the D1-efficiency
in this more general form for later reference.) Dette and Franke (2001) construct designs

that maximize the minimum of
{

eff m (ξ) , eff D1
m−j (ξ) , . . . , eff D1

m+k (ξ)
}

for nonnegative j, k.
Again, canonical moments play a central role in the derivations. Fang (2006) instead
maximizes a weighted average of the logarithms of eff m (ξ) and eff D1

m−1 (ξ).
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Rather than considering only polynomial alternatives, one might entertain alternatives
with polynomial bounds. Liu and Wiens (1997) consider degree r polynomial fits with alter-
natives of the form (20.2) with ψ(x) = xr+1π (x), where π (·) is continuous and bounded in
absolute value by a given function φ (·). Here we discuss only the case of constant φ (·),
so that ψ is bounded by a fixed multiple of xr+1. Liu and Wiens optimize with respect to
several criteria, one of which is to maximize the determinant of the moment matrix Mr (ξ),
subject to a bound on the normalized bias: supψ b′

ψ,ξM−1
r (ξ) bψ,ξ ≤ d2. Designs optimal

with respect to this criterion are termed bounded-bias (BB) designs, and it was shown that
BB designs with r + 1 support points always exist. Of course these do not allow higher
order models to be explored; for instance, when r = 1 – straight line regression – with
x ∈ [0, 1], these BB designs place equal mass at two points {c, 1 − c}, with c depending on
d. Fang and Wiens (2003) employ the theory of canonical moments to extend the notion
to generalized bounded bias (GBB) designs. They find that if d2 is less than the value of
supψ b′

ψ,ξD
M−1

r (ξ) bψ,ξD attained by the D-optimal design ξD for fitting a polynomial of
degree r, then the BB criterion does not determine all of the canonical moments and that
more design points may then be added. They do this so as to satisfy the additional require-
ment of maximizing eff D1

m (ξ) for a fixed m > r. For instance, if r = 1 and m = 2, the GBB
designs on [0, 1] are of the form (20.17) with α = d/2 < 1/2. If r = 2 and m = 3, there are 4
symmetrically placed design points, including 0 and 1.

20.2.3 Models with Truncated Series Response Functions

Polynomial models sometimes arise by truncating a Taylor series expansion of the response
function. This interpretation is particularly appealing when the fitted terms f (x) in (20.2)
constitute the first terms in a series

∑∞
i=1 θifi(x) of orthogonal functions (over X and with

respect to some weight function); then ψ (x) may be viewed as representing the tail of the
series. Oyet and Wiens (2000, 2003) and Oyet (2002) obtain minimax designs, minimizing
(20.11) and its discrete or continuous analogues for loss functions such as the trace or deter-
minant of the mse matrix, when the elements of f (x) are Haar wavelets or multiwavelets.
For these functions and with X = [0, 1],

�
X fi(x)fj(x)dx = δi=j and then mvu designs and

weights assume a particularly simple form: from (20.14), we obtain design densities k(x) ∝∥∥f (x)
∥∥ and weights w(x) ∝ 1/

∥∥f (x)
∥∥. See Figure 20.5.

Practitioners using orthogonal series expansions sometimes avoid doing least squares,
since the matrix whose inversion is required can be huge. Instead, direct estimation is
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FIGURE 20.5
Minimum variance unbiased design densities for multiwavelet approximations with N · 2m+1 regressors. Each
density has period 2−(m+1); the values of N and m are (a) (2,0), (b) (2,2), (c) (3,0), and (d) (3,2). (From Oyet, A.J.
and Wiens, D.P., J. Nonparam. Stat., 12, 837, 2000.)
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employed: if E [y(x)] = ∑p
i=1 θifi(x), with

�
X fi(x)fj(x)μ (x) dx = δi=j for some function μ (·),

then θj = �
X E [y(x)] fj(x)μ (x) dx and estimates are computed via a suitable discretization –

θ̂ = n−1 ∑n
i=1 y (xi) f (xi)μ (xi). Dette and Wiens (2008) propose the modified estimate

θ̂ = 1
n

n∑
i=1

f (xi)
y (xi) w (xi)μ (xi)

k (xi)
,

where k (x) is the design density and weights w (x) are introduced for flexibility in meeting
robustness requirements. Constant weights, with k(x) ∝ ∥∥f (x)

∥∥μ (x), yield asymptotically
unbiased estimates that minimize the imse within the class of such unbiased estimates;
otherwise, both weights and designs are chosen to minimize the maximum imse uncon-
ditionally. Examples are given with expansions in terms of Zernike polynomials and to
spherical harmonics; in the latter case, similar results are obtained for wls estimation in
Dette and Wiens (2009). Dette and Melas (2010) study bias-minimizing designs, with the
bias arising through truncation of an expansion of the response function as a series of spline
functions.

20.2.4 Nonlinear Regression Models

A problem that arises immediately in considering a design for nonlinear regression is that,
by the nature of nonlinear models, the common measures of loss or efficiency depend on
the unknown values of the parameters. This problem is often handled by constructing a
locally optimal design – one that is optimal only at a particular value θ0 of the parameter.
The designer hopes that the optimality will extend to nearby parameter values. The choice
of θ0 might arise from the experimenter’s prior knowledge, or perhaps as an estimate from
an earlier experiment.

A mild form of robustness allows for uncertainty about the parameter values but not
the form of the response function. A common approach is to first maximize the chosen
loss function (or minimize an efficiency measure such as the determinant of the informa-
tion matrix) over a neighbourhood of a local parameter θ0 and to then optimize over the
class of designs. In some cases, there are easily checked first-order conditions, to verify
if a design is minimax. King and Wong (2000) use this approach to construct minimax
D-optimal designs for the two-parameter logistic model and give a numerical algorithm
for computing the designs; depending on the ranges of the parameters in their exam-
ples, these have up to 9 design points. Dette and Biedermann (2003) consider instead the
two-parameter Michaelis–Menten model, with E [y|x,θ] = θ0x/ (θ1 + x). This model is con-
ditionally linear in θ0, with the consequence that the determinant of the information matrix
(computed under a normal likelihood) of the lse’s of θ0 and θ1 depends only on θ1. They
find designs that maximize the minimum value of the corresponding D-efficiency, which
is (20.18) with r = 2 and with M2 (ξ) replaced by the information matrix. The resulting
designs are supported on two points. Dette et al. (2003) carry out a similar program for this
Michaelis–Menten model, concentrating on E-optimality rather than D-optimality; in some
cases, the designs are supported on three, rather than two, points. For various exponential
models, see Dette et al. (2006) and Dette and Pepelyshev (2008).

Another manner in which one can deal with this problem is through Bayesian optimality.
Here the loss function is averaged, with respect to a prior distribution on the parameters;
this averaged value is then minimized. We mention Chaloner and Larntz (1989) and Dette
and Neugebauer (1997) as representative approaches. We note however that at this point,
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no particular viewpoint on Bayes inference is required; the adoption of a prior may be seen
merely as a convenient means to an end.

The minimax and Bayesian designs described here often have very few design points,
either as a consequence of the criterion or because the mathematical difficulties preclude a
search for optimal designs with more support points than regression parameters. Moreover,
as emphasized by Ford et al. (1989, p. 54), “Of more serious concern is the misspecification
of the model itself. Some static designs offer little or no scope for testing the validity of
the assumed model. Indeed, if the model is seriously in doubt, the forms of design which
we have considered may be completely inappropriate.” To address this issue, Sinha and
Wiens (2002) entertain a class of nonlinear models forming a neighbourhood of that which
the experimenter will fit, maximize the loss over this neighbourhood and then sequentially
construct minimizing designs. The model development parallels (20.2) through (20.5), but
with both f (x|θ) = ∂E [y|x,θ] /∂θ and ψ (x|θ) depending on the parameter; thus, robust-
ness is being sought against alternate response surfaces tangent, at the parameter defined
by (20.3), to that being fitted. Then (20.7) defines imse(ξ|ψ,θ) under homoscedasticity, with
alternate forms applied if the design space is discrete or if the errors are heteroscedastic.
Sinha and Wiens (2002) suppose that n observations have been made, defining the design
ξn and yielding an estimate θ̂n. They estimateψ by smoothing the residuals, and choose the

next design point, or batch of design points, so as to minimize imse
(
ξ|ψ, θ̂n

)
, where now ξ

denotes ξn augmented by the potential additional points. The result of a simulation study is
shown in Figure 20.6. The fitted response function is exponential: E [y|x,θ] = θ0

(
1 − e−θ1x);

the true response function used in the simulations is either this exponential or the nearby
Michaelis–Menten, both for x ∈ [.5, 5]. Comparisons are made to the uniform and locally
D-optimal design (with the local parameter being based on a small initial design). See also
Sinha and Wiens (2003) for the asymptotic theory of this sequential approach.

If one insists on static designs with robustness against model misspecifications of this
form, then local optimality combined with a minimax approach is a possibility; Xu (2009a)
finds designs minimizing maxψimse(ξ|ψ,θ0) for a local parameterθ0. One can instead take
a Bayesian approach as described earlier, leading to the requirement that one minimize�
�

[maxψ imse (ξ|ψ,θ)] p (θ) dθ – some details are in Karami and Wiens (2011), who use a
discrete design space and show that maxψimse(ξ|ψ,θ) is as at (20.13), evaluated at f (·|θ).
The minimization is carried out using a genetic algorithm.

20.2.5 Generalized Linear Models

Generalized linear models (GLMs) form an increasingly popular class, for which some
classical design issues were surveyed by Khuri et al. (2006). In the standard setup, it is
assumed that observations are made on a random variable y, with density p

(
y;α,φ

) =
exp

{
αy−b(α)

a(φ)
+ c

(
y,φ

)}
. For a vector x of covariates and vector f (x) of regressors, the mean

response E [y|x] = μ (x) satisfies g (μ (x))
def= η (x) = f ′

(x)θ for a strictly monotonic, differ-
entiable function g. Some robustness issues that might be addressed at the design stage are
then misspecifications of η (x) and uncertainties about the form of g (·) or a (·). As in nonlin-
ear regression, a further concern is the dependence of the measures of loss on the unknown
parameters. Abdelbasit and Placket (1983) discuss robustness of locally optimal designs to
poorly chosen local values in binary models. Again in a context of binary models, King and
Wong (2000) propose maximin procedures, akin to those discussed in Section 20.2.4, with
the min taken over a range of parameter values.
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(iii) True response = Michaelis–Menten, k = 0
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FIGURE 20.6
Sequential robust designs versus locally D-optimal and uniform designs. Fitted response is exponential; true
response is either exponential or Michaelis–Menten. The fitting assumes homoscedasticity, whereas the true vari-
ance function is σ2 (x) = 1 + k (x − .5)2 for k = 0 or k = .2 as indicated in the captions. (a) Average (over 100
sample paths) normalized

√
n · IMSE of robust (——), uniform (· · · ) and D-optimal (− · − · −) designs.

(b) Probability histogram of all points chosen by the 100 sequential designs; asterisks are at the average sites of
the D-optimal designs. (From Sinha, S. and Wiens, D. P., Can. J. Stat., 30, 601.)

Woods et al. (2006) (see also Dror and Steinberg 2006) for a discussion of the compu-
tational aspects) seek compromise designs. These are defined as maximizers of the average
of the log-determinant of the information matrix resulting from a design with a particular
g, η and θ, with the average taken over various sets of these three quantities. Adewale
and Wiens (2009) consider logistic models and robustness only against the form of η (·),
which is allowed to vary over a class defined by discrete versions of (20.2) through (20.5).
Adewale and Xu (2010) take an approach similar to that of Woods et al. (2006), but with
the log-determinant replaced by imse and g replaced by a in the departures against which
robustness is sought. In all of these articles, there is a mixture of analytic and numerical
methods, with the latter being dominated by simulated annealing.

20.3 Robustness against a Misspecified Error Structure

20.3.1 Robustness against Heteroscedasticity

Wiens (1998) extends the methods of Section 20.2 to allow for heterogeneous error variances
and allows the use of weights in the lse’s. In the minimax procedures, a maximum is taken
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FIGURE 20.7
Minimax design densities (a) and weights (b) for heteroscedastic straight line regression for two values of ν as
defined at (20.11): ν = 20/21 (—) and ν = 1/51 (· · ·). (Reprinted from Wiens, D.P., J. Am. Stat. Assoc., 93, 1440,
1998. Copyright 1998 by the American Statistical Association. With permission.)

over the variance function σ2 (x), subject to an L2-bound, as well as the neighbourhood of
regression responses, and the minimization of the resulting generalization of (20.11) yields
optimal weights as well as designs. See Figure 20.7. Montepiedra and Wong (2001) suppose
that the experimenter will compute the unweighted lse, and they investigate whether or not
the D-optimal design continues to be optimal in the presence of a particular nonconstant
variance function. They give conditions under which the two-point design for straight line
regression continues to be D-optimal and present examples for which the D-optimal design
that addresses the heteroscedasticity has three support points.

20.3.2 Robustness against Dependence

Experimental observations may be autocorrelated – for instance, because they are gathered
serially, or because spatial or other correlations enter in through the regressors. Sacks and
Ylvisaker (1966, 1968) study design problems for regression in which the error process is a
time series with a known covariance function that is used in the estimation process. Bickel
and Herzberg (1979) and later Bickel et al. (1981) entertain the following form of robust-
ness. It is supposed that the data will be analyzed by ordinary least squares (ols), tailored
to a straight line fit (with or without an intercept) in the covariate t (time). The straight line
model is not in doubt, but the true autocorrelation function is a mixture of a particular auto-
correlation function ρ (·) and that under independence, namely, (1 − γ) δ{ti=tj} +γρ

(
ti − tj

)
for a mixing parameter γ and observations made at times ti, tj. Their asymptotics lead to
the conclusion that at least when ρ (·) is convex in |t|, the uniform design is very nearly
optimal for regression with an intercept. For regression through the origin, an example of
an exactly optimal design density is in Figure 20.8. From these cases, we are led to the con-
jecture that designs robust against autocorrelations of this form are qualitatively similar to
designs constructed to be robust against misspecifications in the regression response but
assuming that the observations will be independent.

Wiens and Zhou (1996) consider regression models in which the error process {ε (t)} has
a mixed autocorrelation function as the preceding, with ρ (t) absolutely summable (leading
to the existence of a spectral density) but otherwise arbitrary. Misspecified response func-
tions (in covariates x) following (20.2) through (20.5) are allowed and the parameters are
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FIGURE 20.8
Optimal design density of Bickel and Herzberg (1979) for regression through the origin; γ = .5, ρ (t) =
exp (−.483 |t|). (From Bickel, P.J. and Herzberg, A.M., Ann. Stat., 7, 77, 1979.)

estimated by ols. They show that a design ξ∗ that is asymptotically minimax optimal for uncor-
related errors retains its optimality if the design points come from the measure ξ∗, or from a design
tending weakly to ξ∗, and are then implemented in random order. This complements results of
Wu (1981) who established the model robustness of various randomized designs for com-
parative experiments such as randomized complete block designs and randomized Latin
square designs.

The omnibus correlation structure of the previous paragraph calls for the design points
to be implemented in random order. If the class of autocorrelation models against which
one seeks protection is less broad, then more precise guidance can be given. Wiens and
Zhou (1997) work with models as at (20.2) through (20.5) and correlation structures as the
aforementioned, expressed through autocorrelation matrices Pγ = (1 − γ) I + γP for P ∈
P . Particular attention is paid to the classes P1, P2 of MA(1) structures with positive or
negative lag-1 correlations, respectively. Under Pγ, the determinant of the mse matrix of
the ols estimate θ̂ is

D
(
ψ, ξ, Pγ

) = σ2p

n

∣∣Mξ

∣∣−2
∣∣∣∣X′PγX

n

∣∣∣∣ ·
{

1 + n
σ2 b′

ψ,ξ

(
X′PγX

n

)−1

bψ,ξ

}
.

With ψ0 = 0 and P0 = I, define the change-of-variance function in the direction of P ∈ P by

CVF (ξ, P) =
d

dγD
(
ψ0, ξ, Pγ

)
|γ=0

D (ψ0, ξ, P0)
,

and the change-of-bias function in the direction of ψ ∈ � by

CBF (ξ,ψ) =
1
2

d2

dγ2 D ((1 − γ)ψ0 + γψ, ξ, P0)|γ=0

σ−2D (ψ0, ξ, P0)
.

The supremum of CVF (ξ, P) over P ∈ P is termed the change-of-variance sensitivity, denoted
CVS (ξ,P) and that of CBF (ξ,ψ) over � the change-of-bias sensitivity, denoted CBS (ξ, �).
A design ξ is V-robust if it minimizes D (ψ0, ξ, P0), that is, maximizes det

(
Mξ

)
, subject to
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a bound CVS (ξ,P) ≤ α, and most V-robust in a class of designs if α is the infimum of the
CVS over this class. Similarly, a design is B-robust if it maximizes det

(
Mξ

)
, subject to a

bound CBS (ξ,ψ) ≤ β, and most B-robust if β is the infimum of the CBS over a given class of
designs. These extend notions of robustness, introduced in other contexts by Hampel et al.
(1986), under which one seeks efficiency at the assumed model together with a bound on
the rate at which the performance deteriorates as one moves away from this model.

It is evident that B-robust designs coincide with the BB designs of Section 20.2.2. Adesign
is M-robust if it is both V-robust and B-robust and most M-robust if it is both most V-robust
and most B-robust. The question of the existence of most M-robust designs seems to have
remained open. Examples of most V-robust, most B-robust and M-robust designs are given
in Wiens and Zhou (1997) for q-dimensional multiple linear regression with an intercept:
f (x) = (

1, x′)′. The restriction is made to design spaces and designs for which Mξ is diag-
onal. For q = 1 and q = 2, see Figure 20.9. We see from this that a general guiding principle
is that the design points should be robust against response function misspecifications and
then implemented in an order such that there are as many sign changes as possible under
P1 and as few as possible under P2. Other examples of M-robust designs are given by Tsai
and Zhou (2005).

Wiens and Zhou (1999) make similar findings, when robustness is sought against possi-
ble autocorrelations with an AR(1) structure. A method established there, to asymptotically
minimize the maximum imse, over � and over AR(1) models with lag-1 correlation ρ < 0,
is to first generate optimal design points

{
tj

}n
j=1 assuming independence. Then, having

implemented x1, . . . , xm−1 (with x0 = 0), xm is to be the nearest neighbour, among those tj

not yet chosen, of xm−1. If instead ρ > 0, then the induced design
{
(−1)m xm

}n
m=1 is asymp-

totically minimax. Zhou (2001a) replaces the imse criterion by the trace of the mse matrix
and obtains designs numerically for MA(q) errors (q = 1, 2), by a two-stage algorithm in
which the design points are found by simulated annealing and an optimal order of imple-
mentation is obtained by a nested exchange algorithm. Shi et al. (2007) extend these results
to q = 3.

Zhou (2001b) considers a modified form of the CVF. Motivated by a desire for accurate
confidence intervals on linear functions a′θ, she defines

CVFa (ξ, P) =
d

dγa′V
(
Pγ

)
a|γ=0

a′V (P0) a
,

where V
(
Pγ

) = M−1
ξ

(
X′PγX

n

)
M−1

ξ is the covariance matrix of the ols estimate
√

nθ̂. It turns
out, after a calculation, that

CVFa (ξ, P) = a′ (V (P) − V (I)) a
a′V (I) a

,

the numerator of which is proportional to the difference in the squared widths of confi-
dence intervals computed using a knowledge of P and those based on ols. Zhou (2001b)
goes on to evaluate CVFa (ξ, P) for fixed P and at a given design ξ, chosen, for instance, for
its efficiency or robustness under independence. Then the order of implementation of the
design points is optimized, so as to minimize |CVFa (ξ, P)|. An extended criterion studied
is to minimize a sum

∑
i

∣∣CVFai (ξ, P)
∣∣ (One might instead take a maximum over a, leading
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FIGURE 20.9
Most V-, most B, and M-robust designs, n = 25. (a,b): Most V-robust designs in [−1, 1] for P1 and P2. (c,d): Most
V-robust designs in [−1, 1]× [−1, 1], with the indices of the design points plotted forP1 andP2. (e,f): Most B-robust
designs for �, ordered for P1 and P2. (g,h): M-robust designs for �, ordered for P1 and P2. In (a,e,g) the design
points are at the vertices; in (b,f,g) they are at the plotted squares; in all six cases the order of implementation is as
on the vertical axes. (Reprinted from Wiens, D.P. and Zhou, J., J. Am. Stat. Assoc., 92, 1503, 1997. Copyright 1997
by the American Statistical Association. With permission.)

to apparently open problems.) The examples given indicate that using this optimal order-
ing, the coverage probabilities of confidence intervals, computed incorrectly assuming
independence, deteriorate only very slightly from the nominal values.

20.4 Special Applications

In design, as in all applied research, general theory such as those presented in the previous
sections must often be modified or adapted to suit specific applications. In the next few
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sections, we illustrate this in the context of some particular examples in which notions of
robustness of design have been found to be fruitful.

20.4.1 Extrapolation

Extrapolation poses special problems in statistics in general and design in particular, since
a model that is in doubt in the design space may be even more so in the extrapolation
space. Reiterating sentiments expressed by us elsewhere in this chapter, Lawless (1984)
remarks that “in extrapolation problems, a slight degree of model inadequacy quickly
wipes out advantages that minimum variance designs possess when the model is exactly
correct”.

Huber (1975) supposes that a function f is to be observed with additive random error,
at n points chosen by the experimenter from (0, ∞), with the intention of predicting f (−1).
Assuming the use of a linear predictor, he finds designs that minimize the maximum mse

E
[{

f̂ − f (−1)
}2

]
, with the maximum taken over all functions f that are h + 1 times differ-

entiable, with a uniformly bounded (h + 1)th derivative. These turn out to have h+1 points
of support constituting a certain set of Chebyshev points. Huang and Studden (1988) find
and correct an error in Huber’s (1975) proof, while agreeing with the final result, and derive
similar designs for extrapolation from [−1, 1] to a single point outside of this interval. In
this latter context, Hoel and Levine (1964) derive designs for extrapolating a polynomial of
known degree; Spruill (1985) and Dette and Wong (1996) discuss the use of these designs,
and suggest improvements, when the form or degree of the function being extrapolated is
in doubt.

Fang and Wiens (2000) consider the extrapolation of approximate regression responses
as at (20.2) through (20.5), but with x chosen from a finite design space X to a space
T on which E [y (x)] = f ′

(x)θ + ψT (x) with
�
T ψ2

T (x)μ (dx) ≤ τ2
T for some measure μ

(typically either Lebesgue measure or counting measure). Designs minimizing the maxi-
mum, over both ψ at (20.4) and over ψT, of the integrated mean squared prediction error�
T E

[{
ŷ (x) − E [y (x)]

}2
]
μ (dx) are derived. The development largely parallels the deriva-

tion and minimization of (20.13); in particular the maximum is derived analytically and
minimized by simulated annealing. The results complement Fang and Wiens (1999) and
Wiens and Xu (2008a,b), where absolutely continuous designs are sought.

To illustrate the use of these designs, consider the following experiment of Guess
et al. (1977), discussed by Hoel and Jennrich (1979). A sample of n = 235 animals is
to receive doses, at levels x, of a carcinogen. The mean response is approximated by
a cubic polynomial in x ∈X = [1, 500]; the goal is extrapolation to the region T = {0.5}
where the background effect is to be estimated. The minimum variance design proposed
by Hoel and Jennrich places 63, 125, 35 and 12 observations at x = 1, 82.6, 342 and 500.
The Huber/Huang/Studden design discussed earlier returns design weights that must be
rounded to yield implementable designs; using the rounding mechanism of Pukelsheim
and Rieder (1992) results in frequencies of 232, 2, 1 and 0 at x = 1, 125.75, 373.3 and 500
(so that the rounded design becomes supersaturated for the cubic model). With X dis-
cretized to 47 equally spaced points, the designs of Fang and Wiens (2000) are shown in
Figure 20.10. Both homogeneous and heterogeneous error variances (ranging over a neigh-
bourhood as described in Section 20.3.1 in the latter case), and ols and wls estimates, are
considered. To some extent these designs again illustrate the paradigm of Section 20.2, with
the replicates of the Hoel and Jennrich design spread out into clusters.
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FIGURE 20.10
Minimax robust designs (n = 235) for extrapolation from [1, 500] to {.5}. (a) Design frequencies for ols, homo-
scedasticity. (b) design for ols, heteroscedasticity. (c) design for wls, heteroscedasticity. (d) Weights for wls,
heteroscedasticity. (Reprinted from Fang, Z. and Wiens, D.P., J. Am. Stat. Assoc., 95, 807, 2000. Copyright 2000
by the American Statistical Association. With permission.)

A class of applications in which extrapolation designs are required is accelerated life test-
ing, in which items are tested at unusually high stress levels – at which they break down
quickly, if at all – in order to predict their reliability under more usual levels. This is often
combined with censoring. Chernoff (1962) derives accelerated life designs assuming that
the models and parameters are known exactly, while remarking that “It is not possible to
overemphasize the importance of the underlying assumptions. Doubts about them would
cast serious doubts on the results to be obtained from accelerated designs”. Ginebra and
Sen (1998) address these reservations by constructing minimax designs, with the maxi-
mum taken over plausible ranges of the unknown model parameters. Xu (2009b) obtains
designs for situations in which both acceleration and censoring are present, under depar-
tures similar to those in Fang and Wiens (2000) discussed earlier, but with a continuous
design space.

20.4.2 Model Selection: Discrimination and Goodness of Fit

In the face of model uncertainty, it is natural to seek design strategies to clarify the nature
of the response function. When the experimenter is choosing among a set of models whose
functional forms are specified and that are perhaps even nested, then ideas similar to those
in Section 20.2.2 might be applied – see, for example, Biedermann et al. (2007), where the

goal is to select the correct response function from a set
{∑k

i=1 ai exp (−λix) ; k ≥ 1
}

and to
estimate the parameters {ai, λi; i = 1, . . . , k} with reasonable efficiency. This is continued in
Chapter 14.

Suppose, however, as is perhaps more common, that the correct model is a member of
one of two only approximately known classes C0, C1. In Cj, the response variable has density
p

(
y|x,μj

)
, parameterized by the mean response μj (x) = ηj

(
x|θj

) + ψ (x) with ψ ranging
over a class �j similar to those in Section 20.2. If C0, C1 each contains only a single member,



742 Handbook of Design and Analysis of Experiments

that is, if each of �0 and �1 contains only the zero function, then one can discriminate
between the classes by means of the Neyman–Pearson test of H0: p

(
y|x,μ0

)
versus H1:

p
(
y|x,μ1

)
. One might then seek a design maximizing the power of this test; this leads to

maximizing Eξ [I {μ0 (x) ,μ1 (x)}], where

I {μ0 (x) ,μ1 (x)} =
∞�

−∞
p

(
y|x,μ1

)
log

{
p

(
y|x,μ1

)
p

(
y|x,μ0

)
}

dy

is the Kullback–Leibler (KL) divergence, measuring the information that is lost when
p (·|x,μ0) is used to approximate p (·|x,μ1) – see López-Fidalgo et al. (2007). Wiens (2009)
continues this approach and constructs robust KL-optimal designs that maximize the min-
imum value of Eξ [I {μ0 (x) ,μ1 (x)}], over full classes C0 and C1. This corresponds to
discriminating between the members of a least favourable pair

(
μ∗

0 = η0 (·|θ0) + ψ∗
0 (·) ,μ∗

1 = η1 (·|θ1) + ψ∗
1 (·)) ,

at which C0 and C1 are closest. Both static and sequential designs are studied. In the for-
mer case, the designs can roughly be described as placing clusters of points in regions
where the two competing mean responses are farthest apart – as one might expect.
See also O’Brien (1995) who gives a method of adding locations to a D-optimal design –
typically with no more design points than parameters – in such a way as to allow testing
for lof.

In the sequential case, this KL criterion of Wiens is modified so as to allow a transi-
tion, over time, from choosing design points solely to maximize the discriminatory power
to choosing them for increased efficiency of parameter estimation in the more plausible
model. This criterion of optimizing a mixture of goals is used as well in Wiens (2010),
where the KL criterion is applied to testing an approximately specified model for lof,
while simultaneously aiming for some efficiency in estimating the parameters. This is
also the goal of Dette et al. (2005), who consider the EMAX class of response functions
E [y|x] = θ0xh/

(
θ1 + xh) and design to test the fit of a Michaelis–Menten response (h = 1).

20.4.3 Dose–Response Designs

Consider an experiment in which independent binary responses are to be observed, each
representing the presence or absence of a particular response to an application of a dose
at level x. The analyst fits a model Pr

(
y = 1|x) = F0 (α + βx) for some distribution func-

tion (link) F0 (·), typically the logistic or the normal. Often the goal is the estimation of

ED100p – the level xp =
(

F−1
0

(
p
) − α

)
/β at which 100p% of the population will respond.

The associated design problem is to determine the optimal doses and the number of obser-
vations to be made at each. This is then an instance of the class of problems discussed in
Section 20.2.5, with issues related to poor initial parameter estimates and inappropriately
chosen links.

Sitter (1992) notes the lack of robustness to poor initial parameter estimates and pro-
poses minimax procedures, with the maximum taken over a given parameter region.
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Only symmetric designs are considered; this restriction is dropped by Biedermann and
Dette (2005). Hedayat et al. (1997, 2002) instead derive designs that are D-optimal among
those with k (3 ≤ k ≤ 7) levels and note that as k increases, the effect of poor initial guesses
for α and β decreases.

Li and Wiens (2011) design to minimize the asymptotic mse of the estimate x̂p, possibly
integrated over an interval of values of p, in the face of uncertainly about the link. The esti-
mate x̂p is computed under F0, and the mse is then computed under an alternate link Fn and
maximized over a Kolmogorov neighbourhood

{
Fn| sup |Fn(t) − F0(t)| ≤ τ/

√
n
}
. Designs

are computed that minimize the maximized mse.
To compare some of these approaches, consider an experiment of Rosenberger and Grill

(1997), the aim of which was to elicit information about the relationship between stimulus
level (x) and response, by estimating quantiles of the stimulus–response curve. Subjects
sequentially received marking stimuli (auditory marking clicks) at various levels and at ran-
dom times near to those of a certain event and were then asked whether the event occurred
before or after the stimulus. The response y was binary, with y = 1 being recorded if the
subject reported that the event occurred before the stimulus. The principal goal was to esti-
mate the median (ED50) of the stimulus–response curve. A secondary goal was to design so
as to allow for the estimation of other quantiles such as the lower and upper quartiles. The
investigators assumed a logistic link relating Pr

(
y = 1

)
to a linear function of the stimulus

level. This experiment was subsequently redesigned by Biedermann, Dette and Pepelyshev
(2006, henceforth BDP), by Zhu and Wong (2000, henceforth ZW) and by Li and Wiens
(2011, henceforth LW). The approaches were, respectively, maximin optimality (with the
minimum over a range of parameters), Bayesian optimality and minimax robustness as
described in the previous paragraph. Each group constructed one design for estimation of
the median and another for estimation of the quantiles.

See Figure 20.11, where the four designs of BDP and ZW are illustrated, together with
four LW designs – two assuming that the parameter τ of the Kolmogorov neighbourhood
defined earlier is zero, that is, that the fitted link is exactly correct, and two using τ = 1.
Comparative mse (maximized, if τ > 0) in these neighbourhoods are given in Table 20.1.
The designs LW2, LW4 do very well in the case of quartile estimation for which they are
intended; the minimax design LW4 performs well overall. Design LW1 = LW3 also does
well for ED50 estimation, but has a rather counterintuitive concentration of mass near the
centre of the design space, illustrating that efficiency or robustness for one particular feature
might lead to poor performance in other instances. An indicator of the robustness of the
LW designs is that in three of the four cases in which they are intended to be optimal, there
is only a small increase in mse when τ changes from 0 to 1.

To do only these comparisons is unfair, since we are looking at criteria with respect to
which the designs LW have been optimally tuned. Those of ZW and BDP were tuned for
optimal efficiency at one or several fitted models, a natural measure of which is the root of
the total variance, that is,

[
det

(
Mξ

)]−1/2 where Mξ is the information matrix, given in the
final column of Table 20.1. With respect to this measure, the latter designs fare well. The
design LW1 = LW3 does poorly, while the others are quite comparable.

An intriguing extension of these ideas, which to our knowledge has not been pursued,
is to allow Pr

(
y = 1

)
to depend not only on the level x but as well on covariates – perhaps

in an only approximately specified manner. For instance, aircraft manufacturers attempt
to estimate and then reduce the probability of an ignition event (y = 1), in response to
a lightning strike at level x. The reduction in this probability is brought about through
various surface coatings of the aircraft; these form the covariates.
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FIGURE 20.11
Dose–response designs for estimating the median (a, c, e, and g) or the quantiles (b, d, f, and h) of the stimulus–
response curve. (From Li, P. and Wiens, D.P., J. R. Stat. Soc. (Ser. B), 17, 215, 2011.)

TABLE 20.1

Comparative Losses of Dose–Response Designs

Design Max mse; ED50 Estimation Max mse; ED25,75 Estimation
[
det

(
Mξ

)]−1/2

τ = 0a τ = 1 τ = 01 τ = 1

ZW1 6.51 46.32 [3.86] [28.33] 1.51
ZW2 [9.01] [57.32] 5.08 49.91 1.75

BDP1 6.15 41.81 [3.74] [26.04] 1.55
BDP2 [8.83] [18.99] 5.12 27.85 1.91

LW1 4.01 4.03 [117.87] [129.06] 16.48
LW2 [5.18] [92.74] 3.49 25.06 1.65
LW3 4.01 4.03 [117.87] [129.06] 16.48

LW4 [4.89] [5.75] 3.75 4.37 1.93

a When τ = 0, the loss is due solely to variation at the fitted model.
Notes: 1. Square brackets denote estimation situations in which the indicated design is not intended to be

appropriate.
2. Figures in bold correspond to situations in which the LW designs are intended to be optimal.
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20.4.4 Clinical Trials

In their simplest form, clinical trials involve the random allocation of patients into groups,
after which each receives a treatment (perhaps a control) specific to the group. An element
of randomness is required, in order that the investigator remain blinded to the assignments.
Responses are assumed to depend on the treatment and perhaps on various covariates
(age, weight, etc.). Heckman (1987) assumes that for each of two treatments (t = 0, 1), with
a single covariate, the mean response is approximately linear:

E [y|x, x0] = β0 (x0) + β1 (x0) t + β2 (x0) (x − x0) + r (t, x0, x) ,

for |r (t, x0, x)| bounded by a known multiple, depending on t and x0, of (x − x0)
2. (This is

her model 2; model 1 has β2 (x0) ≡ 0 and |r (t, x0, x)| is bounded by a multiple of |x − x0|.) The
difference in the mean effects of the treatments at x = x0 is β1 (x0), so that one is interested
in estimating this quantity. Sacks and Ylvisaker (1978) had obtained linear, minimum mse
estimators for such models, and Heckman obtains the correspondingly optimal sequences
of allocations to the two groups. Wiens (2005a) instead takes

E [y|x] = β0 + β1t + f ′
(x)θ + ψt (x)

(his model 2; model 1 has θ ≡ 0). Static and sequential allocation schemes are considered;
in the former case a function ρ (·) is derived, and a subject who arrives with covariates x
is assigned to the treatment group with probability ρ (x). For this scheme, the results are
qualitatively similar to those of Heckman. In the sequential case, they compare favourably
with those of Atkinson (1982) for exactly linear responses when such do indeed hold, and
have significantly reduced mse otherwise. There is however a significant cost to be paid for
this robustness in terms of balance (see the discussions in Atkinson 1996, 2002) across the
covariates.

20.4.5 Spatial Designs: Field and Computer Experiments

In spatial experiments – covered more broadly in Chapter 15 – one makes observations on
units that are spatially arranged, and the spatial layout becomes important. A fairly general
formulation is that the experimenter samples locations chosen from a setX = {t1, . . . , tN} ⊂
R

d. At these locations, he observes

y (t) = μ (t;θ) + δ (t) + ε (t) , (20.20)

where μ (t;θ) is a deterministic mean function possibly depending on unknown param-
eters θ, δ (t) represents stochastic, spatially correlated departures, and ε (t) represents
measurement error. The goals often focus on the prediction of functions of X (t) = μ (t;θ)+
δ (t). Such models and prediction techniques are commonly also used in computer exper-
iments, described in Section V; designs constructed in this context often (see in particular
Chapter 17) aim for a fairly uniform exploration of the design space – itself a quite robust
approach, as we have seen.

Misspecification in (20.20) can occur in a number of ways – (1) misspecifying μ (t;θ), per-
haps in ways as outlined in Section 20.2; (2) misspecifying the covariance structure of δ (t),
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FIGURE 20.12
Minimax spatial designs for prediction of XTotal as in Section 20.4.5. (a) Isotropic correlations; a maximum is taken
over a neighbourhood of μ (t;θ) but the nominal correlation function for δ and homogeneous variance function
for ε are assumed to be correct. (b) As in (a) but with anisotropic correlations. (c,d): As in (a,b), respectively, but
maxima are taken as well over neighbourhoods of the correlation function for δ and over the nominal variance
function of ε. (From Wiens, D. P., Environmetrics, 16, 205, 2005b.)

for instance, by assuming an isotropic structure when such is not the case; and (3) misspeci-
fying the variance/covariance structure of ε (t), as in Section 20.3. Wiens (2005b) constructs
designs that are minimax robust against any of these three types of departures, using neigh-
bourhoods of the nominal model to describe each, and simulated annealing to carry out
the minimization. See Figure 20.12 for examples – in each case, 7 points are sampled from a
25-point grid (t1, t2). The nominal response is μ (t;θ) = θ0 +θ1t1 +θ2t2, the nominal covari-

ance function Gaussian: corr
[
δ (t) , δ

(
t′)] = exp

{
−λ1

(
t1 − t′1

)2 − λ2
(
t2 − t′2

)2
}

, isotropic
if λ1 = λ2 and anisotropic otherwise, and the nominal error variances homogeneous. The
aim is to predict XTotal = ∑

t∈X X (t) with minimum mse.
Spatial designs are commonly employed in field experiments, where plots, perhaps in a

rectangular grid, are to be planted with various crops. The goal is the optimal – with respect
to some criterion – assignment of crops to plots. Minimax designs in such situations are
studied by Wiens and Zhou (2008) and Ou and Zhou (2009). An example given by Ou and
Zhou has eight crops, with crop one being a control, arranged in a 3×8 field of plots. Possible
correlation structures are NN(ρ), in which each plot has nonzero correlation ρ only with its
immediate neighbours, and DG(ρ), in which the correlation between plots is ρd when d is
the sum of the east-west and north-south distances between them. These are the nominal
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FIGURE 20.13
Minimax assignment of 8 crops to 24 fields. (a) NN(ρ) correlations with ols, (b) NN(ρ) correlations with gls, (c)
DG(ρ) correlations with ols, (d) DG(ρ) correlations with gls. In all cases ρ = .15. (From Ou, B. and Zhou, J., Metrika,
69, 45, 2009.)

correlations; neighbourhood structures of these are introduced, and minimax designs are
obtained assuming the use of either ols or generalized least squares (gls) using the possibly
incorrect nominal correlation structure. In each case, various arrangements of replicates are
compared, and it is found that, quite generally, 10 replicates of the control and 2 of all other
crops is optimal for the goal of efficient estimation of the crop effects (row/column effects
were not modelled). See Figure 20.13.

This brief description barely scratches the surface of applications in which spatial design-
ers might benefit from principles of robustness. As examples, two that appear to be as yet
unexplored are spatial models with discrete – perhaps binary – data, and threshold models,
describing, for instance, the possible exceedance of a regulatory threshold.

20.4.6 Mixture Experiments

In mixture experiments, the covariates x1, . . . , xq are nonnegative and sum to one, repre-
senting the relative proportions of ingredients blended in a mixture. This is another area
that is relatively unexplored by robust designers. Huang et al. (2009) find designs in the
case that the experimenter is uncertain whether a first- or second-order model is appropri-
ate. Smucker et al. (2011) extend this idea to designing so as to maximize a geometrically

weighted product φ (ξ) = ∏
j

[
det

(
Mξ

(
f j

))]ωj
of determinants of information matrices

arising from candidate models with regressors f j. Exchange algorithms are derived for the
maximization.

20.4.7 Designs for Robust Inference

Even the most carefully designed experiment can lose effectiveness if the responses them-
selves are erroneous, or outlying, or missing altogether. While these eventualities are not
directly under the control of the designer, their effects can be tempered by an appropriate
design.
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The influence of an observation, at xi, on the lse in a linear model is measured by its
leverage – the diagonal element hii of the hat matrix X

(
X′X

)−1 X′. Recall that the hii lie in
[0, 1], and that their average is h̄ = p/n. Huber (1975) recommends reducing, by (approx-
imate) replication, the values of any hii that are close to 1. Box and Draper (1975) argue
that one should aim for a small value of

∑n
i=1 h2

ii, or equivalently of the variance of the hii.
They point out that this is also related to robustness against nonnormality, an observation
bolstered by Huber’s (1973, p. 804) remark that the condition that max hii → 0 as n → ∞
“appears to be indispensable for any reasonably simple general asymptotic theory of robust
estimation”.

Herzberg and Andrews (1976) and Andrews and Herzberg (1979) discuss the possibility
of design breakdown, by which they mean that the model matrix might become rank defi-
cient after perceived outliers have been discarded, or as a result of cases that are missing
entirely. This line of investigation is continued by Akhtar and Prescott (1986); Herzberg
et al. (1987); and Ahmad and Gilmour (2010). They find that the loss in information (rela-
tive to the D-criterion) due to a missing observation at xi is also measured by hii, and so a
design with moderate values of {hii} is robust to missing observations.

In the literature of robust estimation, one is commonly cautioned against removing cases
thought to be outliers; instead, one is encouraged to downweight them in the estima-
tion process. This is the effect of ordinary and generalized M-estimation, each of which
includes least squares as a special case. Wiens and Wu (2010) construct designs that mini-
mize the maximum asymptotic mse of M-estimates of regression, with the maximum taken
over the discrete versions of neighbourhoods as at (20.2) through (20.5). This mse depends
on the error distribution and on the score functions used in the estimation, but it is found
that the designs change only slowly with variations in these quantities, so that a design
which is robust for lse, against the types of departures of concern in this chapter, will remain
so, if perhaps slightly suboptimal, for M-estimation.
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21.1 Introduction

Research in optimal experimental design has a long history and dates back as early as 1918
in a seminal paper by Smith (1918) and probably earlier. This chapter discusses algorithms
for finding an optimal design given a statistical model defined on a given design space.
We discuss background and the need for algorithms to find an optimal design for various
situations. There are different types of algorithms available in the literature, and even for
the same design problem, the researcher usually has several algorithms to choose from
to find an optimal design. There are also algorithms that use specialized methods to find
an optimal design for a very specific application. For example, Syed et al. (2011) used a
mathematical programming technique to search for a D-optimal design using cyclotomic
cosets. The literature on algorithms to find an optimal design for a statistical model is
therefore huge and diverse.
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The aim of this chapter is to give a brief overview on algorithms for finding opti-
mal designs and to discuss selected algorithms that represent some of the current trends.
We also highlight algorithms that are more widely applicable for solving different types
of design problems. We discuss typical problems encountered in using an algorithmic
approach to find an optimal design and present alternative algorithms from other fields that
seem capable of generating efficient designs quickly and easily for any model and objec-
tive in the study. Along the way, we provide pseudocodes for some of these algorithms and
illustrate how they work to solve real and current design problems in biomedicine.

In recent years, experimental costs have risen steeply at many levels, and researchers
increasingly want to minimize study costs without having to sacrifice the quality of the
statistical inference. Even with cost considerations aside, design issues are still very impor-
tant. This is because a poor design can provide unreliable answers either because the
estimates have unacceptably large variances or it provides low power for testing the main
hypothesis in the scientific study. In the extreme case, when the study is so badly designed,
it may not even provide an answer to the main scientific question of interest no matter
how large the sample size. Thus all studies should be carefully planned at the onset. The
main goal or goals have to be clearly specified in advance, along with all model assump-
tions, constraints, and practical concerns associated with execution and interpretation of
the experiment.

Typically, a mathematical function called a design optimality criterion is formulated
to reflect the objectives of the study as accurately as possible. A common criterion is
D-optimality for estimating all model parameters; if only a subset of the model parameters
is of interest, Ds-optimality is used. Both criteria seek to minimize the volume of the con-
fidence region for the parameters of interest when errors are independent and normally
distributed. Other commonly used design criteria are discussed in other chapters of this
book. In general, given the user-selected criterion and a statistical model, the design prob-
lem is to find the optimal distinct combinations of the independent variables that define
the treatments for which the outcome is to be observed and the number of replicates (or
repeats) at each of these settings. Throughout the chapter, we assume the sample size n is
predetermined, and so we are not dealing with a sample size determination problem.

This chapter is organized as follows. In the next section, we discuss the need for a care-
fully designed study in a real biomedical problem and briefly describe how design issues
can be addressed using an algorithm described later in the chapter. Section 21.3 provides
background material, fundamental concepts in designs, common terminology, and tools
to find an optimal design as well as verify if a design is optimal. Section 21.4 reviews two
popular types of algorithms: Fedorov–Wynn type of algorithms and exchange algorithms.
In Section 21.5, we discuss alternative and modern algorithms for generating an optimal
design, and in Section 21.6, we present metaheuristic algorithms, which have more recently
been used as effective and practical tools for finding optimal designs. A summary is offered
in Section 21.7.

21.2 Algorithmic Approach to Solve a Design Problem: A Motivating Example

This section provides an example of a real problem that can be solved using an algorithm
discussed in this chapter. We omit technical details but provide references for the source
where the solution of the problem, codes, and implementation of the actual algorithm can



Algorithmic Searches for Optimal Designs 757

be found. The motivating application we have in mind is how to efficiently design a drug
discovery study.

21.2.1 Drug Discovery Problem

Identifying promising compounds from a vast collection of feasible compounds is a chal-
lenging problem in drug discovery. In this combinatorial chemistry problem, the goal is
to obtain sets of reagents (or monomers) that maximize certain efficacy of a compound.
However, here, the objective is to identify several “nearly best” combinations, rather than
only one “best” or optimal one. In a typical problem, a core molecule is identified to which
reagents are attached at multiple locations. Each attachment location may have tens or
hundreds of potential monomers. Mandal et al. (2009) considered an example where a com-
pound was created by attaching reagents to the three locations of a molecule, denoted by
A, B, and C (e.g., see Figure 21.1). In this kind of application, the compound library (the
set of all feasible compounds) may consist of 5 feasible substructures (monomers) at posi-
tion A, 35 at position B and 250 at position C. That is, the compound library has a total of
5 × 35 × 250 = 43,750 chemical compounds. Production of all these compounds for physi-
cal testing is expensive, and thus, it is desirable to select a relatively much smaller subset
of the compounds with desirable properties. Once a compound is created, its physiochem-
ical properties (namely, absorption/administration, distribution, metabolism, excretion,
toxicity [ADMET]) are used to identify whether the compound is promising or not.

Using terminology in the design literature, we have here three factors (A, B, and C) in
this design problem with 5, 35, and 250 levels, respectively. The response can be one of the
ADMET properties of a compound, identified by a particular combination of A, B, and C.
Alternatively, we can use a multiple-objective design discussed in Chapter 25 to capture the
goals of the study simultaneously. The purpose of this study is to identify level combina-
tions that can reduce, say, the toxicity of a compound, and at the same time increase, say, its
absorption capability. Mandal et al. (2007) used desirability scores to reduce the dual goals
to a single-objective optimization problem, where the goal was to identify a compound
(i.e., a design point) xi that will maximize the objective function ψ given by

ψ(xi) = ψ(xi1, . . . , xip). (21.1)

Here, p = 3 and (xi1, xi2, xi3) denote the levels of the three factors A, B, and C. Common
design techniques such as fractional factorial designs, orthogonal arrays, and response sur-
face designs have been widely used in screening studies for a long time in many industries
(Dean and Lewis 2006). In this problem, the outcome or outcomes do not have a known
mean structure in terms of the factors, and so they cannot be applied directly. With the

B

C

A

FIGURE 21.1
The core molecule of a compound with three reagent locations. (Reprinted (adapted) with permission from
Mandal, A., Johnson, K., Wu, C.F.J., and Bornmeier, D., Identifying promising compounds in drug discovery:
Genetic algorithms and some new statistical techniques, J. Chem. Inf. Model., 47, 981–988. Copyright 2007 American
Chemical Society.)
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advent of technology, more complicated assumptions are increasingly required, and con-
sequently, nonstandard design approaches are called for to solve the design problem. There
is no analytical description of the optimal design, and so an optimal design has to be found
using an algorithm. In this case, we applied a metaheuristic algorithm to search for an
optimal design.

Metaheuristic algorithms are gaining in popularity because of their many successes in
tackling high-dimensional optimization problems in other fields. The research in this field
is very active; there are many book chapters and monographs in this area, including some
that are updated in less than 2 years just to keep track of its rapid development; see Yang
(2008, 2010) for example. Metaheuristic algorithms are based on heuristics that are, in part
or all, not supported by theory. Here, we take the term heuristic to mean any procedure,
or algorithm, that is not wholly supported by theory but appears to work well in prac-
tice. For example, in the algorithm used by Cook and Nachtsheim (1982) described just
before Section 21.4.1, the authors offer a heuristic rule calling for restarting their algorithm
after every 25 iterations for greater efficiency. Such rules are provided based on empirical
experience and may not even apply to other problems or scenarios. The prefix meta- in
metaheuristic suggests that it has a common mission and not a specific one for a particu-
lar problem. In our case, a metaheuristic algorithm for finding an optimal design means
no specific feature of the design problem should greatly affect the functionality of the
algorithm. For instance, the algorithm should work whether the design criterion is differ-
entiable or not or whether the criterion is convex or not. Within broad limits, performance
of the algorithm should not depend on the number of design variables, and constraints on
those variables should be easily accommodated. Generally, only obvious modifications of
the algorithm are required, and they will include, for example, modifying the statistical
model or the design criterion or the design space. This is in contrast to, say, Fedorov-type
algorithms where it is assumed that the optimality criterion is differentiable. Of course, as
expected, more complicated optimization problems will require more time to solve.

Mandal et al. (2006) used a version of the genetic algorithm (GA), which is a meta-
heuristic algorithm, to find the optimal compounds to be created in the laboratory. In
their application, p = 3 and xi1, xi2, and xi3 take the possible values of A, B, and C,
respectively. The ψ in (21.1) is user selected and an example of such a function is given in
(21.9). In that section, we illustrate how GA can be applied to identify the settings that
maximize the objective function.

21.3 Background

Throughout this chapter, we assume that we are given a model, an optimality criterion,
and a fixed sample size n and the problem is how to take n independent observations from
the given design space in an optimal way. When a parametric approach is adopted, the ith
outcome yi is modeled by

yi = f (xi,β) + εi, i = 1, . . . , n. (21.2)

Here, εi is the error incurred at the ith trial, and all errors are independent, and each is
distributed as εi ∼ N(0,σ2). The mean response function f (x,β) is assumed to be known,
and β is the vector of unknown parameters. All outcomes are observed at user-selected
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points from a specified compact design space X , which can be multidimensional. The
choice of the user-selected points x1,x2,. . ., xn ∈ X makes up the design for the study.

Linear models are commonly used in scientific studies. They arise as a special case of
(21.2) when the mean response function can be written as the product of two components
with f ′(xi,β)= f ′(xi)β and f (x) is the regression function with p linearly independent com-
ponents. In this chapter, linear models with heteroscedastic, independent, and normal
errors are called general linear models and defined by

yi = f ′(xi)β + εi, i = 1, . . . , n. (21.3)

We follow optimal design terminology and use an efficiency function λ(x) to incorporate
the heteroscedasticity by letting Var(εi) = σ2/λ(xi). When the efficiency function is known,
design issues can be directly addressed using a suitably transformed homoscedastic model.

Following convention, the goodness of a design is measured by the Fisher information
matrix. Apart from an unimportant multiplicative constant, this matrix is obtained by first
computing the expectation of the matrix of second derivatives of the log likelihood function
at a single point and then averaging it over all the design points and multiplying by −1.
For nonlinear models, this matrix depends on the unknown parameters β, but not so for
linear models. For example, if (21.3) holds and we have resources to take ni observations
at xi, i = 1, 2, . . . , k, then the information matrix for this linear model is

∑
nif (xi)f ′(xi),

apart from a multiplicative constant. When the model is nonlinear, we approximate the
information matrix by replacing f (xi) by the gradient of f (xi,β) in the aforementioned
matrix. The simplest way to construct optimal designs for nonlinear models is to assume
that nominal values forβ are available. After plugging the nominal values into the informa-
tion matrix, the criterion no longer depends on β, and the design problem can be solved
using design techniques for linear models. Because such optimal designs depend on the
nominal parameter values, they are termed locally optimal. In what is to follow, the infor-
mation matrix is denoted by M(ξ,β) where ξ is the design used to collect the data. If we
have a linear model, the information matrix does not depend on β, and we simply denote
it by M(ξ).

There are two types of optimal designs: approximate optimal designs and exact optimal
designs. Approximate designs, or continuous designs, are easier to find and study than
exact optimal designs. Approximate designs are essentially probability measures defined
on a compact and known design space. In our setting, we assume that we are given a pre-
selected sample size n, a design criterion, and a statistical model. The design questions
are how to choose design points in the design space to observe the outcome in an optimal
manner. For approximate designs, the optimization problem finds the optimal probabil-
ity measure that then has to be rounded appropriately to an exact design before it can
be implemented in practice. For example, if n is the total number of observations to be
taken in the experiment and the approximate design calls for taking observations at three
points x1, x2, and x3 from X with weights w1, w2, and w3, the implemented design takes nwi
observations at xi, i = 1, 2, 3 such that nw1 +nw2 +nw3 = n, and the weights are rounded so
that each of the summands is an integer. Clearly, the implemented design is not unique as
it depends on the rounding procedure. In contrast, an optimal exact design solves the opti-
mization problem by finding an optimal integer variable k, the number of unique design
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points, where these points x1, x2, . . . , xk are from the design space and the number of obser-
vations n1, n2, . . . , nk to be taken at each of these design points and subject to the constraint
that they sum to n.

The main appeal of working with approximate designs is that after formulating the
objective as a convex function of the information matrix, we have a convex optimization
problem, and equivalence theorems from convex analysis theory can be directly used to
verify whether a design is optimal or not (Kiefer 1974). In addition, algorithms are available
for finding different types of optimal approximate designs. There is no general algorithm
for finding an optimal exact design and no general analytical tool for confirming whether
an exact design is optimal or not.

The traditional way of finding an optimal design is a mathematical derivation based on
model assumptions. Frequently, tedious algebra and specialized mathematical tools that
exploit special properties of the regression functions are required to determine the optimal
design. For simpler problems, a closed form formula for the optimal design may be pos-
sible, but at other times only an analytical description is available. Generally, D-optimal
designs are considered the easiest to find compared with other types of optimal designs.
For example, if we wish to estimate only a subset of the whole set of model parameters
in the mean function, formulae can be complicated. Furthermore, a Ds-optimal design for
estimating selected parameters in a polynomial regression model is usually described by a
system of equations whose solutions provide the canonical moments of the optimal design,
and the optimal design is then recovered from the set of canonical moments in a complex
manner; details are given in a monograph by Dette and Studden (1997).

