

F O U R T H E D I T I O N

Introduction to
Data Compression

F O U R T H E D I T I O N

Introduction to
Data Compression

Khalid Sayood
University of Nebraska

AMSTERDAM d BOSTON d HEIDELBERG d LONDON
NEW YORK d OXFORD d PARIS d SAN DIEGO

SAN FRANCISCO d SINGAPORE d SYDNEY d TOKYO

Morgan Kaufmann is an imprint of Elsevier

The Morgan Kaufmann Series in Multimedia Information and Systems

Series Editor, Edward A. Fox, Virginia Polytechnic University

Introduction to Data Compression, Third Edition
Khalid Sayood

Understanding Digital Libraries, Second Edition
Michael Lesk

Bioinformatics: Managing Scientific Data
Zoe Lacroix and Terence Critchlow

How to Build a Digital Library
Ian H. Witten and David Bainbridge

Digital Watermarking
Ingemar J. Cox, Matthew L. Miller, and Jeffrey A. Bloom

Readings in Multimedia Computing and Networking
Edited by Kevin Jeffay and HongJiang Zhang

Introduction to Data Compression, Second Edition
Khalid Sayood

Multimedia Servers: Applications, Environments, and Design
Dinkar Sitaram and Asit Dan

Managing Gigabytes: Compressing and Indexing Documents and Images, Second Edition
Ian H. Witten, Alistair Moffat, and Timothy C. Bell

Digital Compression for Multimedia: Principles and Standards
Jerry D. Gibson, Toby Berger, Tom Lookabaugh, Dave Lindbergh, and Richard L. Baker

Readings in Information Retrieval
Edited by Karen Sparck Jones and Peter Willett

Acquiring Editor: Andrea Dierna

Development Editor: Meagan White

Project Manager: Danielle S. Miller

Designer: Eric DeCicco

Morgan Kaufmann is an imprint of Elsevier
225 Wyman Street, Waltham, MA 02451, USA

� 2012 Elsevier, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or any information storage and retrieval system, without permission in writing from the
publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our
arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found
at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may
be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our
understanding, changes in research methods or professional practices, may become necessary. Practitioners and researchers
must always rely on their own experience and knowledge in evaluating and using any information or methods described
herein. In using such information or methods they should be mindful of their own safety and the safety of others, including
parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any
injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or
operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data

Sayood, Khalid.
Introduction to data compression / Khalid Sayood. – 4th ed.

p. cm.
ISBN 978-0-12-415796-5

1. Data compression (Telecommunication) 2. Coding theory. I. Title.
TK5102.92.S39 2012
005.74’6–dc23

2012023803

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

ISBN: 978-0-12-415796-5

Printed in the United States of America
12 13 14 15 10 9 8 7 6 5 4 3 2 1

To Füsun

Preface

Data compression has been an enabling technology for the information revolution, and as this
revolution has changed our lives, data compression has become a more and more ubiquitous, if
often invisible, presence. From mp3 players, to smartphones, to digital television and movies,
data compression is an integral part of almost all information technology. This incorporation of
compression into more and more of our lives also points to a certain degree of maturation and
stability of the technology. This maturity is reflected in the fact that there are fewer differences
between each edition of this book. In the second edition we added new techniques that had been
developed since the first edition of this book came out. In the third edition we added a chapter
on audio compression, a topic that had not been adequately covered in the second edition. In
this edition we have tried to do the same with wavelet-based compression, in particular with the
increasingly popular JPEG 2000 standard. There are now two chapters dealing with wavelet-
based compression, one devoted exclusively to wavelet-based image compression algorithms.
We have also filled in details that were left out from previous editions, such as a description
of canonical Huffman codes and more information on binary arithmetic coding. We have also
added descriptions of techniques that have been motivated by the Internet, such as the speech
coding algorithms used for Internet applications.

All this has yet again enlarged the book. However, the intent remains the same: to provide
an introduction to the art or science of data compression. There is a tutorial description of most
of the popular compression techniques followed by a description of how these techniques are
used for image, speech, text, audio, and video compression. One hopes the size of the book
will not be intimidating. Once you open the book and begin reading a particular section we
hope you will find the content easily accessible. If some material is not clear write to me at
sayood@datacompression.unl.edu with specific questions and I will try and help (homework
problems and projects are completely your responsibility).

Audience

If you are designing hardware or software implementations of compression algorithms, or need
to interact with individuals engaged in such design, or are involved in development of mul-
timedia applications and have some background in either electrical or computer engineering,
or computer science, this book should be useful to you. We have included a large number
of examples to aid in self-study. We have also included discussion of various multimedia
standards. The intent here is not to provide all the details that may be required to implement

xviii P R E F A C E

a standard but to provide information that will help you follow and understand the standards
documents. The final authority is always the standards document.

Course Use

The impetus for writing this book came from the need for a self-contained book that could
be used at the senior/graduate level for a course in data compression in either electrical en-
gineering, computer engineering, or computer science departments. There are problems and
project ideas after most of the chapters. A solutions manual is available from the publisher.
Also at datacompression.unl.edu we provide links to various course homepages, which can be
a valuable source of project ideas and support material.

The material in this book is too much for a one-semester course. However, with judicious
use of the starred sections, this book can be tailored to fit a number of compression courses that
emphasize various aspects of compression. If the course emphasis is on lossless compression,
the instructor could cover most of the sections in the first seven chapters. Then, to give a
taste of lossy compression, the instructor could cover Sections 1–5 of Chapter 9, followed by
Chapter 13 and its description of JPEG, and Chapter 19, which describes video compression
approaches used in multimedia communications. If the class interest is more attuned to au-
dio compression, then instead of Chapters 13 and 19, the instructor could cover Chapters 14
and 17. If the latter option is taken, depending on the background of the students in the class,
Chapter 12 may be assigned as background reading. If the emphasis is to be on lossy com-
pression, the instructor could cover Chapter 2, the first two sections of Chapter 3, Sections 4
and 6 of Chapter 4 (with a cursory overview of Sections 2 and 3), Chapter 8, selected parts of
Chapter 9, and Chapters 10 through 16. At this point depending on the time available and
the interests of the instructor and the students, portions of the remaining three chapters can
be covered. I have always found it useful to assign a term project in which the students can
follow their own interests as a means of covering material that is not covered in class but is of
interest to the student.

Approach

In this book, we cover both lossless and lossy compression techniques with applications to
image, speech, text, audio, and video compression. The various lossless and lossy coding
techniques are introduced with just enough theory to tie things together. The necessary theory
is introduced just before we need it. Therefore, there are three mathematical preliminaries
chapters. In each of these chapters, we present the mathematical material needed to understand
and appreciate the techniques that follow.

Although this book is an introductory text, the word introduction may have a different
meaning for different audiences. We have tried to accommodate the needs of different audi-
ences by taking a dual-track approach. Wherever we felt there was material that could enhance
the understanding of the subject being discussed but could still be skipped without seriously
hindering your understanding of the technique, we marked those sections with a star (�). If
you are primarily interested in understanding how the various techniques function, especially
if you are using this book for self-study, we recommend you skip the starred sections, at least
in a first reading. Readers who require a slightly more theoretical approach should use the

P R E F A C E xix

starred sections. Except for the starred sections, we have tried to keep the mathematics to a
minimum.

Learning from This Book

I have found that it is easier for me to understand things if I can see examples. Therefore, I
have relied heavily on examples to explain concepts. You may find it useful to spend more
time with the examples if you have difficulty with some of the concepts.

Compression is still largely an art and to gain proficiency in an art we need to get a “feel” for
the process. We have included software implementations for most of the techniques discussed
in this book, along with a large number of data sets. The software and data sets can be
obtained from datacompression.unl.edu. The programs are written in C and have been tested
on a number of platforms. The programs should run under most flavors of UNIX machines
and, with some slight modifications, under other operating systems as well.

You are strongly encouraged to use and modify these programs to work with your favorite
data in order to understand some of the issues involved in compression. A useful and achievable
goal should be the development of your own compression package by the time you have worked
through this book. This would also be a good way to learn the trade-offs involved in different
approaches. We have tried to give comparisons of techniques wherever possible; however,
different types of data have their own idiosyncrasies. The best way to know which scheme to
use in any given situation is to try them.

Content and Organization

The organization of the chapters is as follows: We introduce the mathematical preliminaries
necessary for understanding lossless compression in Chapter 2; Chapters 3 and 4 are devoted
to coding algorithms, including Huffman coding, arithmetic coding, Golomb-Rice codes, and
Tunstall codes. Chapters 5 and 6 describe many of the popular lossless compression schemes
along with their applications. The schemes include LZW, ppm, BWT, and DMC, among
others. In Chapter 7 we describe a number of lossless image compression algorithms and their
applications in a number of international standards. The standards include the JBIG standards
and various facsimile standards.

Chapter 8 is devoted to providing the mathematical preliminaries for lossy compression.
Quantization is at the heart of most lossy compression schemes. Chapters 9 and 10 are devoted
to the study of quantization. Chapter 9 deals with scalar quantization, and Chapter 10 deals
with vector quantization. Chapter 11 deals with differential encoding techniques, in particular
differential pulse code modulation (DPCM) and delta modulation. Included in this chapter is
a discussion of the CCITT G.726 standard.

Chapter 12 is our third mathematical preliminaries chapter. The goal of this chapter is to
provide the mathematical foundation necessary to understand some aspects of the transform,
subband, and wavelet-based techniques that are described in the next four chapters. As in the
case of the previous mathematical preliminaries chapters, not all material covered is necessary
for everyone. We describe the JPEG standard in Chapter 13, the CCITT G.722 international
standard in Chapter 14, and EZW, SPIHT, and JPEG 2000 in Chapter 16.

xx P R E F A C E

Chapter 17 is devoted to audio compression. We describe the various MPEG audio com-
pression schemes in this chapter including the scheme popularly known as mp3.

Chapter 18 covers techniques in which the data to be compressed are analyzed, and a
model for the generation of the data is transmitted to the receiver. The receiver uses this
model to synthesize the data. These analysis/synthesis and analysis by synthesis schemes
include linear predictive schemes used for low-rate speech coding and the fractal compres-
sion technique. We describe the federal government LPC-10 standard. Code-excited linear
prediction (CELP) is a popular example of an analysis by synthesis scheme. We also discuss
three CELP-based standards (Federal Standard 1016, the international standard G.728, and
the wideband speech compression standard G.722.2) as well as the 2.4 kbps mixed excitation
linear prediction (MELP) technique. We have also included an introduction to three speech
compression standards currently in use for speech compression for Internet applications: the
Internet Low Bitrate Codec, the ITU-T G.729 standard, and SILK.

Chapter 19 deals with video coding. We describe popular video coding techniques via
description of various international standards, including H.261, H.264, and the various MPEG
standards.

A Personal View

For me, data compression is more than a manipulation of numbers; it is the process of dis-
covering structures that exist in the data. In the 9th century, the poet Omar Khayyam wrote

The moving finger writes, and having writ,
moves on; not all thy piety nor wit,
shall lure it back to cancel half a line,
nor all thy tears wash out a word of it.

(The Rubaiyat of Omar Khayyam)

To explain these few lines would take volumes. They tap into a common human experience
so that in our mind’s eye, we can reconstruct what the poet was trying to convey centuries ago.
To understand the words we not only need to know the language, we also need to have a model
of reality that is close to that of the poet. The genius of the poet lies in identifying a model of
reality that is so much a part of our humanity that centuries later and in widely diverse cultures,
these few words can evoke volumes.

Data compression is much more limited in its aspirations, and it may be presumptuous to
mention it in the same breath as poetry. But there is much that is similar to both endeavors.
Data compression involves identifying models for the many different types of structures that
exist in different types of data and then using these models, perhaps along with the perceptual
framework in which these data will be used, to obtain a compact representation of the data.
These structures can be in the form of patterns that we can recognize simply by plotting the data,
or they might be structures that require a more abstract approach to comprehend. Often, it is
not the data but the structure within the data that contains the information, and the development
of data compression involves the discovery of these structures.

In The Long Dark Teatime of the Soul by Douglas Adams, the protagonist finds that he
can enter Valhalla (a rather shoddy one) if he tilts his head in a certain way. Appreciating the

P R E F A C E xxi

structures that exist in data sometimes require us to tilt our heads in a certain way. There are an
infinite number of ways we can tilt our head and, in order not to get a pain in the neck (carrying
our analogy to absurd limits), it would be nice to know some of the ways that will generally
lead to a profitable result. One of the objectives of this book is to provide you with a frame
of reference that can be used for further exploration. I hope this exploration will provide as
much enjoyment for you as it has given to me.

Acknowledgments

It has been a lot of fun writing this book. My task has been made considerably easier and the
end product considerably better because of the help I have received. Acknowledging that help
is itself a pleasure.

The first edition benefitted from the careful and detailed criticism of Roy Hoffman from
IBM, Glen Langdon from the University of California at Santa Cruz, Debra Lelewer from Cal-
ifornia Polytechnic State University, Eve Riskin from the University of Washington, Ibrahim
Sezan from Kodak, and Peter Swaszek from the University of Rhode Island. They provided
detailed comments on all or most of the first edition. Nasir Memon from Polytechnic Univer-
sity, Victor Ramamoorthy then at S3, Grant Davidson at Dolby Corporation, Hakan Caglar,
who was then at TÜBITAK in Gebze, and Allen Gersho from the University of California at
Santa Barbara reviewed parts of the manuscript.

For the second edition Steve Tate at the University of North Texas, Sheila Horan at New
Mexico State University, Edouard Lamboray at Oerlikon Contraves Group, Steven Pigeon at the
University of Montreal, and Jesse Olvera at Raytheon Systems reviewed the entire manuscript.
Emin Anarım of Boğaziçi University and Hakan Çağlar helped me with the development
of the chapter on wavelets. Mark Fowler provided extensive comments on Chapters 12–15,
correcting mistakes of both commission and omission. Tim James, Devajani Khataniar, and
Lance Pérez also read and critiqued parts of the new material in the second edition. Chloeann
Nelson, along with trying to stop me from splitting infinitives, also tried to make the first two
editions of the book more user-friendly. The third edition benefitted from the critique of Rob
Maher, now at Montana State, who generously gave of his time to help with the chapter on
audio compression.

Since the appearance of the first edition, various readers have sent me their comments and
critiques. I am grateful to all who sent me comments and suggestions. I am especially grateful
to Roberto Lopez-Hernandez, Dirk vom Stein, Christopher A. Larrieu, Ren Yih Wu, Humberto
D’Ochoa, Roderick Mills, Mark Elston, and Jeerasuda Keesorth for pointing out errors and
suggesting improvements to the book. I am also grateful to the various instructors who have
sent me their critiques. In particular I would like to thank Bruce Bomar from the University
of Tennessee, K.R. Rao from the University of Texas at Arlington, Ralph Wilkerson from
the University of Missouri–Rolla, Adam Drozdek from Duquesne University, Ed Hong and
Richard Ladner from the University of Washington, Lars Nyland from the Colorado School of
Mines, Mario Kovac from the University of Zagreb, Jim Diamond of Acadia University, and
Haim Perlmutter from Ben-Gurion University. Paul Amer, from the University of Delaware,
has been one of my earliest, most consistent, and most welcome critics. His courtesy is greatly
appreciated.

xxii P R E F A C E

Frazer Williams and Mike Hoffman, from my department at the University of Nebraska,
provided reviews for the first edition of the book. Mike has continued to provide me with
guidance and has read and critiqued the new chapters in every edition of the book including
this one. I rely heavily on his insights and his critique and would be lost without him. It is
nice to have friends of his intellectual caliber and generosity.

The improvement and changes in this edition owe a lot to Mark Fowler from SUNY
Binghamton and Pierre Jouvelet from the Ecole Superieure des Mines de Paris. Much of the
new material was added because Mark thought that it should be there. He provided detailed
guidance both during the planning of the changes and during their implementation. Pierre
provided me with the most thorough critique I have ever received for this book. His insight
into all aspects of compression and his willingness to share them has significantly improved
this book. The chapter on wavelet image compression benefitted from the review of Mike
Marcellin of the University of Arizona. Mike agreed to look at the chapter while in the midst
of end-of-semester crunch, which is an act of friendship those in the teaching profession will
appreciate. Mike is a gem. Pat Worster edited many of the chapters and tried to teach me the
proper use of the semi-colon, and to be a bit more generous with commas. The book reads a
lot better because of her attention. With all this help one would expect a perfect book. The
fact that it is not is a reflection of my imperfection.

Rick Adams formerly at Morgan Kaufmann convinced me that I had to revise this book.
Andrea Dierna inherited the book and its recalcitrant author and somehow, in a very short
time, got reviews, got revisions—got things working. Meagan White had the unenviable task
of getting the book ready for production, and still allowed me to mess up her schedule. Danielle
Miller was the unfailingly courteous project manager who kept the project on schedule despite
having to deal with an author who was bent on not keeping on schedule. Charles Roumeliotis
was the copy editor. He caught many of my mistakes that I would never have caught; both I
and the readers owe him a lot.

Most of the examples in this book were generated in a lab set up by Andy Hadenfeldt.
James Nau helped me extricate myself out of numerous software puddles giving freely of his
time. In my times of panic, he has always been just an email or voice mail away. The current
denizens of my lab, the appropriately named Occult Information Lab, helped me in many
ways small and big. Sam Way tried (and failed) to teach me Python and helped me out with
examples. Dave Russell, who had to teach out of this book, provided me with very helpful
criticism, always gently, with due respect to my phantom grey hair. Discussions with Ufuk
Nalbantoglu about the more abstract aspects of data compression helped clarify things for me.

I would like to thank the various “models” for the data sets that accompany this book and
were used as examples. The individuals in the images are Sinan Sayood, Sena Sayood, and
Elif Sevuktekin. The female voice belongs to Pat Masek.

This book reflects what I have learned over the years. I have been very fortunate in the
teachers I have had. David Farden, now at North Dakota State University, introduced me to the
area of digital communication. Norm Griswold, formerly at Texas A&M University, introduced
me to the area of data compression. Jerry Gibson, now at the University of California at Santa
Barbara, was my Ph.D. advisor and helped me get started on my professional career. The
world may not thank him for that, but I certainly do.

I have also learned a lot from my students at the University of Nebraska and Boğaziçi
University. Their interest and curiosity forced me to learn and kept me in touch with the broad

P R E F A C E xxiii

field that is data compression today. I learned at least as much from them as they learned
from me.

Much of this learning would not have been possible but for the support I received from
NASA. The late Warner Miller and Pen-Shu Yeh at the Goddard Space Flight Center and
Wayne Whyte at the Lewis Research Center were a source of support and ideas. I am truly
grateful for their helpful guidance, trust, and friendship.

Our two boys, Sena and Sinan, graciously forgave my evenings and weekends at work.
They were tiny (witness the images) when I first started writing this book. They are young
men now, as gorgeous to my eyes now as they have always been, and “the book” has been their
(sometimes unwanted) companion through all these years. For their graciousness and for the
great joy they have given me, I thank them.

Above all the person most responsible for the existence of this book is my partner and
closest friend Füsun. Her support and her friendship gives me the freedom to do things I
would not otherwise even consider. She centers my universe, is the color of my existence, and,
as with every significant endeavor that I have undertaken since I met her, this book is at least
as much hers as it is mine.

1
Introduction

I
n the last decade, we have been witnessing a transformation—some call it a
revolution—in the way we communicate, and the process is still under way. This
transformation includes the ever-present, ever-growing Internet; the explosive
development of mobile communications; and the ever-increasing importance of
video communication. Data compression is one of the enabling technologies

for each of these aspects of the multimedia revolution. It would not be practical to put images,
let alone audio and video, on websites if it were not for data compression algorithms. Cellular
phones would not be able to provide communication with increasing clarity were it not for
compression. The advent of digital TV would not be possible without compression. Data
compression, which for a long time was the domain of a relatively small group of engineers and
scientists, is now ubiquitous. Make a call on your cell phone, and you are using compression.
Surf on the Internet, and you are using (or wasting) your time with assistance from compression.
Listen to music on your MP3 player or watch a DVD, and you are being entertained courtesy
of compression.

So what is data compression, and why do we need it? Most of you have heard of JPEG
and MPEG, which are standards for representing images, video, and audio. Data compression
algorithms are used in these standards to reduce the number of bits required to represent
an image or a video sequence or music. In brief, data compression is the art or science of
representing information in a compact form. We create these compact representations by
identifying and using structures that exist in the data. Data can be characters in a text file,
numbers that are samples of speech or image waveforms, or sequences of numbers that are
generated by other processes. The reason we need data compression is that more and more of
the information that we generate and use is in digital form—consisting of numbers represented
by bytes of data. And the number of bytes required to represent multimedia data can be
huge. For example, in order to digitally represent 1 second of video without compression
(using the CCIR 601 format described in Chapter 18), we need more than 20 megabytes, or
160 megabits. If we consider the number of seconds in a movie, we can easily see why we
would need compression. To represent 2 minutes of uncompressed CD-quality music (44,100

Introduction to Data Compression. DOI: http://dx.doi.org/10.1016/B978-0-12-415796-5.00001-6
© 2012 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-415796-5.00001-6

2 1 I N T R O D U C T I O N

samples per second, 16 bits per sample) requires more than 84 million bits. Downloading
music from a website at these rates would take a long time.

As human activity has a greater and greater impact on our environment, there is an ever-
increasing need for more information about our environment, how it functions, and what we
are doing to it. Various space agencies from around the world, including the European Space
Agency (ESA), the National Aeronautics and Space Administration (NASA), the Canadian
Space Agency (CSA), and the Japan Aerospace Exploration Agency (JAXA), are collaborating
on a program to monitor global change that will generate half a terabyte of data per day when it
is fully operational. New sequencing technology is resulting in ever-increasing database sizes
containing genomic information while new medical scanning technologies could result in the
generation of petabytes1 of data.

Given the explosive growth of data that needs to be transmitted and stored, why not focus
on developing better transmission and storage technologies? This is happening, but it is
not enough. There have been significant advances that permit larger and larger volumes of
information to be stored and transmitted without using compression, including CD-ROMs,
optical fibers, Asymmetric Digital Subscriber Lines (ADSL), and cable modems. However,
while it is true that both storage and transmission capacities are steadily increasing with new
technological innovations, as a corollary to Parkinson’s First Law,2 it seems that the need
for mass storage and transmission increases at least twice as fast as storage and transmission
capacities improve. Then there are situations in which capacity has not increased significantly.
For example, the amount of information we can transmit over the airwaves will always be
limited by the characteristics of the atmosphere.

An early example of data compression is Morse code, developed by Samuel Morse in the
mid-19th century. Letters sent by telegraph are encoded with dots and dashes. Morse noticed
that certain letters occurred more often than others. In order to reduce the average time required
to send a message, he assigned shorter sequences to letters that occur more frequently, such as
e (·) and a (·−), and longer sequences to letters that occur less frequently, such as q (−−·−)
and j (·−−−). This idea of using shorter codes for more frequently occurring characters is
used in Huffman coding, which we will describe in Chapter 3.

Where Morse code uses the frequency of occurrence of single characters, a widely used
form of Braille code, which was also developed in the mid-19th century, uses the frequency
of occurrence of words to provide compression [1]. In Braille coding, 2 × 3 arrays of dots are
used to represent text. Different letters can be represented depending on whether the dots are
raised or flat. In Grade 1 Braille, each array of six dots represents a single character. However,
given six dots with two positions for each dot, we can obtain 26, or 64, different combinations.
If we use 26 of these for the different letters, we have 38 combinations left. In Grade 2 Braille,
some of these leftover combinations are used to represent words that occur frequently, such
as “and” and “for.” One of the combinations is used as a special symbol indicating that the
symbol that follows is a word and not a character, thus allowing a large number of words to be

1 mega: 106, giga: 109, tera: 1012, peta: 1015, exa: 1018, zetta: 1021, yotta: 1024

2 Parkinson’s First Law: “Work expands so as to fill the time available,” in Parkinson’s Law and Other Studies in
Administration, by Cyril Northcote Parkinson, Ballantine Books, New York, 1957.

1.1 Compression Techniques 3

represented by two arrays of dots. These modifications, along with contractions of some of
the words, result in an average reduction in space, or compression, of about 20% [1].

Statistical structure is being used to provide compression in these examples, but that is
not the only kind of structure that exists in the data. There are many other kinds of structures
existing in data of different types that can be exploited for compression. Consider speech.
When we speak, the physical construction of our voice box dictates the kinds of sounds
that we can produce. That is, the mechanics of speech production impose a structure on
speech. Therefore, instead of transmitting the speech itself, we could send information about
the conformation of the voice box, which could be used by the receiver to synthesize the
speech. An adequate amount of information about the conformation of the voice box can be
represented much more compactly than the numbers that are the sampled values of speech.
Therefore, we get compression. This compression approach is currently being used in a
number of applications, including transmission of speech over cell phones and the synthetic
voice in toys that speak. An early version of this compression approach, called the vocoder
(voice coder), was developed by Homer Dudley at Bell Laboratories in 1936. The vocoder
was demonstrated at the New York World’s Fair in 1939, where it was a major attraction. We
will revisit the vocoder and this approach to compression of speech in Chapter 18.

These are only a few of the many different types of structures that can be used to obtain
compression. The structure in the data is not the only thing that can be exploited to obtain
compression. We can also make use of the characteristics of the user of the data. Many times,
for example, when transmitting or storing speech and images, the data are intended to be
perceived by a human, and humans have limited perceptual abilities. For example, we cannot
hear the very high frequency sounds that dogs can hear. If something is represented in the data
that cannot be perceived by the user, is there any point in preserving that information? The
answer is often “no.” Therefore, we can make use of the perceptual limitations of humans to
obtain compression by discarding irrelevant information. This approach is used in a number
of compression schemes that we will visit in Chapters 13, 14, and 17.

Before we embark on our study of data compression techniques, let’s take a general look
at the area and define some of the key terms and concepts we will be using in the rest of the
book.

1.1 Compression Techniques

When we speak of a compression technique or compression algorithm,3 we are actually re-
ferring to two algorithms. There is the compression algorithm that takes an input X and
generates a representation Xc that requires fewer bits, and there is a reconstruction algorithm
that operates on the compressed representation Xc to generate the reconstruction Y . These
operations are shown schematically in Figure 1.1. We will follow convention and refer to both
the compression and reconstruction algorithms together to mean the compression algorithm.

3 The word algorithm comes from the name of an early 9th-century Arab mathematician, Al-Khwarizmi, who
wrote a treatise entitled The Compendious Book on Calculation by al-jabr and al-muqabala, in which he explored
(among other things) the solution of various linear and quadratic equations via rules or an “algorithm.” This approach
became known as the method of Al-Khwarizmi. The name was changed to algoritni in Latin, from which we get the
word algorithm.The name of the treatise also gave us the word algebra [2].

4 1 I N T R O D U C T I O N

Compressio
n

Reconstruction

yx

xc

Original Reconstructed

σιναννοψανσενα
οψτυνκεϖενελιφ
δερινυλασ
φυσυνφυνδαφιγεν
ταηιρυλκερ

σιναννοψανσενα
οψτυνκεϖενελιφ
δερινυλασ
φυσυνφυνδαφιγεν
ταηιρυλκερ

F I GUR E 1 . 1 Compression and reconstruction.

Based on the requirements of reconstruction, data compression schemes can be divided
into two broad classes: lossless compression schemes, in which Y is identical to X , and
lossy compression schemes, which generally provide much higher compression than lossless
compression but allow Y to be different from X .

1.1.1 Lossless Compression

Lossless compression techniques, as their name implies, involve no loss of information. If
data have been losslessly compressed, the original data can be recovered exactly from the
compressed data. Lossless compression is generally used for applications that cannot tolerate
any difference between the original and reconstructed data.

Text compression is an important area for lossless compression. It is very important that the
reconstruction is identical to the original text, as very small differences can result in statements
with very different meanings. Consider the sentences “Do not send money” and “Do now send
money.” A similar argument holds for computer files and for certain types of data such as bank
records.

If data of any kind are to be processed or “enhanced” later to yield more information, it is
important that the integrity be preserved. For example, suppose we compressed a radiological
image in a lossy fashion, and the difference between the reconstruction Y and the original
X was visually undetectable. If this image was later enhanced, the previously undetectable
differences may cause the appearance of artifacts that could seriously mislead the radiologist.
Because the price for this kind of mishap may be a human life, it makes sense to be very careful
about using a compression scheme that generates a reconstruction that is different from the
original.

1.1 Compression Techniques 5

Data obtained from satellites often are processed later to obtain different numerical indi-
cators of vegetation, deforestation, and so on. If the reconstructed data are not identical to
the original data, processing may result in “enhancement” of the differences. It may not be
possible to go back and obtain the same data over again. Therefore, it is not advisable to allow
for any differences to appear in the compression process.

There are many situations that require compression where we want the reconstruction to
be identical to the original. There are also a number of situations in which it is possible to
relax this requirement in order to get more compression. In these situations, we look to lossy
compression techniques.

1.1.2 Lossy Compression

Lossy compression techniques involve some loss of information, and data that have been
compressed using lossy techniques generally cannot be recovered or reconstructed exactly. In
return for accepting this distortion in the reconstruction, we can generally obtain much higher
compression ratios than is possible with lossless compression.

In many applications, this lack of exact reconstruction is not a problem. For example,
when storing or transmitting speech, the exact value of each sample of speech is not necessary.
Depending on the quality required of the reconstructed speech, varying amounts of loss of
information about the value of each sample can be tolerated. If the quality of the reconstructed
speech is to be similar to that heard on the telephone, a significant loss of information can be
tolerated. However, if the reconstructed speech needs to be of the quality heard on a compact
disc, the amount of information loss that can be tolerated is much lower.

Similarly, when viewing a reconstruction of a video sequence, the fact that the reconstruc-
tion is different from the original is generally not important as long as the differences do not
result in annoying artifacts. Thus, video is generally compressed using lossy compression.

Once we have developed a data compression scheme, we need to be able to measure its
performance. Because of the number of different areas of application, different terms have
been developed to describe and measure the performance.

1.1.3 Measures of Performance

A compression algorithm can be evaluated in a number of different ways. We could measure
the relative complexity of the algorithm, the memory required to implement the algorithm,
how fast the algorithm performs on a given machine, the amount of compression, and how
closely the reconstruction resembles the original. In this book we will mainly be concerned
with the last two criteria. Let us take each one in turn.

A very logical way of measuring how well a compression algorithm compresses a given
set of data is to look at the ratio of the number of bits required to represent the data before
compression to the number of bits required to represent the data after compression. This ratio is
called the compression ratio. Suppose storing an image made up of a square array of 256×256
pixels requires 65,536 bytes. The image is compressed and the compressed version requires
16,384 bytes. We would say that the compression ratio is 4:1. We can also represent the
compression ratio by expressing the reduction in the amount of data required as a percentage

6 1 I N T R O D U C T I O N

of the size of the original data. In this particular example, the compression ratio calculated in
this manner would be 75%.

Another way of reporting compression performance is to provide the average number of
bits required to represent a single sample. This is generally referred to as the rate. For example,
in the case of the compressed image described above, if we assume 8 bits per byte (or pixel),
the average number of bits per pixel in the compressed representation is 2. Thus, we would
say that the rate is 2 bits per pixel.

In lossy compression, the reconstruction differs from the original data. Therefore, in
order to determine the efficiency of a compression algorithm, we have to have some way of
quantifying the difference. The difference between the original and the reconstruction is often
called the distortion. (We will describe several measures of distortion in Chapter 8.) Lossy
techniques are generally used for the compression of data that originate as analog signals, such
as speech and video. In compression of speech and video, the final arbiter of quality is human.
Because human responses are difficult to model mathematically, many approximate measures
of distortion are used to determine the quality of the reconstructed waveforms. We will discuss
this topic in more detail in Chapter 8.

Other terms that are also used when talking about differences between the reconstruction
and the original are fidelity and quality. When we say that the fidelity or quality of a recon-
struction is high, we mean that the difference between the reconstruction and the original is
small. Whether this difference is a mathematical difference or a perceptual difference should
be evident from the context.

1.2 Modeling and Coding

While reconstruction requirements may force the decision of whether a compression scheme
is to be lossy or lossless, the exact compression scheme we use will depend on a number of
different factors. Some of the most important factors are the characteristics of the data that need
to be compressed. A compression technique that will work well for the compression of text may
not work well for compressing images. Each application presents a different set of challenges.

There is a saying attributed to Bob Knight, the former basketball coach at Indiana University
and Texas Tech University: “If the only tool you have is a hammer, you approach every problem
as if it were a nail.” Our intention in this book is to provide you with a large number of tools
that you can use to solve a particular data compression problem. It should be remembered that
data compression, if it is a science at all, is an experimental science. The approach that works
best for a particular application will depend to a large extent on the redundancies inherent in
the data.

The development of data compression algorithms for a variety of data can be divided
into two phases. The first phase is usually referred to as modeling. In this phase, we try to
extract information about any redundancy that exists in the data and describe the redundancy
in the form of a model. The second phase is called coding. A description of the model and
a “description” of how the data differ from the model are encoded, generally using a binary
alphabet. The difference between the data and the model is often referred to as the residual.

1.2 Modeling and Coding 7

5

10

15

20

2 4 6 8 9 10

F I GUR E 1 . 2 A sequence of data values.

In the following three examples, we will look at three different ways that data can be modeled.
We will then use the model to obtain compression.

Example 1 .2 .1 :

Consider the following sequence of numbers {x1, x2, x3, . . .}:
9 11 11 11 14 13 15 17 16 17 20 21

If we were to transmit or store the binary representations of these numbers, we would need to
use 5 bits per sample. However, by exploiting the structure in the data, we can represent the
sequence using fewer bits. If we plot these data as shown in Figure 1.2, we see that the data
seem to fall on a straight line. A model for the data could, therefore, be a straight line given
by the equation

x̂n = n + 8 n = 1, 2, . . .

The structure in this particular sequence of numbers can be characterized by an equation.
Thus, x̂1 = 9, while x1 = 9, x̂2 = 10, while x2 = 11, and so on. To make use of this structure,
let’s examine the difference between the data and the model. The difference (or residual) is
given by the sequence

en = xn − x̂n : 010 − 11 − 101 − 1 − 111

The residual sequence consists of only three numbers {−1, 0, 1}. If we assign a code of 00 to
−1, a code of 01 to 0, and a code of 10 to 1, we need to use 2 bits to represent each element
of the residual sequence. Therefore, we can obtain compression by transmitting or storing the
parameters of the model and the residual sequence. The encoding can be exact if the required
compression is to be lossless, or approximate if the compression can be lossy. �

8 1 I N T R O D U C T I O N

10

20

30

40

2 4 6 8 1 0 12

F I GUR E 1 . 3 A sequence of data values.

The type of structure or redundancy that existed in these data follows a simple law. Once
we recognize this law, we can make use of the structure to predict the value of each element
in the sequence and then encode the residual. Structure of this type is only one of many types
of structure.

Example 1 .2 .2 :

Consider the following sequence of numbers:

27 28 29 28 26 27 29 28 30 32 34 36 38

The sequence is plotted in Figure 1.3.
The sequence does not seem to follow a simple law as in the previous case. However, each

value in this sequence is close to the previous value. Suppose we send the first value, then
in place of subsequent values we send the difference between it and the previous value. The
sequence of transmitted values would be

27 1 1 -1 -2 1 2 -1 2 2 2 2 2

Like the previous example, the number of distinct values has been reduced. Fewer bits are
required to represent each number, and compression is achieved. The decoder adds each
received value to the previous decoded value to obtain the reconstruction corresponding to the
received value. Techniques that use the past values of a sequence to predict the current value
and then encode the error in prediction, or residual, are called predictive coding schemes. We
will discuss lossless predictive compression schemes in Chapter 7 and lossy predictive coding
schemes in Chapter 11.

1.2 Modeling and Coding 9

Assuming both encoder and decoder know the model being used, we would still have to
send the value of the first element of the sequence. �

A very different type of redundancy is statistical in nature. Often we will encounter sources
that generate some symbols more often than others. In these situations, it will be advantageous
to assign binary codes of different lengths to different symbols.

Example 1 .2 .3 :

Suppose we have the following sequence:

a/bbarrayaran/barray/bran/b f ar/b f aar/b f aaar/baway

which is typical of all sequences generated by a source (/b denotes a blank space). Notice that
the sequence is made up of eight different symbols. In order to represent eight symbols, we
need to use 3 bits per symbol. Suppose instead we used the code shown in Table 1.1. Notice
that we have assigned a codeword with only a single bit to the symbol that occurs most often
(a) and correspondingly longer codewords to symbols that occur less often. If we substitute
the codes for each symbol, we will use 106 bits to encode the entire sequence. As there are 41
symbols in the sequence, this works out to approximately 2.58 bits per symbol. This means we
have obtained a compression ratio of 1.16:1. We will study how to use statistical redundancy
of this sort in Chapters 3 and 4.

T A B L E 1 . 1 A code with
codewords
of varying
length.

a 1
/b 001
b 01100
f 0100
n 0111
r 000
w 01101
y 0101 �

When dealing with text, along with statistical redundancy, we also see redundancy in
the form of words that repeat often. We can take advantage of this form of redundancy by
constructing a list of these words and then representing them by their position in the list. This
type of compression scheme is called a dictionary compression scheme. We will study these
schemes in Chapter 5.

Often the structure or redundancy in the data becomes more evident when we look at groups
of symbols. We will look at compression schemes that take advantage of this in Chapters 4
and 10.

10 1 I N T R O D U C T I O N

Finally, there will be situations in which it is easier to take advantage of the structure if
we decompose the data into a number of components. We can then study each component
separately and use a model appropriate to that component. We will look at such schemes in
Chapters 13, 14, 15, and 16.

There are a number of different ways to characterize data. Different characterizations
will lead to different compression schemes. We will study these compression schemes in
the upcoming chapters and use a number of examples that should help us understand the
relationship between the characterization and the compression scheme.

With the increasing use of compression, there has also been an increasing need for stan-
dards. Standards allow products developed by different vendors to communicate. Thus, we
can compress something with products from one vendor and reconstruct it using the products
of a different vendor. The different international standards organizations have responded to
this need, and a number of standards for various compression applications have been approved.
We will discuss these standards as applications of the various compression techniques.

Finally, compression is still largely an art, and to gain proficiency in an art, you need to get
a feel for the process. To help, we have developed software implementations of most of the
techniques discussed in this book and have also provided the data sets used for developing the
examples in this book. Details on how to obtain these programs and data sets are provided in
the Preface. You should use these programs on your favorite data or on the data sets provided
in order to understand some of the issues involved in compression. We would also encourage
you to write your own software implementations of some of these techniques, as very often
the best way to understand how an algorithm works is to implement the algorithm.

1.3 Summary

In this chapter, we have introduced the subject of data compression. We have provided some
motivation for why we need data compression and defined some of the terminology used in this
book. Additional terminology will be defined as needed. We have briefly introduced the two
major types of compression algorithms: lossless compression and lossy compression. Lossless
compression is used for applications that require an exact reconstruction of the original data,
while lossy compression is used when the user can tolerate some differences between the
original and reconstructed representations of the data. An important element in the design
of data compression algorithms is the modeling of the data. We have briefly looked at how
modeling can help us in obtaining more compact representations of the data. We have described
some of the different ways we can view the data in order to model it. The more ways we have
of looking at the data, the more successful we will be in developing compression schemes that
take full advantage of the structures in the data.

1.4 Projects and Problems

1. Use the compression utility on your computer to compress different files. Study the effect
of the original file size and type on the ratio of the compressed file size to the original
file size.

1.4 Projects and Problems 11

2. Take a few paragraphs of text from a popular magazine and compress them by removing
all words that are not essential for comprehension. For example, in the sentence, “This
is the dog that belongs to my friend,” we can remove the words is, the, that, and to and
still convey the same meaning. Let the ratio of the words removed to the total number of
words in the original text be the measure of redundancy in the text. Repeat the experiment
using paragraphs from a technical journal. Can you make any quantitative statements
about the redundancy in the text obtained from different sources?