Having a formula or a closed-form description of the optimal design is helpful because
it facilitates studying properties of the optimal design, including its sensitivities to model
assumptions. However, a purely theoretical approach to describing an optimal design ana-
lytically can be limiting in terms of scope and usability. This is because the optimal design
is derived under a very strict set of assumptions, and so the theoretical results are appli-
cable to that specific setting only. For instance, model assumptions frequently made at
the onset of the study may be questionable, and it is desirable to know how robust the
optimal design is when some aspects of the model assumptions are changed. Chapter 20
elaborates on this important issue and how to make a design more robust to model assump-
tions. As a specific case, errors are often assumed to have a known homoscedastic structure
for simplicity. What is the corresponding optimal design when errors become slightly het-
eroscedastic? Unfortunately, the optimal design for the model with heteroscedastic errors
frequently cannot be deduced from the theory used for the construction of the optimal
design for the homoscedastic model because the technical justifications used in the deriva-
tion of an optimal design are usually quite involved and not applicable for another model.
This is especially true for nonlinear models where the method of proof usually depends
uniquely on the model and the design criterion. Consequently, analytical results stated for
a particular situation are of limited use in practice where different conditions apply.

Algorithms are therefore very useful for generating different types of optimal designs in
practice because they can overcome the problems just described associated with the theo-
retical approach. Algorithms generally do not depend on the mathematical complexities
of the problem as much as analytical approaches, and at the same time, they can also
apply more generally to different settings. Users provide design inputs for the problems of
interest, and the algorithm converges to the optimal design or a design close to the
optimum. If the criterion is differentiable, Fedorov-type algorithms have been shown to
converge to the optimal design for a linear model (Fedorov 1972). If the criterion is not
differentiable, we know of no algorithm that has been proven to converge to the optimal
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design for a general linear or nonlinear model. An example of a class of nondifferentiable
criteria is the minimax type of criteria, where the optimal design minimizes the maximum
of some quantity and the minimization is over all designs associated with the defined space.
For example, in response surface estimation, one may want to find a design that minimizes
the maximum variance of the fitted response over a user-selected region. Another exam-
ple of a minimax criterion concerns parameter estimation, where there are variances from
a few estimated parameters in the model, and the goal is to find a design that minimizes
the maximum of these variances. A sample of work in the construction of minimax opti-
mal designs for linear models can be found in Wong (1992), Wong and Cook (1993), Brown
and Wong (2000), and Chen et al. (2008). King and Wong (2000) constructed minimax opti-
mal designs for the two-parameter logistic model when the nominal value of each of the
two parameters was known to belong to a specified interval, and the goal was to find a
minimax D-optimal design that minimized the maximal inefficiency that could arise from
misspecification of the nominal values from the two intervals. Using similar ideas, Berger
et al. (2000) found minimax optimal designs for the more complicated item theory response
models commonly used in education research. Most recently, Chen et al. (2014) proposed a
nature-inspired metaheuristic algorithm for finding minimax optimal designs in a general
nonlinear regression setup.

21.4 Review of Selected Traditional Algorithms

This section provides a review of a few algorithms to find an optimal design. Because there
are many algorithms in the field, we only discuss selected methods and provide a list of
references from the literature.

With continued advances in technology, computational cost has decreased rapidly, and
exhaustive search is becoming feasible for some problems thought to be prohibitively large
even a decade ago. However, with the advancement of science, the demand for more com-
plex designs has gone up as well. One example is in the construction of optimal designs
for event-related fMRI studies in Chapter 25. Finding alternatives to an exhaustive search
is always desirable, and some of the old algorithms, after suitable modifications, have
reemerged and have been shown to be quite successful in recent years. For example, Ranjan
et al. (2008) used the branch-and-bound algorithm proposed by Welch (1982) and found
sequential optimal designs for contour estimation using complex computer codes. Yang
et al. (2015) used Fedorov-type exchange algorithm, originally published in 1969 (see also
Fedorov 1972), to obtain optimal designs for generalized linear models. There are several
versions of the exchange algorithms where the search begins with a single random design,
and then each design point is considered for exchange with other points. The pair of points
chosen for exchange is the pair that results in maximum gain of the optimality criterion.
Similarly, the “DETMAX” algorithm proposed by Mitchell (1974) may be considered an
early version of an exchange algorithm. Atkinson et al. (2007) discussed variants of the
exchange algorithms.

To delineate properties of the algorithms, it is helpful to compare their performances
under a broad variety of settings and identify situations where some may outperform
others. This is typically a hard job as one has to carefully define the scope and choose appro-
priate algorithms to compare using several well-defined measures of goodness. Cook and
Nachtsheim (1980) compared several algorithms for constructing exact discrete D-optimal
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designs, and Johnson and Nachtsheim (1983) gave guidelines for constructing exact
D-optimal designs. Nguyen and Miller (1992) gave a comprehensive review of some
exchange algorithms for constructing exact discrete D-optimal designs.

Applications of computer algorithms to find an optimal design are abundant in the lit-
erature, and several of them can be found in our reference list. One such example is given
in Cook and Nachtsheim (1982), where they wanted to estimate uranium content in cali-
bration standards. They assumed the underlying model is a polynomial of degree 1–6 and
modified the Fedorov’s algorithm described in the succeeding text to find an optimal design
capable of providing maximal information on the uranium density along the uranium log.
The optimal design provides useful guidelines for how the alternating sequence of thin and
thick disks should be cut from the uranium–aluminum alloy log before the thin disks are
used for destructive analyses.

21.4.1 Fedorov–Wynn Type of Algorithms

The Fedorov–Wynn type of algorithm is one of the earliest and most notable algorithms for
finding optimal approximate designs that has enjoyed and continues to enjoy widespread
popularity. In the most basic form, the algorithm requires a starting design and a stopping
rule. It then proceeds by adding a point to the current design to form a new design and
repeats this sequence until it meets the condition of the stopping rule. There are several
modifications of the original algorithm currently in use; they may be tailored to a particular
application or modified to speed up the convergence. A main reason for its popularity is
that this is one of the few algorithms that can be proved to converge to the optimal design
if it runs long enough. Many subsequent algorithms in the literature for finding optimal
designs have features in common with the original Fedorov–Wynn algorithm.

As an illustration, we describe here the essential steps in the Fedorov–Wynn type of
algorithm for finding a D-optimal approximate design for a general linear model in (21.3)
where Var(y(x)) is σ2/λ(x) so that λ(x) is inversely proportional to the known variance of
the response at the point x ∈ X . Technical details of the algorithms including proof of its
convergence can be found in Fedorov (1972).

Pseudocode for Fedorov–Wynn algorithm:

1. Set t = 0 and choose a starting approximate design ξt with a nonsingular informa-
tion matrix.

2. Compute its information matrix M(ξt) and obtain its inverse M−1(ξt).
3. Determine the point x∗ that maximizes λ(x∗)d(x∗, ξt) over all x in the design space,

where d(x, ξt) = f ′(x∗)M−1(ξt)f (x∗) is the variance of the fitted response at the
point x∗, apart from an unimportant multiplicative constant.

4. Generate a new design ξt+1 = (1−αt)ξt+αtνx∗ where α′
is is a preselected sequence

of numbers between 0 and 1 such that its limit is 0 and its sum is infinite. Here, νx∗
is the one point design supported at the point x∗.

5. If the stopping rule is not met, replace t by t + 1 and go to step 2.

A more specific choice for αt is possible to increase the efficiency of the algorithm. For
example, one may choose αt to maximize the increase in the determinant of the current
information matrix at each iteration. It can be shown using simple calculus that this leads
to the choice of αt = ζt/[(ζt + p − 1)p] where ζt = λ(x∗)d(x∗, ξt−1) − p and p is the number
of the parameters in the mean function. In the last step, the stopping rule is user specified.
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Two common examples of stopping rules are the maximum number of iterations allowed
and when λ(x∗)d(x∗, ξt)−p < κ for some small prespecified positive κ. The term λ(x)d(x, ξt)

appears frequently when we study D-optimal designs for heteroscedastic models and is
sometimes called the weighted variance of the response at the point x using design ξt.

21.4.2 Exchange Algorithms

In this section, we review several exchange strategies for exact designs. Some of these are
analogues of Fedorov–Wynn algorithms of the previous section for exact designs. Con-
sider the general optimization problem where the objective function is ψ(x1, . . . , xn) and
one wishes to maximize ψ(·) with respect to xj ∈ X , j = 1, . . . , n, where X is the design
space. Again, let us use D-optimal designs for linear regression as an example. Suppose an
observation is taken at the design point xi, and the outcome is modeled as yi = f ′(xi)β+εi,
where εi ∼ N(0,σ2) and all errors are independent. D-optimality corresponds to maximiz-
ing ψ(x1, . . . , xn) = det [f ′(X)f (X)] where X′ = (x1, . . . , xn) and f ′(X) = (f (x1), . . . , f (xn)). In
other words, each design point {xj} corresponds to a row of the model matrix f (X).

Exchange algorithms iteratively modify the current design by deleting existing design
points and adding new points from the design space X in an effort to increase the design
criterion ψ. Multiple runs with different starting designs are often performed due to issues
with local maximizers. Well-known algorithms that fall in this category include Wynn’s
(1972) algorithm, Fedorov’s (1972) algorithm and its modification (Cook and Nachtsheim
1980), and k-exchange algorithms (Johnson and Nachtsheim 1983). A basic step in these
algorithms is exchanging a point xi in the current design with some x∗ ∈ X where x∗ is
chosen such that the improvement in the objective function ψ is the greatest. They differ,
however, in the choice of xi. For Fedorov’s algorithm, xi is chosen such that the improve-
ment in ψ after the exchange is the greatest among all xi. Thus, each exchange effectively
performs n optimizations, one for each xi in the current design, but only implements the
best of these exchanges in the next design. Cook and Nachtsheim (1980) propose a mod-
ified Fedorov algorithm, where each iteration performs n exchanges, one for each xi. The
following are basic pseudocodes for these algorithms:

Pseudocode for Fedorov algorithm:

1. Choose the initial design (x0
1, x0

2, . . . , x0
n).

2. At iteration t, suppose the current design is (xt
1, xt

2, . . . , xt
n).

a. For 1 ≤ j ≤ n, compute ψj ≡ maxx ψ(xt
1, . . . , xt

j−1, x, xt
j+1, . . . , xt

n) where the
maximization is over all x ∈ X . Let x∗

j be the corresponding maximizer.

b. Find j∗ = arg maxj ψj. Set xt+1
k = x∗

k , k = j∗ and xt+1
k = xt

k, k �= j∗.
3. Stop when there is no appreciable improvement in ψ.

Pseudocode for modified Fedorov algorithm:

1. Choose the initial design (x0
1, x0

2, . . . , x0
n).

2. At iteration t, suppose the current design is (xt
1, xt

2, . . . , xt
n). For j = 1, . . . , n in turn,

set xt+1
j = arg maxx ψ(xt+1

1 , . . . , xt+1
j−1, x, xt

j+1, . . . , xt
n) where the maximization is over

all x ∈ X .
3. Stop when there is no appreciable improvement in ψ.
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In the k-exchange method, a subset of k current design points is chosen for exchange
(replacement). These k points are often chosen so that deletion of each results in the smallest
k decreases inψ. More sophisticated algorithms include the DETMAX algorithm of Mitchell
(1974). For some design criteria, these algorithms exploit special relationships between ψ

before and after the exchange. For example, for D-optimality, when a design point xi is
replaced by another point x∗ ∈ X , the multiplicative change in ψ is given by

�(xi, x∗) = 1 + v(x∗, x∗) − v(xi, xi) + v2(xi, x∗) − v(x∗, x∗)v(xi, xi), (21.4)

where v(a, b) = f ′(a)M−1f (b) and M is the information matrix before the exchange, M =
f ′(X)f (X). There is also a simple formula to compute M−1 after each exchange without any
full matrix inversion.

Meyer and Nachtsheim (1995) proposed a cyclic coordinate-exchange algorithm and
showed its effectiveness on several common design criteria such as the D-criterion and
the linear criteria (i.e., linear functionals of the inverse information matrix). Rodriguez
et al. (2010) used a similar strategy for G-optimal designs. In its basic form, the cyclic
coordinate-exchange algorithm works as follows. Suppose each design point can be writ-
ten as a vector with p coordinates, and suppose the design space X is the Cartesian product
of the corresponding p subspaces. Writing the design criterion as

ψ(x1, . . . , xn) ≡ ψ(x11, . . . , x1p, . . . , xn1, . . . , xnp), (21.5)

where xi ≡ (xi1, . . . , xip) ∈ X , we iteratively optimize ψ over each xij, i = 1, . . . , n, j =
1, . . . , p in turn. Thus, the method is an example of the widely used cyclic ascent algorithm.
Here, each xij may be discrete or continuous. For a continuous one-dimensional xij, one can
use various optimization routines such as golden-section search or parabolic interpolation
(Rodriguez et al. 2010). One cycle of the algorithm consists of a sequence of np optimiza-
tions, one over each variable xij. The algorithm is stopped either when there is not much
improvement in ψ after the latest cycle or when a prespecified number of cycles have been
performed. As with other exchange methods, multiple runs with different starting values
are recommended.

21.4.3 Issues with Algorithms

Many algorithms proposed in the literature typically proceed sequentially as follows. The
user first inputs quantities that define the design problem. They typically include the
statistical model, the design space, and the optimality criterion. If the model is nonlin-
ear, the user would also have to supply nominal values for the model parameters before
running the algorithm. The user then provides a (nonsingular) starting design, and the
algorithm iterates until the stopping criterion is satisfied. For approximate designs, the
procedure typically iterates by mixing the current design with a specially selected point to
form a new design; this can be done simply by taking a convex combination of the design
and the point using a sequence of weights that converges but not prematurely. An example
of such a sequence of weights is to use 1/n at the nth iteration. For a differentiable design
criterion, such as D-optimality, the selected point to introduce at each iteration is the point
that maximizes the weighted variance function. The user also specifies a stopping criterion
to tell the algorithm when to stop; this can be in terms of either the maximum number
of iterations allowed or the minimum change in the criterion value over successive itera-
tions. These steps are clearly exemplified in the Fedorov–Wynn type of algorithms and its
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many modifications. Technical details including proof of their convergence can be found
in design monographs such as Fedorov (1972), Silvey (1980), and Pázman (1986). Cook and
Nachtsheim (1980) provide a review and comparisons of performance of various algo-
rithms in different settings.

With algorithms, the main issues are proof of convergence, speed of convergence, ease
of use and implementation, how applicable they are to find optimal designs for different
types of problems, and how their performance compares to that of competing algorithms.
Therefore, care should be exercised in the selection of an appropriate algorithm. For exam-
ple, the Fedorov–Wynn type of algorithms introduces a point to the current design at each
iteration, and frequently the generated design has many support points clustered around
the true support points of the optimal design. Sometimes, periodic collapsing of these clus-
ters of points to single points can accelerate convergence. Typical rules for collapsing the
clusters of points into single points may be applied after a certain number of iterations, say,
100, with the expectation that this number may vary from problem to problem. If the rule
for collapsing accumulated points is not appropriate, it may take a longer time to find the
optimal design. Some algorithms, such as particle swarm optimization (PSO)-based algo-
rithms described later on in the chapter, do not have this issue. However, mathematical
proof of convergence of Fedorov–Wynn type of algorithms is available, but none exists for
particle swarm–based algorithms.

Another issue with algorithms is that they may get stuck at some design and have dif-
ficulty in moving away from it in the direction of the optimal design. This can happen
randomly or in part because of a poor choice of the starting design. Further, even though
an algorithm has been proven to converge for some types of models, the result may not
hold for others. For example, we recall the proof of convergence of Fedorov–Wynn type of
algorithms was given for linear models only. When we apply them to nonlinear models or
models with random effects, the algorithm may not work well.

A distinguishing feature of approximate designs is that when the criterion is a convex
function of the information matrix, it is possible to verify whether the generated design is
optimal or not. When the design space is low dimensional, a graphical plot can confirm
optimality using convex analysis theory. The same theory also provides a lower bound
for the efficiency of the generated design if it is not optimal. The case with exact optimal
designs is very different. Frequently, there is no guarantee that the design generated by the
algorithm is indeed the optimal one because a general tool for confirming optimality is not
available. Researchers often show that their proposed algorithm works better by producing
a design that is superior to those obtained from other algorithms.

21.5 Alternative Algorithms for Finding Optimal Designs

As mentioned before, there are other numerical tools for finding optimal designs. For exam-
ple, Chaloner and Larntz (1989) used Nelder–Mead method to search for Bayesian A-,
c-, and D-optimal designs for logistic regression models with one independent variable.
Purely exchange-type algorithms are known to perform extremely poorly in this context.
One can also rewrite the approximate design problem as an unconstrained optimization
problem and apply the popular conjugate gradient or quasi-Newton methods to solve the
resulting optimization problem (Atkinson et al. 2007). These are powerful and general opti-
mization methods, which can be applied to find various types of optimal designs for a wide
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variety of models and design criteria. However, they may not be the best ways for find-
ing approximate designs (Yu 2011) because they can be quite slow and convergence is not
guaranteed. We elaborate on this a bit in Section 21.5.1.

Another class of methods that has recently gained popularity is mathematical program-
ming methods. Some of these methods were used as early as the 1970s but only more
recently have statisticians started investigating how such methods work for finding opti-
mal designs. Examples of such methods include semidefinite programming (SDP) that is
well discussed in Vandenberghe and Boyd (1996) and semi-infinite programming (SIP) that
is well discussed in Reemtsen and Ruckman (1998). In SDP, one optimizes a linear function
subject to linear constraints on positive semidefinite matrices. Depending on the design cri-
teria, this may not be an easy task. For example, it is relatively easy for A- or E-optimality,
where the optimization problem can be rewritten as an SDP and then solved using stan-
dard methods such as interior point methods. Atashgah and Seifi (2009) discussed SDP for
handling optimal design for multiresponse experiments. The examples provided by the
authors were quite illuminating, and the approach seemed more versatile and powerful
than the algorithm proposed by Chang (1997) for finding D-optimal designs for multiple
response surface models constructed from polynomials. See also Papp (2012) and Duarte
and Wong (2014a) who applied SDP to find optimal designs for rational polynomial mod-
els and several types of Bayesian optimal design problems, respectively. Filová et al. (2012)
also applied SDP to find another type of optimal designs under a nondifferentiable crite-
rion, namely, a design that maximizes the minimum of some measure of goodness in an
experiment. Duarte and Wong (2014b) applied SIP to find minimax optimal designs for
nonlinear models. Such mathematical programming tools have long been widely used in
the engineering field for various optimization purposes, and it is a curiosity why such
methods are not as popular in statistics as other optimization tools.

Another class of algorithms with a long history (explained in more detail in
Section 21.5.1) for finding optimal designs is the class of multiplicative algorithms. Early
work in this area was initiated by Titterington (1976, 1978). Recent theoretical advances
and new ways to increase the speed of such algorithms have resulted in its renewed inter-
est. In particular, Mandal and Torsney (2006) applied multiplicative algorithms to clusters
of design points for better efficiency. Harman and Pronzato (2007) proposed methods to
exclude nonoptimal design points so as to reduce the dimension of the problem. Dette
et al. (2008) modified the multiplicative algorithm to take larger steps at each iteration but
still maintain monotonic convergence. Yu (2011) combined the multiplicative algorithm, a
Fedorov exchange algorithm, and a nearest neighbor exchange (NNE) strategy to form the
cocktail algorithm, which appears to be much faster without sacrificing monotone conver-
gence; see Section 21.5.3 for further discussion. See also Torsney and Martin-Martin (2009)
who used multiplicative algorithms to search for optimal designs when responses are corre-
lated. Harman (2014) proposed easy-to-implement multiplicative methods for computing
D-optimal stratified designs. Here, stratified refers to allocating given proportions of tri-
als to selected nonoverlapping partitions of the design space. Harman (2014) proposed
two methods: one using a renormalization heuristic and the other using a barycentric
algorithm.

Recently, Yang, Biedermann and Tang (2013) proposed a new iterative algorithm for
computing approximate designs. At each iteration, a Newton-type algorithm is used to
find the optimal weights given the current set of support points; a new support point is
also added as in Fedorov’s exchange method to ensure that true support points are not
accidentally omitted. The method seems very promising (the authors reported computa-
tional speeds even better than the cocktail algorithm). Although the Newton steps make
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the implementation more involved, their algorithm readily applies to various models and
design criteria.

The next few subsections describe a couple of special algorithms that seem to have gar-
nered increased interest of late. We provide some details, including their relationship to
exchange algorithms, and also demonstrate how to use them for a few specific applications
in the pharmaceutical arena.

21.5.1 Multiplicative Algorithms

Multiplicative algorithms are a class of simple procedures proposed by Titterington (1976,
1978) to find approximate designs in a discrete design space; see also Silvey et al. (1978).
Unlike Fedorov–Wynn type of algorithms, a multiplicative algorithm at each iteration
adjusts the whole vector w = (w1, . . . , wn) of design weights. Note that weights are com-
puted for all points in the design space. Each weight is adjusted by a multiplicative factor so
that relatively more weight is placed on design points whose increased weight may result
in a larger gain in the objective function. Mathematically, suppose ψ(w) is the objective
function (design criterion evaluated at the Fisher information matrix corresponding to the
weight allocation (w) and then each iteration of a general multiplicative algorithm can be
written as

w(t+1)

i ∝ w(t)
i

(
∂ψ(w(t))

∂wi

)ρ

, i = 1, . . . , n, (21.6)

where ρ > 0 and the ρth power of the derivative serves as the multiplicative factor (other
functions are also possible).

This simple and general algorithm has received considerable attention; see, for example,
Titterington (1976, 1978), Silvey et al. (1978), Pázman (1986), Fellman (1989), Pukelsheim
and Torsney (1991), Mandal and Torsney (2006), Harman and Pronzato (2007), Dette
et al. (2008), Yu (2010), and Yu (2011). On the theoretical side, Yu (2010) derived general
conditions under which the multiplicative algorithm monotonically increases the objec-
tive function, which yields stable convergence. One main advantage of multiplicative
algorithms is their simplicity, as illustrated by the following pseudocode.

Pseudocode for multiplicative algorithm (ρ > 0):

1. Choose starting weights w(0) = (w(0)

1 , w(0)

2 , . . . , w(0)
n ) such that w(0)

j > 0 for all 1 ≤
j ≤ n.

2. At iteration t, suppose the current weights are w(t) = (w(t)
1 , w(t)

2 , . . . , w(t)
n ). Compute

χj = ∂ψ(w)/∂wj at w = w(t), and form w(t+1)

j = w(t)
j χ

ρ
j /

∑
i w(t)

i χ
ρ
i , 1 ≤ j ≤ n.

3. Iterate steps 1 and 2 until convergence.

Despite their simplicity and (in certain cases) monotonic convergence, multiplicative
algorithms are often slow. In Section 21.5.3, we discuss some improvements and alterna-
tives. Some recent multiplicative algorithms are based on the Fedorov–Wynn algorithm
and its modifications.
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21.5.2 Application of Multiplicative Algorithm in Pharmacology

Let us consider the following compartmental model that is commonly used in pharmacoki-
netics. The mean of the response variable at time x is modeled as

η(x,θ) = θ3[exp(−θ2x) − exp(−θ1x)], x ≥ 0. (21.7)

Frequently, the mean response measures the movement of the drug concentration in the
target compartment in the body, say, in the liver. Common interests in such studies are to
estimate the time the drug spends inside the compartment, the peak concentration in the
compartment, and the time it takes for the compartment to receive the maximum concen-
tration. Our interest here is to select the optimal number of time points and the optimal
number of subjects from which responses will be taken at each of these time points.

Since this is a nonlinear model, the optimal design will depend on the parame-
ter θ= (θ1, θ2, θ3)

′. We compute the locally D-optimal design at the prior guess θ=
(4.29, 0.0589, 21.80)′ (see Atkinson et al. 2007, Example 17.4). The design space is the
interval [0, 20) (in minutes) discretized, specifically x ∈ {x1, x2, . . . , xn} where n = 200 and
xj = (j − 1)/10. The D-optimality criterion corresponds to

ψD(w) = log det M(w), M(w) =
n∑

i=1

wif (xi,θ)f ′(xi,θ), (21.8)

where the gradient vector f ′(x,θ) ≡ ∇θη(x,θ), often called the parameter sensitivity, is
of length m = 3. We note that here the information matrix depends only on the weights
since the whole space has been discretized, and the design problem reduces to just finding
the optimal weights at these points. The multiplicative algorithm (21.6) (using ρ = 1, a
common choice that has a convergence guarantee for the D criterion) takes a particularly
simple form:

w(t+1)

i = w(t)
i m−1f ′(xi,θ)M−1

(
w(t)

)
f (xi,θ), i = 1, . . . , n.

Table 21.1 displays the design points and their weights after 2,000, 10,000, and 50,000
iterations of this algorithm. Design weights less than 0.01 are omitted. Here, the optimal
design should have weights 1/3 at each of x = 0.2, 1.4 and 18.4. As one can readily see,
the convergence of the algorithm is slow. After a large number of iterations, there is still a
noticeable clustering of design weights around x = 18.4.

TABLE 21.1

Multiplicative Algorithm for D-Optimal Design for a Compartmental Model

x 0.2 1.3 1.4 18.0 18.1 18.2 18.3 18.4 18.5 18.6 18.7 18.8 18.9

w(2,000) 0.33 0.01 0.32 0.02 0.03 0.04 0.04 0.05 0.04 0.04 0.03 0.02 0.01
w(10,000) 0.33 0.33 0.03 0.07 0.10 0.08 0.03
w(50,000) 0.33 0.33 0.04 0.23 0.07
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21.5.3 Cocktail Algorithm

Several exchange strategies exist for finding approximate designs, similar to the case of
exact designs. To describe these exchange strategies, let us define the directional derivative
d(i, w) = ∂ψ((1 − δ)w + δei)/∂δ|δ=0+ where ei is the vector that assigns all the mass to the
ith design point, i = 1, . . . , n, and zero to all other design points. As before, ψ is the objec-
tive function, and w is the vector of design weights. We use the vertex direction method
(VDM) (Fedorov, 1972), which is a simple iterative method: given the current w(t), we
first select the index imax with the maximum directional derivative, that is, d

(
imax, w(t)) =

max1≤i≤n d
(
i, w(t)), and then set the next iteration w(t + 1) as the maximizer of ψ(w) along

the line segment w = (1 − δ)w(t) + δeimax , δ ∈ [0, 1]. This one-dimensional maximization
is usually not too difficult and can often be done in closed form. Plainly, each iteration
of VDM moves the vector of weights w(t) toward the vertex of maximum directional
derivative.

Similar to VDM, one can define a general exchange between two design points i and j as
follows. Given the current w(t), set the new vector w(t + 1) as the maximizer of ψ(w) along
the line segment w = w(t) + δ(ej − ei), δ ∈ [−wj, wi]. In other words, with the weights at
other design points unchanged, those between i and j are allocated so that the objective
function is maximized. Such exchanges can set the mass at a design point at zero in one
iteration, unlike the multiplicative algorithm. For example, if δ = wi, then all the mass on
i is transferred to j, and w(t+1)

i = 0. Exchanging between two design points forms the basis
of Bohning’s (1986) vertex exchange method (VEM), which uses a special choice of i and j at
each iteration. Specifically, at iteration t, VEM chooses imin and imax such that

d
(
imin, w(t)) = min

{
d

(
i, w(t)) : w(t)

i > 0
}

;

d
(
imax, w(t)) = max

{
d

(
i, w(t)) : 1 ≤ i ≤ n

}
.

In other words, we exchange mass between a design point with maximum directional
derivative and another point (among those that have positive mass) with minimum
directional derivative.

Another strategy, known as the NNE, is critical to the cocktail algorithm of Yu (2011). At
each iteration of NNE, we first determine an ordering on the set of support points (design
points with positive mass). An ideal ordering should place similar design points close to
each other. For example, suppose the design variable is a discretization of the interval [0, 1],
then an obvious choice is the natural ordering of the real numbers. (Note that design points
with zero mass are excluded.) In general, there is no definite rule for choosing an ordering.
In the context of D-optimal designs for regression problems, Yu (2011) advocates dynam-
ically choosing an ordering at each iteration based on the L1 distances between vectors of
explanatory variables that the design points represent. Once an ordering is chosen, one
performs pairwise exchanges between consecutive points on the list. For example, if the
design space has four points {x1, x2, x3, x4} and the current ordering is (x3, x1, x4) (design
point x2 has zero mass and is excluded), then we exchange mass between x3 and x1 and then
between x1 and x4. Each exchange involves a one-dimensional maximization that improves
the design.

The cocktail algorithm of Yu (2011) builds on both the multiplicative algorithm and
exchange strategies. Each iteration of the cocktail algorithm is a simple concatenation of
one iteration of VDM, one iteration of the multiplicative algorithm, and the full sequence
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of NNE described earlier. Heuristically, NNE uses local exchanges that might complement
the global nature of the multiplicative algorithm. NNE can also quickly eliminate design
points (i.e., setting their masses to zero) because of the many pairwise exchanges involved.
The VDM step ensures that a design point eliminated by NNE has a chance of ressurrection
if indeed it should receive positive mass in the optimal solution; this enables theoretical
proofs of convergence (to the global optimum). Empirical comparisons of the cocktail algo-
rithm with VEM as well as several off-the-shelf optimization methods (e.g., Nelder–Mead,
conjugate gradient, and quasi-Newton) show that the cocktail algorithm improves upon
traditional algorithms considerably in terms of computational speed, using effectively the
same stopping criterion.

21.5.4 Application of a Cocktail Algorithm in Pharmacology

As an example, let us consider the compartmental model (21.7) again. In addition to
D-optimality, we also consider c-optimality, which aims to minimize the variance of an
estimated scalar function of the vector of model parameters θ, say, g(θ). The optimality
criterion can be written as

ψc(w) = c′M−1(w)c,

where M is as in (21.8) and c′ ≡ ∇g(θ). Because c-optimal designs often result in singular
M matrices, a small positive quantity is added to the diagonals of M(w) to stabilize the
matrix inversion mentioned earlier. We emphasize that this is introduced merely to avoid
numerical difficulties and does not correspond to what is intended by the c criterion. Two
functions of interest (see Atkinson et al. 2007, Example 17.4) are the area under the curve
(AUC), which is defined as g1(θ) = θ3/θ2 − θ3/θ1, and the time to maximum concentra-
tion (TMC), which is defined as g2(θ) = (log θ1 − log θ2)/(θ1 − θ2). Table 21.2 displays the
D-optimal design as well as the c-optimal designs for g1 and g2 found by the cocktail algo-
rithm. These generally agree with Table 17.1 of Atkinson et al. (2007); slight discrepancies
exist because we discretize the design space. In this example, it takes the cocktail algorithm
only a few iterations to obtain the D-optimal design to the degree of accuracy as displayed

TABLE 21.2

Cocktail Algorithm for D- and c-Optimal Designs for a
Compartmental Model

Criterion x Weight Criterion Value

D-optimality 0.2 0.3333 7.3713
1.4 0.3333

18.4 0.3333
AUC 0.2 0.0137 2190.2

17.5 0.1459
17.6 0.8404

TMC 0.2 0.5916 0.028439

3.4 0.3025
3.5 0.1059
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in Table 21.2. However, it takes considerably more iterations (hundreds or even thousands)
to find the c-optimal designs.

21.6 Metaheuristic Algorithms

Recently, evolutionary algorithms have become more popular in finding optimal designs
for industrial experiments. Here, we present some examples. Accelerated life testing has
been used to study the degradation of reliable components of materials with high risk,
such as nuclear reactors and aerospace vehicles. In order to set up a degradation testing
procedure, several objectives have to be considered. For example, in such experiments, we
want to have an adequate model for the degradation process to understand the relation-
ship between degradation and failure time and, at the same time, high-quality estimates
of model parameters. This leads to a highly nonlinear multiobjective optimization prob-
lem. Marseguerra et al. (2003) proposed using a GA for finding optimal designs and found
nondominated solutions with two objective functions for estimating the test parameters
efficiently. Similar algorithms are used for finding optimal designs in product assembly
line as well. Traditional fractional factorial and response surface type of designs cannot
be used when practical restrictions are imposed on factor-level combinations. Sexton et al.
(2006) considered exchange algorithms and GA to compare their performances on prod-
uct designs. In the two hydraulic gear pump examples and one electroacoustic transducer
example they considered, the exchange algorithm performed better than the GA, although
the authors noted that in the early stages of searching, GA performed better, and hence
they recommended a combination of two algorithms, with GA to be used at the early stages
before switching to the exchange algorithms.

GA are often used in obtaining robust parameter designs in the presence of control and
noise variables, where low prediction variances for the mean response are often desirable.
Goldfarb et al. (2005) used GA to obtain efficient designs for mixture processes. With the
examples of soap manufacturing and another tightly constrained mixture problem, they
obtained D-efficient designs. Rodriguez et al. (2009) used GA as well to construct optimal
designs using a desirability score function (Harrington 1965) to combine dual objectives of
minimizing the variances for the mean and slope into one objective function.

We focus on such algorithms inspired by nature, and so they are generally referred
to as nature-inspired metaheuristic algorithms. The genesis of such algorithms could be
based on a variety of observations from nature, for example, how ants colonize or how
fish swim in large schools when they perceive a threat or birds fly as a flock in search of
food. Generally, there is no mathematical proof that shows metaheuristic algorithms will
converge to the optimum; that is why they are called metaheuristic in the first place! How-
ever, repeated experiences from researchers in many fields report that they frequently do
find the optimum, and if they do not, these algorithms get to the proximity of the optimum
quickly.

There are many metaheuristic algorithms in the optimization literature, and it is a curios-
ity why statisticians do not seem to explore and use more of them in their work. The most
common examples in the statistical literature are simulated annealing (SA) and GA, dis-
cussed in the succeeding text. There are many newer ones, such as PSO, bat algorithm,
differential evolution algorithm, and cuckoo algorithm. For space consideration, we dis-
cuss in the succeeding text only PSO, which is just beginning to appear in the statistical
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literature. All are nature-inspired algorithms with different search techniques based on
metaheuristics. Yang (2010) has a brief but good discussion on the other algorithms.

21.6.1 Genetic Algorithms

GA are one of the evolutionary algorithms that are very popular for finding exact opti-
mal designs. Developed by John Holland and his colleagues at the University of Michigan
(Holland 1975), these algorithms mimic Darwin’s theory of evolution. The metaphors of
natural selection, crossbreeding, and mutation have been helpful in providing a frame-
work to explain how and why GA work. In our context, this translates to the heuristic that
from two “good” design points, one should sometimes be able to generate an even “bet-
ter” design point. The objective function to be optimized, denoted by ψ as in (21.5), can be
treated as a black box without the mathematical requirements of continuity, differentiability,
convexity, or other properties required by many traditional algorithms. Because of its sim-
plicity, this algorithm has also gained popularity in finding optimal designs for computer
experiments (see Bates et al. 2003; Liefvendahl and Stocki 2006; Crombecq and Dhaene
2010). It is an iterative algorithm that starts with a set of candidates and can explore very
large spaces of candidate solutions. Convergence is usually not guaranteed but GA often
yield satisfactory results.

In an attempt to understand how GA function as optimizers, Reeves and Wright (1999)
considered GA as a form of sequential experimental design. (For details of sequential
design algorithms, see Chapter 19.) Recently, GA have been used quite successfully in
solving statistical problems, particularly for finding near-optimal designs (Hamada et al.
2001; Heredia-Langner et al. 2003, 2004). In this chapter, we will occasionally deviate
from what is used in the optimization literature and present our algorithm in the context
of search for optimal designs. One of the simplest version of the algorithm process is as
follows:

1. Solution representation: For a single design point, a factor at a particular level is
called a gene. The factor combinations, that is, the entire design point or run, are
called a chromosome. Using the notation of Section 21.4.2, xi = (xi1, . . . , xip) is a
chromosome, whereas each xij is called a gene. Note that it is possible to define
the chromosome a little differently, as we will see in the Broudiscou et al. (1996)
example later. Initially a large population of random candidate solutions (design
points) is generated; these are then continually transformed following steps (2)
and (3).

2. Select the best and eliminate the worst design point on the basis of a fitness crite-
rion (e.g., the higher the better for a maximization problem) to generate the next
population of design points.

3. Reproduce to transform the population into another set of solutions by applying the
genetic operations of crossover and mutation. Different variants of crossover and
mutations are available in literature.
a. Crossover : A pair of design points (chromosomes) are split at a random position,

and the head of one is combined with the tail of other and vice versa.
b. Mutation : The state (i.e., level) of a randomly chosen factor is changed. This

helps the search avoid being trapped at local optima.
4. Repeat steps (2) and (3) until some convergence criterion is met (usually no

significant improvement for several iterations).
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Note that in this sketched algorithm, it is more in the line of solving an optimization
problem than a design problem. For example, we inherently assumed that all the designs
we consider consist of only one run, which is not the case for most of our problems. But the
aforementioned algorithm can be modified very easily to solve the standard design prob-
lems (e.g., finding orthogonal arrays with fixed run size). Next, we illustrate the algorithm
stated earlier with an optimization problem, mainly for simplicity. After that, we will dis-
cuss common design problems where the entire design with multiple runs is taken as a
chromosome, and the collection of such designs represent the population.

Let us illustrate the algorithm sketched earlier with a black box function provided by Levy
and Montalvo (1985):

ψ(xi1, . . . , xip) = sin2
{
π

(
xi1 + 2

4

)}
+

p−1∑
k=1

(
xik − 2

4

)2 {
1 + 10 sin2

(
π

(
xik + 2

4

)
+ 1

)}

+
(

xip − 2
4

)2 {
1 + sin2 (

2π
(
xip − 1

)) }
. (21.9)

Here, p = 4 and only integer values of xik’s (0 ≤ xik ≤ 10) are considered. This corresponds
to an experiment with four factors each at 11 levels denoted by 0, 1, . . . , 10. Suppose we
start with a random population of size 10 given in Table 21.3. In this case, the ten runs
x1 = (2, 1, 4, 5)′, . . . , x10 = (0, 9, 8, 7)′ are the ten chromosomes that constitute the initial
population.

Suppose that the best two design points, namely, (10, 6, 7, 8)′ and (0, 9, 8, 7), are chosen
as parents to reproduce Then suppose crossover happens at location 2, so the new sets of
design points will be (10, 6, 8, 7)′ and (0, 9, 7, 8)′ (the first two factors of the first design point
are combined with the last two factors of the second design point and vice versa). Now
suppose for (10, 6, 8, 7)′ the mutation happens at location 3 (for factor C) and the level is
changed from 8 to 7. Then the resulting design point becomes (10, 6, 7, 7)′ with the value of
Levy–Montalvo function as 26.81. Note that this value is worse than (10, 6, 7, 8)′ and that
is not unexpected. What is expected is that, on average, when 10 new offsprings (design
points) are generated in this fashion, some of them will be “good”. Those new 10 offsprings

TABLE 21.3

Initial Population for Levy–Montalvo Example

A B C D ψ

2 1 4 5 1.63
3 4 1 7 3.13
1 1 8 8 11.66

10 6 7 8 26.81
9 5 5 9 5.20

7 8 2 8 11.57
2 3 5 3 1.54

6 5 4 6 2.80
5 9 5 8 8.02
0 9 8 7 15.83
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will constitute the second generation of the population, and the same process continues.
Usually hundreds or even thousands of generations are needed to obtain a near-optimal
design. Mandal et al. (2006) used an efficient modification of GA on this same example and
showed that it produced good results.

Broudiscou et al. (1996) used GA for constructing D-optimal designs, in the context of
an antigen/antibody test to diagnose an infection to a virus. There were six factors with a
total of 7 × 6 × 6 × 5 × 3 × 3 = 11, 340 combinations. In this example, the basic exchange
algorithms discussed in Section 21.4.2 are not very efficient. Consider a design with n =
28 points. In Fedorov’s exchange algorithm, during each iteration, a design point xi will
be replaced by the point x∗ that maximizes �(xi, x∗) of (21.4). Also, one has to evaluate
all the pairs (xi, x∗). Naturally, when the total number of candidate design points is high
(11,340 in this case), even with moderate run size (28 in this case), the algorithm will be slow
because finding the “best” combination, at each iteration, is time-consuming. Stochastic
search-based algorithms, such as GA, turn out to be very efficient in such situations. The
authors reported a D-optimal design in Table 5 of their paper, for a mixed-level factorial
main effects model. In this example, the model matrix X has 1 + 6 + 5 × 2 + 4 + 2 × 2 = 25
columns. The objective function is ψ(x1, . . . , xn) = det [f ′(X)f (X)], as mentioned before, and
our objective is to maximize ψ. In this case, the chromosomes are possible designs obtained
by juxtaposing the rows of the design matrix, such as (x′

1, x′
2, . . . , x′

28)
′. Each chromosome

has 6 × 28 = 168 genes.
Hamada et al. (2001) used GA to find near-optimal Bayesian designs for regression mod-

els. The objective function ψ in their case was the expected Shannon information gain of
the posterior distribution. It is equivalent to choosing designs that maximize the expected
Kullback–Leibler distance between the prior and posterior distributions (Chaloner and
Verdinelli 1995). The reader is referred to the pseudocode given in the appendix of their
paper. They also considered a design with p factors and n runs, and each factor level as a
gene such that each chromosome (where it is the design) had np genes.

Kao et al. (2009) used GA to construct optimal designs for event-related fMRI studies.
The authors considered multiple objectives, and ψ was defined to reflect all of them. In that
application, the chromosomes can be 300–600 genes long, each gene taking 5–13 different
values. See Chapter 25 for a detailed discussion of their approach.

Pseudocode for GA:

1. Generation 0: Generate M random designs, evaluate them by the objective function
ψ, and order them by their fitness (ψ-values).

2. For generations g = 1, . . . , G, the following apply:
a. With probability proportional to fitness, draw with replacement M/2 pairs of

designs to crossover—select a random cut point, and exchange the correspond-
ing fractions of genes in paired designs to generate M offspring designs.

b. Randomly select q% of the genes from the M offspring designs and perform
mutation to generate M new offspring designs.

c. Obtain the fitness scores of the new offsprings.
d. Repeat steps (a through c) until stopping criterion is met.

As mentioned before, there are several variants of GA. Being one of the metaheuristic
algorithms, although the performance of GA in finding optimal design is, in general, not
greatly affected by the functionality of the algorithm, in order to apply this algorithm, a
number of parameters need to be determined beforehand. These include the population
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size (M), mutation rates (q), crossover, and mutation locations. Such details of implemen-
tation, however, are essential for anyone to reproduce the results of a search, even after
accounting for the randomness of the procedure. Lin et al. (2014) explored the merits of
GA in the context of design of experiments and discussed some elements that should be
considered for an effective implementation.

21.6.2 Simulated Annealing

While GA mimic Darwin’s theory of evolution, SA simulates the process called annealing
in metallurgy where some physical properties of a material are altered by heating to above
a critical temperature, followed by gradual cooling. It starts with a random design and
then moves forward by replacing the current solution by another solution with the hope of
finding near-optimal solutions. Introduced by Kirkpatrick et al. (1983), SA is a probabilistic
global optimization technique and has two basic features. The first one is motivated by the
Metropolis algorithm (Metropolis et al. 1953), in which designs that are worse than the cur-
rent one are sometimes accepted in order to better explore the design space. The other one is
the strategy for lowering the temperature (T), by which the probability of inclusion of new
“bad" solutions is controlled. In the traditional formulation for a minimization problem,
initially this time-varying parameter T is set at a high value in order to explore the search
space as much as possible. At each step, the value of the objective function is calculated and
compared with the best design at hand. In the context of optimal design search, designs
with higher values of the objective function will be accepted according to the Metropolis
algorithm if e−�D/T > U where �D is the change of the objective function, T is the current
temperature, and U is a uniform random number. Usually, the temperature is lowered at
some specified intervals at a geometric rate. The higher the temperature value, the more
unstable the system is, and the more frequently “worse” designs are accepted. This helps
explore the entire design space and jump out of local optimum values of the objective func-
tion. As the process continues, the temperature decreases and leads to a steady state. The
temperature T, however, should not be decreased too quickly in order to avoid getting
trapped at local optima. There are various annealing schedules for lowering the tempera-
ture. Similar to GA, the algorithm also usually stops when no significant improvements
are observed for several iterations.

Woods (2010) used SA to obtain optimal designs when the outcome is a binary vari-
able. The objective of the study is to maximize ψ(x1, . . . , xn) the log determinant of the
Fisher information matrix that depends on the unknown values of the parameters. As in
Section 21.4.2, here, xi represents a vector (xi1, . . . , xip) where xij represents the value of the
jth variable in the ith trial, with the constraint that −1 ≤ xij ≤ 1 (j = 1, . . . , p; i = 1, . . . , n).
In this case, xij has been perturbed to a new design point xnew

ij by

xnew
ij = min{1, max[−1, xij + udT]}

where u is a random number drawn from a uniform U[−1, 1] distribution and dT is the size
of the maximum allowed perturbation at temperature T. The new (perturbed) design is
compared with the original design via the calculation of the objective function ψ, and the
new design is accepted if its ψ value is greater than that of the original one. Otherwise, the

new design is accepted with probability min
{

1, exp
(
ψ(ξnew)−ψ(ξoriginal)

T

)}
. Here, ξoriginal and

ξnew are, respectively, the n-run designs supported at the original and new sets of points
(x1, . . . , xn). Both the temperature T and perturbation size dT are decreased geometrically.
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Bohachevsky et al. (1986) developed a generalized SA method for function optimiza-
tion and noted that this algorithm has “the ability to migrate through a sequence of local
extrema in search of the global solution and to recognize when the global extremum has
been located.” Meyer and Nachtsheim (1988) used SA (programmed in ANSI-77 standard
FORTRAN) for constructing exact D-optimal designs. They evaluated their methods for
both finite and continuous design spaces. Fang and Wiens (2000) used SA for obtaining
integer-valued designs. In their paper, they mentioned that, following Haines (1987), they
initially chose T in such a way that the acceptance rate is at least 50%. As discussed by
Press et al. (1992), they decreased T by a factor of 0.9 after every 100 iterations. Among oth-
ers, Zhou (2008) and Wilmut and Zhou (2011) used SA for obtaining D-optimal minimax
designs.

21.6.3 Particle Swarm Optimization

PSO was proposed about 18 years ago by Kennedy and Eberhart (1995), and it has slowly
but surely gained a lot of attention in the past 10 years. Researchers continue to report
their successes with the algorithm for solving large-scale, complex optimization problems
in several fields, including finance, engineering, biosciences, monitoring power systems,
social networking, and behavioral patterns. The rate of success and excitement generated
by PSO has led to at least one annual conference solely devoted to PSO for more than a
decade and usually sponsored by IEEE. There are several websites that provide in-depth
discussions of PSO with codes, tutorials, and both real and illustrative applications. An
example of such a website is http://www.swarmintelligence.org/index.php. Currently,
there are at least three journals devoted to publishing research and applications based on
swarm intelligence PSO methods.

The special features of the PSO techniques are that the method itself is remarkably sim-
ple to implement and flexible, requires no assumption on the function to be optimized, and
requires specification of only a few easy-to-use tuning parameters to values that work well
for a large class of problems. This is unlike other algorithms such as the genetic or SA algo-
rithms that can be sensitive to the choice of tuning parameters. For PSO, typically only two
parameters seem to matter—the number of particles and the number of iterations—with
the rest taking on the default values. A larger number of particles generate more starting
designs that more likely cover the search space more adequately and so usually produces a
higher quality solution. A probable downside is that it may take longer time to arrive at the
optimum because more communication time is required by the larger number of particles
to decide where the global optimum is. The user also has to specify the maximum number
of iterations allowed for the algorithm, but this usually is inconsequential for small dimen-
sional optimization problems. This is because the search time is typically very short, and
so one can try repeatedly and find the optimal design quickly for most problems. Each par-
ticle is a potential solution of the optimization problem, and at every iteration, each has a
fitness value determined by the design criterion.

There are two key equations in the PSO algorithm that define its search to optimize a
user-selected objective function ψ. At the t and t + 1 iterations, the movement of particle i
is governed by

vt+1
i = ωtvt

i + γ1β1 � (pi − xt
i) + γ2β2 � (pg − xt

i) (21.10)
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and

xt+1
i = xt

i + vt+1
i . (21.11)

Here vt
i is the particle velocity at time t and xt

i is the current particle position at time t. The
inertia weight ωt adjusts the influence of the former velocity and can be a constant or a
decreasing function with values between 0 and 1. For example, Eberhart and Shi (2000)
used a linearly decreasing function over the specified time range with initial value 0.9 and
end value 0.4. Further, the vector pi is the personal best (optimal) position as encountered
by the ith particle, and the vector pg is the global best (optimal) position as encountered
by all particles, up to time t. This means that up to time t, the personal best for particle i
is pbesti = ψ(pi) and, for all particles, gbest = ψ(pg) is the optimal value. The two random
vectors in the PSO algorithm are β1 and β2, and their components are usually taken to be
independent random variables from U(0, 1). The constantγ1 is the cognitive learning factor,
and γ2 is the social learning factor. These two constants determine how each particle moves
toward its own personal best position and the overall global best position. The default
values for these two constants in the PSO codes are γ1 = γ2 = 2, and they seem to work
well in practice for nearly all problems that we have investigated so far. Note that in (21.10),
the product in the last two terms is the Hadamard product. The pseudocode for the PSO
procedure using q particles is given in the succeeding text.

Pseudocode for PSO algorithm is as follows:

1. Initialize particles.
a. Initiate positions xi and velocities vi for i = 1, . . . , q.
b. Calculate the fitness values ψ(xi) for i = 1, . . . , q.
c. Initialize the personal best positions pi = xi and the global best position pg.

2. Repeat until stopping criteria are satisfied.
a. Calculate particle velocity according to Equation (21.10).
b. Update particle position according to Equation (21.11).
c. Update the fitness values ψ(xi).
d. Update personal and global best positions pi and pg.

3. Output pg = arg minψ(pi) with gbest = ψ(pg).

We have set up mirror websites at http://optimal-design.biostat.ucla.edu/podpack/,
http://www.math.ntu.edu.tw/∼optdesign/, and http://www.stat.ncku.edu.tw/optde-
sign, where the reader can download our PSO P-codes, run them, and verify some of the
results in this chapter. Many of the PSO codes can be readily changed to find another type
of optimal design for the same model or for a different model. Typically, the only changes
that are required are in the information matrix and the design criterion.

The sites are new and are still under construction as improvements are made. We alert
the reader that some of the notation on these sites may be different from that used in this
chapter. The sites have instructions for downloading MATLAB� P-codes and running the
codes for finding various types of optimal designs. On the interface window, we provide
default values for two PSO parameters that had successfully found the optimal design
before, the number of particles, and the number of iterations; all other parameters are
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default values recommended by PSO and are not displayed. The interface window also
provides the swarm plot showing how the swarm of initial candidate designs converges
or not to the optimal location, along with a plot of the directional derivative of the design
criterion for the PSO-generated design to confirm its optimality or not. The ease of use
and flexibility of PSO are compelling compared with current methods of finding optimal
designs.

As examples, we refer the reader to the download webpage on one of the aforementioned
websites, where under the heading Part A, we have codes for finding minimax optimal
designs. The first example concerns finding a design to minimize the maximum variance
of the fitted response across the design space when errors have a known heteroscedastic
structure, and the second example concerns E-optimality where we seek a design that min-
imizes the maximum eigenvalue of the inverse of the information matrix (Ehrenfeld, 1955).
We invite the reader to try out the PSO codes on the website for generating various types
of optimal designs for the compartmental model discussed earlier in Section 21.5.1 and
compare results in Tables 21.1 and 21.2. Other sample applications of using PSO to design
real studies available from the website include finding different locally optimal designs for
the simple and quadratic logistic models, D-optimal designs for mixture models, locally
D-optimal designs for the four-parameter Hill model used in education and biomedical
studies, locally D-optimal designs for an exponential survival model with type I right cen-
soring, and locally D-optimal designs for a double-exponential model used in monitoring
tumor regrowth rate.

PSO techniques seem like a very under utilized tool in statistics to date. They seem ide-
ally suited for finding optimal experimental designs. This is because many applications
having a design close to the optimum (without knowing the optimum) may suffice for most
practical purposes. When we work with approximate designs, the convexity assumption
in the design criterion implies that the skeptic can also always check the quality of the
PSO-generated design using an equivalence theorem. Intuitively, PSO is attractive because
it uses many starting designs (particles) at the initial stage to cover the search space,
and so one can expect such an approach is preferable to methods that use only a single
starting design.

21.7 Summary

This chapter discusses algorithmic searches for an optimal design for a statistical model
described in (21.2). We reviewed a few algorithms commonly used to find an opti-
mal design for the problem and also newer algorithms, such as particle swarm–based
algorithms.

Our discussion has focused on a single-objective study. In practice, experiments may
have more than one goal or objective, and the implemented design should carefully incor-
porate all the objectives at the onset. In the past, the practice was to design the study
to satisfy the most important objective and hope that the same design also does well in
terms of other objectives in the study. Nowadays, multi objective optimization problems
can be handled by constructing a multiple-objective optimal design that directly accommo-
dates all experimental goals at the same time. These techniques require that the objectives
be first prioritized in order of their importance. By construction, the multiple-objective
optimal design captures the varying degrees of importance of the various objectives and
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delivers user-specified efficiencies for the objectives according to their importance; see
details in Cook and Wong (1994), for example. In particular, it can be shown that many of
the algorithms for finding a single-objective optimal design can be directly applied to find
multiple-objective optimal designs as well (Cook and Wong 1994; Wong 1999). Chapter 25
constructs some specific multiple-objective optimal designs for event-related fMRI studies.

We have not made a clear distinction between finding optimal exact or approximate
designs but note that some algorithms are more flexible than others. There is no algo-
rithm that is universally best for solving all optimization problems. Each algorithm, by
construction, has its own unique strengths, weaknesses, and restrictions. For example,
both multiplicative algorithms and SDP-based methods require that the search space be
discretized, but PSO can work well either in a continuous or a discrete search space. Fur-
ther, the performance of some algorithms, such as the GA, can be highly dependent on
input values of the tuning parameters, while others, such as PSO-based algorithms, are
less so. It is therefore important to fully appreciate the properties of the algorithm before
implementing it to find the optimal design for the problem at hand. Frequently, for more
complicated optimization problems, a hybrid algorithm that combines two or more differ-
ent algorithms can prove effective because it incorporates the unique strengths from the
component algorithms.

We would be remiss not to mention that there are canned software packages in com-
mercial statistical software for finding optimal designs. For example, Atkinson et al. (2007)
provided SAS codes for finding a variety of optimal designs based on various types of
algorithms. Currently, algorithms are available for generating D-, c-, A-optimal designs and
optimal designs found under differentiable criteria. Other statistical packages also focus on
such types of optimal designs. Minimax optimal designs are notoriously difficult to find,
and we are not aware of any commercial package that handles them. GA and PSO that
do not require the objective function to be differentiable would seem more appropriate for
such problems. Examples of work in this area are Zhou (2008) and, most recently, Chen
et al. (2014) and Qiu et al. (2014).

In summary, algorithms are crucial for finding optimal designs to solve real problems
and will be more important as scientists increasingly use more realistic models to reflect the
complexities of the underlying process. Consequently, analytical descriptions of optimal
designs will be more difficult and most likely impossible to obtain. Numerical methods
are therefore necessary, and more effective algorithms should be developed and applied to
solve real-world design problems. It therefore behooves the design community to always
keep a constant eye of current and new optimization techniques used in the optimization
literature and investigate their suitability and efficiency for finding optimal designs for a
statistical problem.
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22.1 Introduction

In modern life, people frequently face situations where they have to make choices between
a variety of options. Purchasing a smartphone, picking an energy supplier, or decid-
ing upon a cancer treatment are just a few examples where a number of features of the
available alternatives have to be considered when making a decision. How people make
these decisions is a fascinating topic and contributions to this area have been made from
many disciplines including psychology, marketing, econometrics, and statistics. As a
consequence, the study of choice behavior is a truly multidisciplinary endeavor.
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Choice experiments mimic the real world by using a type of questionnaire or survey that
asks respondents to complete a series of choice tasks. Each of these tasks presents a choice
set of competing alternatives from which, typically, the most preferred alternative has to
be selected. Modes of presentation range from simple paper-and-pencil administration to
computerized systems that allow the inclusion of pictures or videos to describe the alter-
natives. A key feature of these experiments is that the competing alternatives are defined
by combinations of the values or levels of a certain number of attributes, which represent
the main characteristics of interest. In statistical models, these attributes play a role similar
to explanatory variables in a regression model or factors in a multiway analysis of vari-
ance. A common goal of the analysis of choice data is then to estimate parameters that
reflect the utility of the attribute levels. These estimates may feed further into simulations
of market shares or may be used to identify groups of individuals with similar preferences.
Generating a design for a choice experiment amounts to combining attribute levels into
alternatives and arranging these into choice sets. This chapter mainly focuses on designs
that are optimal or efficient under the D-optimality criterion (see Chapter 2).