2
Mathematical Preliminaries for
Lossless Compression

2.1 Overview

T
he treatment of data compression in this book is not very mathematical. (For
a more mathematical treatment of some of the topics covered in this book, see
[3–6].) However, we do need some mathematical preliminaries to appreciate the
compression techniques we will discuss. Compression schemes can be divided
into two classes, lossy and lossless. Lossy compression schemes involve the

loss of some information, and data that have been compressed using a lossy scheme generally
cannot be recovered exactly. Lossless schemes compress the data without loss of information,
and the original data can be recovered exactly from the compressed data. In this chapter, some
of the ideas in information theory that provide the framework for the development of lossless
data compression schemes are briefly reviewed. We will also look at some ways to model the
data that lead to efficient coding schemes. We have assumed some knowledge of probability
concepts (see Appendix A for a brief review of probability and random processes).

2.2 A Brief Introduction to Information Theory

Although the idea of a quantitative measure of information has been around for a while, the
person who pulled everything together into what is now called information theory was Claude
Elwood Shannon [3], an electrical engineer at Bell Labs. Shannon defined a quantity called
self-information. Suppose we have an event A, which is a set of outcomes of some random

Introduction to Data Compression. DOI: http://dx.doi.org/10.1016/B978-0-12-415796-5.00002-8
© 2012 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-415796-5.00002-8

14 2 M A T H E M A T I C A L P R E L I M I N A R I E S

experiment. If P(A) is the probability that the event A will occur, then the self-information
associated with A is given by

i(A) = logb
1

P(A)
= − logb P(A) (1)

Note that we have not specified the base b of the log function. We will discuss the choice
of the base later in this section. The use of the logarithm to obtain a measure of information
was not an arbitrary choice as we shall see in Section 2.2.1. But first let’s see if the use of a
logarithm in this context makes sense from an intuitive point of view. Recall that log(1)= 0,
and −log(x) increases as x decreases from one to zero. Therefore, if the probability of an
event is low, the amount of self-information associated with it is high; if the probability of an
event is high, the information associated with it is low. Even if we ignore the mathematical
definition of information and simply use the definition we use in everyday language, this makes
some intuitive sense. The barking of a dog during a burglary is a high-probability event and,
therefore, does not contain too much information. However, if the dog did not bark during a
burglary, this is a low-probability event and contains a lot of information. (Obviously, Sherlock
Holmes understood information theory!)1 Although this equivalence of the mathematical and
semantic definitions of information holds true most of the time, it does not hold all of the
time. For example, a totally random string of letters will contain more information (in the
mathematical sense) than a well-thought-out treatise on information theory.

Another property of this mathematical definition of information that makes intuitive sense
is that the information obtained from the occurrence of two independent events is the sum of
the information obtained from the occurrence of the individual events. Suppose A and B are
two independent events. The self-information associated with the occurrence of both event A
and event B is, by Equation (1),

i(AB) = logb
1

P(AB)

as A and B are independent,
P(AB) = P(A)P(B)

and

i(AB) = logb
1

P(A)P(B)

= logb
1

P(A)
+ logb

1

P(B)
= i(A)+ i(B)

The unit of information depends on the base of the log. If we use log base 2, the unit is bits; if
we use log base e, the unit is nats; and if we use log base 10, the unit is hartleys. In general,
if we do not explicitly specify the base of the log we will be assuming a base of 2.

1 Silver Blaze by Arthur Conan Doyle.

2.2 A Brief Introduction to Information Theory 15

Because the logarithm base 2 probably does not appear on your calculator, let’s briefly
review logarithms. Recall that

logb x = a

means that
ba = x

Therefore, if we want to take the log base 2 of x

log2 x = a ⇒ 2a = x

we want to find the value of a. We can take the natural log (log base e), which we will write
as ln, or log base 10 of both sides (which do appear on your calculator). Then

ln(2a) = ln x ⇒ a ln 2 = ln x

and

a = ln x

ln 2

Example 2 .2 .1 :

Let H and T be the outcomes of flipping a coin. If the coin is fair, then

P(H) = P(T) = 1

2

and
i(H) = i(T) = 1 bit

If the coin is not fair, then we would expect the information associated with each event to be
different. Suppose

P(H) = 1

8
, P(T) = 7

8
Then

i(H) = 3 bits, i(T) = 0.193 bits

At least mathematically, the occurrence of a head conveys much more information than the
occurrence of a tail. As we shall see later, this has certain consequences for how the information
conveyed by these outcomes should be encoded. �

If we have a set of independent events Ai , which are sets of outcomes of some experiment
S, such that ⋃

Ai = S

where S is the sample space, then the average self-information associated with the random
experiment is given by

H =
∑

P(Ai)i(Ai) = −
∑

P(Ai) logb P(Ai)

16 2 M A T H E M A T I C A L P R E L I M I N A R I E S

This quantity is called the entropy associated with the experiment. One of the many contribu-
tions of Shannon was that he showed that if the experiment is a source that puts out symbols Ai

from a set A, then the entropy is a measure of the average number of binary symbols needed
to code the output of the source. Shannon showed that the best that a lossless compression
scheme can do is to encode the output of a source with an average number of bits equal to the
entropy of the source.

The set of symbols A is often called the alphabet for the source, and the symbols are
referred to as letters. In our definition of entropy we have assumed that a general source S
with alphabet A = {1, 2, . . . ,m} generates a sequence {X1, X2, . . .}, and the elements in the
sequence are generated independently. Thus each letter appears as a surprise. In practice
this is not necessarily the case and there may be considerable dependence between letters.
These dependencies will affect the entropy of the source. In later sections we will look at
specific ways to model these dependencies for various sources of interest. However, in order
to make a general statement about the effect of these dependencies on the entropy of stationary
sources we need a general approach that will capture all dependencies. One way to capture
dependencies is to look at the joint distributions of longer and longer sequences generated by
the source. Consider the n-length most likely sequences from three very different texts shown
in Table 2.1 for n = 1, 2, 3, 4. We can see that for n small, all we get is the inherent structure
of the English language. However, as we increase n to 10 we can identify the particular text
simply by looking at the five most probable sequences. That is, as we increase n we capture
more and more of the structure of the sequence. Define Gn as

Gn = −
i1=m∑
i1=1

i2=m∑
i2=1

· · ·
in=m∑
in=1

P(X1 = i1, X2 = i2, . . . , Xn = in)

× log P(X1 = i1, X2 = i2, . . . , Xn = in)

This quantity will denote the amount of information contained in n-tuples from the source.
The per-letter information can be obtained by normalizing Gn as

Hn = 1

n
Gn

If we plot this quantity for n from 1 to 12 for the book Wealth of Nations we obtain the values
shown in Figure 2.1. We can see that Hn is converging to a particular value. Shannon showed
[3] that for a stationary source, in the limit this value will converge to the entropy:

H(S) = lim
n→∞

1

n
Hn (2)

If each element in the sequence is independent and identically distributed (iid), then we can
show that

Gn = −n
i1=m∑
i1=1

P(X1 = i1) log P(X1 = i1) (3)

and the equation for the entropy becomes

H(S) = −
∑

P(X1) log P(X1) (4)

2.2 A Brief Introduction to Information Theory 17

T
A

B
L
E

2
.
1

Th
e
m

o
st

p
ro

b
a
b
le

fi
v
e
se

q
u
e
n
ce

s
o
f
le

n
g
th

s
1
,
2
,
3
,
a
n
d

1
0

fr
o
m

P
e
te

r
P
a
n

b
y
J.
M

.
B
a
rr
ie

,
Th

e
C
o
m

m
u
n
is
t

M
a
n
if
e
st
o

b
y
K
.
M

a
rx

a
n
d

F.
En

g
le

,
a
n
d

Th
e
W

e
a
lt
h
o
f
N
a
ti
o
n
s
b
y
A
.
S
m

it
h
.
(A

ll
te

x
t
fi
le

s
o
b
ta

in
e
d

fr
o
m

th
e

G
u
te

n
b
e
rg

P
ro

je
ct
.)

n
=

1
n
=

2
n
=

3
n
=

10

/b
/b

/b
e/b

e/b
e/b

/bt
h

/bt
h

/bt
h

th
ey
/bw

er
e

/bb
ou

rg
eo

is
th

er
ef

or
e,

e
e

e
he

th
/bt

th
e

th
e

th
e

./b
d

ar
li

ng
/b

bo
ur

ge
oi

si
/bw

hi
ch
/bt

h
e

t
t

t
/bt

/bt
th

h
e/b

h
e/b

h
e/b

,
"/b

h
e/b

sa
id

ou
rg

eo
is

ie
/bt

h
e/b

gr
ea

t
a

o
o

th
he

he
an

d
/bo

f
/bo

f
/bt

h
ey
/bw

er
e

pr
ol

et
ar

ia
/bt

h
e/b

sa
m

e
h

i
a

d
/b

s/
/b

/ba
nd
/b

o
f/b

o
f/b

m
rs
./b

d
ar

li
eb

ou
rg

eo
i

h
er

e
fo

re
,
/b

18 2 M A T H E M A T I C A L P R E L I M I N A R I E S

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10 12

E
nt

ro
py

 (
bi

ts
/le

tte
r)

Block size n

F I GUR E 2 . 1 Hn in bits per letter for n = 1, . . .,12 for Wealth of Nations.

For most sources, Equations (2) and (4) are not identical. If we need to distinguish between
the two, we will call the quantity computed in (4) the first-order entropy of the source, while
the quantity in (2) will be referred to as the entropy of the source.

In general, it is not possible to know the entropy for a physical source, so we have to estimate
the entropy. The estimate of the entropy depends on our assumptions about the structure of
the source sequence.

Consider the following sequence:

1 2 3 2 3 4 5 4 5 6 7 8 9 8 9 10

Assuming the frequency of occurrence of each number is reflected accurately in the number of
times it appears in the sequence, we can estimate the probability of occurrence of each symbol
as follows:

P(1) = P(6) = P(7) = P(10) = 1

16

P(2) = P(3) = P(4) = P(5) = P(8) = P(9) = 2

16

Assuming the sequence is iid, the entropy for this sequence is the same as the first-order entropy
defined in (4). The entropy can then be calculated as

H = −
10∑

i=1

P(i) log2 P(i).

2.2 A Brief Introduction to Information Theory 19

With our stated assumptions, the entropy for this source is 3.25 bits. This means that the best
scheme we could find for coding this sequence could only code it at 3.25 bits/sample.

However, if we assume that there was sample-to-sample correlation between the samples
and we remove the correlation by taking differences of neighboring sample values, we arrive
at the residual sequence

1 1 1 −1 1 1 1 −1 1 1 1 1 1 −1 1 1

This sequence is constructed using only two values with probabilities: P(1)= 13
16 and

P(−1) = 3
16 . The entropy in this case is 0.70 bits per symbol. Of course, knowing only

this sequence would not be enough for the receiver to reconstruct the original sequence. The
receiver must also know the process by which this sequence was generated from the original
sequence. The process depends on our assumptions about the structure of the sequence. These
assumptions are called the model for the sequence. In this case, the model for the sequence is

xn = xn−1 + rn

where xn is the nth element of the original sequence and rn is the nth element of the residual
sequence. This model is called a static model because its parameters do not change with n. A
model whose parameters change or adapt with n to the changing characteristics of the data is
called an adaptive model.

We see that knowing something about the structure of the data can help to “reduce the
entropy.” We have put “reduce the entropy” in quotes because the entropy of the source is a
measure of the amount of information generated by the source. As long as the information
generated by the source is preserved (in whatever representation), the entropy remains the
same. What we are reducing is our estimate of the entropy. The “actual” structure of the data
in practice is generally unknowable, but anything we can learn about the data can help us to
estimate the actual source entropy. Theoretically, as seen in Equation (2), we accomplish this
in our definition of the entropy by picking larger and larger blocks of data to calculate the
probability over, letting the size of the block go to infinity.

Consider the following contrived sequence:

1 2 1 2 3 3 3 3 1 2 3 3 3 3 1 2 3 3 1 2

Obviously, there is some structure to this data. However, if we look at it one symbol at a
time, the structure is difficult to extract. Consider the probabilities: P(1) = P(2) = 1

4 , and
P(3) = 1

2 . The entropy is 1.5 bits/symbol. This particular sequence consists of 20 symbols;
therefore, the total number of bits required to represent this sequence is 30. Now let’s take
the same sequence and look at it in blocks of two. Obviously, there are only two symbols,
1 2, and 3 3. The probabilities are P(1 2) = 1

2 , P(3 3) = 1
2 , and the entropy is 1 bit/symbol.

As there are 10 such symbols in the sequence, we need a total of 10 bits to represent the
entire sequence—a reduction of a factor of three. The theory says we can always extract the
structure of the data by taking larger and larger block sizes; in practice, there are limitations
to this approach. To avoid these limitations, we try to obtain an accurate model for the data
and code the source with respect to the model. In Section 2.3, we describe some of the models
commonly used in lossless compression algorithms. But before we do that, let’s make a slight
detour and see a more rigorous development of the expression for average information. While

20 2 M A T H E M A T I C A L P R E L I M I N A R I E S

the explanation is interesting, it is not really necessary for understanding much of what we
will study in this book and can be skipped.

2.2.1 Derivation of Average Information �

We start with the properties we want in our measure of average information. We will then show
that requiring these properties in the information measure leads inexorably to the particular
definition of average information, or entropy, that we have provided earlier.

Given a set of independent events A1, A2, . . . , An with probability pi = P(Ai), we desire
the following properties in the measure of average information H:

1. We want H to be a continuous function of the probabilities pi . That is, a small change in
pi should only cause a small change in the average information.

2. If all events are equally likely, that is, pi = 1/n for all i, then H should be a monotonically
increasing function of n. The more possible outcomes there are, the more information
should be contained in the occurrence of any particular outcome.

3. Suppose we divide the possible outcomes into a number of groups. We indicate the
occurrence of a particular event by first indicating the group it belongs to, then indicating
which particular member of the group it is. Thus, we get some information first by
knowing which group the event belongs to; and then we get additional information
by learning which particular event (from the events in the group) has occurred. The
information associated with indicating the outcome in multiple stages should not be any
different than the information associated with indicating the outcome in a single stage.
For example, suppose we have an experiment with three outcomes, A1, A2, and A3, with
corresponding probabilities, p1, p2, and p3. The average information associated with
this experiment is simply a function of the probabilities:

H = H(p1, p2, p3)

Let’s group the three outcomes into two groups:

B1 = {A1}, B2 = {A2, A3}
The probabilities of the events Bi are given by

q1 = P(B1) = p1, q2 = P(B2) = p2 + p3

If we indicate the occurrence of an event Ai by first declaring which group the event be-
longs to and then declaring which event occurred, the total amount of average information
would be given by

H = H(q1, q2)+ q1 H

(
p1

q1

)
+ q2 H

(
p2

q2
,

p3

q2

)

We require that the average information computed either way be the same.

2.2 A Brief Introduction to Information Theory 21

In his classic paper, Shannon showed that the only way all of these conditions could be
satisfied was if

H = −K
∑

pi log pi

where K is an arbitrary positive constant, and the base of the logarithm is irrelevant as it only
impacts the value of K. Let’s review his proof as it appears in the appendix of his paper [3].

Suppose we have an experiment with n = km equally likely outcomes. The average
information H(1

n ,
1
n , . . . ,

1
n) associated with this experiment is a function of n. In other words,

H

(
1

n
,

1

n
, . . . ,

1

n

)
= A(n)

We can indicate the occurrence of an event from km events by a series of m choices from k
equally likely possibilities. For example, consider the case of k = 2 and m = 3. There are
eight equally likely events; therefore, H(1

8 ,
1
8 , . . . ,

1
8) = A(8).

First selection

Second selection

Third selection

Third selection

Third selection

Third selection

Second selection

F I GUR E 2 . 2 A possible way of identifying the occurrence of an event.

22 2 M A T H E M A T I C A L P R E L I M I N A R I E S

We can indicate the occurrence of any particular event, as shown in Figure 2.2. In this
case, we have a sequence of three selections. Each selection is between two equally likely
possibilities. Therefore,

H

(
1

8
,

1

8
, . . . ,

1

8

)
= A(8)

= H

(
1

2
,

1

2

)
+ 1

2

[
H

(
1

2
,

1

2

)
+ 1

2
H

(
1

2
,

1

2

)

+1

2
H

(
1

2
,

1

2

)]
(5)

+ 1

2

[
H

(
1

2
,

1

2

)
+ 1

2
H

(
1

2
,

1

2

)

+1

2
H

(
1

2
,

1

2

)]

= 3H

(
1

2
,

1

2

)
= 3A(2).

In other words,
A(8) = 3A(2)

(The rather odd way of writing the right-hand side of Equation (5) is to show how the terms
correspond to the branches of the tree shown in Figure 2.2.) We can generalize this for the
case of n = km as

A(n) = A(km) = m A(k)

Similarly, for j l choices,
A(j l) = l A(j)

We can pick l arbitrarily large (more on this later) and then choose m so that

km � j l � k(m+1)

Taking logarithms of all terms, we get

m log k � l log j � (m + 1) log k

Now divide through by l log k to get

m

l
� log j

log k
� m

l
+ 1

l

Recall that we picked l arbitrarily large. If l is arbitrarily large, then 1
l is arbitrarily small. This

means that the upper and lower bounds of log j
log k can be made arbitrarily close to m

l by picking
l arbitrarily large. Another way of saying this is∣∣∣∣ml − log j

log k

∣∣∣∣ < ε

where ε can be made arbitrarily small. We will use this fact to find an expression for A(n) and
hence for H(1

n , . . . ,
1
n).

2.2 A Brief Introduction to Information Theory 23

To do this we use our second requirement that H(1
n , . . . ,

1
n) be a monotonically increasing

function of n. As

H

(
1

n
, . . . ,

1

n

)
= A(n)

this means that A(n) is a monotonically increasing function of n. If

km � j l � km+1

then in order to satisfy our second requirement

A(km) � A(j l) � A(km+1)

or
m A(k) � l A(j) � (m + 1)A(k)

Dividing through by l A(k), we get

m

l
� A(j)

A(k)
� m

l
+ 1

l

Using the same arguments as before, we get∣∣∣∣ml − A(j)

A(k)

∣∣∣∣ < ε

where ε can be made arbitrarily small.
Now A(j)

A(k) is at most a distance of ε away from m
l , and log j

log k is at most a distance of ε away

from m
l . Therefore, A(j)

A(k) is at most a distance of 2ε away from log j
log k :∣∣∣∣ A(j)

A(k)
− log j

log k

∣∣∣∣ < 2ε

We can pick ε to be arbitrarily small, and j and k are arbitrary. The only way this inequality
can be satisfied for arbitrarily small ε and arbitrary j and k is for A(j) = K log(j), where K is
an arbitrary constant. In other words,

H = K log(n)

Up to this point we have only looked at equally likely events. We now make the transition
to the more general case of an experiment with outcomes that are not equally likely. We do
that by considering an experiment with

∑
ni equally likely outcomes that are grouped in n

unequal groups of size ni with rational probabilities (if the probabilities are not rational, we
approximate them with rational probabilities and use the continuity requirement):

pi = ni∑n
j=1 n j

Given that we have
∑

ni equally likely events, from the development above we have

H = K log
(∑

n j

)
(6)

24 2 M A T H E M A T I C A L P R E L I M I N A R I E S

If we indicate an outcome by first indicating which of the n groups it belongs to, and second
indicating which member of the group it is, then by our earlier development the average
information H is given by

H = H(p1, p2, . . . , pn)+ p1 H

(
1

n1
, . . . ,

1

n1

)
+ · · · + pn H

(
1

nn
, . . . ,

1

nn

)
(7)

= H(p1, p2, . . . , pn)+ p1 K log n1 + p2 K log n2 + · · · + pn K log nn (8)

= H(p1, p2, . . . , pn)+ K
n∑

i=1

pi log ni (9)

Equating the expressions in Equations (6) and (9), we obtain

K log
(∑

n j

)
= H(p1, p2, . . . , pn)+ K

n∑
i=1

pi log ni

or

H(p1, p2, . . . , pn) = K log
(∑

n j

)
− K

n∑
i=1

pi log ni

= −K

⎡
⎣ n∑

i=1

pi log ni − log

⎛
⎝ n∑

j=1

n j

⎞
⎠
⎤
⎦

= −K

⎡
⎣ n∑

i=1

pi log ni − log

⎛
⎝ n∑

j=1

n j

⎞
⎠ n∑

i=1

pi

⎤
⎦ (10)

= −K

⎡
⎣ n∑

i=1

pi log ni −
n∑

i=1

pi log

⎛
⎝ n∑

j=1

n j

⎞
⎠
⎤
⎦

= −K
n∑

i=1

pi

⎡
⎣log ni − log

⎛
⎝ n∑

j=1

n j

⎞
⎠
⎤
⎦

= −K
n∑

i=1

pi log
ni∑n

j=1 n j
(11)

= −K
∑

pi log pi (12)

where, in Equation (10) we have used the fact that
∑n

i=1 pi = 1. By convention, we pick K to
be 1, and we have the formula

H = −
∑

pi log pi

Note that this formula is a natural outcome of the requirements we imposed in the beginning.
It was not artificially forced in any way. Therein lies the beauty of information theory. Like
the laws of physics, its laws are intrinsic in the nature of things. Mathematics is simply a tool
to express these relationships.

2.3 Models 25

2.3 Models

As we saw in Section 2.2, having a good model for the data can be useful in estimating the
entropy of the source. As we will see in later chapters, good models for sources lead to more
efficient compression algorithms. In general, in order to develop techniques that manipulate
data using mathematical operations, we need to have a mathematical model for the data.
Obviously, the better the model (i.e., the closer the model matches the aspects of reality that
are of interest to us), the more likely it is that we will come up with a satisfactory technique.
There are several approaches to building mathematical models.

2.3.1 Physical Models

If we know something about the physics of the data generation process, we can use that
information to construct a model. For example, in speech-related applications, knowledge
about the physics of speech production can be used to construct a mathematical model for
the sampled speech process. Sampled speech can then be encoded using this model. We will
discuss speech production models in more detail in Chapter 8 and Chapter 18.

Models for certain telemetry data can also be obtained through knowledge of the underlying
process. For example, if residential electrical meter readings at hourly intervals were to be
coded, knowledge about the living habits of the populace could be used to determine when
electricity usage would be high and when the usage would be low. Then instead of the actual
readings, the difference (residual) between the actual readings and those predicted by the model
could be coded.

In general, however, the physics of data generation is simply too complicated to understand,
let alone use to develop a model. Where the physics of the problem is too complicated, we
can obtain a model based on empirical observation of the statistics of the data.

2.3.2 Probability Models

The simplest statistical model for the source is to assume that each letter that is generated by the
source is independent of every other letter, and each occurs with the same probability. We could
call this the ignorance model, as it would generally be useful only when we know nothing about
the source. (Of course, that really might be true, in which case we have a rather unfortunate
name for the model!) The next step up in complexity is to keep the independence assumption,
but remove the equal probability assumption and assign a probability of occurrence to each letter
in the alphabet. For a source that generates letters from an alphabet A = {a1, a2, . . . , aM },
we can have a probability model P = {P(a1), P(a2), . . . , P(aM)}.

Given a probability model (and the independence assumption), we can compute the entropy
of the source using Equation (4). As we will see in the following chapters using the probability
model, we can also construct some very efficient codes to represent the letters in A. Of course,
these codes are only efficient if our mathematical assumptions are in accord with reality.

If the assumption of independence does not fit with our observation of the data, we can
generally find better compression schemes if we discard this assumption. When we discard
the independence assumption, we have to come up with a way to describe the dependence of
elements of the data sequence on each other.

26 2 M A T H E M A T I C A L P R E L I M I N A R I E S

2.3.3 Markov Models

One of the most popular ways of representing dependence in the data is through the use of
Markov models, named after the Russian mathematician Andrei Andrevich Markov (1856–
1922). For models used in lossless compression, we use a specific type of Markov process
called a discrete time Markov chain. Let {xn} be a sequence of observations. This sequence is
said to follow a kth-order Markov model if

P(xn|xn−1, . . . , xn−k) = P(xn|xn−1, . . . , xn−k, . . .) (13)

In other words, knowledge of the past k symbols is equivalent to the knowledge of the entire
past history of the process. The values taken on by the set {xn−1, . . . , xn−k} are called the
states of the process. If the size of the source alphabet is l then the number of states is lk . The
most commonly used Markov model is the first-order Markov model, for which

P(xn|xn−1) = P(xn|xn−1, xn−2, xn−3, . . .) (14)

Equations (13) and (14) indicate the existence of dependence between samples. However,
they do not describe the form of the dependence. We can develop different first-order Markov
models depending on our assumption about the form of the dependence between samples.

If we assumed that the dependence was introduced in a linear manner, we could view the
data sequence as the output of a linear filter driven by white noise. The output of such a filter
can be given by the difference equation

xn = ρxn−1 + εn (15)

where εn is a white noise process. This model is often used when developing coding algorithms
for speech and images.

The use of the Markov model does not require the assumption of linearity. For example,
consider a binary image. The image has only two types of pixels, white pixels and black pixels.
We know that the appearance of a white pixel as the next observation depends, to some extent,
on whether the current pixel is white or black. Therefore, we can model the pixel process as
a discrete time Markov chain. Define two states Sw and Sb (Sw would correspond to the case
where the current pixel is a white pixel, and Sb corresponds to the case where the current pixel
is a black pixel). We define the transition probabilities P(w/b) and P(b/w) and the probability
of being in each state P(Sw) and P(Sb). The Markov model can then be represented by the
state diagram shown in Figure 2.3.

The entropy of a finite state process with states Si is simply the average value of the entropy
at each state:

H =
M∑

i=1

P(Si)H(Si) (16)

For our particular example of a binary image

H(Sw) = −P(b|w) log P(b|w)− P(w|w) log P(w|w)
where P(w|w) = 1− P(b|w). H(Sb) can be calculated in a similar manner.

2.3 Models 27

Sw P(b|b)

P(b|w)

P(w|b)

P(w|w) Sb

F I GUR E 2 . 3 A two-state Markov model for binary images.

Example 2 .3 .1 : Markov Model

To see the effect of modeling on the estimate of entropy, let us calculate the entropy for a binary
image, first using a simple probability model and then using the finite state model described
above. Let us assume the following values for the various probabilities:

P(Sw) = 30/31 P(Sb) = 1/31

P(w|w) = 0.99 P(b|w) = 0.01 P(b|b) = 0.7 P(w|b) = 0.3

Then the entropy using a probability model and the iid assumption is

H = −0.8 log 0.8− 0.2 log 0.2 = 0.206 bits

Now using the Markov model

H(Sb) = −0.3 log 0.3− 0.7 log 0.7 = 0.881 bits

and

H(Sw) = −0.01 log 0.01− 0.99 log 0.99 = 0.081 bits

which, using Equation (16), results in an entropy for the Markov model of 0.107 bits, about
half of the entropy obtained using the iid assumption. �

Markov Models in Text Compression

As expected, Markov models are particularly useful in text compression, where the probability
of the next letter is heavily influenced by the preceding letters. In fact, the use of Markov models
for written English appears in the original work of Shannon [3]. In current text compression
literature, the kth-order Markov models are more widely known as finite context models, with
the word context being used for what we have earlier defined as state.

Consider the word preceding. Suppose we have already processed precedin and are going
to encode the next letter. If we take no account of the context and treat each letter as a surprise,
the probability of the letter g occurring is relatively low. If we use a first-order Markov model
or single-letter context (that is, we look at the probability model given n), we can see that the

28 2 M A T H E M A T I C A L P R E L I M I N A R I E S

probability of g would increase substantially. As we increase the context size (go from n to
in to din and so on), the probability of the alphabet becomes more and more skewed, which
results in lower entropy.

Shannon used a second-order model for English text consisting of the 26 letters and one
space to obtain an entropy of 3.1 bits/letter [4]. Using a model where the output symbols
were words rather than letters brought down the entropy to 2.4 bits/letter. Shannon then used
predictions generated by people (rather than statistical models) to estimate the upper and lower
bounds on the entropy of the second-order model. For the case where the subjects knew the
100 previous letters, he estimated these bounds to be 1.3 and 0.6 bits/letter, respectively.

The longer the context, the better its predictive value. However, if we were to store the
probability model with respect to all contexts of a given length, the number of contexts would
grow exponentially with the length of context. Furthermore, given that the source imposes
some structure on its output, many of these contexts may correspond to strings that would
never occur in practice. Consider a context model of order four (the context is determined by
the last four symbols). If we take an alphabet size of 95, the possible number of contexts is
954—more than 81 million!

This problem is further exacerbated by the fact that different realizations of the source
output may vary considerably in terms of repeating patterns. Therefore, context modeling
in text compression schemes tends to be an adaptive strategy in which the probabilities for
different symbols in the different contexts are updated as they are encountered. However, this
means that we will often encounter symbols that have not been encountered before for any of
the given contexts (this is known as the zero frequency problem). The larger the context, the
more often this will happen. This problem could be resolved by sending a code to indicate
that the following symbol was being encountered for the first time, followed by a prearranged
code for that symbol. This would significantly increase the length of the code for the symbol
on its first occurrence (in the given context). However, if this situation did not occur too often,
the overhead associated with such occurrences would be small compared to the total number
of bits used to encode the output of the source. Unfortunately, in context-based encoding, the
zero frequency problem is encountered often enough for overhead to be a problem, especially
for longer contexts. Solutions to this problem are presented by the ppm (prediction with partial
match) algorithm and its variants (described in detail in Chapter 6).

Briefly, the ppm algorithm first attempts to find if the symbol to be encoded has a nonzero
probability with respect to the maximum context length. If this is so, the symbol is encoded
and transmitted. If not, an escape symbol is transmitted, the context size is reduced by one,
and the process is repeated. This procedure is repeated until a context is found with respect to
which the symbol has a nonzero probability. To guarantee that this process converges, a null
context is always included with respect to which all symbols have equal probability. Initially,
only the shorter contexts are likely to be used. However, as more and more of the source output
is processed, the longer contexts, which offer better prediction, will be used more often. The
probability of the escape symbol can be computed in a number of different ways leading to
different implementations [1].

The use of Markov models in text compression is a rich and active area of research. We
describe some of these approaches in Chapter 6 (for more details, see [1]).

2.4 Coding 29

Source 1

Source 2

Source n

Switch

F I GUR E 2 . 4 A composite source.

2.3.4 Composite Source Model

In many applications, it is not easy to use a single model to describe the source. In such cases,
we can define a composite source, which can be viewed as a combination or composition of
several sources, with only one source being active at any given time. A composite source can
be represented as a number of individual sources Si , each with its own model Mi and a switch
that selects a source Si with probability Pi (as shown in Figure 2.4). This is an exceptionally
rich model and can be used to describe some very complicated processes. We will describe
this model in more detail when we need it.

2.4 Coding

When we talk about coding in this chapter (and through most of this book), we mean the
assignment of binary sequences to elements of an alphabet. The set of binary sequences is
called a code, and the individual members of the set are called codewords. An alphabet is a
collection of symbols called letters. For example, the alphabet used in writing most books
consists of the 26 lowercase letters, 26 uppercase letters, and a variety of punctuation marks.
In the terminology used in this book, a comma is a letter. The ASCII code for the letter a is
1000011, the letter A is coded as 1000001, and the letter “,” is coded as 0011010. Notice that
the ASCII code uses the same number of bits to represent each symbol. Such a code is called
a fixed-length code. If we want to reduce the number of bits required to represent different
messages, we need to use a different number of bits to represent different symbols. If we use
fewer bits to represent symbols that occur more often, on the average we would use fewer bits
per symbol. The average number of bits per symbol is often called the rate of the code. The
idea of using fewer bits to represent symbols that occur more often is the same idea that is used
in Morse code: the codewords for letters that occur more frequently are shorter than for letters
that occur less frequently. For example, the codeword for E is ·, while the codeword for Z is
—·· [5].

30 2 M A T H E M A T I C A L P R E L I M I N A R I E S

T A B L E 2 . 2 Four different codes for a four-letter alphabet.

Letters Probability Code 1 Code 2 Code 3 Code 4

a1 0.5 0 0 0 0
a2 0.25 0 1 10 01
a3 0.125 1 00 110 011
a4 0.125 10 11 111 0111

Average length 1.125 1.25 1.75 1.875

2.4.1 Uniquely Decodable Codes

The average length of the code is not the only important point in designing a “good” code.
Consider the following example adapted from [6]. Suppose our source alphabet consists of four
letters a1, a2, a3, and a4, with probabilities P(a1) = 1

2 , P(a2) = 1
4 , and P(a3) = P(a4) = 1

8 .
The entropy for this source is 1.75 bits/symbol. Consider the codes for this source in Table 2.2.

The average length l for each code is given by

l =
4∑

i=1

P(ai)n(ai)

where n(ai) is the number of bits in the codeword for letter ai and the average length is given
in bits/symbol. Based on the average length, Code 1 appears to be the best code. However, to
be useful, a code should have the ability to transfer information in an unambiguous manner.
This is obviously not the case with Code 1. Both a1 and a2 have been assigned the codeword
0. When a 0 is received, there is no way to know whether an a1 was transmitted or an a2. We
would like each symbol to be assigned a unique codeword.

At first glance, Code 2 does not seem to have the problem of ambiguity; each symbol is
assigned a distinct codeword. However, suppose we want to encode the sequence a2 a1 a1.
Using Code 2, we would encode this with the binary string 100. However, when the string
100 is received at the decoder, there are several ways in which the decoder can decode this
string. The string 100 can be decoded as a2a1a1, or as a2a3. This means that once a sequence
is encoded with Code 2, the original sequence cannot be recovered with certainty. In general,
this is not a desirable property for a code. We would like unique decodability from the code;
that is, any given sequence of codewords can be decoded in one, and only one, way.

We have already seen that Code 1 and Code 2 are not uniquely decodable. How about
Code 3? Notice that the first three codewords all end in a 0. In fact, a 0 always denotes the
termination of a codeword. The final codeword contains no 0s and is 3 bits long. Because all
other codewords have fewer than three 1s and terminate in a 0, the only way we can get three
1s in a row is as a code for a4. The decoding rule is simple. Accumulate bits until you get
a 0 or until you have three 1s. There is no ambiguity in this rule, and it is reasonably easy
to see that this code is uniquely decodable. With Code 4 we have an even simpler condition.
Each codeword starts with a 0, and the only time we see a 0 is in the beginning of a codeword.

2.4 Coding 31

T A B L E 2 . 3 Code 5. A code that is uniquely
decodable but not
instantaneous.

Letter Codeword

a1 0
a2 01
a3 11

Therefore, the decoding rule is to accumulate bits until you see a 0. The bit before the 0 is the
last bit of the previous codeword.

There is a slight difference between Code 3 and Code 4. In the case of Code 3, the decoder
knows the moment a code is complete. In Code 4, we have to wait till the beginning of the next
codeword before we know that the current codeword is complete. Because of this property,
Code 3 is called an instantaneous code. Although Code 4 is not an instantaneous code, it is
almost that.

While this property of instantaneous or near-instantaneous decoding is a nice property to
have, it is not a requirement for unique decodability. Consider the code shown in Table 2.3.
Let’s decode the string 011111111111111111. In this string, the first codeword is either 0
corresponding to a1 or 01 corresponding to a2. We cannot tell which one until we have
decoded the whole string. Starting with the assumption that the first codeword corresponds to
a1, the next eight pairs of bits are decoded as a3. However, after decoding eight a3s, we are
left with a single (dangling) 1 that does not correspond to any codeword. On the other hand, if
we assume the first codeword corresponds to a2, we can decode the next 16 bits as a sequence
of eight a3s, and we do not have any bits left over. The string can be uniquely decoded. In
fact, Code 5, while it is certainly not instantaneous, is uniquely decodable.

We have been looking at small codes with four letters or less. Even with these, it is not
immediately evident whether the code is uniquely decodable or not. In deciding whether
larger codes are uniquely decodable, a systematic procedure would be useful. Actually, we
should include a caveat with that last statement. Later in this chapter we will include a class
of variable-length codes that are always uniquely decodable, so a test for unique decodability
may not be that necessary. You might wish to skip the following discussion for now, and come
back to it when you find it necessary.

Before we describe the procedure for deciding whether a code is uniquely decodable, let’s
take another look at our last example. We found that we had an incorrect decoding because
we were left with a binary string (1) that was not a codeword. If this had not happened, we
would have had two valid decodings. For example, consider the code shown in Table 2.4.
Let’s encode the sequence a1 followed by eight a3s using this code. The coded sequence is
01010101010101010. The first bit is the codeword for a1. However, we can also decode it as
the first bit of the codeword for a2. If we use this (incorrect) decoding, we decode the next
seven pairs of bits as the codewords for a2. After decoding seven a2s, we are left with a single
0 that we decode as a1. Thus, the incorrect decoding is also a valid decoding, and this code is
not uniquely decodable.

32 2 M A T H E M A T I C A L P R E L I M I N A R I E S

T A B L E 2 . 4 Code 6. A code that is not
uniquely decodable.

Letter Codeword

a1 0
a2 01
a3 10

A Test for Unique Decodability �

In the previous examples, in the case of the uniquely decodable code, the binary string left over
after we had gone through an incorrect decoding was not a codeword. In the case of the code
that was not uniquely decodable, in the incorrect decoding what was left was a valid codeword.
Based on whether the dangling suffix is a codeword or not, we get the following test [7,8].

We start with some definitions. Suppose we have two binary codewords a and b, where a
is k bits long, b is n bits long, and k < n. If the first k bits of b are identical to a, then a is
called a prefix of b. The last n − k bits of b are called the dangling suffix [7]. For example, if
a = 010 and b = 01011, then a is a prefix of b and the dangling suffix is 11.

Construct a list of all the codewords. Examine all pairs of codewords to see if any codeword
is a prefix of another codeword. Whenever you find such a pair, add the dangling suffix to the
list unless you have added the same dangling suffix to the list in a previous iteration. Now
repeat the procedure using this larger list. Continue in this fashion until one of the following
two things happens:

1. You get a dangling suffix that is a codeword.

2. There are no more unique dangling suffixes.

If you get the first outcome, the code is not uniquely decodable. However, if you get the second
outcome, the code is uniquely decodable.

Let’s see how this procedure works with a couple of examples.

Example 2 .4 .1 :

Consider Code 5. First list the codewords:

{0, 01, 11}
The codeword 0 is a prefix for the codeword 01. The dangling suffix is 1. There are no other
pairs for which one element of the pair is the prefix of the other. Let us augment the codeword
list with the dangling suffix:

{0, 01, 11, 1}
Comparing the elements of this list, we find 0 is a prefix of 01 with a dangling suffix of 1.
But we have already included 1 in our list. Also, 1 is a prefix of 11. This gives us a dangling

2.4 Coding 33

suffix of 1, which is already in the list. There are no other pairs that would generate a dangling
suffix, so we cannot augment the list any further. Therefore, Code 5 is uniquely decodable. �

Example 2 .4 .2 :

Consider Code 6. First list the codewords:

{0, 01, 10}
The codeword 0 is a prefix for the codeword 01. The dangling suffix is 1. There are no other
pairs for which one element of the pair is the prefix of the other. Augmenting the codeword
list with 1, we obtain the list

{0, 01, 10, 1}
In this list, 1 is a prefix for 10. The dangling suffix for this pair is 0, which is the codeword
for a1. Therefore, Code 6 is not uniquely decodable. �

2.4.2 Prefix Codes

The test for unique decodability requires examining the dangling suffixes initially generated
by codeword pairs in which one codeword is the prefix of the other. If the dangling suffix is
itself a codeword, then the code is not uniquely decodable. One type of code in which we will
never face the possibility of a dangling suffix being a codeword is a code in which no codeword
is a prefix of the other. In this case, the set of dangling suffixes is the null set, and we do not
have to worry about finding a dangling suffix that is identical to a codeword. A code in which
no codeword is a prefix to another codeword is called a prefix code. A simple way to check if
a code is a prefix code is to draw the rooted binary tree corresponding to the code. Draw a tree
that starts from a single node (the root node) and has a maximum of two possible branches
at each node. One of these branches corresponds to a 1 and the other branch corresponds to
a 0. In this book, we will adopt the convention that when we draw a tree with the root node
at the top, the left branch corresponds to a 0 and the right branch corresponds to a 1. Using
this convention, we can draw the binary tree for Code 2, Code 3, and Code 4 as shown in
Figure 2.5.

Note that apart from the root node, the trees have two kinds of nodes—nodes that give
rise to other nodes and nodes that do not. The first kind of nodes are called internal nodes,

a1

a3

a2

a4

a1

a2

a3 a4

a1

a2

a3

a4

Code 2 Code 3 Code 4

F I GUR E 2 . 5 Binary trees for three different codes.

34 2 M A T H E M A T I C A L P R E L I M I N A R I E S

and the second kind are called external nodes or leaves. In a prefix code, the codewords are
only associated with the external nodes. A code that is not a prefix code, such as Code 4,
will have codewords associated with internal nodes. The code for any symbol can be obtained
by traversing the tree from the root to the external node corresponding to that symbol. Each
branch on the way contributes a bit to the codeword: a 0 for each left branch and a 1 for each
right branch.

It is nice to have a class of codes whose members are so clearly uniquely decodable.
However, are we losing something if we restrict ourselves to prefix codes? Could it be that if
we do not restrict ourselves to prefix codes, we can find shorter codes? Fortunately for us the
answer is no. For any nonprefix uniquely decodable code, we can always find a prefix code
with the same codeword lengths. We prove this in the next section.

2.4.3 The Kraft-McMillan Inequality �

The particular result we look at in this section consists of two parts. The first part provides a
necessary condition on the codeword lengths of uniquely decodable codes. The second part
shows that we can always find a prefix code that satisfies this necessary condition. Therefore,
if we have a uniquely decodable code that is not a prefix code, we can always find a prefix
code with the same codeword lengths.

Theorem Let C be a code with N codewords with lengths l1, l2, . . . , lN . If C is uniquely
decodable, then

K (C) =
N∑

i=1

2−li � 1

This inequality is known as the Kraft-McMillan inequality.

Proof The proof works by looking at the nth power of K (C). If K (C) is greater than one,
then K (C)n should grow exponentially with n. If it does not grow exponentially with n, then
this is proof that

∑N
i=1 2−li � 1.

Let n be an arbitrary integer. Then

[
N∑

i=1

2−li

]n

=
⎛
⎝ N∑

i1=1

2−li1

⎞
⎠
⎛
⎝ N∑

i2=1

2−li2

⎞
⎠ · · ·

⎛
⎝ N∑

in=1

2−lin

⎞
⎠ (17)

=
N∑

i1=1

N∑
i2=1

· · ·
N∑

in=1

2−(li1+li2+···+lin) (18)

The exponent li1 + li2 + · · · + lin is simply the length of n codewords from the code C. The
smallest value that this exponent can take is greater than or equal to n, which would be the

2.4 Coding 35

case if all codewords were 1 bit long. If

l = max{l1, l2, . . . , lN }
then the largest value that the exponent can take is less than or equal to nl. Therefore, we can
write this summation as

K (C)n =
nl∑

k=n

Ak2−k

where Ak is the number of combinations of n codewords that have a combined length of k. Let’s
take a look at the size of this coefficient. The number of possible distinct binary sequences
of length k is 2k . If this code is uniquely decodable, then each sequence can represent one
and only one sequence of codewords. Therefore, the number of possible combinations of
codewords whose combined length is k cannot be greater than 2k . In other words,

Ak � 2k

This means that

K (C)n =
nl∑

k=n

Ak2−k �
nl∑

k=n

2k2−k = nl − n + 1 (19)

But if K (C) is greater than one, it will grow exponentially with n, while n(l − 1)+ 1 can only
grow linearly. So if K (C) is greater than one, we can always find an n large enough that the
inequality (19) is violated. Therefore, for a uniquely decodable code C, K (C) is less than or
equal to one.

This part of the Kraft-McMillan inequality provides a necessary condition for uniquely
decodable codes. That is, if a code is uniquely decodable, the codeword lengths have to satisfy
the inequality. The second part of this result is that if we have a set of codeword lengths that
satisfy the inequality, we can always find a prefix code with those codeword lengths. The proof
of the assertion presented here is adapted from [9].

Theorem Given a set of integers l1, l2, . . . , lN that satisfy the inequality

N∑
i=1

2−li � 1

we can always find a prefix code with codeword lengths l1, l2, . . . , lN .

Proof We will prove this assertion by developing a procedure for constructing a prefix
code with codeword lengths l1, l2, . . . , lN that satisfy the given inequality. We will assume,
without loss of generality, that l1 � l2 � . . . � lN .

36 2 M A T H E M A T I C A L P R E L I M I N A R I E S

v

F I GUR E 2 . 6 A full binary tree of depth four.

Before we build the code let us briefly look at binary trees. Consider the full binary tree
of depth four shown in Figure 2.6. The number of leaf nodes on this tree is 24 = 8. In fact
the number of leaf nodes in a full binary tree of depth m is 2m . We will construct our code by
assigning vertices at depth li as codewords. In order for this code to be a prefix code when we
assign a code to a vertex within the tree we cannot assign a codeword to any leaves belonging
to the subtree rooted at that vertex. In effect, we have to prune the subtree rooted at that vertex.
For example if we assign a codeword to the vertex v indicated in the figure we have to remove
the subtree shown in the dashed circle. In the figure the vertex v is at depth two. The removal
of the corresponding subtree results in the removal of four leaf nodes. In general we can see
that in a full binary tree of depth m, a vertex at depth k is the root of a subtree with 2m−k leaves.

Given the set of lengths l1, l2, . . . , lN , define

l = max{l1, l2, . . . , lN }
Construct a full binary tree of depth l. This tree has 2l leaves, and hence the possibility of
having 2l codewords of length l. Let’s assign a codeword to a vertex v1 at depth l1. The path
from the root node of the tree to this vertex will be a binary code of length l1. As we mentioned
earlier, in order for this codeword to be part of a prefix code we need to prune the subtree
rooted at node v1. This will result in a loss of 2l−l1 leaf nodes from the full binary tree of
depth l. Assign the next codeword to a vertex v2 at a depth of l2 and prune the subtree rooted
at v2. Continuing in this fashion we will obtain a prefix code with lengths l1, l2, . . . , lN as
long as we don’t use up more than 2l leaf nodes. As a codeword of length li results in the loss
of 2l−li leaf nodes from the full tree, the number of leaf nodes needed to build a code with
codeword lengths l1, l2, . . . , lN is given by

∑N
i=1 2l−li . But

N∑
i=1

2l−li = 2l
N∑

i=1

2−li � 2l

where the last inequality is because of our assumption that the lengths satisfy the Kraft-
McMillan inequality. Thus, given a set of codeword lengths satisfying the Kraft McMillan
inequality we can always construct a prefix code with codewords having those lengths.

2.5 Algorithmic Information Theory 37

Therefore, if we have a uniquely decodable code, the codeword lengths have to satisfy
the Kraft-McMillan inequality. And, given codeword lengths that satisfy the Kraft-McMillan
inequality, we can always find a prefix code with those codeword lengths. Thus, by restricting
ourselves to prefix codes, we are not in danger of overlooking nonprefix uniquely decodable
codes that have a shorter average length.

2.5 Algorithmic Information Theory

The theory of information described in the previous sections is intuitively satisfying and has
useful applications. However, when dealing with real world data, it does have some theoretical
difficulties. Suppose you were given the task of developing a compression scheme for use with
a specific set of documents. We can view the entire set as a single long string. You could
develop models for the data. Based on these models you could calculate probabilities using the
relative frequency approach. These probabilities could then be used to obtain an estimate of the
entropy and, thus, an estimate of the amount of compression available. All is well except for a
“fly in the ointment.” The string you have been given is fixed. There is nothing probabilistic
about it. There is no abstract source that will generate different sets of these specific documents
at different times. So how can we talk about the entropies without pretending that reality is
somehow different from what it actually is? Unfortunately, it is not clear that we can. Our
definition of entropy requires the existence of an abstract source. Our estimate of the entropy
is still useful. It will give us a very good idea of how much compression we can get. So,
practically speaking, information theory comes through. However, theoretically it seems there
is some pretending involved. Algorithmic information theory is a different way of looking at
information that has not been as useful in practice (and, therefore, we will not be looking at it a
whole lot) but it gets around this theoretical problem. At the heart of algorithmic information
theory is a measure called Kolmogorov complexity. This measure, while it bears the name of
one person, was actually discovered independently by three people: R. Solomonoff, who was
exploring machine learning; the Russian mathematician A.N. Kolmogorov; and G. Chaitin,
who was in high school when he came up with this idea.

The Kolmogorov complexity K (x) of a sequence x is the size of the program needed to
generate x. In this size we include all inputs that might be needed by the program. We do not
specify the programming language because it is always possible to translate a program in one
language to a program in another language at fixed cost. If x was a sequence of all ones, a
highly compressible sequence, the program would simply be a print statement in a loop. On
the other extreme, if x were a random sequence with no structure, then the only program that
could generate it would contain the sequence itself. The size of the program would be slightly
larger than the sequence itself. Thus, there is a clear correspondence between the size of the
smallest program that can generate a sequence and the amount of compression that can be
obtained. Kolmogorov complexity seems to be the ideal measure to use in data compression.
The problem is we do not know of any systematic way of computing or closely approximating
Kolmogorov complexity. Clearly, any program that can generate a particular sequence is an
upper bound for the Kolmogorov complexity of the sequence. However, we have no way
of determining a lower bound. Thus, while the notion of Kolmogorov complexity is more

38 2 M A T H E M A T I C A L P R E L I M I N A R I E S

1

2

3

4

5

6

7

8

9

10

1 2 3

F I GUR E 2 . 7 An illustration of the minimum description length (MDL) principle.

satisfying theoretically than the notion of entropy when compressing sequences, in practice it
is not yet as helpful. However, given the active interest in these ideas it is quite possible that
they will result in more practical applications.

2.6 Minimum Description Length Principle

One of the more practical offshoots of Kolmogorov complexity is the minimum description
length (MDL) principle. The first discoverer of Kolmogorov complexity, Ray Solomonoff,
viewed the concept of a program that would generate a sequence as a way of modeling the
data. Independent from Solomonoff but inspired nonetheless by the ideas of Kolmogorov
complexity, Jorma Risannen in 1978 [10] developed the modeling approach commonly known
as MDL.

Let M j be a model from a set of models M that attempt to characterize the structure in a
sequence x. Let DM j be the number of bits required to describe the model M j . For example,
if the set of models M can be represented by a (possibly variable) number of coefficients,
then the description of M j would include the number of coefficients and the value of each
coefficient. Let RM j (x) be the number of bits required to represent x with respect to the model
M j . The minimum description length would be given by

2.7 Summary 39

min
j
(DM j + RM j (x))

which is the minimum number of bits required to represent both the model and the sequence
with respect to the model. Consider the example illustrated in Figure 2.7, where the Xs represent
data values. Suppose the set of models M is the set of kth order polynomials. We have also
sketched two polynomials that could be used to model the data. Clearly, the higher-order
polynomial does a much “better” job of modeling the data in the sense that the model exactly
describes the data. To describe the higher order polynomial, we need to specify the value of
each coefficient. The coefficients have to be exact if the polynomial is to exactly model the
data requiring a large number of bits. The quadratic model, on the other hand, does not fit
any of the data values. However, its description is very simple and the data values are either
+1 or −1 away from the quadratic. So we could exactly represent the data by sending the
coefficients of the quadratic (1, 0) and 1 bit per data value to indicate whether each data value
is +1 or −1 away from the quadratic. In this case, from a compression point of view, using
the worse model actually gives better compression.

2.7 Summary

In this chapter, we learned some of the basic definitions of information theory. This was a
rather brief visit, and we will revisit the subject in Chapter 8. However, the coverage in this
chapter will be sufficient to take us through the next five chapters. The concepts introduced in
this chapter allow us to estimate the number of bits we need to represent the output of a source
given the probability model for the source. The process of assigning a binary representation to
the output of a source is called coding. We have introduced the concepts of unique decodability
and prefix codes, which we will use in the next two chapters when we describe various coding
algorithms. We also looked, rather briefly, at different approaches to modeling. If we need to
understand a model in more depth later in the book, we will devote more attention to it at that
time. However, for the most part, the coverage of modeling in this chapter will be sufficient
to understand methods described in the next four chapters.

Further Reading

1. A very readable book on information theory and its applications in a number of fields
is Symbols, Signals, and Noise—The Nature and Process of Communications, by J.R.
Pierce [11].

2. Another good introductory source for the material in this chapter is Chapter 6 of Coding
and Information Theory, by R.W. Hamming [5].

3. Various models for text compression are described very nicely and in more detail in Text
Compression, by T.C. Bell, J.G. Cleary, and I.H. Witten [1].

4. For a more thorough and detailed account of information theory, the following books
are especially recommended (the first two are my personal favorites): Information The-
ory, by R.B. Ash [117]; Transmission of Information, by R.M. Fano [20]; Information
Theory and Reliable Communication, by R.G. Gallagher [21]; Entropy and Information

40 2 M A T H E M A T I C A L P R E L I M I N A R I E S

Theory, by R.M. Gray [118]; and Elements of Information Theory, by T.M. Cover and
J.A. Thomas [38].

5. Kolmogorov complexity is addressed in detail in An Introduction to Kolmogorov Com-
plexity and Its Applications, by M. Li and P. Vitanyi [12].

6. A very readable overview of Kolmogorov complexity in the context of lossless compres-
sion can be found in the chapter “Complexity Measures,” by S.R. Tate, in the Lossless
Compression Handbook [13].

7. Various aspects of the minimum description length principle are discussed in Advances
in Minimum Description Length edited by P. Grunwald, I.J. Myung, and M.A. Pitt [14].
Included in this book is a very nice introduction to the minimum description length
principle by Peter Grunwald [15].

2.8 Projects and Problems

1. Suppose X is a random variable that takes on values from an M-letter alphabet. Show
that 0 � H(X) � log2 M .

2. Show that for the case where the elements of an observed sequence are iid, the entropy
is equal to the first-order entropy.

3. Given an alphabet A = {a1, a2, a3, a4}, find the first-order entropy in the following cases:

(a) P(a1) = P(a2) = P(a3) = P(a4) = 1
4

(b) P(a1) = 1
2 , P(a2) = 1

4 , P(a3) = P(a4) = 1
8

(c) P(a1) = 0.505, P(a2) = 1
4 , P(a3) = 1

8 , and P(a4) = 0.12

4. Suppose we have a source with a probability model P = {p0, p1, . . . , pm} and entropy
HP . Suppose we have another source with probability model Q = {q0, q1, . . . , qm} and
entropy HQ , where

qi = pi i = 0, 1, . . . , j − 2, j + 1, . . . ,m

and

q j = q j−1 = p j + p j−1

2

How is HQ related to HP (greater, equal, or less)? Prove your answer.
5. Consider the following sequence:

AT GCT T AAGCT GCT T AACCT G AAGCT T CCGCT G AAG AACCT G

CT G AACCCGCT T AAGCT G AACCT T CT G AAGCT T AACCT GCT T

(a) Estimating the probabilities from the sequence, compute the first-, second-, third-,
and fourth-order entropy for this sequence.

(b) Based on these entropies, can you infer how this sequence is structured?

6. There are several image and speech files among the accompanying data sets.

2.8 Projects and Problems 41

(a) Write a program to compute the first-order entropy of some of the image and speech
files.

(b) Pick one of the image files and compute its second-order entropy. Comment on the
difference between the first- and second-order entropies.

(c) Compute the entropy of the differences between neighboring pixels for the image
you used in part (b). Comment on what you discover.

7. Conduct an experiment to see how well a model can describe a source.

(a) Write a program that randomly selects letters from the 26-letter alphabet {a, b, . . . , z}
and forms four-letter words. Form 100 such words and see how many of these words
make sense.

(b) Among the accompanying data sets is a file called 4letter.words, which con-
tains a list of four-letter words. Using this file, obtain a probability model for the
alphabet. Now repeat part (a) generating the words using the probability model.
To pick letters according to a probability model, construct the cumulative density
function (cdf) FX (x) (see Appendix A for the definition of cdf). Using a uniform
pseudorandom number generator to generate a value r, where 0 � r < 1, pick the
letter xk if FX (xk − 1) � r < FX (xk). Compare your results with those of part (a).

(c) Repeat (b) using a single-letter context.
(d) Repeat (b) using a two-letter context.

8. Determine whether the following codes are uniquely decodable:

(a) {0, 01, 11, 111}
(b) {0, 01, 110, 111}
(c) {0, 10, 110, 111}
(a) {1, 10, 110, 111}

9. Using a text file compute the probabilities of each letter pi .

(a) Assume that we need a codeword of length �log2
1
pi
� to encode the letter i. Determine

the number of bits needed to encode the file.
(b) Compute the conditional probabilities P(i/j) of a letter i given that the previous

letter is j. Assume that we need �log2
1

P(i/j)� to represent a letter i that follows a
letter j. Determine the number of bits needed to encode the file.

10. Consider a set of experiments in which you flip a biased coin with the probability of a
head being 0.4. In the first experiment you flip the coin once, and you have two possible
outcomes. In the second experiment you flip the coin three times. In this experiment you
have eight possible outcomes (HHH, HHT, etc.).

(a) What is the information associated with each outcome in the first experiment? What
is the average information associated with the first experiment?

(b) What is the probability of each of the eight outcomes in the second experiment?
What is the average amount of information associated with the second experiment?

(c) What is the relationship between the average information associated with the two
experiments?

3
Huffman Coding

3.1 Overview

I
n this chapter we describe a very popular coding algorithm called the Huffman
coding algorithm. We first present a procedure for building Huffman codes
when the probability model for the source is known, and then we introduce a
procedure for building codes when the source statistics are unknown. We also
describe a few techniques for code design that are in some sense similar to the

Huffman coding approach. Finally, we give some examples of using the Huffman code for
image compression, audio compression, and text compression.

3.2 The Huffman Coding Algorithm

This technique was developed by David Huffman as part of a class assignment; the class was
the first ever in the area of information theory and was taught by Robert Fano at MIT [16]. The
codes generated using this technique or procedure are called Huffman codes. These codes are
prefix codes and are optimum for a given model (set of probabilities).

The Huffman procedure is based on two observations regarding optimum prefix codes.

1. In an optimum code, symbols that occur more frequently (have a higher probability of
occurrence) will have shorter codewords than symbols that occur less frequently.

2. In an optimum code, the two symbols that occur least frequently will have the same
length.

Introduction to Data Compression. DOI: http://dx.doi.org/10.1016/B978-0-12-415796-5.00003-X
© 2012 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-415796-5.00003-X

44 3 H U F F M A N C O D I N G

It is easy to see that the first observation is correct. If symbols that occur more often had
codewords that were longer than the codewords for symbols that occurred less often, the
average number of bits per symbol would be larger than if the conditions were reversed.
Therefore, a code that assigns longer codewords to symbols that occur more frequently cannot
be optimum.

To see why the second observation holds true, consider the following situation. Suppose
an optimum code C exists in which the two codewords corresponding to the two least probable
symbols do not have the same length. Suppose the longer codeword is k bits longer than the
shorter codeword. Because this is a prefix code, the shorter codeword cannot be a prefix of the
longer codeword. This means that even if we drop the last k bits of the longer codeword, the
two codewords would still be distinct. As these codewords correspond to the least probable
symbols in the alphabet, no other codeword can be longer than these codewords; therefore, there
is no danger that the shortened codeword would become the prefix of some other codeword.
Furthermore, by dropping these k bits we obtain a new code that has a shorter average length
than C. But this violates our initial contention that C is an optimal code. Therefore, for an
optimal code the second observation also holds true.

The Huffman procedure adds a simple requirement to these two observations. This re-
quirement is that the codewords corresponding to the two lowest probability symbols differ
only in the last bit. Assume that γ and δ are the two least probable symbols in an alphabet. If
the codeword for γ is m ∗ 0, the codeword for δ would be m ∗ 1. Here, m is a string of 1s and
0s, and ∗ denotes concatenation.

This requirement does not violate our two observations and leads to a very simple encoding
procedure. We describe this procedure with the help of the following example.

Example 3 .2 .1 : Design of a Huffman Code

Let us design a Huffman code for a source that puts out letters from an alphabet A =
{a1, a2, a3, a4, a5} with P(a1) = P(a3) = 0.2, P(a2) = 0.4, and P(a4) = P(a5) = 0.1.
The entropy for this source is 2.122 bits/symbol. To design the Huffman code, we first sort
the letters in a descending probability order as shown in Table 3.1. Here c(ai) denotes the
codeword for ai .

The two symbols with the lowest probability are a4 and a5. Therefore, we can assign their
codewords as

T A B L E 3 . 1 The initial five-letter alphabet.

Letter Probability Codeword

a2 0.4 c(a2)

a1 0.2 c(a1)

a3 0.2 c(a3)

a4 0.1 c(a4)

a5 0.1 c(a5)

3.2 The Huffman Coding Algorithm 45

T A B L E 3 . 2 The reduced four-letter
alphabet.

Letter Probability Codeword

a2 0.4 c(a2)

a1 0.2 c(a1)

a3 0.2 c(a3)

a′4 0.2 α1

T A B L E 3 . 3 The reduced three-letter
alphabet.

Letter Probability Codeword

a2 0.4 c(a2)

a′3 0.4 α2
a1 0.2 c(a1)

c(a4) = α1 ∗ 0

c(a5) = α1 ∗ 1

where α1 is a binary string, and ∗ denotes concatenation.
We now define a new alphabet A′ with a four-letter alphabet a1, a2, a3, a′4, where a′4 is

composed of a4 and a5 and has a probability P(a′4) = P(a4) + P(a5) = 0.2. We sort this
new alphabet in descending order to obtain Table 3.2.

In this alphabet, a3 and a′4 are the two letters at the bottom of the sorted list. We assign
their codewords as

c(a3) = α2 ∗ 0

c(a′4) = α2 ∗ 1

but c(a′4) = α1. Therefore,
α1 = α2 ∗ 1

which means that

c(a4) = α2 ∗ 10

c(a5) = α2 ∗ 11

At this stage, we again define a new alphabet A′′ that consists of three letters a1, a2, a′3,
where a′3 is composed of a3 and a′4 and has a probability P(a′3) = P(a3)+ P(a′4) = 0.4. We
sort this new alphabet in descending order to obtain Table 3.3.

In this case, the two least probable symbols are a1 and a′3. Therefore,

c(a′3) = α3 ∗ 0

c(a1) = α3 ∗ 1

46 3 H U F F M A N C O D I N G

T A B L E 3 . 4 The reduced two-letter
alphabet.

Letter Probability Codeword

a′′3 0.6 α3
a2 0.4 c(a2)

T A B L E 3 . 5 Huffman code for the original
five-letter alphabet.

Letter Probability Codeword

a2 0.4 1
a1 0.2 01
a3 0.2 000
a4 0.1 0010
a5 0.1 0011

But c(a′3) = α2. Therefore,
α2 = α3 ∗ 0

which means that
c(a3) = α3 ∗ 00

c(a4) = α3 ∗ 010

c(a5) = α3 ∗ 011

Again we define a new alphabet, this time with only two letters a′′3 and a2. Here a′′3 is
composed of the letters a′3 and a1 and has probability P(a′′3) = P(a′3) + P(a1) = 0.6. We
now have Table 3.4.

As we have only two letters, the codeword assignment is straightforward:

c(a′′3) = 0

c(a2) = 1

which means that α3 = 0, which in turn means that

c(a1) = 01

c(a3) = 000

c(a4) = 0010

c(a5) = 0011

The Huffman code is given by Table 3.5. The procedure can be summarized as shown in
Figure 3.1. �

The average length for this code is

l = .4× 1+ .2× 2+ .2× 3+ .1× 4+ .1× 4 = 2.2 bits/symbol

3.2 The Huffman Coding Algorithm 47

a2(0.4)

a1(0.2)

a3(0.2)

a4(0.1) 0

1

0

1

0

1

a5(0.1)

a2(0.4)

a1(0.2)

a3(0.2)

a4(0.2)

a2(0.4)

a3(0.4)

a1(0.2)

a3 (0.6)

a2(0.4)

'

'

"

F I GUR E 3 . 1 The Huffman encoding procedure. The symbol probabilities are listed
in parentheses.

A measure of the efficiency of this code is its redundancy—the difference between the entropy
and the average length. In this case, the redundancy is 0.078 bits/symbol. The redundancy is
zero when the probabilities are negative powers of two.

An alternative way of building a Huffman code is to use the fact that the Huffman code, by
virtue of being a prefix code, can be represented as a binary tree in which the external nodes
or leaves correspond to the symbols. The Huffman code for any symbol can be obtained by
traversing the tree from the root node to the leaf corresponding to the symbol, adding a 0 to
the codeword every time the traversal takes us over an upper branch and a 1 every time the
traversal takes us over a lower branch.

We build the binary tree starting at the leaf nodes. We know that the codewords for the
two symbols with smallest probabilities are identical except for the last bit. This means that
the traversal from the root to the leaves corresponding to these two symbols must be the same
except for the last step. This in turn means that the leaves corresponding to the two symbols
with the lowest probabilities are offspring of the same node. Once we have connected the
leaves corresponding to the symbols with the lowest probabilities to a single node, we treat
this node as a symbol of a reduced alphabet. The probability of this symbol is the sum of
the probabilities of its offspring. We can now sort the nodes corresponding to the reduced
alphabet and apply the same rule to generate a parent node for the nodes corresponding to the
two symbols in the reduced alphabet with lowest probabilities. Continuing in this manner, we
end up with a single node, which is the root node. To obtain the code for each symbol, we
traverse the tree from the root to each leaf node, assigning a 0 to the upper branch and a 1 to
the lower branch. This procedure, as applied to the alphabet of Example 3.2.1, is shown in
Figure 3.2. Notice the similarity between Figures 3.1 and 3.2. This is not surprising, as they
are a result of viewing the same procedure in two different ways.

3.2.1 Minimum Variance Huffman Codes

By performing the sorting procedure in a slightly different manner, we could have found a
different Huffman code. In the first re-sort, we could place a′4 higher in the list, as shown in
Table 3.6.

48 3 H U F F M A N C O D I N G

T A B L E 3 . 6 Reduced four-letter alphabet.

Letter Probability Codeword

a2 0.4 c(a2)

a′4 0.2 α1
a1 0.2 c(a1)

a3 0.2 c(a3)

a2(0.4)

a1(0.2)

a3(0.2)

a4(0.1) 0

1a5(0.1)

(0.4)

(0.2)

(0.2) 0

(0.2) 1

(0.4)

(0.4) 0

(0.2) 1

(0.6) 0

(0.4) 1
(1.0)

F I GUR E 3 . 2 Building the binary Huffman tree.

a2(0.4)

a1(0.2)

a3(0.2)

a4(0.1)

a5(0.1)

a2(0.4)

a4(0.2)

a1(0.2) 0

1

0

1

0

1

0

1

a3(0.2)

a1(0.4)

a2(0.4)

a4(0.2)

a2(0.6)

a1(0.4)′

′

′ ′ ′

F I GUR E 3 . 3 The minimum variance Huffman encoding procedure.

Now combine a1 and a3 into a′1, which has a probability of 0.4. Sorting the alphabet a2,
a′4, and a′1 and putting a′1 as far up the list as possible, we get Table 3.7. Finally, by combining
a2 and a′4 and re-sorting, we get Table 3.8. If we go through the unbundling procedure, we get
the codewords in Table 3.9. The procedure is summarized in Figure 3.3. The average length
of the code is

l = .4× 2+ .2× 2+ .2× 2+ .1× 3+ .1× 3 = 2.2 bits/symbol.

The two codes are identical in terms of their redundancy. However, the variance of the
length of the codewords is significantly different. This can be clearly seen from Figure 3.4.

Remember that in many applications, although you might be using a variable-length code,
the available transmission rate is generally fixed. For example, if we were going to transmit
symbols from the alphabet we have been using at 10,000 symbols per second, we might ask
for a transmission capacity of 22,000 bits per second. This means that during each second, the

3.2 The Huffman Coding Algorithm 49

T A B L E 3 . 7 Reduced three-letter alphabet.

Letter Probability Codeword

a′1 0.4 α2
a2 0.4 c(a2)

a′4 0.2 α1

T A B L E 3 . 8 Reduced two-letter alphabet.

Letter Probability Codeword

a′2 0.6 α3
a′1 0.4 α2

T A B L E 3 . 9 Minimum variance Huffman
code.

Letter Probability Codeword

a1 0.2 10
a2 0.4 00
a3 0.2 11
a4 0.1 010
a5 0.1 011

a3

a4
a5

a1

0

0

1

1

a2

a2

a4
a5

a3a1

0

1

1

F I GUR E 3 . 4 Two Huffman trees corresponding to the same probabilities.

channel expects to receive 22,000 bits, no more and no less. As the bit generation rate will vary
around 22,000 bits per second, the output of the source coder is generally fed into a buffer. The
purpose of the buffer is to smooth out the variations in the bit generation rate. However, the
buffer has to be of finite size, and the greater the variance in the codewords, the more difficult
the buffer design problem becomes. Suppose that the source we are discussing generates a
string of a4s and a5s for several seconds. If we are using the first code, this means that we will
be generating bits at a rate of 40,000 bits per second. For each second, the buffer has to store
18,000 bits. On the other hand, if we use the second code, we would be generating 30,000
bits per second, and the buffer would have to store 8000 bits for every second this condition
persisted. If we have a string of a2s instead of a string of a4s and a5s, the first code would
result in the generation of 10,000 bits per second. Remember that the channel will still be
expecting 22,000 bits every second, so somehow we will have to make up a deficit of 12,000

50 3 H U F F M A N C O D I N G

F I GUR E 3 . 5 A binary tree of depth four.

bits per second. The same situation using the second code would lead to a deficit of 2000
bits per second. Thus, it seems reasonable to elect to use the second code instead of the first.
To obtain the Huffman code with minimum variance, we always put the combined letter as
high in the list as possible.

3.2.2 Canonical Huffman Codes

To be effective, a Huffman code needs to reflect the statistics of the source being encoded.
When encoding sources with widely varying statistics, it is sometimes necessary to include
the Huffman code along with the compressed representation of the source. Depending on the
alphabet size, this can be a substantial burden, perhaps even cancelling out any advantages of
compression. Therefore, it is useful to develop Huffman codes that can be stored in an efficient
manner. Consider the Huffman code in Table 3.5. One way to store this code is to write the
code in lexicographic order of the symbols. Thus, we first write the code for a1, then the code
for a2, and so on. Each codeword could be represented by the length of the codeword followed
by the codeword. Thus the code would be stored as [2, 01, 1, 1, 3, 000, 4, 0010, 5, 0011]. This
is certainly manageable for the Huffman code of a small alphabet, but it is clearly going to have
an impact on compression performance when we have Huffman codes for large alphabets.

We can substantially reduce the storage requirement for the code by using a version of the
Huffman code known as the canonical Huffman code. Before we describe how to construct a
canonical Huffman code, we examine a property of Huffman trees. Consider a Huffman tree
such as one of the trees in Figure 3.4. For convenience, let us use the tree on the left. Notice
that like all Huffman trees, this is a fully populated tree. That is, there is a codeword assigned
to each leaf of the tree. What we will show is that if we are only given the lengths of the
codewords moving from left to right on the tree we can reconstruct the code. For example, in
this tree the lengths are 3, 4, 4, 2, and 1. In order to regenerate the code from the lengths, we
begin with a tree of depth four (the longest codeword), as shown in Figure 3.5.

We then prune away the branches starting on the left, to match the lengths of the codewords.
We first prune away the leftmost two branches, as shown in Figure 3.6, to leave a leaf at a
depth of three. This corresponds to the first codeword. The next two codewords have a length
of four, so we leave the next two leaves at a depth of four. The next codeword has a length
of two so we prune all the lower branches as indicated in Figure 3.6, leaving a leaf at depth
two. Finally, we prune most of the right half of the tree to get a leaf corresponding to the
codeword of length one. The pruned tree can be populated by zeros on the left branches and

3.2 The Huffman Coding Algorithm 51

F I GUR E 3 . 6 Pruning the binary tree to get codewords of a specified length.

1

1

10

10

0

0

F I GUR E 3 . 7 Generating the code.

ones on the right branches to generate the code as shown in Figure 3.7. From the figure, we
can see that the codewords are 000, 0010, 0011, 01, and 1. So, just knowing the codeword
lengths in a particular order permits us to regenerate the Huffman code. The problem is that
we do not know which codeword belongs to which letter. The canonical procedure provides us
with a way to generate a code that implicitly contains that information. In order to embed this
additional information, we need some additional constraints to our Huffman coding procedure.
For example, the deflate algorithm in zlib imposes the following conditions on a Huffman
code [17]:

1. All codes of a given length have lexicographically consecutive values in the same order
as the symbols they represent.

2. Shorter codes lexicographically precede longer codes.

Recall that when we generated Huffman codes, we could choose to assign zeros and ones
to the branches as we wished. These constraints can be viewed as taking that freedom away.

We can incorporate these constraints into the Huffman coding procedure, or we can generate
a Huffman code using the procedure described previously and transform the code thus produced
into a canonical Huffman code. It is simpler to use the latter approach. In order to do this, we
will begin by designing a Huffman code. From this design, we will extract the lengths of the
codewords. We will use these lengths with the canonical constraints to design the code.

52 3 H U F F M A N C O D I N G

1

0 1

0 1

0 1

0

F I GUR E 3 . 8 Tree for the canonical Huffman code.

We illustrate this procedure using the example we have been considering in this section.
Our alphabet consists of five letters {a1, a2, a3, a4, a5}. The lengths of the corresponding
Huffman codewords are {2, 1, 3, 4, 4}. We generate the codewords from the shortest to the
longest keeping in mind the constraint that the shorter codewords lexicographically precede
longer codewords. The shortest codeword is that assigned to a2. The lexicographically smallest
codeword of length one is 0, so the codeword for a2 is 0. The codewords of length two have to
be of the form 1x. There is only one codeword of length two required, that being the codeword
for a1, so we assign the codeword 10 to a1. The codewords of length three now have to be of
the form 11x. We only need a single codeword of length three, the codeword for a3; therefore,
the codeword for a3 is 110. There are two codewords, a4 and a5, of length four. Therefore, the
codeword for a4 is 1110, and the codeword for a5 is 1111. This code can now be encoded by
just sending the lengths. Unlike the previous code we know exactly which codeword belongs
to which letter in the alphabet. This is because of the lexicographic constraints. As can be
seen from the tree for this code in Figure 3.8, the tree increases in depth as we move from left
to right. We know from the sequence of lengths that the shortest codeword is for the letter
a2, the next longest codeword is for the letter a1, and so on. Thus simply encoding the list of
lengths is sufficient for storing the Huffman code. For an alphabet of size five, this is not a
significant saving; however, when the alphabet size is on the order of 256, the savings can be
very significant.

3.2.3 Length- Limited Huffman Codes

The Huffman coding algorithm tries to minimize the average length of codewords. However,
there are no limits on the maximum length of an individual codeword. This is not necessarily a
problem when dealing with limited alphabet sizes. However, if the alphabet size is relatively
large there is a possibility of getting very long Huffman codes. This could result in codewords
that do not fit in a single machine word. This in turn can lead to inefficiencies in the coding
process. These problems can be avoided by adding an additional constraint to the variable
length code design problem: a requirement that all codewords be less than or equal to some
maximum codeword length lmax . If m is the size of the source alphabet then clearly lmax has
to be greater than or equal to �log2 m� for the code to be a valid code.

3.2 The Huffman Coding Algorithm 53

The most widely used algorithm for constructing length-limited Huffman codes is the
package-merge algorithm due to Larmore and Hirchberg [18]. The package-merge algorithm
is more general than what we describe here, our only interest being its application to designing
length-limited Huffman codes. Our description is based on the work of Turpin and Moffat
[19]. We will use a couple of facts from our prior discussions to design length-limited Huffman
codes. First, as we have seen in the previous section, all we need to obtain a Huffman code
is the length of the codewords. Second, as we showed in Chapter 2, for an alphabet of size
m the lengths of the codewords {l1, l2, · · · , lm} in any variable length code have to satisfy the
Kraft-McMillan inequality

m∑
i=1

2−li � 1

and, given a set of li that satisfy the Kraft-McMillan inequality, we can always find a uniquely
decodable code with codewords of length li .

Suppose our alphabet consists of the letters {a1, a2, . . . , am} with probabilities
{p1, p2, . . . , pm}. We will assume that the letters have been sorted based on their proba-
bilities such that p1 � p2 � · · · � pm . Our design process will involve incrementing the
lengths li until the Kraft-McMillan inequality is satisfied while at the same time keeping the
average length l̄ as small as we can. We start with assigning zero bits for all lengths. Clearly,
this will result in the lowest possible length of zero. However, it certainly does not give us a
uniquely decodable code. Not that we need to justify the latter point mathematically, but if we
did, we could compute the Kraft-McMillan sum as

m∑
i=1

2−li =
m∑

i=1

20 = m

which is clearly greater than one. We can decrement this sum by 0.5 by incrementing the
codeword for one of the letters to one. We want to pick the codeword that will have the
minimal impact on the average codeword length. As the letters are sorted in nondecreasing
probability order and the average codeword length is given by

l̄ =
m∑

i=1

pi li

we will increase l1 to one. This will give us an average codeword length of p1 and a Kraft-
McMillan sum of m−0.5. Actually, we could have picked any of the letters as we will need to
increment each length to at least one if we are to have any hope of reducing the Kraft-McMillan
sum to one. However, once we have incremented each codeword length to one how do we
decide which codeword lengths to increment further? The package-merge algorithm is an
iterative algorithm that solves this problem by generating a list of choices that can be sorted in
order of increasing cost. Each iteration consists of two steps operating on the list, a packaging
step and a merge step. In the packaging step the list from the previous step is partitioned,
or packaged, into groups of two neighboring items. The cost of a package is the sum of the
costs of the items in the package where the cost of a letter is the probability of that letter. If
the number of items is odd the item with the highest cost is discarded. In the merge step the

54 3 H U F F M A N C O D I N G

packages from the previous step are merged with the list of items that consists of the individual
letters. This list is then sorted in order of increasing cost. After lmax − 1 iterations the lowest
cost 2m − 2 items are selected. The length of the codeword for each letter is equal to the
number of items containing that letter. As there are 2m − 2 items, each of which decrements
the Kraft-McMillan sum by 0.5, we end up with a set of lengths {li } such that

m∑
i=1

li = 1

Example 3 .2 .2 :

Let us design a length-limited Huffman code for a source that puts out letters from an alphabet
A = {a1, a2, a3, a4, a5, a6} with P(a1) = 0.05, P(a2) = 0.1, P(a3) = 0.15, P(a4) =
P(a5) = 0.2, and P(a6) = 0.3. The entropy for this source is 2.409 bits/symbol. Using the
standard Huffman procedure we can generate the code shown in Table 3.10 with an average
length l̄ = 2.45. The longest codewords are four bits long. Let us design a code with the
added constraint that lmax = 3.

We begin with the list of letters. The costs are listed next to the letters:

L0 = [a1(0.05), a2(0.1), a3(0.15), a4(0.2), a5(0.2), a6(0.3)]

We then proceed with the first packaging step. The packages are denoted by a jkl(p)where the
subscripts indicate the letters in the package and the quantity in the argument is the total cost
of the item. In the first packaging step we form packages by grouping the letters two-by-two
to form

Package1 : [a12(.15), a34(.35), a56(.5)]

We then merge these packages with our original list to get the merged list:

Merge1: [a1(0.05), a2(0.1), a3(0.15), a12(0.15), a4(0.2), a5(0.2), a6(0.3), a34(0.35), a56(0.5)]

To get a code limited to three bits we need to go through one more iteration. In the next
packaging step we take the items in the previous merged list and group them two-by-two:

Package2 : [a12(0.15), a312(0.3), a45(0.4), a634(0.65)]

T A B L E 3 . 10 Huffman code.