The origins of the field can be traced back to psychophysical scaling experiments in the
late nineteenth century, which used the method of paired comparisons to derive, for exam-
ple, a functional law of how the perceived weight of objects depends on their actual mass
(David 1988). That choices between pairs could be used more widely to measure social val-
ues and attitudes was pointed out by Thurstone (1927, 1928). Starting from a simple axiom,
Luce (1959) derived a now famous model for choices between two or more alternatives,
which for the special case of paired comparisons coincides with the model of Bradley and
Terry (1952). Both models contain a separate parameter for each alternative and express the
probability of choosing a particular alternative from a choice set as the ratio of the param-
eter for the chosen alternative over the sum of the parameters corresponding to all the
alternatives in the choice set (see Section 22.2.1).

The most popular model for choice data is the econometric version of Luce’s choice
model known as the multinomial logit or, in short, MNL model. This is obtained by repa-
rameterizing Luce’s model so that the original model parameters are replaced with their
logarithms, which then enter the MNL model equation for the choice probabilities as expo-
nentials. An appealing feature of the MNL model is that it can be derived from random
utility theory (Louviere et al. 2000; Train 2003), that is, from latent random variables rep-
resenting the utility of the alternatives. Also, the likelihood function can be expressed in
closed form, unlike that of some more advanced choice models. A sometimes undesirable
feature of the MNL model is, however, the independence-from-irrelevant-alternatives (IIA)
property, which means that for any two alternatives in a choice set, the ratio of the choice
probabilities does not depend on the other alternatives in the set. Notwithstanding, the
multinomial logit model continues to play a pivotal role in choice experiments, for many
more advanced choice models can be regarded as extensions of the MNL model. Excellent
introductions to the general area of choice experiments are available in the monographs by
Louviere et al. (2000) and Train (2003).

When discussing the design of choice experiments, some related techniques for mea-
suring preferences that are jointly known under the name of conjoint analysis (Green and
Srinivasan 1978, 1990) are also worth mentioning. These are similar to choice experi-
ments in that they use experimental designs to compose a questionnaire of alternatives
for collecting preference judgments from which utility values for the attribute levels are
estimated. The main difference from choice experiments is that the alternatives are typi-
cally assessed on a rating scale and that linear models and least squares estimation are used.
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Until the mid-1990s, conjoint analysis dominated in marketing applications, but since then,
improvements in computational power and software have led to a more widespread use of
choice models. The potential usefulness of fractional factorial and other classical designs
(see Chapter 7) for applications of conjoint analysis was recognized early on (Green 1974;
Green et al. 1976, 1978) and some ideas from this area have also influenced the design of
choice experiments.

In a seminal paper, Louviere and Woodworth (1983) discussed the role of designs for
choice experiments from a conceptual viewpoint, and an introduction to optimum design
theory for a marketing audience can be found in Kuhfeld et al. (1994). Huber and Zwerina
(1996) presented a heuristic approach for generating locally D-optimal designs for the MNL
model, which stimulated much subsequent research. Summaries of the early work on
designs for conjoint and choice experiments have been provided by Großmann et al. (2002)
and Louviere et al. (2004). More recent developments are summarized by Rose and Bliemer
(2009) and Street and Burgess (2012).

In what follows, we mainly concentrate on so-called generic choice experiments in which
the attributes that characterize the choice alternatives are qualitative factors with a finite
number of levels. Apart from being popular in marketing applications, this type of choice
experiment appears to be typically used in health economics (De Bekker-Grob et al. 2012)
and environmental valuation studies (Alriksson and Öberg 2008; Hoyos 2010). Applica-
tions in the field of transportation research frequently use other types of choice experiments
where, for example, some of the attributes are quantitative continuous variables and differ-
ent sets of attributes may be used to describe the competing alternatives. We do not cover
such alternative-specific and related designs here.

The remainder of the chapter is organized as follows. The next section provides a brief
description of the multinomial logit model and some extensions. This is followed by a
review of designs for paired comparisons and choice experiments with larger choice sets,
with an emphasis on analytic results. After this, computational approaches are considered.
We then move on to ranking-based approaches and some more specialized problems before
offering some concluding remarks.

22.2 Choice Models

The complexity of choice models has steadily increased over the years, although many of
the more sophisticated models can be recognized as generalizations of the MNL model. By
contrast, the work on experimental designs for choice models has advanced at a slower
pace with most results being available for the MNL model. For this reason, we also focus
on the MNL model. Some extensions will be mentioned at the end of this section, and
corresponding design results are considered in Sections 22.5 and 22.6.

22.2.1 Multinomial Logit Model

The MNL model describes the probability with which a particular alternative is chosen
from a finite set of alternatives. It is also referred to as the conditional logit model. New-
comers to the area will soon realize that in the literature, the terms alternative, option, object,
and profile are used interchangeably. Likewise, the participants in a choice experiment are
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known under various names, such as respondents, individuals, persons, or subjects. In what
follows, we mainly use the terms alternatives for choice options and respondents for people
making choices, respectively.

Suppose C is the finite set of all alternatives that are of interest. The features of every
alternative in C are described by a vector of attributes, which may be quantitative or quali-
tative. A major goal of a choice experiment is then to find out to what extent the different
attributes influence the preferences for the alternatives. Therefore, when modeling the
preferences, every alternative is identified with its corresponding attribute vector.

The designer of a choice experiment determines the common size m and the total number
N of the choice sets for the experiment. Every choice set Cn then contains m alternatives
in C. As already explained, each such alternative is identified with a vector xn,i, where
n = 1, . . . , N is the number of the choice set and i = 1, . . . , m the number of the alternative
within the choice set. Exactly as in a linear model, a vector f of regression functions is used to
code qualitative attributes or to represent, for example, polynomial effects of quantitative
attributes. The coding of qualitative attributes will be considered in somewhat more detail
later in the chapter. Associated with f is a p-dimensional parameter vector θ representing the
effects of the attributes and their levels. Thus, while the length of xn,i is equal to the number
of attributes, the vector f (xn,i) has p components.

In the MNL model, the probability of choosing the alternative xn,i from the choice set
Cn = {xn,1, . . . , xn,m} is assumed to be equal to

pθ(i; Cn) = ef ′(xn,i)θ∑m
j=1 ef ′(xn,j)θ

. (22.1)

During the experiment, usually the same choice sets are given to a sample of S individuals.
Let ys be a vector representing the responses of respondent s with components ys,n,i being
equal to either one or zero depending on whether or not respondent s has chosen alternative
xn,i from the set Cn. Furthermore, let y be the concatenation of these vectors for the whole
sample. Assuming that the choices are independent within and across respondents, the
MNL likelihood function L(θ; y) for estimating the model parameters is given by

L(θ; y) =
S∏

s=1

N∏
n=1

m∏
i=1

pθ(i; Cn)ys,n,i . (22.2)

For a design d with choice sets C1, . . . , CN, the Fisher information is obtained in the usual
way as Md,θ = E(hθ(y)h′

θ(y)), where hθ(y) = ∂ log L(θ; y)/∂θ is the column vector of
partial derivatives of the log-likelihood function. Because all respondents receive the same
design, for the purpose of comparing different designs on the basis of Md,θ, it is sufficient
to consider a single respondent, that is, S = 1. Similar to Huber and Zwerina (1996), a
convenient representation of the Fisher information matrix of a design d is then

Md,θ =
N∑

n=1

X′
n(diag(pθ,n) − pθ,np′

θ,n)Xn, (22.3)

where Xn is an m × p matrix with rows f ′(xn,i), i = 1, . . . , m, representing the alterna-
tives in Cn and pθ,n = (pθ(1; Cn), . . . , pθ(m; Cn))′ is the vector of the corresponding choice
probabilities.
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Sometimes, we will consider designs that contain a single choice set C, in which case the
information matrix in (22.3) will be denoted by MC,θ. By applying this notational conven-
tion to the individual choice sets C1, . . . , CN of a design d, Equation 22.3 can be rewritten as
Md,θ = ∑N

n=1 MCn,θ.
The MNL model is nonlinear in the unknown model parameters in θ and hence the

Fisher information matrix also depends on θ. For the purpose of deriving optimal designs,
it is often assumed that θ= 0. This indifference assumption means that all alternatives in a
choice set Cn are chosen with the same probability p0(i; Cn) = 1/m and leads to a consid-
erable simplification of the matrix in (22.3) and the design problem. The corresponding
information matrix Md,0 for θ = 0 is given by

Md,0 = 1
m

N∑
n=1

X′
nKmXn, (22.4)

where Km = Im − 1
m Jm is a centering matrix. Furthermore, Im denotes the identity matrix

of order m and Jm the m × m matrix with all elements equal to one.
The important special case where the choice sets are pairs, that is, where m = 2, can

be recognized as a reparameterization of the Bradley–Terry model and also of Luce’s orig-
inal choice model. More precisely, for a pair of alternatives xn,i, i = 1, 2, setting πn,i =
exp(f ′(xn,i)θ) in (22.1) gives the choice probability pθ(i; Cn)=πn,i/(πn,1 + πn,2) where the
right-hand side is equivalent to the expressions in Bradley and Terry (1952) and Luce
(1959).

22.2.2 Mixed Logit Model

The choices described by the MNL model are based on homogeneous preferences, which is
reflected in (22.1) by the dependence of the probabilities on a fixed parameter vector θ.
A flexible model that allows for a certain type of preference heterogeneity is the mixed
logit model (e.g., see Train 2003, Chapter 6) that, like the MNL model, can be motivated
by considering models of utility maximizing behavior. In the mixed logit model, the
parameters determining the preferences of each individual are assumed to come from a
multivariate distribution. Usually, this distribution is assumed to be continuous with a
probability density function g and can be thought of as describing the variability of tastes
in a population. Often, the parameters are assumed to be normally distributed, but other
distributions, such as uniform, triangular, or Rayleigh distributions, have also been used
(Train 2003).

The distinction between the situation where the multiple choices made by a respon-
dent are assumed to be independent and the more general situation where a respondent’s
choices are correlated leads to two variants of the model that are known as the cross-sectional
and the panel mixed logit model, respectively (Bliemer and Rose 2010). In the cross-sectional
formulation, a respondent’s probability of choosing alternative i from choice set Cn is equal
to q(i; Cn) = �

pθ(i; Cn)g(θ)dθ, where pθ(i; Cn) is the MNL probability (22.1). The likelihood
function is then obtained by substituting q(i; Cn) for pθ(i; Cn) in (22.2).

The corresponding equations for the panel mixed logit model are more complicated due
to the lack of independence of the choices within respondents. The parameters in θ are
assumed to be constant for every individual respondent but vary over people. As before,
let ys be the vector of choices made by respondent s from N choice sets C1, . . . , CN, where
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the choice sets are the same for all respondents. Then the probability q(ys; C1, . . . , CN) of this
particular sequence of responses is the average, as weighted by g, of the choice probabilities
in (22.1) over the space of the parameter vectors, that is,

q(ys; C1, . . . , CN) =
� N∏

n=1

m∏
i=1

pθ(i; Cn)ys,n,i g(θ) dθ. (22.5)

The likelihood for a sample of S respondents is the product of the expressions in
Equation 22.5.

In general, the density function g depends on a set of population or hyperparameters,
and finding efficient designs for estimating those parameters is the goal on which most
design work for the mixed logit model has concentrated. Usually, the integral in (22.5) can-
not be evaluated in closed form. Therefore, when estimating the population parameters,
simulation methods are commonly used to approximate the integral and the likelihood
function. In principle, the distribution of the θ parameters can also be discrete with g
being the probability mass function of a distribution with finite support. The integral in
(22.5) then becomes a sum and the model becomes a finite mixture or latent class model
(Train 2003).

22.2.3 Other Extensions

Another generalization of the MNL model, which relaxes the independence-from-
irrelevant-alternatives assumption, is the nested logit model (Train 2003, Chapter 4). In this
model, all possible alternatives are grouped into a number of disjoint sets that are referred
to as nests and that are such that the IIAproperty holds for alternatives within each nest, but
not across different nests. As for the MNL model, the nested logit choice probabilities can
be expressed in closed form, and the model parameters are usually estimated by standard
maximum likelihood procedures. Moreover, the probability of choosing any given alterna-
tive can be factorized into the probability of choosing the nest that contains the alternative
times the conditional probability of selecting the alternative from that nest, where both
the probabilities for choices between nests and those for alternatives within nests can be
described by separate MNL models.

A common feature of all models considered so far is that the choice task requires the
respondents to select a single alternative from every choice set. More information about
the underlying preferences may be obtained from complete or partial rankings of the alter-
natives within each set. For example, a complete ranking of the m alternatives in a choice
set, may be regarded as the outcome of an iterated choice process where initially the most
preferred alternative is selected. After removing this alternative from the choice set the
next best alternative is chosen from the remaining alternatives and so forth. This process
terminates after m − 1 choices have been made. At each stage, the probability of choosing
the best from the remaining alternatives can be expressed as in the MNL model and the
corresponding model is known as the rank-ordered logit (Lancsar et al. 2013) or exploded logit
model (Chapman and Staelin 1982; Train 2003).

The ranking task is relatively easy when the size m of the choice sets is small but becomes
more demanding for larger numbers of alternatives. In general, respondents appear to find
it less challenging to place alternatives at the top and bottom of an ordered list than to make
reliable judgments about alternatives that are somewhere in the middle of the preference



Design for Discrete Choice Experiments 793

spectrum. Best–worst scaling (Marley and Louviere 2005; Marley and Pihlens 2012) tries
to exploit this finding by asking respondents to identify the most and the least preferred
alternative within each choice set.

The list of generalizations of, and alternatives to, the MNL model could easily be
expanded. Here, we have chosen to mention only those approaches where at least some
work on the corresponding experimental designs has been done.

22.3 Paired Comparisons

Experiments with choice sets of size two are closely related to the method of paired
comparisons (Bradley and Terry 1952; Bradley 1976; Davidson and Farquhar 1976; David
1988), and such paired comparison experiments have attracted considerable attention in their
own right. Initial contributions to their design were made by Bradley, El-Helbawy, and
coworkers (Bradley and El-Helbawy 1976; El-Helbawy and Bradley 1978; El-Helbawy 1984;
El-Helbawy and Ahmed 1984; El-Helbawy et al. 1994). This work adopts a modeling
approach that is different from the mainstream formulation in Section 22.2.1, although for
the purpose of finding optimal or efficient designs, the two approaches are equivalent. Also,
the presentation in El-Helbawy and Bradley (1978) has strongly influenced more recent
work by Street, Burgess and coworkers (Street et al. 2001; Street and Burgess 2004a, 2007;
Burgess and Street 2005).

The results in the aforementioned papers are obtained under the assumption of equal
choice probabilities which is equivalent to considering the MNL model (22.1) with θ = 0.
In this particular case, the information matrix Md,0 in (22.4) for choice sets of size m = 2 is
proportional to the information matrix in a linear paired comparison model

y = Xθ + ε (22.6)

with standard assumptions of uncorrelated and homoscedastic random errors ε, where
for a design d with N pairs (xn,1, xn,2), the design matrix X has rows f ′(xn,1) − f ′(xn,2)

for n = 1, . . . , N and f is defined above (22.1). More precisely, as shown in Großmann
et al. (2002), Md,0 = 1

4 Md, where Md = X′X = ∑N
n=1 (f (xn,1) − f (xn,2))(f

′(xn,1) − f ′(xn,2)).
Every row of X corresponds to one pair. Moreover, the pairs are ordered so that (xn,1, xn,2)

is distinguished from (xn,2, xn,1). Although both pairs contribute the same information
(f (xn,1) − f (xn,2))(f

′(xn,1) − f ′(xn,2)) = (f (xn,2) − f (xn,1))(f
′(xn,2) − f ′(xn,1)) to Md, distin-

guishing the order of the alternatives within the pairs adds some symmetry to the design
problem that can be exploited for finding optimal designs.

With regard to the usual alphabetic optimality criteria (see Chapter 2), it follows that,
under the assumption θ = 0, the efficiency of a design in the MNL model (22.1) for m = 2 is
the same as the efficiency of the design in the linear paired comparison model. In particular,
optimal designs for the MNL model can be derived by considering the linear model, which
is the approach taken by Graßhoff et al. (2003, 2004).

The simplification of the information matrix that is achieved by assuming θ = 0 makes
it possible to prove analytical optimality results. Also, explicit constructions of optimal
or highly efficient designs with practical numbers of choice sets can be derived. Without
that assumption, because of the nonlinearity of the MNL model and the implied parameter
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dependence of the information matrix, algorithms usually need to be used to generate good
designs. We consider algorithmic approaches in Section 22.5.

The remainder of this section considers designs for experiments in which the choice
sets are pairs. We return to experiments with larger choice sets in Section 22.4. In what
follows, we concentrate on optimality results and design construction methods under the
indifference assumption θ = 0. First, we look at experiments where only the main effects
of the attributes are to be estimated. Secondly, we consider designs for estimating the
main effects and all two-factor interactions. Finally, designs for paired comparison experi-
ments involving incomplete descriptions of the alternatives, known as partial profiles, are
discussed.

22.3.1 Main Effects Only

In the simplest type of paired comparison or choice experiment, every attribute is a qualita-
tive factor, usually with a small number of levels, and the overall utility of every alternative
is equal to the sum of its parts, that is, the sum of so-called part-worth utilities of the attribute
levels. This setup leads to an expression for f ′(xn,i)θ in (22.1) that is similar to the system-
atic part of a main-effects-only multifactor analysis of variance model. For every alternative
xn,i, the components of f (xn,i) are the suitably coded attribute levels that define xn,i and the
parameters in θ are interpreted as the part-worth utilities of the levels. It should be noted
however that despite the similarity with the analysis of variance, there is no model param-
eter corresponding to a grand or overall mean. If such a parameter were to be included, the
choice probabilities in expression (22.1) would not change, which shows that the parameter
is redundant. This invariance of the choice probabilities is often described by the statement
that only differences in utility matter (Train 2003, p. 23).

In order to represent the levels of a qualitative attribute, usually, effects coding is
recommended (e.g., see Bech and Gyrd-Hansen 2005) and we adopt this coding through-
out the chapter. For an attribute with v levels, this coding scheme represents every level
by a vector of length v − 1. The vector corresponding to level j with 1 ≤ j ≤ v − 1 is a unit
vector of length v − 1, which has a one in position j and contains zeros otherwise. The final
level v is represented by the vector −1v−1 of the same length with all elements equal to −1.
For example, for v = 2, the level 1 is coded as 1 and the level 2 by −1 where it should be
noted that the coded vectors of length v − 1 = 1 are just scalars. Similarly, the levels 1,
2, and 3 of an attribute with v = 3 levels are represented by the vectors (1, 0)′, (0, 1)′, and
(−1, −1)′, respectively. The portion of the parameter vector θ for an attribute with v levels
contains v − 1 parameters, which correspond to the levels 1, . . . , v − 1. When effects coding
is used, the parameter for level 1 ≤ j ≤ v − 1 of the attribute can be interpreted as the
utility of j minus the average of the utility values of all v levels of that attribute. Note that
the parameter vector does not contain a parameter for the level v of the attribute, but that
the utility of the level v minus the average of the utility values for all v levels of the attribute
can be recovered by multiplying the sum of the parameters for the levels 1, . . . , v − 1
with −1.

For a choice experiment with K attributes in which the kth attribute has vk levels, k =
1, . . . , K, every alternative x = (x1, . . . , xK) is a K-tuple whose kth component xk is one of
the levels 1, . . . , vk. The effects-coded vector f (x) representing the levels of x in the main
effects model is obtained by first applying the coding separately to every level xk and by
secondly stacking the K column vectors corresponding to the coded attribute levels. Note
that, equivalently, the vector f (x) can be defined as f (x) = (f ′

1(x1), . . . , f ′
K(xK))′ where for
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k = 1, . . . , K the vector f k contains the vk −1 individual regression functions fk,j = 1{j}−1{vk},
j = 1, . . . , vk − 1. Here, for every a, the function 1{a} is an indicator function with 1{a}(z) = 1
if z = a and 1{a}(z) = 0 if z �= a.

Most design criteria are sensitive to the coding of the attribute levels. A remark-
able exception is the D-optimality criterion (e.g., see Chapters 2 and 3), which tries to
find designs that maximize the determinant of the information matrix or, equivalently,
minimize the determinant of its inverse, because the criterion is not affected by reparam-
eterizations. This invariance property and the fact that the determinant is mathematically
more tractable than other functions of the information matrix appear to be the main reasons
why most optimality results for choice and paired comparison designs have been derived
for the D-criterion.

22.3.1.1 Optimal Approximate Designs

Approximate or continuous designs ξ are defined as discrete probability measures on the
design region X of an experiment and can be represented by t distinct design points
x1, . . . , xt in X together with corresponding positive weights w1, . . . , wt where wi = ξ(xi)

for i = 1, . . . , t and
∑t

i=1 wi = 1 (see Chapter 2). In the context of choice experiments with
choice sets of size m = 2, every design point is a pair of alternatives. One approach to
proving optimality, adopted by Graßhoff et al. (2004), relies on the equivalence theorem of
Kiefer and Wolfowitz (1960) for approximate designs. Another approach considers a gen-
eral class of designs, establishes an upper bound for the determinant of the information
matrix, and then tries to characterize those designs for which the upper bound is attained
(e.g., see Street et al. 2001; Street and Burgess 2004a; Burgess and Street 2005). Except for
some special cases, the optimal designs obtained under both approaches usually contain
a prohibitively large number of choice sets. However, although the optimal designs for a
given model are not unique, they all have the same information matrix, which can then
serve as a benchmark for assessing other smaller designs. Thus, in a subsequent and often
challenging step, methods for constructing exact designs with practical numbers of choice
sets are devised whose information matrices are either equal to the optimal one or that have
a very high efficiency.

Suppose there are K attributes such that the kth attribute, k = 1, . . . , K, has vk levels.
The design region X for the linear paired comparison model (22.6) then consists of all
ordered pairs x = (x1, x2) of K-tuples x1 and x2 whose kth component is one of the levels
1, . . . , vk. The information matrix of any approximate design ξ for the paired comparison
model (22.6) is given by

Mξ =
�
X

(f (x1) − f (x2))(f
′(x1) − f ′(x2))ξ(x) dx,

where x = (x1, x2) denotes a generic pair. If ξ assigns positive weight wi = ξ((xi,1, xi,2)) to
exactly t distinct pairs (xi,1, xi,2), i = 1, . . . , t, then the information matrix can alternatively
be written as a weighted sum

Mξ =
t∑

i=1

wi(f (xi,1) − f (xi,2))(f
′(xi,1) − f ′(xi,2)).
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Graßhoff et al. (2004) showed that when the attribute levels are effects coded the unique
information matrix of a D-optimal design ξ∗ is a block-diagonal matrix

Mξ∗ = diag(Mv1 , . . . , MvK), (22.7)

where Mvk = 2
vk−1 (Ivk−1 + Jvk−1). Since the D-criterion is invariant under reparameteriza-

tions, the corresponding optimal designs do not depend on the coding or the labeling of
the attribute levels. The question of how D-optimal designs with practical numbers of pairs
can be constructed will be discussed later in this section.

It follows that the quality of every exact design d = {(x1,1, x1,2), . . . , (xN,1, xN,2)} with N
pairs can be assessed by calculating the D-efficiency

effD(d) =
(

det(Md/N)

det(Mξ∗)

)1/p

, (22.8)

where p = ∑K
k=1 (vk − 1) is the number of model parameters and Md was defined in

connection with model (22.6).
It should be noted that in order to put the comparison of the exact design d and the

approximate design ξ∗ on an equal footing, the D-efficiency measure compares the deter-
minant of the normalized information matrix 1

N Md for d with that of Mξ∗ . By using the
D-efficiency, it is also possible to compare exact designs with different numbers of choice
sets on a common scale. One interpretation of the D-efficiency is as follows. Suppose there
exists a D-optimal exact design d∗ with N∗ pairs for which Md∗/N∗ = Mξ∗ . An exact design
d with D-efficiency effD(d) = c, say, will then require N = N∗/c pairs to estimate the model
parameters with the same precision as the optimal design.

The problem of finding optimal designs for the MNL model with choice sets of size m = 2
under the assumption θ = 0, where only the main effects of the K attributes with possibly
different numbers of levels vk are to be estimated, was also considered by Burgess and Street
(2005) who used the approach of El-Helbawy and Bradley (1978). They derived the optimal
information matrix for a class of designs that is less general than the set of all possible
designs on the design region X of all pairs considered here and in Graßhoff et al. (2004).
Because it may not be obvious how the results in Graßhoff et al. (2004) and Burgess and
Street (2005) are related, we outline how the matrix in (22.7) can be obtained when the latter
approach is followed. As a consequence, the optimal designs of Burgess and Street (2005)
are also optimal with respect to the fully general class of designs considered by Graßhoff
et al. (2004).

For choice sets of size m = 2 and K attributes with vk levels, k = 1, . . . , K, Theorem 2 in
Burgess and Street (2005) shows that the exact design d∗, whose design points consist of all
pairs of alternatives with the property that the two alternatives in a pair have different lev-
els for each attribute, is D-optimal for estimating main effects. The corresponding optimal
information matrix, normalized by the number of pairs N, is then equal to

1
N

Ad∗ = 1
N

diag(A1, . . . , AK), (22.9)

where Ak = c
4

vk
vk−1 Ivk−1 for every attribute k (Burgess and Street 2005; Street and Burgess

2007, pp. 187–188) and c is the number of choice sets in the optimal design that contain the
alternative whose attribute levels are all equal to 1.
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Moreover, it can be shown that c/N = 2/L where L = ∏K
k=1 vk. It should be noted that

here, we have modified the notation in Burgess and Street (2005) to make it more consis-
tent with the current presentation. For example, where the original paper uses the attribute
levels 0, . . . , vk − 1, we use the levels 1, . . . , vk. The framework in El-Helbawy and Bradley
(1978) on which the derivation of the information matrix in Burgess and Street (2005) is
based differs from the formulation of the MNL model in Section 22.2.1 and therefore a dif-
ferent letter is used for denoting the information matrix and its diagonal blocks. Moreover,
contrary to Graßhoff et al. (2004), Burgess and Street (2005) do not formally distinguish the
order of the two alternatives within each pair.

Although for m = 2 both Graßhoff et al. (2004) and Burgess and Street (2005) consider
essentially the same model, the information matrix Mξ∗ in (22.7) for the optimal approxi-
mate design ξ∗ and the normalized information matrix 1

N Ad∗ in (22.9) for the optimal exact
design d∗, which (apart from considering the order of the alternatives in the pairs) are for
the same optimal design, are different. The reason for this discrepancy can be understood
by looking more closely at the approach that underlies the work of Burgess and Street (2005)
and Street and Burgess (2007). Initially, by using the model in El-Helbawy and Bradley
(1978), these authors derive the normalized Fisher information matrix �, which is a square
matrix of order L = ∏K

k=1 vk, for all possible alternatives in the full factorial design for the
K attributes. They then simplify � under an assumption of equal choice probabilities that
is equivalent to assuming θ = 0 in (22.1). Next, a p × L matrix

B =

⎛
⎜⎜⎜⎜⎜⎝

Bv1 ⊗ 1√
v2

1′
v2

⊗ · · · ⊗ 1√
vK

1′
vK

1√
v1

1′
v1

⊗ Bv2 ⊗ · · · ⊗ 1√
vK

1′
vK

...
1√
v1

1′
v1

⊗ 1√
v2

1′
v2

⊗ · · · ⊗ BvK

⎞
⎟⎟⎟⎟⎟⎠

, (22.10)

of orthonormal contrasts for the main effects is introduced, which is partitioned into
(vk − 1) × L matrices corresponding to the attributes k = 1, . . . , K and where every Bvk

of order (vk − 1) × vk has orthonormal rows. Subsequently, the information matrix for the
estimation of main effects is derived as B�B′, which further simplifies to 1

N Ad∗ in (22.9).
Note that in Equation 22.10 and throughout this chapter, for every natural number a, the
all-one column vector of length a is denoted by 1a and the Kronecker product of vectors and
matrices by “⊗.”

Although this approach may be technically convenient, the contrasts represented by
the matrix B usually have no natural interpretation for qualitative attributes, which is a
consequence of requiring the rows of B to be orthogonal vectors. For example, in the main-
effects-only model, the contrast for each attribute level cannot be interpreted in the same
way as the parameters corresponding to the effects-coded attribute levels at the beginning
of Section 22.3.1. As was mentioned before, the D-optimality criterion is invariant with
respect to reparameterizations but, for some other criteria, different parameterizations lead
to different optimal designs and in such cases using a parameterization that has no clear
interpretation does not appear to be helpful.

In general, for an arbitrary contrast matrix B as in Burgess and Street (2005) whose
rows are not orthogonal, the corresponding information matrix has to be computed by
using generalized inverses as (B�−B′)−. The appropriate contrast matrix for estimating
the p effects-coded parameters is given by B = SG, where G is obtained from (22.10) by
replacing every (vk − 1) × vk matrix Bvk with the vk × vk centering matrix Kvk = Ivk − 1

vk
Jvk
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and where S is a rectangular block-diagonal matrix with K diagonal blocks of dimension
(vk − 1) × vk given by (

√
vk/LIvk−1, 0) for k = 1, . . . , K. It can then be shown that the infor-

mation matrix for SG, that is, for the p effects-coded parameters, when using the optimal
design is equal to

(S(G�G′)−S′)− = Mξ∗ ,

where Mξ∗ is the matrix in (22.7). Thus, by using the matrix SG, the approach in Burgess
and Street (2005) leads to the same optimal information matrix as in the paired comparison
setup of Graßhoff et al. (2004).

22.3.1.2 Design Constructions for Main Effects Only

The optimal designs that are used to derive the information matrices in (22.7) or (22.9) are
generally not suitable for practical applications since they usually require every respondent
to make a prohibitively large number of choices. Therefore, methods have been developed
for constructing designs that use more practical numbers of choice sets and that are either
optimal or possess a very high efficiency as measured, for example, by effD in (22.8). The
most far-reaching results are available for situations where all attributes possess the same
number of levels, but there is still some scope for further development when the attributes
have different numbers of levels.

A simple method (Street and Burgess 2004a) for generating optimal choice designs with
choice sets of size m = 2 when all attributes have two levels is based on regular fractional
factorial designs of resolution III or higher. Each treatment combination of such a fractional
factorial design specifies one alternative xn,1 in a pair and the second alternative xn,2 is
obtained as the foldover of xn,1. That is, for every attribute, the level in xn,2 is the level not
used in xn,1. For example, if there are K = 4 attributes and if xn,1 = (1, 2, 2, 1), then this
alternative is paired with xn,2 = (2, 1, 1, 2). The order of the alternatives within the pairs is
ignored, and therefore if two rows of the fractional factorial lead to pairs that contain the
same alternatives, then only one of those pairs is included in the choice design.

In Burgess and Street (2005), this construction is generalized to asymmetric situations
where the K attributes can have different numbers of levels v1, . . . , vK and also to larger
choice sets. The method starts with the full factorial design F in which the levels of every
attribute k are coded as 0, . . . , vk − 1. As before, each treatment combination in F defines,
without loss of generality, the first alternative in a choice set. For pairs, that is, choice sets
of size m = 2, the second alternative in each choice set is obtained by adding a so-called
generator g = (g1, . . . , gK) to the first alternative, where gk ∈ {0, . . . , vk − 1} for k = 1, . . . , K,
and the addition is performed componentwise modulo vk. In order to construct an optimal
design, usually, several of these generators will be needed and every additional generator
gives rise to L = ∏K

k=1 vk further choice sets, where, as before, L is the number of treatments
in a full factorial. If the generators satisfy the conditions in Theorem 3 of Burgess and Street
(2005), then the design is D-optimal. The total number N of pairs that form the optimal
design is equal to the size of the full factorial design times the number of generators, and
consequently, except for small numbers of attributes and levels, the designs do not appear
to be very practical. Street and Burgess (2008) acknowledge that when this method is used
“it is something of an art to get the smallest design.” In particular, for practitioners, it may
not be very clear how appropriate generators can be found.
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Several constructions of optimal designs with practical numbers of pairs are presented
by Graßhoff et al. (2004). These are particularly useful when all attributes have the same
number of levels or when some attributes have two, and the remaining attributes three,
levels. If all K attributes have the same number of levels vk = v for k = 1, . . . , K, then one
method to generate optimal designs is based on Hadamard matrices (see Chapter 9), that
is, � × � matrices H with all elements equal to ±1 and HH′ = H′H = �I�. Such matrices
are known to exist for at least � ≤ 664 (Kharaghani and Tayfeh-Rezaie 2005), where � is
either equal to 1, or 2 or is a multiple of 4. The construction uses K columns h1, . . . , hK of a
Hadamard matrix of order � where � is the smallest integer greater than or equal to K for
which such a matrix exists. These columns are then combined with a (v − 1)v/2 × (v − 1)

matrix Xv, which is the effects-coded design matrix in the one-attribute version of the
paired comparison model (22.6) with a single attribute at v levels for the design with all
pairs (i, j) where 1 ≤ i < j ≤ v. It follows that 2

(v−1)v X′
vXv = Mv = 2

v−1 (Iv−1 + Jv−1). The
resulting exact design d∗ is D-optimal with design matrix

X = (h1 ⊗ Xv, . . . , hK ⊗ Xv) (22.11)

and normalized information matrix 1
N Md∗ = Mξ∗ , where N = �(v − 1)v/2 is the number of

pairs and Mξ∗ is the matrix in (22.7). Since this construction represents the optimal design
by its design matrix, for practical application, the coded levels in X need to be replaced
with the actual levels. The following example illustrates an equivalent practical procedure
for generating the designs, which sidesteps the need of explicitly constructing the matrix X
in (22.11).

Example 22.1

Suppose there are K = 3 attributes with v = 4 levels each. In order to construct a
D-optimal paired comparison design for estimating the main effects only, we start by
writing down all possible pairs (i, j) of the four levels, where i < j, as a vector x+. Fur-
thermore, a similar vector x− is created in which the internal order of the pairs is reversed.
This gives the two vectors

x+ =

⎛
⎜⎜⎜⎜⎜⎜⎝

(1, 2)

(1, 3)

(1, 4)

(2, 3)

(2, 4)

(3, 4)

⎞
⎟⎟⎟⎟⎟⎟⎠

and x− =

⎛
⎜⎜⎜⎜⎜⎜⎝

(2, 1)

(3, 1)

(4, 1)

(3, 2)

(4, 2)

(4, 3)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Note that x+ can be regarded as a paired comparison design for model (22.6) with a
single attribute with v = 4 levels and that the effects-coded design matrix for x+ is equal
to Xv in (22.11). More precisely, the design matrix for x+ in the single-attribute model is
given by

Xv =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −1 0
1 0 −1
2 1 1
0 1 −1
1 2 1
1 1 2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Similarly, when regarded as a single-attribute design for the paired comparison model,
x− possesses the effects-coded design matrix −Xv.
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For K = 3 attributes, the construction requires three columns h1, h2, and h3 of a
4 × 4 Hadamard matrix, such as h1 = (1, 1, −1, −1)′, h2 = (1, −1, 1, −1)′, and h3 =
(1, −1, −1, 1)′. Then, in the matrix (h1, h2, h3), every 1 is replaced with x+ and every −1
with x− which leads to the array of pairs in Table 22.1a. Each row of the array is used to
form one pair of alternatives in the optimal design. For every choice set n, the first alter-
native xn,1 consists of the first components of each of the pairs in row n of Table 22.1a,
while the second components of the pairs form the second alternative xn,2. The N = 24
resulting pairs of the optimal design are shown in Table 22.1b. It should be noted that,
although the order of the alternatives within the pairs of the optimal design is distin-
guished, the optimality of the design is not affected by interchanging alternatives within
pairs. Thus, in Table 22.1b, every pair (xn,1, xn,2) could be replaced with (xn,2, xn,1).

Another construction of D-optimal designs (Graßhoff et al. 2004), which does not nec-
essarily require the K attributes to have the same number of levels, combines orthogonal
arrays (e.g., see Chapter 9 and Hedayat et al. 1999) with single-attribute designs for the
paired comparison model (22.6). The first building block of these optimal designs is an
asymmetric orthogonal array of strength two with N rows, K columns, and mk symbols in

TABLE 22.1

Illustration of Hadamard Construction for Optimal Main-Effects-Only Designs

(a) Array from Substituting 1 and −1

in (h1, h2, h3) with x+ and x− (b) Pairs (xn,1, xn,2) of Optimal Design

(1,2) (1,2) (1,2) ((1,1,1), (2,2,2))

(1,3) (1,3) (1,3) ((1,1,1), (3,3,3))
(1,4) (1,4) (1,4) ((1,1,1), (4,4,4))

(2,3) (2,3) (2,3) ((2,2,2), (3,3,3))
(2,4) (2,4) (2,4) ((2,2,2), (4,4,4))

(3,4) (3,4) (3,4) ((3,3,3), (4,4,4))
(1,2) (2,1) (2,1) ((1,2,2), (2,1,1))
(1,3) (3,1) (3,1) ((1,3,3), (3,1,1))

(1,4) (4,1) (4,1) ((1,4,4), (4,1,1))
(2,3) (3,2) (3,2) ((2,3,3), (3,2,2))

(2,4) (4,2) (4,2) ((2,4,4), (4,2,2))
(3,4) (4,3) (4,3) ((3,4,4), (4,3,3))

(2,1) (1,2) (2,1) ((2,1,2), (1,2,1))
(3,1) (1,3) (3,1) ((3,1,3), (1,3,1))
(4,1) (1,4) (4,1) ((4,1,4), (1,4,1))

(3,2) (2,3) (3,2) ((3,2,3), (2,3,2))
(4,2) (2,4) (4,2) ((4,2,4), (2,4,2))

(4,3) (3,4) (4,3) ((4,3,4), (3,4,3))
(2,1) (2,1) (1,2) ((2,2,1), (1,1,2))

(3,1) (3,1) (1,3) ((3,3,1), (1,1,3))
(4,1) (4,1) (1,4) ((4,4,1), (1,1,4))
(3,2) (3,2) (2,3) ((3,3,2), (2,2,3))

(4,2) (4,2) (2,4) ((4,4,2), (2,2,4))
(4,3) (4,3) (3,4) ((4,4,3), (3,3,4))
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column k, k = 1, . . . , K, which is commonly denoted by OA(N; m1, . . . , mK; 2). The property
that the orthogonal array has strength two means that in every N × 2 subarray, all pairs
of symbols appear equally often as rows. When some attributes have the same number
of levels, it is convenient to use the notation OA(N; mk1

1 , . . . , mkr
r ; 2), where m1, . . . , mr are

distinct numbers of levels of, respectively, k1, . . . , kr attributes and k1 + · · · + kr = K. The
second building block consists of designs that are optimal for the one-attribute version of
the paired comparison model (22.6). For that model with a single attribute at vk levels, the
design that uses the vk(vk − 1)/2 pairs (i, j) where i < j is D-optimal. If vk is odd, then
an optimal design of the same size that is position balanced in the sense that every level
appears the same number of times in the first and second position of the pairs can also
be found (Graßhoff et al. 2004), but if vk is even, such a position balanced optimal design
requires vk(vk − 1) pairs. For a choice experiment with K attributes with v1, . . . , vK lev-
els and choice sets of size m = 2, a D-optimal design can then be obtained by replacing
the symbols in column k of an OA(N; m1, . . . , mK; 2) with the Nk, say, pairs of an opti-
mal design for the model (22.6) with a single attribute at vk levels, where for all but one
attribute the single-attribute design must be position balanced as explained. In order for
the construction to be applicable, each mk must be a multiple of Nk. Therefore, the method
is most useful when all attributes have two or three levels, since in this situation, many suit-
able orthogonal arrays exist. For example, the OA(36; 211, 312; 2) can be used to construct
optimal designs with N = 36 pairs and up to 11 two-level and 12 three-level attributes.
Otherwise, orthogonal arrays with the required properties are much less frequently
available.

Example 22.2

To illustrate the construction of Graßhoff et al. (2004), we consider K = 7 attributes with
v1 = · · · = v6 = 3 and v7 = 4, levels. For k = 1, . . . , 6, the design with the Nk = 3
pairs (1, 2), (2, 3) and (3, 1) is D-optimal and position balanced. For the last attribute with
v7 = 4, the N7 = 6 pairs (i, j) of levels where i < j are also D-optimal in the single-attribute
paired comparison model. Clearly, this design is not position balanced and is the one
exception allowed by the construction. A suitable orthogonal array is the OA(18; 3661; 2)

in Table 22.2a. In each of the first six columns of the orthogonal array, the symbols 0, 1,
and 2 are replaced with the pairs (1, 2), (2, 3), and (3, 1), respectively. Similarly, in the
final column, the symbols 0, 1, 2, 3, 4, and 5 are replaced with the pairs (1, 2), (1, 3), (1, 4),
(2, 3), (2, 4), and (3, 4). The resulting array is shown in Table 22.2b, where each row will
be used to construct a choice set. For every row, the corresponding choice set in the final
design is obtained by collecting the first components of the pairs in Table 22.2b into the
first alternative and the second components into the second alternative of the choice set.
This gives the D-optimal design displayed in Table 22.2c.

It is worth emphasizing that in order for the method to work, for all but one of the K
attributes, a position balanced design as described earlier needs to be used. Otherwise,
the resulting design can be very inefficient. For example, in a recent description of the
method (Street and Burgess 2012), the situation in Example 22.2 with K = 7 attributes and
v1 = · · · = v6 = 3 and v7 = 4 levels was considered, but for the three-level attributes, the
symbols 0, 1, and 2 in Table 22.2a were replaced with—in our notation—the imbalanced
single-attribute design (1, 2), (1, 3), and (2, 3) leading to a design (Street and Burgess 2012,
Table 10.13(b)) with a D-efficiency of 48.075%. This design does however not satisfy the
conditions of Theorem 4 in Graßhoff et al. (2004, p. 369). In Table 10.13(c) of Street and
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TABLE 22.2

Construction of Optimal Main-Effects-Only Design from Orthogonal Array

(a) OA(18; 3661; 2) (b) OA(18; 3661; 2) with symbols replaced

0 0 0 0 0 0 0 (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2)
0 0 1 1 2 2 1 (1,2) (1,2) (2,3) (2,3) (3,1) (3,1) (1,3)

0 1 0 2 2 1 2 (1,2) (2,3) (1,2) (3,1) (3,1) (2,3) (1,4)
0 1 2 0 1 2 3 (1,2) (2,3) (3,1) (1,2) (2,3) (3,1) (2,3)

0 2 1 2 1 0 4 (1,2) (3,1) (2,3) (3,1) (2,3) (1,2) (2,4)
0 2 2 1 0 1 5 (1,2) (3,1) (3,1) (2,3) (1,2) (2,3) (3,4)
1 0 0 2 1 2 5 (2,3) (1,2) (1,2) (3,1) (2,3) (3,1) (3,4)

1 0 2 0 2 1 4 (2,3) (1,2) (3,1) (1,2) (3,1) (2,3) (2,4)
1 1 1 1 1 1 0 (2,3) (2,3) (2,3) (2,3) (2,3) (2,3) (1,2)

1 1 2 2 0 0 1 (2,3) (2,3) (3,1) (3,1) (1,2) (1,2) (1,3)
1 2 0 1 2 0 3 (2,3) (3,1) (1,2) (2,3) (3,1) (1,2) (2,3)

1 2 1 0 0 2 2 (2,3) (3,1) (2,3) (1,2) (1,2) (3,1) (1,4)
2 0 1 2 0 1 3 (3,1) (1,2) (2,3) (3,1) (1,2) (2,3) (2,3)
2 0 2 1 1 0 2 (3,1) (1,2) (3,1) (2,3) (2,3) (1,2) (1,4)

2 1 0 1 0 2 4 (3,1) (2,3) (1,2) (2,3) (1,2) (3,1) (2,4)
2 1 1 0 2 0 5 (3,1) (2,3) (2,3) (1,2) (3,1) (1,2) (3,4)

2 2 0 0 1 1 1 (3,1) (3,1) (1,2) (1,2) (2,3) (2,3) (1,3)
2 2 2 2 2 2 0 (3,1) (3,1) (3,1) (3,1) (3,1) (3,1) (1,2)

(c) Pairs (xn,1, xn,2) of optimal design

((1,1,1,1,1,1,1), (2,2,2,2,2,2,2))
((1,1,2,2,3,3,1), (2,2,3,3,1,1,3))

((1,2,1,3,3,2,1), (2,3,2,1,1,3,4))
((1,2,3,1,2,3,2), (2,3,1,2,3,1,3))

((1,3,2,3,2,1,2), (2,1,3,1,3,2,4))
((1,3,3,2,1,2,3), (2,1,1,3,2,3,4))
((2,1,1,3,2,3,3), (3,2,2,1,3,1,4))

((2,1,3,1,3,2,2), (3,2,1,2,1,3,4))
((2,2,2,2,2,2,1), (3,3,3,3,3,3,2))

((2,2,3,3,1,1,1), (3,3,1,1,2,2,3))
((2,3,1,2,3,1,2), (3,1,2,3,1,2,3))

((2,3,2,1,1,3,1), (3,1,3,2,2,1,4))
((3,1,2,3,1,2,2), (1,2,3,1,2,3,3))
((3,1,3,2,2,1,1), (1,2,1,3,3,2,4))

((3,2,1,2,1,3,2), (1,3,2,3,2,1,4))
((3,2,2,1,3,1,3), (1,3,3,2,1,2,4))

((3,3,1,1,2,2,1), (1,1,2,2,3,3,3))
((3,3,3,3,3,3,1), (1,1,1,1,1,1,2))

Burgess (2012), another design is presented that is also based on the orthogonal array in
Table 22.2a and that possesses a D-efficiency of 98.10%, whereas the design in Table 22.2c
is in fact D-optimal. If the framework of Burgess and Street (2005) with an orthonormal
matrix B as in (22.10) and appropriate � matrices for the different designs is used, then
the information matrix of the design in Table 10.13(c) of Street and Burgess (2012) is not
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diagonal, whereas the information matrix of the optimal design in Table 22.2c is. Also, for
the latter design, the determinant of the information matrix B�B′ attains the optimal bound
reported in Burgess and Street (2005, p. 295).

22.3.2 Main Effects and Two-Factor Interactions

Main effects models and the corresponding designs are not appropriate if interactions of
the attributes in a choice experiment can be expected. Frequently, it is assumed that higher-
order interactions of three or more attributes are negligible and designs that allow the
estimation of all main effects and two-factor (or first-order) interactions are considered.
No general results appear to be available for the situation where all attributes can have
different numbers of levels. Therefore, we focus on results for experiments in which the
number of levels is the same.

22.3.2.1 Optimal Approximate Designs

In what follows, we consider the situation where all K attributes have v levels and the
design region X is the set of all ordered pairs of K-tuples with components in {1, . . . , v}.
In order to represent main effects and two-factor interactions, the vector f of regression
functions in the MNL model (22.1) or the paired comparison model (22.6) needs to be
defined appropriately. If the attribute levels are effects coded, then for every alternative
xi = (xi,1, . . . , xi,K) ∈ {1, . . . , v}K, the vector is given by

f (xi)= (g′(xi,1), . . . , g′(xi,K), g′(xi,1) ⊗ g′(xi,2), . . . , g′(xi,1) ⊗ g′(xi,K), . . . , g′(xi,K−1) ⊗ g′(xi,K))′,

where for every k = 1, . . . , K, the component g(xi,k) represents the effects-coded attribute
level xi,k. Hence, g(xi,k) is a unit vector of length v−1 with a one in position xi,k if 1 ≤ xi,k < v
and zero otherwise, and g(xi,k) = −1v−1, if xi,k = v. The first K component vectors of
f (xi) are associated with the main effects of the attributes, while the remaining K(K − 1)/2
Kronecker products represent interaction terms for pairs of attributes. The parameter vector
θ can be partitioned similarly and in total, there are p = (v − 1)K + (v − 1)2K(K − 1)/2
parameters.

For every integer 1 ≤ t ≤ K, letX (t) denote the subset ofX that contains all ordered pairs
that possess different levels for exactly t of the K attributes. The number t is called the com-
parison depth (e.g., see Graßhoff et al. 2003) and can be recognized as the Hamming distance
between xi and xj for any pair (xi, xj) of alternatives in X (t). Let ξ̄t be the uniform approx-
imate design on X (t) that gives the same weight to every pair in this set. The information
matrix of every such design is block-diagonal and equal to

Mξ̄t
=

(
h1(t)IK ⊗ Mv 0

0 h2(t)IK(K−1)/2 ⊗ Mv ⊗ Mv

)
, (22.12)

where h1(t) = t/K, h2(t) = t(1 − 1/v − (t − 1)/(2(K − 1)))/K and Mv = 2
v−1 (Iv−1 + Jv−1).

Furthermore, consider

t∗ = K − 1 −
[

K − 2
v

]
,
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where [r] denotes the integer part of r so that [r] ≤ r < [r] + 1, and w∗ = (t∗ + 1)/(t∗v + 1).
It can then be shown (Graßhoff et al. 2003, Theorem 3) that the approximate design ξ̄t∗ is
D-optimal on the design region X if (K −2)/v is not an integer. Otherwise, if (K −2)/v is an
integer, then the approximate design ξ̄t∗,w∗ = w∗ξ̄t∗ +(1−w∗)ξ̄t∗+1 with information matrix
Mξ̄t∗ ,w∗ = w∗Mξ̄t∗ + (1 − w∗)Mξ̄t∗+1

is D-optimal, where Mξ̄t∗ and Mξ̄t∗+1
are the matrices

in (22.12) for ξ̄t∗ and ξ̄t∗+1, respectively.
For the special case v = 2, where all attributes have two levels, it follows that if K is

odd, then the uniform design on the set of all ordered pairs that have different levels for
t∗ = (K+1)/2 of the attributes is D-optimal with information matrix 2(K+1)/KIK+K(K−1)/2.
If K is even, then the uniform design on the set of all ordered pairs that differ in t∗ = K/2
or t∗ + 1 = K/2 + 1 of the attributes is D-optimal and the information matrix is equal to
2(K + 2)/(K + 1)IK+K(K−1)/2. These designs for v = 2 were obtained before in a regression
setting by Van Berkum (1987, pp. 30–31) and later for the multinomial logit model by Street
et al. (2001) who use the approach of El-Helbawy and Bradley (1978).

22.3.2.2 Constructions for Main Effects and Two-Factor Interactions

Similar to the situation where only the main effects are to be estimated, the optimal designs
in Graßhoff et al. (2003), Van Berkum (1987), and Street et al. (2001) for main effects and
two-factor interactions are not practical since, apart from a few special cases, they require
respondents to assess too many choice sets. Nevertheless, the designs are useful for the
following reasons. First, the corresponding optimal information matrices allow the com-
putation of the efficiency of any proposed design. Secondly, by considering which sorts of
pairs are used by the optimal designs, it is possible to get an idea as to which pairs should
be used for generating good designs with fewer choice sets.

The available methods for constructing efficient exact designs with more practical num-
bers of pairs that have been proposed to date are, essentially, limited to the case where
all attributes have v = 2 levels. Instead of trying to find strictly optimal designs, which
often would again lead to prohibitively large numbers of choice sets, these techniques sac-
rifice some efficiency for the benefit of being able to reduce the size of the designs. In one
approach (Street and Burgess 2004a; Street et al. 2005), each treatment combination of the
2K full factorial or a fractional factorial design of resolution V or higher is used to spec-
ify the first alternative in a pair, and the second alternative in each pair is obtained by
adding generators in the same way as was described in Section 22.3.1.2. Some examples
and limited extensions to situations with different numbers of levels can be found in Street
and Burgess (2007).

Another technique (Großmann et al. 2012) uses Hadamard matrices, fractional facto-
rial and incomplete block designs to generate designs that consist entirely of pairs that
have different levels for t of the K two-level attributes. In principle, t can be chosen arbi-
trarily, but since the uniform designs ξ̄t mentioned earlier are highly efficient if, for odd
values of K, t is taken to be t∗ = (K + 1)/2 and, for even values of K, t = t∗ = K/2
or t∗ + 1 = K/2 + 1 is used, at least heuristically, this suggests the use of these values
also when constructing exact designs with smaller numbers of pairs. That with this choice
of t, highly efficient designs can indeed be found is illustrated by Großmann et al. (2012) for
K = 3, . . . , 8.

For given values of K and t, the construction of designs for estimating main effects
and two-factor interactions in Großmann et al. (2012) requires three building blocks: a
Hadamard matrix H of order a ≥ t, a regular two-level fractional factorial design of
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resolution III or higher for K − t attributes (or the 2K−t full factorial if K − t ≤ 2) repre-
sented by a u × (K − t) matrix F, and a binary incomplete block design for K treatments
in b blocks of size t represented by a t × b matrix B. Elements of F are coded as ±1 and in
B, the integers 1, . . . , K are used to indicate the treatments. The construction can then be
summarized as follows. First, an a × t matrix A is obtained by selecting t columns of H.
Secondly, two au × K matrices S and T are formed by combining the rows of A and −A
with the rows of F as shown schematically in Figure 22.1. More precisely, S is obtained by
using u copies of A and, for each copy, every row of A is concatenated with a fixed row of
F. The matrix T is obtained in a similar way by using −A. Finally, each of the b columns
or blocks of B is used to permute the columns of a copy of S and T to generate au pairs of
the design. More specifically, for a particular column g of B with elements b1,g, . . . , bt,g, the
original columns 1, . . . , t of both S and T become the columns b1,g, . . . , bt,g in the permuted
matrices, and the remaining K−t columns t+1, . . . , K of S and T are moved to the positions
c1,g < . . . < cK−t,g, where {c1,g, . . . , cK−t,g} = {1, . . . , K}\{b1,g, . . . , bt,g}. The au pairs for col-
umn g of B are obtained by combining every row of the permuted matrix S with the same
row of the permuted matrix T. In other words, every choice set consists of a row from one
of the permuted copies of S and the corresponding row of T. The procedure is repeated for
each of the columns in B. The final design has N = bau pairs. Note that, in the final design,
the numbers 1 and −1 represent the effects-coded levels 1 and 2, respectively.