Letter Probability Codeword

a1 0.05 0100
a2 0.1 0101
a3 0.15 011
a4 0.2 10
a5 0.2 11
a6 0.3 00

3.2 The Huffman Coding Algorithm 55

T A B L E 3 . 11 Length-limited Huffman code.

Letter Probability Codeword

a1 0.05 100
a2 0.1 101
a3 0.15 110
a4 0.2 111
a5 0.2 00
a6 0.3 01

Finally, we go through one more merge operation in which we merge the packages with the
original list of letters:

Merge2 : [a1(0.05), a2(0.1), a3(0.15), a12(0.15), a4(0.2), a5(0.2),

a6(0.3), a312(0.3), a45(0.4), a634(0.65)]

We now pick the ten items (2 × 6 − 2 = 10) with the lowest cost and count the number
of times each letter appears in the ten items. The letter a1 appears in a1, a12, and a312.
Therefore, the number of bits in the codeword for a1 is three. Continuing in this fashion we
obtain the lengths of the codewords as {3, 3, 3, 3, 2, 2}. A code with these lengths is shown in
Table 3.11. The average codeword length is 2.5 bits. Comparing this code with the Huffman
code in Table 3.10, the cost of limiting the length of the longest codeword to three bits is
2.5− 2.45 = 0.05. �

3.2.4 Optimality of Huffman Codes �
The optimality of Huffman codes can be proven rather simply by first writing down the nec-
essary conditions that an optimal code has to satisfy and then showing that satisfying these
conditions necessarily leads to designing a Huffman code. The proof we present here is based
on the proof shown in [20] and is obtained for the binary case (for a more general proof, see
[20]).

The necessary conditions for an optimal variable-length binary code are as follows:

� Condition 1: Given any two letters, a j and ak , if P[a j] � P[ak], then l j � lk , where l j

is the number of bits in the codeword for a j .

� Condition 2: The two least probable letters have codewords with the same maximum
length lm .

We have provided the justification for these two conditions in the opening sections of this
chapter.

� Condition 3: In the tree corresponding to the optimum code, there must be two branches
stemming from each intermediate node.

If there were any intermediate node with only one branch coming from that node, we could
remove it without affecting the decipherability of the code while reducing its average length.

56 3 H U F F M A N C O D I N G

� Condition 4: Suppose we change an intermediate node into a leaf node by combining
all of the leaves descending from it into a composite word of a reduced alphabet. Then, if
the original tree was optimal for the original alphabet, the reduced tree would be optimal
for the reduced alphabet.

If this condition were not satisfied, we could find a code with a smaller average code length
for the reduced alphabet and then simply expand the composite word again to get a new code
tree that would have a shorter average length than our original “optimum” tree. This would
contradict our statement about the optimality of the original tree.

In order to satisfy conditions 1, 2, and 3, the two least probable letters would have to be
assigned codewords of maximum length lm . Furthermore, the leaves corresponding to these
letters arise from the same intermediate node. This is the same as saying that the codewords for
these letters are identical except for the last bit. Consider the common prefix as the codeword
for the composite letter of a reduced alphabet. Since the code for the reduced alphabet needs
to be optimum for the code of the original alphabet to be optimum, we follow the same
procedure again. To satisfy the necessary conditions, the procedure needs to be iterated until
we have a reduced alphabet of size one. But this is exactly the Huffman procedure. Therefore,
the necessary conditions above, which are all satisfied by the Huffman procedure, are also
sufficient conditions.

3.2.5 Length of Huffman Codes �
We have said that the Huffman coding procedure generates an optimum code, but we have not
said what the average length of an optimum code is. The length of any code will depend on a
number of things, including the size of the alphabet and the probabilities of individual letters.
In this section, we will show that the optimal code for a source S, and hence the Huffman code
for the source S, has an average code length l bounded below by the entropy and bounded
above by the entropy plus 1 bit. In other words,

H(S) � l < H(S)+ 1 (1)

In order for us to do this, we will need to use the Kraft-McMillan inequality introduced
in Chapter 2. Recall that the first part of this result, due to McMillan, states that if we have a
uniquely decodable code C with K codewords of length {li }Ki=1, then the following inequality
holds:

K∑
i=1

2−li � 1 (2)

Example 3 .2 .3 :

Examining the code generated in Example 3.2.1 (Table 3.5), the lengths of the codewords are
{1, 2, 3, 4, 4}. Substituting these values into the left-hand side of Equation (2), we get

2−1 + 2−2 + 2−3 + 2−4 + 2−4 = 1

which satisfies the Kraft-McMillan inequality.

3.2 The Huffman Coding Algorithm 57

If we use the minimum variance code (Table 3.9), the lengths of the codewords are
{2, 2, 2, 3, 3}. Substituting these values into the left-hand side of Equation (2), we get

2−2 + 2−2 + 2−2 + 2−3 + 2−3 = 1

which again satisfies the inequality. �

The second part of this result, due to Kraft, states that if we have a sequence of positive
integers {li }Ki=1 that satisfies (2), then there exists a uniquely decodable code whose codeword
lengths are given by the sequence {li }Ki=1.

Using this result, we will now show the following:

1. The average codeword length l of an optimal code for a source S is greater than or equal
to H(S).

2. The average codeword length l of an optimal code for a source S is strictly less than
H(S)+ 1.

For a source S with alphabet A = {a1, a2, . . . aK }, and probability model {P(a1), P(a2), . . . ,

P(aK)}, the average codeword length is given by

l =
K∑

i=1

P(ai)li

Therefore, we can write the difference between the entropy of the source H(S) and the average
length as

H(S)− l = −
K∑

i=1

P(ai) log2 P(ai)−
K∑

i=1

P(ai)li

=
K∑

i=1

P(ai)

(
log2

[
1

P(ai)

]
− li

)

=
K∑

i=1

P(ai)

(
log2

[
1

P(ai)

]
− log2[2li]

)

=
K∑

i=1

P(ai) log2

[
2−li

P(ai)

]

≤ log2

[
K∑

i=1

2−li

]

The last inequality is obtained using Jensen’s inequality, which states that if f (x) is a concave
(convex cap, convex ∩) function, then E[f (X)] � f (E[X]). The log function is a concave
function.

58 3 H U F F M A N C O D I N G

As the code is an optimal code
∑K

i=1 2−li � 1, therefore

H(S)− l � 0 (3)

We will prove the upper bound by showing that there exists a uniquely decodable code with
average codeword length less than H(S)+1. Therefore, if we have an optimal code, this code
must have an average length that is less than H(S)+ 1.

Given a source, alphabet, and probability model as before, define

li =
⌈

log2
1

P(ai)

⌉

where �x� is the smallest integer greater than or equal to x . For example, �3.3� = 4 and
�5� = 5. Thus,

�x� = x + ε where 0 � ε < 1

Therefore,

log2
1

P(ai)
� li < log2

1

P(ai)
+ 1 (4)

From the left inequality of (4), we can see that

2−li � P(ai)

Accordingly,
K∑

i=1

2−li �
K∑

i=1

P(ai) = 1

and by the Kraft-McMillan inequality, there exists a uniquely decodable code with codeword
lengths {li }. The average length of this code can be upper-bounded by using the right inequality
of (4):

l =
K∑

i=1

P(ai)li <
K∑

i=1

P(ai)

[
log2

1

P(ai)
+ 1

]
or

l < H(S)+ 1

We can see from the way the upper bound was derived that this is a rather loose upper bound.
In fact, it can be shown that if pmax is the largest probability in the probability model, then for
pmax � 0.5, the upper bound for the Huffman code is H(S)+ pmax, while for pmax < 0.5, the
upper bound is H(S) + pmax + 0.086. Obviously, this is a much tighter bound than the one
we derived above. The derivation of this bound takes some time (see [21] for details).

3.2.6 Extended Huffman Codes �
In applications where the alphabet size is large, pmax is generally quite small, and the amount
of deviation from the entropy, especially in terms of a percentage of the rate, is quite small.
However, in cases where the alphabet is small and the probability of occurrence of the different
letters is skewed, the value of pmax can be quite large; and the Huffman code can become rather
inefficient when compared to the entropy.

3.2 The Huffman Coding Algorithm 59

T A B L E 3 . 12 Huffman code for
the alphabet A.

Letter Codeword

a1 00
a2 11
a3 10

Example 3 .2 .4 :

Consider a source that puts out iid letters from the alphabetA = {a1, a2, a3}with the probability
model P(a1) = 0.8, P(a2) = 0.02, and P(a3) = 0.18. The entropy for this source is 0.816
bits/symbol. A Huffman code for this source is shown in Table 3.12.

The average length for this code is 1.2 bits/symbol. The difference between the average
code length and the entropy, or the redundancy, for this code is 0.384 bits/symbol, which is
47% of the entropy. This means that to code this sequence, we would need 47% more bits than
the minimum required. �

We can sometimes reduce the coding rate by blocking more than one symbol together. To
see how this can happen, consider a source S that emits a sequence of letters from an alphabet
A = {a1, a2, . . . , am}. Each element of the sequence is generated independently of the other
elements in the sequence. The entropy for this source is given by

H(S) = −
m∑

i=1

P(ai) log2 P(ai)

We know that we can generate a Huffman code for this source with rate R such that

H(S) � R < H(S)+ 1 (5)
We have used the looser bound here; the same argument can be made with the tighter bound.
Notice that we have used “rate R” to denote the number of bits per symbol. This is a standard
convention in the data compression literature. However, in the communication literature, the
word “rate” often refers to the number of bits per second.

Suppose we now encode the sequence by generating one codeword for every n symbols.
As there are mn combinations of n symbols, we will need mn codewords in our Huffman code.
We could generate this code by viewing the mn symbols as letters of an extended alphabet

A(n) = {
n times︷ ︸︸ ︷

a1a1 . . . a1, a1a1 . . . a2, . . . , a1a1 . . . am, a1a1 . . . a2a1, . . . , amam . . . am}
from a source S(n). Let us denote the rate for the new source as R(n). Then we know that

H(S(n)) � R(n) < H(S(n))+ 1 (6)

R(n) is the number of bits required to code n symbols. Therefore, the number of bits required
per symbol, R, is given by

R = 1

n
R(n)

60 3 H U F F M A N C O D I N G

The number of bits per symbol can be bounded as

H(S(n))

n
� R <

H(S(n))

n
+ 1

n

In order to compare this to (5), and see the advantage we get from encoding symbols in
blocks instead of one at a time, we need to express H(S(n)) in terms of H(S). This turns out
to be a relatively easy (although somewhat messy) thing to do.

H(S(n)) = −
m∑

i1=1

m∑
i2=1

. . .

m∑
in=1

P(ai1 , ai2 , . . . ain) log[P(ai1 , ai2 , . . . ain)]

= −
m∑

i1=1

m∑
i2=1

. . .

m∑
in=1

P(ai1)P(ai2) . . . P(ain) log[P(ai1)P(ai2) . . . P(ain)]

= −
m∑

i1=1

m∑
i2=1

. . .

m∑
in=1

P(ai1)P(ai2) . . . P(ain)

n∑
j=1

log[P(ai j)]

= −
m∑

i1=1

P(ai1) log[P(ai1)]
⎧⎨
⎩

m∑
i2=1

. . .

m∑
in=1

P(ai2) . . . P(ain)

⎫⎬
⎭

−
m∑

i2=1

P(ai2) log[P(ai2)]
⎧⎨
⎩

m∑
i1=1

m∑
i3=1

. . .

m∑
in=1

P(ai1)P(ai3) . . . P(ain)

⎫⎬
⎭

.

.

.

−
m∑

in=1

P(ain) log[P(ain)]
⎧⎨
⎩

m∑
i1=1

m∑
i2=1

. . .

m∑
in−1=1

P(ai1)P(ai2) . . . P(ain−1)

⎫⎬
⎭

The n − 1 summations in braces in each term sum to one. Therefore,

H(S(n)) = −
m∑

i1=1

P(ai1) log[P(ai1)]−
m∑

i2=1

P(ai2) log[P(ai2)]− · · · −
m∑

in=1

P(ain) log[P(ain)]

= nH(S)

and we can write (6) as

H(S) � R � H(S)+ 1

n
(7)

By comparing this to (5), we can see that encoding the output of the source in longer blocks
of symbols guarantees a rate closer to the entropy. Note that all we are talking about here is a
bound or guarantee about the rate. As we have seen in the previous chapter, there are a number
of situations in which we can achieve a rate equal to the entropy with a block length of one!

3.2 The Huffman Coding Algorithm 61

Example 3 .2 .5 :

For the source described in the previous example, we will generate a codeword for every two
symbols, instead of generating a codeword for every symbol. If we look at the source sequence
two at a time, the number of possible symbol pairs, or size of the extended alphabet, is 32 = 9.
The extended alphabet, probability model, and Huffman code for this example are shown in
Table 3.13.

T A B L E 3 . 13 The extended alphabet and
corresponding Huffman code

Letter Probability Code

a1a1 0.64 0
a1a2 0.016 10101
a1a3 0.144 11
a2a1 0.016 101000
a2a2 0.0004 10100101
a2a3 0.0036 1010011
a3a1 0.1440 100
a3a2 0.0036 10100100
a3a3 0.0324 1011

The average codeword length for this extended code is 1.7228 bits/symbol. However,
each symbol in the extended alphabet corresponds to two symbols from the original alphabet.
Therefore, in terms of the original alphabet, the average codeword length is 1.7228/2 = 0.8614
bits/symbol. This redundancy is about 0.045 bits/symbol, which is only about 5.5% of the
entropy. �

We see that by coding blocks of symbols together, we can reduce the redundancy of
Huffman codes. In the previous example, two symbols were blocked together to obtain a rate
reasonably close to the entropy. Blocking two symbols together means the alphabet size goes
from m to m2, where m was the size of the initial alphabet. In this case, m was three, so the size
of the extended alphabet was nine. This size is not an excessive burden for most applications.
However, if the probabilities of the symbols were more unbalanced, then it would require
blocking many more symbols together before the redundancy was lowered to acceptable levels.
As we block more and more symbols together, the size of the alphabet grows exponentially, and
the Huffman coding scheme becomes impractical. Under these conditions, we need to look at
techniques other than Huffman coding. One approach that is very useful in these conditions
is arithmetic coding. We will discuss this technique in some detail in the next chapter.

3.2.7 Implementation of Huffman Codes

Huffman encoding is relatively simple to implement using a table lookup. Decoding is another
matter. If speed is the only factor, we can implement the decoder using table lookup as well.
However, for the decoder, the table has to be of size 2N where N is the length of the longest

62 3 H U F F M A N C O D I N G

T A B L E 3 . 14 A nine-letter alphabet and
corresponding Huffman code.

Letter Code

A 0
B 10101
C 11
D 101000
E 10100101
F 1010011
G 100
H 10100100
I 1011

code. Consider the code in Table 3.13. The longest codeword is eight bits long. This means
we need a table of size 256, whereas the code consists of only nine codewords. This is a
significant amount of wasted storage. And the waste grows exponentially with the length of
the longest codeword. Another option is to store the code as a binary tree. This is certainly
memory efficient, however, decoding each symbol requires traversing the tree, which may be
computationally inefficient.

Most implementations of Huffman decoding find a middle ground by combining aspects
of a table-based decoder and a tree-based decoder. The decoder used in the inflate algorithm,
which is part of both gzip and zlib, uses such a hybrid method. One way of thinking about the
decoder is to view it as a state machine. The state machine takes as its input a specified number
of bits, where the number of input bits may be different in each state. Having received these
bits, the state machine moves to a new state, and in the process may output a decoded letter.
Let’s describe the algorithm using an example. Suppose we have a source with the alphabet
and code shown in Table 3.14. A tabular implementation of the decoder would require a table
of size 256. Instead, we will implement a hierarchy of three tables with the first table being
of size 16 and the others being of size 4. Each of the 16 values points to either a decoded
letter and the number of bits used to decode the letter (number of bits “to be gobbled" in the
inimitable words of Gailly and Adler [22]), or a subsidiary table. The decoding operation can
be visualized in terms of the state machine shown in Figure 3.9. In this implementation, the
decoding process can be represented using a machine with three states. In state I, the decoder
uses a four-bit input as an index into a lookup table; while in state II and state III, the decoder
uses a two-bit index into the lookup table. The decoder moves from state I to state II when
it receives an input of 1010 and from state II to state III when it receives an input of 01. In
the figure, the outcome of other patterns of input are shown as nnnn/(L ,m) where nnnn
represents the binary index, L denotes the letter decoded, and m indicates the number of bits
used in the decoding process. In the figure, x denotes a “don’t care,” that is, a bit that can be
either a 0 or a 1.

The lookup tables corresponding to these states are shown in Tables 3.15–3.17. Notice
that in most cases, the letter A is decoded and one bit is used up. This is to be expected as A
is the most probable letter with the single bit codeword 0. As eight of the entries in the table
begin with 0, it makes sense that eight of the entries will decode to A. After each of these

3.2 The Huffman Coding Algorithm 63

1011/(I,4)

1010

1x/(B,1)
00/(D,2)

S S

SIII

I II

01

1x/(F,1)
01/(E,2)
00/(H,2)

0xxx/(A,1)
11xx/(C,2)
100x/(G,3)

F I GUR E 3 . 9 A state machine description of Huffman decoding.

T A B L E 3 . 15 Table I.

Letter Code

0000 A, 1
0001 A, 1
0010 A, 1
0011 A, 1
0100 A, 1
0101 A, 1
0110 A, 1
0111 A, 1
1000 G, 3
1001 G, 3
1010 Table II
1011 I, 4
1100 C, 2
1101 C, 2
1110 C, 2
1111 C, 2

entries is decoded, the decoder shifts out (gobbles up) the leftmost bit and shifts in another bit
from the received bitstream before decoding the next letter using the same table. One of the
entries, 1010, points to a second table referred to as Table II. In this case, the decoder moves
to state II, shifts out all four bits, reads in two new bits, and uses them as a lookup index for
Table II shown in Table 3.16. If these two bits are 01 the decoder moves to state III and uses
the following two bits from the received bitstream as an index into the lookup table shown in
Table 3.17. If these bits are not 01, the decoder uses them as an index into Table 3.16, decodes
the corresponding letter, shifts out the number of bits indicated by the table and returns to
state I. In state III the decoder decodes the letter indicated by the lookup table, shifts out the
corresponding number of bits, and returns to state I.

64 3 H U F F M A N C O D I N G

T A B L E 3 . 16 Table II.

Letter Code

00 D, 2
01 Table III
10 B, 1
11 B, 1

T A B L E 3 . 17 Table III.

Letter Code

00 H, 2
01 E, 2
10 F, 1
11 F, 1

Table II

01010110111001101010011101 00101
Table II

B,1

I,4

G,3

F,1

A,1 Table III E,2A,1 Table II

C,2 Table III

F I GUR E 3 . 10 Decoding of the example binary string.

To see how the decoding process works let’s decode the following bitstream:

0101011011100110101001110100101

We begin in state I with the first four bits 0101. Using this as an index to Table 3.15, we decode
the letter A, shift out one bit, and shift in another bit to get a new index of 1010. According
to Table 3.15, this is a pointer to Table 3.16, and the decoder moves to state II. Therefore, we
read the next two bits from the bitstream and use them as an index to Table 3.16. The next
two bits are 11 so we decode a B, shift out a bit, and move back to state I. We then read three
more bits to make up the index into Table 3.15. The next three bits are 011 giving us an index
of 1011 into Table 3.15. We decode this as an I and read the next four bits, 1001. From Table
3.15, this is decoded as a G for an expenditure of three bits. We read three more bits to get an
index of 1101. This decodes as a C with an expenditure of two bits. The process continues as
shown in Figure 3.10 resulting in the decoded sequence ABIGCAFE.

We can see in this example that we saved some memory by going from a 256 element
lookup table to three lookup tables with 24 entries. In order to obtain these savings, we paid in
terms of computation. In the case of the single lookup table, one lookup is sufficient to decode
a letter. In this case, when we encounter the letters A,C,G, or I , we use one table lookup.
For the letters D and B, we use two table lookups, and for the letters H, E , and F , we need
three lookups. Thus, on the average, we need 1 × (0.64 + 0.144 + 0.144 + 0.0324) + 2 ×
(0.016+ 0.016)+ 3× (0.0036+ 0.0036+ 0.0004) = 1.0472 lookups per letter. This is only
slightly more lookups than we would have needed had we used a single lookup table.

3.3 Nonbinary Huffman Codes � 65

3.3 Nonbinary Huffman Codes �

The binary Huffman coding procedure can be easily extended to the nonbinary case where
the code elements come from an m-ary alphabet, and m is not equal to two. Recall that we
obtained the Huffman algorithm based on the following observations about an optimum binary
prefix code:

1. Symbols that occur more frequently (have a higher probability of occurrence) will have
shorter codewords than symbols that occur less frequently.

2. The two symbols that occur least frequently will have the same length.

Also recall that an additional requirement is that the two symbols with the lowest probability
differ only in the last position.

We can obtain a nonbinary Huffman code in almost exactly the same way. The obvious
thing to do would be to modify the second observation to read “The m symbols that occur least
frequently will have the same length,” and also modify the additional requirement to read “The
m symbols with the lowest probability differ only in the last position.”

However, we run into a small problem with this approach. Consider the design of a ternary
Huffman code for a source with a six-letter alphabet. Using the rules described above, we
would first combine the three letters with the lowest probability into a composite letter. This
would give us a reduced alphabet with four letters. However, combining the three letters with
lowest probability from this alphabet would result in a further reduced alphabet consisting of
only two letters. We have three values to assign and only two letters. Instead of combining
three letters at the beginning, we could have combined two letters. This would result in a
reduced alphabet of size five. If we combined three letters from this alphabet, we would
end up with a final reduced alphabet size of three. Finally, we could combine two letters in
the second step, which would again result in a final reduced alphabet of size three. Which
alternative should we choose?

Recall that the symbols with the lowest probability will have the longest codeword. Fur-
thermore, all of the symbols that we combine together into a composite symbol will have
codewords of the same length. This means that all letters we combine together at the very first
stage will have codewords that have the same length, and these codewords will be the longest
of all the codewords. If at some stage we are allowed to combine less than m symbols, the
logical place to do this would be in the very first stage.

In the general case of an m-ary code and an M-letter alphabet, how many letters should
we combine in the first phase? Let m′ be the number of letters that are combined in the first
phase. Then m′ is the number between two and m, such that m′ modulo (m− 1) is equal to M
modulo (m − 1).

Example 3 .3 .1 :

Generate a ternary Huffman code for a source with a six-letter alphabet and a probability model
P(a1) = P(a3) = P(a4) = 0.2, P(a5) = 0.25, P(a6) = 0.1, and P(a2) = 0.05. In this case
m = 3, therefore m′ is either 2 or 3.

6 (mod 2) = 0, 2 (mod 2) = 0, 3 (mod 2) = 1

66 3 H U F F M A N C O D I N G

T A B L E 3 . 18 Sorted six-letter alphabet.

Letter Probability Codeword

a5 0.25 c(a5)

a1 0.20 c(a1)

a3 0.20 c(a3)

a4 0.20 c(a4)

a6 0.10 c(a6)

a2 0.05 c(a2)

T A B L E 3 . 19 Reduced five-letter alphabet.

Letter Probability Codeword

a5 0.25 c(a5)

a1 0.20 c(a1)

a3 0.20 c(a3)

a4 0.20 c(a4)

a′6 0.15 α1

Since 6 (mod 2) = 2 (mod 2),m′ = 2. Sorting the symbols in probability order results in
Table 3.18.

As m′ is 2, we can assign the codewords of the two symbols with the lowest probability as

c(a6) = α1 ∗ 0

c(a2) = α1 ∗ 1

where α1 is a ternary string and * denotes concatenation. The reduced alphabet is shown in
Table 3.19.

Now we combine the three letters with the lowest probability into a composite letter a′3
and assign their codewords as

c(a3) = α2 ∗ 0

c(a4) = α2 ∗ 1

c(a′6) = α2 ∗ 2

But c(a′6) = α1. Therefore,
α1 = α2 ∗ 2

which means that

c(a6) = α2 ∗ 20

c(a2) = α2 ∗ 21

Sorting the reduced alphabet, we have Table 3.20. Thus, α2 = 0, c(a5) = 1, and c(a1) = 2.
Substituting for α2, we get the codeword assignments in Table 3.21.

The tree corresponding to this code is shown in Figure 3.11. Notice that at the lowest level
of the tree, we have only two codewords. If we had combined three letters at the first step and
combined two letters at a later step, the lowest level would have contained three codewords,
and a longer average code length would result (see Problem 7 at the end of this chapter). �

3.4 Adaptive Huffman Coding 67

T A B L E 3 . 20 Reduced three-letter alphabet.

Letter Probability Codeword

a′3 0.55 α2
a5 0.25 c(a5)

a1 0.20 c(a1)

T A B L E 3 . 21 Ternary code for six-letter
alphabet.

Letter Probability Codeword

a1 0.20 2
a2 0.05 021
a3 0.20 00
a4 0.20 01
a5 0.25 1
a6 0.10 020

1 20

a1a5

1 20

a4a3

10

a2a6

F I GUR E 3 . 11 Code tree for the nonbinary Huffman code.

3.4 Adaptive Huffman Coding

Huffman coding requires knowledge of the probabilities of the source sequence. If this
knowledge is not available, Huffman coding becomes a two-pass procedure: the statistics are
collected in the first pass, and the source is encoded in the second pass. In order to convert
this algorithm into a one-pass procedure, Faller [23] and Gallagher [21] independently devel-
oped adaptive algorithms to construct the Huffman code based on the statistics of the symbols
already encountered. These were later improved by Knuth [24] and Vitter [25].

Theoretically, if we wanted to encode the (k+1)th symbol using the statistics of the first
k symbols, we could recompute the code using the Huffman coding procedure each time a
symbol is transmitted. However, this would not be a very practical approach due to the large
amount of computation involved—hence, the adaptive Huffman coding procedures.

68 3 H U F F M A N C O D I N G

The Huffman code can be described in terms of a binary tree similar to the ones shown in
Figure 3.4. The squares denote the external nodes or leaves and correspond to the symbols in
the source alphabet. The codeword for a symbol can be obtained by traversing the tree from
the root to the leaf corresponding to the symbol, where 0 corresponds to a left branch and 1
corresponds to a right branch. In order to describe how the adaptive Huffman code works,
we add two other parameters to the binary tree: the weight of each leaf, which is written as a
number inside the node, and a node number. The weight of each external node is simply the
number of times the symbol corresponding to the leaf has been encountered. The weight of
each internal node is the sum of the weights of its offspring. The node number yi is a unique
number assigned to each internal and external node. If we have an alphabet of size n, then
the 2n− 1 internal and external nodes can be numbered as y1, . . . , y2n−1 such that if x j is the
weight of node y j , we have x1 � x2 � · · · � x2n−1. Furthermore, the nodes y2 j−1 and y2 j

are offspring of the same parent node, or siblings, for 1 � j < n, and the node number for the
parent node is greater than y2 j−1 and y2 j . These last two characteristics are called the sibling
property, and any tree that possesses this property is a Huffman tree [21].

In the adaptive Huffman coding procedure, neither transmitter nor receiver knows anything
about the statistics of the source sequence at the start of transmission. The tree at both the
transmitter and the receiver consists of a single node that corresponds to all symbols not yet
transmitted (NYT) and has a weight of zero. As transmission progresses, nodes corresponding
to symbols transmitted are added to the tree, and the tree is reconfigured using an update
procedure. Before the beginning of transmission, a fixed code for each symbol is agreed upon
between transmitter and receiver. A simple (short) code is as follows:

If the source has an alphabet (a1, a2, . . . , am) of size m, then pick e and r such that
m = 2e + r and 0 � r < 2e. The letter ak is encoded as the (e + 1)-bit binary representation
of k − 1, if 1 � k � 2r ; else, ak is encoded as the e-bit binary representation of k − r − 1.
For example, suppose m = 26, then e = 4, and r = 10. The symbol a1 is encoded as 00000,
the symbol a2 is encoded as 00001, and the symbol a22 is encoded as 1011.

When a symbol is encountered for the first time, the code for the NYT node is transmitted,
followed by the fixed code for the symbol. A node for the symbol is then created, and the
symbol is taken out of the NYT list.

Both transmitter and receiver start with the same tree structure. The updating procedure
used by both transmitter and receiver is identical. Therefore, the encoding and decoding
processes remain synchronized.

3.4.1 Update Procedure

The update procedure requires that the nodes be in a fixed order. This ordering is preserved by
numbering the nodes. The largest node number is given to the root of the tree, and the smallest
number is assigned to the NYT node. The numbers from the NYT node to the root of the tree
are assigned in increasing order from left to right and from lower level to upper level. The set
of nodes with the same weight makes up a block. Figure 3.12 is a flowchart of the updating
procedure.

The function of the update procedure is to preserve the sibling property. In order that the
update procedures at the transmitter and receiver both operate with the same information, the

3.4 Adaptive Huffman Coding 69

START

Go to symbol
external node

Node
number max

in block?

Increment
node weight

Is this
the root
node?

STOP

First
appearance
for symbol?

NYT gives birth
to new NYT and

external node

Increment weight
of external node

and old NYT node

Go to old
NYT node

No

Yes

Yes

Yes

Switch node with
highest numbered

node in block

No

Go to
parent node

No

F I GUR E 3 . 12 Update procedure for the adaptive Huffman coding algorithm.

tree at the transmitter is updated after each symbol is encoded, and the tree at the receiver is
updated after each symbol is decoded. The procedure operates as follows.

After a symbol has been encoded or decoded, the external node corresponding to the symbol
is examined to see if it has the largest node number in its block. If the external node does not
have the largest node number, it is exchanged with the node that has the largest node number
in the block, as long as the node with the higher number is not the parent of the node being
updated. The weight of the external node is then incremented. If we did not exchange the
nodes before the weight of the node was incremented, it is very likely that the ordering required
by the sibling property would be destroyed. Once we have incremented the weight of the node,

70 3 H U F F M A N C O D I N G

we have adapted the Huffman tree at that level. We then turn our attention to the next level by
examining the parent node of the node whose weight was incremented to see if it has the largest
number in its block. If it does not, it is exchanged with the node with the largest number in the
block. Again, an exception to this is when the node with the higher node number is the parent
of the node under consideration. Once an exchange has taken place (or it has been determined
that there is no need for an exchange), the weight of the parent node is incremented. We then
proceed to a new parent node and the process is repeated. This process continues until the root
of the tree is reached.

If the symbol to be encoded or decoded has occurred for the first time, a new external node
with a weight of zero is assigned to the symbol and a new NYT node is appended to the tree.
Both the new external node and the new NYT node are offsprings of the old NYT node. We
increment the weight of the new external node by one. As the old NYT node is the parent of
the new external node, we increment its weight by one and then go on to update all the other
nodes until we reach the root of the tree.

Example 3 .4 .1 : Update Procedure

Assume we are encoding the message [a a r d v a r k], where our alphabet consists of the 26
lowercase letters of the English alphabet.

The updating process is shown in Figure 3.13. We begin with only the NYT node. The
total number of nodes in this tree will be 2× 26− 1 = 51, so we start numbering backwards
from 51 with the number of the root node being 51. The first letter to be transmitted is a.
As a does not yet exist in the tree, we send a binary code 00000 for a and then add a to the
tree. The NYT node gives birth to a new NYT node and a terminal node corresponding to a.
The weight of the terminal node will be higher than the NYT node, so we assign the number
49 to the NYT node and 50 to the terminal node corresponding to the letter a. The second
letter to be transmitted is also a. This time the transmitted code is 1. The node corresponding
to a has the highest number (if we do not consider its parent), so we do not need to swap
nodes. The next letter to be transmitted is r . This letter does not have a corresponding node
on the tree, so we send the codeword for the NYT node, which is 0 followed by the index
of r , which is 10001. The NYT node gives birth to a new NYT node and an external node
corresponding to r . Again, no update is required. The next letter to be transmitted is d, which
is also being sent for the first time. We again send the code for the NYT node, which is now
00 followed by the index for d, which is 00011. The NYT node again gives birth to two new
nodes. However, an update is still not required. This changes with the transmission of the
next letter, v, which has also not yet been encountered. Nodes 43 and 44 are added to the
tree, with 44 as the terminal node corresponding to v. We examine the grandparent node of
v (node 47) to see if it has the largest number in its block. As it does not, we swap it with
node 48, which has the largest number in its block. We then increment node 48 and move to
its parent, which is node 49. In the block containing node 49, the largest number belongs to
node 50. Therefore, we swap nodes 49 and 50 and then increment node 50. We then move to
the parent node of node 50, which is node 51. As this is the root node, all we do is increment
node 51. �

3.4 Adaptive Huffman Coding 71

0 1

1

2

d

r

a

45
(aard)

46

48

50

4

2

2

1

0

1 r

1 v

1 d

2 a

51

49

48

45

43
(aardv)

47

44

46

50

TYN 0 1

1

1

2

v

d

r

a

43
(aardv)

44

46

48

50

47

45

51

49

1

0 a
49

(a) (aa)
50

51 51 51

49 50

47
(aar)

48

50

NYT

NYT

0
51

NYT 1 0NYT 2 a 2

1

a

rTYN 0

2

1

49

3

2

4
51

1
49

47

1

1 v0

(aardv)

NYT
NYT

1r

2a

5
51

3

2

1 d

1

1

4

2

F I GUR E 3 . 13 Adaptive Huffman tree after [a a r d v] is processed.

3.4.2 Encoding Procedure

The flowchart for the encoding procedure is shown in Figure 3.14. Initially, the tree at both the
encoder and decoder consists of a single node, the NYT node. Therefore, the codeword for
the very first symbol that appears is a previously agreed-upon fixed code. After the very first
symbol, whenever we have to encode a symbol that is being encountered for the first time, we
send the code for the NYT node, followed by the previously agreed-upon fixed code for the
symbol. The code for the NYT node is obtained by traversing the Huffman tree from the root
to the NYT node. This alerts the receiver to the fact that the symbol whose code follows does
not as yet have a node in the Huffman tree. If a symbol to be encoded has a corresponding
node in the tree, then the code for the symbol is generated by traversing the tree from the root
to the external node corresponding to the symbol.

To see how the coding operation functions, we use the same example that was used to
demonstrate the update procedure.

72 3 H U F F M A N C O D I N G

START

Read in symbol

Is this
the first

appearance
of the

symbol?

Call update
procedure

Is this the
last symbol?

STOP

Send code for NYT
node followed by

index in the NYT list

Code is the path from
the root node to the
corresponding node

Yes

Yes

No

No

F I GUR E 3 . 14 Flowchart of the encoding procedure.

Example 3 .4 .2 : Encoding Procedure

In Example 3.4.1 we used an alphabet consisting of 26 letters. In order to obtain our prearranged
code, we have to find m and e such that 2e + r = 26, where 0 � r < 2e. It is easy to see that
the values of e = 4 and r = 10 satisfy this requirement.

The first symbol encoded is the letter a. As a is the first letter of the alphabet, k = 1.
As 1 is less than 20, a is encoded as the 5-bit binary representation of k − 1, or 0, which is
00000. The Huffman tree is then updated as shown in the figure. The NYT node gives birth
to an external node corresponding to the element a and a new NYT node. As a has occurred
once, the external node corresponding to a has a weight of one. The weight of the NYT node
is zero. The internal node also has a weight of one, as its weight is the sum of the weights

3.4 Adaptive Huffman Coding 73

of its offspring. The next symbol is again a. As we have an external node corresponding to
symbol a, we simply traverse the tree from the root node to the external node corresponding
to a in order to find the codeword. This traversal consists of a single right branch. Therefore,
the Huffman code for the symbol a is 1.

After the code for a has been transmitted, the weight of the external node corresponding
to a is incremented, as is the weight of its parent. The third symbol to be transmitted is r . As
this is the first appearance of this symbol, we send the code for the NYT node followed by the
previously arranged binary representation for r . If we traverse the tree from the root to the
NYT node, we get a code of 0 for the NYT node. The letter r is the 18th letter of the alphabet;
therefore, the binary representation of r is 10001. The code for the symbol r becomes 010001.
The tree is again updated as shown in the figure, and the coding process continues with symbol
d. Using the same procedure for d, the code for the NYT node, which is now 00, is sent,
followed by the index for d, resulting in the codeword 0000011. The next symbol v is the
22nd symbol in the alphabet. As this is greater than 20, we send the code for the NYT node
followed by the 4-bit binary representation of 22− 10− 1 = 11. The code for the NYT node
at this stage is 000, and the 4-bit binary representation of 11 is 1011; therefore, v is encoded
as 0001011. The next symbol is a, for which the code is 0, and the encoding proceeds. �

3.4.3 Decoding Procedure

The flowchart for the decoding procedure is shown in Figure 3.15. As we read in the received
binary string, we traverse the tree in a manner identical to that used in the encoding procedure.
Once a leaf is encountered, the symbol corresponding to that leaf is decoded. If the leaf is the
NYT node, then we check the next e bits to see if the resulting number is less than r . If it
is less than r , we read in another bit to complete the code for the symbol. The index for the
symbol is obtained by adding one to the decimal number corresponding to the e- or e + 1-bit
binary string. Once the symbol has been decoded, the tree is updated and the next received bit
is used to start another traversal down the tree. To see how this procedure works, let us decode
the binary string generated in the previous example.

Example 3 .4 .3 : Decoding Procedure

The binary string generated by the encoding procedure is

000001010001000001100010110

Initially, the decoder tree consists only of the NYT node. Therefore, the first symbol to be
decoded must be obtained from the NYT list. We read in the first 4 bits, 0000, as the value of
e is four. The 4 bits 0000 correspond to the decimal value of 0. As this is less than the value
of r , which is 10, we read in one more bit for the entire code of 00000. Adding one to the
decimal value corresponding to this binary string, we get the index of the received symbol as
1. This is the index for a; therefore, the first letter is decoded as a. The tree is now updated
as shown in Figure 3.13. The next bit in the string is 1. This traces a path from the root node
to the external node corresponding to a. We decode the symbol a and update the tree. In this
case, the update consists only of incrementing the weight of the external node corresponding

74 3 H U F F M A N C O D I N G

Call update
procedure

Decode the (p + 1)
element in NYT list

Read one more bit

START

Read bit and go to
corresponding node

Is the node
the NYT

node?

Is the
e-bit number p

less than r?
Decode element
corresponding

to node

Is this
the last bit?

STOP

Is the
node an external

node?

Go to root
of the tree

Yes

No

Yes

No

No

Read e bits
Yes

Add r to p
No

Yes

F I GUR E 3 . 15 Flowchart of the decoding procedure.

3.5 Golomb Codes 75

to a. The next bit is a 0, which traces a path from the root to the NYT node. The next 4 bits,
1000, correspond to the decimal number 8, which is less than 10, so we read in one more bit
to get the 5-bit word 10001. The decimal equivalent of this 5-bit word plus one is 18, which
is the index for r . We decode the symbol r and then update the tree. The next 2 bits, 00, again
trace a path to the NYT node. We read the next 4 bits, 0001. Since this corresponds to the
decimal number 1, which is less than 10, we read another bit to get the 5-bit word 00011. To
get the index of the received symbol in the NYT list, we add one to the decimal value of this
5-bit word. The value of the index is 4, which corresponds to the symbol d. Continuing in this
fashion, we decode the sequence aardva. �

Although the Huffman coding algorithm is one of the best-known variable-length coding
algorithms, there are some other lesser-known algorithms that can be very useful in certain situ-
ations. In particular, the Golomb-Rice codes and the Tunstall codes are becoming increasingly
popular. We describe these codes in the following sections.

3.5 Golomb Codes

The Golomb-Rice codes belong to a family of codes designed to encode integers with the
assumption that the larger an integer, the lower its probability of occurrence. The simplest
code for this situation is the unary code. The unary code for a positive integer n is simply
n 1s followed by a 0. Thus, the code for 4 is 11110, and the code for 7 is 11111110. The
unary code is the same as the Huffman code for the semi-infinite alphabet {1, 2, 3, . . .} with
probability model

P[k] = 1

2k

Because the Huffman code is optimal, the unary code is also optimal for this probability model.
Although the unary code is optimal in very restricted conditions, we can see that it is

certainly very simple to implement. One step higher in complexity are a number of coding
schemes that split the integer into two parts, representing one part with a unary code and the
other part with a different code. An example of such a code is the Golomb code. Other
examples can be found in [26].