Example 22.3

An example of a design with N = 48 pairs that have different levels for t = 3 out of K = 6
attributes is shown in Table 22.3. For n = 1, . . . , 48, the table gives the pairs (xn,1, xn,2),
where for simplicity of presentation, the values 1 and −1 are indicated by their signs.
This design was constructed from a Hadamard matrix of order a = 4, a regular half frac-
tion of the 23 full factorial, and an incomplete block design with blocks {1, 2, 3}, {1, 4, 5},
and {2, 4, 6}. In the first 16 pairs, the levels of the attributes 1, 2, and 3 in each alterna-
tive are determined by three columns of the Hadamard matrix, whereas the levels of the
three remaining attributes are the same in both alternatives and correspond to the rows
of the fractional factorial design. Likewise, for the pairs 17–32 and 33–48, the levels of the
attributes in columns 1, 4, 5 and 2, 4, 6, respectively, depend on the three chosen columns
of the Hadamard matrix, while the common levels of the remaining attributes are deter-
mined by the fractional factorial design. The final design has a D-efficiency of 91.85% for
estimating the main effects and all two-factor interactions.
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FIGURE 22.1
Matrices S and T in design construction for main effects and interactions.
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TABLE 22.3

Design for Estimating Main Effects and Two-Factor Interactions of K = 6 Two-Level
Attributes Generated by Method in Großmann et al. (2012)

n Pair (xn,1, xn,2) n Pair (xn,1, xn,2)

1 ((−, −, −, −, −, −), (+, +, +, −, −, −)) 25 ((−, +, −, −, −, +), (+, +, −, +, +, +))

2 ((−, +, +, −, −, −), (+, −, −, −, −, −)) 26 ((−, +, −, +, +, +), (+, +, −, −, −, +))

3 ((+, −, +, −, −, −), (−, +, −, −, −, −)) 27 ((+, +, −, −, +, +), (−, +, −, +, −, +))

4 ((+, +, −, −, −, −), (−, −, +, −, −, −)) 28 ((+, +, −, +, −, +), (−, +, −, −, +, +))

5 ((−, −, −, −, +, +), (+, +, +, −, +, +)) 29 ((−, +, +, −, −, −), (+, +, +, +, +, −))

6 ((−, +, +, −, +, +), (+, −, −, −, +, +)) 30 ((−, +, +, +, +, −), (+, +, +, −, −, −))

7 ((+, −, +, −, +, +), (−, +, −, −, +, +)) 31 ((+, +, +, −, +, −), (−, +, +, +, −, −))

8 ((+, +, −, −, +, +), (−, −, +, −, +, +)) 32 ((+, +, +, +, −, −), (−, +, +, −, +, −))

9 ((−, −, −, +, −, +), (+, +, +, +, −, +)) 33 ((−, −, −, −, −, −), (−, +, −, +, −, +))

10 ((−, +, +, +, −, +), (+, −, −, +, −, +)) 34 ((−, −, −, +, −, +), (−, +, −, −, −, −))

11 ((+, −, +, +, −, +), (−, +, −, +, −, +)) 35 ((−, +, −, −, −, +), (−, −, −, +, −, −))

12 ((+, +, −, +, −, +), (−, −, +, +, −, +)) 36 ((−, +, −, +, −, −), (−, −, −, −, −, +))

13 ((−, −, −, +, +, −), (+, +, +, +, +, −)) 37 ((−, −, +, −, +, −), (−, +, +, +, +, +))

14 ((−, +, +, +, +, −), (+, −, −, +, +, −)) 38 ((−, −, +, +, +, +), (−, +, +, −, +, −))

15 ((+, −, +, +, +, −), (−, +, −, +, +, −)) 39 ((−, +, +, −, +, +), (−, −, +, +, +, −))

16 ((+, +, −, +, +, −), (−, −, +, +, +, −)) 40 ((−, +, +, +, +, −), (−, −, +, −, +, +))

17 ((−, −, −, −, −, −), (+, −, −, +, +, −)) 41 ((+, −, −, −, +, −), (+, +, −, +, +, +))

18 ((−, −, −, +, +, −), (+, −, −, −, −, −)) 42 ((+, −, −, +, +, +), (+, +, −, −, +, −))

19 ((+, −, −, −, +, −), (−, −, −, +, −, −)) 43 ((+, +, −, −, +, +), (+, −, −, +, +, −))

20 ((+, −, −, +, −, −), (−, −, −, −, +, −)) 44 ((+, +, −, +, +, −), (+, −, −, −, +, +))

21 ((−, −, +, −, −, +), (+, −, +, +, +, +)) 45 ((+, −, +, −, −, −), (+, +, +, +, −, +))

22 ((−, −, +, +, +, +), (+, −, +, −, −, +)) 46 ((+, −, +, +, −, +), (+, +, +, −, −, −))

23 ((+, −, +, −, +, +), (−, −, +, +, −, +)) 47 ((+, +, +, −, −, +), (+, −, +, +, −, −))

24 ((+, −, +, +, −, +), (−, −, +, −, +, +)) 48 ((+, +, +, +, −, −), (+, −, +, −, −, +))

It can be proved (Großmann et al. 2012) that the normalized information matrix in the
paired comparison model (22.6) of every design of the aforementioned type is a diago-
nal matrix that is entirely determined by the incomplete block design B. More precisely,
this information matrix depends only on the number of blocks b, the replication num-
bers rk, k = 1, . . . , K, of the treatments, and the concurrences λk,� of the treatments, where
1 ≤ k < � ≤ K. The diagonal element of the information matrix corresponding to the main
effect of attribute k is equal to 4rk/b and the diagonal element corresponding to the interac-
tion of the attributes k and � is equal to 4(rk + r� − 2λk,�)/b. As a consequence, the efficiency
of every design of the aforementioned type can be computed very quickly without actu-
ally having to construct the design explicitly. If, for appropriate values of the block size
t, we can choose B as a balanced incomplete block design, so that the replication num-
bers are equal and also the concurrences are equal, then the corresponding choice design
will usually possess a high D-efficiency (Großmann et al. 2012). Moreover, for given values
of K and t and after choosing a Hadamard matrix H of order a and a fractional factorial
design F with u treatment combinations, the best design of the aforementioned type with
N = bau choice sets can be found by performing an exhaustive computer search over all
binary incomplete block designs B for K treatments in b blocks of size t, which again can be
done very quickly. A comparison (Großmann et al. 2012) shows that for the same number of



Design for Discrete Choice Experiments 807

pairs, the aforementioned designs are equally or more efficient than the designs proposed
by Street and Burgess (2004a).

22.3.3 Partial Profiles

The designs in Tables 22.2c and Table 22.3 illustrate a potential issue in choice experiments
that use very detailed descriptions of the alternatives, as reflected by a large number of
attributes. On the one hand, increasing the number of attributes adds to realism but, on
the other hand, empirical studies in psychology and other areas have demonstrated that
when confronted with large amounts of information, respondents may resort to simplifying
strategies in their preference judgments, such as ignoring part of the information or basing
decisions only on subsets of the attributes. We do not attempt to review the voluminous
literature here, but note only that such strategies may lead to violations of the assumption
of the model (22.1) or (22.6) that the overall utility of every alternative xn,i is, essentially, a
linear function f ′(xn,i)θ of the parameters. There does not appear to be a consensus about
the extent of this so-called information overload problem but, in agreement with common
sense, empirical studies of task complexity show (e.g., see Caussade et al. 2005) that the
number of attributes is one of the dimensions that influence complexity.

An early suggestion by Green (1974) for handling many attributes that was made in
the context of conjoint analysis research proposes to describe each alternative by only a
subset of the attributes in a study. A variant of this idea still uses all attributes but restricts
the number of attributes for which the alternatives in every choice set are allowed to have
different levels. Such incomplete or restricted descriptions of the alternatives are known as
partial profiles (e.g., see Chrzan 2010). It is hoped that, when these are used, respondents are
more likely to apply a decision process that conforms with the linearity assumption in the
choice model about how the effects of the attributes are combined.

The problem of finding optimal designs for model (22.6) when the design region is
restricted to pairs of partial profiles and when only the main effects of the attributes are
to be estimated was considered by Graßhoff et al. (2004) for attributes with equal numbers
of levels and by Großmann et al. (2006) for the general situation of unequal numbers of
levels. For K attributes with v1, . . . , vK levels, respectively, the design region X (t) is the set
of all ordered pairs (xn,1, xn,2) that have different levels for exactly t of the attributes. The
levels of the other K − t attributes are the same in the ordered pair, but not necessarily the
same from pair to pair (see Example 22.4).

In the terminology of Section 22.3.2, the number t is the comparison depth. However,
in the discussion of main-effects-only models, t is more frequently referred to as the profile
strength (e.g., see Graßhoff et al. 2004), mainly because it is envisaged that for every pair
in X (t), only the t attributes that have different levels will be shown to the respondents. In
what follows, for reasons of consistency and in accordance with Graßhoff et al. (2003), we
reserve the term comparison depth for the number t of attributes for which the two alterna-
tives in a pair have different levels, whereas the term profile strength is used to designate the
number q of attributes that are used when presenting pairs to respondents. We assume that
t ≤ q ≤ K and that the t attributes that differentiate the two alternatives in every pair are
always among the q attributes that are shown. For the main-effects-only models considered
here, it is then worthwhile to note that for a given comparison depth t, the same designs
are D-optimal regardless of the value of q.

If all attributes have the same number of levels vk = v, say, for k = 1, . . . , K, then the uni-
form approximate design ξ̄ on X (t) is D-optimal with a block-diagonal information matrix.
Under effects coding, this matrix is given by Mξ̄ = t

K IK ⊗Mv, where Mv = 2
v−1 (Iv−1+Jv−1).
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Graßhoff et al. (2004) present a method for constructing D-optimal exact designs with prac-
tical numbers of choice sets that combines certain incomplete block designs and Hadamard
matrices. These designs require N = v(v − 1)�K/(2 gcd(t, K)) pairs of partial profiles,
where � is the smallest integer greater than or equal to the comparison depth t for which
a Hadamard matrix of order � exists and gcd(t, K) denotes the greatest common divisor of
t and K.

In the general case of attributes with different numbers of levels, there exist D-optimal
approximate designs for estimating main effects that are convex combinations or mixtures
of uniform designs on certain subsets of the design region (Großmann et al. 2006). Under
effects coding, the information matrix of such an optimal design for estimating main effects
is block diagonal with a block for each attribute, that for k = 1, . . . , K is equal to ckMvk ,
where ck is a constant that depends on the design and Mvk = 2

vk−1 (Ivk−1 + Jvk−1). It can be

shown (Großmann et al. 2006) that if ck = (vk − 1)t/p for every k, where p = ∑K
k=1 (vk − 1)

is the total number of model parameters, then the corresponding design is D-optimal with
a constant variance function that takes the value p over the whole design region. It is worth
pointing out, however, that there also exist D-optimal designs whose variance function
is not constant (Großmann et al. 2009) and for which the constants ck, k = 1, . . . , K, are
different from (vk − 1)t/p.

Which designs are optimal depends very much on the number of attributes K, the com-
parison depth t, and the numbers of levels v1, . . . , vK. In applications, often some of the
attributes have the same number of levels and by grouping the attributes accordingly, char-
acterizations of optimal designs can be obtained more easily. For the situation in which
there are K1 attributes with u1 levels and K2 = K−K1 attributes with u2 levels, where K ≥ 2
and u1 < u2, optimal approximate and exact designs for comparison depth t < K are pre-
sented in Großmann et al. (2009). These designs use at most two different types of pairs in
X (t) where, by definition, the alternatives in a pair of type (n1, n2) with n1 + n2 = t have
different levels for n1 attributes with u1 levels and n2 attributes with u2 levels.

Example 22.4

Table 22.4 shows an exact D-optimal design with N = 28 pairs for K = 5 attributes and
t = 3, which was constructed by using the methods of Großmann et al. (2009), where the
K1 = 3 attributes in the first group have u1 = 2 levels and the K2 = 2 attributes in the
second group have u2 = 3 levels. In the table, attribute levels that are held constant in
the two alternatives of a pair are represented by asterisks. Since in the main effects model
the design matrix and, hence, the information matrix and the design efficiency are not
affected by the choice of the constant levels, asterisks in the two alternatives of a pair
that represent a level of the same attribute can be replaced with any of the possible levels
of that attribute. For example, the first pair in Table 22.4 is ((2, 2, 2, ∗, ∗), (1, 1, 1, ∗, ∗)). In
both alternatives the asterisks indicating the constant level of the fourth attribute could
be replaced with 1, whereas the asterisks corresponding to the constant level of the fifth
attribute could be replaced with 3 to give ((2, 2, 2, 1, 3), (1, 1, 1, 1, 3)). Alternatively, replac-
ing the constant levels of the fourth and fifth attribute with 3 and 2, respectively, would
be another possibility that would give the pair ((2, 2, 2, 3, 2), (1, 1, 1, 3, 2)). Moreover, in
different pairs, asterisks representing levels of the same attribute can be replaced with
different levels of the attribute. For example, whereas in the first pair in Table 22.4 level 1
could be used for the fourth and level 3 for the fifth attribute, in the second pair of the
table, levels 3 and 2 could be used, respectively, to replace the asterisks representing the
constant levels of the fourth and fifth attribute, and so the first two pairs in the table
would become ((2, 2, 2, 1, 3), (1, 1, 1, 1, 3)) and ((2, 1, 1, 3, 2), (1, 2, 2, 3, 2)).
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TABLE 22.4

Optimal Partial Profile Design Generated by Method in Großmann et al. (2009)

n Pair (xn,1, xn,2) n Pair (xn,1, xn,2)

1 ((2, 2, 2, ∗, ∗), (1, 1, 1, ∗, ∗)) 15 ((∗, 2, ∗, 3, 1), (∗, 1, ∗, 1, 3))

2 ((2, 1, 1, ∗, ∗), (1, 2, 2, ∗, ∗)) 16 ((∗, ∗, 2, 3, 2), (∗, ∗, 1, 2, 3))

3 ((1, 2, 1, ∗, ∗), (2, 1, 2, ∗, ∗)) 17 ((1, ∗, ∗, 1, 2), (2, ∗, ∗, 2, 1))

4 ((1, 1, 2, ∗, ∗), (2, 2, 1, ∗, ∗)) 18 ((∗, 1, ∗, 1, 3), (∗, 2, ∗, 3, 1))

5 ((2, ∗, ∗, 2, 2), (1, ∗, ∗, 1, 1)) 19 ((∗, ∗, 1, 2, 3), (∗, ∗, 2, 3, 2))

6 ((∗, 2, ∗, 3, 3), (∗, 1, ∗, 1, 1)) 20 ((2, ∗, ∗, 1, 1), (1, ∗, ∗, 2, 2))

7 ((∗, ∗, 2, 3, 3), (∗, ∗, 1, 2, 2)) 21 ((∗, 2, ∗, 1, 1), (∗, 1, ∗, 3, 3))

8 ((1, ∗, ∗, 2, 1), (2, ∗, ∗, 1, 2)) 22 ((∗, ∗, 2, 2, 2), (∗, ∗, 1, 3, 3))

9 ((∗, 1, ∗, 3, 1), (∗, 2, ∗, 1, 3)) 23 ((2, ∗, ∗, 1, 2), (1, ∗, ∗, 2, 1))

10 ((∗, ∗, 1, 3, 2), (∗, ∗, 2, 2, 3)) 24 ((∗, 2, ∗, 1, 3), (∗, 1, ∗, 3, 1))

11 ((1, ∗, ∗, 2, 2), (2, ∗, ∗, 1, 1)) 25 ((∗, ∗, 2, 2, 3), (∗, ∗, 1, 3, 2))

12 ((∗, 1, ∗, 3, 3), (∗, 2, ∗, 1, 1)) 26 ((1, ∗, ∗, 1, 1), (2, ∗, ∗, 2, 2))

13 ((∗, ∗, 1, 3, 3), (∗, ∗, 2, 2, 2)) 27 ((∗, 1, ∗, 1, 1), (∗, 2, ∗, 3, 3))

14 ((2, ∗, ∗, 2, 1), (1, ∗, ∗, 1, 2)) 28 ((∗, ∗, 1, 2, 2), (∗, ∗, 2, 3, 3))

In practice, often the attributes with constant levels would be omitted from the alterna-
tives when pairs are presented to respondents. For example, in applications of the design
in Table 22.4, typically only the three attributes with nonconstant levels would be used to
characterize the alternatives in every pair. Thus, when making their choices, respondents
only have to consider three of the five attributes which reduces the amount of informa-
tion to be processed considerably. As was mentioned before, omitting the attributes with
constant levels does not change the efficiency of the design for estimating the main effects.

Optimal designs for experiments where the attributes can be arranged into three groups
with different numbers of levels are presented by Großmann et al. (2014), where due to the
interplay between the group sizes, the comparison depth and the numbers of levels, more
than 40 different designs have to be distinguished. The paper reports D-optimal approxi-
mate designs, but does not give any constructions of exact designs with practical numbers
of pairs. This remains a challenging problem.

Deriving optimal designs for pairs of partial profiles when all two-factor interactions in
addition to the main effects are to be estimated becomes even more challenging. In this set-
ting, it is necessary to distinguish explicitly between the profile strength, that is, the number
of attributes that are presented, and the comparison depth, that is, the number of attributes
for which the alternatives in a pair have different levels. Optimal approximate designs and
the corresponding information matrices can be found in Graßhoff et al. (2003) for the case
where all attributes have the same number of levels. The construction of relatively small
exact designs that possess good efficiency properties appears to be an open problem.

22.4 Designs for Larger Choice Sets

The use of choice sets with three or more alternatives is often motivated by reference to
the similarity between the corresponding choice experiments and choice problems in the
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real world. More specifically, experiments with larger choice sets are regarded as being
more realistic, since, for example, purchasing a product usually requires choosing one of
potentially many alternatives. In addition, there appears to be a widespread belief that
larger choice sets provide more information than can be obtained from paired comparisons.
This section considers this claim in some detail before looking at how optimal designs for
the MNL model with choice sets of size m ≥ 3 can be derived. Here, the emphasis is again
on analytic results which, for the most part, can only be obtained under the assumption of
indifference, that is, for θ = 0. Computational approaches for the case where θ �= 0 will be
described in Section 22.5.

22.4.1 Efficiency Gains due to Increased Size of Choice Sets

According to formula (22.3), the asymptotic information for a single choice set with m
alternatives is given by

MC,θ = X′(diag(pθ) − pθp′
θ)X,

where we have suppressed the index n specifying the choice set C. It is not hard to see that
MC,θ can also be expressed as

MC,θ =
∑

1≤i<j≤m

pθ(i; C)pθ(j; C)(f (xi) − f (xj))(f
′(xi) − f ′(xj)),

which is a weighted sum

MC,θ =
∑

1≤i<j≤m

(
ef ′(xi)θ + ef ′(xj)θ∑m

k=1 ef ′(xk)θ

)2

M{xi,xj},θ

of the information matrices

M{xi,xj},θ = pθ(i; {xi, xj}) pθ(j; {xi, xj})(f (xi) − f (xj)(f
′(xi) − f ′(xj)) (22.13)

for the individual pairs (xi, xj) in a paired comparison experiment that can be formed from
the alternatives within the choice set C. In the case of indifference, that is, for θ = 0, this
representation of MC,θ simplifies to

MC,0 = 4
m2

∑
1≤i<j≤m

M{xi,xj},0. (22.14)

By the linearity of the information matrix, this decomposition carries over to any design ξ

on the set of choice sets, so that

Mξ,0 = 4
m2

∑
1≤i<j≤m

Mξij,0,

where ξij is the two-dimensional marginal of ξ for the ith and jth alternative. Note that ξij
uses choice sets of size two, which are obtained by selecting the ith and jth alternative from
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every choice set of the design ξ. Hence, for any homogeneous criterion function �, defined
on the set of nonnegative definite symmetric matrices, which is to be maximized, we obtain
an upper bound

�(Mξ∗,0) ≤ 2
m − 1

m
�

(
Mξ∗

(12)
,0

)

for any optimal design ξ∗ on the choice sets of size m with respect to an optimal paired
comparison design ξ∗

(12)
, say, for choice sets of size 2. This immediately implies that the

relative efficiency of ξ∗ with respect to ξ∗
(12)

satisfies the inequality

eff�(ξ∗; ξ∗
(12)) = �(Mξ∗,0)

�(Mξ∗
(12)

,0)
≤ 2

m − 1
m

. (22.15)

In particular, even if the size m gets large, this relative efficiency cannot exceed the value
of 2. It is worth noting that the bound in (22.15) is not only valid for main effects models
but for any vector f of regression functions in the MNL model (22.1).

In main-effects-only models, in general, this upper bound can only be achieved, if all
two-dimensional marginal designs ξ∗

ij, 1 ≤ i < j ≤ m, of ξ∗ are optimal for the paired
comparison model (22.6). This can and will only be the case if, for each attribute, the number
of levels is at least equal to the size m of the choice sets. For smaller numbers of levels,
eff�(ξ∗; ξ∗

(12)
) may drop below 1, which means that sometimes using choice sets of size two

may be preferable to using sets of size m, as will be seen in Section 22.4.2. The homogeneous
function � that corresponds to the D-criterion is defined by �(M) = (det(M))1/p for every
nonnegative definite symmetric p×p matrix M, where p is the number of model parameters.

Equation 22.15 can be rearranged to give a lower bound for the efficiency of the opti-
mal paired comparison design ξ∗

(12)
relative to the optimal choice design ξ∗ with choice

sets of size m > 2. If follows that for m = 3, . . . , 6, the lower bounds for the efficiency of the
optimal paired comparison design are equal to 75%, 66.66%, 62.5%, and 60%, respectively.
These bounds are in agreement with results for the D-criterion reported in Burgess and
Street (2006), where the relative D-efficiency of the paired comparison design with respect
to designs with larger choice sets can be obtained by dividing the value for m = 2 in their
tables by the corresponding values for larger choice set size m. In the cases where for main-
effects-only models the aforementioned lower bounds are attained, it can be seen that the
number of levels of each attribute is greater than or equal to m as expected.

By using experiments with choice sets of size m = 3 or m = 4, sometimes, substantial
efficiency gains may be achieved, although whether this is possible depends on the number
of attribute levels. Increasing the size of the choice sets further leads only to diminishing
improvements. Also, when the size of the choice sets for an empirical application is deter-
mined, the potential statistical efficiency gains for m > 2 need to be balanced with the
increased information processing requirements that may affect the quality of the responses.
Thus, although studies with very large choice sets have been reported, it appears that choice
sets of size m = 2, 3, or 4 are probably most useful for applications.

22.4.2 Relationship with Block Designs

Under the indifference assumption θ = 0, there exists an intimate relationship between
the MNL model and models for blocked experiments in which both the attributes and the
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blocks have fixed effects. To this end, every choice set is regarded as a block. Consider first
the linear model

y = Xθ + Zγ + ε, (22.16)

where X is obtained by stacking the m × p matrices X1, . . . , XN corresponding to N choice
sets C1, . . . , CN of size m. Moreover, Z = IN ⊗ 1m is an mN × N matrix of zeros and ones
that for every row of X indicates the block (choice set) to which the alternative represented
by that row belongs. The parameter vectors θ and γ represent the effects of the attributes
and the effects of the blocks, respectively. Provided θ is estimable under the given design,
the information matrix for estimating θ in this model is equal to (e.g., see Goos 2002, p. 15)

M̃ = X′X − X′Z(Z′Z)−1Z′X =
N∑

n=1

X′
nKmXn, (22.17)

where Km denotes again a centering matrix. Under indifference, the information matrix for
the MNL model in Equation 22.4 is equal to 1

m M̃, where 1/m is the constant probability of
choosing an alternative. For optimality criteria that are based on the information matrix,
this relationship shows that blocked designs that are optimal for estimating θ in the lin-
ear model with fixed block effects are also optimal for the MNL choice model under the
indifference assumption.

When there is only a single attribute at v levels, a design for a choice experiment with N
sets of size m can be regarded as a classical block design d with v treatments in N blocks of
size m. We consider this situation in some detail and use results for this setting later in the
section to generate choice designs with choice sets of size m that are optimal for estimating
main effects in experiments with K attributes.

Assuming that blocks and treatments have fixed effects, the model for v treatments in N
blocks of size m is

y = 1mNμ + X̃θ̃ + Zγ + ε, (22.18)

where X̃ is now an mN × v matrix of zeros and ones indicating which treatments are used
on the units corresponding to the rows of the matrix and the parameter vector θ̃ of length v
has a component for every treatment or attribute level. The matrix Z and the vectorγ are the
same as in (22.16) and the parameter μ represents a general mean. The information matrix
for d is based on the intrablock analysis (John and Williams 1995) and usually expressed in
the form

Cd = diag(r1, . . . , rv) − 1
m

NN′, (22.19)

where r1, . . . , rv are the replication numbers of the levels and the v×N matrix N is the incidence
matrix (e.g., see Shah and Sinha 1989). It should be noted that, in accordance with Kiefer
(1958, p. 686), here, the elements of N are not restricted to be equal to zero or one but can
be nonnegative integers. Thus, incomplete block designs with or without replication in
the same block as well as complete block designs with possibly unequal replication of the
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treatments in the same block are covered. The matrix Cd can be written as M̃ in the first
equation of (22.17) where only X has to be replaced with X̃.

Following Kiefer (1958, p. 689), in this setting with v treatments and N blocks of size m,
a design is called a balanced block design (BBD) if (1) all elements nij of N are equal to m/v
if this ratio is an integer and are either of the two integers closest to m/v otherwise, (2) all
v treatments have the same replication ri = r, and (3) all λij = ∑N

k=1 niknjk are equal to,
say, λ for i �= j. Also see Chapter 3. For a BBD d∗, the matrix Cd∗ is completely symmetric
and hence has only two distinct eigenvalues (Rao 1973, p. 67). The eigenvalue zero has
multiplicity one with corresponding eigenvector 1v and the eigenvalue r + (λ − ρ)/m has
multiplicity v − 1, where ρ is the element on the diagonal of NN′.

Now consider the problem of estimating a vector of v − 1 orthonormal contrasts of θ̃,
in the block design model (22.18), that is, of a vector Pθ̃ where PP′ = Iv−1 and P1v = 0. In
order for Pθ̃ to be estimable, it is necessary and sufficient that Cd has rank v−1. A design d
with this property is called connected. The covariance matrix of a connected design for esti-
mating Pθ̃ is (PCdP′)−1 (Kiefer 1958) and the corresponding information matrix is just the
inverse. If a BBD d∗ exists, then, among other things, this is D-optimal for estimating Pθ̃ in
the class of all connected designs (Kiefer 1958, Theorem 3.1). In other words, det(PCd∗P′) ≥
det(PCdP′) for every connected design d. The columns of P′ form an orthonormal basis of
the eigenspace for eigenvalue r+(λ−ρ)/m and so PCd∗P′ = (r+(λ−ρ)/m)Iv−1 is a multiple
of the identity matrix.

For every (v−1)×v matrix L whose rows are not necessarily orthogonal but which span
the same vector space as the rows of P, there exists a nonsingular matrix Q of order v − 1
such that L = QP. The covariance matrix of a block design d for estimating Lθ̃ in the block
design model (22.18) is then equal to Q(PCdP′)−1Q′ and the corresponding information
matrix is (Q−1)′(PCdP′)Q−1. It follows that the same designs are D-optimal for estimat-
ing Pθ̃ and Lθ̃. Such functions Lθ̃ are of interest since the components of Lθ̃ may have a
clearer interpretation than those of Pθ̃. For example, the matrix L = (Iv−1, 0) − 1

v 1v−11′
v

transforms θ̃ into a vector of effects-coded parameters. For this choice of L and every P
with orthonormal rows, the matrix Q that satisfies L = QP is given by Q = (Iv−1, 0)P′ with
inverse Q−1 = P(Iv−1, 0)′(Iv−1 + Jv−1).

By means of L, the classical block design setting can be linked to the model (22.16). More
precisely, there exists a design matrix X = X̃L̃ such that estimating θ in (22.16) is equivalent
to estimating Lθ̃ in (22.18). For example, if L is the matrix given earlier that accom-
plishes the effects coding, then L̃ = (Iv−1, −1v−1)

′ is the corresponding matrix for trans-
forming the design matrix. By letting X = X̃L̃, it can be seen that for every connected design
d, the information matrix in (22.17) is equal to (Q−1)′(PCdP′)Q−1, that is, the information
matrix for the estimation of Lθ̃ in the model (22.18). This relationship implies that BBDs are
also D-optimal for choice experiments with a single attribute at v levels and N choice sets
of size m.

In particular, for a single qualitative attribute with v levels, balanced incomplete block
designs (BIBDs) with N blocks of size m, are optimal if v is greater than the size m of the
choice sets. Note that the three parameters v, m, and N determine the other parameters of
the BIBD, that is, the replication r and the index λ. If m = cv for a positive integer c, then
a design with N complete blocks is optimal, where all treatments appear c times in every
block. Finally, if m > v is not a multiple of v so that m = cv + s, where c and s are posi-
tive integers and s < v, a general BBD is optimal. This design may be regarded as being
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obtained by combining blockwise a complete block design where in each of N blocks all
treatments are replicated c times with a BIBD for v treatments in N blocks of size s. For
example, for a binary attribute with v = 2 levels, a complete block design with equal repli-
cation of both levels within each block is optimal, if m is even. If m is odd, then in half of the
choice sets of an optimal design, the first and second level occur with frequencies (m+1)/2
and (m − 1)/2, respectively, while in the remaining sets these frequencies are reversed.

In all of the aforementioned three cases, the normalized information matrix 1
N PCd∗P′

for estimating Pθ̃ in model (22.18) is a multiple c∗Iv−1 of the identity matrix and the cor-
responding matrix when effects coding is used is c∗(Iv−1 + Jv−1). Table 22.5 gives values
of the common multiplier c∗, where the first two cases can be recognized as special cases
of the last row for general BBDs by setting, in the expression m = cv + s for the size of the
choice sets, c or s to 0. When considering the normalized information matrix for the MNL
choice model, the constants c∗ have to be divided further by m.

From Table 22.5, it can be seen that, if the size m of the choice sets is not a multiple of
the number of levels v, then the optimal design for size m carries less information than
an optimal design where the size of the choice sets is a multiple of v. More precisely, the
relative D-efficiency in the MNL model of a design that is optimal for choice sets of size
m > v with respect to a design that is optimal for choice sets of size cv, where c is a positive
integer, is equal to 1 − s(v−s)

m2(v−1)
. For example, for v = 2 levels, the relative efficiency of the

optimal design with choice sets of size m = 3 drops down to 89% compared to designs
that are optimal for choice sets of even size. Similarly, the relative D-efficiency in the MNL
model of a design that is optimal for choice sets of size m < v with respect to an optimal
design for choice sets of size cv is mv−v

mv−m .
As indicated at the start of the section, the optimality results for a single attribute can

serve as building blocks for constructing optimal designs with larger numbers of attributes.
To this end, every choice set is treated as a block and the corresponding responses are
regarded as a multivariate observation in a linear model with additive effects. By gener-
alizing results of Schwabe (1996b, Section 5.2) to multivariate responses and using similar
ideas as in Schwabe (1996a), optimal designs can be generated as product-type designs. If
there are K attributes in total, then such a design is obtained by firstly choosing for every
attribute k with vk levels a block design that is optimal in the single-attribute model and
where for all but at most one attribute, the single-attribute designs satisfy an additional
orthogonality condition to be given below. Secondly, the choice sets in the model with K
attributes are generated as a full factorial of entire blocks in the sense that every block from
the design for the first attribute is combined with every block from the design for the sec-
ond attribute, every such combination of blocks with every block from the design for the
third attribute, and so forth.

More precisely, if for every attribute k = 1, . . . , K, the matrices X(k)
1 , . . . , X(k)

Nk
denote

the design matrices in the choice model with a single attribute that are obtained from an

TABLE 22.5

Summary of Optimal BBDs

Case Optimal Design Multiplier c∗

m < v BIBD m−1
v−1

m = cv, c ∈ N Complete block design m
v

m = cv + s, where c, s ∈ N and s < v General BBD 1
v

(
m − s(v−s)

m(v−1)

)
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optimal block design with vk treatments in Nk blocks of size m, then the optimal product-
type design for the choice model with K attributes has N = ∏K

k=1 Nk choice sets, where for
every choice set, the design matrix is of the form (X(1)

n1 , . . . , X(K)
nK ) and each nk ∈ {1, . . . , Nk}.

For all but one attribute, the single-attribute designs need to satisfy the orthogonality
condition that the sum of X(k)

1 , . . . , X(k)
Nk

is a zero matrix.

Example 22.5

A D-optimal product-type design with choice sets of size m = 3 for estimating the main
effects of K = 3 qualitative attributes with v1 = 2, v2 = 3, and v3 = 4 levels, respec-
tively, is shown in Table 22.6. For every choice set Cn and every attribute k, the block
of the single-attribute design that was used to construct the choice set consists of the
kth component of each of the three alternatives (in that order) that make up the choice
set. For example, the three blocks underlying the first choice set in Table 22.6 are 1, 2, 2
for the first attribute, 3, 1, 2 for the second attribute, and 4, 3, 2 for the third attribute,
respectively.

The normalized information matrix 1
N Md∗,0 of an optimal product-type design d∗ for

estimating main effects in the MNL model under indifference is block diagonal. Under

effects-coding, the block on the diagonal for attribute k with vk levels is equal to
c∗

k
m (Ivk−1 +

Jvk−1), where c∗
k is the multiplier from Table 22.5 for vk levels and m is the size of the choice

sets. Hence, when comparing optimal designs for different values of the size of the
choice sets, the efficiency results carry over from the marginal models with only a single
attribute to the model with several attributes: maximal information can only be attained if
the size m of the choice sets is a multiple of all numbers of levels, that is, if the least common
multiple of the numbers of levels is a divisor of m. If all attributes have the same number of
levels, then the optimal product-type design that employs pairs has the same efficiency
as each of its marginal components relative to optimal designs with choice sets of size
m > 2. For binary attributes, these efficiencies are equal to 1 if m is even and to 1 − 1/m2 if
m is odd.

TABLE 22.6

Optimal Design for m = 3 and Three Attributes with Levels v1 = 2, v2 = 3, and v3 = 4

n Choice Set Cn n Choice Set Cn

1 (1, 3, 4) (2, 1, 3) (2, 2, 2) 13 (2, 3, 4) (1, 1, 3) (1, 2, 2)
2 (1, 3, 2) (2, 1, 1) (2, 2, 3) 14 (2, 3, 2) (1, 1, 1) (1, 2, 3)

3 (1, 3, 1) (2, 1, 2) (2, 2, 4) 15 (2, 3, 1) (1, 1, 2) (1, 2, 4)
4 (1, 3, 1) (2, 1, 4) (2, 2, 3) 16 (2, 3, 1) (1, 1, 4) (1, 2, 3)
5 (1, 1, 4) (2, 2, 3) (2, 3, 2) 17 (2, 1, 4) (1, 2, 3) (1, 3, 2)

6 (1, 1, 2) (2, 2, 1) (2, 3, 3) 18 (2, 1, 2) (1, 2, 1) (1, 3, 3)
7 (1, 1, 1) (2, 2, 2) (2, 3, 4) 19 (2, 1, 1) (1, 2, 2) (1, 3, 4)

8 (1, 1, 1) (2, 2, 4) (2, 3, 3) 20 (2, 1, 1) (1, 2, 4) (1, 3, 3)
9 (1, 2, 4) (2, 3, 3) (2, 1, 2) 21 (2, 2, 4) (1, 3, 3) (1, 1, 2)

10 (1, 2, 2) (2, 3, 1) (2, 1, 3) 22 (2, 2, 2) (1, 3, 1) (1, 1, 3)
11 (1, 2, 1) (2, 3, 2) (2, 1, 4) 23 (2, 2, 1) (1, 3, 2) (1, 1, 4)
12 (1, 2, 1) (2, 3, 4) (2, 1, 3) 24 (2, 2, 1) (1, 3, 4) (1, 1, 3)
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The three types of BBDs in Table 22.5 can be characterized in terms of the number of
pairs of units in each block that receive a different treatment. More precisely, if {b1, . . . , bm}
is a generic block, then this number is

δm(v) =
m−1∑
i=1

m∑
j=i+1

δ(bi, bj)

where δ(bi, bj) = 1 if bi �= bj and δ(bi, bj) = 0 otherwise. If m < v, then δm(v) = m(m − 1)/2
since no treatment is replicated in a block. For m = cv, within each block, every treatment
has replication c = m/v which implies that δm(v) = m2(v − 1)/(2v). Finally, if m = cv + s for
positive integers c and s where s < v, it follows that δm(v) = (m2(v − 1) − s(v − s))/(2v).

For K attributes with levels v1, . . . , vK, the optimal product-type designs can be char-
acterized by extending the concept of the comparison depth for pairs of alternatives (see
Section 22.3.2) to larger choice sets. For any two alternatives xi and xj in a choice set, let the
comparison depth between xi and xj be defined as the number of attributes for which xi and
xj have different levels (e.g., see Graßhoff et al. 2013). Moreover, for a choice set C of size
m, define the total comparison depth of C as the sum of the comparison depths for all pairs
of alternatives xi and xj in C where i < j. For an optimal product-type design, the total
comparison depth is the same for all choice sets and equal to

δ =
K∑

k=1

δm(vk).

An optimal design then consists of choice sets with maximum total comparison depth δ.
When all K attributes are binary, the maximum comparison depth is δ = m2K/4 if m is

even and δ = (m2 − 1)K/4 if m is odd. Optimal designs can then be obtained from a single
choice set with maximal comparison depth by permuting the levels of all attributes inde-
pendently. This gives a kind of full factorial design, which is optimal and from which smaller
optimal designs can be obtained as fractional factorials in the usual way. For attributes with
different numbers of levels, orthogonal arrays may be used instead of full factorials in order
to generate optimal designs with smaller numbers of choice sets.

The values of δm(v) given earlier coincide with the upper bounds for sums of differ-
ences reported by Burgess and Street (2005, Theorem 1). Likewise, the requirement that
the choice sets of optimal designs need to have maximum total comparison depth is in
agreement with their Theorem 2. For the special case of binary attributes, the approach
presented here immediately gives the optimality results for main effects in Burgess and
Street (2003). The cited papers also contain some additional results for estimating main
effects and two-factor interactions. Corresponding construction methods are presented by
Street et al. (2005) and further examples can be found in Street and Burgess (2007). It should
be noted however that in general, these methods require a very large number of choice sets
(Großmann et al. 2007). Some constructions that can be used for generating optimal designs
with smaller numbers of choice sets have been presented by Mukerjee et al. (2002) and
Das and Dey (2004).

22.4.3 Some Local Optimality Results

Analytic results for the general case in which the parameter vector θ in the choice model
(22.1) is not assumed to be equal to a zero vector are hard to come by because of the
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nonlinearity of the model. Typically, numerical optimization techniques or search algo-
rithms have to be invoked in order to obtain designs that are locally optimal for a given
θ �= 0.

A notable exception to this general rule is the MNL model proposed by Kanninen (2002),
in which initially all K attributes are assumed to be continuous. All but one of these
attributes take values in a bounded interval. The settings of these K − 1 attributes are cho-
sen from the boundary values of the intervals. The remaining attribute, which the author
refers to as a manipulator, is not bounded and can be adjusted continuously. In practice,
this means that the manipulator must be allowed to take any value in a sufficiently large
interval. In this situation, optimal designs can be constructed by selecting a particular full
or fractional factorial design for the bounded attributes and by adjusting the manipula-
tor to an optimal level that depends on the parameter θ. Moreover, the designs remain
optimal for the model in which each of the bounded attributes is replaced by a qualitative
two-level factor.

An appealing feature of Kanninen’s (2002) model is that optimal settings for the K − 1
bounded attributes can be chosen without having to worry about the values of the param-
eters in the vector θ. Only the settings of the unbounded manipulator variable depend
on the parameters in θ. For choice sets of size m = 2, the settings of the K − 1 bounded
attributes of a locally D-optimal design for estimating the vector θ �= 0 in Kanninen’s model
with the additional manipulator variable can be chosen as those of any design that, under
the indifference assumption that the parameters are equal to zero, is optimal for the model
that contains only the K − 1 bounded attributes (Graßhoff et al. 2007). For larger choice
sets of size m ≥ 3, the settings for the K − 1 bounded attributes in Kanninen’s model
have to be selected carefully from those that are optimal under indifference in the choice
model (22.1) with K − 1 attributes at two levels. In particular, for optimal choice sets of size
m = 3, the alternatives have to be selected in such a way that, with respect to the binary
attributes, within every choice set two of the alternatives are identical while the third alter-
native is the foldover of the previous two, that is, all its levels are different from those of the
other alternatives in the choice set (Graßhoff et al. 2013). From a practical point of view,
these optimal designs do not seem to be very appealing, since the choice sets will neces-
sarily contain alternatives that differ only in the values of the manipulator variable. If the
manipulator represents, for example, a price variable, then every choice set will contain at
least one alternative that is dominated in the sense that it is clearly less attractive than the
other alternatives. Therefore, other models that account for dependencies between simi-
lar alternatives may be more appropriate. Alternatively, so-called Pareto optimal designs
(Raghavarao and Wiley 2006) that impose restrictions on the choice sets that are permitted
to be used in a choice experiment may be considered.

The discussion of the relative efficiency of designs that use choice sets of different sizes in
Section 22.4.2 implies that, under the indifference assumption, choice sets of larger size are
not advantageous for binary attributes, since for such attributes, m = 2 is the optimal size
of the choice sets. The opposite is true for the model of Kanninen (2002). For example, if,
in addition to the manipulator variable with values in a large interval, the model contains
only one further binary attribute, then the efficiency of the optimal design with choice sets
of size 3 attains remarkable 150% compared to choice sets of size 2. This means that 50%
more pairs of alternatives have to be presented than choice sets of size 3 in order to estimate
the model parameters with the same precision.

The efficiency gain due to larger choice sets is even more striking for the case where only
a single quantitative attribute is present, so that f ′(x)θ = θx. As in every situation with a
one-dimensional parameter, the optimal design requires only one experimental setting, for
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which the modulus of the regression function attains its maximum. For pairs, the locally
optimal choice set for a given parameter θ �= 0 can be chosen as (x∗

1, x∗
2) with alternatives

satisfying x∗
1 − x∗

2 = 2.40/θ, which results in choice probabilities of 0.92 and 0.08, respec-
tively, and the information for this optimal pair of alternatives equals 0.44. The optimal
choice set (x∗

1, x∗
2, x∗

3) of size m = 3 is given by x∗
1 − x∗

2 = 2.65/θ and x∗
2 = x∗

3 with choice
probabilities of 0.88 for x∗

1 and 0.06 for x∗
2 and x∗

3, respectively. The corresponding informa-
tion can be calculated as 0.76, which provides an efficiency of 173% for the optimal choice
set of size 3 relative to the optimal pair of alternatives.

The previous examples give some indication that, for nonzero parameter values, the
use of larger choice sets may be preferable. However, it has to be taken into account that a
respondent’s task may become harder when choices have to be made from a larger number
of alternatives. This may cause the values of the parameters to vary with the size of the
choice sets. In particular, these values may tend to become smaller as m increases, which
may diminish the attributes’ discriminatory power.

22.5 Computational Approaches

In addition to obtaining analytic results for the multinomial logit choice model under the
indifference assumption, there has been considerable interest in algorithmic approaches to
generating optimal or efficient designs for the general case of nonzero parameter vectors θ.
In this work, locally optimal designs for a fixed θ �= 0 play a relatively minor role. Instead,
the parameter vectors associated with individual respondents are frequently regarded as
realizations of a multivariate distribution, which is usually assumed to be normal. This
distribution may be interpreted as reflecting prior knowledge as well as uncertainty about
the model parameters or it may be used to model heterogeneous preferences in a popula-
tion. Likewise, for most generalizations of the MNL model, such as the mixed logit model,
efficient designs can only be found algorithmically.

The corresponding design algorithms usually optimize variants of the D-optimality cri-
terion. For example, in the context of the MNL model for every given design d, the value of
the determinant of the inverse of the information matrix Md,θ in (22.3) is averaged over the
distribution of the θ values, and designs that minimize this average are found. The result-
ing designs are often referred to as Bayesian or semi-Bayesian designs, although typically, a
standard maximum likelihood approach is adopted for estimating the parameters. Many
of the corresponding ideas were originally presented in the context of the MNL model but
have subsequently been generalized to the mixed logit model.

When designs are generated algorithmically, the term optimal design usually needs to be
interpreted as the best design the algorithm is able to find. Bearing this in mind seems to be
worthwhile, for example, when drawing conclusions from simulation studies that compare
different types of designs.

22.5.1 Multinomial Logit Model

Kuhfeld et al. (1994) were among the first to popularize the idea of using efficient designs
in choice experiments. Based on the later challenged assumption that “an efficient design
for a linear model is a good design for the multinomial logit (MNL) model,” they illus-
trated how the OPTEX procedure in the SAS software can be used for a variety of problems.
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Shortly thereafter, Huber and Zwerina (1996) presented the concept of locally optimal
designs for arbitrary vectors θ �= 0 and a corresponding design algorithm to a wider audi-
ence in marketing. The algorithm examines certain types of changes—known as swapping
and relabeling—to the attribute levels of an initial design and performs those operations
that lead to the largest improvement of the D-criterion. This approach is similar in vein
to standard exchange or interchange algorithms (see Chapter 21) but differs in the details
of how the initial design is modified. More precisely, the changes to the attribute levels
are motivated by the heuristic principle of utility balance that aims at making the MNL
choice probabilities of the alternatives within every choice set as similar as possible. Other
possibilities for generating locally optimal designs include the %ChoicEff macro for SAS
(Kuhfeld 2010, pp. 806–955) that uses a modified Fedorov algorithm and the JMP 10
software (JMP 1989–2012).

For choice sets of size m = 2 and some simple situations with one or two attributes,
Graßhoff and Schwabe (2008) determined analytically the locally D-optimal designs for all
possible values of the parameters. The results show that the structure of a locally optimal
design depends strongly on the parameters for which the design is optimized. Moreover,
designs that are locally optimal for some choice of the parameters can be very inefficient
for other values. For this reason, the authors recommend maximin efficient designs as a
robust alternative to locally optimal designs (see Chapter 20).

The work of Sándor and Wedel (2001) extends the ideas of Huber and Zwerina (1996)
to a Bayesian framework by assuming that the vector θ has a distribution that may be
interpreted as reflecting uncertainty about the parameters. By using the swapping and rela-
beling operations of Huber and Zwerina (1996) plus a new cycling operation, the authors
generate DB-optimal designs d that minimize

�
Rp

det(Md,θ)−1/pπ(θ) dθ, (22.20)

where π is the probability density function of the distribution of θ and p is the number of
model parameters.

The matrix Md,θ is given in (22.3). Typically, the strong assumption is made that, at the
design stage, π is completely known. In practice, the integral (22.20), which is often called
the DB-error, is approximated by Monte Carlo methods, that is, by averaging values of
det(Md,θr)

−1/p for a large number of random draws θr from the distribution represented
by π. Based on simulation results and an empirical application, the authors conclude that
the DB-optimal designs are more efficient and have higher predictive validity than the
locally optimal designs of Huber and Zwerina (1996). Some discussion on how the distri-
bution represented by the density π should be chosen is available in Kessels et al. (2008b).
A further generalization of the Bayesian approach presented by Sándor and Wedel (2005)
considers the construction of so-called heterogeneous designs that can be thought of as a
collection of a small number of different designs, exactly one of which is to be given to every
individual respondent. This idea is related to, but not the same as, the idea of regarding
the respondents as blocks of observations (Kessels et al. 2008a).

Kessels et al. (2006) adapt the Bayesian approach of Sándor and Wedel (2001) to other
optimality criteria and generate the designs by means of a modified Fedorov algorithm.
A faster alternative to that algorithm is presented by Kessels et al. (2009). A comparison of
seven numerical methods for approximating the multidimensional integral in (22.20) can
be found in Yu et al. (2010). The results show that the traditional Monte Carlo approxima-
tion of the integral can be improved by using other techniques that need fewer random
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draws to achieve the same precision. Alternative Bayesian design criteria that are based
on generalizations of, and alternatives to, the Fisher information matrix are compared by
Yu et al. (2012).

Algorithms for choice experiments involving partial profiles have been presented by
Kessels et al. (2011a). The authors generalize ideas of Green (1974) and construct the designs
in two stages. First, the attributes that are held constant within the choice sets are deter-
mined and second, the levels for the nonconstant attributes are chosen. Bayesian optimal
designs are found by maximizing

�
Rp log(det(Md,θ))π(θ)dθ, where Md,θ is the information

matrix in the MNL model and π is the probability density of a multivariate normal dis-
tribution. The so-called unrestricted version (see Kessels et al. 2011a) of the algorithm has
been implemented in the JMP 10 software (JMP 1989–2012) and can also be used to generate
partial profile designs under the indifference assumption θ = 0. In the latter case, a limited
comparison of designs with choice sets of size m = 2 that were generated for θ = 0 by the
unrestricted JMP 10 algorithm with the optimal designs of Großmann et al. (2009) shows
that, in several of the cases considered, the designs produced by the software possess an
efficiency of less than 80% (Großmann 2013).

For some simple situations with a small number of attributes and/or levels and a few
choice sets per respondent, Bayesian optimal designs have been compared with designs
obtained under the indifference assumption θ = 0 (Kessels et al. 2008b, 2011b), which in
this context are referred to as utility neutral designs. The results show that Bayesian designs
that were generated by using a normal prior distribution for the parameter vector θ are
robust in the sense that, for the majority of vectors in the parameter space considered,
these designs are more efficient than the utility neutral designs when the two types of
designs are compared in terms of local non-Bayesian D-efficiency. For only a small portion
of the parameter space is this ordering reversed. In a discussion of Kessels et al. (2011b), it
was pointed out by Holling and Schwabe (2011) that other Bayesian design criteria may be
more appropriate. They compared locally optimal designs for the means of the priors with
the Bayesian designs of Kessels et al. and, depending on the variance of the underlying
normal distribution of the parameters, found only small-to-moderate differences between
the two types of designs.

Moreover, for a model with six two-level attributes, Kessels et al. (2011b) compared
the precision of estimates obtained from a Bayesian and a utility neutral design for eight
choice sets of size 2. For both designs, 100 samples of responses from 200 respondents were
simulated and parameters were estimated for each of the 100 data sets. Data were simu-
lated from a population in which the parameters for three of the attributes were equal to
zero, whereas the parameter for each of the remaining three attributes was equal to −0.8.
These specifications mean that respondents make their choices by focusing on only three
attributes and these three attributes are equally important. For this choice of parameters,
two of the choice sets of the utility neutral design contained an alternative that had a prob-
ability of being chosen, which was greater than 0.99. In the simulation study this led to
five outliers in the reported estimates with the effect that for each of the nonzero parame-
ters, the average of the one hundred estimates was biased. When trying to replicate these
results, Holling and Schwabe (2011) found that outlying estimates were caused by data sets
for which the parameters were not estimable. After excluding such estimates the averages
of the parameters were close to the true values and hence did not indicate any bias.

Whether the conclusions from simulation studies such as Kessels et al. (2008b, 2011b)
remain valid in more representative design comparisons and for less extreme choices of the
parameter vector seems to await further clarification. Also, it would seem to be worthwhile
to include optimal analytic designs that are constructed under the indifference assumption
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in such studies. Probably, an even more important question is whether the promise of opti-
mal designs, whether Bayesian or utility neutral, to give more precise estimates can be
corroborated in empirical studies (Großmann et al. 2005; Bliemer and Rose 2011).

22.5.2 Mixed Logit Model

Sándor and Wedel (2002) compared locally optimal designs for the cross-sectional mixed
logit model from Section 22.2.2 with locally optimal designs for the MNL model. Designs
for the mixed logit model were generated by using a modified version of the algorithm of
Sándor and Wedel (2001) that minimizes the determinant of the inverse of the information
matrix in Equation (5) of Sándor and Wedel (2002). Based on simulation results, the authors
concluded that the optimal mixed logit designs give more precise parameter estimates and
have higher predictive validity.

The work of Yu et al. (2009) extends the ideas of Sándor and Wedel (2001) to a so-called
semi-Bayesian approach for the cross-sectional mixed logit model. Following Sándor and
Wedel (2002), it is assumed that the parameter vectors θ have a multivariate normal distri-
bution whose mean vector and covariance matrix are to be estimated efficiently. Basically,
this means that instead of minimizing the integral in (22.20), a similar integral given in
Equation (8) of Yu et al. (2009) is minimized. For computational reasons, only a prior distri-
bution for the mean vector of the normal distribution is assumed, whereas the covariance
matrix is treated as known. The authors propose a design algorithm that combines meth-
ods for facilitating the approximate computation of integrals, such as Halton draws (Train
2003) and systematic sampling ideas of Kessels et al. (2009), with a coordinate exchange
procedure. The resulting semi-Bayesian D-optimal designs are compared with locally opti-
mal designs for the mixed logit and the MNL model, with Bayesian designs for the MNL
model, as well as with so-called nearly orthogonal designs and with fully Bayesian mixed
logit designs.

For the panel mixed logit model in Section 22.2.2, only little design work has been done
so far. Bliemer and Rose (2010) compared locally optimal designs for the cross-sectional
and the panel mixed logit model with locally optimal designs for the MNL model in three
case studies. They found that efficient designs for the cross-sectional mixed logit model are
usually not efficient for estimating the parameters of the panel mixed logit model and vice
versa. Interestingly, locally optimal designs for the MNL model are relatively efficient for
estimating the panel version of the mixed logit model. Furthermore, the authors showed
that the misspecification of the prior parameters that were used at the design stage could
substantially reduce the efficiency of the designs.

An adaptive Bayesian approach for sequentially generating designs for the panel mixed
logit model that are customized to the preferences of individual respondents has been pre-
sented by Yu et al. (2011). The approach generalizes the idea of heterogeneous designs
in Sándor and Wedel (2005) and represents an alternative to the polyhedral method of
Toubia et al. (2004, 2007). Simulation results for the polyhedral approach indicate that
using a respondent’s earlier responses to adapt the subsequent choice sets to that person’s
preferences seems to work well when the components of the respondent’s parameter
vector θ are relatively large and, hence, the response accuracy is high (Toubia et al.
2004), but less well when the response accuracy is low. The method of Yu et al. (2011)
appears to be superior in this respect, although a direct comparison of the sequential
Bayesian and the polyhedral approach has not yet been reported. Customization of designs
within the panel mixed logit model is also considered by Crabbe and Vandebroek (2012),
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who model the parameter vector of every individual respondent as a function of several
covariates.

22.6 Ranking-Based Methods and Best–Worst Scaling

Selecting the most preferred alternative from a choice set does not give any information
about the preference ordering of the remaining alternatives in the set. More information
can be obtained by asking the respondents to rank order all or, at least, the most attractive
alternatives in a choice set. We illustrate this approach for the situation where the top two
alternatives have to be selected from a larger choice set of size m ≥ 3 and ranked accord-
ing to preference. For m = 3, this task is equivalent to a complete ranking of the three
alternatives in the choice set.

The rank-ordered logit model mentioned in Section 22.2.3 regards every ranking as the
outcome of a series of multinomial choices from a shrinking choice set. More precisely,
given a choice set C, first the most preferred alternative is assumed to be chosen as in the
multinomial logit model with probability

pθ(i; C) = ef ′(xi)θ∑m
k=1 ef ′(xk)θ

.

The second best alternative is then chosen from the remaining alternatives with probability

pθ(j; C−i) = ef ′(xj)θ∑m
k=1;k �=i ef ′(xk)θ

,

according to a multinomial logit model for the reduced choice set C−i of size m−1 obtained
by removing xi from C, but with the same parameters θ as in the first selection step.

Hence, the probability pθ((i, j); C) of ranking alternative xi highest and xj second within
the choice set C can be factorized as

pθ((i, j); C) = pθ(i; C) × pθ(j; C−i).

Denoting the design matrices corresponding to C and C−i by X and X−i, respectively, the
information matrix M(rank)

C,θ for a choice set C in this experiment can be readily computed
to be equal to

M(rank)

C,θ = X′(diag(pθ) − pθp′
θ)X +

m∑
i=1

pθ(i; C)X′
−i(diag(pθ,−i) − pθ,−ip

′
θ,−i)X−i,

where pθ = (pθ(1; C), . . . , pθ(m; C))′ and pθ,−i is the corresponding vector of length m − 1
that contains the choice probabilities pθ(j; C−i) for j �= i.

The first term on the right-hand side of the expression for M(rank)

C,θ is the informa-
tion MC,θ for a standard multinomial choice experiment given in (22.3), and the second
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term represents the additional information that can be attributed to the ranking task
(Vermeulen et al. 2011).

Equivalently, the information matrix can be expressed as a weighted sum of the infor-
mation contained in the comparisons of the pairs of alternatives within the choice set,
so that

M(rank)

C,θ = MC,θ +
∑
i<j

(1 − pθ(i; C) − pθ(j; C))pθ(i; C−j)pθ(j; C−i)M{xi,xj},θ

= MC,θ +
∑
i<j

(ef ′(xi)θ + ef ′(xj)θ)2 · ∑
i�=k �=j ef ′(xk)θ

∑m
k=1 ef ′(xk)θ · ∑

k �=i ef ′(xk)θ · ∑
k �=j ef ′(xk)θ

M{xi,xj},θ,

where M{xi,xj},θ is the matrix in (22.13). Under the indifference assumption θ = 0 and by
using (22.14), this expression can be simplified further to

M(rank)

C,0 =
(

4
m2 + 4(m − 2)

m(m − 1)2

)∑
i<j

M{xi,xj},0 =
(

2 − 1
(m − 1)2

)
MC,0,

which shows that, compared to a standard multinomial choice experiment, the ranking
task provides 75% more information for choice sets of size m = 3 and about twice as much
information if the size m of the choice set is large.

Vermeulen et al. (2011) adapt the Bayesian approach of Sándor and Wedel (2001) to
the rank-ordered logit model. Designs are generated by using a modified version of the
algorithm in Kessels et al. (2009). The authors present simulation results for complete and
partial rankings for a model with five attributes, with two at two levels and the other three
at three levels, and a design with nine choice sets of size four. For the case of complete
rankings, Bayesian D-optimal designs for the rank-ordered logit model lead to only slight
improvements in terms of prediction and estimation accuracy over Bayesian D-optimal
designs for the multinomial logit model that minimize (22.20). For partial rankings of two
out of the four alternatives in each set, this ordering of the designs is reversed. The authors
note that similar results were obtained for some additional models and scenarios.

Similar to the rankings-based approach, best–worst scaling aims to extract more infor-
mation from every individual choice set. To this end, respondents are asked to choose the
most and the least preferred alternative from every choice set. A model for this situation
that is closely related to the MNL model is known as the maximum difference or maxdiff model
(Marley and Louviere 2005; Marley and Pihlens 2012). Vermeulen et al. (2010) use a coordi-
nate exchange algorithm for generating Bayesian D-optimal designs for the maxdiff model
and perform a simulation study that essentially parallels the setup in Vermeulen et al. (2011)
and leads to similar results in that the differences between the Bayesian optimal designs
for the maxdiff and the MNL model are relatively small. For another variant of best–worst
scaling, known as attribute-level best–worst choice experiments, Street and Knox (2012) show
that, under the indifference assumption θ = 0, fractional factorial designs of resolution III
and V perform equally well as the full factorial for estimating main effects or for estimating
main effects and two-factor interactions, respectively.
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22.7 Miscellaneous Problems

This section briefly reviews some contributions that have addressed more specialized top-
ics. In particular, we consider model uncertainty at the design stage, designs for situations
where the order of presentation of the alternatives may matter, and choice experiments that
take into account that sometimes a choice set may not contain a single “best” alternative.

Most of the current work on the design of choice experiments is based on the a priori
assumption that either only the main effects of the attributes or the main effects and all
two-factor interactions are to be estimated. Little work has considered how choice exper-
iments should be designed when there is uncertainty at the design stage about whether
or not some or all interaction effects should be included in the choice model. For this
type of model uncertainty, Yu et al. (2008) propose a Bayesian composite design criterion
and a corresponding algorithm for generating designs that perform well irrespective of
whether or not the interaction effects are present. A complementary approach presented
by Raghavarao and Wiley (2006) outlines a sequential strategy, where initially choice sets
are generated that allow the estimation of main effects and the performance of a lack-of-fit
test to find out whether a main-effects-only model is appropriate. If the test is not signif-
icant, then conclusions are based on the main effects. Otherwise, additional choice sets
are presented from which two-factor interactions can be estimated and another lack-of-
fit test is performed in order to check if interactions involving three attributes need to be
included. Depending on the outcome of the test, more data are collected so that, if neces-
sary, final inferences can be based on the main effects and the interactions of up to three
attributes.

In some applications, the alternatives in a choice set need to be considered sequentially,
for example, when the alternatives need to be tasted or tried out. In such cases, the order
in which the alternatives are presented may have an effect on the responses. Davidson and
Beaver (1977) proposed a generalization of the Bradley–Terry model for paired compar-
isons that contains additional parameters representing potential order effects. For a simple
variant of the model where the order effect is assumed to be constant across all pairs, Goos
and Großmann (2011) show that under the indifference assumption θ = 0, special versions
of designs of Graßhoff et al. (2004) remain optimal for estimating main effects. They also
list practical designs with up to 40 pairs for the case where the attributes have two or three
levels. Bush et al. (2012) extend the model of Davidson and Beaver (1977) to experiments
with choice sets of size m > 2 and adapt the results of Burgess and Street (2005), essentially
confirming that under indifference, and subject to some additional restrictions, D-optimal
designs for the MNL model without order effects remain optimal when position effects are
taken into account. Note that for models that incorporate order or position effects, the order
of the alternatives within the choice sets is important.

The choice experiments we have considered employ a forced-choice format, where
exactly one alternative must be selected from every choice set. In order to make the choice
task more realistic, in practice, sometimes a variant is used, where every set contains a
so-called no-choice option. By selecting this alternative, respondents are able to circum-
vent making a definite choice when, for example, none of the alternatives in a choice set
offers a sufficient amount of utility. Another type of choice task uses choice sets, all of which
contain a common base option or reference alternative.

For the MNL model under indifference, Street and Burgess (2004b) show that, for the
purpose of estimating main effects in a setting with a reference alternative and choice
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sets of size m = 2, all choice designs of the same size that are based on fractional fac-
torial designs of resolution III are equally efficient regardless of the particular fractional
factorial chosen and also irrespective of which combination of attribute levels from the
fractional factorial is used as the reference alternative. Moreover, for experiments with a
no-choice option and choice sets of arbitrary size, they prove that optimal designs for esti-
mating main effects from forced choices remain optimal if a no-choice option is adjoined to
every choice set. Experiments with a base option are also discussed by Sándor and Wedel
(2002) in their work on locally optimal designs for the cross-sectional mixed logit model.

Vermeulen et al. (2008) consider variants of the MNL and the nested logit model with
no-choice options. They adapt the Bayesian approach of Sándor and Wedel (2001) to gen-
erate designs that are optimal for estimating the parameters for the attribute levels but not
those for the no-choice option. Bayesian optimal designs for the MNL model with and with-
out a no-choice option and for the nested logit model are then compared on simulated data
from an extended no-choice MNL and the nested logit model. From the numerical results,
the authors conclude that the finding of Street and Burgess (2004b) that optimal designs
for the MNL model without a no-choice option can also be used for models that include
a no-choice option can be generalized to Bayesian optimal designs. Although Vermeulen
et al. (2008) seem to indicate that a similar statement also holds for the nested logit model,
in another paper, the authors recommend taking the presence of a no-choice option into
account at the design stage whenever prior information about the respondents’ preferences
is available (Goos et al. 2010).

Another possibility to account for the fact that a choice set may not contain a single “best”
alternative is to allow tied responses by giving respondents the opportunity to designate
some alternatives as being equally attractive. Bush et al. (2010) consider extensions of the
Bradley–Terry and the MNL model for this situation and show that, under the indifference
assumption, optimal designs for the forced-choice versions of the models remain optimal
when ties are permitted.

22.8 Concluding Remarks

Over the past decade, the design of choice experiments has attracted a lot of interest as
can be seen from the volume of publications that have been published since the reviews of
Großmann et al. (2002) and Louviere et al. (2004). Much progress has been made both for
analytic designs under the indifference assumption as well as with regard to computational
approaches and, in particular, Bayesian designs. Despite these advances, it appears that the
area would benefit from some attempts to consolidate what has been achieved.

For practitioners, it is probably already difficult to identify from the variety of existing
approaches the method that suits their needs best. For example, it is frequently claimed that
Bayesian designs represent the state of the art and that this approach is superior to the use
of designs that are generated under the indifference assumption. While this is probably true
in many situations, often, the supporting simulation studies compare the Bayesian designs
with suboptimal orthogonal or utility neutral designs instead of using designs that have
been proved to be optimal under indifference. Typically, these studies consider designs
with relatively small numbers of choice sets, and it would be interesting to investigate
if similar results are obtained for designs with, say, around 40 choice sets, which is not an
uncommon number in practical applications (Louviere et al. 2005). Moreover, several of the
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simulation studies reported to date have used similar specifications of the prior distribu-
tion for generating Bayesian optimal designs, and, for some, one may wonder whether the
assumed covariance structure is consistent with the modeling assumptions, in particular,
with the coding of the attribute levels. Although the practice of using similar prior specifi-
cations facilitates comparisons across different studies, it may also limit the generalizability
of the results.

The results of Graßhoff and Schwabe (2008) show that, in principle, any design that is
locally optimal for some values of the model parameters can be very inefficient for other
values in the parameter space and this applies, in particular, to designs that are generated
under the indifference assumption. Anticipating when this happens and quantifying the
efficiency loss appears to be difficult. As suggested by these authors, the use of maximin
efficient designs appears to be another worthwhile approach for dealing with parameter
uncertainty. Corresponding results for a related logistic model are presented by Graßhoff
et al. (2012).

An alternative reading of the simulation results for Bayesian designs may suggest that
the gains in efficiency or estimation accuracy are often not enormous when compared to
utility neutral designs. Given that in order to generate Bayesian designs specialized soft-
ware is needed, practitioners will need to decide whether the benefits that may be obtained
from Bayesian designs do justify the additional efforts. Often, the required software is not
publicly available. Simulation studies also sidestep the crucial question of how the required
prior information can be reliably obtained in practice. What appears to be a more important
lesson from studies reported by Vermeulen et al. (2008), Bliemer et al. (2009) and Bliemer
and Rose (2010) is that the performance of efficient designs strongly depends on whether
or not the model that is used for optimizing the design corresponds to the mechanism that
generates the data.

In order to clarify some of these issues and to be able to distill practical recommendations
perhaps a way forward could be to create a repository that would provide easy access
to tables of optimal analytic designs and to source code of algorithms for generating, for
example, Bayesian optimal designs. Such a resource would enable researchers to replicate
and extend simulation studies from which, hopefully, a more complete picture of what
works best and when would emerge.
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23.1 Introduction

High-throughput screening (HTS) is a large-scale process that screens hundreds of
thousands to millions of compounds in order to identify biologically active compounds
as candidates for further validation and confirmation. HTS started and developed as an
early discovery platform in the pharmaceutical industry in the late 1980s to mid-1990s.
The goal of HTS is to generate chemical structures that will lead to drug discovery through
testing chemicals for their biological activity against target molecules (An and Tolliday
2009). Devlin (1997) and Hüser et al. (2006) provide more details on HTS in drug discov-
ery. Recently, advances in HTS technologies in drug discovery have been used in other
research fields. For example, approaches developed for small-molecule screening have
been applied to, and improved, identification and validation of specific gene functions in
RNA interference (Zhang 2011).

A key piece of HTS equipment is the microplate: a small container that features a grid of
small, open divots called wells. Figure 23.1 presents diagrams of 96 (8×12)-well microplates
commonly used in HTS practice where solid and empty circles are wells. Other HTS
microplates such as 384 (16 × 24)-well, 1536 (32 × 48)-well, and 3456 (48 × 72)-well plates
are also used in HTS experiments. Even though the plating format and the number of com-
pounds per plate vary, primary HTS operations typically measure a single observation from
most compounds incubated in the wells of the rectangular microplate.
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FIGURE 23.1
Current HTS designs, where solid circles contain controls and empty circles have compounds to be screened.
(a) http://chembank.broadinstitute.org/assays/view-plate.htm? id = 1029542, (b) id = 1029548, (c) id = 1003379,
and (d) = 2001521.

There are many statistical challenges in data preprocessing and active-compound identi-
fication in primary HTS. Active compounds are usually called hits in HTS. Malo et al. (2006)
reviewed statistical issues in the current HTS practice. One challenge is to correct various
systematic errors in HTS data. Systematic errors in HTS are usually caused by factors such
as unintended differences in compound concentrations due to aging, reagent evaporation,
or cell decay; errors in liquid handling or malfunction of pipettes; variations in incuba-
tion time and time drift in measuring different wells or different plates; and reader effects
(Heuer et al. 2005).

Unlike random errors that cause measurement discrepancies and result in random vari-
ation in hit identification, systematic errors contaminate HTS data and bias (over- or
underestimate) hit selection systematically in almost every HTS experiment (Kevorkov
and Makarenkov 2005). Often, systematic errors are revealed as row and column effects
on microplates in HTS practice. That is, observations from the same compound may vary
systematically as well as randomly from well to well on the microplate. This is the issue
discussed in this chapter.

Figure 23.2 shows the heat map of data from an HTS experiment. In this experiment, one
assay at a level of five ng concentration was incubated into all 384 wells. The incubated
plate was then read by an FL×800 Fluorescence Microplate Reader (BioTek Instruments
Inc.). The fluorescence intensity levels of assay in all wells were recorded. The heat map
shows that levels of intensity are different for wells in different rows and columns.

Table 23.1 shows the analysis of variance (ANOVA) of the data, and it is clear that both
row and column effects are statistically significant. Brideau et al. (2003) studied more than
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FIGURE 23.2
Heat map of an HTS experiment.

TABLE 23.1

ANOVA of the HTS Experiment

Degree of Freedom Sum of Squares Mean Sum of Squares F Value P Value

Row 15 288.2396 19.2160 29.9782 <0.0001
Column 23 504.8646 21.9506 34.2443 <0.0001

Residuals 345 221.1354 0.6410

1000 384-well microplates and discovered that activity levels for wells in row one were, on
average, 14% lower than those in row 16.

Due to the tremendous impact of row and column effects on hit selection, various
remedies have been proposed to eliminate row and column effects in HTS. For instance,
Lundholt et al. (2003) experimentally used a preincubation technique to reduce row and
column effects in cell-based assays. However, experimental remedies usually increase the
cost of material inventory and time in HTS. On the other hand, analytic methods are more
cost-effective.

There are two types of analytic methods. One applies normalization techniques such as
the median polish (Tukey 1977) method followed by the B score (Brideau et al. 2003) method
to HTS data directly without considering the design of the experiment. Tukey’s median pol-
ish method estimates row and column effects through an iterative procedure and eliminates
row and column effects by subtracting them from their corresponding observations. The
difference between the observation from each well and the sum of the estimated general
mean and corresponding row and column effects is called the residual and is used for hit
selection. The B score method uses B scores to select candidates. B scores are the ratios of
residuals to their median absolute deviation multiplied by 1.4826.

The other normalization method uses experimental design to separate row and column
effects from treatment effects and then eliminates row and column effects (see Section 3.5)
by using estimated treatment effects for hit selection. Our focus is of the latter type.
One important goal of various normalization techniques is to identify row and column
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effects so that they can be effectively adjusted in the downstream analysis of hit
identification, which results in fewer false positives and false negatives. Brideau et al. (2003)
provided more details on statistical normalization techniques.

Figure 23.1 displays four commonly used designs of HTS experimentation in
ChemBank database (http://chembank.broadinstitute.org) where solid circles contain con-
trols and empty circles have compounds to be screened. ChemBank is a public database
created by the Broad Institute’s Chemical Biology Program. It includes freely available
data of more than 2500 HTS experiments. For example, the HTS experiment studied in
Section 23.3 has a design of type (c) where wells in the microplate represented by empty
circles of the diagram contain the targeted enzyme, dihydroorotate dehydrogenase, and
wells of solid circles contain dimethyl sulfoxide solvent without the enzyme. As is shown
later, designs (a), (b), and (d) are unable to de-alias treatment effects from the contamination
of both the row and column effects simultaneously.

Various patterns of row and column effects have been discovered in HTS. In this chapter,
we focus on designs and analysis that are appropriate for models in which row and column
effects are additive, that is, where row–column interactions are not needed.

Arranging compounds or treatments on microplates to eliminate row and column effects
is the same as constructing row–column designs to eliminate additive two-way hetero-
geneity. Latin squares, Youden squares, and their generalizations are classic row–column
designs with various optimal properties (Kiefer 1975; Cheng 1981; and Section 3.5.3).
However, these classic designs usually have strict combinatorial constraints on the num-
bers of rows, columns, and treatments. For example, the numbers of rows, columns, as
well as treatments have to be equal in Latin square designs and the numbers of columns
and treatments are the same in Youden squares. Because of such constraints and because
HTS experiments in drug discovery and microarray experiments have very large numbers
of treatments (Hüser et al. 2006; Kerr 2003), classic designs are not applicable, and more
general types of row–column designs are needed.

Since scientists in HTS are primarily interested in the selection and identification of supe-
rior treatments for further improvement as opposed to precise estimation or prediction
of their effects, HTS experiments are often characterized by a shortage of experimental
materials to evaluate hundreds of thousands of compounds (called treatments, hereafter).
Therefore, multiple replications of all treatments in the primary screening stage are neither
feasible nor cost-effective. Moreover, the need for replication depends on the variability of
biological assays. The demand for replication in HTS experiments with high-quality assays
is much less than that with low-quality assays. On the other hand, if the strategy is to use
initial screening data for modeling or optimizing responses, then, as is shown in most text-
books of design of experiments, multiple replications of a small number of compounds
are better than a few or no replication of a large number of treatments because multiple
replications result in smaller variances of effect estimates.

Two computer packages CycDesigN (Whitaker et al. 2008) and Gendex DOE Toolkit
(Nguyen 1997) can generate row–column designs of any dimensions with all treatments
equally replicated and occurring at least twice. Such designs are not popular in the early
stages of the HTS selection processes (Lin and Poushinsky 1983) because they can study, at
most, N/2 treatments, where N is the number of wells. Row–column designs in which no
constraints are imposed on numbers of rows and columns are discussed in the following,
and the majority of treatments in these designs are not replicated.

There are many criteria for selecting row–column designs. In this chapter, we discuss
D-, A-, E-, and (M, S) optimality. We base the first three on “canonical efficiency factors,”
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which we define as the nonzero eigenvalues of the information matrix Cd, defined by
(23.2) in Section 23.2, but with respect to a diagonal matrix Rd whose diagonal elements
are the replicate numbers of treatments in the design (see Section 3.1 for details), that
is, R−1/2

d CdR−1/2
d . A design whose geometric mean of canonical efficiency factors is at

least as large as that of any other design is D-optimal. An A-optimal design has the
largest harmonic mean of canonical efficiency factors, and a design whose smallest canon-
ical efficiency factor is at least as large as that of any other design is E-optimal (Jacroux
1990).

For equally replicated designs, an A-optimal design has the smallest average variance
over all pairwise differences of treatments (John and Williams 1995, p. 30). As described in
Chapter 3, the A-criterion is popular for assessing block designs (see also John and Williams
1995, pp. 31–32). However, unequally replicated A-optimal row–column designs are com-
putationally impractical to find when the number of experimental units is not a multiple of
the number of treatments and the number of treatments is large. Sonnemann (1985) stud-
ied A-optimal row–column designs for two treatments. Morgan and Parvu (2007) solved
the A-optimality problem for three treatments using information matrix Cd (23.2), as dis-
cussed in Chapter 3. To the authors’ knowledge, Sonnemann (1985) and Morgan and Parvu
(2007) provide the only published work on unequally replicated A-optimal row–column
designs.

The (M, S)-optimality criterion is used in the following. As explained in Section 3.3.1
of Chapter 3, a design is said to be (M, S)-optimal (or have the (M, S)-property) within a
class of designs if its information matrix, Cd, has the maximum trace and the square of
the information matrix has the minimum trace over all designs with the maximum trace.
The rationale of using the (M, S)-criterion is as follows. First, it is desirable in HTS exper-
imentation to estimate all paired comparisons with the same precision, and it is known,
for equally replicated row–column designs, that all paired comparisons can be estimated
with the same precision if and only if all nonzero eigenvalues of the information matrix
are equal (Raghavarao 1971, p. 52). Let λi, for i = 1, 2, . . . , n, be the nonzero eigenvalues
of the information matrix. Since

∑n
i=1(λi − 1

n
∑n

i=1 λi)
2 = ∑n

i=1 λ
2
i − (

∑n
i=1 λi)

2/n,
∑n

i=1 λ
2
i

is the trace of the squared information matrix, and
∑n

i=1 λi is the trace of the information
matrix, (M, S)-optimal designs have the least variable eigenvalues among those for which
the average is largest.

Second, (M, S)-optimal designs are easier to find than A- and E-optimal designs. The
(M, S)-criterion has huge computational advantages over other criteria. Such advantages
have been popularly adopted in searching A- and E-optimal row–column designs by com-
puters. For example, Nguyen (1997) constructed optimal or near-optimal row–column
designs with up to 100 treatments by permuting or interchanging the treatments within
the blocks of an optimal or near-optimal incomplete block design used as the column com-
ponent of an row–column design, and, using this technique, he searched for the A- and
E-optimal designs among (M, S)-optimal designs. Although (M, S)-optimal designs are not
necessarily A- and E-optimal, Cheng (1978) shows that, at least for regular graph designs,
they do tend to have good A- and E-criterion performance. In Section 23.4.2, we show that
our (M, S)-optimal designs perform well under the A- and E- criteria compared with two
other classes of designs that we discuss.

The discussion in the following text is arranged as follows. Section 23.2 introduces a class
of row–column designs and some preliminaries. Designs with one replicated treatment are
discussed in Section 23.3. Section 23.4 studies designs with multiple replicated treatments
and concluding remarks are given in Section 23.5.
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23.2 Saturated Row–Column Designs

In an HTS experiment, wells in the microplate are experimental units, and they are grouped
by two blocking factors with one factor representing the rows of the microplate and the
other representing the columns. The third factor of the experiment is the treatment such as
test compound or biological assay. An appropriate row–column design for the experiment
increases the accuracy of estimating treatment comparisons by enabling row and column
effects to be eliminated in the analysis.

In this section, a class of row–column designs (Qu et al. 2010) is introduced. Consider
allocating v = (b − 1)(k − 1) + 1 treatments, T1, T2, . . . , Tv, to the bk experimental units
in b(≥3) rows and k(≥3) columns. The class of designs, say, D(b, k), is constructed as
follows:

a. Treatment T(i−1)(k−1)+j is arranged in the (i, j)th cell of the design for i = 1, 2, . . . ,
b − 1, j = 1, 2, . . . , k − 1.

b. Treatment Tv is placed in the (b, k)th cell of the design.
c. For 1 ≤ i ≤ b − 1, ηi in column k is any treatment in {T1, T2, . . . , Tv} that has not

appeared in the ith row.
d. For 1 ≤ j ≤ k − 1, θj in row b is any treatment in {T1, T2, . . . , Tv} that has not

appeared in the jth column.

The treatment arrangement of designs in Table 23.2 provides great flexibility for HTS
experimentation where only treatments in the bth row and kth column are restricted and
replicated and all others are nonrepeated. A variant of this type of designs has been used
in Hsiao et al. (2012). There are no constraints on b and k in designs of class D(b, k) other
than v = (b − 1)(k − 1) + 1. Note that there is no loss of generality if we restrict b ≤ k, since
the design can always be rotated by 90◦ to achieve this.

The following discussion is devoted to notations of row–column designs. More details
can be found in Section 3.5.3 or John and Williams (1995, Chapter 5). Let yij(�) be the obser-
vation from treatment T� in the (i, j)th cell, where � ∈ {1, 2, . . . , v}, i = 1, 2, . . . , b, and
j = 1, 2, . . . , k. The following additive fixed-effect model is considered in this chapter,

TABLE 23.2

Class of Row–Column Designs

Row\Column 1 2 3 · · · k − 1 k

1 T1 T2 T3 · · · Tk−1 η1
2 Tk Tk+1 Tk+2 · · · T2(k−1) η2
3 T2k−1 T2k T2k+1 · · · T3(k−1) η3
...

...
...

...
...

...
...

b − 1 T(b−2)k−(b−3) T(b−2)k−(b−4) T(b−2)k−(b−5) · · · Tv−1 ηb−1
b θ1 θ2 θ3 · · · θk−1 Tv
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yij(�) = μ + αi + βj + τ� + εij, (23.1)

where μ is the general mean, αi is the effect of the ith row, βj is the effect of the jth column,
τ� is the effect of the treatment T� that appears in the (i, j)th cell, � = 1, 2, . . . , v, and εij’s
are independently and identically distributed random errors with mean zero and standard
deviation σ.

Since treatment, row, and column effects in an HTS experiment form a three-way clas-
sification, (23.1) is the simplest linear model that separates treatment effects from random
errors as well as from row and column effects. However, least squares analysis based on
this model has not been popularly used for hit selection in the HTS literature with the
appropriate row–column designs. Currently, most selection procedures are ad hoc. Few
experimenters attempt to de-alias treatment effects from the contamination of row and col-
umn effects as well as from random errors using row–column designs. The popular B score
method (Brideau et al. 2003) eliminates row and column effects by estimating such effects
through Tukey’s median polish procedure and subtracting them from corresponding obser-
vations. Such elimination does reduce the influence of row and column effects but cannot
separate treatment effects from random errors. In fact, the residuals used in the B score
procedure are sums of treatment effects and random errors in model (23.1). As is shown
later, model (23.1) cannot be applied to designs (a), (b), and (d) of Figure 23.1.

The information matrix Cd of a row–column design d (Section 3.5.3) has the following
form under model (23.1):

Cd = Rd − 1
k

NdN′
d − 1

b
MdM′

d + 1
bk

rdr′
d, (23.2)

or, equivalently,

bkCd = bkRd − bNdN′
d − kMdM′

d + rdr′
d, (23.3)

where r′
d = (r1, . . . , rv) is the treatment replicate vector, Rd = diag(r1, r2, . . . , rv) is a diagonal

matrix with entries r1, . . . , rv, Nd = (nij) of order v× b denotes the treatment-row incidence
matrix, that is, nij is the number of times treatment Ti appears in the jth row, and Md = (mij)

of order v × k is the treatment-column incidence matrix; that is, mij is the number of times
treatment Ti occurs in the jth column. If all entries in Nd and Md are either 0 or 1, design d
is said to be binary.

It is known that a row–column design is treatment-connected (i.e., all paired compar-
isons of treatments are estimable) if and only if the rank of Cd is v − 1. All treatment effects
in model (23.1) are estimable in a treatment-connected row–column design in spite of the
existence of row and column effects. A row–column design is called row-connected if the
rank of C(r)

d = Rd − 1
k NdN′

d is v − 1. In a row-connected design, treatment effects may
be confounded with column effects and correction can be made for row effects. Similarly,
a row–column design is called column-connected if the rank of C(c)

d = Rd − 1
b MdM′

d
is v − 1. In a column-connected design, treatment effects may be confounded with row
effects, and correction can be made for column effects. A treatment-connected row–column
design is row- and column-connected. However, there are designs that are both row- and
column-connected but not treatment-connected. In fact, design (d) in Figure 23.1 is such a
design.
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If all solid circles in designs in Figure 23.1 are filled with one treatment, and all open
circles represent different, unreplicated treatments, there are v = 81 distinct treatments in
design (a), and a straightforward QR decomposition shows that rank(Cd) = 70, which is
smaller than v − 1 = 80. Therefore, design (a) is not treatment-connected and not all paired
comparisons of treatments are estimable. In fact, design (a) is row-connected. Similarly,
design (b) is not treatment-connected but it is row-connected. For design (c) with v = 57 dis-
tinct treatments, rank(Cd) = 56, and therefore, the design is treatment-connected. Design
(d), with v = 65 distinct treatments, is row- and column-connected but not treatment-
connected because rank(C(r)

d ) = 64, rank(C(c)
d ) = 64, and rank(Cd) = 63. As is pointed

out next, the maximum number of treatments that can be arranged in an 8 × 12 treatment-
connected design is (b−1)(k−1)+1 = 78. Zhang (2008) proposed a series of plate designs by
arranging control treatments in certain patterns to offset row–column effects. The designs
labeled C1 to C5 in the article are not treatment-connected. Therefore, one cannot estimate
all the parameters in model (23.1) using those designs.

Since there are bk observations in the design of Table 23.2 for each b and k, the total
number of degrees of freedom is bk − 1. According to Equation 23.1, b − 1 and k − 1 degrees
of freedom are used to estimate row and column effects, respectively. There are (b − 1)

(k − 1) = v − 1 degrees of freedom left for treatment effects. Thus, the design of Table 23.2
is “saturated” because v = bk − b − k + 2 is the maximum number of treatments that can be
arranged in a row–column layout to eliminate nonnegligible two-way heterogeneity. There
are no degrees of freedom left to estimate the variance of the random error σ2 (see Section
23.3.2).

23.3 Design and Analysis of HTS Experiments with One
Replicated Treatment

We discuss design and analysis with one replicated (control) treatment on each microplate
in Sections 23.3.1 and 23.3.2, and we are equally interested in comparisons of nonreplicated
treatments with the replicated treatment and comparisons of nonreplicated treatments with
other nonreplicated treatments in the following discussion.

23.3.1 Designs with One Replicated (Control) Treatment

In this section, row–column designs with one (control) replicated treatment are discussed.
For b ≥ 3 and k ≥ 3, consider the row–column layout in Table 23.3 where cells in the first
b − 1 rows and k − 1 columns are labeled T1, T2, . . . , Tv−1 with one label per cell and the
v−1 treatments are assigned at random to the labels T1, T2, . . . , Tv−1. The control treatment,
labeled Tv, is assigned to cells in the bth row and kth column, where v = (b−1)(k−1)+1 =
bk − b − k + 2.

Note that the design in Table 23.3 is a special case of the design in Table 23.2 with ηi =
θj = Tv for i = 1, 2, . . . , b − 1 and j = 1, 2, . . . , k − 1. In practice, the row–column design in
Table 23.3 is usually randomized before use by randomizing the orders of rows, columns,
and treatments, respectively. If the kth column of the design in Table 23.3 is discarded, Dey
et al. (1995) showed that such a design minimizes the maximum variances of the pairwise
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TABLE 23.3

Row–Column Designs with One Control

Row\Column 1 2 3 · · · k − 1 k

1 T1 T2 T3 · · · Tk−1 Tv

2 Tk Tk+1 Tk+2 · · · T2(k−1) Tv

3 T2k−1 T2k T2k+1 · · · T3(k−1) Tv
...

...
...

...
...

...
...

b − 1 T(b−2)k−(b−3) T(b−2)k−(b−4) T(b−2)k−(b−5) · · · Tv−1 Tv

b Tv Tv Tv · · · Tv Tv

differences of the best linear unbiased estimators among all incomplete block designs with
v treatments and k − 1 blocks of size b.

Properties of the design in Table 23.3 have been studied in the literature. Ogunyemi et al.
(2007) proved that the b × k design in Table 23.3 has smaller trace of squared information
matrix than any other b × k binary designs in Table 23.2. It can be shown (Theorem 23.1)
that a b×k design in Table 23.3 has the minimum trace of the information matrix among all
b × k designs in Table 23.2. Nevertheless, it is shown in Section 23.4.1 that these nonbinary
designs perform nearly as well as the (M, S)-optimal designs under A- and D-efficiency
(defined in Section 23.1) and are sometimes better under E-efficiency.

Theorem 23.1 For any design d in the class D(b, k) of designs in Table 23.2,

trace(Cd) ≥ (bk − b − k + 2)

(
1 − 1

b
− 1

k
+ 1

bk

)
. (23.4)

The lower bound of trace(Cd) in inequality (23.4) is attained when d is a b × k design in Table 23.3.

Least squares estimates of treatment effects in the design in Table 23.3 can be obtained
from the reduced normal equations after eliminating row and column effects in model
(23.1), that is, Cdτ̂ = q, where Cd is the information matrix and q is the vector of adjusted
treatment totals, that is,

q = t − 1
b

Ndb − 1
k

Mdc + G
bk

rd,

where rd is the replication vector, t = (y··(1), y··(2), . . . , y··(v))
′, b = (y1·(·), y2·(·), . . . , yb·(·))′, and

c = (y·1(·), y·2(·), . . . , y·k(·))′ are vectors of treatment, row, and column totals, respectively,
and G is the total sum of observations. It is known that Var(q) = σ2Cd (John and Williams
1995, p. 89) and a solution to the reduced normal equation is given by τ̂ = C−

d q, where C−
d

is a generalized inverse of Cd.
The information matrix of the design in Table 23.3 is

Cd =
⎛
⎝(Ib−1 − 1

b Jb−1) ⊗ (Ik−1 − 1
k Jk−1) − 1

bk 1b−1 ⊗ 1k−1

− 1
bk 1′

b−1 ⊗ 1′
k−1

(b − 1)(k − 1)

bk

⎞
⎠ ,
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where ⊗ is the Kronecker product of matrices, Jn = 1n1′
n, and 1n is the n × 1 vector of

1’s for n = b − 1 and k − 1. Since rank(Cd) = (b − 1)(k − 1) = v − 1, the design is
treatment-connected, and its treatment-connectedness guarantees that all treatment con-
trasts are estimable regardless of row and column effects. Therefore, all treatments within
one microplate are comparable.

Note that one generalized inverse of Cd is

(
(Ib−1 + Jb−1) ⊗ (Ik−1 + Jk−1) 0(b−1)(k−1)

0′
(b−1)(k−1)

0

)
.

It is straightforward to show that the least squares estimate of τh − τv using C−
d q is

τ̂h − τv = yij(h) − yik(v) − ybj(v) + ybk(v),

if treatment Th is in the ith row and jth column.
It follows that the least squares estimate of every contrast of treatment versus control,

that is, τh − τv, has the same variance. In fact, Var(τ̂h − τv) = 4σ2 for h = 1, 2, . . . , v − 1. If
Ti and Tj are treatments in the same row or column (i �= v, j �= v and i �= j), the variance of
the least squares estimate of their effect difference (τi − τj) is

Var(τ̂i − τj) = Var(τ̂i − τv) + Var(τ̂j − τv) − 2Cov(τ̂i − τv, τ̂j − τv) = 4σ2.

If Ti and Tj are in different rows and columns, then Var(τ̂i − τj) = 6σ2. Therefore, treat-
ments in the same row or column are compared more precisely than those in different rows
or columns. These formulas provide a convenient way of finding least squares estimates
of treatment differences and their corresponding variances when large microplates such as
those with 1536(32 × 48)- or 3456(48 × 72)-wells are used in HTS experiments.

23.3.2 Analysis of Row–Column Designs with One Replicated Treatment

The analysis of the design in Table 23.3 is complicated by the fact that there are no degrees
of freedom left to estimate the process error and the design is nonorthogonal. Though
many methods have been proposed for the analysis of orthogonal, saturated designs (see
Hamada and Balakrishnan 1998, Kinateder et al. 2000b for details), only a few articles in
the literature deal with nonorthogonal, saturated designs. Two methods proposed, respec-
tively, by Kunert (1997) and Wang and Voss (2001) will be discussed and compared in this
section because effect sparsity (see Chapter 7), one of the key feature of HTS, is used in
both methods to estimate the random error. The two methods will also be compared in this
section with other normalization techniques such as the B score method.

Kinateder et al. (2000a) provided a variation of Kunert’s method to control the type I
error of individual tests. While type I error is controlled, Kinateder’s method does not take
the effect sparsity in HTS into consideration. Moreover, since the main target of primary
HTS is to discover hits for future research, it is usually more important to control type II
or false-negative errors than type I or false-positive errors. Therefore, Kinateder’s method
will not be used in the following discussion.

False-positive treatments add cost to the downstream research of HTS but will even-
tually be filtered out, while false-negative treatments are targets that are missed and that
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could have been invaluable discoveries. Therefore, we recommend that the type I error in
an individual test not be adjusted for multiple comparisons. We believe that emphasizing
the reduction of the type II error while maintaining type I errors as low as possible is the
most beneficial approach when using statistical tests for scientific discovery in HTS.

The data used in the following discussion are from an HTS experiment on enzyme inhibi-
tion of the dihydroorotate dehydrogenase assay and are available from http://chembank.
broad-institute.org/assays/view-plate.htm?id=1003379. The experiment was done by
Dr. Derek Martyn at the Broad Institute.

There are two replicates: Plates 1021.0006.1335.A and 1021.0006.1335.B. The two repli-
cates of data make it possible to analyze the data from each plate individually and to
compare the consistency of results from various analysis methods. In the experiment, three
hundred treatments with different chemical structures are arranged in columns 3 to 22
and rows 1 to 15 of two 384(16 × 24)-well microplates. Following a 30 min incubation,
the absorbance value (between 0 and 1) was measured by EnVision readers (PerkinElmer
Inc.). The ANOVA table of data from plate A is given in Table 23.4. It is observed that row
and column effects are statistically significant. Note that the statistical significance of the
row and column effects in this experiment may be due to the tiny random error. Whether
such row and column effects are practically significant has to be determined by scientists
in the HTS practice.

To apply the Kunert and the Wang and Voss (WV, hereafter) methods to the design with
one replicated treatment, all wells except those in the 16th row or 24th column will be
regarded as treatments for the purpose of illustration. Thus, although wells in columns 1,
2, 23, and 24 or in row 16 contain the control, the 45 wells in rows 1 to 15 of columns 1, 2, and
23 will be regarded here as distinct treatments and be used to evaluate false-positive rates.
If an analysis method is effective, treatments in these 45 wells are unlikely to be selected.
So in our example there are 345 treatments and one control.

Kunert’s method is carried out as follows:

Step 1: Use the baseline constraints where α16, β24, and τ346 are set to be zero for row,
column, and treatment effects, respectively; calculate the least squares estimates of con-
trasts αi − α16, βj − β24, and τ� − τ346 in model (23.1) for 1 ≤ i ≤ 15, 1 ≤ j ≤ 23, and
1 ≤ � ≤ 345; and select the order of the absolute sizes of these estimates (the largest
estimate comes first) as the order of contrasts to calculate the adaptive standard error
(ASE) in Step 3.

Step 2: Rearrange the model matrix according to the order of estimates in Step 1. Let
x0 = 1384 be the 384-dimensional vector of ones and x1, . . . , x383 be vectors in the

TABLE 23.4

ANOVA of Dihydroorotate Dehydrogenase Data

Source DF Sum of Squares Mean Square F Value P Value

Model 338 8.7374 0.0259 129.5 <0.0001
Row 15 0.0297 0.0020 10.0 <0.0001

Column 23 4.6799 0.2035 1017.5 <0.0001
Treatment 300 0.9801 0.0033 16.5 <0.0001

Error 45 0.0084 0.0002
Total 383 8.7458
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model matrix corresponding to the ordered estimates, respectively. For 1 ≤ i ≤ 383,
let U<i = [x0, x1, . . . , xi−1] be the model matrix of the first i − 1 effects, pr(U<i) =
U<i(U′

<iU<i)
−1U′

<i be the projection matrix to its column space, and W<i = pr⊥(U<i) =
I384 − pr(U<i). Define the ith contrast estimate as si = x′

iW<iy/
√

x′
iW<ixi.

Step 3: Divide the ith ordered contrast estimate, say, |s|(i), by ASE/
√

x′
iW−ixi, where

W−i = pr⊥(x0, x1, . . . , xi−1, xi+1, . . . , x383), ASE =
√√√√ 1.08

383 − m

∑
|si|≤2.56σ̂M

s2
i ,

m is the number of |si| that are larger than 2.56σ̂M , and σ̂M = 3median{|s1|, . . . , |s383|}/2.

Treatment effects whose corresponding |s|(i)
√

x′
iW−ixi/ASE ratios have p-values less

than 0.05 under the student t distribution with 0.69n degrees of freedom are declared
to be significantly different from the control.

Kunert’s method assumes that treatment effects can be ordered so that active ones come
early and a data-driven ordering is adopted in Step 1 for the relative importance of treat-
ment effects. Unlike Kunert’s method where least squares estimates of treatment effects and
adaptive standard error are used, the WV method uses adjusted least squares estimates of
effects. More specifically, the WV method is applied as follows:

Step 1: Specify the number of negligible contrasts among row, column, and treatment con-
trasts, say, ν, where one anticipates having at least ν negligible contrasts under the full
model of Equation 23.1, and identify those that yield the ν smallest normalized estimates
as the contrasts that are negligible.

Step 2: Let I be the index set of those ν parameters with the smallest normalized estimates.
Drop the parameters corresponding to contrasts with the smallest contrast estimates
from the full model and fit a reduced model to obtain adjusted estimates of contrasts.
That is, for each retained parameter θ, calculate its adjusted estimate θ̃ = θ̂ − c′

IV
−1
I γ̂I

and the standard error of the adjusted estimate

s(θ̃) =
√

(a − c′
IV

−1
I cI)(γ̂

′
IV

−1
I γ̂I/ν),

where θ̂, γ̂I are least squares estimates of θ and negligible parameters γI, aσ2 is the vari-
ance of θ̂, σ2V I is the variance matrix of γ̂I, and σ2cI is the covariance between θ̂ and γ̂I.

Step 3: For each θ, the null distribution of statistic θ̃/s(θ̃) is obtained from 10, 000 sim-
ulations, and the p-value of testing H0 : θ = 0 is calculated from the simulated null
distribution.

Step 4: Treatment effects whose p-values in Step 3 are less than 0.05 are declared to be
significantly different from the control.

In practice, data from two plates are usually combined for analysis. Since, here, we are
interested in the consistency of results from various methods, selection procedures are
applied separately to data from each plate. Significant effects at the 5% level commonly
selected from both plates using the WV and the Kunert methods are listed in Table 23.5.
For example, 46 and 53 treatments are selected from plates A and B by the WV method
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TABLE 23.5

Hits Selected by Various Methods

Method Wells of Hits

A04 A07 A10 A11 A12 A15 A19 A23
WV B04 B09 B11 B12 B13 B15 B16

(v = 327) C05 C06 C07 C11 C12 C13 C14 C15 C16 C19
(46 and 53) D03 D04 D07 D08 D17 D18 D19 D21

E05 E07 E09 E10 E12 E16 E17 E18 E19 E21
F3

Kunert A01 A02 A03 A04 A05 A06 A07 A08 A09 A10 A11 A12 A13 A14 A15 A16
(148 and 76) A17 A18 A19 A20 A21 A22

B04 B06 B09 B10 B11 B12 B13 B15 B16

C04 C05 C06 C07 C08 C10 C11 C12 C13 C14 C15 C16 C17 C19 C20 C21
D03 D04 D07 D08 D12 D14 D17 D18 D19 D21

E05 E07 E09 E10 E12 E16 E17 E18 E19 E21
F03

I03 I07 I11
O13

B score A04 A07 A10 A11 A15 A19 A20 A23 A24
(79 and 80) B04 B06 B09 B11 B12 B13 B15 B16 B19

C01 C02 C03 C07 C09 C12 C13 C14 C15 C16 C17 C18 C19 C22 C23 C24

D02 D03 D04 D07 D08 D10 D11 D13 D15 D17 D19 D19 D20 D21 D22
E01 E02 E05 E10 E11 E12 E16 E17 E18 E19 E21

F03
K04

L24
N05

Z score B24 D23 D24 E23 E24 F24 G23 H23 I23 J24 K24
(27 and 21) L23 L24 M23 M24 N23 N24 O23 O24 P23 P24

LASSO A01 A02 A04 A06 A07 A10 A11 A14 A15 A16 A18 A19 A22 A23
(97 and 96) B01 B02 B04 B05 B07 B09 B11 B12 B13 B15 B16 B19

C01 C02 C03 C05 C06 C07 C09 C11 C12 C13 C14 C15 C17 C18 C19 C22 C23
D01 D02 D03 D04 D05 D07 D08 D10 D11 D13 D15 D17 D18 D19 D20 D21 D22
E01 E02 E04 E05 E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 E21

F03 K04 L23 M23 N05

Bradu–Hawkins B09 B11 B12 C07 C14 D21 E17 F03

(9 and 11)

Notes: Letters stand for the rows and numbers for the columns of the microplate. Note that a
false positive occurs when any treatment in rows 1, 2, 23, 24 or row P is selected.

based on 10, 000 simulations for the null distribution and ν = 327 (or assume 5% of 345
treatments are active), respectively. The 44 treatments in Table 23.5 are selected from both
plates A and B where A04 stands for the compound in row A and column four. Kunert’s
method chooses 148 and 76 significant treatments from plates A and B of which 72 treat-
ments are from both plates. All treatments selected by the WV method except A23 (a false
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positive) are also chosen by Kunert’s method. Kunert’s method selects more treatments
than the WV method.

Selections from the B score and the Z score methods with a popularly used threshold
of three (Brideau et al. 2003) are also listed in Table 23.5. The B score method selects 79
and 80 treatments from plates A and B of which 64 treatments are in common. Z scores are
standardized observations (centered by the mean and scaled by the standard deviation)
without any adjustment of row and column effects. The Z score method picks 27 and 21
from plates A and B of which 21 treatments are in common. Note that both the B score and
the Z score methods select hits from all 384 wells on the microplates, and thus do not use
comparisons with the control, while the WV and the Kunert methods select hits from 345
wells because the 39 wells in the 16th row and 24th column have been used as the control
reference in effect estimation. It is observed that the treatments selected by the methods of
WV, Kunert, and B score overlap substantially.

Table 23.5 also lists treatments selected by the least absolute shrinkage and selection
operator (hereafter, LASSO; Tibshirani 1996) and the Bradu–Hawkins method (Bradu and
Hawkins 1982). The LASSO is a method for high-dimensional estimation in linear regres-
sion. It minimizes the residual sum of squares subject to the sum of the absolute value of
the coefficients being less than a constant. LASSO is a penalized likelihood approach and
is known for its accuracy in prediction and variable selection coupled with its computa-
tional feasibility. It is designed for cases like HTS experiments where signals are sparse.
Bühlmann and van de Geer (2011) has more details on LASSO. To obtain more stable cross-
validation results, the LASSO selection is done by averaging 10 outcomes of fivefold cross
validation.

The Bradu–Hawkins method uses the median of tetrads associated with a cell to identify
multiple hits in a single step. A tetrad associated with cell (i, j) is defined as yij −ysj −yit +yst
for i �= s and j �= t, where yij is the observation from the (i, j)th cell and so on. The
half-normal plot provides an indicator of the actual number of hits. Half-normal plots of
plates A and B are given in Figure 23.3. For example, since there is a break at the ordered-
absolute-median-tetrad value of 0.2 in the half-normal plot of plate A, all treatments
whose absolute-median-tetrad values larger than 0.2 are empirically identified as hits in
plate A, where 4, 21 stands for the treatment in the fourth row and 21st column or D21.
While the LASSO method seems to consistently select more treatments than other meth-
ods, the Bradu–Hawkins method picks much smaller numbers of hits from both plates.
Note that the number of hits selected by the Bradu–Hawkins method depends on the sub-
jective threshold on the half-normal plot. If there is no obvious breaking points on the
half-normal plot, the Bradu–Hawkins method may select more hits with a low threshold.

If plate B is regarded as a confirmation of plate A, the positive confirmation rate (PCR)
in Zhang et al. (2005) can be used to compare the screening efficiency where

PCR = Number of treatments selected in both plates A and B
Number of treatments selected in plate A

.

The positive confirmation rates of the WV, the Kunert, the B score, the Z score, the
LASSO, and the Bradu–Hawkins methods are 95.65%, 48.65%, 81.01%, 77.78%, 82.47%, and
88.89%, respectively. Therefore, the WV method is the most consistent one followed by the
Bradu–Hawkins, the LASSO, the B score, the Z score, and the Kunert methods.

All treatments selected by the Z score method are control treatments and, therefore, are
false positives. Simulation studies in Qu (2011a) show that the nonnormality of random
errors may be responsible for the high false-positive rate of the Z score method. The Z
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FIGURE 23.3
Half-normal selection of plates A (a) and B (b).

score method is based on the normal distribution of the observations in HTS, and it is very
sensitive to any deviations from normality. Moreover, the Z score method does not adjust
for row and column effects.

The B score method is robust to outliers since it uses the median absolute deviation as
its denominator. However, the B score method selects more treatments in this example
than the Kunert and the WV methods and therefore has higher chance to collect more false
positives. One reason is that the B score method uses the residuals rather than estimates of
effects. The difference between residuals and estimates of effects is clearly shown in Figure
23.4. Although the two graphs in the first row of Figure 23.4 seem to suggest that there
may be a shift difference between residuals and effect estimates, different shapes of the
two graphs in the second row of Figure 23.4 show a subtle difference between residuals
and effect estimates. The correlation coefficient between estimated effects in plates A and
B (0.9244) is higher than that between residuals (0.9096), which shows estimated effects as
the estimates of true activity levels of compounds are more consistent than residuals. More
false positives in the B score selection could also be due to the error distribution. Simulation
studies in Qu (2011a) show that the B score method chooses more false positives when the
error distribution is skewed.

The ordering of effect estimates in Kunert’s method contributes to the large difference
between two numbers of treatments selected from plates A and B (148 and 76). As pointed
out by Kunert (1997), active effects have a large chance to be detected if they come early
in the ordering. The data-driven ordering used by Kunert’s method varies from data
set to data set, and it does not guarantee that the probability of an active effect enter-
ing an early position is larger than that of a late position. The adjusted estimates and
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FIGURE 23.4
Estimates of effects versus residuals.

nonparametric determination of significant effects make the WV method more consistent
than others.

Given the sparsity of hits in HTS culture (say, less than 5%), selection rates of
13%(44/345) of the WV method, 17%(64/384) of the B score method, 21%(80/384) of the
LASSO method, and 21%(72/345) of Kunert’s method indicate that each method may select
false positives. Ten false positives (A23, A24, C01, C02, C23, C24, D02, E01, E02, L24) have
been selected by the B score method and 14 (A01, A02, A23, B01, B02, C01, C02, C23, D01,
D02, E01, E02, L23, and M23) by the LASSO method because these treatments are from con-
trol wells. Two false positives (A01, A02) were selected by Kunert’s method, and only one
(A23) is picked by the WV method. The Bradu–Hawkins method has no such false posi-
tives. The Bradu–Hawkins and WV methods are the best in terms of picking up the fewest
treatments from control wells. However, since no experimental confirmation is available
for the noncontrol wells, it is unclear which method has the fewest false positives, and the
information on false negatives is not known either.

Since different methods use different standards to select hits, they may not have the
same type I error rate. Methods with a high type I error rate may yield more hits than those
with a low type I error rate. Therefore, the number of hits selected by a specific method
should not be used as the only standard in comparing with other methods of selection.
In our opinion, the WV method is the best one for HTS practice.
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23.4 Designs of HTS Experiments with Multiple Replicated Treatments

Control treatments play an important role in HTS experiments. Replicated measurements
from those control treatments on microplates are often used to calculate quality indices
of screening. For example, the ratio of the average response from the controls in one
microplate to that of another can be used to assess plate-to-plate variability. A ratio of close
to one shows low variation from plate to plate.

Many HTS experiments need positive, negative, and other controls due to scientific spec-
ifications. For example, plate design C2 in Zhang (2008) has two positive, one negative,
and one other controls residing in various wells of the microplate. Controls are usually
repeated unequally in the microplate. The negative control in plate design C2 in Zhang
(2008) is repeated 24 times, and the first positive control is repeated 12 times.

In an HTS experiment with positive and negative controls, a clear distinction between
the two types of controls is an indication of high-quality screening. The Z-factor, [|ȳP−ȳN|−
3(sP + sN)]/|ȳP − ȳN|, proposed by Zhang et al. (1999) has been a popular quality index,
where ȳP, ȳN, sP, and sN are the sample means and standard deviations of responses from
positive and negative controls, respectively. A Z-factor value of one is an ideal level of
screening quality, and a Z-factor value between 0.5 and 1 is an indication of excellent quality
of screening.

How to construct optimal, treatment-connected designs with multiple replicated treat-
ments is challenging. (M, S)-optimal designs are discussed in Section 23.4.1 and designs
with a cyclic structure are presented in Section 23.4.2. Any replicated treatment in these
designs can be used as a control treatment in HTS practice. For simplicity, we do not
differentiate replicated treatments from other treatments in the following discussion.

23.4.1 (M,S)-Optimal Designs

For b ≥ 4, k = b + s, and 0 ≤ s ≤ b − 1, Qu (2010) constructed treatment-connected
row–column designs that are (M, S)-optimal in D(b, k) by the following four steps where
1, 2, . . . , v = bk − b − k + 2 are treatment labels:

1. Treatment (i−1)(k−1)+ j is in row i and column j for i = 1, 2, . . . , b−1, j = 1, 2, . . . ,
and k − 1, respectively.

2. Treatment v is in row b and column k.
3. Treatments in rows 1 to b − 1 of column k are k + 1, 2k + 1, . . . , (b − 2)k + 1, and 1,

respectively.
4. Treatments k + 1, 2k + 1, . . . , (b − s − 1)k + 1 are in columns 1 to b − s − 1 of row b;

those in columns b − s to b − 1 of row b are treatments (b − s − 1)(k − 2) + 2(b − 1),
(b − s)(k − 2) + 2(b − 1), . . . , (b − 2)(k − 2) + 2(b − 1); those in columns b to k − 1 of
row b are treatments 1, (b − 2)k + 1, . . . , and (b − s)k + 1, respectively.

The design constructed by these four steps has b − 1 treatments replicated three times and
k − b treatment replicated twice. In fact, an (M, S)-optimal design for b ≥ 4, k = b + s is
a design in Table 23.2 with η1 = k + 1, η2 = 2k + 1, . . . ,ηb−1 = (b − 2)k + 1 and θ1 =
k + 1, θ2 = 2k + 1, . . . ,θb−s−1 = (b − s − 1)k + 1, θb−s = (b − s − 1)(k − 2) + 2(b − 1),
θb−s+1 = (b − s)(k − 2) + 2(b − 1), . . . ,θb−1 = (b − 2)(k − 2) + 2(b − 1), θb = 1, θb+1 =
(b − 2)k + 1, . . . ,θk−1 = (b − s)k + 1.



850 Handbook of Design and Analysis of Experiments

TABLE 23.6

(M, S)-Optimal Design in the Class D(8, 12) of Designs in Table 23.2 (b = 8, k = 12,
and s = 4)

Row\Column 1 2 3 4 5 6 7 8 9 10 11 12

A 1 2 3 4 5 6 7 8 9 10 11 13
B 12 13 14 15 16 17 18 19 20 21 22 25
C 23 24 25 26 27 28 29 30 31 32 33 37

D 34 35 36 37 38 39 40 41 42 43 44 49
E 45 46 47 48 49 50 51 52 53 54 55 61

F 56 57 58 59 60 61 62 63 64 65 66 73
G 67 68 69 70 71 72 73 74 75 76 77 1

H 13 25 37 44 54 64 74 1 73 61 49 78

For example, Table 23.6 presents a treatment-connected, (M, S)-optimal design in the
class D(8, 12) of designs in Table 23.2 for 96(8 × 12)-well microplates. Table 23.7 provides
a treatment-connected, (M, S)-optimal design in the class D(16, 24) of designs in Table 23.2
for 384(16 × 24)-well microplates. (M, S)-optimal row–column designs in the class D(b, k)
of designs in Table 23.2 for popularly used microplates of other dimensions such as 32 ×48
and 48 × 72 plates can be constructed accordingly.

For b ≥ 4, k > b + s, and 0 ≤ s ≤ b − 1, k can be expressed as k = t(b − 1) + s + 1
where t ≥ 2. Treatment-connected, (M,S)-optimal designs in D(b, k) can be obtained from
designs in Table 23.2 with specified ηi and θj for i = 1, 2, . . . , b − 1 and j = 1, 2, . . . , k − 1.
For simplicity and clarity, steps of construction are given as follows, where 1, 2, . . . , v − 1
and v = bk − b − k + 2 are treatment labels:

1. Treatment (i−1)(k−1)+ j is in row i and column j for i = 1, 2, . . . , b−1, j = 1, 2, . . . ,
and k − 1, respectively.