The Golomb code is described in a succinct paper [27] by Solomon Golomb, which begins
“Secret Agent 00111 is back at the Casino again, playing a game of chance, while the fate
of mankind hangs in the balance.” Agent 00111 requires a code to represent runs of success
in a roulette game, and Golomb provides it! The Golomb code is actually a family of codes
parameterized by an integer m > 0. In the Golomb code with parameter m, we represent an
integer n > 0 using two numbers q and r , where

q =
⌊ n

m

⌋
and

r = n − qm

76 3 H U F F M A N C O D I N G

T A B L E 3 . 22 Golomb code for m = 5.

n q r Codeword n q r Codeword

0 0 0 0000 08 1 3 101100
1 0 1 0010 09 1 4 101110
2 0 2 0100 10 2 0 110000
3 0 3 0110 11 2 1 110010
4 0 4 0111 12 2 2 110100
5 1 0 1000 13 2 3 110110
6 1 1 1001 14 2 4 110111
7 1 2 1010 15 3 0 111000

�x	 is the integer part of x . In other words, q is the quotient and r is the remainder when n is
divided by m. The quotient q can take on values 0, 1, 2, . . . and is represented by the unary
code of q. The remainder r can take on the values 0, 1, 2, . . . ,m − 1. If m is a power of two,
we use the log2 m-bit binary representation of r . If m is not a power of two, we could still
use �log2 m� bits, where �x� is the smallest integer greater than or equal to x . We can reduce
the number of bits required if we use the �log2 m	-bit binary representation of r for the first
2�log2 m� − m values, and the �log2 m�-bit binary representation of r + 2�log2 m� − m for the
rest of the values.

Example 3 .5 .1 : Golomb Code

Let’s design a Golomb code for m = 5. As

�log2 5� = 3 and �log2 5	 = 2

the first 8 − 5 = 3 values of r (that is, r = 0, 1, 2) will be represented by the 2-bit binary
representation of r , and the next two values (that is, r = 3, 4) will be represented by the 3-bit
representation of r + 3. The quotient q is always represented by the unary code for q. Thus,
the codeword for 3 is 0110, and the codeword for 21 is 1111001. The codewords for n = 0,
…, 15 are shown in Table 3.22. �

It can be shown that the Golomb code is optimal for the probability model

P(n) = pn−1q, q = 1− p

when

m =
⌈
− 1

log2 p

⌉
.

3.6 Rice Codes

The Rice code was originally developed by Robert F. Rice (he called it the Rice machine)
[28,29] and later extended by Pen-Shu Yeh and Warner Miller [30]. The Rice code can be

3.6 Rice Codes 77

viewed as an adaptive Golomb code. In the Rice code, a sequence of nonnegative integers
(which might have been obtained from the preprocessing of other data) is divided into blocks
of J integers apiece. Each block is then coded using one of several options, most of which are
a form of Golomb codes. Each block is encoded with each of these options, and the option
resulting in the least number of coded bits is selected. The particular option used is indicated
by an identifier attached to the code for each block.

The easiest way to understand the Rice code is to examine one of its implementations. We
will study the implementation of the Rice code in the recommendation for lossless compression
from the Consultative Committee on Space Data Standards (CCSDS).

3.6.1 CCSDS Recommendation for Lossless
Compression

As an application of the Rice algorithm, let’s briefly look at the algorithm for lossless data
compression recommended by CCSDS. The algorithm consists of a preprocessor (modeling
step) and a binary coder (coding step). The preprocessor removes correlation from the input
and generates a sequence of nonnegative integers. This sequence has the property that smaller
values are more probable than larger values. The binary coder generates a bitstream to represent
the integer sequence. The binary coder is our main focus at this point.

The preprocessor functions as follows: given a sequence {yi }, for each yi we generate a
prediction ŷi . A simple way to generate a prediction would be to take the previous value of
the sequence to be a prediction of the current value of the sequence:

ŷi = yi−1

We will look at more sophisticated ways of generating a prediction in Chapter 7. We then
generate a sequence whose elements are the difference between yi and its predicted value ŷi :

di = yi − ŷi

The di value will have a small magnitude when our prediction is good and a large value when
it is not. Assuming an accurate modeling of the data, the former situation is more likely than
the latter. Let ymax and ymin be the largest and smallest values that the sequence {yi } takes on.
It is reasonable to assume that the value of ŷi will be confined to the range [ymin, ymax]. Define

Ti = min{ymax − ŷi , ŷi − ymin} (8)

The sequence {di } can be converted into a sequence of nonnegative integers {xi } using the
following mapping:

xi =
⎧⎨
⎩

2di 0 � di � Ti

2 |di | − 1 −Ti � di < 0
Ti + |di | otherwise

(9)

The value of xi will be small whenever the magnitude of di is small. Therefore, the value of
xi will be small with higher probability. The sequence {xi } is divided into segments with each
segment being further divided into blocks of size J . It is recommended by CCSDS that J have
a value of 16. Each block is then coded using one of the following options. The coded block
is transmitted along with an identifier that indicates which particular option was used.

78 3 H U F F M A N C O D I N G

T A B L E 3 . 23 Code used for zero block
option.

Number of All-Zero Blocks Codeword

1 1
2 01
3 001
4 0001
5 000001
6 0000001
...

...

63

630s︷ ︸︸ ︷
000 · · · 0 1

ROS 00001

� Fundamental sequence: This is a unary code. A number n is represented by a sequence
of n 0s followed by a 1 (or a sequence of n 1s followed by a 0).

� Split sample options: These options consist of a set of codes indexed by a parameter m.
The code for a k-bit number n using the mth split sample option consists of the m least
significant bits of k followed by a unary code representing the k − m most significant
bits. For example, suppose we wanted to encode the 8-bit number 23 using the third split
sample option. The 8-bit representation of 23 is 00010111. The three least significant
bits are 111. The remaining bits (00010) correspond to the number 2, which has a unary
code 001. Therefore, the code for 23 using the third split sample option is 111011. Notice
that different values of m will be preferable for different values of xi , with higher values
of m used for higher-entropy sequences.

� Second extension option: The second extension option is useful for sequences with low
entropy—when, in general, many of the values of xi will be zero. In the second extension
option, the sequence is divided into consecutive pairs of samples. Each pair is used to
obtain an index γ using the following transformation:

γ = 1

2
(xi + xi+1)(xi + xi+1 + 1)+ xi+1 (10)

and the value of γ is encoded using a unary code. The value of γ is an index to a lookup
table with each value of γ corresponding to a pair of values xi , xi+1.

� Zero block option: The zero block option is used when one or more of the blocks of xi

are zero—generally when we have long sequences of yi that have the same value. In this
case the number of zero blocks are transmitted using the code shown in Table 3.23. The
ROS code is used when the last five or more blocks in a segment are all zero.

The Rice code has been used in several space applications, and variations of the Rice code
have been proposed for a number of different applications.

3.7 Tunstall Codes 79

T A B L E 3 . 24 A 2-bit Tunstall code.

Sequence Codeword

AAA 00
AAB 01
AB 10
B 11

3.7 Tunstall Codes

Most of the variable-length codes that we look at in this book encode letters from the source
alphabet using codewords with varying numbers of bits: codewords with fewer bits for letters
that occur more frequently and codewords with more bits for letters that occur less frequently.
The Tunstall code is an important exception. In the Tunstall code, all codewords are of equal
length. However, each codeword represents a different number of letters. An example of a
2-bit Tunstall code for an alphabet A = {A, B} is shown in Table 3.24. The main advantage
of a Tunstall code is that errors in codewords do not propagate, unlike other variable-length
codes, such as Huffman codes, in which an error in one codeword will cause a series of errors
to occur.

Example 3 .7 .1 :

Let’s encode the sequence AAAB AAB AAB AAB AAA using the code in Table 3.24. Starting
at the left, we can see that the string AAA occurs in our codebook and has a code of 00. We
then code B as 11, AAB as 01, and so on. We finally end up with the code 001101010100 for
the sequence. �

The design of a code that has a fixed codeword length but a variable number of symbols
per codeword should satisfy the following conditions:

1. We should be able to parse a source output sequence into sequences of symbols that
appear in the codebook.

2. We should maximize the average number of source symbols represented by each code-
word.

In order to understand what we mean by the first condition, consider the code shown in
Table 3.25. Let’s encode the same sequence AAAB AAB AAB AAB AAA as in the previous
example using the code in Table 3.25. We first encode AAA with the code 00. We then encode
B with 11. The next three symbols are AAB. However, there are no codewords corresponding
to this sequence of symbols. Thus, this sequence is unencodable using this particular code—not
a desirable situation.

Tunstall [31] gives a simple algorithm that fulfills these conditions. The algorithm is as
follows:

Suppose we want an n-bit Tunstall code for a source that generates iid letters from an
alphabet of size N . The number of codewords is 2n . We start with the N letters of the source

80 3 H U F F M A N C O D I N G

T A B L E 3 . 25 A 2-bit (non-Tunstall) code.

Sequence Codeword

AAA 00
AB A 01
AB 10
B 11

alphabet in our codebook. Remove the entry in the codebook that has the highest probability
and add the N strings obtained by concatenating this letter with every letter in the alphabet
(including itself). This will increase the size of the codebook from N to N (N − 1). The
probabilities of the new entries will be the product of the probabilities of the letters concatenated
to form the new entry. Now look through the N + (N −1) entries in the codebook and find the
entry that has the highest probability, keeping in mind that the entry with the highest probability
may be a concatenation of symbols. Each time we perform this operation we increase the size
of the codebook by N − 1. Therefore, this operation can be performed K times, where

N + K (N − 1) � 2n

Example 3 .7 .2 : Tunstall Codes

Let us design a 3-bit Tunstall code for a memoryless source with the following alphabet:

A = {A, B,C}
P(A) = 0.6, P(B) = 0.3, P(C) = 0.1

We start out with the codebook and associated probabilities shown in Table 3.26. Since the
letter A has the highest probability, we remove it from the list and add all two-letter strings
beginning with A as shown in Table 3.27. After one iteration, we have five entries in our
codebook. Going through one more iteration will increase the size of the codebook by two,
and we will have seven entries, which is still less than the final codebook size. Going through
another iteration after that would bring the codebook size to nine, which is greater than the
maximum size of eight. Therefore, we will go through just one more iteration. Looking
through the entries in Table 3.27, the entry with the highest probability is AA. Therefore, at
the next step we remove AA and add all extensions of AA as shown in Table 3.28. The final
3-bit Tunstall code is shown in Table 3.28. �

T A B L E 3 . 26 Source alphabet and
associated probabilities.

Letter Probability

A 0.60
B 0.30
C 0.10

3.8 Applications of Huffman Coding 81

T A B L E 3 . 27 The codebook after one
iteration.

Sequence Probability

B 0.30
C 0.10
AA 0.36
AB 0.18
AC 0.06

T A B L E 3 . 28 A 3-bit Tunstall code.

Sequence Code

B 000
C 001
AB 010
AC 011
AAA 100
AAB 101
AAC 110

3.8 Applications of Huffman Coding

In this section, we describe some applications of Huffman coding. As we progress through the
book, we will describe more applications, since Huffman coding is often used in conjunction
with other coding techniques.

3.8.1 Lossless Image Compression

A simple application of Huffman coding to image compression would be to generate a Huffman
code for the set of values that any pixel may take. For monochrome images, this set usually
consists of integers from 0 to 255. Examples of such images are contained in the accompanying
data sets. The four that we will use in the examples in this book are shown in Figure 3.16.

We will make use of one of the programs from the accompanying software (see Preface)
to generate a Huffman code for each image and then encode the image using the Huffman
code. The results for the four images in Figure 3.16 are shown in Table 3.29. The Huffman
code is stored along with the compressed image as the code will be required by the decoder to
reconstruct the image.

The original (uncompressed) image representation uses 8 bits/pixel. The image consists
of 256 rows of 256 pixels, so the uncompressed representation uses 65,536 bytes. The com-
pression ratio is simply the ratio of the number of bytes in the uncompressed representation
to the number of bytes in the compressed representation. The number of bytes in the com-
pressed representation includes the number of bytes needed to store the Huffman code. Notice
that the compression ratio is different for different images. This can cause some problems in

82 3 H U F F M A N C O D I N G

F I GUR E 3 . 16 Test images.

T A B L E 3 . 29 Compression using Huffman codes on
pixel values.

Image Name Bits/Pixel Total Size (bytes) Compression Ratio

Sena 7.01 57,504 1.14
Sensin 7.49 61,430 1.07
Earth 4.94 40,534 1.62
Omaha 7.12 58,374 1.12

certain applications where it is necessary to know in advance how many bytes will be needed
to represent a particular data set.

The results in Table 3.29 are somewhat disappointing because we get a reduction of only
about 1

2 to 1 bit/pixel after compression. For some applications, this reduction is acceptable.
For example, if we were storing hundreds of thousands of images in an archive, a reduction of
1 bit/pixel saves many gigabytes in disk space. However, we can do better. Recall that when
we first talked about compression, we said that the first step for any compression algorithm
was to model the data so as to make use of the structure in the data. In this case, we have made
absolutely no use of the structure in the data.

3.8 Applications of Huffman Coding 83

T A B L E 3 . 30 Compression using Huffman codes on
pixel difference values.

Image Name Bits/Pixel Total Size (bytes) Compression Ratio

Sena 4.02 32,968 1.99
Sensin 4.70 38,541 1.70
Earth 4.13 33,880 1.93
Omaha 6.42 52,643 1.24

T A B L E 3 . 31 Compression using adaptive Huffman
codes on pixel difference values.

Image Name Bits/Pixel Total Size (bytes) Compression Ratio

Sena 3.93 32,261 2.03
Sensin 4.63 37,896 1.73
Earth 4.82 39,504 1.66
Omaha 6.39 52,321 1.25

From a visual inspection of the test images, we can clearly see that the pixels in an image
are heavily correlated with their neighbors. We could represent this structure with the crude
model x̂n = xn−1. The residual would be the difference between neighboring pixels. If we
carry out this differencing operation and use the Huffman coder on the residuals, the results are
as shown in Table 3.30. As we can see, using the structure in the data resulted in substantial
improvement.

The results in Tables 3.29 and 3.30 were obtained using a two-pass system, in which
the statistics were collected in the first pass and a Huffman table was generated using these
statistics. The image was then encoded in the second pass. Instead of using a two-pass system,
we could have used a one-pass adaptive Huffman coder. The results for this are given in
Table 3.31.

Notice that there is little difference between the performance of the adaptive Huffman code
and the two-pass Huffman coder. In addition, the fact that the adaptive Huffman coder can be
used as an online or real-time coder makes the adaptive Huffman coder a more attractive option
in many applications. However, the adaptive Huffman coder is more vulnerable to errors and
may also be more difficult to implement. In the end, the particular application will determine
which approach is more suitable.

3.8.2 Text Compression

Text compression seems natural for Huffman coding. In text, we have a discrete alphabet that,
in a given class, has relatively stationary probabilities. For example, the probability model for
a particular novel will not differ significantly from the probability model for another novel.
Similarly, the probability model for a set of C programs is not going to be much different than

84 3 H U F F M A N C O D I N G

T A B L E 3 . 32 Probabilities of occurrence of
the letters in the English
alphabet in the U.S.
Constitution.

Letter Probability Letter Probability

A 0.057305 N 0.056035
B 0.014876 O 0.058215
C 0.025775 P 0.021034
D 0.026811 Q 0.000973
E 0.112578 R 0.048819
F 0.022875 S 0.060289
G 0.009523 T 0.078085
H 0.042915 U 0.018474
I 0.053475 V 0.009882
J 0.002031 W 0.007576
K 0.001016 X 0.002264
L 0.031403 Y 0.011702
M 0.015892 Z 0.001502

T A B L E 3 . 33 Probabilities of occurrence of
the letters in the English
alphabet in this chapter.

Letter Probability Letter Probability

A 0.049855 N 0.048039
B 0.016100 O 0.050642
C 0.025835 P 0.015007
D 0.030232 Q 0.001509
E 0.097434 R 0.040492
F 0.019754 S 0.042657
G 0.012053 T 0.061142
H 0.035723 U 0.015794
I 0.048783 V 0.004988
J 0.000394 W 0.012207
K 0.002450 X 0.003413
L 0.025835 Y 0.008466
M 0.016494 Z 0.001050

the probability model for a different set of C programs. The probabilities in Table 3.32 are the
probabilities of the 26 letters (upper- and lowercase) obtained for the U.S. Constitution and
are representative of English text. The probabilities in Table 3.33 were obtained by counting
the frequency of occurrences of letters in an earlier version of this chapter. While the two
documents are substantially different, the two sets of probabilities are very much alike.

We encoded the earlier version of this chapter using Huffman codes that were created using
the probabilities of occurrence obtained from the chapter. The file size dropped from about
70,000 bytes to about 43,000 bytes with Huffman coding.

3.8 Applications of Huffman Coding 85

While this reduction in file size is useful, we could have obtained better compression if we
had first removed the structure existing in the form of correlation between the symbols in the
file. Obviously, there is a substantial amount of correlation in this text. For example, Huf is
always followed by fman! Unfortunately, this correlation is not amenable to simple numerical
models, as was the case for the image files. However, there are other somewhat more complex
techniques that can be used to remove the correlation in text files. We will look more closely
at these in Chapters 5 and 6.

3.8.3 Audio Compression

Another class of data that is very suitable for compression is CD-quality audio data. The
audio signal for each stereo channel is sampled at 44.1 kHz, and each sample is represented
by 16 bits. This means that the amount of data stored on one CD is enormous. If we want to
transmit this data, the amount of channel capacity required would be significant. Compression
is definitely useful in this case. In Table 3.34 we show, for a variety of audio material, the
file size, the entropy, the estimated compressed file size if a Huffman coder is used, and the
resulting compression ratio.

The three segments used in this example represent a wide variety of audio material, from a
symphonic piece by Mozart to a folk rock piece by Cohn. Even though the material is varied,
Huffman coding can lead to some reduction in the capacity required to transmit this material.

Note that we have only provided the estimated compressed file sizes. The estimated file
size in bits was obtained by multiplying the entropy by the number of samples in the file. We
used this approach because the samples of 16-bit audio can take on 65,536 distinct values, and,
therefore, the Huffman coder would require 65,536 distinct (variable-length) codewords. In
most applications, a codebook of this size would not be practical. There is a way of handling
large alphabets, called recursive indexing, that we will describe in Chapter 9. There is also
some recent work [11] on using a Huffman tree in which leaves represent sets of symbols with
the same probability. The codeword consists of a prefix that specifies the set followed by a
suffix that specifies the symbol within the set. This approach can accommodate relatively large
alphabets.

As with the other applications, we can obtain an increase in compression if we first remove
the structure from the data. Audio data can be modeled numerically. In later chapters we will
examine more sophisticated modeling approaches. For now, let us use the very simple model
that was used in the image-coding example; that is, each sample has the same value as the
previous sample. Using this model, we obtain the difference sequence. The entropy of the
difference sequence is shown in Table 3.35.

T A B L E 3 . 34 Huffman coding of 16-bit CD-quality audio.

Original Entropy Estimated Compressed Compression
File Name File Size (bytes) (bits) File Size (bytes) Ratio

Mozart 939,862 12.8 725,420 1.30
Cohn 402,442 13.8 349,300 1.15
Mir 884,020 13.7 759,540 1.16

86 3 H U F F M A N C O D I N G

T A B L E 3 . 35 Huffman coding of differences of 16-bit CD-quality audio.

Original Entropy Estimated Compressed Compression
File Name File Size (bytes) of Differences (bits) File Size (bytes) Ratio

Mozart 939,862 09.7 569,792 1.65
Cohn 402,442 10.4 261,590 1.54
Mir 884,020 10.9 602,240 1.47

Note that there is a further reduction in the file size: the compressed file sizes are about
60% of the original files. Further reductions can be obtained by using more sophisticated
models.

Many of the lossless audio compression schemes, including FLAC (Free Lossless Audio
Codec), Apple’s ALAC or ALE, Shorten [32], Monkey’s Audio, and the MPEG-4 ALS [33]
algorithms, use a linear predictive model to remove some of the structure from the audio
sequence and then use Rice coding to encode the residuals. Most others, such as AudioPak
[34] and OggSquish, use Huffman coding to encode the residuals.

3.9 Summary

In this chapter we began our exploration of data compression techniques with a description
of the Huffman coding technique and several other related techniques. The Huffman coding
technique and its variants are some of the most commonly used coding approaches. We will
encounter modified versions of Huffman codes when we look at compression techniques for
text, image, and video. In this chapter we described how to design Huffman codes and discussed
some of the issues related to Huffman codes. We also described how adaptive Huffman codes
work and looked briefly at some of the places where Huffman codes are used. We will see
more of these in future chapters.

To explore further applications of Huffman coding, you can use the programs huff_enc,
huff_dec, and adap_huff to generate your own Huffman codes for your favorite
applications.

Further Reading

1. A detailed and very accessible overview of Huffman codes is provided in “Huffman
Coding,” by S. Pigeon [35], in Lossless Compression Handbook.

2. Details about nonbinary Huffman codes and a much more theoretical and rigorous de-
scription of variable-length codes can be found in The Theory of Information and Coding,
Volume 3 of Encyclopedia of Mathematics and Its Application, by R.J. McEliece [9].

3. The tutorial article “Data Compression” in the September 1987 issue of ACM Computing
Surveys, by D.A. Lelewer and D.S. Hirschberg [36], along with other material, provides
a very nice brief coverage of the material in this chapter.

3.10 Projects and Problems 87

4. A somewhat different approach to describing Huffman codes can be found in Data
Compression—Methods and Theory, by J.A. Storer [37].

5. A more theoretical but very readable account of variable-length coding can be found in
Elements of Information Theory, by T.M. Cover and J.A. Thomas [38].

6. Although the book Coding and Information Theory, by R.W. Hamming [5], is mostly
about channel coding, Huffman codes are described in some detail in Chapter 4.

3.10 Projects and Problems

1. The probabilities in Tables 3.32 and 3.33 were obtained using the programcountalpha
from the accompanying software. Use this program to compare probabilities for different
types of text, C programs, messages on Internet forums, and so on. Comment on any
differences you might see and describe how you would tailor your compression strategy
for each type of text.

2. Use the programs huff_enc and huff_dec to do the following (in each case use the
codebook generated by the image being compressed):

(a) Code the Sena, Sensin, and Omaha images.
(b) Write a program to take the difference between adjoining pixels, and then use

huffman to code the difference images.
(c) Repeat (a) and (b) using adap_huff.

Report the resulting file sizes for each of these experiments and comment on the differ-
ences.

3. Using the programs huff_enc and huff_dec, code the Bookshelf1 and Sena images
using the codebook generated by the Sensin image. Compare the results with the case
where the codebook was generated by the image being compressed.

4. A source emits letters from an alphabet A = {a1, a2, a3, a4, a5} with probabilities
P(a1) = 0.15, P(a2) = 0.04, P(a3) = 0.26, P(a4) = 0.05, and P(a5) = 0.50.

(a) Calculate the entropy of this source.
(b) Find a Huffman code for this source. Item(c)Find the average length of the code in

(b) and its redundancy.

5. For an alphabet A = {a1, a2, a3, a4} with probabilities P(a1) = 0.1, P(a2) = 0.3,
P(a3) = 0.25, and P(a4) = 0.35, find a Huffman code using the following:

(a) The first procedure outlined in this chapter
(b) The minimum variance procedure

Comment on the difference in the Huffman codes.

6. In many communication applications, it is desirable that the number of 1s and 0s trans-
mitted over the channel be about the same. However, if we look at Huffman codes,

88 3 H U F F M A N C O D I N G

many of them seem to have many more 1s than 0s or vice versa. Does this mean that
Huffman coding will lead to inefficient channel usage? For the Huffman code obtained
in Problem 3, find the probability that a 0 will be transmitted over the channel. What
does this probability say about the question posed above?

7. For the source in Example 3.3.1, generate a ternary code by combining three letters in
the first and second steps and two letters in the third step. Compare with the ternary code
obtained in the example.

8. In Example 3.4.1, we showed how the tree develops when the sequence aardv is trans-
mitted. Continue this example with the next letters in the sequence, ark.

9. The Monte Carlo approach is often used for studying problems that are difficult to solve
analytically. Let’s use this approach to study the problem of buffering when using
variable-length codes. We will simulate the situation in Example 3.2.1 and study the
time to overflow and underflow as a function of the buffer size. In our program, we
will need a random number generator, a set of seeds to initialize the random number
generator, a counter B to simulate the buffer occupancy, a counter T to keep track of
the time, and a value N , which is the size of the buffer. Input to the buffer is simulated
by using the random number generator to select a letter from our alphabet. The counter
B is then incremented by the length of the codeword for the letter. The output to the
buffer is simulated by decrementing B by 2 except when T is divisible by 5. For values
of T divisible by 5, decrement B by 3 instead of 2 (why?). Keep incrementing T , each
time simulating an input and an output, until either B � N , corresponding to a buffer
overflow, or B < 0, corresponding to a buffer underflow. When either of these events
happens, record what happened and when, and restart the simulation with a new seed.
Do this with at least 100 seeds.
Perform this simulation for a number of buffer sizes (N = 100, 1000, 10,000), and the
two Huffman codes obtained for the source in Example 3.2.1. Describe your results in a
report.

10. While the variance of lengths is an important consideration when choosing between
two Huffman codes that have the same average lengths, it is not the only consideration.
Another consideration is the ability to recover from errors in the channel. In this problem
we will explore the effect of error on two equivalent Huffman codes.

(a) For the source and Huffman code of Example 3.2.1 (Table 3.5), encode the sequence

a2a1a3a2a1a2

Suppose there was an error in the channel and the first bit was received as a 0 instead
of a 1. Decode the received sequence of bits. How many characters are received in
error before the first correctly decoded character?

(b) Repeat using the code in Table 3.9.
(c) Repeat parts (a) and (b) with the error in the third bit.

3.10 Projects and Problems 89

11. (This problem was suggested by P.F. Swaszek.)

(a) For a binary source with probabilities P(0) = 0.9, P(1) = 0.1, design a Huffman
code for the source obtained by blocking m bits together, m = 1, 2, . . ., 8. Plot the
average lengths versus m. Comment on your result.

(b) Repeat for P(0) = 0.99, P(1) = 0.01.

You can use the program huff_enc to generate the Huffman codes.

12. Encode the following sequence of 16 values using the Rice code with J = 8 and one
split sample option:

32, 33, 35, 39, 37, 38, 39, 40, 40, 40, 40, 39, 40, 40, 41, 40

For prediction use the previous value in the sequence

ŷi = yi−1

and assume a prediction of zero for the first element of the sequence.

13. For an alphabet A = {a1, a2, a3}with probabilities P(a1) = 0.7, P(a2) = 0.2, P(a3) =
0.1, design a 3-bit Tunstall code.

14. Write a program for encoding images using the Rice algorithm. Use eight options,
including the fundamental sequence, five split sample options, and the two low-entropy
options. Use J = 16. For prediction use either the pixel to the left or the pixel above.
Encode the Sena image using your program. Compare your results with the results
obtained by Huffman coding the differences between pixels.

4
Arithmetic Coding

4.1 Overview

I
n the previous chapter, we saw one approach to generating variable-length codes.
In this chapter, we see another, increasingly popular, method of generating
variable-length codes called arithmetic coding. Arithmetic coding is especially
useful when dealing with sources with small alphabets, such as binary sources,
and alphabets with highly skewed probabilities. It is also a very useful approach

when, for various reasons, the modeling and coding aspects of lossless compression are to be
kept separate. In this chapter, we look at the basic ideas behind arithmetic coding, study some
of the properties of arithmetic codes, and describe an implementation.

4.2 Introduction

In the last chapter, we studied the Huffman coding method, which guarantees a coding rate R
within 1 bit of the entropy H. Recall that the coding rate is the average number of bits used
to represent a symbol from a source, and, for a given probability model, the entropy is the
lowest rate at which the source can be coded. We can tighten this bound somewhat. It has been
shown [21] that the Huffman algorithm will generate a code whose rate is within pmax+0.086
of the entropy, where pmax is the probability of the most frequently occurring symbol. We
noted in the last chapter that, in applications where the alphabet size is large, pmax is generally
quite small, and the amount of deviation from the entropy, especially in terms of a percentage
of the rate, is quite small. However, in cases where the alphabet is small and the probability

Introduction to Data Compression. DOI: http://dx.doi.org/10.1016/B978-0-12-415796-5.00004-1
© 2012 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-415796-5.00004-1

92 4 A R I T H M E T I C C O D I N G

of occurrence of the different letters is skewed, the value of pmax can be quite large, and the
Huffman code can become rather inefficient when compared to the entropy. One way to avoid
this problem is to block more than one symbol together and generate an extended Huffman
code. Unfortunately, this approach does not always work.

Example 4 .2 .1 :

Consider a source that puts out independent, identically distributed (iid) letters from the
alphabet A = {a1, a2, a3} with the probability model P(a1) = 0.95, P(a2) = 0.02, and
P(a3) = 0.03. The entropy for this source is 0.335 bits/symbol. A Huffman code for this
source is given in Table 4.1.

T A B L E 4 . 1 Huffman code for three-letter
alphabet.

Letter Codeword

a1 0
a2 11
a3 10

The average length for this code is 1.05 bits/symbol. The difference between the average
code length and the entropy, or the redundancy, for this code is 0.715 bits/symbol, which is
213% of the entropy. This means that to code this sequence, we would need more than twice
the number of bits promised by the entropy.

Recall Example 3.2.4. Here also we can group the symbols in blocks of two. The ex-
tended alphabet, probability model, and code can be obtained as shown in Table 4.2. The
average rate for the extended alphabet is 1.222 bits/symbol, which in terms of the original
alphabet is 0.611 bits/symbol. As the entropy of the source is 0.335 bits/symbol, the addi-
tional rate over the entropy is still about 82% of the entropy! By continuing to block symbols
together, we find that the redundancy drops to acceptable values when we block eight symbols
together. The corresponding alphabet size for this level of blocking is 6561! A code of this
size is impractical for a number of reasons. Storage of a code like this requires memory that
may not be available for many applications. While it may be possible to design reasonably
efficient encoders, decoding a Huffman code of this size would be a highly inefficient and time-
consuming procedure. Finally, if there were some perturbation in the statistics, and some of the
assumed probabilities changed slightly, this would have a major impact on the efficiency of the
code. �

We can see that it is more efficient to generate codewords for groups or sequences of
symbols rather than to generate a separate codeword for each symbol in a sequence. However,
this approach becomes impractical when we try to obtain Huffman codes for long sequences
of symbols. In order to find the Huffman codeword for a particular sequence of length m,
we need codewords for all possible sequences of length m. This fact causes an exponential
growth in the size of the codebook. We need a way of assigning codewords to particular

4.3 Coding a Sequence 93

T A B L E 4 . 2 Huffman code for extended
alphabet.

Letter Probability Code

a1a1 0.9025 0
a1a2 0.0190 111
a1a3 0.0285 100
a2a1 0.0190 1101
a2a2 0.0004 110011
a2a3 0.0006 110001
a3a1 0.0285 101
a3a2 0.0006 110010
a3a3 0.0009 110000

sequences without having to generate codes for all sequences of that length. The arithmetic
coding technique fulfills this requirement.

In arithmetic coding, a unique identifier or tag is generated for the sequence to be encoded.
This tag corresponds to a binary fraction, which becomes the binary code for the sequence.
In practice, the generation of the tag and the binary code are the same process. However, the
arithmetic coding approach is easier to understand if we conceptually divide the approach into
two phases. In the first phase, a unique identifier or tag is generated for a given sequence
of symbols. This tag is then given a unique binary code. A unique arithmetic code can
be generated for a sequence of length m without the need for generating codewords for all
sequences of length m. This is unlike the situation for Huffman codes. In order to generate
a Huffman code for a sequence of length m, where the code is not a concatenation of the
codewords for the individual symbols, we need to obtain the Huffman codes for all sequences
of length m.

4.3 Coding a Sequence

In order to distinguish a sequence of symbols from another sequence of symbols we need to
tag it with a unique identifier. One possible set of tags for representing sequences of symbols
are the numbers in the unit interval [0,1). Because the number of numbers in the unit interval
is infinite, it should be possible to assign a unique tag to each distinct sequence of symbols. In
order to do this, we need a function that will map sequences of symbols into the unit interval.
A function that maps random variables, and sequences of random variables, into the unit
interval is the cumulative distribution function (cdf) of the random variable associated with
the source. This is the function we will use in developing the arithmetic code. (If you are not
familiar with random variables and cumulative distribution functions or need to refresh your
memory, you may wish to look at Appendix A.)

The use of the cumulative distribution function to generate a binary code for a sequence has a
rather interesting history. Shannon, in his original 1948 paper [3], mentioned an approach using

94 4 A R I T H M E T I C C O D I N G

the cumulative distribution function when describing what is now known as the Shannon-Fano
code. Peter Elias, another member of Fano’s first information theory class at MIT (this class
also included Huffman), came up with a recursive implementation for this idea. However, he
never published it, and we only know about it through a mention in a 1963 book on information
theory by Abramson [39]. Abramson described this coding approach in a note to a chapter. In
another book on information theory by Jelinek [40] in 1968, the idea of arithmetic coding is
further developed, this time in an appendix, as an example of variable-length coding. Modern
arithmetic coding owes its birth to the independent discoveries in 1976 of Pasco [41] and
Rissanen [42] who solved the problem of finite precision. Finally, several papers appeared that
provided practical arithmetic coding algorithms, the most well known of which is the paper
by Rissanen and Langdon [43].

Before we begin our development of the arithmetic code, we need to establish some nota-
tion. Recall that a random variable maps the outcomes, or sets of outcomes, of an experiment
to values on the real number line. For example, in a coin-tossing experiment, the random
variable could map a head to zero and a tail to one (or it could map a head to 2367.5 and a tail
to −192). To use this technique, we need to map the source symbols or letters to numbers.
For convenience, in the discussion in this chapter we will use the mapping

X (ai) = i ai ∈ A (1)

where A = {a1, a2, . . . , am} is the alphabet for a discrete source and X is a random variable.
This mapping means that given a probability model P for the source, we also have a probability
density function for the random variable

P(X = i) = P(ai)

and the cumulative density function can be defined as

FX (i) =
i∑

k=1

P(X = k)

Notice that for each symbol ai with a nonzero probability, we have a distinct value of FX (i).
We will use this fact in what follows to develop the arithmetic code. Our development may be
more detailed than what you are looking for, at least on the first reading. If so, skip or skim
Sections 4.3.1–4.4.1 and go directly to Section 4.4.2.

4.3.1 Generating a Tag

The procedure for generating the tag works by reducing the size of the interval in which the
tag resides as more and more elements of the sequence are received.

We start out by first dividing the unit interval into subintervals of the form [FX (i − 1),
FX (i)), i = 1, . . ., m. Because the minimum value of the cdf is zero and the maximum value
is one, this exactly partitions the unit interval. We associate the subinterval [FX (i−1), FX (i))

4.3 Coding a Sequence 95

with the symbol ai . The appearance of the first symbol in the sequence restricts the interval
containing the tag to one of these subintervals. Suppose the first symbol was ak . Then the
interval containing the tag value will be the subinterval [FX (k − 1), FX (k)). This subinterval
is now partitioned in exactly the same proportions as the original interval. That is, the j th
interval corresponding to the symbol a j is given by [FX (k − 1) + FX (j − 1) × (FX (k) −
FX (k − 1), FX (k − 1) + FX (j) × (FX (k) − FX (k − 1))]. So if the second symbol in the
sequence is a j , then the interval containing the tag value becomes [FX (k − 1)+ FX (j − 1)×
(FX (k)− FX (k− 1), FX (k− 1)+ FX (j)× (FX (k)− FX (k− 1)))]. Each succeeding symbol
causes the tag to be restricted to a subinterval that is further partitioned in the same proportions.
This process can be more clearly understood through an example.

Example 4 .3 .1 :

Consider a three-letter alphabet A = {a1, a2, a3} with P(a1) = 0.7, P(a2) = 0.1, and
P(a3) = 0.2. Using the mapping of Equation (1), FX (1) = 0.7, FX (2) = 0.8, and FX (3) = 1.
This partitions the unit interval as shown in Figure 4.1.

The partition in which the tag resides depends on the first symbol of the sequence being
encoded. For example, if the first symbol is a1, the tag lies in the interval [0.0, 0.7); if the
first symbol is a2, the tag lies in the interval [0.7, 0.8); and if the first symbol is a3, the tag
lies in the interval [0.8, 1.0). Once the interval containing the tag has been determined, the
rest of the unit interval is discarded, and this restricted interval is again divided in the same
proportions as the original interval. Suppose the first symbol was a1. The tag would be con-
tained in the subinterval [0.0, 0.7). This subinterval would then be subdivided into exactly the
same proportions as the original interval, yielding the subintervals [0.0, 0.49), [0.49, 0.56), and
[0.56, 0.7). The first partition, as before, would correspond to the symbol a1, the second parti-
tion would correspond to the symbol a2, and the third partition [0.56, 0.7) would correspond to

1.0

0.8
a2

a3

a1

0.7

0.0

0.70

0.56
a2

a3

a1

0.49

0.00

0.560

0.546
a2

a3

a1

0.539

0.490

0.5600

0.5572
a2

a3

a1

0.5558

0.5460

F I GUR E 4 . 1 Restricting the interval containing the tag for the input sequence
{a1, a2, a3, . . .}.

96 4 A R I T H M E T I C C O D I N G

the symbol a3. Suppose the second symbol in the sequence was a2. The tag value would then
be restricted to lie in the interval [0.49, 0.56). We would then partition this interval in the same
proportion as the original interval to obtain the subintervals [0.49, 0.539) corresponding to
the symbol a1, [0.539, 0.546) corresponding to the symbol a2, and [0.546, 0.56) correspond-
ing to the symbol a3. If the third symbol was a3, the tag would be restricted to the interval
[0.546, 0.56), which could then be subdivided further. This process is described graphically
in Figure 4.1.

Notice that the appearance of each new symbol restricts the tag to a subinterval that is
disjoint from any other subinterval that may have been generated using this process. For the
sequence beginning with a1, a2, a3, . . ., by the time the third symbol a3 is received, the tag
has been restricted to the subinterval [0.546, 0.56). If the third symbol had been a1 instead
of a3, the tag would have resided in the subinterval [0.49, 0.539), which is disjoint from the
subinterval [0.546, 0.56). Even if the two sequences are identical from this point on (one
starting with a1, a2, a3 and the other beginning with a1, a2, a1), the tag interval for the two
sequences will always be disjoint. �

As we can see, the interval in which the tag for a particular sequence resides is disjoint
from all intervals in which the tag for any other sequence may reside. As such, any member
of this interval can be used as a tag. One popular choice is the lower limit of the interval;
another possibility is the midpoint of the interval. For the moment, let’s use the midpoint of
the interval as the tag.

In order to see how the tag generation procedure works mathematically, we start with
sequences of length one. Suppose we have a source that puts out symbols from some alphabet
A = {a1, a2, . . . , am}. We can map the symbols {ai } to real numbers {i}. Define T X (ai) as

T X (ai) =
∑i−1

k=1
P(X = k)+ 1

2
P(X = i) (2)

= FX (i − 1)+ 1

2
P(X = i) (3)

For each ai , T X (ai) will have a unique value. This value can be used as a unique tag for ai .

Example 4 .3 .2 :

Consider a simple dice-throwing experiment with a fair die. The outcomes of a roll of the die
can be mapped into the numbers {1, 2, . . . , 6}. For a fair die

P(X = k) = 1

6
for k = 1, 2, . . . , 6

Therefore, using (3) we can find the tag for X = 2 as

T X (2) = P(X = 1)+ 1

2
P(X = 2) = 1

6
+ 1

12
= 0.25

4.3 Coding a Sequence 97

and the tag for X = 5 as

T X (5) =
4∑

k=1

P(X = k)+ 1

2
P(X = 5) = 0.75

The tags for all other outcomes are shown in Table 4.3 where the overbar denotes repeating
decimal values.

T A B L E 4 . 3 Toss for outcomes in a
dice-throwing experment.

Outcome Tag

1 0.0833
3 0.4166
4 0.5833
6 0.9166

�

As we can see from the example above, giving a unique tag to a sequence of length one
is an easy task. This approach can be extended to longer sequences by imposing an order on
the sequences. We need to impose an order on the sequences because we will assign a tag to
a particular sequence xi as

T
(m)
X (xi) =

∑
y<xi

P(y)+ 1

2
P(xi) (4)

where y < x means that y precedes x in the ordering, and the superscript denotes the length
of the sequence.

An easy ordering to use is lexicographic ordering. In lexicographic ordering, the ordering
of letters in an alphabet induces an ordering on the words constructed from this alphabet. The
ordering of words in a dictionary is a good (maybe the original) example of lexicographic
ordering. Dictionary order is sometimes used as a synonym for lexicographic order.

Example 4 .3 .3 :

We can extend Example 4.3.2 so that the sequence consists of two rolls of a die. Using the
ordering scheme described above, the outcomes (in order) would be 11, 12, 13, . . . , 66. The
tags can then be generated using Equation (4). For example, the tag for the sequence 1 3
would be

T X (13) = P(x = 11)+ P(x = 12)+ 1/2P(x = 13) (5)
= 1/36+ 1/36+ 1/2(1/36) (6)
= 5/72 (7)

�

98 4 A R I T H M E T I C C O D I N G

Notice that to generate the tag for the sequence 1 3 we did not have to generate a tag for
every other possible message. However, based on Equation (4) and Example 4.3.3, we need
to know the probability of every sequence that is “less than” the sequence for which the tag
is being generated. The requirement that the probability of all sequences of a given length
be explicitly calculated can be as prohibitive as the requirement that we have codewords for
all sequences of a given length. Fortunately, we shall see that to compute a tag for a given
sequence of symbols, all we need is the probability of individual symbols, or the probability
model.

Recall that, given our construction, the interval containing the tag value for a given sequence
is disjoint from the intervals containing the tag values of all other sequences. This means that
any value in this interval would be a unique identifier for xi . Therefore, to fulfill our initial
objective of uniquely identifying each sequence, it would be sufficient to compute the upper
and lower limits of the interval containing the tag and select any value in that interval. The
upper and lower limits can be computed recursively as shown in the following example.

Example 4 .3 .4 :

We will use the alphabet of Example 4.3.2 and find the upper and lower limits of the interval
containing the tag for the sequence 3 2 2. Assume that we are observing 3 2 2 in a sequential
manner; that is, first we see 3, then 2, and then 2 again. After each observation, we will
compute the upper and lower limits of the interval containing the tag of the sequence observed
to that point. We will denote the upper limit by u(n) and the lower limit by l(n), where n denotes
the length of the sequence.

We first observe 3. Therefore,

u(1) = FX (3), l(1) = FX (2)

We then observe 2, and the sequence is x = 32. Therefore,

u(2) = F (2)X (32), l(2) = F (2)X (31)

We can compute these values as follows:

F (2)X (32) = P(x = 11)+ P(x = 12)+ · · · + P(x = 16)

+P(x = 21)+ P(x = 22)+ · · · + P(x = 26)

+P(x = 31)+ P(x = 32)

But,
i=6∑
i=1

P(x = ki) =
i=6∑
i=1

P(x1 = k, x2 = i) = P(x1 = k)

where x = x1x2. Therefore,

F (2)X (32) = P(x1 = 1)+ P(x1 = 2)+ P(x = 31)+ P(x = 32)

= FX (2)+ P(x = 31)+ P(x = 32)

4.3 Coding a Sequence 99

However, assuming each roll of the dice is independent of the others,

P(x = 31) = P(x1 = 3)P(x2 = 1)

and
P(x = 32) = P(x1 = 3)P(x2 = 2)

Therefore,

P(x = 31)+ P(x = 32) = P(x1 = 3)(P(x2 = 1)+ P(x2 = 2))

= P(x1 = 3)FX (2)

Noting that
P(x1 = 3) = FX (3)− FX (2)

we can write
P(x = 31)+ P(x = 32) = (FX (3)− FX (2))FX (2)

and
F (2)X (32) = FX (2)+ (FX (3)− FX (2))FX (2)

We can also write this as
u(2) = l(1) + (u(1) − l(1))FX (2)

We can similarly show that

F (2)X (31) = FX (2)+ (FX (3)− FX (2))FX (1)

or
l(2) = l(1) + (u(1) − l(1))FX (1)

The third element of the observed sequence is 2, and the sequence is x = 322. The upper and
lower limits of the interval containing the tag for this sequence are

u(3) = F (3)X (322), l(3) = F (3)X (321)

Using the same approach as above, we find that

F (3)X (322) = F (2)X (31)+ (F (2)X (32)− F (2)X (31))FX (2) (8)

F (3)X (321) = F (2)X (31)+ (F (2)X (32)− F (2)X (31))FX (1)

or

u(3) = l(2) + (u(2) − l(2))FX (2)

l(3) = l(2) + (u(2) − l(2))FX (1) �

100 4 A R I T H M E T I C C O D I N G

In general, we can show that for any sequence x = (x1x2 . . . xn)

l(n) = l(n−1) + (u(n−1) − l(n−1))FX (xn − 1) (9)

u(n) = l(n−1) + (u(n−1) − l(n−1))FX (xn) (10)

Notice that throughout this process we did not explicitly need to compute any joint probabilities.
If we are using the midpoint of the interval for the tag, then

T X (x) = u(n) + l(n)

2
Therefore, the tag for any sequence can be computed in a sequential fashion. The only infor-
mation required by the tag generation procedure is the cdf of the source, which can be obtained
directly from the probability model.

Example 4 .3 .5 : Generating a Tag

Consider the source in Example 3.2.4. Define the random variable X (ai) = i . Suppose we
wish to encode the sequence 1 3 2 1. From the probability model, we know that

FX (k) = 0, k � 0, FX (1) = 0.8, FX (2) = 0.82, FX (3) = 1, FX (k) = 1, k > 3

We can use Equations (9) and (10) sequentially to determine the lower and upper limits of the
interval containing the tag. Initializing u(0) to 1, and l(0) to 0, the first element of the sequence,
1, results in the following update:

l(1) = 0+ (1− 0)0 = 0

u(1) = 0+ (1− 0)(0.8) = 0.8

That is, the tag is contained in the interval [0, 0.8). The second element of the sequence is 3.
Using the update equations we get

l(2) = 0+ (0.8− 0)FX (2) = 0.8× 0.82 = 0.656

u(2) = 0+ (0.8− 0)FX (3) = 0.8× 1.0 = 0.8

Therefore, the interval containing the tag for the sequence 1 3 is [0.656, 0.8). The third element,
2, results in the update equations

l(3) = 0.656+ (0.8− 0.656)FX (1) = 0.656+ 0.144× 0.8 = 0.7712

u(3) = 0.656+ (0.8− 0.656)FX (2) = 0.656+ 0.144× 0.82 = 0.77408

and the interval for the tag is [0.7712, 0.77408). Continuing with the last element, the upper
and lower limits of the interval containing the tag are

l(4) = 0.7712+ (0.77408− 0.7712)FX (0) = 0.7712+ 0.00288× 0.0 = 0.7712

u(4) = 0.7712+ (0.77408− 0.1152)FX (1) = 0.7712+ 0.00288× 0.8 = 0.773504

and the tag for the sequence 1 3 2 1 can be generated as

T X (1321) = 0.7712+ 0.773504

2
= 0.772352 �

4.3 Coding a Sequence 101

Notice that each succeeding interval is contained in the preceding interval. If we examine
the equations used to generate the intervals, we see that this will always be the case. This
property will be used to decipher the tag. An undesirable consequence of this process is that
the intervals get smaller and smaller and require higher precision as the sequence gets longer.
To combat this problem, a rescaling strategy needs to be adopted. In Section 4.4.2, we will
describe a simple rescaling approach that takes care of this problem.

4.3.2 Deciphering the Tag

We have spent a considerable amount of time showing how a sequence can be assigned a
unique tag, given a minimal amount of information. However, the tag is useless unless we can
also decipher it with minimal computational cost. Fortunately, deciphering the tag is as simple
as generating it. We can see this most easily through an example.

Example 4 .3 .6 : Deciphering a Tag

Given the tag obtained in Example 4.3.5, let’s try to obtain the sequence represented by the
tag. We will try to mimic the encoder in order to do the decoding. The tag value is 0.772352.
The interval containing this tag value is a subset of every interval obtained in the encoding
process. Our decoding strategy will be to decode the elements in the sequence in such a way
that the upper and lower limits u(k) and l(k) will always contain the tag value for each k. We
start with l(0) = 0 and u(0) = 1. After decoding the first element of the sequence x1, the upper
and lower limits become

l(1) = 0+ (1− 0)FX (x1 − 1) = FX (x1 − 1)

u(1) = 0+ (1− 0)FX (x1) = FX (x1)

In other words, the interval containing the tag is [FX (x1 − 1), FX (x1)). We need to find the
value of x1 for which 0.772352 lies in the interval [FX (x1 − 1), FX (x1)). If we pick x1 = 1,
the interval is [0, 0.8). If we pick x1 = 2, the interval is [0.8, 0.82), and if we pick x1 = 3, the
interval is [0.82, 1.0). As 0.772352 lies in the interval [0.0, 0.8], we choose x1 = 1. We now
repeat this procedure for the second element x2, using the updated values of l(1) and u(1):

l(2) = 0+ (0.8− 0)FX (x2 − 1) = 0.8FX (x2 − 1)

u(2) = 0+ (0.8− 0)FX (x2) = 0.8FX (x2)

If we pick x2 = 1, the updated interval is [0, 0.64), which does not contain the tag. Therefore,
x2 cannot be 1. If we pick x2 = 2, the updated interval is [0.64, 0.656), which also does not
contain the tag. If we pick x2 = 3, the updated interval is [0.656, 0.8), which does contain
the tag value of 0.772352. Therefore, the second element in the sequence is 3. Knowing the
second element of the sequence, we can update the values of l(2) and u(2) and find the element
x3, which will give us an interval containing the tag:

l(3) = 0.656+ (0.8− 0.656)FX (x3 − 1) = 0.656+ 0.144× FX (x3 − 1)

u(3) = 0.656+ (0.8− 0.656)FX (x3) = 0.656+ 0.144× FX (x3)

102 4 A R I T H M E T I C C O D I N G

However, the expressions for l(3) and u(3) are cumbersome in this form. To make the
comparisons more easily, we could subtract the value of l(2) from both the limits and the tag.
That is, we find the value of x3 for which the interval [0.144× FX (x3 − 1), 0.144× FX (x3))

contains 0.772352 − 0.656 = 0.116352. Or, we could make this even simpler and divide the
residual tag value of 0.116352 by 0.144 to get 0.808 and find the value of x3 for which 0.808
falls in the interval [FX (x3 − 1), FX (x3)). We can see that the only value of x3 for which this
is possible is 2. Substituting 2 for x3 in the update equations, we can update the values of l(3)

and u(3). We can now find the element x4 by computing the upper and lower limits as

l(4) = 0.7712+ (0.77408− 0.7712)FX (x4 − 1) = 0.7712+ 0.00288× FX (x4 − 1)

u(4) = 0.7712+ (0.77408− 0.1152)FX (x4) = 0.7712+ 0.00288× FX (x4)

Again, we can subtract l(3) from the tag to get 0.772352 − 0.7712 = 0.001152 and find
the value of x4 for which the interval [0.00288 × FX (x4 − 1), 0.00288 × FX (x4)) contains
0.001152. To make the comparisons simpler, we can divide the residual value of the tag by
0.00288 to get 0.4 and find the value of x4 for which 0.4 is contained in [FX (x4−1), FX (x4)).
We can see that the value is x4 = 1, and we have decoded the entire sequence. Note that we
knew the length of the sequence beforehand, and, therefore, we knew when to stop. �

From the example above, we can deduce an algorithm that can decipher the tag.

1. Initialize l(0) = 0 and u(0) = 1.
2. For each k find t∗ = (tag − l(k−1))/(u(k−1) − l(k−1)).
3. Find the value of xk for which FX (xk − 1) � t∗ < FX (xk).
4. Update u(k) and l(k).
5. Continue until the entire sequence has been decoded.

There are two ways to know when the entire sequence has been decoded. The decoder may
know the length of the sequence, in which case the deciphering process is stopped when that
many symbols have been obtained. The second way to know if the entire sequence has been
decoded is that a particular symbol is denoted as an end-of-transmission symbol. The decoding
of this symbol would bring the decoding process to a close.

4.4 Generating a Binary Code

Using the algorithm described in the previous section, we can obtain a tag for a given sequence
x. However, the binary code for the sequence is what we really want to know. We want to find
a binary code that will represent the sequence x in a unique and efficient manner.

We have said that the tag forms a unique representation for the sequence. This means that
the binary representation of the tag forms a unique binary code for the sequence. However,
we have placed no restrictions on what values in the unit interval the tag can take. The binary
representation of some of these values would be infinitely long, in which case, although the
code is unique, it may not be efficient. To make the code efficient, the binary representation

4.4 Generating a Binary Code 103

has to be truncated. But if we truncate the representation, is the resulting code still unique?
Finally, is the resulting code efficient? How far or how close is the average number of bits per
symbol from the entropy? We will examine all these questions in the next section.

Even if we show the code to be unique and efficient, the method described to this point is
highly impractical. In Section 4.4.2, we will describe a more practical algorithm for generating
the arithmetic code for a sequence. We will give an integer implementation of this algorithm
in Section 4.4.3.

4.4.1 Uniqueness and Efficiency of the Arithmetic Code

T X (x) is a number in the interval [0, 1). A binary code for T X (x) can be obtained by taking
the binary representation of this number and truncating it to l(x) = �log 1

P(x)� + 1 bits.
Recall that the binary representations of decimal numbers in the interval [0, 1) are obtained
as the negative powers of two. The decimal equivalent of the binary number .b1b2b3 . . . bk is
b12−1 + b22−2 + b32−3 + · · · + bk2−k . Thus .101 = 2−1 + 2−3.

Example 4 .4 .1 :

Consider a source A that generates letters from an alphabet of size four,

A = {a1, a2, a3, a4}
with probabilities

P(a1) = 1

2
, P(a2) = 1

4
, P(a3) = 1

8
, P(a4) = 1

8

A binary code for this source can be generated as shown in Table 4.4. The quantity T x is
obtained using Equation (3). The binary representation of T x is truncated to �log 1

P(x)� + 1
bits to obtain the binary code.

T A B L E 4 . 4 A binary code for a four-letter alphabet.

Symbol FX T X In Binary �log 1
P(x) � + 1 Code

1 .500 .2500 .0100 2 01
2 .750 .6250 .1010 3 101
3 .875 .8125 .1101 4 1101
4 1.000 .9375 .1111 4 1111

�

We will show that a code obtained in this fashion is a uniquely decodable code. We first
show that this code is unique, and then we will show that it is uniquely decodable. We will
use �T X (x)�l(x) to denote the truncation of T X (x) to l(x) bits.

104 4 A R I T H M E T I C C O D I N G

Recall that while we have been using T X (x) as the tag for a sequence x, any number
in the interval [FX (x − 1), FX (x)) would be a unique identifier. Therefore, to show that
the code �T X (x)�l(x) is unique, all we need to do is show that it is contained in the interval
[FX (x − 1), FX (x)). Because we are truncating the binary representation of T X (x) to obtain
�T X (x)�l(x), �T X (x)�l(x) is less than or equal to T X (x). More specifically,

0 � T X (x)− �T X (x)�l(x) < 1

2l(x) (11)

As T X (x) is strictly less than FX (x),

�T X (x)�l(x) < FX (x)

To show that �T X (x)�l(x) � FX (x − 1), note that

1

2l(x) =
1

2�log 1
P(x) �+1

<
1

2log 1
P(x)+1

= 1

2 1
P(x)

= P(x)
2

From (3) we have
P(x)

2
= T X (x)− FX (x − 1)

Therefore,

T X (x)− FX (x − 1) >
1

2l(x) (12)

Combining (11) and (12), we have

�T X (x)�l(x) > FX (x − 1) (13)

Therefore, the code �T X (x)�l(x) is a unique representation of T X (x).
To show that this code is uniquely decodable, we will show that the code is a prefix code;

that is, no codeword is a prefix of another codeword. Because a prefix code is always uniquely
decodable, this is enough to show that an arithmetic code is uniquely decodable. Given a
number a in the interval [0, 1) with an n-bit binary representation [b1b2 . . . bn], for any other
number b to have a binary representation with [b1b2 . . . bn] as the prefix, b has to lie in the
interval [a, a + 1

2n). (See Problem 1 at the end of this chapter.)
If x and y are two distinct sequences, we know that �T X (x)�l(x) and �T X (y)�l(y) lie in two

disjoint intervals, [FX (x − 1), FX (x)) and [FX (y − 1), FX (y)). Therefore, if we can show
that for any sequence x the interval [�T X (x)�l(x), �T X (x)�l(x) + 1

2l(x)) lies entirely within the
interval [FX (x − 1), FX (x)), the code for one sequence cannot be the prefix for the code for
another sequence.

4.4 Generating a Binary Code 105

We have already shown that �T X (x)�l(x) > FX (x − 1). Therefore, all we need to do is
show that

FX (x)− �T X (x)�l(x) > 1

2l(x)

This is true because

FX (x)− �T X (x)�l(x) > FX (x)− T X (x)

= P(x)
2

>
1

2l(x)

This code is prefix free; and by taking the binary representation of T X (x) and truncating it to
l(x) = �log 1

P(x)� + 1 bits, we obtain a uniquely decodable code.

Although the code is uniquely decodable, how efficient is it? We have shown that the
number of bits l(x) required to represent FX (x) with enough accuracy such that the code for
different values of x is distinct is

l(x) =
⌈

log
1

P(x)

⌉
+ 1

Remember that l(x) is the number of bits required to encode the entire sequence x. So, the
average length of an arithmetic code for a sequence of length m is given by

lA(m) =
∑

P(x)l(x) (14)

=
∑

P(x)
[⌈

log
1

P(x)

⌉
+ 1

]
(15)

<
∑

P(x)
[

log
1

P(x)
+ 1+ 1

]
(16)

= −
∑

P(x) log P(x)+ 2
∑

P(x) (17)

= H(Xm)+ 2 (18)

Given that the average length is always greater than the entropy, the bounds on lA(m) are

H(X (m)) � lA(m) < H(X (m))+ 2.

The length per symbol, lA, or rate of the arithmetic code is
lA(m)

m . Therefore, the bounds on lA

are
H(X (m))

m
� lA <

H(X (m))

m
+ 2

m
(19)

We have shown in Chapter 3 that for iid sources

H(X (m)) = m H(X) (20)

Therefore,

H(X) � lA < H(X)+ 2

m
(21)

By increasing the length of the sequence, we can guarantee a rate as close to the entropy as we
desire.

106 4 A R I T H M E T I C C O D I N G

4.4.2 Algorithm Implementation

In Section 4.3.1, we developed a recursive algorithm for the boundaries of the interval con-
taining the tag for the sequence being encoded as

l(n) = l(n−1) + (u(n−1) − l(n−1))FX (xn − 1) (22)

u(n) = l(n−1) + (u(n−1) − l(n−1))FX (xn) (23)

where xn is the value of the random variable corresponding to the nth observed symbol, l(n)

is the lower limit of the tag interval at the nth iteration, and u(n) is the upper limit of the tag
interval at the nth iteration.

Before we can implement this algorithm, there is one major problem we have to resolve.
Recall that the rationale for using numbers in the interval [0, 1) as a tag was that there are an
infinite number of numbers in this interval. However, in practice, the number of numbers that
can be uniquely represented on a machine is limited by the maximum number of digits (or
bits) we can use for representing the number. Consider the values of l(n) and u(n) in Example
4.3.5. As n gets larger, these values come closer and closer together. This means that in order
to represent all of the subintervals uniquely, we need increasing precision as the length of the
sequence increases. In a system with finite precision, the two values are bound to converge,
and we will lose all information about the sequence from the point at which the two values
converged. To avoid this situation, we need to rescale the interval. However, we have to
do it in a way that will preserve the information that is being transmitted. We would also
like to perform the encoding incrementally—that is, to transmit portions of the code as the
sequence is being observed, rather than wait until the entire sequence has been observed before
transmitting the first bit. The algorithm we describe in this section takes care of the problems
of synchronized rescaling and incremental encoding.

As the interval becomes narrower, we have three possibilities:

1. The interval is entirely confined to the lower half of the unit interval [0, 0.5).
2. The interval is entirely confined to the upper half of the unit interval [0.5, 1.0).
3. The interval straddles the midpoint of the unit interval.

We will look at the third case a little later in this section. First, let us examine the first two
cases. Once the interval is confined to either the upper or lower half of the unit interval, it
is forever confined to that half of the unit interval. The most significant bit of the binary
representation of all numbers in the interval [0, 0.5) is 0, and the most significant bit of the
binary representation of all numbers in the interval [0.5, 1] is 1. Therefore, once the interval
gets restricted to either the upper or lower half of the unit interval, the most significant bit of
the tag is fully determined. Thus, without waiting to see what the rest of the sequence looks
like, we can indicate to the decoder whether the tag is confined to the upper or lower half of
the unit interval by sending a 1 for the upper half and a 0 for the lower half. The bit that we
send is also the first bit of the tag.

Once the encoder and decoder know which half contains the tag, we can ignore the half of
the unit interval not containing the tag and concentrate on the half containing the tag. As our
arithmetic is of finite precision, we can do this best by mapping the half interval containing

4.4 Generating a Binary Code 107

the tag to the full [0,1) interval. The mappings required are

E1 : [0, 0.5)→ [0, 1); E1(x) = 2x (24)
E2 : [0.5, 1)→ [0, 1); E2(x) = 2(x − 0.5) (25)

As soon as we perform either of these mappings, we lose all information about the most
significant bit. However, this should not matter because we have already sent that bit to the
decoder. We can now continue with this process, generating another bit of the tag every time
the tag interval is restricted to either half of the unit interval. This process of generating the
bits of the tag without waiting to see the entire sequence is called incremental encoding.

Example 4 .4 .2 : Tag Generation with Scaling

Let’s revisit Example 4.3.5. Recall that we wish to encode the sequence 1321. The probability
model for the source is P(a1) = 0.8, P(a2) = 0.02, P(a3) = 0.18. Initializing u(0) to 1, and
l(0) to 0, the first element of the sequence, 1, results in the following update:

l(1) = 0+ (1− 0)0 = 0

u(1) = 0+ (1− 0)(0.8) = 0.8

The interval [0, 0.8) is not confined to either the upper or lower half of the unit interval, so we
proceed.

The second element of the sequence is 3. This results in the update

l(2) = 0+ (0.8− 0)FX (2) = 0.8× 0.82 = 0.656

u(2) = 0+ (0.8− 0)FX (3) = 0.8× 1.0 = 0.8

The interval [0.656, 0.8) is contained entirely in the upper half of the unit interval, so we send
the binary code 1 and rescale:

l(2) = 2× (0.656− 0.5) = 0.312

u(2) = 2× (0.8− 0.5) = 0.6

The third element, 2, results in the following update equations:

l(3) = 0.312+ (0.6− 0.312)FX (1) = 0.312+ 0.288× 0.8 = 0.5424

u(3) = 0.312+ (0.8− 0.312)FX (2) = 0.312+ 0.288× 0.82 = 0.54816

The interval for the tag is [0.5424,0.54816), which is contained entirely in the upper half of
the unit interval. We transmit a 1 and go through another rescaling:

l(3) = 2× (0.5424− 0.5) = 0.0848

u(3) = 2× (0.54816− 0.5) = 0.09632

This interval is contained entirely in the lower half of the unit interval, so we send a 0 and use
the E1 mapping to rescale:

l(3) = 2× (0.0848) = 0.1696

u(3) = 2× (0.09632) = 0.19264

108 4 A R I T H M E T I C C O D I N G

The interval is still contained entirely in the lower half of the unit interval, so we send another
0 and go through another rescaling:

l(3) = 2× (0.1696) = 0.3392

u(3) = 2× (0.19264) = 0.38528

Because the interval containing the tag remains in the lower half of the unit interval, we send
another 0 and rescale one more time:

l(3) = 2× 0.3392 = 0.6784

u(3) = 2× 0.38528 = 0.77056

Now the interval containing the tag is contained entirely in the upper half of the unit interval.
Therefore, we transmit a 1 and rescale using the E2 mapping:

l(3) = 2× (0.6784− 0.5) = 0.3568

u(3) = 2× (0.77056− 0.5) = 0.54112

At each stage, we are transmitting the most significant bit that is the same in both the
upper and lower limit of the tag interval. If the most significant bits in the upper and lower
limit are the same, then the value of this bit will be identical to the most significant bit of the
tag. Therefore, by sending the most significant bits of the upper and lower endpoint of the tag
whenever they are identical, we are actually sending the binary representation of the tag. The
rescaling operations can be viewed as left shifts, which make the second most significant bit
the most significant bit.

Continuing with the last element, the upper and lower limits of the interval containing the
tag are

l(4) = 0.3568+ (0.54112− 0.3568)FX (0) = 0.3568+ 0.18422× 0.0 = 0.3568

u(4) = 0.3568+ (0.54112− 0.3568)FX (1) = 0.3568+ 0.18422× 0.8 = 0.504256

At this point, if we wished to stop encoding, all we need to do is inform the receiver of the
final status of the tag value. We can do so by sending the binary representation of any value in
the final tag interval. Generally, this value is taken to be l(n). In this particular example, it is
convenient to use the value of 0.5. The binary representation of 0.5 is .10 Thus, we would
transmit a 1 followed by as many 0s as required by the word length of the implementation
being used. �

Notice that the tag interval size at this stage is approximately 64 times the size it was
when we were using the unmodified algorithm. Therefore, this technique solves the finite
precision problem. As we shall soon see, the bits that we have been sending with each
mapping constitute the tag itself, which satisfies our desire for incremental encoding. The
binary sequence generated during the encoding process in the previous example is 1100011.
We could simply treat this as the binary expansion of the tag. A binary number .1100011
corresponds to the decimal number 0.7734375. Looking back to Example 4.3.5, notice that

4.4 Generating a Binary Code 109

this number lies within the final tag interval. Therefore, we could use this to decode the
sequence.

However, we would like to do incremental decoding as well as incremental encoding. This
raises three questions:

1. How do we start decoding?
2. How do we continue decoding?
3. How do we stop decoding?

The second question is the easiest to answer. Once we have started decoding, all we have to
do is mimic the encoder algorithm. That is, once we have started decoding, we know how
to continue decoding. To begin the decoding process, we need to have enough information
to decode the first symbol unambiguously. In order to guarantee unambiguous decoding,
the number of bits received should point to an interval smaller than the smallest tag interval.
Based on the smallest tag interval, we can determine how many bits we need before we start
the decoding procedure. We will demonstrate this procedure in Example 4.4.4. First let’s look
at other aspects of decoding using the message from Example 4.4.2.

Example 4 .4 .3 :

We will use a word length of 6 for this example. Note that because we are dealing with real
numbers, this word length may not be sufficient for a different sequence. As in the encoder, we
start with initializing u(0) to 1 and l(0) to 0. The sequence of received bits is 110001100 . . . 0.
The first 6 bits correspond to a tag value of 0.765625, which means that the first element of
the sequence is 1, resulting in the following update:

l(1) = 0+ (1− 0)0 = 0

u(1) = 0+ (1− 0)(0.8) = 0.8

The interval [0, 0.8) is not confined to either the upper or lower half of the unit interval, so we
proceed. The tag 0.765625 lies in the top 18% of the interval [0, 0.8); therefore, the second
element of the sequence is 3. Updating the tag interval we get

l(2) = 0+ (0.8− 0)FX (2) = 0.8× 0.82 = 0.656

u(2) = 0+ (0.8− 0)FX (3) = 0.8× 1.0 = 0.8

The interval [0.656, 0.8) is contained entirely in the upper half of the unit interval. At the
encoder, we sent the bit 1 and rescaled. At the decoder, we will shift 1 out of the receive buffer
and move the next bit in to make up the 6 bits in the tag. We will also update the tag interval,
resulting in

l(2) = 2× (0.656− 0.5) = 0.312

u(2) = 2× (0.8− 0.5) = 0.6

while shifting a bit to give us a tag of 0.546875. When we compare this value with the tag
interval, we can see that this value lies in the 80–82% range of the tag interval, so we decode

110 4 A R I T H M E T I C C O D I N G

the next element of the sequence as 2. We can then update the equations for the tag interval as

l(3) = 0.312+ (0.6− 0.312)FX (1) = 0.312+ 0.288× 0.8 = 0.5424

u(3) = 0.312+ (0.8− 0.312)FX (2) = 0.312+ 0.288× 0.82 = 0.54816

As the tag interval is now contained entirely in the upper half of the unit interval, we rescale
using E2 to obtain

l(3) = 2× (0.5424− 0.5) = 0.0848

u(3) = 2× (0.54816− 0.5) = 0.09632

We also shift out a bit from the tag and shift in the next bit. The tag is now 000110. The
interval is contained entirely in the lower half of the unit interval. Therefore, we apply E1 and
shift another bit. The lower and upper limits of the tag interval become

l(3) = 2× (0.0848) = 0.1696

u(3) = 2× (0.09632) = 0.19264

and the tag becomes 001100. The interval is still contained entirely in the lower half of the
unit interval, so we shift out another 0 to get a tag of 011000 and go through another rescaling:

l(3) = 2× (0.1696) = 0.3392

u(3) = 2× (0.19264) = 0.38528

Because the interval containing the tag remains in the lower half of the unit interval, we
shift out another 0 from the tag to get 110000 and rescale one more time:

l(3) = 2× 0.3392 = 0.6784

u(3) = 2× 0.38528 = 0.77056

Now the interval containing the tag is contained entirely in the upper half of the unit interval.
Therefore, we shift out a 1 from the tag and rescale using the E2 mapping:

l(3) = 2× (0.6784− 0.5) = 0.3568

u(3) = 2× (0.77056− 0.5) = 0.54112

Now we compare the tag value to the tag interval to decode our final element. The tag is
100000, which corresponds to 0.5. This value lies in the first 80% of the interval, so we
decode this element as 1. �

If the tag interval is entirely contained in the upper or lower half of the unit interval, the scal-
ing procedure described will prevent the interval from continually shrinking. Now we consider
the case where the diminishing tag interval straddles the midpoint of the unit interval. As our
trigger for rescaling, we check to see if the tag interval is contained in the interval [0.25, 0.75).

4.4 Generating a Binary Code 111

This will happen when l(n) is greater than 0.25 and u(n) is less than 0.75. When this happens,
we double the tag interval using the following mapping:

E3 : [0.25, 0.75)→ [0, 1); E3(x) = 2(x − 0.25) (26)

We have used a 1 to transmit information about an E2 mapping, and a 0 to transmit
information about an E1 mapping. How do we transfer information about an E3 mapping to
the decoder? We use a somewhat different strategy in this case. At the time of the E3 mapping,
we do not send any information to the decoder; instead, we simply record the fact that we have
used the E3 mapping at the encoder. Suppose that after this, the tag interval gets confined to
the upper half of the unit interval. At this point we would use an E2 mapping and send a 1 to
the receiver. Note that the tag interval at this stage is at least twice what it would have been
if we had not used the E3 mapping. Furthermore, the upper limit of the tag interval would
have been less than 0.75. Therefore, if the E3 mapping had not taken place right before the
E2 mapping, the tag interval would have been contained entirely in the lower half of the unit
interval. At this point we would have used an E1 mapping and transmitted a 0 to the receiver.
In fact, the effect of the earlier E3 mapping can be mimicked at the decoder by following the
E2 mapping with an E1 mapping. At the encoder, right after we send a 1 to announce the E2
mapping, we send a 0 to help the decoder track the changes in the tag interval at the decoder.
If the first rescaling after the E3 mapping happens to be an E1 mapping, we do exactly the
opposite. That is, we follow the 0 announcing an E1 mapping with a 1 to mimic the effect of
the E3 mapping at the encoder.

What happens if we have to go through a series of E3 mappings at the encoder? We
simply keep track of the number of E3 mappings and then send that many bits of the opposite
variety after the first E1 or E2 mapping. If we went through three E3 mappings at the encoder,
followed by an E2 mapping, we would transmit a 1 followed by three 0s. On the other hand,
if we went through an E1 mapping after the E3 mappings, we would transmit a 0 followed
by three 1s. Since the decoder mimics the encoder, the E3 mappings are also applied at the
decoder when the tag interval is contained in the interval [0.25, 0.75).

4.4.3 Integer Implementation

We have described a floating-point implementation of arithmetic coding. Let us now repeat
the procedure using integer arithmetic and generate the binary code in the process.

Encoder Implementation

The first thing we have to do is decide on the word length to be used. Given a word length
of m, we map the important values in the [0,1) interval to the range of 2m binary words. The
point 0 gets mapped to

mtimes︷ ︸︸ ︷
00 . . . 0

and 1 gets mapped to
mtimes︷ ︸︸ ︷

11 . . . 1

112 4 A R I T H M E T I C C O D I N G

The value of 0.5 gets mapped to

1

m−1times︷ ︸︸ ︷
00 . . . 0

The update equations remain almost the same as Equations (9) and (10). As we are going to
do integer arithmetic, we need to replace FX (x) in these equations.

Define n j as the number of times the symbol j occurs in a sequence of length Total_Count.
Then FX (k) can be estimated by

FX (k) =
∑k

i=1 ni

T otal_Count
. (27)

If we now define

Cum_Count (k) =
k∑

i=1

ni

we can write Equations (9) and (10) as

l(n) = l(n−1) +
⌊
(u(n−1) − l(n−1) + 1)× Cum_Count (xn − 1)

T otal_Count

⌋
(28)

u(n) = l(n−1) +
⌊
(u(n−1) − l(n−1) + 1)× Cum_Count (xn)

T otal_Count

⌋
− 1 (29)

where xn is the nth symbol to be encoded, �x� is the largest integer less than or equal to x,
and the addition and subtraction of one is to handle the effects of the integer arithmetic. Note
that in order to reduce effects of finite precision arithmetic it is a good idea to perform the
multiplication in the numerator prior to the division.

The word length m has to be large enough to accommodate all the upper and lower limits
of all the subintervals, which means that there should be enough values to unambiguously
represent each entry of the Cum_Count array. As the maximum number of distinct values is
Total_Count this means that the number of values that need to be represented is Total_Count
and, therefore, we need to pick m such that

2m > T otal_Count

or

m > �log2(T otal_Count)�
However, this may not be sufficient as often the active interval, that is the interval [l(n), u(n)]

is only a portion of the total range available. As all the subintervals need to be contained within
the active interval at any given time, what we need to do is determine the smallest size the active
interval can be and then make sure that m is large enough to contain Total_Count different
values in this limited range. So what is the smallest the active interval can be? At first sight
it might seem that the smallest the active interval can be is about half the maximum range

4.4 Generating a Binary Code 113

because as soon as the upper limit slips below the halfway mark or the lower limit slips above
the halfway mark we double the interval. However, on closer examination, we can see that
this is not the case. When the upper limit is barely above the halfway mark, the lower limit
is not required to be at 0. In fact, the lower limit can be just below the quarter range without
any rescaling being triggered. However, the moment the lower limit goes above the quarter
mark an E3 rescaling is triggered and the interval is redoubled one or more times. Thus the
smallest the active range can be is a quarter of the total range. This means that we need to
accommodate Total_Count values in a quarter of the total range available, that is

1

4
2m > T otal_Count

or

m > �log2(4× T otal_Count)�
= 2+ �log2(T otal_Count)�

Because of the way we mapped the endpoints and the halfway points of the unit interval,
when both l(n) and u(n) are in either the upper half or lower half of the interval, the leading
bit of u(n) and l(n) will be the same. If the leading or most significant bit (MSB) is 1, then
the tag interval is contained entirely in the upper half of the [00 . . . 0, 11 . . . 1] interval. If
the MSB is 0, then the tag interval is contained entirely in the lower half. Applying the E1
and E2 mappings is a simple matter. All we do is shift out the MSB and then shift in a 1 into
the integer code for u(n) and a 0 into the code for l(n). For example, suppose m was 6, u(n)

was 54, and l(n) was 33. The binary representations of u(n) and l(n) are 110110 and 100001,
respectively. Notice that the MSB for both endpoints is 1. Following the procedure above, we
would shift out (and transmit or store) the 1, and shift in 1 for u(n) and 0 for l(n), obtaining a
new value for u(n) as 101101, or 45, and a new value for l(n) as 000010, or 2. This is equivalent
to performing the E2 mapping. We can see how the E1 mapping would also be performed
using the same operation.

To see if the E3 mapping needs to be performed, we monitor the second most significant bit
of u(n) and l(n). When the second most significant bit of u(n) is 0 and the second most significant
bit of l(n) is 1, this means that the tag interval lies in the middle half of the [00 . . . 0, 11 . . . 1]
interval. To implement the E3 mapping, we complement the second most significant bit in
u(n) and l(n), and shift left, shifting in a 1 in u(n) and a 0 in l(n). We also keep track of the
number of E3 mappings in Scale3.

We can summarize the encoding algorithm using the following pseudocode:

Initialize l and u.
Get symbol.

l←l +
⌊
(u − l + 1)× Cum_Count (x − 1)

T otal_Count

⌋

u ← l +
⌊
(u − l + 1)× Cum_Count (x)

T otal_Count

⌋
− 1

114 4 A R I T H M E T I C C O D I N G

while (MSB of u and l are both equal to b or E3 condition holds)
if (MSB of u and l are both equal to b)

{
send b
shift l to the left by 1 bit and shift 0 into LSB
shift u to the left by 1 bit and shift 1 into LSB
while(Scale3 > 0)

{
send complement of b
decrement Scale3
}

}
if (E3 condition holds)

{
shift l to the left by 1 bit and shift 0 into LSB
shift u to the left by 1 bit and shift 1 into LSB
complement (new) MSB of l and u
increment Scale3
}

To see how all this functions together, let’s look at an example.

Example 4 .4 .4 :

We will encode the sequence 1 3 2 1 with the parameters shown in Table 4.5. First we need
to select the word length m. Note that Cum_Count(1) and Cum_Count(2) differ by only 1.
Recall that the values of Cum_Count will get translated to the endpoints of the subintervals.
We want to make sure that the value we select for the word length will allow enough range for
it to be possible to represent the smallest difference between the endpoints of intervals. We
always rescale whenever the interval gets small. In order to make sure that the endpoints of
the intervals always remain distinct, we need to make sure that all values in the range from 0 to
T otal_Count , which is the same as Cum_Count(3), are uniquely represented in the smallest
range an interval under consideration can be without triggering a rescaling. The interval is
smallest without triggering a rescaling when l(n) is just below the midpoint of the interval and
u(n) is at three-quarters of the interval, or when u(n) is right at the midpoint of the interval and
l(n) is just below a quarter of the interval. That is, the smallest the interval [l(n), u(n)] can be
is one-quarter of the total available range of 2m values. Thus, m should be large enough to
uniquely accommodate the set of values between 0 and Total_Count.

For this example, this means that the total interval range has to be greater than 200. A
value of m = 8 satisfies this requirement.With this value of m we have

l(0) = 0 = (00000000)2 (30)

u(0) = 255 = (11111111)2 (31)

where (· · ·)2 is the binary representation of a number.

4.4 Generating a Binary Code 115

T A B L E 4 . 5 Values of some of the parameters for arithmetic coding example.