2. Treatment v is in row b and column k.
3. Treatments in rows 1 to b − 1 of column k are k + 1, 2k + 1, . . . , (b − 2)k + 1, and 1,

respectively.
4. If t is even, treatments in columns 1 to (t − 1)(b − 1) of row b are 2(b − 1), (k −

1) + (b − 1) + (b − 2), . . . , (b − 3)(k − 1) + (b − 1) + 2, (b − 2)(k − 1) + (b − 1) + 1;
(b − 2)(k − 1) + 3(b − 1), (b − 3)(k − 1) + 3(b − 1) − 1, . . . , (k − 1) + 2(b − 1) + 2,
2(b − 1) + 1; . . . ; t(b − 1), (k − 1) + t(b − 1) − 1, . . . , (b − 3)(k − 1) + (t − 1)(b − 1) + 2,
and (b−2)(k−1)+ (t−1)(b−1)+1; those in columns (t−1)(b−1)+1 to t(b−1)− s
of row b are 1, (b − 2)k + 1, . . . , (s + 1)k + 1; those in columns t(b − 1) − s + 1 to
t(b − 1) of row b are (s − 1)(k − 1) + t(b − 1) + s, (s − 2)(k − 1) + t(b − 1) + s − 1, . . . ,
(k − 1) + t(b − 1) + 2, and t(b − 1) + 1; and those in columns t(b − 1) + 1 to k − 1 of
row b are k + 1, 2k + 1, . . . , sk + 1, respectively.

5. If t is odd, treatments in columns 1 to (t − 1)(b − 1) of row b are 2(b − 1), (k − 1) + 2
(b−1)−1, . . . , (b−3)(k−1)+(b−1)+2, (b−2)(k−1)+(b−1)+1; (b−2)(k−1)+3(b−1),
(b−3)(k−1)+3(b−1)−1, . . . , (k−1)+2(b−1)+2, 2(b−1)+1; . . . ; (b−2)(k−1)+t(b−1),
(b−3)(k−1)+ t(b−1)−1, . . . , (k−1)+ (t−1)(b−1)+2, and (t−1)(b−1)+1; those
in columns (t−1)(b−1)+1 to t(b−1)−s of row b are k+1, 2k+1, . . . , (b−1−s)k+1;
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TABLE 23.7

(M, S)-Optimal Design in the Class D(16, 24) of Designs in Table 23.2 (b = 16, k = 24, and s = 8)

Row\Column 1 2 3 4 5 6 7 8 9 10 11 12

A 1 2 3 4 5 6 7 8 9 10 11 12
B 24 25 26 27 28 29 30 31 32 33 34 35

C 47 48 49 50 51 52 53 54 55 56 57 58
D 70 71 72 73 74 75 76 77 78 79 80 81

E 93 94 95 96 97 98 99 100 101 102 103 104
F 116 117 118 119 120 121 122 123 124 125 126 127
G 139 140 141 142 143 144 145 146 147 148 149 150

H 162 163 164 165 166 167 168 169 170 171 172 173
I 185 186 187 188 189 190 191 192 193 194 195 196

J 208 209 210 211 212 213 214 215 216 217 218 219
K 231 232 233 234 235 236 237 238 239 240 241 242

L 254 255 256 257 258 259 260 261 262 263 264 265
M 277 278 279 280 281 282 283 284 285 286 287 288
N 300 301 302 303 304 305 306 307 308 309 310 311

O 323 324 325 326 327 328 329 330 331 332 333 334
P 25 49 73 97 121 145 169 184 206 228 250 272

Row\Column 13 14 15 16 17 18 19 20 21 22 23 24

A 13 14 15 16 17 18 19 20 21 22 23 25

B 36 37 38 39 40 41 42 43 44 45 46 49
C 59 60 61 62 63 64 65 66 67 68 69 73

D 82 83 84 85 86 87 88 89 90 91 92 97
E 105 106 107 108 109 110 111 112 113 114 115 121
F 128 129 130 131 132 133 134 135 136 137 138 145

G 151 152 153 154 155 156 157 158 159 160 161 169
H 174 175 176 177 178 179 180 181 182 183 184 193

I 197 198 199 200 201 202 203 204 205 206 207 217
J 220 221 222 223 224 225 226 227 228 229 230 241

K 243 244 245 246 247 248 249 250 251 252 253 265
L 266 267 268 269 270 271 272 273 274 275 276 289
M 289 290 291 292 293 294 295 296 297 298 299 313

N 312 313 314 315 316 317 318 319 320 321 322 337
O 335 336 337 338 339 340 341 342 343 344 345 1

P 294 316 338 1 337 313 289 265 241 217 193 346

those in columns t(b−1)−s+1 to t(b−1) of row b are (b−s−1)(k−1)+ t(b−1)+s,
(b− s)(k −1)+ t(b−1)+ s−1, . . . , (b−2)(k −1)+ t(b−1)+1; and those in columns
t(b − 1) + 1 to k − 1 of row b are 1, (b − 2)k + 1, . . . , (b − s)k + 1, respectively.

For example, Table 23.8 presents a treatment-connected, (M, S)-optimal design in the class
D(8, 16) of designs in Table 23.2 although no microplates of such dimensions have been
used so far in HTS experiments.
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TABLE 23.8

(M, S)-Optimal Design in the Class D(8, 16) of Designs in Table 23.2 (b = 8, k = 16,
t = 2, and s = 1)

Row\Column 1 2 3 4 5 6 7 8

A 1 2 3 4 5 6 7 8
B 16 17 18 19 20 21 22 23
C 31 32 33 34 35 36 37 38

D 46 47 48 49 50 51 52 53
E 61 62 63 64 65 66 67 68

F 76 77 78 79 80 81 82 83
G 91 92 93 94 95 96 97 98

H 14 28 42 56 70 84 98 1

Row\Column 9 10 11 12 13 14 15 16

A 9 10 11 12 13 14 15 17
B 24 25 26 27 28 29 30 33
C 39 40 41 42 43 44 45 49

D 54 55 56 57 58 59 60 65
E 69 70 71 72 73 74 75 81

F 84 85 86 87 88 89 90 97
G 99 100 101 102 103 104 105 1

H 97 81 65 49 33 15 17 106

23.4.2 Designs with a Cyclic Structure

In HTS practice, the (M, S)-optimal design in Section 23.4.1 may be difficult for experimen-
tal setup because of the complicated locations of repeated treatments. Special attention or
programming is needed for the experimenter or the robotic distributor to bring repeated
treatments to their specific locations in the microplate. Plate designs with a simple alloca-
tion of repeated treatments will definitely simplify the distribution process. In this section,
we construct a type of row–column designs that is treatment-connected but has a simpler
structure. Consider allocating v = bk − b − k + 2 treatments, T1, T2, . . . , Tv, to the bk experi-
mental units in b(≥ 2) rows and k(≥ 2) columns in Table 23.9. Such designs were proposed
in Qu (2011b) where treatments T1, T2, . . . , Tk, T2k−1, T3k−2, . . . , T(b−2)(k−1)+1, and Tv are
replicated twice and others are nonreplicated.

TABLE 23.9

Row–Column Designs of b × k with a Cyclic Structure

Row\Column 1 2 · · · k − 1 k

1 T1 T2 · · · Tk−1 Tk

2 Tk Tk+1 · · · T2(k−1) T2k−1
3 T2k−1 T2k · · · T3(k−1) T3k−2
...

...
...

...
...

...
b − 1 T(b−2)(k−1)+1 T(b−2)(k−1)+2 · · · T(b−1)(k−1) Tv

b Tv T1 · · · Tk−2 Tk−1
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FIGURE 23.5
Efficiencies of row–column designs with eight rows.

Figure 23.5 displays A, D, and E efficiencies of row–column designs of 8 rows and 8–20
columns, where “Cyclic design, A” stands for the A-efficiency of the design in Table 23.9,
“(M, S)-optimal, D” is the D efficiency of the (M, S)-optimal design in Section 23.4.1, and
“Nonbinary, E” is the E efficiency of the design studied in Table 23.3. As described in Section
23.1, the A efficiency of a design is the harmonic mean of its canonical efficiency factors or
the nonzero eigenvalues of matrix R−1/2

d CdR−1/2
d where Cd and Rd are defined in (23.2)

and (23.3), the D efficiency is the geometric mean of those nonzero eigenvalues, and the E
efficiency is the minimum nonzero eigenvalue of R−1/2

d CdR−1/2
d . It is observed that (M, S)-

optimal designs have the highest A and D efficiencies among all three types of designs but
have lower E efficiencies than nonbinary designs when 18 ≤ k ≤ 20. Nonbinary designs
have higher A and E efficiencies than cyclic designs. For 12 ≤ k ≤ 20, cyclic designs are the
worst in terms of A, D, and E efficiencies.

If we treat controls and treatments equally, it is desirable to estimate all elementary con-
trasts with the same precision. A design is said to be balanced if all elementary contrasts
are estimated with the same precision. A necessary and sufficient condition for a treatment-
connected design to be balanced is that all nonzero eigenvalues of its information matrix
are equal (Rao 1958).

None of the designs in Table 23.9, the (M, S)-optimal, and the nonbinary designs
with one control are equireplicated and balanced. To see how unbalanced these designs
are, Qu (2011b) introduced a balance index for row–column designs, that is, �d(b, k) =
b2k2trace(C2

d)− (bktrace(Cd))
2/(v − 1). For a row–column design d, �d(b, k) measures its

deviation from balance. �d(b, k) = 0 is a necessary and sufficient condition for a row–
column design d to be balanced. Therefore, it is reasonable to say that a row–column
design with a small value of �d(b, k) is more balanced than that with a large value of
�d(b, k). Qu (2011b) showed that cyclic designs in Table 23.9 are more balanced than the
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(M, S)-optimal designs in Section 23.4.1 but less balanced than the nonbinary designs in
Table 23.3.

Kshirsagar (1958) showed that balanced designs are the most efficient among the class
of equireplicated designs of the same size. Recall that the cyclic designs are less A-,
D-, and E-efficient than the (M, S)-optimal and the nonbinary designs for 12 ≤ k ≤ 20 in
Figure 23.5. It seems that Kshirsagar’s result does not hold for unequally replicated row–
column designs. The relationship between balance and efficiency is complex for unequally
replicated row–column designs because balance is based on information matrix Cd but A,
D, and E efficiencies are based on R−1/2

d CdR−1/2
d .

23.5 Conclusions

We have discussed saturated row–column designs for HTS experiments. These designs use
the minimum number of experimental units to compare the maximum number of treat-
ments in a row–column layout. Unlike most row–column designs in the literature where
many combinatorial restrictions have been put on numbers of rows and columns, designs
considered here can be constructed for any dimensions. This is extremely important to
HTS practice because microplates of various dimensions have been manufactured and used
in HTS experimentation. All row–column designs constructed are treatment-connected so
that treatment effects can be separated from the contamination of row and column effects.
All row–column designs constructed in Sections 23.4.1 and 23.4.2 are binary, that is, no
treatments are repeated in any row or column.

As is pointed out by Morgan and Parvu (2007), finding A- and E-optimal row–column
designs with a large number of nonreplicated treatments is computationally impractical at
the current stage. When it is not feasible to find A- and E-optimal designs, the designs we
proposed can be good surrogates in HTS experimentation.

This chapter has shown that unequally replicated row–column designs play an impor-
tant role in the HTS experimentation for drug discovery. The (M, S)-optimal designs
constructed in this chapter are based on the information matrix Cd. In addition to find-
ing A- and E-optimal designs, finding (M, S)-optimal designs based on R−1/2

d CdR−1/2
d is an

interesting and challenging open question for unequally replicated row–column designs.
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24.1 Introduction

24.1.1 Background and Motivation

Up-and-down (UD) dose-finding designs are used extensively in a variety of scientific and
engineering fields. The first technical documents describing UD designs date to the 1940s
and involve military explosive testing to find the optimal height from which to drop a
bomb (Anderson et al. 1946; Dixon and Mood 1948) and hearing-threshold determina-
tion (von Békésy 1947). In both of these applications, UD designs are still the method of
choice. Other common UD applications include failure-threshold determination in electri-
cal and material engineering (Lagoda and Sonsino 2004) and finding the median effective
dose (ED50) in anesthesiology (Pace and Stylianou 2007). As these examples suggest, dose-
finding is a general term to describe experiments whose outcomes are binary (“yes/no”),
conducted to find the treatment that would trigger a “yes” response at a prespecified fre-
quency. UD procedures comprise a family of sequential dose-finding designs, meaning
that treatments are ordered in time and each treatment (except the first one) is deter-
mined by previous outcomes rather than being predetermined before the experiment’s
start.

In numerous applications, UD designs are a standard method (e.g., JSME 1981; ASTM
1991; OECD 1998; NIEHS 2001). Prominent among these are animal toxicity studies, which
attempt to estimate the median lethal dose (LD50) of various toxins while sacrificing as
few animals as possible. Toxicity is also the outcome of interest in first-in-human (Phase I)
clinical trials, which are dose-finding experiments attracting considerable methodological
attention and innovation. The most popular Phase I design in current use is superficially
related to UD and is often confounded with it. More generally, UD plays an important role
in the statistical debate regarding Phase I design choices.

One obstacle to the proliferation of UD usage and best practices has been the lack of
standard references, such as exists for statistical methods of comparable popularity. In this
chapter, we attempt to provide a condensed version of such a standard reference, present-
ing an unprecedented compilation of UD methodological knowledge. The presentation is
closer to a textbook than a review article. This includes the definition of numerous terms
we deem crucial to the understanding and proper use of UD designs.

The remainder of the Introduction will present the basic terminology and define some
essential concepts. Section 24.2 explores these concepts and demonstrates some basic UD
properties, using two of the simplest UD designs. Section 24.3 presents UD design vari-
ants whose properties are more complicated, ways to compare UD designs, and some
results from such comparisons. Section 24.4 discusses UD estimation methods. Section 24.5
provides a quick overview of other popular approaches to dose-finding and a basic
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comparison between their properties and those of UD designs. The chapter ends with a
brief summary, some general design recommendations, and historical notes.

24.1.2 Basic Terminology

One must begin with the definition of UD itself, because the term has been used rather
loosely by different authors. We prefer the consensus interpretation of the term among
modern UD methods researchers: UD designs are dose-finding designs which, under sim-
ple assumptions, generate dose-assignment sequences that are Markov chains over a discrete
set of doses, X . This chapter does not cover methods that operate on a continuous dose
space.

Without loss of generality, we refer to treatment magnitudes as doses and to experi-
mental outcomes as toxicities. Let Yi = 1 if the ith subject (a plant, animal, or human)
of a dose-finding experiment exhibits toxicity, and 0 otherwise (i = 1, . . . , n). Given that
the dose to which the ith subject was exposed is Xi = x, the probability of toxicity is
F(x)= P {Yi = 1 | Xi = x}. Despite the experiment using only a discrete set of doses, the
dose-magnitude variable itself, x, is assumed to be continuous, and the toxicity rate is
assumed to increase continuously with increasing x. The experiment’s goal is to esti-
mate the exact dose x (on a continuous scale) that produces a fixed target toxicity rate
� = P {Y = 1 | X = x} , � ∈ (0, 1). This can be expressed as estimation of the quantile
F−1(�) of a cumulative distribution function that models the dose-toxicity curve F(x).
The density function f (x) associated with F(x) is interpretable as the distribution of toxi-
city thresholds of the population under study. We focus on � ≤ 0.5, the range of target rates
used for most toxicity studies.

The general defining characteristics of a UD design follow:

1. Doses, labeled X1, . . . , Xn, are administered to a sequence of subjects 1, . . . , n.
2. The doses, X1, . . . , Xn are restricted to a fixed set of M possible dose levels, which

is denoted by

X = {d1, . . . , dM : d1 < · · · < dM} .

3. Suppose that Xi = dm, then Xi+1 ∈ {dm−1, dm, dm+1}, i ∈ {1, . . . , n} according to
simple constant rules based on recent toxicity responses, hence the name up and
down. This means that the Markov chains generated by UD designs are also random
walks.

24.1.3 Transition Probability Matrix

Given that a subject receives dose dm, denote the probability that the next subject receives
dose dm−1, dm, or dm+1 by pm,m−1, pmm or pm,m+1, respectively. These transition probabili-
ties obey the constraints pm,m−1 + pmm + pm,m+1 = 1 and the boundary conditions p1,0 =
pM,M+1 = 0. A specific set of UD rules enables the symbolic calculation of these probabil-
ities, usually as a function of F(x). Assume for now that transition probabilities are fixed
in time, depending only upon the current allocation and its outcome, that is, upon (Xi, Yi)

and through them upon F(x) (and possibly on a set of fixed parameters). The probabilities
are then best represented via a tridiagonal transition probability matrix (TPM) P:
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P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p11 p12 0 · · · · · · 0

p21 p22 p23 0
. . .

...

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
...

. . . 0 pM−1,M−2 pM−1,M−1 pM−1,M

0 · · · · · · 0 pM,M−1 pMM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (24.1)

Transition probabilities between any pair of doses dj and dm, administered either to con-
secutive subjects or to subjects separated by any number l ≥ 1 of intervening subjects, are
denoted as follows:

pjm = pjm(1) = P{Xi+1 = dm|Xi = dj}.
pjm(l) = P{Xi+l = dm|Xi = dj}; (j, m) ∈ {1, . . . , M} .

These probabilities can be calculated via matrix multiplication: pjm(l) =
(

Pl
)

jm
, where

Pl denotes the matrix P multiplied by itself l times. For a given j, m pair, if pjm(l)> 0 and
pmj(l)> 0 for some l > 0, then dose levels dj and dm are said to communicate. If all levels
communicate with each other, the matrix P is called regular. Under realistic conditions, the
TPMs of typical UD designs are regular. This condition guarantees the existence of positive
stationary dose-allocation frequencies (see Section 24.2.3).

24.1.4 Up-and-Down Design’s Balance Point

UD designs generate Markov chains with a central tendency, meaning that dose assign-
ments tend to meander back and forth around some dose that can be calculated from the
design parameters (Durham and Flournoy 1994; Hughes 1995). This dose was recently
termed the balance point by Oron and Hoff (2009). While the term and some related method-
ological considerations are recent, the intuition giving rise to designs with balance points
is as old as the UD design itself.

Continuous up and down transition functions p(x) and q(x) are now defined such that
{pm;m+1} and {pm;m−1}, respectively, are points on these curves.

Definition 24.1 Consider a UD with an “up” transition probability pm,m+1 that might vary over
time, that is, with the accruing sample size n ≥ 1.∗ If, in the interior of X (specifically, 1 ≤ m < M),

lim
n→∞

(
pm,m+1

) = gup (dm) ,

where gup (dm) is an algebraic function of dm “only,” then the extension of gup (dm) onto its nat-
ural continuous domain Dup ⊇ [d1, dM] will be called the “the ’up’ transition function” p(x),

∗ A terminology note: for most designs discussed in this chapter, the random-walk transition probabilities are
constant in time, and therefore, the use of “limn→∞” in Definition 24.1 is redundant. However, Section 24.3.2
presents a widely used UD method whose dose-transition probabilities only stabilize in the n → ∞ limit.
Therefore, we use a limit notation.
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x ∈ [d1, dM]. The “down” function q(x) is similarly defined from the “down” transition probability
pm,m−1, 1 < m ≤ M.

In words, p(x) and q(x) are defined on a continuous domain that includes X , while {pm,m+1}
and {pm,m−1} are defined only on X itself.

As will be seen later, for practically all UD designs, the transition probabilities are simple
functions of the dose-toxicity rate function F(x) evaluated on X . Therefore, their continu-
ous extension as p(x) and q(x) is straightforward and enables a useful definition for the
balance point:

Definition 24.2 Consider a UD design with “up” and “down” functions p(x) and q(x), respec-
tively. If p(x) is monotone decreasing and q(x) monotone increasing in x, then the UD balance
point is the dose x∗ such that

x∗ = argx
{
p(x) = q(x)

}
. (24.2)

The toxicity rate at x∗ will be denoted F∗, that is, F(x∗) = F∗.

The dual monotonicity condition in Definition 24.2—in words, as the dose increases,
the “up” probability goes down while the “down” probability goes up—will be referred
to as the Durham–Flournoy conditions, after the first study to specify them in generic form
(Durham and Flournoy 1994, 1995). As shown in Theorem 24.1, designs that meet these
conditions generate a central tendency around their balance point. In UD experiments, x∗
usually is not one of the doses in X , but falls between two of the designs’ doses.

One would like the center of the dose-allocation distribution to be close to the experi-
ment’s designated target quantile F−1(�). This can be accomplished by judicious selection
of design parameters, so that � ≈ F∗ ≡ F(x∗). An illustration of p(x), q(x) and the bal-
ance point is shown in Figure 24.1 for the classical UD design and for a BCD design, both
described in Section 24.2.2.

In dose-finding, in general and in UD designs in particular, it is easy to focus on the
central tendency and on asymptotic properties and forget the magnitude of sampling vari-
ability that might be observed in practice. While UD designs do guarantee an x∗-centered
random walk, it is still a random walk. Since most dose-finding applications use small sam-
ples, the relative magnitude of sampling variability is often rather substantial. In order to
keep the reader cognizant of this variability and to illustrate the concept of a random walk
on X , Figure 24.2 shows the experimental trajectories generated by three n = 30 random
draws from the same toxicity threshold distribution, on an M = 8 dose set, for each of the
two designs described in Section 24.2. The plots follow the graphical conventions common
to dose-finding studies, with filled circles representing toxicities and empty ones nontox-
icities. Balance points are denoted by dashed horizontal lines. The squares denote reversal
points in the experimental trajectories, whose properties are explored later.

We now describe a few first-order designs, called thus because they generate first-order
Markov chains. For these chains, the probability of transiting to an adjacent dose in X
depends upon the dose-allocation history, only through the current dose level and the
current experimental outcome.
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FIGURE 24.1
The “up” and “down” transition probability functions p(x) (solid line) and q(x) (dashes), for classical UD (a) and
BCD with F∗ = � = 0.3 (b), using hypothetical logistically distributed toxicity threshold scenario and M = 10
levels. The crosshairs denote x = x∗ and y = F∗.

24.2 Tour through First-Order Up-and-Down Designs

24.2.1 Classical Up-and-Down Rule

The original (hereafter, “classical”) UD design follows this rule: given Xi = dm,

Xi+1 =
{

dm+1 if Yi = 0;
dm−1 if Yi = 1,

for m = 2, . . . , M − 1. In words, the experiment moves up one level following a nontoxicity
and down one level following a toxicity, hence the name up and down. On the boundaries
of X , replace d0 with d1 whenever the former is mandated and similarly replace dM+1 with
dM (i.e., the experiment stays on the boundary rather than venture outside it, which is
impossible by design). Subsequently, boundary conditions are omitted since they always
follow this basic adjustment.

The classical UD remains the most commonly used UD design. In the interior of X , it
leads to the following transition probabilities:

pm,m+1 = P{Yi = 0|Xi = dm} = 1 − F(dm).

pm,m−1 = P{Yi = 1|Xi = dm} = F(dm).
(24.3)

The balance point (24.2) is the dose x∗ whose toxicity rate F∗ obeys

1 − F∗ = F∗ −→ F∗ = 0.5.
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As expected from its symmetric transition rules, the classical UD design is best suited for
estimating the median toxicity threshold.

24.2.2 Biased Coin Up-and-Down Designs

24.2.2.1 Derman’s Biased Coin Design

Derman (1957) was the first to develop a UD extension for nonmedian percentiles. His
design requires a random toss of a metaphoric coin, with b = P{heads} ∈ [0.5, 1]. Given
Xi = dm,

Xi+1 =

⎧⎪⎨
⎪⎩

dm+1 if Yi = 0, or
dm+1 if Yi = 1 and tails;
dm−1 if Yi = 1 and heads.

The balance point x∗ is given by

p(x∗) = q(x∗);

1 − F
(
x∗)+ (1 − b)F

(
x∗) = bF

(
x∗) ;

F∗ = F
(
x∗) = 1

2b
∈ [0.5, 1].

(24.4)

For example, to produce a central tendency around the dose F−1(2/3), set b = 0.75. When
b = 1, the balance point is the median, and indeed this value makes Derman’s design
identical to the classical UD design. A mirror-image version of the design (i.e., de-escalate
after a toxicity and toss a coin after a nontoxicity) can be used to estimate percentiles below
the median.

24.2.2.2 Durham and Flournoy’s Biased Coin Design

Derman’s design has a practically unappealing property: if the coin points tails, the exper-
iment will move in the direction opposite to that indicated by the most recent response
(i.e., the dose will escalate despite having just observed a toxic response). This is especially
undesirable in clinical trials, where such transitions might actually halt the experiment due
to safety concerns (e.g., Neuenschwander et al. 2008). Not surprisingly, Phase I researchers
prefer designs that preclude such occurrences, which Cheung (2005) called incoherent dose
transitions.∗

Durham and Flournoy (1994) suggested a design that uses a biased coin that centers the
dose-allocation distribution around any percentile without incoherent transitions. Given
Xi = dm, the next dose allocation will be

Xi+1 =

⎧⎪⎨
⎪⎩

dm+1 if Yi = 0 and heads;
dm−1 if Yi = 1;
dm if Yi = 0 and tails.

(24.5)

∗ Not to be confused with the usage of coherence in Bayesian theory.
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The heads probability b can take any value in [0, 1]. The balance point is given by

b
(
1 − F∗) = F∗,

F∗ = b
1 + b

∈ [0, 0.5].
(24.6)

Given a desired toxicity rate �, the BCD balance point can made identical to F−1(�) by
setting the heads probability to b = �/(1 − �). For example, for � = 0.3 (commonly used in
Phase I cancer trials), set b = 3/7. Once again, setting b = 1 makes this design identical to
the classical UD, and inverting the rules produces above-median balance points. Hereafter,
we refer to this design simply as the BCD.

The conditioning of dose escalation upon the outcome of a random draw, in addition to
a nontoxicity, keeps experimental trajectories at lower doses, on average, than the classical
UD design does. In Figure 24.2b, each BCD run with b = 1/3 (i.e., F∗ = 0.25) uses exactly the
same toxicity thresholds as the classical UD trajectory shown (i.e., F∗ = 0.50) immediately
above it in the top row (all drawn randomly from a Gamma distribution). While the clas-
sical UD design runs escalate rather easily to the upper half of the M = 8 dose range, the
BCD runs are confined mostly to the bottom half.

24.2.3 Asymptotic Dose-Allocation Distribution

Because UD sequences of assigned doses x1, . . . , xn possess the properties of a Markov
chain, as n → ∞, the relative proportions of subjects assigned to each dose in X approach
the asymptotic or stationary allocation distribution π= (π1, . . . ,πM)′ ;

∑
m πm = 1. If P is

regular, then πm > 0 ∀m. The distribution π can be found by solving the M balance equa-
tions, which are greatly simplified by the tridiagonal structure of P for first-order UD
designs (24.1):

πm = πm−1pm−1,m + πmpmm + πm+1pm+1,m, m = 2, . . . , M − 1. (24.7)

The solution is a recursive formula for calculating π from the transition probabilities:

πm+1 = λmπm, λm = pm,m+1

pm+1,m
, m = 1, . . . , M − 1, (24.8)

where λm, the adjacent-level ratio, is the ratio between the single-step probabilities of esca-
lating from dm and de-escalating to dm. To ensure that

∑
m πm = 1, the base-level frequency

π1 is set by

π−1
1 = 1 +

M−1∑
m=1

m∏
j=1

λj.
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24.2.3.1 Calculating the Asymptotic Dose-Allocation Distribution for the Biased Coin and
Classical Up-and-Down Designs

For the BCD, calculation of the adjacent-level ratio λm is straightforward:

λm = pm,m+1

pm+1,m
= b (1 − F(dm))

F(dm+1)
. (24.9)

The numerator is monotone decreasing in m, while the denominator is increasing, and
therefore, λm as a whole is monotone decreasing. The doses for which {λm} straddle unity
bound the balance point x∗.

Interestingly, the classical UD presents a somewhat nonstandard asymptotic allocation
distribution. Since pmm = 0 except on the boundaries, classical UD Markov chains are
quasiperiodical. For example, suppose the experiment begins at d5, and M = 10; then for
subjects with an odd index i, the allocated dose level m will be odd and vice versa—unless
and until the trajectory hits upon a boundary and remains there for two consecutive sub-
jects. If the design had no boundaries, then the chain would be purely periodical with
a period of 2, yielding two noncommunicating stationary distributions π(odd),π(even). With
finite X , the classical UD design has a single π with the monotone decreasing adjacent-level
ratio λm = (1 − F(dm))/F(dm+1).

24.2.3.2 Unimodality of the Asymptotic Dose-Allocation Distribution and Its
Relationship to the Balance Point

If λm is monotone decreasing in m, as was just shown for the classical UD design and BCD,
then it immediately follows that π is unimodal:

• If λ1 ≤ 1 (or λM ≥ 1), then π1 ≥ π2 ≥ · · · ≥ πM (or vice versa), and π has a single
mode on the lower (upper) boundary.

• If λ1 ≥ 1 ≥ λM, then the πm initially increase as m increases; then once λm ≤ 1, they
monotonically decrease—thereby creating a single mode.

Unimodality of π is very useful if the mode’s location is close to x∗ and if—as stipulated
earlier—the design is chosen so that F∗ ≈ � , because then the UD information collection
rate about F(x) eventually peaks around the percentile of interest (see, e.g., Figure 24.3).∗
The following theorem guarantees this property and is a cornerstone of UD design theory:

Theorem 24.1 Consider a UD design generating a Markov chain, with an asymptotic allocation
distribution π = (π1, . . .πM) over X , with p(x) (q(x)) strictly monotone decreasing (increasing)
in x, and a balance point x∗ as defined in (24.2). If there exist two adjacent levels dm∗ and dm∗+1
such that x∗ ∈ [dm∗ , dm∗+1], then π’s mode is either at dm∗ or at dm∗+1. Otherwise, the mode is on
the boundary closest to x∗.

∗ As long as F(x) is strictly increasing, and transition probabilities are strictly monotone functions of F(x) (as is the
case for both classical UD and BCD), then scenarios when λm = 1 will be all but nonexistent. If such a case does
occur, the maximum value in π will be shared by two adjacent levels, called a modal set, which together can be
still seen as forming a single mode. In other words, qualitatively, the design will still behave as do designs with
single-dose mode.
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Asymptotic distribution example: classical UD
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FIGURE 24.3
The asymptotic dose-allocation distribution π for the classical UD (a) and BCD with � = 0.3 (b), using the same
X and F as in Figure 24.1.

Proof : First, assume that x∗ ∈ [dm∗ , dm∗+1]. Under the specified monotonicity conditions,
the following inequalities always hold for any 2 ≤ m < M:

λm−1 =
p(x)

∣∣
x=dm−1

q(x)
∣∣
x=dm

>
p(x)

∣∣
x=dm

q(x)
∣∣
x=dm

>
p(x)

∣∣
x=dm

q(x)
∣∣
x=dm+1

= λm. (24.10)

The ratio in the middle of this inequality is monotone decreasing in the dose x and becomes
exactly 1 at x = x∗. Therefore, for all m < m∗, λm > 1 and for all m > m∗, λm < 1. This
means that the mode of π has to be at either dm∗ or dm∗+1.
On the lower boundary of X , if x∗ < d1, then λ1 = p12/p21 < p (x∗) /q (x∗) = 1, and
therefore, the mode is at d1. The upper-boundary case is analogous.

Versions of Theorem 24.1 in varying degrees of generality have appeared in the
literature from Derman (1957) onward. The aforementioned formulation used is adapted
from Oron and Hoff (2009). In plain terms, the mode of π is guaranteed to be at one of the
two dose levels straddling the balance point x∗.

Whether the asymptotic mode is in fact on the single closest level to x∗ depends upon
the design and upon how closest is defined. Defining closeness on the toxicity frequency (F)
scale, rather than on the dose (x) scale, is generally more useful. For example, the following
property was proven for the classical UD:

Theorem 24.2 (Oron and Hoff 2009) For the classical UD design, π’s mode is at the level whose
toxicity rate is closest to 0.5.
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Proof : Let x∗ = F−1(0.5) ∈ [dm∗ , dm∗+1]. Write F (dm∗) = 0.5−�p1 and F (dm∗+1) = 0.5+�p2,
where �p1 ≥ 0 and �p2 ≥ 0. Then the adjacent-level ratio (24.8) at level m∗ can be written as

λm∗ = pm∗,m∗+1

pm∗+1,m∗
= 0.5 + �p1

0.5 + �p2
. (24.11)

Because λm∗ ≥ 1 if and only if �p1 ≥�p2, the result immediately follows from this
inequality.

For the BCD, the mode is not necessarily the dose closest to the target. Let x∗ =
F−1(�), � < 0.5, and cast the BCD adjacent-level ratio (24.9) into a form analogous to (24.11),
to obtain

λm∗ = pm∗,m∗+1

pm∗+1,m∗
= �

(
1 − � + �p1

)
(1 − �)

(
� + �p2

) .

This adjacent-level ratio is greater than 1 if and only if �p1/�p2 > (1−�)/�. For example, if
� = 1/4 and x∗ ∈ [d2, d3], then the asymptotic mode will be at d2 unless F (d3) is three times
closer to 1/4 than F (d2). This means that the BCD’s dose-allocation behavior is somewhat
more conservative (i.e., less amenable to dose escalation) than indicated by its nominal
target toxicity rate.

24.2.3.3 Sharpness of the Asymptotic Dose-Allocation Distribution

The unimodality of π helps concentrate information collection around x∗. It is also
of practical interest to know how steeply π decreases to either side of its mode, in order
to know the degree of this concentration and the frequency of excursions away from x∗.
Assume, without loss of generality, that the mode is at a single interior level dm∗ . Due to
monotonicity conditions, we know that λm∗−1 > 1 and λm∗ < 1. If the adjacent-level ratios
remained constant at these values on either side of the mode, then the rate of decrease in π

values away from the mode would be geometric—the discrete analogue of exponentially
decreasing tails. However, due to their monotonicity, the λ’s become more extreme as one
moves away from the mode. Hence, the drop in asymptotic allocation frequencies away
from π’s mode is faster than geometric for UD designs.

Durham and Flournoy (1994) obtained a valuable result (shown in Theorem 24.3) regard-
ing the form of the BCD’s π and the steepness of this decrease away from the mode. This
result requires the following definition:

Definition 24.3 Let Z be a random variable that is defined on a set of discrete real-valued points
X . Let �̃(z) denote P{Z = z}. Then Z is said to have a discrete normal distribution if

�̃(zj) = e− 1
2 z2

j

∑M
i=1 e− 1

2 z2
i

, zj ∈ X .
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Theorem 24.3 Assume that subjects’ toxicity thresholds are logistically distributed, with

1 − F(x) = (1 + exp(μ + σx))−1, σ > 0,

and that the doses are equally spaced: X = {d1, d1 + �, d1 + 2�, · · ·, d1 + (M − 1)�}. Then the
BCD’s asymptotic allocation distribution is a mixture of two discrete normal distributions over X ,
for which the mixing parameter is the target toxicity rate �, that is,

πm = (1 − �)�̃

(
dm − (x∗ − 0.5�)√

�/σ

)
+ ��̃

(
dm − (x∗ + 0.5�)√

�/σ

)
, dm ∈ X . (24.12)

See Durham and Flournoy (1994) for the complete proof. The modes of the two discrete
normal distributions are separated by one dose spacing unit �, so they have considerable
overlap. The first (second) component of (24.12) is the asymptotic allocation distribution
for subjects with nontoxic (toxic) responses. If � = 0.5, that is, the design is the classi-
cal UD procedure, the mixture is equally weighted, and, as shown in more generality in
Theorem 24.2, the asymptotic mode will be on the dose whose toxicity rate is closest to 0.5.
Conversely, as � → 0, the first component will dominate, shifting the asymptotic mode as
far as �/2 downward.

Despite the specific parametric assumptions on F, (24.12) provides a useful guide-
line about the stationary frequency of BCD excursions, because many common response
function models are very similar except on the extreme tails and because (as will
be shown later) several common UD designs produce πs at least as sharp as those of
the BCD. Under the assumptions of Theorem 24.3, roughly 97.5% of the allocations will
be within x∗ ± 2

√
�/σ. This approximation can be used to choose � so as to control for

highly toxic events, given approximate prior knowledge of the dispersion parameter σ

(Durham et al. 1997).

24.2.4 Up-and-Down Convergence

24.2.4.1 Convergence to Stationary Behavior

The presentation of asymptotic UD properties has thus far sidestepped an important prac-
tical aspect. Dose-finding experiments are by their nature small-to-medium-sample affairs
(n < 100 and more often than not n < 30), so asymptotic behavior would generally not
dominate the magnitude of observed variability—as we reminded the reader at the close of
Section 24.1. So why bother about asymptotic behavior at all? Indeed, in recent years, dose-
finding analyses have rarely examined asymptotic behavior, relying almost exclusively
upon numerical simulations instead.

As Oron et al. (2011) argue, this recent view is misguided. An obvious practical rea-
son is that simulations are, generally speaking, haphazard rather than systematic samples
from the space of all relevant dose-toxicity scenarios and are therefore prone to misuse
and abuse—as anyone who has read enough simulation-based dose-finding articles can
attest. But an even stronger, conceptual reason is that all sequential dose-finding designs
rely upon some mechanism for concentrating dose allocations near the target. How good
is the mechanism?
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A straightforward test is to allow the design to run indefinitely and characterize its
behavior. A design with a good concentrating mechanism must demonstrate reasonably
desirable behavior as n → ∞. Conversely, if desirable asymptotic behavior cannot be guar-
anteed or if the type of convergence or conditions for convergence make asymptotic
behavior all but impossible for dose-finding applications, then the design should proba-
bly not be trusted even for small-to-medium n. Hence we turn our attention now to the
importance of asymptotics (discussed earlier) and convergence.

With sequential procedures such as UD designs, the term convergence carries many dif-
ferent meanings. Results have been published about the convergence of UD dose-allocation
frequencies (Durham and Flournoy 1995; Durham et al. 1995) and about the convergence
of observed toxicity rates (Flournoy et al. 1995; Oron et al. 2011). A third type of conver-
gence is the convergence of the dose-allocation process itself, which in the case of UD designs
is convergence to stationary sampling from π.

For Markov chains, convergence of the dose-allocation process to stationary behavior
erases, or mixes, the arbitrary initial conditions. A deterministically chosen starting dose
can be represented by an allocation distribution ρ, which is 0 everywhere and 1 at dm = x1.
In the case of a completely random starting point, ρhas a discrete-uniform distribution over
X . The allocation distribution after the first subject can be written in matrix form as ρ

′
P (see

(24.1)). The probability distribution of the n+1-th assignment, given the starting conditions
only, is ρ

′
Pn (cf., Diaconis and Stroock 1991). All rows of Pn become arbitrarily close to π

as n → ∞, meaning that from some n onward, the marginal allocation distribution of
subsequent doses becomes essentially stationary and independent of the initial conditions
ρ. Specifically,

max
m

∣∣Pn
m − π′∣∣ ∝ βn

2, m = 1, . . . M, (24.13)

where | · | denotes Euclidean distance, Pn
m is the mth row of Pn, and β2 is the eigenvalue of

P with the second-largest absolute value.∗
Since it is known that |β2| < 1, the allocation-distribution convergence rate is geometric

in n—far faster than the usual root-n rate of the laws of large numbers and many other
processes.

The practical implication of geometric convergence is that while individual UD alloca-
tion sequences might vary (see Figure 24.2), the impact of initial conditions is erased at a
rate fast enough to bear fruit even during a small-sample experiment. Oron and Hoff (2009)
translated the geometric rate to terms relevant for experimentalists. They progressed the
allocation distribution from the initial conditions X1 = d1 and observed how many sub-
jects it would take the expectation E(n)(X) of the allocation distribution at subject n to reach
99% of the way from d1 to the stationary mean E(∞)(X) = ∑

m πmdm. Several UD designs
targeting � = 0.3 were examined under several dose-toxicity scenarios each. With M = 5
levels, it took 10–20 subjects to arrive 99% of the way to E(∞)(X), and with M = 10 about
twice as long.

24.2.4.2 Convergence of the Empirical Allocation Frequencies

The convergence of empirical dose allocations at the individual dose levels is also of great
practical importance. For example, the quality of the isotonic regression estimator of the

∗ The largest absolute eigenvalue of P is 1, associated with the stationary behavior itself.
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target percentile F−1(�) (see the following and Section 24.4) depends upon this distribution
being clustered around the target. We know that if F∗ ≈ �, then asymptotically, this is the
case. But is this true for real-life sample sizes?

Let W(n) = (W1(n), . . . , WM(n)) denote the empirical allocation distribution, that is, the
proportion of subjects allocated to each level when n subjects have been allocated in total.
Then for UD designs, Wm(n) → πm as n → ∞ almost surely, by the law of large numbers
for regular Markov chains. The asymptotic distribution of W is determined by the central
limit theorem (CLT) for regular Markov chains:

√
n
(
(W1(n), . . . , WM(n)) − π′) n→∞−→ N

(
0, diag

[
σ2

1(P), . . . ,σ2
M(P)

])
. (24.14)

The rate of convergence is of order O
(
1/

√
n
)
—the usual CLT rate. This is one reason why

the empirical mode of allocated doses, examined in some recent studies as an estimator for
F−1(�), performs rather poorly in that role despite its asymptotic consistency (Giovagnoli
and Pintacuda 1998). At n = 30 or even 60, the variability in allocated proportions is too
high to reliably equate the empirical mode with the stationary mode.

Note: from a practical perspective, choosing a design with smaller asymptotic variances(
σ2

1(P), . . . ,σ2
M(P)

)
is equivalent to increasing the scaling constant of the convergence rate,

that is, accelerating the convergence. Both will help W(n) achieve a prespecified preci-
sion threshold with fewer subjects. However, the overall root-n convergence rate cannot be
changed, and it is far slower than the convergence of the dose-allocation process itself to
stationary behavior.

24.2.5 Estimating the Quantile of Interest

More often than not, estimation of UD experiments has been approached inconsistently by
both applied and methodological researchers. Many researchers use outdated and ques-
tionable estimators of F−1(�), just because these estimators happen to be prevalent in their
field. Many method developers illogically produce UD estimates in the same way as esti-
mates from an entirely different class of dose-finding designs (e.g., Zacks 2009). To help
alleviate the confusion, Section 24.4 is dedicated mostly to UD estimation. Right now, a
brief description is provided for two estimators of F−1(�): the one most commonly used
for the classical UD design and a more recent estimator considered as standard for the BCD
and recommended for all UD designs.

24.2.5.1 Reversal Averaging Estimators

The most common classical UD estimator for the median-toxicity dose uses reversal points—
those subjects in the experiment whose toxicity outcome is different from the outcome of
the immediately previous subject:

R = {
i : Yi �= Yi−1, i = 2, . . . , n

}
, (24.15)

where Yi is subject i’s binary toxicity outcome. Reversal points are surrounded by squares
in Figure 24.2. The reversal estimator of F−1(�) is a simple average of the doses at which
reversals are observed:
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X
(rev.) =

∑
i XiI [i ∈ R]∑

i I [i ∈ R]
, (24.16)

where I[·] is the indicator function. Sometimes the first few reversals are excluded in order
to mitigate the starting-dose bias. Using reversals rather than all assigned doses is done
mostly for historical reasons (Wetherill et al. 1966). As explained more fully in Section 24.4,
we recommend discontinuing the averaging of only reversal doses.

24.2.5.2 Isotonic Regression–Based Estimators

Stylianou and Flournoy (2002) adapted isotonic regression (Barlow et al. 1972) for estimat-
ing F−1(�) following UD experiments. For dose-toxicity applications, isotonic regression
begins by calculating the empirical toxicity frequencies at each dose:

F̂m =
∑n

i=1 YiI [Xi = dm]∑n
i=1 I [Xi = dm]

, m = 1, . . . , M. (24.17)

The somewhat awkward formulation in (24.17) is equivalent to simply tabulating how
many observations were made at each dose and what proportion of these are toxicities.
For example, if four subjects have thus far been given dose dm with two toxicities, then
F̂m = 0.5.

In the case of a monotonicity violation among the {F̂m}, isotonic regression recursively
replaces adjacent pairs of violating values by their weighted average, until all viola-
tions disappear and the resulting estimate conforms to the assumption of an increasing
dose-toxicity relationship. Stylianou and Flournoy’s estimate for F in [d1, dM] linearly inter-
polates between the isotonic regression pointwise results. The dose where F̂ crosses the
horizontal line y = � becomes the UD point estimate of F−1(�). This estimator is a special
case of regression estimators: estimators that fit some curve y = Ĝ(x) through the points{(

dm, F̂m

)}
. Dose–response plots and isotonic regression estimators for the six simulated

runs of Figure 24.2 are shown in Figure 24.4, along with a minor modification called centered
isotonic regression (CIR) (Oron 2007, Section 3.3).

24.3 Higher-Order Up-and-Down Designs and Other Extensions

Via first-order designs, we have now completed a brief tour of the main UD design prop-
erties and estimation approaches. The first-order BCD (with the classical UD design as
a special case) is simple and intuitive and allows for the estimation of any percentile.
However, there are cases when neither the classical UD design nor BCD are adequate, such
as when

• Subjects are treated in cohorts rather than individually, in order to save time and
resources
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• In some applications, such as oncology, researchers are reluctant to use randomiza-
tion in a toxicity study, even for selecting between two adjacent doses (as required
for the BCD)

• Other UD designs may yield better estimation efficiency

This section surveys additional, somewhat more sophisticated UD designs that are either in
common use or have been studied in some detail. When relevant, they are compared with
the BCD and to each other. The section ends with a description of an innovative UD design
for dose-finding in which the target dose involves joint toxicity and efficacy probabilities.

24.3.1 Group Up-and-Down Designs

Group UD rules were first introduced in the 1960s for median estimation, by Wetherill
(1963) and Tsutakawa (1967a,b), and more recently studied in greater depth by Gezmu and
Flournoy (2006), Ivanova (2006), and Baldi Antognini et al. (2008) for the estimation of any
percentile. Subjects are treated in cohorts of a fixed size s. Let l and u be two integers such
that 0 ≤ l < u ≤ s. With a Group UD design, Yi is the number of toxic responses in the ith
cohort, rather than a binary outcome. Given that the ith cohort is treated at Xi = dm on the
interior of X , the i + 1-th cohort is assigned to

Xi+1 =

⎧⎪⎨
⎪⎩

dm+1 if Yi ≤ l ;
dm−1 if Yi ≥ u;
dm if l < Yi < u .

Conditional upon Xi and F(x), Yi has a binomial distribution with parameters s and F(dm),
with the “up” and “down” probabilities being the binomial distribution’s tails and the
“stay” probability its center (it is zero if u = l + 1). This design rule is abbreviated as
GUD(s,l,u), or GUD in general.

Nominally, a GUD is an s-order design, since the s most recent observations are needed
to determine the next allocation. However, with cohorts viewed as single entities (with each
entity containing s subjects), the Group UD generates a first-order Markov chain having
a tridiagonal TPM as in (24.1). In this condensed form, it is straightforward to show that
the Durham–Flournoy monotonicity conditions on p(x) and q(x) are met, and therefore,
Theorem 24.1 holds and π is unimodal. Unlike the classical UD design and the BCD, except
for special cases, GUD balance points can be calculated only numerically, by finding the
dose x∗ with toxicity rate F∗ such that

s∑
r=u

(
s
r

) (
F∗)r (1 − F∗)s−r =

l∑
t=0

(
s
t

) (
F∗)t (1 − F∗)s−t. (24.18)

Any numerical root-finding algorithm can be used to solve for F∗ in (24.18). Gezmu and
Flournoy (2006) and Ivanova et al. (2007) present tables with (s, l, u) combinations and the
corresponding values of F∗ satisfying (24.18). For example, GUD designs that might be
useful for � = 0.3 include the following combinations:
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s 2 3 4 5 6
(l, u) (0,1) (0,2) (0,2) (0,3) (1,2) (0,3) (1,2) (0,4) (1,3)
F∗ 0.293 0.347 0.267 0.302 0.314 0.253 0.264 0.326 0.341

Notable special cases of group UD designs, whose F∗ can be calculated by hand, are
symmetric ones (u + l = s) for which x∗ is the median (the classical UD design again is a
special case of this family viz., GUD(1,0,1)). In addition, the family GUD(k,0,1) is related to
the design we describe next.

24.3.2 k-in-a-Row (“Geometric”) Design

The design called here the “k-in-a-row design” is presented in some detail, due to its
widespread use in sensory studies (Treutwein 1995) and to a now-resolved controversy
regarding its properties. The rule, whose development and introduction to sensory studies
date back to Wetherill’s work in the 1960s (Wetherill 1963; Wetherill and Levitt 1966), is
extremely simple:

Xi+1 =

⎧⎪⎨
⎪⎩

dm+1 if Yi−k+1 = · · · = Yi = 0, all observed at dm;
dm−1 if Yi = 1;
dm otherwise,

(24.19)

where k ≥ 1 is an integer constant. In words, under this rule, every dose escalation requires
k consecutive nontoxicities at the current level, while de-escalation only requires a single
toxicity. Using straightforward reasoning, Wetherill concluded that this design’s balance
point at dose x∗ is given by

F∗ = F
(
x∗) = 1 −

(
1
2

)1/k

. (24.20)

The k = 1 case is simply the classical UD design, but k = 2, 3, 4 would be associated with
F∗ ≈ 0.293, 0.206 and 0.159, respectively.∗

While Wetherill correctly identified F∗, the characterization of k-in-a-row’s overall
Markov chain behavior was provided only a generation later by Gezmu (1996) and com-
pleted by Oron and Hoff (2009). Recent work also gave the design the following names:
first, geometric UD design (for reasons that will be apparent soon) and then k-in-a-row design
(Ivanova et al. 2003), the name used here. Meanwhile, in sensory studies, where it is
most commonly used, the design is known as forced-choice fixed-staircase methods (Treutwein
1995), but this name is used for related non-Markovian designs as well.

The k-in-a-row design generates a kth order Markov chain because knowledge of the
last k responses might be needed. Like any k-order chain, it can be represented as a first-
order chain with Mk states, useful for writing out a TPM.† Equivalently, it can be modeled

∗ The method used in sensory studies is actually the mirror image of (24.19), with k successive responses required
for a de-escalation and only one nonresponse for escalation, yielding F∗ ≈ 0.707, 0.794, 0.841, . . ..

† It should be noted that for the highest level dM, internal states are redundant: no escalation is possible, and
therefore, dose-transition behavior is identical and depends only on the most recent outcome. So the most concise
representation of a k-in-a-row TPM would have (M − 1)k + 1 states. However, for symmetry and aesthetics, we
use Mk states.
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as a Markov chain with M levels, each having k internal states labeled 0 to k − 1 (Weiss
1994; Oron and Hoff 2009). The internal state serves as a counter of the number of immedi-
ately recent consecutive nontoxicities observed at level m. This description is closer to the
physical dose-allocation process, because subjects at different internal states of the same
level m are all assigned the same dose dm. Either way, the TPM is Mk × Mk. Equation
24.21 shows the expanded k-in-a-row TPM with k = 2 and M = 6, using the abbreviations
Fm = F (dm) , F̄m = 1 − Fm, m = 1, . . . , M. Dose levels are labeled.

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m=1 m=2 m=3 m=4 m=5 m=6

m=1
F1 F̄1 0 0 0 0 0 0 0 0 0 0
F1 0 F̄1 0 0 0 0 0 0 0 0 0

m=2
F2 0 0 F̄2 0 0 0 0 0 0 0 0
F2 0 0 0 F̄2 0 0 0 0 0 0 0

m=3
0 0 F3 0 0 F̄3 0 0 0 0 0 0
0 0 F3 0 0 0 F̄3 0 0 0 0 0

m=4
0 0 0 0 F4 0 0 F̄4 0 0 0 0
0 0 0 0 F4 0 0 0 F̄4 0 0 0

m=5
0 0 0 0 0 0 F5 0 0 F̄5 0 0
0 0 0 0 0 0 F5 0 0 0 F̄5 0

m=6
0 0 0 0 0 0 0 0 F6 0 0 F̄6
0 0 0 0 0 0 0 0 F6 0 F̄6 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24.21)

The matrix is regular, assuring that there is an asymptotic distributionπ(states), with positive
values for all Mk states. This is not the asymptotic dose-allocation distribution π, since it
counts separately different internal states of the same level m. The latter can be found by
summing π(states) over the internal states of each level.

Gezmu (1996) found π(states) by noting that nonbase (>0) internal states can only be
accessed from the internal state immediately below in the same level. The balance equation
for such states is, therefore,

π
(states)
m(j) = (1 − Fm)π

(states)
m(j−1)

, j = 1, . . . , k − 1, (24.22)

where m(j) denotes the internal state j within dose level m. This is the formula of a decreas-
ing geometric sequence with a quotient of (1 − Fm), hence the name Gezmu suggested for
the design (geometric UD design).

Now, the balance equation between dm and dm+1 is

π
(states)
m(k−1)

(1 − Fm) = πm+1Fm+1. (24.23)

In words, “up” transitions are possible only from the top internal state, while “down” tran-
sitions are mandated upon any toxicity regardless of internal state. After applying standard
geometric-series formulae to express π(states)

m(k−1)
as a function of πm , one obtains the stationary

adjacent-level ratio of the dose-allocation distribution π:

λm = Fm (1 − Fm)k

Fm+1

[
1 − (1 − Fm)k

] . (24.24)
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This ratio is monotone decreasing in m, conforming to the Durham–Flournoy conditions
(see Section 24.1.4). The k-in-a-row balance point can now be calculated; indeed, it is
the one found by Wetherill (24.20). It is also identical to the balance point of GUD(k,0,1).
The same unimodality and mode-location properties, with respect to x∗ shown for π of the
classical UD design and the BCD, hold for k-in-a-row as well (Oron and Hoff 2009).∗

24.3.3 Biased Coin Design Extensions

The versatile framework of the BCD lends itself to further extensions. Baldi Antognini et al.
(2008) generalized the Group UD design for any user-specified toxicity rate � by adding
a biased coin to the dose allocation procedure. Flournoy (1998) proposed the use of an
urn model to integrate parallel BCD runs, helping shorten an experiment’s duration. This
strategy is also useful when clinical trials are performed at different locations.

Taking advantage of the flexibility in constructing biased coin designs, Bortot and
Giovagnoli (2005) also examined a generalized first-order approach in order to study their
properties. Let there be two coins having P

{
heads

}
equal to b1 and b2. Then

Xi+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dm+1 if Yi = 0 and coin 1 yields heads;
dm−1 if Yi = 1 and coin 2 yields heads;
dm if Yi = 0 and coin 1 yields tails

or Yi = 1 and coin 2 yields tails.

(24.25)

The balance point maintains

F∗b2 = (
1 − F∗) b1; F∗ = b1

(b1 + b2)
.

Setting b2 = 1 yields Durham and Flournoy’s BCD. A family of generalized BCDs for the
same � can be created by setting

b2

b1
= 1 − �

�
, b2 ∈ [0, 1],

so it can be indexed by a single coin-toss parameter. Although all members of the family
share the same balance point, they differ in other properties, as described in the following
section.

Bortot and Giovagnoli (2005) also developed a second-order BCD, again using two coins.
Given Xi = dm,

Xi+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dm+1 if Yi = 0, Yi−1 = 0 and coin 1 yields heads
or Yi = 0, Yi−1 = 1 and coin 2 yields heads;

dm−1 if Yi = 1;
dm otherwise.

∗ The derivation of (24.24) assumes stationarity. For finite n, the marginal transition probabilities are very
cumbersome to calculate; it is for the k-in-a-row design that the n → ∞ limit terminology is needed in
Definition 24.1.
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Bortot and Giovagnoli derived π and showed that it is unimodal by the Durham–Flournoy
conditions (see Section 24.1.4) and if (1−�)b1+�b2 = �/(1−�). However, their simulations
indicate only a modest estimation performance improvement over the first-order BCD.

24.3.4 Comparing Up-and-Down Designs

With several UD variants to choose from for estimating a given quantile, some ways to com-
pare UD designs are needed. An obvious comparison criterion is estimation performance—
for example, mean squared error (MSE) of the quantile estimates. Since estimates at the
various dose levels are dependent, in general, this practical metric can only be gauged
via simulation studies. A more didactic approach that can often save simulation time is to
consider individual properties and find theoretical relationships between designs for these
properties. Some properties suggested and examined by researchers are

• Convergence rates of the dose-allocation process and of empirical dose-allocation
frequencies

• How tight (or peaked, see definition as follows) is the asymptotic distribution π

• How well is π centered around x∗

24.3.4.1 Convergence Rates

Bortot and Giovagnoli (2005) showed that for the family of generalized BCDs of the form
(24.25) having the same �, the asymptotic allocation variance is a decreasing function of b2,
and, therefore, Durham and Flournoy’s BCD (b2 = 1) is the minimum-asymptotic-variance
member of this family. Moreover, the geometric rate of convergence to stationary behavior
increases with increasing b2, up to a certain b(max)

2 , which in numerical simulations tended
to be greater than 1. In summary, the simplest member of the family (i.e., the BCD) appears
to have the best convergence properties.

Oron and Hoff (2009) found the following result comparing the convergence of k-in-a-
row with the analogous group UD design.

Theorem 24.4 Consider a k-in-a-row and a GUD(k,0,1) design with the same k,X , and
dose-toxicity rate function F. Then the k-in-a-row design converges more quickly to its stationary
behavior.

The proof appears in Oron and Hoff (2009). In simulations, k-in-a-row also held a per-
vasive and even larger advantage over a BCD with the same x∗. BCD designs took
10% − 70% more subjects than k-in-a-row to reach the 99% stationary benchmark defined
in Section 24.2.4 (Oron and Hoff 2009). However, this numerical advantage over BCD was
not theoretically proven.

24.3.4.2 Peakedness of the Asymptotic Dose-Allocation Distribution

Giovagnoli and Pintacuda (1998) introduced the concept of peakedness as an easy-to-analyze
measure of precision for discrete unimodal distributions of the type generated by UD
designs.
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Definition 24.4 For two UD designs D1, D2 operating over the same X and having the same
balance point x∗, D1’s asymptotic distribution is more “peaked” if it increases more quickly to
the left of x∗ and decreases more quickly to the right of x∗. That is, if one considers λ(D1)

m , λ(D2)
m , the

adjacent-level ratio of π under designs D1, D2, respectively, then

{
λ

(D1)
m ≥ λ

(D2)
m ≥ 1 for m = 1, . . . , m∗ − 1;

λ
(D1)
m ≤ λ

(D2)
m ≤ 1 for m = m∗ + 1, . . . , M − 1,

(24.26)

where m∗ denotes the dose level immediately below x∗.

As the stationary allocation distribution π becomes more peaked, excursions away
from x∗ are of shorter duration and estimation efficiency of F−1 (�) generally improves.
Therefore, all other things being equal, a design with a more peaked π is preferable.

Consider the family of symmetric Group UD designs GUD(s,l,s−l), a family designed to
estimate the median (see Section 24.3.1). Oron (2007) proved that designs of this family
with smaller l (i.e., ones with a higher probability of staying at the same dose) have a more
peaked π than designs with larger l and the same s. On the other hand, it appears that
designs with larger l converge faster, although a proof has not been found.

For comparing the peakedness of UD design families, Oron and Hoff (2009) prove the
following results.

Theorem 24.5 (i) k-in-a-row designs generate stationary allocation distributions π that are more
peaked than those of BCD designs over the same X and with the same x∗. (ii) For a k-in-a-row design
and a GUD(k,0,1) with the same k, neither design’s π can be said to be consistently more peaked than
the other.

24.3.5 Up-and-Down Designs for Joint Studies of Toxicity and Efficacy

Most dose-finding experiments focus upon toxicity only, or efficacy only. For these goals,
the assumption of a monotone increasing dose-toxicity function F(x) or a monotonically
increasing dose-efficacy function R(x) is usually adequate. One approach for experi-
ments involving both toxicity and efficacy is to dichotomize observations into two binary
responses per subject, one each for toxicity and efficacy. They can be modeled via a pair of
monotone-increasing functions: the dose-toxicity rate function F(x) and the dose-efficacy
rate function R(x). However, attempts to optimize a single function of toxicity and effi-
cacy are becoming increasingly popular. For example, one could use a single unimodal
utility function U(x), the simplest form of which is U(x)= aR(x)−F(x), with a > 0 a constant
quantifying researchers’ assessment of the relative overall benefit of efficacy as compared
with the harm of toxicity.

Kpamegan and Flournoy (2001, 2008) developed a size 2 cohort UD design for locating
the maximum of U(x). For each pair, doses are split with one subject receiving a dose exactly
� units larger than the other. Outcomes are dichotomized to success and failure, with suc-
cess defined as a positive, toxicity-free efficacy response. Each cohort produces a pair of
such binary outcomes—(F, F), (S, F), (F, S), or (S, S). The transition rule moves the dosage
in the direction of observed success in the case of two opposite responses and repeats
the same dose in the case of two identical responses. Kpamegan and Flournoy (2008)
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proved that the left (smaller) and right dose allocations of each pair form Markov chains,
with unimodal asymptotic distributions identical except for an offset of �. The asymp-
totic properties of unimodality and closeness of the mode to the maximum of U(x) were
also proven.

One caveat to this design is that, if the starting point has an extremely low or high suc-
cess probability, information accrues very slowly and the experiment does not progress
very well toward the optimum. Therefore, it is preferable to begin the experiment where a
mixture of successes and failures is expected within a few early allocations, and not where
they are highly unlikely as at a very low or very high dose. Alternatively, or additionally,
the rate of convergence improves if the dose is increased or decreased according to the flip
of a coin when pairs of responses are either both successes or both failures; however, the
resulting stationary distribution will be less peaked.

24.4 Estimation Following an Up-and-Down Design

A crucial property of UD designs that is often missed by the casual observer is that the
estimation procedure may be completely separate from the design. Because the design is
ancillary (Rosenberger et al. 1997) to the outcome process, a researcher can design and
run an UD experiment and then choose essentially any estimator that is a function of
the dose and response sequences, to produce a point estimate of F−1(�). We view this
property favorably, since the task of information collection around the target’s vicinity
(accomplished by the design) is different from the task of estimation, once information
collection is completed. However, as hinted in Section 24.2, while UD sampling and con-
vergence properties have been fairly thoroughly studied and documented, the same cannot
be said of estimation methods. As a result, patterns of estimator use are uneven and quite
often rely upon each field’s tradition.

For example, numerous environmental toxicity studies (Lichtman 1998; Sunderam et al.
2004; Sweeney et al. 2010) estimate LD50 using reference tables prepared in the 1960’s by
Dixon (1965) for classical UD experiments with extremely small samples (n < 10). Dixon
assumed that the toxicity threshold distribution is normal, with its standard deviation
exactly equal to the UD dose spacing. At that time, UD Markov properties were only begin-
ning to be understood. These tables from Dixon should be considered obsolete, but they
are still being used occasionally.

Another example of a misinformed and very poor estimator is the use of the UD design’s
last allocation Xn or the last allocation recommendation Xn+1. Methodologists compar-
ing UD designs with procedures for which the last allocation is a reasonable estimate
(see Section 24.5 for such designs) sometimes assume that this estimator is sensible for UD
designs as well (O’Quigley and Chevret 1991; Zacks 2009). But using an arbitrary allocation
from a random walk as an estimator of anything makes no sense. Needless to say, the UD
design does not perform well in such misguided comparisons.

24.4.1 Dose Averaging Estimators

In the overwhelming majority of UD experiments, F−1(�) is estimated using some average
of a subset of the dose-allocation chain {Xn}. This seems a plausible approach: as shown ear-
lier, convergence to asymptotic behavior is fast, π is centered fairly tightly around x∗, and
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if dose spacing is uniform, then the distribution is also approximately symmetric (bound-
aries permitting). Hence, once initial conditions wear off, the mean of {Xn} should be fairly
close to x∗, and being the mean, it is also a relatively precise statistic. Dixon and Mood’s
(1948) original estimator (which is no longer used) was also a type of weighted average.

However, averaging estimators suffer from numerous limitations:

• The most commonly used estimators incorporate limited knowledge, at best, of the
UD design’s Markov properties—in particular, starting-point-induced biases and
insight regarding what constitutes a plausibly stable sample from π.

• As the balance point approaches a design boundary (d1 or dM), π gradually loses
its symmetry (compare Figure 24.3a vs. b). If x∗ is less than two levels away from
the boundary, the average will be substantially biased in the opposite direction.

• The BCD and k-in-a-row designs haveπs that are not centered on x∗ as well as those
of the classical UD design. Rather, they are centered as far as half a dose spacing
below x∗, resulting in a downward averaging-estimator bias for these designs (see
Section 24.2.3).

• Furthermore, designs such as k-in-a-row and the GUD offer a limited set of bal-
ance points that are often slightly different from the quantile of interest F−1(�). For
example, with � = 0.3, the natural k-in-a-row choice is k = 2, whose balance point
is approximately x∗ = F−1(0.293). This introduces yet another bias to averaging
estimators, since these estimators’ reference point is x∗ rather than F−1(�).

Modern developers and users of averaging estimators must be cognizant of these lim-
itations and use estimation methods that mitigate them. First and foremost, averaging
estimators are predicated upon a uniformly spaced X . If log-doses are uniformly spaced,
then it is the logarithm of doses that should be averaged, rather than the doses them-
selves (Garcìa-Perez 1998; Oron 2007). If dose spacing is not uniform on any reasonable
scale, researchers are strongly advised not to use an averaging estimator. In the following
discussion, we assume uniform dose spacing.

24.4.1.1 Case Against Reversal-Only Estimators

Estimators that average only the allocations at reversal points originated in the 1960s with
Wetherill et al. (1966), were slightly modified by Choi (1971), and have proliferated widely
since then. They are probably the single most commonly used UD estimator. Recall that
reversal points are points in the experiment when the current response differs from the
immediately preceding one (Figure 24.2).

A classical UD experiment’s trajectory can be fully reconstructed from the reversal

points. It can be shown that for the classical UD design, the reversal estimator X
(rev.)

(24.16)
is equivalent to a weighted average of all assigned doses between the first and last rever-
sal included in the average. The weights are inversely proportional to the length of the
between-reversal stretches, except for the first and last reversal whose weights are larger.
Oron (2007) showed that under stationarity, using only reversals is equivalent to sampling
from a distribution whose variance is larger than that of π. Moreover, all allocations after
the last reversal (including Xn+1, the would-be next allocation at the experiment’s end
which is already determined by Xn and Yn (Brownlee et al. 1953)) are excluded from rever-
sal estimators—reducing overall precision and giving up the data points least affected by
starting-dose bias. In summary, reversal-only estimators are not recommended.
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24.4.1.2 Alternative Solutions for Averaging Estimators

Averaging estimators can still be viable when used with care. The recommended averaging
estimator should include all allocated doses from Xc (c being some cutoff point, 1 < c < n/2)
through Xn+1. The first and third reversal are reasonable cutoff points. Another option is
choosing c retroactively as the earliest point in the trajectory, at which there is empirical
evidence that the starting-point bias had been eliminated (Oron 2007, Section 3.3).

As mentioned earlier, when the balance point x∗ is close to a boundary of X , the approx-
imate symmetry of π is destroyed, and dose averages become biased in the direction away
from the boundary. A simple mitigating fix, which should work reasonably well as long as
the empirical mode is not on the boundary itself, is to impute the dose-allocation chain by
adding a virtual dose of d0 or dM+1 each time the boundary condition had been triggered
and use the imputed trajectory in lieu of the original one. This adjustment has yet to be
thoroughly studied (Oron 2007,Section 3.3).

Confidence intervals are sometimes reported together with the reversal estimator
(Capogna et al. 2001; Camorcia et al. 2004). They assume asymptotic normality of the rever-
sal average and independence of every pair of reversal points. The second assumption is
not supported by recent theory. Oron (2007) explored alternative options for estimating the
effective sample size for averaging estimators. The most robust option was the number of
times the experimental trajectory had crossed the average or visited the dose levels clos-
est to it. According to Markov chain theory, the subchains between consecutive visits to a
specific level are conditionally independent of each other (Tsutakawa 1967b). In numeri-
cal runs, the resulting standard error formula using this effective-sample-size estimate was
found to be conservative in estimating the variance, but, due to biases associated with
averaging estimators, the empirical interval coverage was usually close to the specified
confidence level.

24.4.2 Regression Estimators

Parametric regression (usually logistic or probit) is occasionally encountered as a way to
estimate F−1(�) following a UD experiment. Given the small sample size and the lim-
ited number of dose levels visited during a typical UD experiment, using parametric
regression to estimate the dose-toxicity rate function F is, generally speaking, inefficient.
This is because estimates of F−1(�) typically will be a function of a slope parameter,
which requires allocations far from F−1(�) in order to be estimated efficiently (Ford et al.
1992). UD procedures, by design concentrating allocations around F−1(�), will typi-
cally result in relatively poor estimates of a slope parameter, even with moderately large
sample sizes.

The nonparametric isotonic regression dose-finding estimate, introduced by Stylianou
and Flournoy (2002), is a simple piecewise linear interpolation between point estimates
calculated via the pool-adjacent-violators algorithm (PAVA, Barlow et al. 1972). The point

estimates themselves are identical to the empirical frequencies F̂ =
(

F̂1, . . . , F̂M

)
(see

(24.17)), as long as the latter do not violate monotonicity. In case of a violation, violating val-
ues are recursively replaced by an average weighted by the number of observations, until
all violations disappear. In the binary dose-toxicity case, the weighted average is equiva-
lent to pooling all observations from the violating doses together and calculating the overall
toxicity frequency, hence the name pool-adjacent-violators algorithm. The procedure generates
the characteristic flat stretches, clearly visible in the solid lines of Figure 24.4.
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Isotonic regression is also the nonparametric maximum likelihood estimator for F on
X , under a monotonicity assumption. However, if one makes the plausible assumption
that F is strictly increasing, then the estimate violates it, ostensibly producing biases in
opposite directions at each flat stretch.∗ Quantile estimation requires inverse estimation from
the isotonic estimate of the regression function, and a flat stretch near y = � would push
some quantile estimates sideways (see again Figure 24.4), increasing their MSE.

Oron (2007) proposed a simple modification of PAVA that alleviates this problem while
retaining the method’s simplicity. Each flat stretch is replaced by a single point with the
same F̂ value, located at an x value that is a weighted average calculated using the same
weights used for F̂. With linear interpolation between the isotonic estimates, this modifi-
cation is called CIR; see the dotted lines in Figure 24.4. In numerical simulations, it nearly
always produces lower MSEs than ordinary isotonic regression. R code for CIR is available
online (https://www.github.com/assaforon/cir).

Estimators based on isotonic regression are the most robust all-around choice currently
available for any limited-sample dose-finding application, including UD designs. Unlike
averaging estimators, they do not suffer from peculiarities related to dose spacing, bound-
aries, or the starting point. As stated earlier, without large sample sizes, isotonic estimates
outperform parametric estimates because data are concentrated near x∗.

One drawback of isotonic estimators is the current lack of an adequate interval estimate.
Wright (1984) and Mukerjee (1993) study percentile estimators under the condition that
the dose space becomes dense. This assumption is clearly invalid for UD designs with fixed
doses. Chao and Fuh (2001) introduced the bootstrap to UD interval estimation. Their moti-
vating example was a classical-UD explosive testing experiment, and the estimator used
was from a parametric regression model. Bootstrap samples are generated by running vir-
tual UD experiments, with toxicity probabilities determined via the regression estimator
that uses the observed empirical toxicity rates F̂. Stylianou et al. (2003) implemented the
method in a nonparametric context via isotonic regression, but only for forward estimation
(i.e, estimation of F values at specified doses, rather than estimates of the quantile F−1(�)).
Oron (2007) explored the bootstrap for UD quantile estimation and found that interval cov-
erage was generally insufficient (i.e., the intervals were too narrow). We are exploring
some ideas for improving coverage; working solutions are available in the aforemen-
tioned online source.

24.5 Other Approaches to Dose-Finding

UD procedures are not the only approach to dose-finding on a discrete dose set. As a con-
trast to UD designs, we now focus on a family of designs at the center of heated debate
among dose-finding methodologists. The field in question is Phase I cancer clinical trials
(hereafter, “Phase I”). Sample sizes for Phase I experiments are small: as a rule, n < 30.
First, we describe the outdated method that novel Phase I designs seek to replace, which is
often (Rogatko et al. 2007; Zacks 2009) mistaken for a UD design.

∗ It is one of those cases when the MLE is on the boundary of the constrained parameter region. Strict monotonicity
is equivalent to excluding the boundaries themselves from the allowed region.
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3+3 Rule (Precise Origins Unknown)

1. Begin at a safe dose: X1 = d1 or d2, and treat three subjects at a time.
2. After the first cohort at any given dose, Xi = dm,

Xi+1 =

⎧⎪⎨
⎪⎩

dm+1 if 0 of 3 are toxic;
dm−1 if at least 2 of 3 responses are toxic;
dm if exactly 1 of 3 is toxic.

3. After a second cohort at any dose dm, go to

{
dm+1 if 0 − 1 are toxic, cumulatively out of all 6 responses;
dm−1 if ≥ 2 of the 6 responses are toxic.

4. If a third cohort is mandated at any level, stop.
5. Once the experiment has de-escalated, it cannot escalate back, that is, after a tran-

sition from dm to dm−1, the experiment cannot return to dm anymore. If such a
reescalation is mandated, the experiment stops. If only three patients have been
treated at the stopping dose (dm−1 in the example above), add three more patients
at that dose.

6. After final stopping, the maximum-tolerated-dose (MTD) estimate is the highest
dose for which F̂m < 1/3.∗

The “3+3” rule has been generalized as the “A+B rule” (Lin and Shih 2001), but the “3+3”
rule is by far the most commonly used.

The “3+3” rule is a toxicity-controlling escalation protocol rather than an experimental
design in the research sense. However, the initial cohort at each level follows rules sim-
ilar to GUD(3,0,2), and after the second cohort, the rule is reminiscent of GUD(6,1,2) except
for the nontrivial difference that under “3+3” the six observations are not necessarily the
most recent and three of them had already participated in one transition decision.

Several methodological studies have found that “3+3”s statistical properties are poor
and that the recommended MTD is strongly biased downward compared with its ostensible
target, which is usually presented as F−1(0.3) or F−1(1/3) (Reiner et al. 1999; Lin and Shih
2001). The “3+3” rule is also disproportionately cumbersome and arcane when contrasted
with its simplistic approach to the dose-toxicity relationship. Yet, it continues to be the
off-the-shelf method of choice for most Phase I trials.

Interestingly, while statisticians are generally critical of this design, the “3+3” paradigm
of selecting a discrete dose from X as the best dose (i.e., the one to be used in subsequent
studies of efficacy), in contrast to the universal UD practice of estimating F−1(�) on a con-
tinuous dose scale, has been rather influential upon recent methodological approaches to
Phase I designs. The effect of this influence is described immediately as follows.

∗ There exists a variant allowing the final estimate to have F̂m = 1/3.
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24.5.1 Long-Memory Dose-Finding Designs

The overwhelming majority of recently developed Phase I designs belong to a class that
Oron and Hoff (2013) call long-memory Phase I designs (LMP1s). LMP1s calculate a regression
estimate after each cohort, using results to select the MTD according to some design-
specific optimization criterion and then assigning this selection ( ̂MTD) to the next cohort.
In contrast with UD designs, LMP1s potentially use all previous observations in each
dose–allocation decision, rather than only the most recent ones. LMP1s might vary
considerably in their external properties, but most share these two core principles:

1. Likelihood-based estimation (in the generic sense that includes Bayesian methods).

2. Assigning ̂MTD to the next cohort.

We now describe the allocation rule for the most commonly used LMP1, the one-parameter
continual reassessment method (CRM) (O’Quigley et al. 1990).

Continual Reassessment Method

1. Choose a parametric curve family G (θ,φ) to describe the dose–response rela-
tionship, where θ is a single parameter with a prior distribution and φ is a
vector of prior parameters. A single curve belonging to this family is denoted
G (x | θ,φ) ∈G.

2. The experiment can start at any agreed-upon dose. Cohort size can vary ad lib, even
within the same experiment.

3. Given Xi = dm, calculate the posterior estimate

Ĝi = G
(
θ̂ | x, F̂,φ

)
,

using all available data (where x = (x1, . . . , xi) is the observed trajectory and F̂ is
the vector of observed toxicity frequencies at the doses visited so far).

4. Find the dose whose Ĝi value is closest to the target toxicity frequency �,

̂MTDi = argminX

∣∣∣Ĝi − �

∣∣∣

5. For the next cohort, set Xi+1 = ̂MTDi, unless the modification suggested by
Goodman et al. (1995), preventing multidose jumps, is in effect—in which case

Xi+1 = min
(
̂MTDi, dm+1

)
.

6. At the end of the experiment, the recommended MTD is ̂MTDn.

Despite using estimation to guide dose allocation, the final product of CRM experiments is
not a direct statistical estimate of F−1(�), but rather a dose selected out of X . This insistence
upon dose selection might be the “3+3” mindset’s lingering effect.
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The most common probability structure used in CRM experiments is the power model, in
which a skeleton of prior toxicity assessments at the dose levels is raised to the same power:

G (dm) = φθ
m, φ1 < φ2 < · · · < φM, φm ∈ (0, 1) ∀m, θ > 0. (24.27)

The only data-estimable parameter is θ. It is accompanied by M + 2 fixed, nonestimable
prior parameters (the vector φ and two parameters for the prior distribution of θ itself,
which is most commonly specified as log-normal). Between its introduction in 1990 and
2006, the CRM was used in only about a dozen out of over a thousand published Phase I
studies (Rogatko et al. 2007). Since then, the number of experiments utilizing CRM or
closely related LMP1s has substantially increased. Over the same time period, hundreds
of methodological articles discussing CRM and closely related designs have been pub-
lished, making CRM one of the most widely discussed and promoted recent statistical
designs.

Another well-known LMP1 is the two-parameter escalation with overdose control
(EWOC, Babb et al. 1998). Since 2008, Novartis has been widely implementing its own
version of two-parameter LMP1s in Phase I trials; their designs are based on EWOC and
on Neuenschwander et al. (2008). A nonparametric LMP1, called the Cumulative Cohort
Design (CCD) was developed by Ivanova et al. (2007), and its convergence behavior was
proven by Oron et al. (2011). There are many dozens of other LMP1s, most of which have
yet to be used in practice.

24.5.2 Advantages and Drawbacks of Long-Memory Designs

Unlike for UD designs, when using an LMP1 design, researchers do not have to commit to
a fixed cohort size. Choosing a nonuniformly spaced X also does not carry as many con-
sequences for estimation as with some estimators used with UD designs. But the main
selling point of LMP1s has been their claimed asymptotic behavior—together with the
misconception that this behavior takes effect early, with small samples.

Since LMP1s allocate the ̂MTD to future patients, and since they potentially use all
available data for this estimation, as n → ∞, they promise to allocate subjects exclusively
to the MTD. LMP1 method developers contrast this ostensibly razor-sharp asymptotic
distribution with UD design’s indefinite random walk, obviously recommending the
former.

The problem with LMP1s lies in the gap between these promises and reality (Fedorov
et al. (2011), recently called LMP1s best-intention designs). Theoretical work in the past few
years has shown that conditions under which the sequence of doses allocated using the
CRM actually converges to an MTD-only distribution are fairly restrictive and cannot be
expanded any further (Lee and Cheung 2009; Oron et al. 2011; Azriel 2012). Given a general
form of F, the most that can be guaranteed with CRM is asymptotic exclusive allocation
to a dose whose F value is within some tolerance interval in the vicinity of �.∗ The inter-
val depends upon the skeleton φ and is difficult to calculate by hand. Lee and Cheung
(2009) provide software that back calculates the prior skeleton to match a user-specified
tolerance interval. However, the nonparametric LMP1 mentioned earlier can guarantee
the same type of convergence by using the interval width directly, with no need for a
reverse-engineered model (Ivanova et al. 2007; Oron et al. 2011).

∗ If the interval is too narrow to contain any dose level, the asymptotic behavior slowly oscillates back and forth
between the two levels straddling it.
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More generally, Azriel et al. (2011) proved that no best-intention LMP1, parametric or
nonparametric, can converge almost surely to MTD-only allocations without substantive
restrictions on F. Many LMP1s, including the Novartis designs currently implemented in
actual trials, have never had their asymptotic behavior proven.

Further complicating matters is the commonly misunderstood issue of small-sample
LMP1 behavior. When compared in simulation on an equal footing, UD and LMP1 designs
achieve rather similar success rates in selecting the true MTD from doses in X (Oron and
Hoff 2013; Durham et al. 1997). On average, LMP1s assign substantially more subjects to
the MTD during the simulated experiment itself. Advocates for LMP1s have focused on
this statistic, hereafter called n∗. For example, Rogatko et al. (2007) argued that the use of
any non-LMP1 method “...implies needless loss of treatment efficacy and, possibly, lives,”
because LMP1s assign more patients to the true MTD. Simulated means of n∗ now regularly
appear in new methodological Phase I articles, presumably as an important quality metric.

This metric is fundamentally debatable: Phase I trials recruit volunteers under informed
consent. A trial’s main goal is to study a treatment’s safety, not to ensure participants will
get the optimal treatment combination. But the focus on n∗ is questionable for statistical
reasons as well.

The statistic for n∗ reported in simulation studies is really an ensemble average of n∗,
taken over a large number of simulated experiments under identical conditions. In real
life, Phase I trials are one-of-a-kind affairs. What about n∗’s run-to-run variability? Oron
and Hoff (2013) examined the entire ensemble distribution of n∗. Typical results are shown in
Figure 24.5, under three different forms of F. Each simulated experiment had 16 cohorts of
size 2. Distributions of n∗ from CRM are on the left, a UD design (specifically, GUD(2,0,1))
in the center, and a CCD on the right. Both CRM and CCD targeted � = 0.3 and were
calibrated at settings recommended by their developers. All histograms use the same scale,
and the first cohort was excluded.

With LMP1s, the mean values of n∗ (marked by a solid vertical line in each histogram) are
indeed larger than with UD designs. With UD designs, n∗ values in different runs are tightly
clustered around their theoretical expectation. By contrast, LMP1s display far greater vari-
ability. With gamma-distributed toxicity thresholds (middle row), the most common CRM
n∗ value—by far—was zero allocations to the true MTD during the entire experiment,
except for the opening cohort that was also the true MTD in this case. The nonparametric
CCD displays similar behavior to CRM, indicating that this is a universal LMP1 trait, almost
unaffected by specific design choice.

The importance of Figure 24.5’s message should not be understated. Phase I researchers
spend years planning and running a single experiment and would benefit very little
from optimistic reports about high average n∗ values, when the underlying individual-
experiment distribution is (at best) nearly uniform between zero and n. The focus on
LMP1’s high ensemble-average n∗ values has been misguided and misleading. LMP1
designs cannot reliably promise researchers an advantage over UD designs in this respect,
because the increase in ensemble-average values comes at the price of greatly increasing
the risk of individual experiments with very low n∗.

A thorough inspection of the phenomenon illustrated in Figure 24.5 and its causes is
beyond the scope of this chapter, but it can be easily confirmed and reproduced by any-
one running a dose-finding simulation study. In any case, contrary to prevalent opinion
in many circles, when all aspects are considered, UD designs do in fact hold their own
compared with the most sophisticated, cutting-edge LMP1s, even in Phase I cancer appli-
cations to which the latter are tailored. Some hybrid designs attempting to combine the
advantages of UD and LMP1 designs are in development (Oron 2007, Chapter 5).
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24.6 Summary and Practical Recommendations

UD procedures constitute a family of simple designs, empowering researchers with lim-
ited statistical training to use them independently. However, beneath the simplicity lie the
power and elegance of UD’s Markov chain behavior, whose fundamentals were explored
here. With this additional knowledge, researchers can bolster their experiment’s design
against the known pitfalls. As this chapter shows, there are still many open challenges,
especially with regard to estimation of the target quantile. Researchers are encouraged to
consult with a statistician cognizant of modern UD methodology, even when their experi-
ment seems to follow a well-trodden path. When choosing a specific UD design, it should
be noted that the scientifically mandated toxicity target rate � may not necessarily equal
F∗, the expected toxicity frequency of the balance point x∗. Certainly, this is the case with
k-in-a-row and GUD, whose F∗ values are usually irrational.

The issue of appropriate sample sizes for UD designs is taken very lightly in some fields,
where n ≈ 10 or even less are considered acceptable. One should keep in mind that despite
the geometric-rate erasure of initial conditions, UD estimation precision is still largely
governed by the same root-n convergence rates of nonsequential estimation (Oron 2007,
Section 1.2) . Moreover, the available data are a small sample of binary responses scattered
over several dose levels (for regression estimators) or a small sample of correlated dose
allocations (for averaging estimators). While some experiments might appear very well-
behaved, that impression might be misleading unless the underlying variance of toxicity
thresholds is far smaller than anticipated. Ultimately, increasing the sample size is the only
sure method for substantially reducing estimation error.

In many fields, researchers use the number of reversals as stopping criterion. Garcìa-
Perez (1998) surveyed all experiments determining vision thresholds published in the
1990s. The most common design used by researchers was the k-in-a-row UD design, and
most experiments stopped after a fixed number of reversals, typically 6–12, equivalent to
roughly 20–50 observations. Many environmental toxicity studies also use reversals for
stopping, albeit far earlier than in vision research (2–4 reversals using the classical UD
design, equivalent to roughly 8–15 subjects). Due to the properties of reversals outlined
earlier, a reversal-based stopping rule will generally stop earlier precisely for those exper-
iments that would actually most benefit from continuing longer, because their trajectory
was more erratic and generated more frequent reversals. Other fields consistently use a
fixed sample size. For example, in anesthesiology, n = 30 seems to be a common choice for
classical UD experiments (Capogna et al. 2001; Camorcia et al. 2004). Pace and Stylianou
(2007) recommend a sample size of n ≥ 20 for the classical UD design.

Another practical challenge, which should be considered in conjunction with sample
size, is choosing the number of dose levels M. In order to develop nicely peaked UD allo-
cation distributions that greatly improve estimation precision and help reduce the extent
of excursions (Figure 24.3), ideally at least 3–4 levels are needed on each side of the bal-
ance point x∗. This translates to at least 8–10 levels. However, increasing M also increases
the number of subjects needed to erase the starting-dose effect—and there is no guarantee
that the experiment will take a beeline from the starting point x1 directly to the vicinity of
x∗ without a detour on the way (see again Figure 24.2). In essence, this is the well-known
bias–variance tradeoff in a somewhat unusual reincarnation.

As to starting dose, when regulatory authorities allow beginning anywhere in X rather
than at its lower boundary, we would recommend a starting dose that minimizes the
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expected length of this initial tour—that is, a level lying midway between the boundaries,
in terms of the number of subjects required to reach each boundary under the transition
rules. When starting in the middle is not possible or not advisable and when sample size is
constrained (n ≤ 30), M will probably need to be smaller, in order to allow the experiment
to comfortably reach the top boundary of X if so needed.

In summary, the most generic sample-size and dose-spacing recommendation we can
provide is this: use M ≥ 8 dose levels and choose n large enough to allow at least half
the experiment to meander around the balance point x∗, assuming the worst-case distance
from the starting point. If this is technically infeasible, decrease M.

From Wetherill (1963) onward, researchers have examined designs that begin with
coarse spacing, which is reduced gradually as the experiment progresses. This brings
UD procedures closer to the paradigm of stochastic approximation (Robbins and Monro
1951), which allocates gradually decreasing dose increments on a continuous dose scale.
However, numerical studies have repeatedly shown little benefit from these elaborate
downscaling schemes; simply put, it is difficult to evade the UD design’s bias–variance
tradeoff in this manner (Garcìa-Perez 1998). In the same vein, even though UD design’s
adaptive nature might invite researchers to implement adaptive stopping rules, we advise
against the practice. With an experiment already constrained by low information con-
tent (binary observations) and a small sample size, adaptive stopping rules introduce an
unnecessary source of additional variability.

When the experiment’s goal is dose-selection from X rather than estimation of F−1(�)

(see Section 24.5), the tradeoff between n and M is somewhat different. Here, with too
many dose levels, the experiment might never provide enough data to tell their toxicity
rates apart. A simple rule of thumb is that in order to distinguish between the toxicity rates
of adjacent doses, n must be large enough, and M small enough, so that for each dose
interval around x∗, there will be at least 3–4 subjects, preferably 5 or more, whose toxicity
thresholds fall in the interval. Thus, with n = 20 and � ≈ 0.3, one should probably design
no more than 5–7 dose levels, and with n = 10 no more than M = 4. These rough guidelines
assume a starting point in the middle of X . If toxicity concerns dictate a start near the
bottom of X , n should be increased by at least the minimal number of subjects required to
travel halfway up X according to the design’s rules. To attain the same expected sampling
density around the median, the classical UD design can make do with perhaps 20%–40%
fewer subjects than the � ≈ 0.3 rules of thumb, while using the same M. Conversely, very
extreme quantiles (� ≤ 0.1) would require considerably more subjects.

24.7 Historical Notes

The most widely cited origin paper for the classical UD design is Dixon and Mood (1948). The
article was part of an adaptation of a memorandum submitted to the Applied Mathemat-
ics Panel by the Statistical Research Group, Princeton University. The Statistical Research
Group operated under a contract with the Office of Statistical Research and Development,
which was directed by the Applied Mathematics Panel of the National Defense Research
Committee. Their work was motivated by experiments at the Bruceton naval explosive
testing site in Pennsylvania during World War II. As often happens in research, Nobel lau-
reate von Békésy (1947) came up with a similar design for hearing-threshold determination,
almost simultaneously. An internal navy report of a lesser known UD design that is more
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similar to k-in-a-row (Ted Anderson 1993, personal communication) predates Dixon and
Mood by 2 years (Anderson et al. 1946). While that report is widely cited, we have been
unable to locate the original manuscript.

The first study known to have written about UD design’s Markov properties is Derman
(1957), the same article that presented the first biased coin UD design. Wetherill et al. (1966)
introduced the still hugely popular reversal estimator a few years later, mostly based on the
narrow edge this estimator had over averages of all treatments, in numerical simulations
using logistically distributed thresholds. The time being the early 1960s, Wetherill had to
travel across the Atlantic to the United States and be awarded precious computer time there,
in order to perform the simulations—a feat that was a main topic in the Royal Statistical
Society discussion of the Wetherill (1963) article. From that point onward, dose-finding
research has been wedded—sometimes blissfully, at other times less so—to numerical
simulation studies.

Other important contributions to UD theory and design in the 1950s and 1960s were
made by Brownlee et al. (1953) and Tsutakawa (1967a,b). Then the methodological UD
design trail gradually ran cold, until its relative reawakening in recent decades as described
throughout this chapter.
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25.1 Introduction

Functional magnetic resonance imaging (fMRI) is a brain-mapping technique widely used
in research fields such as cognitive neuroscience, medical science, psychology, and educa-
tion for studying functions of the brain. It helps with understanding the inner workings of
our brains and holds great promise for, among others, identification of Alzheimer’s disease,
pre-neurosurgical planning, and postneurosurgical evaluations. The clinical importance of
fMRI can also be seen in a special issue on clinical applications of fMRI in Neuropsychology
Review, Vol. 7, No. 2, 2007.

A primary objective of an fMRI experiment is typically to investigate how brains react
to mental stimuli. In such an experiment, each subject is exposed to a sequence of stimuli
(e.g., pictures or sounds) interlaced with periods of rest or visual fixation, to which we
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refer as the control. While the subject is performing the mental tasks in response to the
stimuli inside a magnetic resonance (MR) scanner, the scanner scans the subject’s brain at
regular time intervals to collect hundreds of thousands of time series. Each brain voxel
(a 3D image unit, or volumetric pixel) gives rise to one such time series. For example, the
subject’s brain may be mapped into an array of 64 × 64 × 30 voxels, each of size about
3 × 3 × 5 mm3 (cf. Lazar 2008, Section 2.1.1), leading to 64 × 64 × 30 time series from the
subject. The size and complexity of fMRI data have spurred much statistical research in
this area on data collection and methods for a better analysis and interpretation of the data.
The high demand for statistics in fMRI is evident in a survey article by Lindquist (2008);
recent books by Lazar (2008) and Poldrack et al. (2011); and papers in special issues on
neuroimaging data analysis by several statistics journals, such as Statistica Sinica, Vol. 18,
No. 4, 2008; Annals of Applied Statistics, Vol. 5, No. 2B, 2011; and Journal of Statistical Software,
Vol. 44, 2011. These references also highlight that there remain many statistical challenges
in this area.

We will focus on designing experiments for event-related (ER) fMRI studies. ER-fMRI
takes advantage of ultrafast imaging techniques to allow studying transient brain activity
due to stimuli of short duration (Josephs and Henson 1999; Culham 2006). Mental stimuli
as brief as several milliseconds (e.g., 34 ms) can give rise to effects that are detectable by
high-speed MR scanners (see also Rosen et al. 1998; Blamire 2012). This is an important
advance. It allows us to move away from traditional fMRI studies where long-duration
(e.g., 1 min) stimuli are employed. ER-fMRI designs with brief stimuli can now be con-
sidered for studying subtle brain activity. With a brief stimulus duration, the number of
stimuli presented to a subject can be increased significantly, which increases the informa-
tion available from fMRI studies (Josephs and Henson 1999; Huettel 2012) and presents
many challenging research questions related to designing ER-fMRI experiments.

An ER-fMRI experiment may involve one or more types of stimuli. In its simplest form,
a design for an ER-fMRI experiment presents the types of stimuli given to a subject, their
presentation order, and the times at which these stimuli are given. Each stimulus type
appears repeatedly in a design, and a stimulus can last from several milliseconds to a few
seconds. An ER-fMRI design can be written as a finite sequence of finite numbers such as
d = {10112002...0} with q = 1, 2, . . . , Q representing a qth-type stimulus and 0 denoting the
control when no stimulus is given; see Section 25.2 for a detailed description. The primary
design problem is selecting the ‘best’ sequence of stimuli based on a specific optimality
criterion. Since an ER-fMRI design sequence can easily consist of hundreds of stimuli and
controls, there is a huge number of candidate designs, making the problem of selecting
the best design very challenging. Additionally, while it is crucial to target designs yield-
ing high statistical efficiencies, practical and psychological constraints can also play a role
when selecting a design. For example, a design that repeats the same pattern, such as
{111000}, over and over may induce unwanted confounding with psychological effects such
as anticipation or habituation. Furthermore, experimental settings such as time between
MR scans, time between stimulus onsets, duration of each stimulus, duration of the exper-
iment, and the underlying statistical models for data analysis must also be taken into
account at the design stage. These factors combine to make selecting an optimal design very
challenging.

Nonetheless, there are some important recent advances in the optimal design problem
for ER-fMRI experiments. These include the pioneering works by Dale (1999) and Friston
et al. (1999); theoretical results by Liu et al. (2001) and Liu and Frank (2004); and com-
putational approaches by Wager and Nichols (2003); Kao et al. (2009a); Kao et al. (2013);
and Kao et al. (2012). These studies provide guidance and powerful computational tools
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for obtaining good ER-fMRI designs. However, there still are many open questions.
As noted by Lindquist (2008), “While the area of experimental design is a natural domain
for statisticians to conduct research, it has so far been largely unexplored by members of
the field.”

This chapter provides an introduction to this exciting research area and surveys existing
methods for ER-fMRI design selection. The focus is primarily on state-of-the-art compu-
tational approaches for obtaining high-quality ER-fMRI designs. We provide background
information and introduce terminology and notation in Section 25.2. In Section 25.3, we
present the very popular general linear model approach for analyzing ER-fMRI data, fol-
lowed by a discussion of available results for selecting designs under this approach. In
Section 25.4, we introduce a nonlinear model that accommodates consideration of dispari-
ties between the responses from different brain voxels. We also present an efficient method
for obtaining optimal designs under this approach. Additional considerations for fMRI
design problems can be found in Section 25.5, followed by brief remarks and open research
questions in Section 25.6. For brevity, we will omit the term “event-related” hereinafter, but
our focus throughout this chapter is always on ER-fMRI experiments.

25.2 Basic Concepts and Terminology

This section begins with a description of fMRI experiments and designs. Such experiments
are conducted in order to better understand the underlying brain activity. The hemody-
namic response function (HRF), which we also introduce in this section, plays an important
role in the models that are used to accomplish this. Some of these models will be introduced
in the subsequent sections. This chapter focuses on selecting optimal and efficient designs
for fMRI experiments. A reader who is interested in statistical analysis of fMRI data may
want to consult Lazar (2008) and Lindquist (2008).

Since the notation can at times be intimidating, we present a short list of selected notation
that the reader can easily refer to:

d: an fMRI design (or a sequence of mental stimuli of Q types), which is written as a finite
sequence of elements 0, 1, …, Q for indicating the onset times and order of the stimuli
with 0 representing no stimulus onset.

L: the number of elements of an fMRI design.
Q: total number of stimulus types.
τISI: the interstimulus interval, or the time between time points where a stimulus can

possibly occur.
τTR: the time to repetition, or time between two consecutive observations in an fMRI time

series.
�T: the minimal difference between two time points at which an HRF height can con-

tribute to an observed response; it is computed as the greatest real value making both
(τISI/�T) and (τTR/�T) integers.

25.2.1 fMRI Designs

An fMRI design d determines the onset times and order of mental stimuli of one or more
types to be presented to an experimental subject in an fMRI experiment. It can be written as
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FIGURE 25.1
The design d = {110202...0} in Example 25.1 with 1 s stimuli of pictures of happy and sad faces (Q = 2). The
control is a visual fixation and the interstimulus interval τISI is 3 s.

a sequence of finite numbers, such as d = {110202...0}. The jth element of d corresponds to
the jth time point when a stimulus can possibly occur, j = 1, . . . , L, where L is the number
of elements of d. These time points are τISI seconds apart, where τISI (e.g., 3 s) is a pre-
specified time called interstimulus interval. A positive integer q in the jth position of d
thus indicates an onset of the qth-type stimulus at time (j − 1)τISI, q = 1, 2, . . . , Q. The
presentation duration of each stimulus is short (e.g., 1 s), compared with τISI. These stimuli
are immediately followed by the control (e.g., a period of rest or visual fixation) until the
onset of the next stimulus. We might have no stimulus onset at some time points. These
occasions are indicated by 0 in d.

Example 25.1

Figure 25.1 presents the first 18 s of a design, d = {110202...0}, with two types (Q = 2)
of 1 s pictures, a happy or sad face. The interstimulus interval τISI is set to 3 s. With
a 1 appearing in the first and second position of d, the onset of the first two pictures of
happy faces (first stimulus type) is at 0 s and 3 s, respectively. Note that time 0 is typically
synchronized with the first valid MR scan. The design also indicates that the onset of sad
faces is at 9 s, 15 s, and so on. Each picture lasts for 1 s, and the remaining time until the
next onset consists of visual fixation. This applies also for the entire interval (e.g., 4–9 s
and 10–15 s) for which the design specifies the use of a control. Visual fixation means
here that the experimental subject will fixate on a central cross hair, and for design d this
happens from 1–3 s, 4–9 s, 10–15 s, etc. �

25.2.2 Hemodynamic Response Function and fMRI Time Series

A stimulus may activate some voxels of a subject’s brain, whereas other voxels will remain
inactive. Such brain activity will be reflected in the signals collected by the MR scanner.
These signals are not direct measurements of the underlying brain neuronal activity, but are
linked to the change in the ratio of oxy- to deoxyhemoglobin in the cerebral blood vessels.
Specifically, for a brain voxel that responds to a stimulus, the stimulus evokes neuronal
activity followed by an influx of oxygenated cerebral blood. This leads to a decrease in
the concentration of deoxyhemoglobin, which is paramagnetic and tends to diminish MR
signals, so that elevated MR signals can be observed. Without additional stimuli, the MR
signals would fall back to baseline. Before settling at the baseline, the MR signal intensity
can drop below it, resulting in a brief undershoot (see the solid curves in Figure 25.2).
Such an undershoot is often attributed to the enlarged blood volume that allows for
more deoxygenated blood; see, for example, Song et al. (2006) and Raichle (2006) for
more details.

The fluctuation of MR signals provoked by a single stimulus is typically described by
a smooth function over time called the HRF. The HRF, which is of primary interest to
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FIGURE 25.2
The accumulated HRF (broken curve) is formed by the three HRFs (solid curves), which are evoked by the three
stimuli (shaded bars) occurring at 3, 6, and 12 s. The interstimulus interval is τISI = 3 s, and the time to repetition
is τTR = 2 s, resulting in the discretization interval �T = 1 s. The small squares on the last HRF curve show the
HRF heights that can possibly contribute to MR measurements.

neuroscientists, may last for many seconds, for example, 32 s, and may look like one of
the solid curves in Figure 25.2. When stimuli occur in close succession, the corresponding
HRFs overlap, and the signals measured by the MR scanner every τTR seconds, for exam-
ple, every 2 s, are assumed to be the result of an accumulation of the separate HRFs. Here,
τTR denotes the time to repetition, which is the prespecified time between consecutive MR
scans of the same voxel.

Example 25.2

Consider a design d = {011010 · · · 1} with τISI = 3 s. The first three onsets of the stimulus
occur thus at 3 s, 6 s, and 12 s and are presented as the three shaded bars in Figure 25.2.
If they activate a voxel, they give rise to three HRFs (shown as solid curves), which accu-
mulate to become the broken curve in the figure. Here, we consider a common linear time
invariant (LTI) system in which stimuli of the same type evoke the same HRF throughout
the experiment and the heights of overlapping HRFs sum linearly; see also Section 25.3
and Lindquist (2008). The accumulated HRFs along with nuisance signals (drift or trend)
and noise model the fMRI time series, which is in this example sampled every τTR = 2 s.
For a scan at 14 s, say, the accumulated value that is observed is affected by the height at
11 s from the stimulus with an onset at 3 s, by the height at 8 s from the stimulus with an
onset at 6 s, and by the height at 2 s from the stimulus with an onset at 12 s. Taking the
subsequent stimuli and scanning times into account, with this combination of τISI and
τTR, the HRF heights that can possibly contribute to an observed MR signal occur every
�T = 1 s. These HRF heights are presented as the small squares on the third HRF curve
in the figure. In general, the discretization interval �T is the greatest time making both
mISI = (τISI/�T) and mTR = (τTR/�T) integers. �

Once the fMRI time series, one from each voxel, have been obtained, they are ana-
lyzed to help in understanding the underlying unobserved neuronal activity (see also
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Lindquist et al. 2009). There are two aspects that are typically of primary interest. For the
first, researchers are interested in inferences for the amplitudes (or maximum heights) of
the HRFs. This helps to identify voxels that are activated by the stimuli and allows us to
understand the strengths of activations. This objective is referred to as detection of activation
or simply detection. Another common interest pertains to studying the evolution of the HRF
over time, for example, by estimating the HRF heights (the small squares on the third solid
curve in Figure 25.2). This helps to elicit subtler effects of the stimuli and is referred to as
the estimation of the HRF or simply estimation.

A major difficulty for both detection and estimation is that the fMRI time series are
usually very noisy and involve nuisance signals due to machine instability and physi-
ological effects such as heartbeat and respiration; see also Smith et al. (1999) and Lund
et al. (2006). It is thus crucial to select designs that can help to achieve the highest signal-
to-noise ratio at minimal cost. In Section 25.3, we present a very popular general linear
models framework for analyzing fMRI data. Within this common framework, we present
optimality criteria for evaluating the performance of competing fMRI designs. We con-
sider both widely used fMRI designs and designs obtained via a powerful computational
approach.

25.3 Designs for Linear Models

The most popular approach for analyzing fMRI time series is probably the voxel-wise gen-
eral linear model approach (Worsley and Friston 1995; Dale 1999); see also Section 6.2.1
of Lindquist (2008) and Loh et al. (2008). With this approach, the multiple time series col-
lected from the multiple brain voxels are analyzed separately. The LTI system described in
Example 25.2 is often assumed. This system is thought to be reasonable for most studies
(Miezin et al. 2000; Lindquist et al. 2009) although violations can occur; see also Wager
et al. (2005) and Grinband et al. (2008). With these assumptions, if hq(t) represents the
HRF for the stimulus of the qth type and xq(t) is a stimulus function indicating the time
periods where a qth-type stimulus occurs, then the accumulated HRF h(t) at time t is
(Josephs et al. 1997)

h(t) =
Q∑

q=1

t�
0

xq(t − τ)hq(τ)dτ. (25.1)

With brief stimuli, xq(t) is normally set to
∑Jq(t)

j=1 δ(t − τq,j), where 0 ≤ τq,1 < · · · < τq,Jq(t) ≤ t
are the onset times of the qth-type stimuli, Jq(t) is the number of qth-type stimuli before
time t, and δ(t) is the Dirac delta function, which is infinity at the origin and zero elsewhere
and satisfies

� ∞
−∞ δ(t)dt = 1, and

� ∞
−∞ hq(t)δ(t − τ)dt = hq(τ). The MR signals y(t) are then

modeled as (see also Josephs et al. 1997)

y(t) = h(t) + s(t) + ε(t) =
Q∑

q=1

Jq(t)∑
j=1

hq(t − τq,j) + s(t) + ε(t), (25.2)

where s(t) represents the drift or trend of the response and ε(t) is noise.
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In the following sections, we discuss the two most popular models of the form in (25.2),
one for detection and the other for estimation. These models differ in the assumptions
that are made for hq(t). Criteria for selecting designs based on these two models are then
presented.

25.3.1 Models and Design Selection Criteria

25.3.1.1 Linear Model for Detection

Detection, that is, the identification of the brain voxels that are activated by the stimuli, is
one of the primary interests to neuroscientists. For this purpose, the HRF hq(t) in (25.2) is
commonly approximated by the product of an assumed shape of the HRF and an unknown
amplitude. Specifically, hq(t) = θqb(t), where b(t) is an assumed common HRF shape and
θq an unknown amplitude parameter (or coefficient) for the HRF of the qth-type stimuli,
q = 1, . . . , Q. Using notation similar to that for (25.2), the model for detection can thus be
written as

y(t) =
Q∑

q=1

Jq(t)∑
j=1

θqb(t − τq,j) + s(t) + ε(t).

Since the MR signals y(t) are collected every τTR s, the model can be rewritten in the
following matrix form:

y =
Q∑

q=1

Xqh∗θq + Sγ + ε. (25.3)

Here, y is a T × 1 vector with the jth element, yj = y((j − 1)τTR) being the signal collected
at the jth MR scan of the voxel; h∗ corresponds to the common shape b(t) for the HRFs of
the Q types of stimuli and is obtained by evaluating b(t) at k regular time points (the choice
of k is discussed in the next paragraph); Xq is the T × k, 0–1 design matrix for the qth-type
stimuli that depends on design d, and thus, on the τq,j’s and Jq(t) described after (25.1); Sγ
is the nuisance term corresponding to s(t) in (25.2) with S being a known matrix and γ an
unknown parameter vector; and the T × 1 vector ε represents noise. Some of these terms
are further discussed in the succeeding text.

With interstimulus interval τISI and time to repetition τTR, the heights of the HRF that can
possibly contribute to the observed MR signals occur at 0 s and every �T s following a stim-
ulus onset (Figure 25.2). To take these HRF heights into account, the elements of h∗ in Model
(25.3) are set to the heights of b(t) evaluated at t = (j − 1)�T, j = 1, 2, . . .. There are many
choices for b(t) (e.g., Lu et al. 2006). One popular choice is a particular double-gamma func-
tion, which is also part of the Statistical Parametric Mapping (SPM) software package (The
Wellcome Trust Centre for Neuroimaging 2003), a widely used software package written
in MATLAB� for fMRI data analysis. This double-gamma function is a linear combination
of two gamma probability density functions and can be written as

g(t) = t5e−t

5! − 1
6

t15e−t

15! . (25.4)
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The first density, with a mean and variance of 6, describes the leading wave of the HRF.
The second density, with a mean and variance of 16, approximates the undershoot of the
HRF. Following Wager et al. (2005), we use a normalized version of g(t), and set b(t) =
g(t)/maxsg(s), so that the maximum of b(t) is 1. Since g(t) is nearly zero after t = 32 s, the
number of elements of h∗ is set to k = 1 + �32/�T�, where �a� is the integer floor of a.

The 1’s in the jth row of the T × k design matrix Xq correspond to the HRF heights
that contribute to the jth response yj. For illustrative purposes, Example 25.3 provides the
design matrix for the design in Example 25.1. The method for constructing Xq can be easily
extended to other cases; see also Kao et al. (2012).

Example 25.3

As in Example 25.1, suppose the design is d = {110202...0}, τISI = 3 s, and τTR = 2 s.
To construct X1 and X2, we first generate two indicator vectors, δ1 and δ2, each of the
same length as the design. The jth element of δq is δq,j = 1[dj=q], where dj denotes the
jth entry of the design. Here, δ1 = (110000...0)′ and δ2 = (000101...0)′. We then form
wq = δq ⊗[1, 0′

mISI−1]′, where ⊗ is the Kronecker product, 0a is an a-by-1 zero vector, and
mISI = (τISI/�T) = 3; q = 1, 2. The vector wq indicates the onset times of the qth-type
stimuli in units of �T. The number of elements of wq is adjusted to (mTR)T by leaving
out the last few elements or adding zeros at the end (recall that T is the number of MR
scans and mTR = (τTR/�T), which is 2 in this example). The design matrix for the qth-
type stimulus is then Xq = [IT ⊗ (1, 0′

mTR−1)][wq, Bwq, . . . , Bk−1wq], where IT is the T × T
identity matrix, k = 1 + �32/�T� = 33, and

B =
[

0′ 0
I(mTR)T−1 0

]
.

In particular, parts of X1 and X2 are

X1 =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0 · · ·
0 0 1 0 0 · · ·
0 1 0 0 1 · · ·
0 0 0 1 0 · · ·
...

...
...

...
... · · ·

⎤
⎥⎥⎥⎥⎥⎦

; X2 =

⎡
⎢⎢⎢⎢⎢⎣

O5,33
0 1 0 0 0 · · ·
0 0 0 1 0 · · ·
0 0 0 0 0 · · ·
...

...
...

...
... · · ·

⎤
⎥⎥⎥⎥⎥⎦

,

where Om,n is the m × n matrix of zeros. For example, the third row of X1 corresponds to
the third scan, which occurs at 4 s. At that time, the HRF for the stimulus of type 1 with
an onset at 0 s is at its height at 4 s. The HRF for the stimulus of type 1 with an onset of
3 s is at its height at 1 s. Therefore, in the third row of X1, we see a 1 in positions 2 (HRF
height at 1 s) and 5 (HRF height at 4 s), so that X1h∗ is the sum of these two heights.
The third row in X2 is zero since there has not yet been an onset of a type 2 stimulus at
time 4 s. �

If τISI = τTR, then the (j + 1)st column of Xq can be obtained by shifting the elements
of the jth column one position down and adding a 0 at the top. For other cases, including
Example 25.3, the design matrix is more complicated.

The nuisance term Sγ in Model (25.3) attempts to model systemic shifts in the signals
that are of no scientific interest. It is not uncommon to use a second-order polynomial for
this (Liu 2004; Maus et al. 2010b, 2011), although there are alternative models; see also
Lund et al. (2006); Sarkka et al. (2012); and Churchill et al. (2012). In addition, the noise ε

is often assumed to follow an AR1 or AR2 process (Lindquist 2008). There will thus be
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unknown autocorrelation coefficients; see Section 25.5.2 for a further discussion. While
other correlation structures may be considered, the autoregressive processes tend to render
satisfactory results (e.g., Worsley et al. 2002; Lenoski et al. 2008; Maus et al. 2010b).

With Model (25.3), the focus may be on Cθθ, where θ= (θ1,θ2, . . . ,θQ)′ and Cθ is
a user-specified matrix of coefficients corresponding to linear combinations of interest.
When Cθ = IQ, the objective is on studying the strength of brain activation due to each
stimulus type. For the comparison of the activation strengths between stimulus types, Cθ

consists of coefficients for pairwise comparisons; for example, Cθ = [1 − 1] for Q = 2.