Count (1) = 40 Cum_Count (0) = 0 Scale3 = 0
Count (2) = 1 Cum_Count (1) = 40
Count (3) = 9 Cum_Count (2) = 41

T otal_Count = 50 Cum_Count (3) = 50

The first element of the sequence to be encoded is 1. Using Equations (9) and (10)

l(1) = 0+
⌊

256× Cum_Count (0)

50

⌋
= 0 = (00000000)2 (32)

u(1) = 0+
⌊

256× Cum_Count (1)

50

⌋
− 1 = 203 = (11001011)2 (33)

The next element of the sequence is 3:

l(2) = 0+
⌊

204× Cum_Count (2)

50

⌋
= 167 = (10100111)2 (34)

u(2) = 0+
⌊

204× Cum_Count (3)

50

⌋
− 1 = 203 = (11001011)2 (35)

The MSBs of l(2) and u(2) are both 1. Therefore, we shift this value out and send it to the
decoder. All other bits are shifted left by 1 bit, giving

l(2) = (01001110)2 = 78 (36)

u(2) = (10010111)2 = 151 (37)

Notice that while the MSBs of the limits are different, the second MSB of the upper limit is 0,
while the second MSB of the lower limit is 1. This is the condition for the E3 mapping. We
complement the second MSB of both limits and shift 1 bit to the left, shifting in a 0 as the least
significant bit (LSB) of l(2) and a 1 as the LSB of u(2). This gives us

l(2) = (00011100)2 = 28 (38)

u(2) = (10101111)2 = 175 (39)

We also increment Scale3 to a value of 1.
The next element in the sequence is 2. Updating the limits, we have

l(3) = 28+
⌊

148× Cum_Count (1)

50

⌋
= 146 = (10010010)2 (40)

u(3) = 28+
⌊

148× Cum_Count (2)

50

⌋
− 1 = 148 = (10010100)2 (41)

The two MSBs are identical, so we shift out a 1 and shift left by 1 bit:

l(3) = (00100100)2 = 36 (42)

u(3) = (00101001)2 = 41 (43)

116 4 A R I T H M E T I C C O D I N G

As Scale3 is 1, we transmit a 0 and decrement Scale3 to 0. The MSBs of the upper and lower
limits are both 0, so we shift out and transmit 0:

l(3) = (01001000)2 = 72 (44)

u(3) = (01010011)2 = 83 (45)

Both MSBs are again 0, so we shift out and transmit 0:

l(3) = (10010000)2 = 144 (46)

u(3) = (10100111)2 = 167 (47)

Now both MSBs are 1, so we shift out and transmit a 1. The limits become

l(3) = (00100000)2 = 32 (48)

u(3) = (01001111)2 = 79 (49)

Once again the MSBs are the same. This time we shift out and transmit a 0.

l(3) = (01000000)2 = 64 (50)

u(3) = (10011111)2 = 159 (51)

Now the MSBs are different. However, the second MSB for the lower limit is 1 while the
second MSB for the upper limit is 0. This is the condition for the E3 mapping. Applying the
E3 mapping by complementing the second MSB and shifting 1 bit to the left, we get

l(3) = (00000000)2 = 0 (52)

u(3) = (10111111)2 = 191 (53)

We also increment Scale3 to 1.
The next element in the sequence to be encoded is 1. Therefore,

l(4) = 0+
⌊

192× Cum_Count (0)

50

⌋
= 0 = (00000000)2 (54)

u(4) = 0+
⌊

192× Cum_Count (1)

50

⌋
− 1 = 152 = (10011000)2 (55)

The encoding continues in this fashion. To this point we have generated the binary sequence
1100010. If we wish to terminate the encoding at this point, we have to send the current status
of the tag. This can be done by sending the value of the lower limit l(4). As l(4) is 0, we will
end up sending eight 0s. However, Scale3, at this point, is 1. Therefore, after we send the first
0 from the value of l(4), we need to send a 1 before sending the remaining seven 0s. The final
transmitted sequence is 1100010010000000. �

Decoder Implementation

Once we have the encoder implementation, the decoder implementation is easy to describe.
As mentioned earlier, once we have started decoding all we have to do is mimic the encoder
algorithm. Let us first describe the decoder algorithm using pseudocode and then study its
implementation using Example 4.4.5.

4.4 Generating a Binary Code 117

Decoder Algorithm

Initialize l and u.
Read the first m bits of the received bitstream into tag t.
k = 0

while

(⌊
(t − l + 1)× Total_Count − 1

u − l + 1

⌋
� Cum_Count (k)

)
k ← k + 1
Decode symbol x.

l ← l +
⌊
(u − l + 1)× Cum_Count (x − 1)

Total_Count

⌋

u ← l +
⌊
(u − l + 1)× Cum_Count (x)

Total_Count

⌋
− 1

while (MSB of u and l are both equal to b or E3 condition holds)
if (MSB of u and l are both equal to b)

{
shift l to the left by 1 bit and shift 0 into LSB
shift u to the left by 1 bit and shift 1 into LSB
shift t to the left by 1 bit and read next bit from received bitstream into LSB
}

if (E3 condition holds)
{

shift l to the left by 1 bit and shift 0 into LSB
shift u to the left by 1 bit and shift 1 into LSB
shift t to the left by 1 bit and read next bit from received bitstream into LSB
complement (new) MSB of l, u, and t
}

Example 4 .4 .5 :

After encoding the sequence in Example 4.4.4, we ended up with the following binary sequence:
1100010010000000. Treating this as the received sequence and using the parameters from
Table 4.5, let us decode this sequence. Using the same word length, 8, we read in the first 8
bits of the received sequence to form the tag t:

t = (11000100)2 = 196

We initialize the lower and upper limits as

l = (00000000)2 = 0

u = (11111111)2 = 255

118 4 A R I T H M E T I C C O D I N G

To begin decoding, we compute⌊
(t − l + 1)× Total_Count − 1

u − l + 1

⌋
=
⌊

197× 50− 1

255− 0+ 1

⌋
= 38

and compare this value to

Cum_Count =

⎡
⎢⎢⎣

0
40
41
50

⎤
⎥⎥⎦

Since
0 � 38 < 40

we decode the first symbol as 1. Once we have decoded a symbol, we update the lower and
upper limits:

l = 0+
⌊

256× Cum_Count[0]
Total_Count

⌋
= 0+

⌊
256× 0

50

⌋
= 0

u = 0+
⌊

256× Cum_Count[1]
Total_Count

⌋
− 1 = 0+

⌊
256× 40

50

⌋
− 1 = 203

or

l = (00000000)2
u = (11001011)2

The MSBs of the limits are different, and the E3 condition does not hold. Therefore, we
continue decoding without modifying the tag value. To obtain the next symbol, we compare⌊

(t − l + 1)× Total_Count − 1

u − l + 1

⌋

which is 48, against the Cum_Count array:

Cum_Count[2] � 48 < Cum_Count[3]
Therefore, we decode 3 and update the limits:

l = 0+
⌊

204× Cum_Count[2]
T otal_Count

⌋
= 0+

⌊
204× 41

50

⌋
= 167 = (1010011)2

u = 0+
⌊

204× Cum_Count[3]
T otal_Count

⌋
− 1 = 0+

⌊
204× 50

50

⌋
− 1 = 203 = (11001011)2

As the MSB of u and l are the same, we shift the MSB out and read in a 0 for the LSB of l
and a 1 for the LSB of u. We mimic this action for the tag as well, shifting the MSB out and
reading in the next bit from the received bitstream as the LSB:

l = (01001110)2
u = (10010111)2
t = (10001001)2

4.5 Adaptive Arithmetic Coding 119

Examining l and u we can see we have an E3 condition. Therefore, for l, u, and t, we shift
the MSB out, complement the new MSB, and read in a 0 as the LSB of l, a 1 as the LSB of u,
and the next bit in the received bitstream as the LSB of t. We now have

l = (00011100)2 = 28

u = (10101111)2 = 175

t = (10010010)2 = 146

To decode the next symbol, we compute⌊
(t − l + 1)× Total_Count − 1

u − l + 1

⌋
= 40

Since 40 � 40 < 41, we decode 2.
Updating the limits using this decoded symbol, we get

l = 28+
⌊
(175− 28+ 1)× 40

50

⌋
= 146 = (10010010)2

u = 28+
⌊
(175− 28+ 1)× 41

50

⌋
− 1 = 148 = (10010100)2

We can see that we have quite a few bits to shift out. However, notice that the lower limit l has
the same value as the tag t. Furthermore, the remaining received sequence consists entirely
of 0s. Therefore, we will be performing identical operations on numbers that are the same,
resulting in identical numbers. This will result in the final decoded symbol being 1. We knew
this was the final symbol to be decoded because only four symbols had been encoded. In
practice this information has to be conveyed to the decoder. �

4.5 Adaptive Arithmetic Coding

We have seen how to construct arithmetic coders when the distribution of the source, in the
form of cumulative counts, is available. In many applications such counts are not available
a priori. It is a relatively simple task to modify the algorithms discussed so that the coder
learns the distribution as the coding progresses. A straightforward implementation is to start
out with a count of 1 for each letter in the alphabet. We need to have a count of at least 1 for
each symbol, because if we do not, we will have no way of encoding the symbol when it is
first encountered. This assumes that we know nothing about the distribution of the source. If
we do know something about the distribution of the source, we can let the initial counts reflect
our knowledge.

After coding is initiated, the count for each letter encountered is incremented after that letter
has been encoded. The cumulative count table is updated accordingly. It is very important that
the updating take place after the encoding; otherwise the decoder will not be using the same
cumulative count table as the encoder to perform the decoding. At the decoder, the count and
cumulative count tables are updated after each letter is decoded.

120 4 A R I T H M E T I C C O D I N G

In the case of the static arithmetic code, we picked the size of the word based on
Total_Count, the total number of symbols to be encoded. In the adaptive case, we may
not know ahead of time what the total number of symbols is going to be. In this case we
have to pick the word length independent of the total count. However, given a word length
m we know that we can only accommodate a total count of 2m−2 or less. Therefore, during
the encoding and decoding processes when the total count approaches 2m−2, we have to go
through a rescaling, or renormalization, operation. A simple rescaling operation is to divide
all counts by 2 and round up the result so that no count gets rescaled to zero. This periodic
rescaling can have an added benefit in that the count table better reflects the local statistics of
the source.

4.6 Binary Arithmetic Coding

In many applications the alphabet itself is binary. While at first sight this may seem odd
(Why would one need an encoder to encode a binary sequence?), a little bit of thought makes
the reasoning apparent. Consider a binary source that puts out one symbol with probability
0.125 and the other with probability 0.875. If we directly encode one of the letters as a 0 and
the other as a 1, we would get a rate of 1 bit/symbol. However, the entropy of the source
is 0.543; so by directly encoding the output of the source as a 0 or a 1, we are encoding at
almost twice the rate we need to. In order to achieve the entropy, we need to encode the more
probable symbol at a fractional bit rate, which is exactly what arithmetic coding allows us
to do; hence the popularity of the arithmetic code for encoding binary sources with highly
skewed probabilities. The source can be binary by its nature, such as bilevel documents; or the
binary input may be the binary representation of nonbinary data, as is the case for the Context
Adaptive Binary Arithmetic Coder (CABAC) in the H.264 video coding standard.

As for arithmetic coding in general, the binary arithmetic coder also requires a probability
model. However, because there are only two letters in the alphabet, the probability model
consists of a single number, namely the probability of one of the symbols; the probability of
the other symbol is simply one minus the specified probability. Because we only need a single
number to represent the probability model, it is easy to use multiple arithmetic codes to encode
a source where different models represent different contexts. This results in a much more
accurate modeling of the source than would have been possible with a single model, which in
turn leads to better compression.

Example 4 .6 .1 :

Consider a binary sequence generated by scanning a document where the white pixels are
represented by a 0 and the black pixels by a 1. Clearly the probability of a pixel being white
or black depends heavily on whether the neighboring pixel is white or black. For this example
we will use a first order context, so we have two sets of Count and Cum_Count tables:

Count0(0) = 8 Cum_Count0(−1) = 0 Count1(0) = 2 Cum_Count1(−1) = 0
Count0(1) = 2 Cum_Count0(0) = 8 Count1(1) = 8 Cum_Count1(0) = 2
T otal_Count0 = 10 Cum_Count0(1) = 10 T otal_Count1(0) = 10 Cum_Count1(1) = 10

4.6 Binary Arithmetic Coding 121

where the superscript indicates whether the previous pixel was a 0 or a 1. We will always
assume that for each row there is an imaginary white pixel to the left of the leftmost pixel.
Therefore, we will always begin our encoding using the Cum_Count0 array. After encoding
the first pixel all other pixels will be encoded using the Cum_Count array corresponding to the
previous pixel. Assume we wish to encode the sequence

000000111111

Notice that the marginal probabilities of 1 and 0 are 1/2 so if we used an arithmetic coder that
did not take the context into account we would end up with a 1 bit/pixel encoding. Using the
conditional probability tables we hope to do better. We will use a word length m of six:

l(0) = 0 = (000000)2 (56)

u(0) = 63 = (111111)2 (57)

The first bit to be encoded is 0:

l(1) = 0+
⌊

64× Cum_Count0(−1)

10

⌋
=
⌊

64× 0

10

⌋
= 0

= (000000)2

u(1) = 0+
⌊

64× Cum_Count0(0)

10

⌋
− 1 =

⌊
64× 8

10

⌋
− 1 = 50

= (110010)2

The second bit to be encoded is also 0:

l(2) = 0+
⌊

51× Cum_Count0(−1)

10

⌋
=
⌊

51× 0

10

⌋
= 0

= (000000)2

u(2) = 0+
⌊

51× Cum_Count0(0)

10

⌋
− 1 =

⌊
51× 8

10

⌋
− 1 = 39

= (100111)2

The third bit to be encoded is also 0:

l(3) = 0+
⌊

40× Cum_Count0(−1)

10

⌋
=
⌊

40× 0

10

⌋
= 0

= (000000)2

u(3) = 0+
⌊

40× Cum_Count0(0)

10

⌋
− 1 =

⌊
40× 8

10

⌋
− 1 = 31

= (011111)2

The MSBs of l(3) and u(3) are both 0. Therefore, we shift this value out and send it to the
decoder. All other bits are shifted to the left and we get

l(3) = (000000)2 = 0

u(3) = (111111)2 = 63

122 4 A R I T H M E T I C C O D I N G

Encoding another 0, we obtain

l(4) = 0+
⌊

64× Cum_Count0(−1)

10

⌋
=
⌊

64× 0

10

⌋
= 0

= (000000)2

u(4) = 0+
⌊

64× Cum_Count0(0)

10

⌋
− 1 =

⌊
64× 8

10

⌋
− 1 = 50

= (110010)2

Continuing with the next two 0s we get

l(5) = 0+
⌊

64× Cum_Count0(−1)

10

⌋
=
⌊

51× 0

10

⌋
= 0

= (000000)2

u(5) = 0+
⌊

64× Cum_Count0(0)

10

⌋
− 1 =

⌊
51× 8

10

⌋
− 1 = 39

= (100111)2

l(6) = 0+
⌊

40× Cum_Count0(−1)

10

⌋
=
⌊

40× 0

10

⌋
= 0

= (000000)2

u(6) = 0+
⌊

40× Cum_Count0(0)

10

⌋
− 1 =

⌊
40× 8

10

⌋
− 1 = 31

= (011111)2

The MSBs of l(6) and u(6) are both 0, therefore, we shift out a 0 from both l(6) and u(6):

l(6) = (000000)2 = 0

u(6) = (111111)2 = 63

The next bit to be encoded is a 1. However the bit prior to it was a 0, therefore we use the
Cum_Count0 tables:

l(7) = 0+
⌊

64× Cum_Count0(0)

10

⌋
=
⌊

64× 8

10

⌋
= 51

= (110011)2

u(7) = 0+
⌊

64× Cum_Count0(1)

10

⌋
− 1 =

⌊
64× 10

10

⌋
− 1 = 63

= (111111)2

The first two MSBs of the upper and lower limit are the same, so we shift out two bits, 11,
from both the upper and the lower limit:

l(7) = (001100)2 = 12

u(7) = (111111)2 = 63

4.6 Binary Arithmetic Coding 123

The next bit to be encoded is also a 1. However, as the bit prior to that was a 1 we use the
Cum_Count1 tables:

l(8) = 12+
⌊

52× Cum_Count1(0)

10

⌋
=
⌊

52× 2

10

⌋
= 22

= (010110)2

u(8) = 12+
⌊

52× Cum_Count1(1)

10

⌋
− 1 =

⌊
52× 10

10

⌋
− 1 = 63

= (111111)2

Encoding the next two 1s we obtain

l(9) = 22+
⌊

42× Cum_Count1(0)

10

⌋
=
⌊

42× 2

10

⌋
= 30

= (011110)2

u(9) = 22+
⌊

42× Cum_Count1(1)

10

⌋
− 1 =

⌊
42× 10

10

⌋
− 1 = 63

= (111111)2

l(10) = 30+
⌊

34× Cum_Count1(0)

10

⌋
=
⌊

34× 2

10

⌋
= 36

= (100100)2

u(10) = 30+
⌊

34× Cum_Count1(1)

10

⌋
− 1 =

⌊
34× 10

10

⌋
− 1 = 63

= (111111)2

The MSBs of the upper and lower limits are both equal to 1 so we shift out 1:

l(10) = (001000)2 = 8

u(10) = (111111)2 = 63

Encoding the next two 1s we get

l(11) = 8+
⌊

56× Cum_Count1(0)

10

⌋
=
⌊

56× 2

10

⌋
= 19

= (001011)2

u(11) = 8+
⌊

56× Cum_Count1(1)

10

⌋
− 1 =

⌊
56× 10

10

⌋
− 1 = 63

= (111111)2

l(12) = 19+
⌊

45× Cum_Count1(0)

10

⌋
=
⌊

45× 2

10

⌋
= 28

= (011100)2

u(11) = 19+
⌊

45× Cum_Count1(1)

10

⌋
− 1 =

⌊
45× 10

10

⌋
− 1 = 63

= (111111)2

124 4 A R I T H M E T I C C O D I N G

We have encoded twelve bits, and the sequence of bits generated by the encoder until this point
is 00111. In other words we have a coding rate of 5/12 bits/pixel, which is less than half the
coding rate we would have achieved had we used a single Cum_Count table. At this point if
we wish to terminate the encoding we would have to incur the overhead of transmitting the
bits in the lower limit. The six bits of the lower limit would be a significant overhead for this
toy sequence. However, in practice, when the input sequence is much longer than twelve, the
six-bit overhead would be negligible. We leave the decoding of this sequence as an exercise
for the reader. �

Furthermore, the simple nature of the coder allows for approximations that result in simple
and fast implementations. We will look at three applications of the binary coder including the
QM coder used in the JBIG standard for encoding bilevel images and the M (or modulo) coder,
which is a part of the coder CABAC used in the H.264 video coding standard.

Before we describe the particular implementations, let us take a general view of binary
arithmetic coding. In our description of arithmetic coding, we updated the tag interval by
updating the endpoints of the interval, u(n) and l(n). We could just as well have kept track of
one endpoint and the size of the interval. This is the approach adopted in many of the binary
coders, which track the lower end of the tag interval l(n) and the size of the interval A(n), where

A(n) = u(n) − l(n) (58)

The tag for a sequence is the binary representation of l(n).
We can obtain the update equation for A(n) by subtracting Equation (9) from Equation (10)

and substituting A(n) for u(n) − l(n).

A(n) = A(n−1)(FX (xn)− FX (xn − 1)) (59)

= A(n−1)P(xn) (60)

Substituting A(n) for u(n) − l(n) in Equation (9), we get the update equation for l(n):

l(n) = l(n−1) + A(n−1)FX (xn − 1) (61)

Instead of dealing directly with the 0s and 1s put out by the source, many of the binary
coders map them into a More Probable Symbol (MPS) and Less Probable Symbol (LPS). If
0 represents black pixels and 1 represents white pixels, then in a mostly black image, 0 will
be the MPS, whereas in an image with mostly white regions 1 will be the MPS. Denoting the
probability of occurrence of the LPS for the context C by qc and mapping the MPS to the lower
subinterval, the occurrence of an MPS symbol results in the update equations

l(n) = l(n−1) (62)

A(n) = A(n−1)(1− qc) (63)

while the occurrence of an LPS symbol results in the update equations

l(n) = l(n−1) + A(n−1)(1− qc) (64)

A(n) = A(n−1)qc (65)

4.6 Binary Arithmetic Coding 125

4.6.1 The QM Coder

Until this point, the binary coder looks very much like the arithmetic coder described earlier
in this chapter. To make the implementation simpler and computationally more efficient, the
Joint Bi-level Image Experts Group (JBIG) recommended several deviations from the standard
arithmetic coding algorithm for the version of the arithmetic coder used in the JBIG algorithm
for compression of bi-level images. The update equations involve multiplications, which are
expensive in both hardware and software. In the QM coder, the multiplications are avoided by
assuming that A(n) has a value close to 1, and multiplication with A(n) can be approximated
by multiplication with 1. Therefore, the update equations become

For MPS :
l(n) = l(n−1) (66)

A(n) = 1− qc (67)
For LPS :

l(n) = l(n−1) + (1− qc) (68)

A(n) = qc (69)

In order not to violate the assumption on A(n) whenever the value of A(n) drops below
0.75, the QM coder goes through a series of rescalings until the value of A(n) is greater than or
equal to 0.75. The rescalings take the form of repeated doubling, which corresponds to a left
shift in the binary representation of A(n). To keep all parameters in sync, the same scaling is
also applied to l(n). The bits shifted out of the buffer containing the value of l(n) make up the
encoder output. Looking at the update equations for the QM coder, we can see that a rescaling
will occur every time an LPS occurs. Occurrence of an MPS may or may not result in a rescale,
depending on the value of A(n).

The probability qc of the LPS for context C is updated each time a rescaling takes place
and the context C is active. An ordered list of values for qc is listed in a table. Every time a
rescaling occurs, the value of qc is changed to the next lower or next higher value in the table,
depending on whether the rescaling was caused by the occurrence of an LPS or an MPS.

In a nonstationary situation, the symbol assigned to LPS may actually occur more often
than the symbol assigned to MPS. This condition is detected when qc > (A(n) − qc). In this
situation, the assignments are reversed; the symbol assigned the LPS label is assigned the MPS
label and vice versa. The test is conducted every time a rescaling takes place.

The decoder for the QM coder operates in much the same way as the decoder described in
this chapter, mimicking the encoder operation.

4.6.2 The MQ Coder

The MQ coder is a variant of the QM coder. Unlike the QM coder the MQ coder assigns the
lower interval to the LPS and the upper interval to the MPS. The update equations in this case

126 4 A R I T H M E T I C C O D I N G

without any approximations would become

For MPS :
l(n) = l(n−1) + A(n−1)qc (70)

A(n) = A(n−1)(1− qc) (71)
For LPS :

l(n) = l(n−1) (72)

A(n) = A(n−1)qc (73)

However, as in the case of the QM coder, we wish to avoid multiplication; therefore, with the
same assumption that A(n) has a value close to one we modify the update equations to

For MPS :
l(n) = l(n−1) + qc (74)

A(n) = A(n−1) − qc (75)
For LPS :

l(n) = l(n−1) (76)

A(n) = qc (77)

The adaptation in the MQ coder is modeled by a state machine. In practice, the A and l registers
are assigned 16 bits of precision. When the value of A falls below 0x8000, it is left shifted
until the value reaches or exceeds 0x8000. The same operation is performed on the register
where l is stored, and the bits shifted out of the l register become the output codewords of the
arithmetic coder.

4.6.3 The M Coder

The M coder is another variant of the QM coder in which the multiply operation is replaced with
a table lookup. To better understand the approximations used by the M coder, let us rewrite
the update equations without approximation. The occurrence of an MPS symbol results in the
update equations

l(n) = l(n−1) (78)

A(n) = A(n−1) − A(n−1)qc (79)

while the occurrence of an LPS symbol results in the update equations

l(n) = l(n−1) + A(n−1) − A(n−1)qc (80)

A(n) = A(n−1)qc (81)

Notice that the only multiplications are between the estimate of the range A(n−1) and the
probability of the LPS qc. The M coder gets rid of the costly multiplication operation by
allowing the range and the probability to take on only a specified number of values and then

4.7 Comparison of Huffman and Arithmetic Coding 127

replacing the multiplication by a table lookup indexed by the quantized values of the range
and the LPS probability [44]. Given a minimum value Amin and a maximum value Amax for
the range A, the range is restricted to four values:

A = Amin + (k + 1)�A, k = 0, 1, 2, 3

where

�A = Amax − Amin

4
The LPS probability qc can take on one of 64 possible values qm where

qm = αqm−1, m = 1, 2, · · · , 63 (82)

where

α =
(

0.01875

0.5

) 1
63

and q0 = 0.5

In the update equation, instead of multiplying the range and the lower limit, the range is
mapped to the closest of the four quantized ranges, the corresponding index k along with the
index m of the probability of the LPS are used as pointers into a lookup table, and the product
is read from the table.

In order to make the coder adaptive, all we need to do is update the value of the LPS
probability as we see more data. If we see more occurrences of MPS, we should decrease
the LPS probability. If we encounter more occurrences of LPS, we should increase the LPS
probability. The M coder needs to do this while keeping the LPS probability restricted to the
64 allowed probabilities generated by Equation (82). This can be done by simply incrementing
or decrementing the index m of qm . When an MPS is encountered, we increment the index and
when an LPS is encountered, we decrement the index. The index is incremented by one each
time an MPS is encountered until it reaches the maximum allowed value where it remains.
When an LPS is encountered, the index is decremented by a variable amount until the index
reaches 0. At this point the LPS probability is one half and further occurrence of LPS indicates
that this symbol is no longer the least probable and therefore, the value of MPS is changed. In
other words, the MPS and LPS symbols can be swapped. The M coder forms the core of the
CABAC coder, which is part of the H.264 standard for video compression.

4.7 Comparison of Huffman and Arithmetic
Coding

We have described a new coding scheme that, although more complicated than Huffman coding,
allows us to code sequences of symbols. How well this coding scheme works depends on how
it is used. Let’s first try to use this code for encoding sources for which we know the Huffman
code.

Looking at Example 4.4.1, the average length for this code is

l = 2× 0.5+ 3× 0.25+ 4× 0.125+ 4× 0.125 (83)
= 2.75 bits/symbol (84)

128 4 A R I T H M E T I C C O D I N G

T A B L E 4 . 6 Arithmetic code for two-symbol sequences.

Message P(x) T X (x) T X (x) in Binary �log 1
P(x) � + 1 Code

11 .25 .125 .001 3 001
12 .125 .3125 .0101 4 0101
13 .0625 .40625 .01101 5 01101
14 .0625 .46875 .01111 5 01111
21 .125 .5625 .1001 4 1001
22 .0625 .65625 .10101 5 10101
23 .03125 .703125 .101101 6 101101
24 .03125 .734375 .101111 6 101111
31 .0625 .78125 .11001 5 11001
32 .03125 .828125 .110101 6 110101
33 .015625 .8515625 .1101101 7 1101101
34 .015625 .8671875 .1101111 7 1101111
41 .0625 .90625 .11101 5 11101
42 .03125 .953125 .111101 6 111101
43 .015625 .9765625 .1111101 7 1111101
44 .015625 .984375 .1111111 7 1111111

Recall from Section 2.4 that the entropy of this source was 1.75 bits/symbol and the Huffman
code achieved this entropy. Obviously, arithmetic coding is not a good idea if you are going to
encode your message one symbol at a time. Let’s repeat the example with messages consisting
of two symbols. (Note that we are only doing this to demonstrate a point. In practice, we
would not code sequences this short using an arithmetic code.)

Example 4 .7 .1 :

If we encode two symbols at a time, the resulting code is shown in Table 4.6.
The average length per message is 4.5 bits. Therefore, using two symbols at a time we get

a rate of 2.25 bits/symbol (certainly better than 2.75 bits/symbol, but still not as good as the
best rate of 1.75 bits/symbol). However, we see that as we increase the number of symbols
per message, our results get better and better. �

How many samples do we have to group together to make the arithmetic coding scheme
perform better than the Huffman coding scheme? We can get some idea by looking at the
bounds on the coding rate.

Recall that the bounds on the average length lA of the arithmetic code are

H(X) � lA � H(X)+ 2

m

4.7 Comparison of Huffman and Arithmetic Coding 129

It does not take many symbols in a sequence before the coding rate for the arithmetic code
becomes quite close to the entropy. However, recall that for Huffman codes, if we block m
symbols together, the coding rate is

H(X) � lH � H(X)+ 1

m

The advantage seems to lie with the Huffman code, although the advantage decreases with
increasing m. However, remember that to generate a codeword for a sequence of length m
using the Huffman procedure requires building the entire code for all possible sequences of
length m. If the original alphabet size was k, then the size of the codebook would be km .
Taking relatively reasonable values of k = 16 and m = 20 gives a codebook size of 1620! This
is obviously not a viable option. For the arithmetic coding procedure, we do not need to build
the entire codebook. Instead, we simply obtain the code for the tag corresponding to a given
sequence. Therefore, it is entirely feasible to code sequences of length 20 or much more. In
practice, we can make m large for the arithmetic coder and not for the Huffman coder. This
means that for most sources we can get rates closer to the entropy by using arithmetic coding
than by using Huffman coding. The exceptions are sources whose probabilities are powers of
two. In these cases, the single-letter Huffman code achieves the entropy, and we cannot do
any better with arithmetic coding, no matter how long a sequence we pick.

The amount of gain also depends on the source. Recall that for Huffman codes, we are
guaranteed to obtain rates within 0.086 + pmax of the entropy, where pmax is the probability
of the most probable letter in the alphabet. If the alphabet size is relatively large and the prob-
abilities are not too skewed, the maximum probability pmax is generally small. In these cases,
the advantage of arithmetic coding over Huffman coding is small, and it might not be worth
the extra complexity to use arithmetic coding rather than Huffman coding. However, there are
many sources, such as facsimile, in which the alphabet size is small, and the probabilities are
highly unbalanced. In these cases, the use of arithmetic coding is generally worth the added
complexity.

Another major advantage of arithmetic coding is that it is easy to implement a system with
multiple arithmetic codes. This may seem contradictory, as we have claimed that arithmetic
coding is more complex than Huffman coding. However, it is the computational machinery that
causes the increase in complexity. Once we have the computational machinery to implement
one arithmetic code, all we need to implement more than a single arithmetic code is the
availability of more probability tables. If the alphabet size of the source is small, as in the
case of a binary source, there is very little added complexity indeed. In fact, as we shall see
in the next section, it is possible to develop multiplication-free arithmetic coders that are quite
simple to implement (nonbinary multiplication-free arithmetic coders are described in [45]).

Finally, it is much easier to adapt arithmetic codes to changing input statistics. All we need
to do is estimate the probabilities of the input alphabet. This can be done by keeping a count
of the letters as they are coded. There is no need to preserve a tree, as with adaptive Huffman
codes. Furthermore, there is no need to generate a code a priori, as in the case of Huffman
coding. This property allows us to separate the modeling and coding procedures in a manner
that is not very feasible with Huffman coding. This separation permits greater flexibility in
the design of compression systems, which can be used to great advantage.

130 4 A R I T H M E T I C C O D I N G

4.8 Applications

Arithmetic coding is used in a variety of lossless and lossy compression applications. It is
a part of many international standards. In the area of multimedia there are a few principal
organizations that develop standards. The International Standards Organization (ISO) and the
International Electrotechnical Commission (IEC) are industry groups that work on multimedia
standards, while the International Telecommunications Union (ITU), which is part of the United
Nations, works on multimedia standards on behalf of the member states of the United Nations.
Quite often these institutions work together to create international standards. In later chapters,
we will be looking at a number of these standards, and we will see how arithmetic coding is
used in image compression, audio compression, and video compression standards. For now,
let us look at the lossless compression example from the previous chapter.

In Tables 4.7 and 4.8, we show the results of using adaptive arithmetic coding to encode the
same test images that were previously encoded using Huffman coding. We have included the
compression ratios obtained using Huffman code from the previous chapter for comparison.
Comparing these values to those obtained in the previous chapter, we can see very little change.
The reason is that because the alphabet size for the images is quite large, the value of pmax is
quite small, and the Huffman coder performs very close to the entropy.

As we mentioned before, a major advantage of arithmetic coding over Huffman coding
is the ability to separate the modeling and coding aspects of the compression approach. In
terms of image coding, this allows us to use a number of different models that take advantage
of local properties. For example, we could use different decorrelation strategies in regions of
the image that are quasi-constant and will, therefore, have differences that are small, and in
regions where there is a lot of activity, causing the presence of larger difference values.

T A B L E 4 . 7 Compression using adaptive arithmetic coding of pixel values.

Image Bits/ Total Size Compression Ratio Compression Ratio
Name Pixel (bytes) (arithmetic) (Huffman)

Sena 6.52 53,431 1.23 1.16
Sensin 7.12 58,306 1.12 1.27
Earth 4.67 38,248 1.71 1.67

Omaha 6.84 56,061 1.17 1.14

T A B L E 4 . 8 Compression using adaptive arithmetic coding of pixel differences.

Image Bits/ Total Size Compression Ratio Compression Ratio
Name Pixel (bytes) (arithmetic) (Huffman)

Sena 3.89 31,847 2.06 2.08
Sensin 4.56 37,387 1.75 1.73
Earth 3.92 32,137 2.04 2.04

Omaha 6.27 51,393 1.28 1.26

4.10 Projects and Problems 131

4.9 Summary

In this chapter, we introduced the basic ideas behind arithmetic coding. We have shown that the
arithmetic code is a uniquely decodable code that provides a rate close to the entropy for long
stationary sequences. This ability to encode sequences directly instead of as a concatenation
of the codes for the elements of the sequence makes this approach more efficient than Huffman
coding for alphabets with highly skewed probabilities. We have looked in some detail at the
implementation of the arithmetic coding approach.

The arithmetic coding results in this chapter were obtained by using the program provided
by Witten, Neal, and Cleary [46]. This code can be used (with some modifications) for
exploring different aspects of arithmetic coding (see the following problems).

Further Reading

1. The book Text Compression, by T.C. Bell, J.G. Cleary, and I.H. Witten [1], contains a
very readable section on arithmetic coding, complete with pseudocode and C code.

2. A thorough treatment of various aspects of arithmetic coding can be found in the excellent
chapter “Arithmetic Coding,” by Amir Said [47] in the Lossless Compression Handbook.

3. There is an excellent tutorial article by G.G. Langdon, Jr. [48] in the March 1984 issue
of the IBM Journal of Research and Development.

4. The separate model and code paradigm is explored in a precise manner in the context of
arithmetic coding in a paper by J.J. Rissanen and G.G. Langdon [49].

5. The separation of modeling and coding is exploited in a very nice manner in an early
paper by G.G. Langdon and J.J. Rissanen [50].

6. Various models for text compression that can be used effectively with arithmetic coding
are described by T.G. Bell, I.H. Witten, and J.G. Cleary [51] in an article in the ACM
Computing Surveys.

7. The coder used in the JBIG algorithm is a descendant of the Q coder, described in some
detail in several papers in the November 1988 issue of the IBM Journal of Research and
Development.

4.10 Projects and Problems

1. Given a number a in the interval [0, 1) with an n-bit binary representation [b1b2 . . . bn],
show that for any other number b to have a binary representation with [b1b2 . . . bn] as
the prefix, b has to lie in the interval [a, a + 1

2n).
2. The binary arithmetic coding approach specified in the JBIG standard can be used for

coding grayscale images via bit plane encoding. In bit plane encoding, we combine the
most significant bits for each pixel into one bit plane, the next most significant bits into
another bit plane, and so on. Use the function extrctbp to obtain eight bit planes for
the sena.img and omaha.img test images, and encode them using arithmetic coding.
Use the low-resolution contexts shown in Figure 7.13.

132 4 A R I T H M E T I C C O D I N G

T A B L E 4 . 9 Probability model for Problems
5 and 6.

Letter Probability

a1 0.2
a2 0.3
a3 0.5

3. Bit plane encoding is more effective when the pixels are encoded using a Gray code. The
Gray code assigns numerically adjacent values binary codes that differ by only 1 bit. To
convert from the standard binary code b0b1b2 . . . b7 to the Gray code g0g1g2 . . . g7, we
can use the equations

g0 = b0

gk = bk ⊕ bk−1

Convert the test images sena.img and omaha.img to a Gray code representation and
bit plane encode. Compare with the results for the non-Gray-coded representation.

4. In Example 4.4.4, repeat the encoding using m = 6. Comment on your results.
5. Given the probability model in Table 4.9, find the real valued tag for the sequence

a1a1a3a2a3a1.
6. For the probability model in Table 4.9, decode a sequence of length 10 with the tag

0.63215699.
7. Consider the frequency counts shown in Table 4.10:

(a) What is the word length required for unambiguous encoding?
(b) Find the binary code for the sequence abacabb.
(c) Decode the code you obtained to verify that your encoding was correct.

8. Generate a binary sequence of length L with P(0) = 0.8, and use the arithmetic coding
algorithm to encode it. Plot the difference of the rate in bits/symbol and the entropy as a
function of L. Comment on the effect of L on the rate.

9. Decode the bitstream generated in Example 4.6.1. Do not forget to append the bits in the
lower limit to terminate the bitstream.

10. Generate a random binary sequence of length 100,000 with P(0) = 0.75.

T A B L E 4 . 10 Frequency counts for Problem
7.

Letter Count

a 37
b 38
c 25

4.10 Projects and Problems 133

(a) Encode this sequence using a binary arithmetic coder as described by the update Equa-
tions (60) and (61). Note the size of the compressed sequence.

(b) Implement the QM coder described in Section 4.6.1 and encode the binary sequence
using this coder. Compare the length of the compressed sequence. Comment on any
differences.

11. Generate a binary sequence of length 100,000 using the model P[0|0] = P[1|1] = 0.9.

(a) Encode this sequence using a binary arithmetic coder as described by the update Equa-
tions (60) and (61). Note the size of the compressed sequence.

(b) Encode the sequence using a context-based arithmetic coder where the context is deter-
mined by the previous two bits. Compare the difference in the size of the compressed
sequences.

5
Dictionary Techniques

5.1 Overview

I
n the previous two chapters we looked at coding techniques that assume a source
that generates a sequence of independent symbols. As most sources are corre-
lated to start with, the coding step is generally preceded by a decorrelation step.
In this chapter we will look at techniques that incorporate the structure in the
data in order to increase the amount of compression. These techniques—both

static and adaptive (or dynamic)—build a list of commonly occurring patterns and encode
these patterns by transmitting their index in the list. They are most useful with sources that
generate a relatively small number of patterns quite frequently, such as text sources and com-
puter commands. We discuss applications to text compression, modem communications, and
image compression.

5.2 Introduction

In many applications, the output of the source consists of recurring patterns. A classic example
is a text source in which certain patterns or words recur constantly. Also, there are certain
patterns that simply do not occur, or if they do occur, it is with great rarity. For example,
sgiomlaireached might be an annoying habit but the word probably occurs in a very small
fraction of the text sources in existence.

A very reasonable approach to encoding such sources is to keep a list, or dictionary,
of frequently occurring patterns. When these patterns appear in the source output, they are

Introduction to Data Compression. DOI: http://dx.doi.org/10.1016/B978-0-12-415796-5.00005-3
© 2012 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-415796-5.00005-3

136 5 D I C T I O N A R Y T E C H N I Q U E S

encoded with a reference to the dictionary. If the pattern does not appear in the dictionary,
then it can be encoded using some other less efficient method. In effect, we are splitting the
input into two classes: frequently occurring patterns and infrequently occurring patterns. For
this technique to be effective, the class of frequently occurring patterns, and hence the size of
the dictionary, must be much smaller than the number of all possible patterns.