25.3.1.2 Linear Model for Estimation

For estimating the HRF hq(t), a second model is usually considered (e.g., Dale 1999; Liu
and Frank 2004). In contrast to Model (25.3), the model for estimation assumes nearly no
prior knowledge about the HRF. An unknown parameter vector hq is used to represent all
the HRF heights that contribute to MR signals. The model for estimation is then

y =
Q∑

q=1

Xqhq + Sγ + ε, (25.5)

where hq = (hq1, . . . , hqk)
′ with hqj representing the unknown HRF height hq((j − 1)�T),

j = 1, . . . , k (= 1 + �32/�T�), and q = 1, . . . , Q; the remaining terms are as in Model (25.3).
Interest would focus on Chh = Ch(h

′
1, . . . , h′

Q)′ for a coefficient matrix Ch. For example,
when Ch = IQk, the main interest is on the estimation of the heights in h.

25.3.1.3 Design Selection Criteria

Optimal fMRI designs yield, in some sense, the best least squares estimates of the para-
metric functions of interest. To define what we mean by best, we focus on appropriate
covariance matrices. For detection, the covariance matrix of Cθθ̂ is proportional to

�θ(d) ≡ Cov(Cθθ̂)

σ2 = Cθ[(IQ ⊗ h∗)′X′V ′(IT − PVS)VX(IQ ⊗ h∗)]−C′
θ, (25.6)

where X = (X1, . . . , XQ); PA = A(A′A)−A′ is the orthogonal projection matrix on the space
spanned by the columns of A with A− being a generalized inverse of A. Thus, PVS projects
orthogonally onto the column space of VS, the product of V and S, where V is a whitening
matrix so that Cov(Vε) = σ2IT and S is as in (25.3) and (25.5). Similarly, the covariance
matrix of Chĥ is proportional to

�h(d) ≡ Cov(Chĥ)

σ2 = Ch[X′V ′(IT − PVS)VX]−C′
h. (25.7)

Note that the matrices �θ(d) and �h(d) depend on design d through the choice of X.
Dale (1999) and Friston et al. (1999) worked on estimation and detection problems,

respectively, and proposed to evaluate designs by considering the reciprocal of the trace
of the appropriate covariance matrix. This corresponds to the A-optimality criterion and
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was subsequently applied in many studies on fMRI designs (e.g., Liu et al. 2001; Wager
and Nichols 2003; Liu 2004; Liu and Frank 2004; Kao et al. 2009a). For this criterion, we will
write

φθ(d) = rθ
trace[�θ(d)] , for detection;

φh(d) = rh

trace[�h(d)] , for estimation.

Here, rθ and rh denote the number of rows of Cθ and Ch, respectively.
In addition to A-optimality, Wager and Nichols (2003) included the D-optimality

criterion in their MATLAB program for selecting fMRI designs. This criterion can be
written as

φθ(d) = det[�θ(d)]−1/rθ , for detection;

φh(d) = det[�h(d)]−1/rh , for estimation.

Maus et al. (2010b) applied the genetic algorithm of Kao et al. (2009a) to obtain both A- and
D-optimal fMRI designs and evaluated the robustness of the two sets of designs against
the choice of optimality criterion. In their empirical studies, A-optimal designs tend to
be more robust than D-optimal designs. Specifically, the relative D-efficiencies (relative
to the D-optimal designs) of the A-optimal designs were at least as good as the relative
A-efficiencies (relative to the A-optimal designs) of the D-optimal designs. The compu-
tational tools described in Section 25.3.3 facilitate the use of criteria that include A- and
D-optimality, as well as multiobjective criteria.

While statistical criteria are important, psychological effects and practical concerns may
also need to be taken into account at the design stage. This includes avoiding designs
with patterns that can be predicted by a subject based on the stimuli presented (e.g., Dale
1999; Liu et al. 2001; Wager and Nichols 2003). For example, with a design that repeats
the same pattern, such as {111000}, a subject will quickly guess which stimulus comes next.
Wager and Nichols (2003) proposed an Rth-order counterbalancing criterion to avoid using
designs with such patterns. The version of this criterion presented here is based on a slight
improvement proposed by Kao et al. (2009a):

φc(d) =
R∑

r=1

Q∑
i=1

Q∑
j=1

⌊∣∣∣n(r)
ij − (n − r)fifj

∣∣∣⌋ . (25.8)

The value for this criterion is computed from a design d(0) obtained from d by removing all
its zeros. The number of elements of d(0) is denoted by n; n(r)

ij is the number of times that a
type i stimulus is followed with a lag r by a type j stimulus in d(0), r = 1, . . . , R. The value
of R controls the degree of counterbalancing and is typically set to 3; fi is a user-specified
desired proportion for type-i stimuli in d(0). With no preference, we may take fi = 1/Q,
i = 1, . . . , Q.

For the simplest case where R = 1, Q = 2, and f1 = f2 = 1/2, this criterion helps
to achieve a design d(0) in which the four possible pairs of stimulus types, namely, (1, 1),
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(1, 2), (2, 1), and (2, 2), appear nearly equally often. With a larger value for R, nearly coun-
terbalanced designs become even harder to predict. However, even a small R can help to
prevent subjects from detecting any patterns; see also Liu and Frank (2004).

Brendel et al. (2010) used a design with more stimuli of one type than of the other types;
see also Kao et al. (2012). To aim for a design with user-specified proportions of occurrences
for the various types of stimuli, the following criterion may be used:

φf (d) =
Q∑

i=1

�|ni − nfi|�, (25.9)

where ni is the number of occurrences of the type-i stimulus in d(0) and n and fi are as in
(25.8).

Note that both criteria (25.8) and (25.9) are of the smaller-the-better variety.
Designs that are very different in terms of the locations of zeros that they contain can lead

to the same d(0). Such designs may perform very differently under other criteria, such as
A- or D-optimality. Therefore, φc and φf are normally used in combination with other crite-
ria. In that case a weighted-sum criterion may be considered for achieving a multiobjective
design:

φ(d) = w1φ
∗
θ(d) + w2φ

∗
h(d) + w3φ

∗
c (d) + w4φ

∗
f (d), (25.10)

where wi ∈ [0, 1] are user-specified weights with
∑4

i=1 wi = 1 and φ∗
j is a standardized

form of φj, j = θ, h, c, f .
Following Kao et al. (2009a), we use the standardization

φ∗
j =

⎧⎨
⎩

φj−min(φj)

max(φj)−min(φj)
, j = θ, h;

1 − φj−min(φj)

max(φj)−min(φj)
, j = c, f .

The maxima for φc and φf are obtained by a design that only contains the stimulus type
with the smallest specified proportion fi. The minima for these two criteria are zero, cor-
responding to (possibly hypothetical) optimal designs under these criteria. Similarly, the
minimal values for φθ and φh are zero, corresponding to designs for which the parametric
functions of interest are nonestimable. The maxima for φθ and φh are generally not avail-
able. An algorithm, such as that introduced in Section 25.3.3, may be used to approximate
these values.

We now turn to a discussion of some traditional fMRI designs.

25.3.2 Efficient fMRI Designs

Different fMRI designs are recommended in the literature for different study objectives.
Friston et al. (1999) studied detection problems with linear models and observed that
so-called blocked designs can outperform other designs that they considered. Blocked
designs are sometimes, perhaps confusingly, called block designs in the fMRI literature.
They present stimuli of the same type in clusters or blocks. For example, repetitions of
{111122220000} or {11112222} form blocked designs for Q = 2 with block size four. The
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former includes blocks of the control and is usually recommended if individual stimulus
effects (Cθ = IQ) are of interest. The blocked design without zeros tends to perform well
for detecting pairwise differences (θi −θj) between stimulus types; see also Kao et al. (2008)
and Maus et al. (2010a). Following Maus et al. (2010a), these two types of blocked designs
will be said to have the pattern ‘ABN’ and ‘AB’, respectively. Block designs with the pat-
tern ‘ANBN’, which would repeat a sequence like {1111000022220000} for Q = 2, can also
perform well at times (Maus et al. 2010a). It has twice as many zeros as occurrences of any
stimulus type. We will also consider blocked designs in which the blocks of zeros are about
half as long as those for the other stimulus types and will denote these by ‘ANBN/2’. For
simplicity, we will also use this notation if Q > 2, even though it would then be more
precise to make some adjustments, such as ABC, ABCN, ANBNCN, and ANBNCN/2
for Q = 3.

With the double-gamma function in (25.4) for h∗ in Model (25.3), a design with a block
duration of about 15 s can yield high φθ-values (Henson 2007). Consequently, with a
τISI of 4 s, say, a good blocked design will have blocks of, approximately, size four.
Nevertheless, the optimal block duration can vary with the selection of the HRF shape
b(t) and the autocorrelation of the noise. Maus et al. (2010a) provide a computational
method for approximating the optimal block duration. The genetic algorithm presented
in Section 25.3.3 can also be used for obtaining an efficient design for detection, and it
normally yields designs with slightly higher φθ-values than blocked designs. The designs
obtained by the genetic algorithm tend to feature blocks of stimuli of the same type, and
are thus similar to blocked designs.

For estimation of an HRF, Dale (1999) showed that blocked designs are inefficient.
Buxton et al. (2000) demonstrated that random designs can yield high efficiencies in estima-
tion, but do not perform well in detection. Their results also suggested that a design formed
by a fraction of a random design and a fraction of a blocked design may be considered as a
compromise when interested in both detection and estimation. Following these pioneering
contributions, Liu et al. (2001) and Liu and Frank (2004) provided mathematical formu-
las to approximate the fundamental trade-off between detection and estimation. Liu (2004)
studied not only blocked and random designs but also m-sequences, mixed designs, per-
muted blocked designs, and clustered m-sequences. An m-sequence is a linear recurrence
sequence (LRS) over a finite field GF(p), where p is a prime or a prime power. Specifically,
an LRS is determined by a homogeneous linear recurrence relation, dl+M = ∑M

l=i aidl+M−i,
where M is a positive integer, a1, . . . , aM ∈ GF(p) are coefficients, and dl is the lth element
of the sequence; l = 1, . . . , L. The recurrence relation for generating an m-sequence with Q
types of stimuli can be obtained from a primitive polynomial over the Galois field GF(Q+1)

(MacWilliams and Sloane 1977; Godfrey 1993). For example, with Q = 2, an m-sequence
{11012202} over GF(3) can be obtained from the primitive polynomial f (x) = x2 − 2x − 1.
The selected f (x) gives the recurrence relation dl+2 = 2dl+1 + dl. Specifically, the coefficient
of dl+j on the right-hand side of the recurrence relation corresponds to the coefficient of xj

of f (x); j = 0, 1, . . . , deg(f ) − 1, where deg(f ) is the degree of f (x). An m-sequence is then
obtained with a specified initial status, say, (d1, d2) = (1, 1). Buračas and Boynton (2002)
proposed the use of m-sequences for estimating the HRF because of the low autocorrelation
property of these designs. But, while efficient for estimation, m-sequences do not perform
as well as blocked designs for detection.

A mixed design is a design that is obtained by concatenating part of a blocked design
with part of an m-sequence or a random design. A permuted blocked design is constructed
by permuting elements of a blocked design to make the design increasingly random. By
contrast, a clustered m-sequence is generated by sequentially permuting elements of an
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m-sequence to create blocks of stimuli of the same type. These designs can be generated by
the MATLAB program of Liu (2004).

While the designs discussed so far offer sound choices for standard situations, fMRI
experiments are complicated and expensive ($200–$1000 per hour scan), and experimenters
tend to seek efficient designs best suited to their unique experiments. Designs for spe-
cific experimental settings are increasingly important for the ever more sophisticated fMRI
experiments (Lindquist 2008). Algorithmic approaches, as discussed in Section 25.3.3, facil-
itate finding efficient fMRI designs for such situations and also tend to lead to more efficient
designs than the traditional designs introduced in this section for standard situations.

25.3.3 Genetic Algorithms for Finding Efficient fMRI Designs

For a given L (number of elements) and Q (number of stimulus types), there are (Q + 1)L

possible fMRI designs. Since L can easily be as large as several hundreds, finding an opti-
mal design for a given criterion is a challenging optimization problem. An answer will
depend on several factors, such as the interstimulus interval τISI, time to repetition τTR,
study objectives (detection, estimation, or both), model assumptions, parametric functions
of interest, optimality criterion (A-optimality, D-optimality, or others), and possible psy-
chological or practical constraints (see Section 25.3.1). Tackling this problem requires the
use of a versatile algorithm.

To this end, Wager and Nichols (2003) proposed the use of a genetic algorithm (see
Holland 1975, and Chapter 21). A genetic algorithm mimics Darwin’s theory of evolu-
tion by moving through generations of chromosomes, which are representations of fMRI
designs in our context. Each generation consists of a selected number of chromosomes,
and the goodness of a chromosome is evaluated through the use of an appropriately cho-
sen objective function. Good chromosomes of the current generation are used to reproduce
chromosomes for the next generation. Following the survival-of-the-fittest principle, only
chromosomes with better fit (higher objective function values) survive to pass on their
genes. The process, when repeated, tends to preserve more and more good traits, resulting
in better and better chromosomes (see also Ahn 2006).

Wager and Nichols (2003) treated fMRI designs as chromosomes, and segments of
designs as genes. They used a weighted sum of normalized optimality criteria as their
objective function and proposed a genetic algorithm to search for efficient fMRI designs
based on user-specified experimental settings. Kao et al. (2009a) proposed an improved
knowledge-based genetic algorithm, with a key innovation being the incorporation of tra-
ditional fMRI designs in the algorithm. This not only helped with a significant increase
in speed but also resulted in designs with higher efficiencies. We briefly describe this
improved algorithm in the succeeding text. A MATLAB program implementing this
approach with a user’s manual can be found in Kao (2009a).

With a user-specified constant g, the genetic algorithm of Kao et al. (2009a) starts with
2g initial designs, including blocked designs of various block sizes, m-sequences (provided
they exist), random designs, and mixed designs. These 2g designs form the first gener-
ation, and their fit is evaluated through an objective function that is a single optimality
criterion or, in the case of multiobjective studies, a weighted sum of standardized criteria.
With probability proportional to the objective function value, g pairs of different designs
are selected from the current generation with replacement. The selected pairs of designs
are then used to generate g pairs of offspring designs via crossover and mutation. Specifi-
cally, the crossover operator exchanges corresponding subsequences of the paired designs
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based on a randomly selected cut point. The mutation operator then randomly selects a por-
tion of elements of the resulting designs and replaces these elements by integers randomly
generated from the discrete uniform distribution over 0, 1, 2, . . . , Q. At each generation, the
algorithm also considers N immigrant designs. These are additionally generated designs con-
sisting of random designs, blocked designs, and mixed designs. Immigrant designs help to
assure that the algorithm does not get trapped at a local optimum. From the pool of the 2g
designs in the current generation, the 2g offspring designs, and the N immigrants, we then
select the 2g designs of the best fit; these selected designs form the next generation. The
process is repeated until a stopping rule is met, for example, no significant improvement
is made (for details, see Kao 2009a). The algorithm keeps track of the design with the best
fit over all generations.

The objective function of the algorithm can be set to φθ, φh, or φ (see Section 25.3.3).
With φθ (or φh), the result is an efficient design for detection (or estimation). The obtained
design can be used to approximate the maximal value for φθ (or φh), which is required for
calculating φ in (25.10). With φ as the objective function, and at least two user-specified
positive weights, the algorithm searches for an efficient multiobjective design. The weights
may be selected based on the importance of each objective.

As demonstrated in Kao et al. (2009a), this algorithm is fast and obtains designs that are
more efficient than those obtained by the algorithm of Wager and Nichols (2003) and by
the traditional designs introduced in Section 25.3.2. We now present examples for both a
single- and multiobjective criterion.

25.3.4 Illustrative Examples

We consider four choices for (Q, L), namely, (2, 242), (3, 255), (4, 624), and (6, 342). These
choices were also considered in Liu (2004) and Kao et al. (2009a). The design has L =
(Q + 1)� − 1 elements for an integer �, which allows consideration of m-sequences. Both for
Models (25.3) and (25.5), we assume a second-order polynomial drift in the response and
AR1 noise with ρ = 0.3. More discussion about the value of ρ appears in Section 25.5.2. We
consider two possible choices for the parametric functions of interest: (1) individual stim-
ulus effects, with Cθ and Ch being identity matrices, and (2) pairwise comparisons, with
Cθ and Ch containing coefficients for all possible pairwise comparisons between stimulus
types. The combinations for (τTR, τISI) that we consider are (2, 2), (2, 3), and (2, 4), with
�T = 2, 1, and 2 s, respectively. Both A- and D-optimality are applied for each combina-
tion. We note that the number of elements, k, of the HRF parameter vector hq of (25.5) with
�T = 1 s is about twice as large as that with �T = 2 s.

We use the genetic algorithm of Kao et al. (2009a) with the parameters of the algorithm
set to their default values as presented in Kao (2009a). In particular, we use a population
size 2g = 20, a mutation rate of 1%, and the number of immigrants N = 4. The search is
terminated when there is no significant improvement in the value of the objective function
(for details, see Kao 2009a). The GA designs obtained by this algorithm will be compared
to some of the traditional designs in Section 25.3.2 with respect to the criteria φθ, φh, and
φ= 0.5φ∗

θ+0.5φ∗
h. For the traditional designs, we employ the MATLAB program provided

by Liu (2004) to obtain m-sequences, mixed designs, permuted blocked designs, and clus-
tered m-sequences. In addition, blocked designs with blocks of (nearly) 15 s length are also
included among the designs that we compare. In particular, when Q = 2, these blocked
designs are formed by repetitions of {111111112222222200000000} for τISI = 2 s, by repeti-
tions of {111112222200000} for τISI = 3 s, and by repetitions of {111122220000} for τISI = 4 s.
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The same block length is also considered for the construction of blocked designs for Q = 3,
4, and 6. In addition to designs with the pattern ABN, we also consider blocked designs
with the patterns AB, ANBN, and ANBN/2 (Section 25.3.2). For ANBN/2, the block length
of zeros is about 7.5 s.

Table 25.1 provides the relative efficiencies for the various scenarios of the best tradi-
tional design to the GA design obtained by the algorithm. With relative efficiencies of at
least 95.7% for the best traditional designs under φθ, Table 25.1 shows that highly effi-
cient traditional designs can be found for detection. As expected, these designs are blocked
designs. For estimation of the HRF (the φh criteria), m-sequences can perform well for
D-optimality. However, their efficiency relative to GA designs can be less impressive for
A-optimality, especially when τISI is not (a multiple of) τTR. As noted previously, when
(τTR, τISI) = (2, 3), the number of HRF parameters is about twice that in the other cases.
For comparing HRFs between stimulus types, designs obtained by the genetic algorithm
clearly outperform traditional designs, for both A- and D-optimality. The same tends to
be true for the multiobjective criteria that place equal weight on detection and estimation
(the φ-criteria).

Table 25.2 provides the pattern of the efficient blocked designs whose relative φθ-values
are reported in Table 25.1. When pairwise comparisons are of interest, the pattern that
yields the highest φθ-values for both A- and D-optimality is AB. If interest is in estimating

TABLE 25.1

Relative Performance (%) of the Best Traditional Design versus the GA Design

Individual Stimulus Effect Pairwise Comparison

Setting Q = 2 Q = 3 Q = 4 Q = 6 Q = 2 Q = 3 Q = 4 Q = 6

Detection (φθ)
A-opt., τISI = 2 97.6 95.7 98.2 98.3 99.6 98.7 99.0 98.9
A-opt., τISI = 3 98.4 98.5 99.9 99.8 99.6 99.0 99.0 98.7

A-opt., τISI = 4 96.2 97.7 98.5 99.5 99.8 97.5 100.0 97.6
D-opt., τISI = 2 99.8 99.2 99.2 99.5 99.7 98.7 99.1 99.1

D-opt., τISI = 3 100.0 99.1 99.4 100.0 99.6 99.0 99.0 98.8
D-opt., τISI = 4 97.6 97.8 98.0 98.3 99.8 97.5 100.0 97.7

Estimation (φh)
A-opt., τISI = 2 93.9 91.9 89.4 88.4 65.6 73.9 79.3 86.5

A-opt., τISI = 3 89.3 82.3 87.1 75.0 62.8 68.9 77.6 73.4
A-opt., τISI = 4 97.6 94.4 91.5 87.8 67.1 75.4 80.3 87.0

D-opt., τISI = 2 98.7 99.3 99.9 100.0 68.4 76.1 81.0 89.3
D-opt., τISI = 3 94.1 93.1 96.2 92.4 63.1 70.6 79.6 80.2

D-opt., τISI = 4 98.6 98.9 99.5 99.8 67.0 75.6 80.5 87.1

Biobjective (φ = (φ∗
θ

+ φ∗
h)/2)

A-opt., τISI = 2 90.5 86.9 84.3 82.9 65.2 71.2 76.7 80.7
A-opt., τISI = 3 89.4 85.1 86.8 78.3 62.7 69.7 76.3 77.3

A-opt., τISI = 4 95.1 93.0 90.2 86.9 66.0 74.3 79.4 84.1
D-opt., τISI = 2 93.2 93.8 94.5 93.9 66.8 71.7 76.6 81.7

D-opt., τISI = 3 92.0 92.2 94.4 92.4 63.6 70.3 76.9 79.6
D-opt., τISI = 4 96.1 96.9 97.6 97.3 65.9 73.9 79.0 84.2
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TABLE 25.2

The Patterns of the Best Blocked Designs for Detection

Individual Stimulus Effect Pairwise Comparison

Setting Q = 2 Q = 3 Q = 4 Q = 6 Q = 2 Q = 3 Q = 4 Q = 6

A-opt., τISI = 2 ABN ANBN/2 ANBN/2 ANBN/2 AB AB AB AB
A-opt., τISI = 3 ANBN ANBN/2 ANBN/2 ANBN/2 AB AB AB AB

A-opt., τISI = 4 ANBN ANBN/2 ANBN/2 ANBN/2 AB AB AB AB
D-opt., τISI = 2 ABN ABN ABN ABN AB AB AB AB
D-opt., τISI = 3 ABN ABN ABN ABN AB AB AB AB

D-opt., τISI = 4 ABN ABN ABN ABN AB AB AB AB

the vector θ, blocked designs with the pattern ABN are efficient for D-optimality, while
the pattern ANBN/2 is best for A-optimality when Q = 3, 4, or 6. However, when Q = 2,
designs with this pattern can be outperformed by blocked designs with other patterns.
Specifically, for Q = 2 and A-optimality, the patterns ABN (τISI = 2 s) and ANBN (τISI = 3
and 4 s) are most efficient. However, the pattern ABN is also highly efficient in the latter
cases and would thus be a good choice for all combinations that we studied for Q = 2 if
the interest is in θ. This block pattern is also recommended by Maus et al. (2010a) for a
maximin robustness criterion; they consider a linear drift and an AR1 error structure with
a correlation coefficient ρ ∈ [0, 0.5].

25.4 Designs for Nonlinear Models

The results in Section 25.3 are for the widely used general linear model approach. Not only
does this approach use slightly different model assumptions for estimation and detection,
but it also assumes a common HRF shape h∗ for every brain voxel when considering detec-
tion. This assumption is sometimes seen as being unrealistic. For example, Handwerker
et al. (2004) observed variable HRF shapes across voxels. Lindquist and Wager (2007) argue
that a misspecified HRF shape may lead to incorrect conclusions about brain activation, so
that an approach allowing for uncertainty in the HRF shape seems preferable; see also
Lindquist et al. (2009).

Attempts to accommodate the possibility of uncertainty in the HRF shape have also
entered the fMRI design literature. Focusing on design selection, Kao (2009b) considered
the nonlinear model

y =
Q∑

q=1

Xqh(p)θq + Sγ + ε. (25.11)

Here, the vector h(p), which is indexed by a vector p of unknown parameters, represents
the HRF shape. As in Model (25.3), the same shape is assumed for every stimulus type.
The parameter vector p is to be estimated for each voxel at the analysis stage, and differ-
ent voxels may yield different estimates of p. However, the parameter values, and thus
h(p), are unknown at the design stage. Other terms in Model (25.11) are as in Model (25.3).
A possible choice for h(p) is by considering the double-gamma function of (25.4) with
unknown parameters, p1, p2, ..., p6 to allow for various shapes:
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g0(t; p1, p2, . . . , p6) = (t − p6)
p1/p3−1e−(t−p6)/p3

�(p1/p3)p
p1/p3
3

− 1
p5

(t − p6)
p2/p4−1e−(t−p6)/p4

�(p2/p4)p
p2/p4
4

, (25.12)

where �(a) = � ∞
0 ta−1e−tdt is the gamma function. Thus g(t) of (25.4) is a special case

of g0(t; p1, p2, . . . , p6) with (p1, p2, . . . , p6) = (6, 16, 1, 1, 6, 0). We follow Wager et al. (2005)
to keep the two most influential parameters, p1 (time to peak) and p6 (time to onset),
as unknown parameters and fix the others at their default values of (p2, p3, p4, p5) =
(16, 1, 1, 6), although (some of) these latter pi’s could also be regarded as unknowns. With
a slight abuse of notation, for simplicity we will from hereon write p = (p1, p6)

′; the HRF
shapes for various values of p can be found in Figure 25.3. For a given p, the jth element of
h(p) is then equal to g0(t = (j − 1)�T; p)/maxsg0(s; p), and the number of elements of h(p)

is 1 + �32/�T�.
While Model (25.11) allows for different HRF shapes for different voxels, the nonlinearity

of the model (through h(p)θq) also introduces some new challenges. The covariance matrix
of the least squares estimate θ̂ of θ can be approximated by

σ2�θ(d;θ, p) = σ2[E(p)′(IT − PL(θ,p))E(p)]−1; where

E(p) = (IT − PVS)VX(IQ ⊗ h(p));

L(θ, p) = [L1, L6]; Li = (IT − PVS)VX(IQ ⊗ ∂h(p)/∂pi)θ; i = 1, 6.

Here, X is as in (25.6) and ∂h(p)/∂pi is the partial derivative of h(p) with respect to pi.
This approximation is obtained by a linearization of Model (25.11) via a Taylor expansion

(Fedorov and Hackl 1997). A difficulty in finding an fMRI design optimizing some function
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The HRF shapes for various values of p = (p1, p6).
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of �θ(d;θ, p) is that the answer will depend on unknown model parameters. One way to
tackle this issue is by using locally optimal designs (Chernoff 1953), which are optimal
for a best guess for θ and p. However, locally optimal designs are not satisfactory since
fMRI experiments involve multiple brain voxels with, possibly, different values for these
parameters. This calls for designs that are efficient for multiple values of θ and p.

With a prior distribution for the model parameters, Kao (2009b) adapted the genetic
algorithm of Section 25.3.3 to obtain Bayesian optimal designs. In cases where only a range
of the parameter values is available, Maus et al. (2012) searched for maximin robust designs
under the same model as in Kao (2009b). Their primary focus was on cases with one stim-
ulus type (Q = 1) under D-optimality. Kao et al. (2013) also studied maximin designs for
Model (25.11) and proposed an approach that is also applicable for larger Q and for opti-
mality criteria that are invariant under simultaneous permutations of rows and columns of
the information matrix E(p)′(IT − PL(θ,p))E(p). Both the A- and D-optimality criteria satisfy
this invariance property.

The main focus of Kao et al. (2013) is on finding designs d that maximize

min
(θ,p)∈�×P

φθ(d;θ, p), (25.13)

where � and P are parameter spaces for θ and p, respectively. The function φθ is cho-
sen as in Section 25.3.1 with �θ(d) replaced by �θ(d;θ, p). Based on empirical results (see
Rosen et al. 1998; Lindquist 2008), the parameter space P for p is set to {(p1, p6) | p1 ∈
[6, 9], p6 ∈ [0, 2]}. Without precise information about the possible value of θ, � is tem-
porarily set to the entire Q-dimensional space RQ. We note that a negative θq corresponds
to deactivation described in Friston et al. (1998). Kao et al. (2013) made use of the following
observations to reduce the parameter space and computational burden.

Lemma 25.1 �θ(d; 0, p) ≤ �θ(d;θ, p) in Löwner ordering for any θ, p, and design d that makes
�θ(d;θ, p) nonsingular.

Lemma 25.2 �θ(d; cθ, p) = �θ(d;θ, p) for any scalar c �= 0.

Lemma 25.3 Let G = {G1, . . . , GM} be a set of Q × Q permutation matrices. Suppose �0 ⊂ �

is such that � = ⋃M
m=0 �m, where �m = Gm�0 = {θm | θm = Gmθ0,θ0 ∈ �0} for

m = 1, 2, . . . , M. If d∗
0 is a maximin design for �0 × P and min

�0×P
φθ(d∗

0;θ0, p) =
min

�m×P
φθ(d∗

0;θm, p) for any m = 1, 2, . . . , M, then d∗
0 is also a maximin design for � × P .

Proofs of these properties can be found in Kao et al. (2013). We note that, with Lemma
25.2, we can slightly extend Lemma 25.3.

Corollary 25.1 The result in Lemma 25.3 still holds after replacing �m by �∗
m = Gc

m�0 =
{c(θm)θm | θm = Gmθ0,θ0 ∈ �0, c(θm) is a nonzero scalar that may vary with θm}; m =
1, 2, .., M.
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From Lemma 25.1, φθ(d;θ, p) ≤ φθ(d; 0, p) for any θ �= 0. Consequently, the minimal
φθ-value can be achieved within (RQ − {0}) × P . In addition, Lemma 25.2 helps to fur-
ther reduce the parameter space for θ. Specifically, when Q = 1, we have φθ(d;θ1, p) =
φθ(d; 1, p) for θ1 �= 0. For this case, the search algorithm introduced in Section 25.3.3
can be adapted to search for a design maximizing minPφθ(d; 1, p), where the minimum
is evaluated by using a fine grid on P .

When Q > 1, Lemmas 25.1 and 25.2 allow us to focus on the surface of a Q-dimensional
unit hemisphere centered at the origin. For example, when Q = 2, the parameter
space of θ can be reduced to � = {(cosϕ1, sinϕ1) | ϕ1 ∈ (−π/2,π/2]}. Similarly,
� = {(cosϕ1, sinϕ1 cosϕ2, sinϕ1 sinϕ2) | ϕi ∈ (−π/2,π/2]} for Q = 3. In general,

� =
⎧⎨
⎩(θ1, . . . ,θQ) | θ1 = cosϕ1; θq = cosϕq

q−1∏
i=1

sinϕi, q = 2, 3, . . . , Q − 1;

θQ =
Q−1∏
i=1

sinϕi; ϕ1, . . . ,ϕQ−1 ∈ (−π/2,π/2]
⎫⎬
⎭ .

We may now evaluate the minimum of (25.13) over a grid on the reduced parameter space.
Based on Lemma 25.3, Kao et al. (2013) proposed a strategy for finding a maximin design

for Q ≥ 2. The key idea is to focus on an even smaller judiciously selected subset �0 of �

when comparing the minimal φθ-values of candidate designs. If � = ⋃M
m=0 �m, where

�m = Gm�0 for permutation matrices G1, . . . , GM, then it follows from Lemma 25.3 that a
design d∗

0 that is maximin over �0 ×P is also a maximin design for � ×P if Rm = 1 for all
m, where

Rm =
min

�m×P
φθ(d∗

0;θm, p)

min
�0×P

φθ(d∗
0;θ0, p)

. (25.14)

In addition, if d∗
0 and d∗ are maximin designs for �0 × P and � × P , respectively, then it

can easily be seen that (Kao et al. 2013)

min
m

Rm ≤
min
�×P

φθ(d∗
0;θ, p)

min
�×P

φθ(d∗;θ, p)
.

Consequently, when min
m

Rm is not 1 but very close to 1, design d∗
0, while not maximin over

� × P , is quite efficient compared to the maximin design d∗. We note that, with Corollary
25.1, the same is true by replacing �m with �∗

m = Gc
m�0, m = 1, 2, . . . , M.

Based on our experience, the grid method is convenient and efficient for evaluating
the minimum φθ-value for each candidate design, especially when �0 × P is relatively
small. The genetic algorithm of Kao et al. (2009a) can then be adapted to search for a max-
imin design. In the next section, we provide an illustrative example for implementing the
proposed strategy.
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25.4.1 Illustrative Example for the Nonlinear Model

Suppose (Q, L) = (2, 242), τISI = 4 s, and τTR = 2 s. We consider model (25.11) with a
second-order polynomial drift and AR1 noise with ρ = 0.3. The parameter space for the
model parameters θ and p = (p1, p6)

′ is R2 × P , where P = [6, 9] × [0, 2]. The focus is
on θ = (θ1,θ2)

′, that is, on detection, and designs are compared via a maximin criterion
as in (25.13) with φθ chosen as the function corresponding to A-optimality. The genetic
algorithm in Section 25.3.3 is adapted to search for a design maximizing this criterion.

We first consider an off-the-shelf optimization tool, namely, the MATLAB function fmin-
con, for approximating the minimum of (25.13) for each candidate design during the genetic
algorithm search. This naive approach can take a large amount of CPU time and yields
unsatisfactory results. We thus apply Lemmas 25.1 and 25.2 to reduce the parameter space
to � × P with � = {(cosϕ1, sinϕ1) | ϕ1 ∈ (−π/2,π/2]} and obtain min�×Pφθ(d;θ, p) for
each design over a grid on �×P ; we use grid intervals of 0.2 and 0.1π for p and ϕ1, respec-
tively. By evaluating φθ(d;θ, p) at every (θ, p)-value on the grid, this grid search tends to
provide a better approximation of the minimum than the previously mentioned off-the-
shelf optimization tool. We also note that, while we work on a reduced parameter space,
the maximin design d∗ is still optimal for R2 × P .

To further reduce the computational burden, the strategy outlined in this section is
applied and the parameter space is further reduced by taking

G1 =
(

0 1
1 0

)

and �0 = {(cosϕ1, sinϕ1) | ϕ1 ∈ [−π/4,π/4]}. The genetic algorithm is adapted to search
for a design d∗

0 maximizing min�0×Pφθ(d;θ, p), where the minimal value is each time
obtained over a grid on �0 ×P with grid intervals of 0.2 and 0.1π for p and ϕ1, respectively.
For this example, � = �0

⋃
�∗

1 with �∗
1 = {sign(θ11)θ1 |θ1 = (θ11,θ21)

′ = G1θ0,θ0 ∈ �0};
sign(θ11) is the sign of the first element of θ1 = G1θ0. Following the results in the previous
section, d∗

0 is efficient if R∗
1 = min�∗

1×Pφθ(d∗
0;θ, p)/min�0×Pφθ(d∗

0;θ, p) is close to 1. We
demonstrate that this strategy can help to reduce CPU time and achieve efficient maximin
designs.

On a desktop computer with a 3.4 GHz Core i7-2600 processor, the genetic algorithm
with fmincon took about 2.56 h to search for a maximin design. With the grid method on
the reduced parameter space � × P , the genetic algorithm used about 15.36 min to obtain
d∗. While Lemmas 25.1 and 25.2 help to reduce computing time significantly, the strategy
based on Lemma 25.3 and Corollary 25.1 provides an even more efficient way to obtain a
design that yields performance similar to d∗. For this example, the genetic algorithm with
this strategy took about 6.35 min to obtain a maximin design d∗

0 for �0 ×P . The time spent
for d∗

0 is slightly less than half of that for d∗; this is mainly because the size of �0 is half
of that of �. This time reduction is greater for a larger Q since the area of �0 is in general
1/Q! of that of �. While the computational burden can increase with Q, the strategy helps
to reduce the CPU time by a factor of 1/Q!; see Kao et al. (2013) for other examples and
further discussions.

The performance of various designs is presented in Figure 25.4, where min(φθ) =
min�0×Pφθ(d;θ, p) is evaluated over �×P with grid intervals of 0.1 and 0.05π for p andϕ1,
respectively; the same grid intervals will be used throughout this example for comparing
and evaluating designs. The design obtained with fmincon does not perform well; it yields
a maximin efficiency of 86.83% relative to d∗. On the other hand, the maximin design d∗

0 for
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FIGURE 25.4
The min(φθ)-values over � × P of some traditional designs and the maximin designs. For random designs, the
mean and the standard deviation of min(φθ) of 100 randomly generated designs are presented.

�0×P is very efficient and has a similar min(φθ)-value as d∗. Although we obtain d∗ in this
example to help evaluate the performance of d∗

0, this is unnecessary in practice, especially
when obtaining d∗ is time consuming (e.g., with a large Q). To evaluate the performance
of d∗

0, we calculate the previously mentioned R1, which does not rely on d∗. The R1-value
for d∗

0 is 99.32%, indicating that d∗
0 is very efficient in terms of the maximin criterion (25.13).

A direct comparison with d∗ yields a maximin efficiency of 99.55% for d∗
0 relative to d∗.

Figure 25.4 also presents the min(φθ)-values of a blocked design and an m-sequence,
and the average min(φθ)-value of 100 random designs. From the figure, while blocked
designs are highly recommended for detection with linear models (Section 25.3.2), they do
not perform well in terms of the maximin criterion for this nonlinear model. In particular,
the blocked design has a maximin efficiency of 44.88% relative to d∗. As argued in Kao et al.
(2013), blocked designs are a poor choice for estimation of the HRF and are therefore limited
in their performance with the nonlinear model, which treats detection and estimation in a
single model. Stated in a different way, with Model (25.11), a reasonably precise estimate
of p is needed in order to obtain a precise estimate of θ.

The blocked design and maximin designs are presented in Figure 25.5; different shades
of gray represent different stimulus types and a white bar corresponds to a zero. In contrast
to the blocked design, maximin designs d∗ and d∗

0 are rather random in appearance and do
not seem to have perceivable patterns. An m-sequence also looks random (not shown),
it achieved 84.05% of the maximin efficiency of d∗. Designs that are randomly generated
attain similar maximin efficiencies as the m-sequence (Figure 25.4). However, none of these
traditional designs perform as well as d∗

0 or d∗.

25.5 Additional Considerations

In this section, we provide a brief overview of some other issues related to fMRI experi-
mental designs, including violation of the assumption of additivity of overlapping HRFs,
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Maximin design d*0

Maximin design d*

Blocked design with (Q, L) = (2,242)

FIGURE 25.5
A blocked design for Q = 2 formed by repetitions of {000011112222}, a maximin design d∗ for � × P , and a
maximin design d∗

0 for �0 × P . Different shades of gray indicate different types of stimuli and white means 0.

misspecification of the correlation parameter for the noise, and use of multiple scanning
sessions. Our main focus is on discussing results for the linear models introduced in Section
25.3. For a nonlinear model, the first issue, nonadditive HRFs, has also been discussed in
Maus et al. (2012); this will be briefly described in the next section. While the other design
issues may also be relevant for the nonlinear model, they have not been systematically
studied under that model.

25.5.1 Nonadditive HRFs

The statistical models in Section 25.3 assume that the heights of overlapping HRFs accumu-
late additively to form a component of MR measurements. This additivity assumption is
(roughly) valid in some cases (Boynton et al. 1996; Dale and Buckner 1997), but violations
have been observed in other cases. For example, Wager et al. (2005) studied the effect of
one single brief (250 ms) stimulus and that of multiple (2, 5, 6, 10, or 11) brief stimuli of
the same type that are separated by 1 s. By comparing the MR signals evoked by a single
stimulus and those by multiple stimuli, they found that the accumulated HRFs under the
assumed system tend to overestimate the observed ones. This phenomenon had already
been reported in Wager and Nichols (2003), and the accumulated heights of the HRFs of
rapidly presented stimuli are said to saturate at a certain level of intensity. Such nonadditiv-
ity of the HRFs is still under active investigation; see Huettel (2012) and references therein.
While not fully understood, methods for addressing this issue at the design stage have
already been proposed. Although the nonadditivity issue may also exist in Model (25.5)
for estimation, the proposed methods are primarily for Model (25.3) for detection.

Based on their empirical results, Wager and Nichols (2003) proposed to impose a ceiling
value on the accumulated HRF heights to account for nonadditivity. With our notation in
(25.3), Wager and Nichols set an upper bound of 2 for each of the elements of the vector
Xh∗. Thus, any element of Xh∗ that exceeds 2 is replaced by 2. This replacement is more
likely to occur when times between stimulus onsets are short or the HRF shape h∗ has
an extended width (e.g., due to an extended neuronal activity). The method assumes a
constant HRF amplitude θq (strength of activation) even with saturated accumulations of
HRFs. It provides a simple, first-order adjustment for nonadditive HRFs. In the following
example, we present and discuss the effect of this adjustment on design performance.
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Example 25.4

We consider the same settings as in the illustrative example of Section 25.3.4, including
a time to repetition τTR of 2 s. However, we take the interstimulus interval τISI to be
1 s, corresponding to a rapid presentation of the stimuli. Consequently, �T is 1 s. The
focus is on detection with Model (25.3), but the nonadditivity of the HRF is accounted
for using the method of Wager and Nichols (2003). The HRF shape h∗ is obtained from the
double-gamma function of (25.4), normalized to have a maximum of 1 (Section 25.3.1).
Individual stimulus effects and pairwise comparisons between stimulus types are sepa-
rately investigated, and both A- and D-optimality criteria are applied. We use the genetic
algorithm of Kao et al. (2009a) to search for optimal designs for detection. For comparison
purposes, we also use the algorithm to find optimal designs when possible nonadditivity
is ignored. The obtained designs are compared via φθ(d) computed by using the model
with the nonadditivity adjustment.

Table 25.3 presents relative efficiencies based on φθ-values under the model with
the nonadditivity assumption. The relative efficiencies are for designs obtained when
ignoring the nonadditivity relative to designs obtained when taking the nonadditivity
into account. The results suggest that the former designs can suffer significant efficiency
loss when the HRFs are nonadditive. We also note that while the obtained designs with
additive HRFs are close to blocked designs, the designs with nonadditive HRFs contain
random components. Intuitively, with additive HRFs, the MR signals (or accumulated
HRFs) evoked by a block of multiple stimuli can be strong, making blocked designs effi-
cient for detection. However, such an advantage of blocked designs can be suppressed
when the MR signals are bounded above; adding stimuli to a block does not help to
increase the signal intensity if the upper bound has already been attained.

We also present in Table 25.3 the performance of designs obtained with the nonad-
ditivity assumption when the HRFs are additive. As seen from the table, using designs
obtained under the assumption of nonadditive HRFs can also lead to considerable loss
of efficiency when the HRFs are actually additive. It would thus be good to know at the
design stage which of these assumptions applies. �

Maus et al. (2010a) also considered the nonadditivity issue when studying the perfor-
mance of blocked designs; each block is formed by brief stimuli of the same type separated
by a specific time interval (τISI = 1, 2 or 3 s). With our notation, they reduced the heights of
the HRF shape h∗ by 19% for blocks with τISI = 1 s; no adjustments were made for blocks
with τISI > 1 s. In Maus et al. (2012), where a nonlinear model is considered, this method
is adapted again. Specifically, they reduced the maximal height of the HRF shape by 30%

TABLE 25.3

Relative Efficiencies (%) for Detection Under (I) Nonadditive HRFs and (II) Additive HRF of
Designs Obtained with the Wrong Assumption to Designs Obtained with the Correct Assumption

A-Optimality D-Optimality

Parametric Function Q = 2 Q = 3 Q = 4 Q = 6 Q = 2 Q = 3 Q = 4 Q = 6

(I) Correct assumption: Nonadditive HRFs

Individual effects 80.1 74.2 73.2 67.4 82.4 79.1 74.6 69.2
Pairwise comparisons 78.7 85.1 83.6 73.3 84.2 84.2 82.6 74.3

(II) Correct assumption: Additive HRFs

Individual effects 85.2 71.2 60.5 54.4 79.6 74.6 65.3 60.5
Pairwise comparisons 83.7 88.6 68.2 48.7 72.5 84.7 65.0 49.8
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for τISI = 2.5 s and by 21% for τISI = 5 s. The reductions on the HRF height are based on
empirical results from previous studies. This adjustment provides an alternative way for
accommodating nonadditive HRFs.

25.5.2 Uncertain Correlation Coefficient

Observations obtained from a brain voxel are often temporally correlated, and thus, corre-
lated noise is assumed when analyzing fMRI data. The assumption of an AR1 error process
seems to provide satisfactory results; see also Zhang and Yu (2008) and Worsley et al. (2002).
While the autocorrelation coefficient ρ of an AR1 process can be estimated at the analysis
stage, it is often unknown at the design stage. In addition, the value of ρ may vary across
brain voxels (Maus et al. 2010b).

To take the uncertainty about ρ into account, Maus et al. (2010b) considered a maximin
procedure for finding designs that protect against the worst case over a specified range
for ρ. To emphasize the dependence of the optimality criterion in (25.10) on ρ, we write

φ(d; ρ) = w1φ
∗
θ(d; ρ) + w2φ

∗
h(d; ρ) + w3φ

∗
c (d) + w4φ

∗
f (d).

Maus et al. (2010b) studied cases with (Q, L) = (3, 255) and τISI = τTR = 2 s. They studied
Models (25.3) and (25.5) with a second-order polynomial drift and AR1 noise for detection
and estimation, respectively. For the optimality criterion they used third-order counterbal-
ancing, taking R = 3 for φ∗

c in (25.8), and set f1 = f2 = f3 = 1/3 for φ∗
f in (25.9). For selected

weights wi, they considered the maximin criterion

min
ρ∈[0,0.5]

φ(d; ρ)

φ(d∗
ρ; ρ)

(25.15)

for evaluating designs. Here, d∗
ρ is a design maximizing φ(d; ρ) for a given ρ. Maus et al.

(2010b) used the genetic algorithm of Kao et al. (2009a) (see Section 25.3.3) to generate 51 d∗
ρ

designs for ρ ranging from 0 to 0.5 in steps of size 0.01 to help calculate (25.15). Among these
51 designs, they then selected the design that maximizes the criterion in (25.15).

We summarize their findings in Table 25.4 in which the last two columns provide the
ρ-value that yielded the maximin design. We also study and report the results for the cases
whose best ρ-value is not (precisely) reported by Maus et al. (2010b). The reported ρ-values
yield designs with very high maximin efficiencies (>97%). Nevertheless, one could adapt
the genetic algorithm again to search for (possibly) better designs by using (25.15) as the
fitness function, except that the minimization would only be over the 51 ρ-values for which
d∗
ρ has been obtained.

From Table 25.4, the assumption of ρ = 0.3 used in the previous sections does not
seem unreasonable, especially for the A-optimality criterion. Additional results based on
Maus et al. (2010b) and our own investigations show that the d∗

ρ design with ρ = 0.3 for
D-optimality is also highly efficient. However, the results available are only for some par-
ticular experimental settings with Q = 3. Additional investigations could also consider an
AR2 correlation structure for the noise.
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TABLE 25.4

Maximin Designs for Uncertainty in the Correlation Coefficient ρ

ρ-Value of Maximin Design d∗
ρ

Criterion Parametric Function A-Optimality D-Optimality

φθ (Detection) Individual effects ρ = 0.30 ρ = 0.45

Pairwise comparisons ρ = 0.30 ρ = 0.32
φh (Estimation) Individual effects ρ = 0.28 ρ = 0.21

Pairwise comparisonsa ρ = 0.24 ρ = 0.12

(φ∗
θ

+ φ∗
h)/2 Individual effectsa ρ = 0.30 ρ = 0.36

Pairwise comparisonsa ρ = 0.27 ρ = 0.24

(φ∗
θ

+ φ∗
h + φ∗

c + φ∗
f )/4 Individual effectsa ρ = 0.31 ρ = 0.31

Pairwise comparisonsa ρ = 0.29 ρ = 0.33

a Cases whose results are not (precisely) reported by Maus et al. (2010b).

25.5.3 Multiple Scanning Sessions

For experiments with a long duration, experimenters may use multiple short scanning
sessions rather than a single long one (e.g., Brown et al. 2008). Each short session may
last 5 min, say. The experimental subject can rest between sessions, which should help to
maintain comparable performance throughout the experiment.

For design selection with multiple scanning sessions, Kao et al. (2009b) generalized
Models (25.3) and (25.5) by allowing different drift or trend effects for different sessions.
For detection with B scanning sessions, the model becomes

y =

⎡
⎢⎢⎢⎣

X(1)

X(2)

...
X(B)

⎤
⎥⎥⎥⎦ h∗θ + [IB ⊗ S]

⎡
⎢⎢⎢⎣
γ(1)

γ(2)

...
γ(B)

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣
ε(1)

ε(2)

...
ε(B)

⎤
⎥⎥⎥⎦ , (25.16)

where, for the bth scanning session, b = 1, . . . , B, X(b) = [X(b)
1 · · · X(b)

Q ] is the 0–1

design matrix obtained from the design; γ(b) is the parameter vector for the drift/trend;
ε(b) represents the noise. The remaining terms are as in Model (25.3).

We again follow a common practice to assume the same HRF shape h∗ for every stimulus
type and focus only on (some parametric functions of) the possibly different unknown HRF
amplitudes θq, q = 1, . . . , Q. The construction of X(b)

q is the same as that of Xq in Model
(25.3); see Section 25.3.1. The rest periods between sessions are assumed to be sufficiently
long (e.g., >30 s) so that the stimulus effects from a previous session do not carry over to the
next session. In addition, all sessions are assumed to be of the same length, and ε(1), . . . ,ε(B)

are independent and have the same covariance matrix, although these assumptions are not
essential at all.

Similarly, for estimation, the model accommodating multiple scanning sessions can be
written as

y =

⎡
⎢⎢⎢⎣

X(1)

X(2)

...
X(B)

⎤
⎥⎥⎥⎦ h + [IB ⊗ S]

⎡
⎢⎢⎢⎣
γ(1)

γ(2)

...
γ(B)

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣
ε(1)

ε(2)

...
ε(B)

⎤
⎥⎥⎥⎦ . (25.17)
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As in Model (25.5), the unknown HRF parameter vector h = (h′
1, . . . , h′

Q)′ for the Q types
of stimuli or some linear combinations of hq, q = 1, . . . , Q, is the main interest. With
Models (25.16) and (25.17), the covariance matrices of the estimators Cθθ̂ and Chĥ are
proportional to

�θ(d) = Cθ

[ B∑
b=1

(IQ ⊗ h∗)X(b)′V ′(ITB − PVS)VX(b)(IQ ⊗ h∗)
]−

C′
θ; and

�h(d) = Ch

[ B∑
b=1

X(b)′V ′(ITB − PVS)VX(b)

]−
C′

h,

respectively. Here, TB = T/B is the number of observations collected in each scan-
ning session, and V is the assumed whitening matrix making Vε(b) white noise for
b = 1, . . . , B. The optimality criteria φθ and φh can then be adapted for evaluating the
quality of designs in detection and estimation for experiments with multiple scanning
sessions.

A design for multiple scanning sessions can be written as d = {d(1)d(2) · · · d(B)}, where
d(b) is a design sequence with LB = L/B elements for the bth scanning session. To achieve
high-quality designs, Kao et al. (2009b) proposed to adapt the genetic algorithm of
Kao et al. (2009a). In particular, one may treat the optimality criterion defined for multi-
ple scanning sessions as the objective function and then use the algorithm to search for
a design d maximizing the criterion. When applying this approach, the genetic operators
(crossover and mutation) work on the entire design d by ignoring multiple sessions; the
session effect is then taken into account when evaluating the quality of designs. Another
approach proposed by Kao et al. (2009b) is to utilize the search algorithm to search over
a restricted design class, in which d(b+1) is obtained by replacing the symbol q of d(b) with
q + 1 and setting Q + 1 to 1; q = 1, . . . , Q. For example, if d(1) = {01210132} for Q = 3, then
d(2) = {02320213} and d(3) = {03130321}. That is, d(i+1) is obtained by cyclically permuting
the labels of stimulus types of d(i), and d(i) is used again in the (Q + i)th scanning session.
As demonstrated in Kao et al. (2009b), this latter approach can reduce the computing time
in obtaining efficient designs for multiple scanning sessions.

25.6 Summary and Discussion

Selecting a design for an fMRI study requires consideration of statistical efficiency and
of psychological and practical constraints. Finding an optimal or near-optimal design
often involves a multiobjective optimization and calls for the use of a computationally
efficient, versatile algorithmic approach that can accommodate a wide spectrum of exper-
imental settings. In this chapter, we have presented some existing results and approaches
for selecting efficient fMRI designs. For detecting brain activation with a linear model,
blocked designs are often recommended. For the estimation problem, m-sequences can
achieve high efficiencies and are advocated by Buračas and Boynton (2002). When both
detection and estimation are of interest, designs generated from blocked designs and
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m-sequences may be considered; these designs include mixed designs, permuted blocked
designs, or clustered m-sequences. While these traditional designs are useful in some cases,
designs obtained from an efficient optimization algorithm can significantly outperform
these designs in many cases. Such algorithms include the genetic algorithm of Kao et al.
(2009a), which is useful for taking both statistical efficiencies and practical constraints into
account. Such an algorithm can also be modified to handle extensions or variations, such
as nonadditivity or multiple scanning sessions as in Section 25.5 or a nonlinear model as in
Section 25.4.

Although previous research on fMRI designs provides useful tools and guidance,
there are additional topics that deserve closer investigation. One such topic concerns the
assumed correlation structure of the noise. Based on empirical results provided in Lenoski
et al. (2008), assuming AR2 noise rather than AR1 noise tends to improve the analysis
results. Approaches that allow experimenters to obtain efficient designs for such a more
complicated situation will be of a great practical value. One possibility is to extend the
genetic algorithm of Kao et al. (2009a) to accommodate AR2 noise. However, the compu-
tation is expected to be very expensive and can easily become infeasible with an increased
size and complexity of the problem such as the design problem discussed in Section 25.4.
Developing an efficient algorithm for this problem is an interesting research topic. Another
topic concerns the nature of the stimuli. The previous studies mainly focus on simple stim-
uli, each consisting of only one single component. In practice, the use of compound stimuli
involving two or more components (e.g., a cue followed by a mental task) is not uncommon
(e.g., Pochon et al. 2001; Serences 2004; Silver et al. 2007). In such situations, each compound
stimulus evokes multiple HRFs rather than a single one. When the focus is on one of the
components of each stimulus, empirical results suggest that blocked designs, where com-
pound stimuli of the same type are clustered, are not as efficient as some random designs.
This is observed even when detecting brain activation is of primary interest, which is con-
trary to what we saw for simple stimuli. A possible reason is that, with a blocked design,
the columns for the different components in the design matrix tend to have a large inner
product. A novel, sophisticated approach for dealing with this situation is needed. More-
over, both for simple and compound stimuli, the stimulus (or one of the components of a
compound stimulus) could be a level combination of several cognitive factors whose main
effects and interactions are of interest (e.g., Friston et al. 1996). Finding efficient designs for
such a factorial fMRI experiment is also an interesting research topic.

In addition, current studies about selecting fMRI designs only consider statistical mod-
els for single-voxel analysis, thereby ignoring spatial correlation across voxels. How will
design selection be affected if such spatial correlation is to be taken into account? Develop-
ing tools to search for efficient designs that allow such spatial correlation is an interesting
research direction. Moreover, while detecting activation and estimating the HRF are com-
mon objectives, other study objectives, such as the assessment of connectivity or interaction
between brain regions, are becoming increasingly popular (Lindquist 2008). Obtaining
efficient designs in the context of such newly emerging objectives is an open research
problem.

So far, the research on fMRI designs mainly focuses on the development of efficient com-
putational methods. While computer-generated designs are crucially important, theoretical
and analytical results that provide insights and guidance for the fMRI design selection
problem can also be of great value. Not much work has been done in this direction.

Due to the complexity and usefulness of fMRI studies, research on fMRI designs
is arguably an important and useful area. It will continue to offer challenging design
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questions, as also indicated by the following quote from Lindquist (2008): “As research
hypotheses ultimately become more complicated, the need for more advanced experimen-
tal designs will only increase further and this is clearly an area where statisticians can play
an important role.”
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