Suppose we have a particular text that consists of four-character words, three characters
from the 26 lowercase letters of the English alphabet followed by a punctuation mark. Sup-
pose our source alphabet consists of the 26 lowercase letters of the English alphabet and the
punctuation marks comma, period, exclamation mark, question mark, semicolon, and colon.
In other words, the size of the input alphabet is 32. If we were to encode the text source one
character at a time, treating each character as an equally likely event, we would need 5 bits per
character. Treating all 324(= 220 = 1, 048, 576) four-character patterns as equally likely, we
have a code that assigns 20 bits to each four-character pattern. Let us now put the 256 most
likely four-character patterns into a dictionary. The transmission scheme works as follows.
Whenever we want to send a pattern that exists in the dictionary, we will send a 1-bit flag, say,
a 0, followed by an 8-bit index corresponding to the entry in the dictionary. If the pattern is
not in the dictionary, we will send a 1 followed by the 20-bit encoding of the pattern. If the
pattern we encounter is not in the dictionary, we will actually use more bits than in the original
scheme, 21 instead of 20. But if it is in the dictionary, we will send only 9 bits. The utility of
our scheme will depend on the percentage of the words we encounter that are in the dictionary.
We can get an idea about the utility of our scheme by calculating the average number of bits per
pattern. If the probability of encountering a pattern from the dictionary is p, then the average
number of bits per pattern R is given by

R = 9p + 21(1− p) = 21− 12p (5.1)

For our scheme to be useful, R should have a value less than 20. This happens when p � 0.084.
This does not seem like a very large number. However, note that if all patterns were occurring
in an equally likely manner, the probability of encountering a pattern from the dictionary would
be less than 0.00025!

We do not simply want a coding scheme that performs slightly better than the simple-
minded approach of coding each pattern as equally likely; we would like to improve the
performance as much as possible. In order for this to happen, p should be as large as possible.
This means that we should carefully select patterns that are most likely to occur as entries in
the dictionary. To do this, we have to have a pretty good idea about the structure of the source
output. If we do not have information of this sort available to us prior to the encoding of a
particular source output, we need to acquire this information somehow when we are encoding.
If we feel we have sufficient prior knowledge, we can use a static approach; if not, we can take
an adaptive approach. We will look at both these approaches in this chapter.

5.3 Static Dictionary

Choosing a static dictionary technique is most appropriate when considerable prior knowl-
edge about the source is available. This technique is especially suitable for use in specific

5.3 Static Dictionary 137

applications. For example, if the task were to compress the student records at a university,
a static dictionary approach may be the best. This is because we know ahead of time that
certain words and phrases such as “Name” and “Student ID” are going to appear in almost all
of the records. Other words such as “Sophomore,” “credits,” and so on will occur quite often.
Depending on the location of the university, certain digits in Social Security numbers are more
likely to occur. For example, in Nebraska most student ID numbers used to begin with the
digits 505. In fact, most entries will be of a recurring nature. In this situation, it is highly
efficient to design a compression scheme based on a static dictionary containing the recurring
patterns. Similarly, there could be a number of other situations in which an application-specific
or data-specific static-dictionary-based coding scheme would be the most efficient. It should
be noted that these schemes would work well only for the applications and data they were
designed for. If these schemes were to be used with different applications, they may cause an
expansion of the data instead of compression.

A static dictionary technique that is less specific to a single application is digram coding.
We describe this in the next section.

5.3.1 Digram Coding

One of the more common forms of static dictionary coding is digram coding. In this form
of coding, the dictionary consists of all letters of the source alphabet followed by as many
pairs of letters, called digrams, as can be accommodated by the dictionary. For example,
suppose we were to construct a dictionary of size 256 for digram coding of all printable ASCII
characters. The first 95 entries of the dictionary would be the 95 printable ASCII characters.
The remaining 161 entries would be the most frequently used pairs of characters.

The digram encoder reads a two-character input and searches the dictionary to see if this
input exists in the dictionary. If it does, the corresponding index is encoded and transmitted.
If it does not, the first character of the pair is encoded. The second character in the pair then
becomes the first character of the next digram. The encoder reads another character to complete
the digram, and the search procedure is repeated.

Example 5 .3 .1 :

Suppose we have a source with a five-letter alphabet A = {a, b, c, d, r}. Based on knowledge
about the source, we build the dictionary shown in Table 5.1.

T A B L E 5 . 1 A sample dictionary.

Code Entry Code Entry

000 a 100 r
001 b 101 ab
010 c 110 ac
011 d 111 ad

138 5 D I C T I O N A R Y T E C H N I Q U E S

T A B L E 5 . 2 Thirty most frequently occurring
pairs of characters in a
41,364-character-long LaTeX
document.

Pair Count Pair Count

e/b 1128 ar 314
/bt 838 at 313
/b/b 823 /bw 309
th 817 te 296
he 712 /bs 295
in 512 d/b 272
s/b 494 /bo 266
er 433 io 257
/ba 425 co 256
t/b 401 re 247
en 392 /b$ 246
on 385 r/b 239
n/b 353 di 230
ti 322 ic 229
/bi 317 ct 226

Suppose we wish to encode the sequence

abracadabra

The encoder reads the first two characters ab and checks to see if this pair of letters exists in
the dictionary. It does and is encoded using the codeword 101. The encoder then reads the
next two characters ra and checks to see if this pair occurs in the dictionary. It does not, so the
encoder sends out the code for r , which is 100, then reads in one more character, c, to make the
two-character pattern ac. This does exist in the dictionary and is encoded as 110. Continuing
in this fashion, the remainder of the sequence is coded. The output string for the given input
sequence is 101100110111101100000. �

A list of the 30 most frequently occurring pairs of characters in an earlier version of this
chapter is shown in Table 5.2. For comparison, the 30 most frequently occurring pairs of
characters in a set of C programs is shown in Table 5.3.

In these tables, /b corresponds to a space and nl corresponds to a new line. Notice how
different the two tables are. It is easy to see that a dictionary designed for compressing LaTeX
documents would not work very well when compressing C programs. However, we generally
want techniques that will be able to compress a variety of source outputs. If we want to
compress computer files, we do not want to change techniques based on the content of the file.
Rather, we would like the technique to adapt to the characteristics of the source output. We
discuss adaptive-dictionary-based techniques in the next section.

5.4 Adaptive Dictionary 139

T A B L E 5 . 3 Thirty most frequently occurring
pairs of characters in a
collection of C programs
containing 64,983 characters.

Pair Count Pair Count

/b/b 5728 st 442
nl/b 1471 le 440
; nl 1133 ut 440
in 985 f (416
nt 739 ar 381
= /b 687 or 374
/bi 662 r/b 373
t/b 615 en 371
/b = 612 er 358
); 558 ri 357
, /b 554 at 352
nlnl 506 pr 351
/b f 505 te 349
e/b 500 an 348
/b∗ 444 lo 347

5.4 Adaptive Dictionary

Most adaptive-dictionary-based techniques have their roots in two landmark papers by Jacob
Ziv and Abraham Lempel in 1977 [52] and 1978 [53]. These papers provide two different
approaches to adaptively building dictionaries, and each approach has given rise to a number of
variations. The approaches based on the 1977 paper are said to belong to the LZ77 family (also
known as LZ1), while the approaches based on the 1978 paper are said to belong to the LZ78,
or LZ2, family. The transposition of the initials is a historical accident and is a convention we
will observe in this book. In the following sections, we first describe an implementation of
each of the adaptive-dictionary-based compression approaches followed by some of the more
well-known variations.

5.4.1 The LZ77 Approach

In the LZ77 approach, the dictionary is simply a portion of the previously encoded sequence.
The encoder examines the input sequence through a sliding window, as shown in Figure 5.1.
The window consists of two parts, a search buffer that contains a portion of the recently encoded
sequence and a lookahead buffer that contains the next portion of the sequence to be encoded.
In Figure 5.1, the search buffer contains eight symbols, while the lookahead buffer contains
seven symbols. In practice, the size of the buffers is significantly larger; however, for the
purpose of explanation, we will keep the buffer sizes small.

To encode the sequence in the lookahead buffer, the encoder moves a search pointer back
through the search buffer until it encounters a match to the first symbol in the lookahead

140 5 D I C T I O N A R Y T E C H N I Q U E S

a b ar a a a arb r ar r ar

Search buffer

Match pointer

Look ahead buffer

a d

F I GUR E 5 . 1 Encoding using the LZ77 approach.

buffer. The distance of the pointer from the lookahead buffer is called the offset. The encoder
then examines the symbols following the symbol at the pointer location to see if they match
consecutive symbols in the lookahead buffer. The number of consecutive symbols in the search
buffer that match consecutive symbols in the lookahead buffer, starting with the first symbol,
is called the length of the match. The encoder searches the search buffer for the longest match.
Once the longest match has been found, the encoder encodes it with a triple 〈o, l, c〉, where o
is the offset, l is the length of the match, and c is the codeword corresponding to the symbol in
the lookahead buffer that follows the match. For example, in Figure 5.1 the pointer is pointing
to the beginning of the longest match. The offset o in this case is 7, the length of the match l
is 4, and the symbol in the lookahead buffer following the match is r .

The reason for sending the third element in the triple is to take care of the situation where
no match for the symbol in the lookahead buffer can be found in the search buffer. In this case,
the offset and match-length values are set to 0, and the third element of the triple is the code
for the symbol itself.

If the size of the search buffer is S, the size of the window (search and lookahead buffers)
is W , and the size of the source alphabet is A, then the number of bits needed to code the triple
using fixed-length codes is �log2 S� + �log2 W� + �log2 A�. Notice that the second term is
�log2 W�, not �log2 S�. The reason for this is that the length of the match can actually exceed
the length of the search buffer. We will see how this happens in Example 5.4.1.

In the following example, we will look at three different possibilities that may be encoun-
tered during the coding process.

1. There is no match for the next character to be encoded in the window.
2. There is a match.
3. The matched string extends inside the lookahead buffer.

Example 5 .4 .1 : The LZ77 Approach

Suppose the sequence to be encoded is

. . . cabracadabrarrarrad . . .

Suppose the length of the window is 13, the size of the lookahead buffer is 6, and the current
condition is

cabraca dabrar

with dabrar in the lookahead buffer. We look back in the already encoded portion of the
window to find a match for d. As we can see, there is no match, so we transmit the triple

5.4 Adaptive Dictionary 141

〈0, 0, C(d)〉. The first two elements of the triple show that there is no match to d in the search
buffer, while C(d) is the code for the character d. This seems like a wasteful way to encode a
single character, and we will have more to say about this later.

For now, let’s continue with the encoding process. As we have encoded a single character,
we move the window by one character. Now the contents of the buffer are

abracad abrarr

with abrarr in the lookahead buffer. Looking back from the current location, we find a match
to a at an offset of two. The length of this match is one. Looking further back, we have another
match for a at an offset of four; again the length of the match is one. Looking back even further
in the window, we have a third match for a at an offset of seven. However, this time the length
of the match is four (see Figure 5.2). So we encode the string abra with the triple 〈7, 4, C(r)〉,
and move the window forward by five characters. The window now contains the following
characters:

adabrar rarrad

Now the lookahead buffer contains the string rarrad. Looking back in the window, we find
a match for r at an offset of one and a match length of one, and a second match at an offset of
three with a match length of what at first appears to be three. It turns out we can use a match
length of five instead of three.

c a b r a c da b r a r r aa r r a d

l = 4

o = 7

Search
pointer

F I GUR E 5 . 2 The encoding process.

Why this is so will become clearer when we decode the sequence. To see how the decoding
works, let us assume that we have decoded the sequence cabraca and we receive the triples
〈0, 0, C(d)〉, 〈7, 4, C(r)〉, and 〈3, 5, C(d)〉. The first triple is easy to decode; there was no
match within the previously decoded string, and the next symbol is d. The decoded string is
now cabracad. The first element of the next triple tells the decoder to move the copy pointer
back seven characters, and copy four characters from that point. The decoding process works
as shown in Figure 5.3.

Finally, let’s see how the triple 〈3, 5, C(d)〉 gets decoded. We move back three characters
and start copying. The first three characters we copy are rar . The copy pointer moves once
again, as shown in Figure 5.4, to copy the recently copied character r . Similarly, we copy
the next character a. Even though we started copying only three characters back, we end up
decoding five characters. Notice that the match only has to start in the search buffer; it can
extend into the lookahead buffer. In fact, if the last character in the lookahead buffer had been
r instead of d, followed by several more repetitions of rar , the entire sequence of repeated
rars could have been encoded with a single triple. �

142 5 D I C T I O N A R Y T E C H N I Q U E S

c a r ba c a ara bd c a r ba a a rra bd

Copy 4
Decode C(r)

c a r ba a bd c a r ba ra bd

Copy 2 Copy 3

c a b

b

b

r a d c a a

Move back 7 Copy 1

c a b

b

b

c a adr

c a c

c

a

F I GUR E 5 . 3 Decoding the triple 〈7, 4, C(r) 〉.

a b ba r ra r ra r a b ba r ra r ra r a

Copy 4 Copy 5

a ab b ar r ar r dr a

Decode C(d)

a b ba r ra r a a b ba r ra r ra

Copy 2 Copy 3

a b ba r ra a b ba r ra r

Move back 3 Copy 1

F I GUR E 5 . 4 Decoding the triple 〈3, 5, C(d)〉.

As we can see, the LZ77 scheme is a very simple adaptive scheme that requires no prior
knowledge of the source and seems to require no assumptions about the characteristics of
the source. The authors of this algorithm showed that the performance of this algorithm
asymptotically approached the best that could be obtained by using a scheme that had full
knowledge about the statistics of the source. While this may be true asymptotically, in practice
there are a number of ways of improving the performance of the LZ77 algorithm as described
here. Furthermore, by using the recent portions of the sequence, there is an assumption of
sorts being used here—that is, that patterns recur “close” together. As we shall see, the authors

5.4 Adaptive Dictionary 143

removed this “assumption” and came up with an entirely different adaptive-dictionary-based
scheme in LZ78. Before we get to that, let us look at the different variations of the LZ77
algorithm.

Variations on the LZ77 Theme

There are a number of ways that the LZ77 scheme can be made more efficient, and most of
these have appeared in the literature. Many of the improvements deal with the efficient encoding
of the triples. In the description of the LZ77 algorithm, we assumed that the triples were
encoded using a fixed-length code. However, if we were willing to accept more complexity, we
could encode the triples using variable-length codes. As we saw in earlier chapters, these codes
can be adaptive or, if we were willing to use a two-pass algorithm, they can be semiadaptive.
Popular compression packages, such as PKZip, Zip, LHarc, PNG, gzip, and ARJ, all use an
LZ77-based algorithm followed by a variable-length coder.

Other variations on the LZ77 algorithm include varying the size of the search and lookahead
buffers. To make the search buffer large requires the development of more effective search
strategies. Such strategies can be implemented more effectively if the contents of the search
buffer are stored in a manner conducive to fast searches.

The simplest modification to the LZ77 algorithm, and one that is used by most variations
of the LZ77 algorithm, is to eliminate the situation where we use a triple to encode a single
character. Use of a triple is highly inefficient, especially if a large number of characters occur
infrequently. The modification to get rid of this inefficiency is simply the addition of a flag
bit, to indicate whether what follows is the codeword for a single symbol. By using this flag
bit we also get rid of the necessity for the third element of the triple. Now all we need to do is
to send a pair of values corresponding to the offset and length of match. This modification to
the LZ77 algorithm, due to J.A. Storer and T.G. Syzmanski, is referred to as LZSS [54,55].

5.4.2 The LZ78 Approach

The LZ77 approach implicitly assumes that like patterns will occur close together. It makes
use of this structure by using the recent past of the sequence as the dictionary for encoding.
However, this means that any pattern that recurs over a period longer than that covered by the
coder window will not be captured. The worst-case situation would be where the sequence to
be encoded was periodic with a period longer than the search buffer. Consider Figure 5.5.

This is a periodic sequence with a period of nine. If the search buffer had been just one
symbol longer, this sequence could have been significantly compressed. As it stands, none
of the new symbols will have a match in the search buffer and will have to be represented by
separate codewords. As this involves sending along overhead (a 1-bit flag for LZSS and a triple
for the original LZ77 algorithm), the net result will be an expansion rather than a compression.

a cb d fe g ih a cb d fe g ih a cb d fe g ih

Search buffer Look ahead buffer

F I GUR E 5 . 5 The Achilles’ heel of LZ77.

144 5 D I C T I O N A R Y T E C H N I Q U E S

T A B L E 5 . 4 The initial dictionary.

Index Entry

1 w

2 a
3 b

Although this is an extreme situation, there are less drastic circumstances in which the finite
view of the past would be a drawback. The LZ78 algorithm solves this problem by dropping
the reliance on the search buffer and keeping an explicit dictionary. This dictionary has to be
built at both the encoder and decoder, and care must be taken that the dictionaries are built in an
identical manner. The inputs are coded as a double 〈i, c〉, with i being an index corresponding
to the dictionary entry that was the longest match to the input and c being the code for the
character in the input following the matched portion of the input. As in the case of LZ77, the
index value of 0 is used in the case of no match. This double then becomes the newest entry in
the dictionary. Thus, each new entry into the dictionary is one new symbol concatenated with
an existing dictionary entry. To see how the LZ78 algorithm works, consider the following
example.

Example 5 .4 .2 : The LZ78 Approach

Let us encode the following sequence using the LZ78 approach:1

wabba/bwabba/bwabba/bwabba/bwoo/bwoo/bwoo.

where /b stands for space. Initially, the dictionary is empty, so the first few symbols encountered
are encoded with the index value set to 0. The first three encoder outputs are 〈0, C(w)〉,
〈0, C(a)〉, and 〈0, C(b)〉, and the dictionary looks like Table 5.4.

The fourth symbol is a b, which is the third entry in the dictionary. If we append the next
symbol, we would get the pattern ba, which is not in the dictionary, so we encode these two
symbols as 〈3, C(a)〉 and add the pattern ba as the fourth entry in the dictionary. Continuing
in this fashion, the encoder output and the dictionary develop as in Table 5.5. Notice that
the entries in the dictionary generally keep getting longer, and if this particular sentence was
repeated often, as it is in the song, after a while the entire sentence would be an entry in the
dictionary. �

While the LZ78 algorithm has the ability to capture patterns and hold them indefinitely, it
also has a rather serious drawback. As seen from the example, the dictionary keeps growing
without bound. In a practical situation, we would have to stop the growth of the dictionary at
some stage and then either prune it back or treat the encoding as a fixed dictionary scheme.
We will discuss some possible approaches when we study applications of dictionary coding.

1 “The Monster Song” from Sesame Street.

5.4 Adaptive Dictionary 145

T A B L E 5 . 5 Development of the dictionary.

Dictionary
Encoder Output Index Entry

〈0, C(w)〉 01 w

〈0, C(a)〉 02 a
〈0, C(b)〉 03 b
〈3, C(a)〉 04 ba
〈0, C(/b)〉 05 /b
〈1, C(a)〉 06 wa
〈3, C(b)〉 07 bb
〈2, C(/b)〉 08 a/b
〈6, C(b)〉 09 wab
〈4, C(/b)〉 10 ba/b
〈9, C(b)〉 11 wabb
〈8, C(w)〉 12 a/bw

〈0, C(o)〉 13 o
〈13, C(/b)〉 14 o/b
〈1, C(o)〉 15 wo
〈14, C(w)〉 16 o/bw

〈13, C(o)〉 17 oo

Variations on the LZ78 Theme—The LZW Algorithm

There are a number of ways the LZ78 algorithm can be modified, and as is the case with the
LZ77 algorithm, anything that can be modified probably has been. The most well-known mod-
ification, one that initially sparked much of the interest in the LZ algorithms, is a modification
by Terry Welch known as LZW [56]. Welch proposed a technique for removing the necessity
of encoding the second element of the pair 〈i, c〉. That is, the encoder would only send the
index to the dictionary. In order to do this, the dictionary has to be primed with all the letters
of the source alphabet. The input to the encoder is accumulated in a pattern p as long as p
is contained in the dictionary. If the addition of another letter a results in a pattern p ∗ a (∗
denotes concatenation) that is not in the dictionary, then the index of p is transmitted to the
receiver, the pattern p ∗ a is added to the dictionary, and we start another pattern with the letter
a. The LZW algorithm is best understood with an example. In the following two examples,
we will look at the encoder and decoder operations for the same sequence used to explain the
LZ78 algorithm.

Example 5 .4 .3 : The LZW Algorithm—Encoding

We will use the sequence previously used to demonstrate the LZ78 algorithm as our input
sequence:

wabba/bwabba/bwabba/bwabba/bwoo/bwoo/bwoo

Assuming that the alphabet for the source is {/b, a, b, o, w}, the LZW dictionary initially looks
like Table 5.6.

146 5 D I C T I O N A R Y T E C H N I Q U E S

T A B L E 5 . 6 Initial LZW dictionary.

Index Entry

1 /b
2 a
3 b
4 o
5 w

T A B L E 5 . 7 Constructing the 12th entry of
the LZW dictionary.

Index Entry

01 /b
02 a
03 b
04 o
05 w

06 wa
07 ab
08 bb
09 ba
10 a//b
11 /b w
12 w…

The encoder first encounters the letter w. This “pattern” is in the dictionary so we concate-
nate the next letter to it, forming the pattern wa. This pattern is not in the dictionary, so we
encode w with its dictionary index 5, add the pattern wa to the dictionary as the sixth element
of the dictionary, and begin a new pattern starting with the letter a. As a is in the dictionary,
we concatenate the next element b to form the pattern ab. This pattern is not in the dictionary,
so we encode a with its dictionary index value 2, add the pattern ab to the dictionary as the
seventh element of the dictionary, and start constructing a new pattern with the letter b. We
continue in this manner, constructing two-letter patterns, until we reach the letter w in the sec-
ond wabba. At this point, the output of the encoder consists entirely of indices from the initial
dictionary: 5 2 3 3 2 1. The dictionary looks like Table 5.7. (The 12th entry in the dictionary
is still under construction.) The next symbol in the sequence is a. Concatenating this to w,
we get the pattern wa. This pattern already exists in the dictionary (item 6), so we read the
next symbol, which is b. Concatenating this to wa, we get the pattern wab. This pattern does
not exist in the dictionary, so we include it as the 12th entry in the dictionary and start a new
pattern with the symbol b. We also encode wa with its index value of 6. Notice that after a
series of two-letter entries, we now have a three-letter entry. As the encoding progresses, the
length of the entries keeps increasing. The longer entries in the dictionary indicate that the
dictionary is capturing more of the structure in the sequence. The dictionary at the end of the

5.4 Adaptive Dictionary 147

T A B L E 5 . 8 The LZW dictionary for encoding
wabba/bwabba/bwabba/bwabba/b
woo/bwoo/bwoo.

Index Entry Index Entry

01 /b 14 a/b w

02 a 15 wabb
03 b 16 ba/b
04 o 17 /b wa
05 w 18 abb
06 wa 19 ba/b w

07 ab 20 wo
08 bb 21 oo
09 ba 22 o/b
10 a/b 23 /b wo
11 /b w 24 oo/b
12 wab 25 /b woo
13 bba

encoding process is shown in Table 5.8. Notice that the 12th through the 19th entries are all
either three or four letters in length. Then we encounter the pattern woo for the first time and
we drop back to two-letter patterns for three more entries, after which we go back to entries
of increasing length.

The encoder output sequence is 5 2 3 3 2 1 6 8 10 12 9 11 7 16 5 4 4 11 21 23 4. �

Example 5 .4 .4 : The LZW Algorithm—Decoding

In this example we will take the encoder output from the previous example and decode it
using the LZW algorithm. The encoder output sequence in the previous example was

5 2 3 3 2 1 6 8 10 12 9 11 7 16 5 4 4 11 21 23 4

This becomes the decoder input sequence. The decoder starts with the same initial dictionary
as the encoder (Table 5.6).

The index value 5 corresponds to the letter w, so we decode w as the first element of our
sequence. At the same time, we begin construction of the next element of the dictionary in
order to mimic the dictionary construction procedure of the encoder. We start with the letter
w. This pattern exists in the dictionary, so we do not add it to the dictionary and continue with
the decoding process. The next decoder input is 2, which is the index corresponding to the
letter a. We decode an a and concatenate it with our current pattern to form the pattern wa.
As this does not exist in the dictionary, we add it as the sixth element of the dictionary and
start a new pattern beginning with the letter a. The next four inputs 3 3 2 1 correspond to the
letters bba/b and generate the dictionary entries ab, bb, ba, and a/b. The dictionary now looks
like Table 5.9, where the 11th entry is under construction.

The next input is 6, which is the index of the pattern wa. Therefore, we decode a w and an a.
We first concatenate w to the existing pattern, which is /b and form the pattern /bw. As /bw

148 5 D I C T I O N A R Y T E C H N I Q U E S

T A B L E 5 . 9 Constructing the 11th entry of
the LZW dictionary while
decoding.

Index Entry

01 /b
02 a
03 b
04 o
05 w

06 wa
07 ab
08 bb
09 ba
10 a/b
11 /b. . .

does not exist in the dictionary, it becomes the 11th entry. The new pattern now starts with the
letter w. We had previously decoded the letter a, which we now concatenate to w to obtain
the pattern wa. This pattern is contained in the dictionary, so we decode the next input, which
is 8. This corresponds to the entry bb in the dictionary. We decode the first b and concatenate
it to the pattern wa to get the pattern wab. This pattern does not exist in the dictionary, so we
add it as the 12th entry in the dictionary and start a new pattern with the letter b. Decoding the
second b and concatenating it to the new pattern, we get the pattern bb. This pattern exists in
the dictionary, so we decode the next element in the sequence of encoder outputs. Continuing
in this fashion, we can decode the entire sequence. Notice that the dictionary being constructed
by the decoder is identical to that constructed by the encoder. �

There is one particular situation in which the method of decoding the LZW algorithm
described above breaks down. Suppose we had a source with an alphabet A = {a, b}, and
we were to encode the sequence beginning with abababab The encoding process is still
the same. We begin with the initial dictionary shown in Table 5.10 and end up with the final
dictionary shown in Table 5.11.

The transmitted sequence is 1235 This looks like a relatively straightforward sequence
to decode. However, when we try to do so, we run into a snag. Let us go through the decoding
process and see what happens.

T A B L E 5 . 10 Initial dictionary for
abababab.

Index Entry

1 a
2 b

5.4 Adaptive Dictionary 149

T A B L E 5 . 11 Final dictionary for abababab.

Index Entry

1 a
2 b
3 ab
4 ba
5 aba
6 abab
7 b . . .

T A B L E 5 . 12 Constructing the fourth entry of
the dictionary while decoding.

Index Entry

1 a
2 b
3 ab
4 b . . .

T A B L E 5 . 13 Constructing the fifth entry
(stage one).

Index Entry

1 a
2 b
3 ab
4 ba
5 a . . .

We begin with the same initial dictionary as the encoder (Table 5.10). The first two elements
in the received sequence 1235 . . . are decoded as a and b, giving rise to the third dictionary
entry ab, and the beginning of the next pattern to be entered in the dictionary, b. The dictionary
at this point is shown in Table 5.12.

The next input to the decoder is 3. This corresponds to the dictionary entry ab. Decoding
each in turn, we first concatenate a to the pattern under construction to get ba. This pattern
is not contained in the dictionary, so we add this to the dictionary (keep in mind, we have not
used the b from ab yet), which now looks like Table 5.13.

The new entry starts with the letter a. We have only used the first letter from the pair ab.
Therefore, we now concatenate b to a to obtain the pattern ab. This pattern is contained in the
dictionary, so we continue with the decoding process. The dictionary at this stage looks like
Table 5.14.

150 5 D I C T I O N A R Y T E C H N I Q U E S

T A B L E 5 . 14 Constructing the fifth entry
(stage two).

Index Entry

1 a
2 b
3 ab
4 ba
5 ab . . .

T A B L E 5 . 15 Completion of the fifth entry.

Index Entry

1 a
2 b
3 ab
4 ba
5 aba
6 a . . .

The first four entries in the dictionary are complete, while the fifth entry is still under
construction. However, the very next input to the decoder is 5, which corresponds to the
incomplete entry! How do we decode an index for which we do not as yet have a complete
dictionary entry?

The situation is actually not as bad as it looks. (Of course, if it were, we would not now
be studying LZW.) While we may not have a fifth entry for the dictionary, we do have the
beginnings of the fifth entry, which is ab Let us, for the moment, pretend that we do
indeed have the fifth entry and continue with the decoding process. If we had a fifth entry, the
first two letters of the entry would be a and b. Concatenating a to the partial new entry we get
the pattern aba. This pattern is not contained in the dictionary, so we add this to our dictionary,
which now looks like Table 5.15. Notice that we now have the fifth entry in the dictionary,
which is aba. We have already decoded the ab portion of aba. We can now decode the last
letter a and continue on our merry way.

This means that the LZW decoder has to contain an exception handler to handle the special
case of decoding an index that does not have a corresponding complete entry in the decoder
dictionary.

5.5 Applications

Since the publication of Terry Welch’s article [56], there has been a steadily increasing number
of applications that use some variant of the LZ78 algorithm. Among the LZ78 variants, by far
the most popular is the LZW algorithm. In this section, we describe two applications of LZW:

5.5 Applications 151

GIF and V.42 bis. While the LZW algorithm was initially the algorithm of choice, patent
concerns led to increasing use of the LZ77 algorithm. The most popular implementation of
the LZ77 algorithm is the deflate algorithm initially designed by Phil Katz. It is part of the
popular zlib library developed by Jean-Loup Gailly and Mark Adler. Jean-Loup Gailly also
used deflate in the widely used gzip algorithm. The deflate algorithm is also used in PNG,
which we describe below.

5.5.1 File Compression—UNIX compress

The UNIX compress command is one of the earlier applications of LZW. The size of the
dictionary is adaptive. We start with a dictionary of size 512. This means that the transmitted
codewords are 9 bits long. Once the dictionary has filled up, the size of the dictionary is
doubled to 1024 entries. The codewords transmitted at this point have 10 bits. The size of
the dictionary is progressively doubled as it fills up. In this way, during the earlier part of the
coding process when the strings in the dictionary are not very long, the codewords used to
encode them also have fewer bits. The maximum size of the codeword, bmax, can be set by the
user to between 9 and 16, with 16 bits being the default. Once the dictionary contains 2bmax

entries, compress becomes a static dictionary coding technique. At this point the algorithm
monitors the compression ratio. If the compression ratio falls below a threshold, the dictionary
is flushed, and the dictionary building process is restarted. This way, the dictionary always
reflects the local characteristics of the source.

5.5.2 Image Compression—The Graphics Interchange
Format (GIF)

The Graphics Interchange Format (GIF) was developed by CompuServe Information Service
to encode graphical images. It is another implementation of the LZW algorithm and is very
similar to the compress command. The compressed image is stored with the first byte being
the minimum number of bits b per pixel in the original image. For the images we have been
using as examples, this would be eight. The binary number 2b is defined to be the clear
code. This code is used to reset all compression and decompression parameters to a start-up
state. The initial size of the dictionary is 2b+1. When this fills up, the dictionary size is
doubled, as was done in the compress algorithm, until the maximum dictionary size of 4096
is reached. At this point, the compression algorithm behaves like a static dictionary algorithm.
The codewords from the LZW algorithm are stored in blocks of characters. The characters
are 8 bits long, and the maximum block size is 255. Each block is preceded by a header that
contains the block size. The block is terminated by a block terminator consisting of eight 0s.
The end of the compressed image is denoted by an end-of-information code with a value of
2b + 1. This codeword should appear before the block terminator.

GIF has become quite popular for encoding all kinds of images, both computer-generated
and “natural” images. While GIF works well with computer-generated graphical images and
pseudocolor or color-mapped images, it is generally not the most efficient way to losslessly
compress images of natural scenes, photographs, satellite images, and so on. In Table 5.16,
we give the file sizes for the GIF-encoded test images. For comparison, we also include the
file sizes for arithmetic coding the original images and arithmetic coding the differences.

152 5 D I C T I O N A R Y T E C H N I Q U E S

T A B L E 5 . 16 Comparison of GIF with
arithmetic coding.

Arithmetic Coding Arithmetic Coding
Image GIF of Pixel Values of Pixel Differences

Sena 51,085 53,431 31,847
Sensin 60,649 58,306 37,126
Earth 34,276 38,248 32,137
Omaha 61,580 56,061 51,393

Notice that even if we account for the extra overhead in the GIF files, for these images
GIF barely holds its own even with simple arithmetic coding of the original pixels. While
this might seem odd at first, if we examine the image on a pixel level, we see that there are
very few repetitive patterns compared to a text source. Some images, like the Earth image,
contain large regions of constant values. In the dictionary coding approach, these regions
become single entries in the dictionary. Therefore, for images like these, the straightforward
dictionary coding approach does hold its own. However, for most other images, it would
probably be preferable to perform some preprocessing to obtain a sequence more amenable to
dictionary coding. The Portable Network Graphics (PNG) standard described next develops an
appropriate preprocessor to take advantage of the fact that in natural images the pixel-to-pixel
variation is generally small. We will also revisit this subject in Chapter 7.

5.5.3 Image Compression—Portable Network
Graphics (PNG)

The PNG standard is one of the first standards to be collaboratively developed over the Internet.
The impetus for it was an announcement in December 1994 by Unisys (which had acquired
the patent for LZW from Sperry) and CompuServe that they would start charging royalties to
authors of software that included support for GIF. The announcement resulted in an uproar
in the segment of the compression community that formed the core of the Usenet group
comp.compression. The community decided that a patent-free replacement for GIF should
be developed, and within three months, PNG was born. (For a more detailed history of PNG
as well as software and much more, go to the PNG website maintained by Greg Roelof,
http://www.libpng.org/pub/png/.)

Unlike GIF, the compression algorithm used in PNG is based on LZ77. In particular,
it is based on the de f late [17] implementation of LZ77. This implementation allows for
match lengths of between 3 and 258. At each step, the encoder examines three bytes. If it
cannot find a match of at least three bytes, it puts out the first byte and examines the next
three bytes. So, at each step it either puts out the value of a single byte, or literal, or the pair
< match length, of f set >. The alphabets of the li teral and match length are combined
to form an alphabet of size 286 (indexed by 0–285). The indices 0–255 represent literal
bytes, and the index 256 is an end-of-block symbol. The remaining 29 indices represent
codes for ranges of lengths between 3 and 258, as shown in Table 5.17. The table shows

http://www.libpng.org/pub/png/

5.5 Applications 153

the index, the number of selector bits to follow the index, and the lengths represented by
the index and selector bits. For example, the index 277 represents the range of lengths from
67 to 82. To specify which of the 16 values has actually occurred, the code is followed by
4 selector bits.

The index values are represented using a Huffman code. The Huffman code is specified in
Table 5.18.

The of f set can take on values between 1 and 32,768. These values are divided into 30
ranges. The 30 range values are encoded using a Huffman code (different from the Huffman
code for the li teral and length values) and the code is followed by a number of selector bits
to specify the particular distance within the range.

We have mentioned earlier that in natural images there is not a great deal of repetition of
sequences of pixel values. However, pixel values that are spatially close also tend to have
values that are similar. The PNG standard makes use of this structure by estimating the value
of a pixel based on its causal neighbors and subtracting this estimate from the pixel. The
difference modulo 256 is then encoded in place of the original pixel. There are four different
ways of getting the estimate (five if you include no estimation), and PNG allows the use of
a different method of estimation for each row. The first way is to use the pixel from the row
above as the estimate. The second method is to use the pixel to the left as the estimate. The
third method uses the average of the pixel above and the pixel to the left. The final method is
a bit more complex. An initial estimate of the pixel is first made by adding the pixel to the left
and the pixel above and subtracting the pixel to the upper left. Then the pixel that is closest
to the initial estimate (upper, left, or upper left) is taken as the estimate. A comparison of the
performance of PNG and GIF on our standard image set is shown in Table 5.19. The PNG
method clearly outperforms GIF.

5.5.4 Compression over Modems—V.42 bis

The ITU-T Recommendation V.42 bis is a compression standard devised for use over a tele-
phone network along with error-correcting procedures described in CCITT Recommendation
V.42. This algorithm is used in modems connecting computers to remote users. The algorithm
described in this recommendation operates in two modes, a transparent mode and a compressed
mode. In the transparent mode, the data are transmitted in uncompressed form, while in the
compressed mode an LZW algorithm is used to provide compression.

The reason for the existence of two modes is that at times the data being transmitted do not
have repetitive structure and, therefore, cannot be compressed using the LZW algorithm. In
this case, the use of a compression algorithm may even result in expansion. In these situations,
it is better to send the data in an uncompressed form. A random data stream would cause
the dictionary to grow without any long patterns as elements of the dictionary. This means
that most of the time the transmitted codeword would represent a single letter from the source
alphabet. As the dictionary size is much larger than the source alphabet size, the number of
bits required to represent an element in the dictionary is much more than the number of bits
required to represent a source letter. Therefore, if we tried to compress a sequence that does
not contain repeating patterns, we would end up with more bits to transmit than if we had not
performed any compression. Data without repetitive structure are often encountered when a
previously compressed file is transferred over the telephone lines.

154 5 D I C T I O N A R Y T E C H N I Q U E S

T
A

B
L
E

5
.
1
7

C
o
d
e
s
fo

r
re

p
re

se
n
ta

ti
o
n
s
o
f
m

a
tc
h
le

n
g
th

[1
7
].

In
de

x
#

of
Se

le
ct

or
B

its
L

en
gt

h
In

de
x

#
of

Se
le

ct
or

B
its

L
en

gt
h

In
de

x
#

of
Se

le
ct

or
B

its
L

en
gt

h

25
7

0
3

26
7

1
15

,1
6

27
7

4
67

–8
2

25
8

0
4

26
8

1
17

,1
8

27
8

4
83

–9
8

25
9

0
5

26
9

2
19

–2
2

27
9

4
09

9–
11

4
26

0
0

6
27

0
2

23
–2

6
28

0
4

11
5–

13
0

26
1

0
7

27
1

2
27

–3
0

28
1

5
13

1–
16

2
26

2
0

8
27

2
2

31
–3

4
28

2
5

16
3–

19
4

26
3

0
9

27
3

3
35

–4
2

28
3

5
19

5–
22

6
26

4
0

10
27

4
3

43
–5

0
28

4
5

22
7–

25
7

26
5

1
11

,1
2

27
5

3
51

–5
8

28
5

0
25

8
26

6
1

13
,1

4
27

6
3

59
–6

6

5.5 Applications 155

T A B L E 5 . 18 Huffman codes for the match
length alphabet [17].

Index Ranges # of Bits Binary Codes

0–143 8 00110000 through
10111111

144–255 9 110010000 through
111111111

256–279 7 0000000 through
0010111

280–287 8 11000000 through
11000111

T A B L E 5 . 19 Comparison of PNG with GIF and
arithmetic coding.

Arithmetic Coding Arithmetic Coding
Image PNG GIF of Pixel Values of Pixel Differences

Sena 31,577 51,085 53,431 31,847
Sensin 34,488 60,649 58,306 37,126
Earth 26,995 34,276 38,248 32,137
Omaha 50,185 61,580 56,061 51,393

T A B L E 5 . 20 Control codewords in
compressed mode.

Codeword Name Description

0 ETM Enter transparent mode
1 FLUSH Flush data
2 STEPUP Increment codeword size

The V.42 bis recommendation suggests periodic testing of the output of the compression
algorithm to see if data expansion is taking place. The exact nature of the test is not specified
in the recommendation.

In the compressed mode, the system uses LZW compression with a variable-size dictionary.
The initial dictionary size is negotiated at the time a link is established between the transmitter
and receiver. The V.42 bis recommendation suggests a value of 2048 for the dictionary size. It
specifies that the minimum size of the dictionary is to be 512. Suppose the initial negotiations
result in a dictionary size of 512. This means that our codewords that are indices into the
dictionary will be 9 bits long. Actually, the entire 512 indices do not correspond to input
strings; three entries in the dictionary are reserved for control codewords. These codewords
in the compressed mode are shown in Table 5.20.

156 5 D I C T I O N A R Y T E C H N I Q U E S

When the numbers of entries in the dictionary exceed a prearranged threshold C3, the
encoder sends the STEPUP control code, and the codeword size is incremented by 1 bit. At
the same time, the threshold C3 is also doubled. When all available dictionary entries are filled,
the algorithm initiates a reuse procedure. The location of the first string entry in the dictionary
is maintained in a variable N5. Starting from N5, a counter C1 is incremented until it finds a
dictionary entry that is not a prefix to any other dictionary entry. The fact that this entry is not
a prefix to another dictionary entry means that this pattern has not been encountered since it
was created. Furthermore, because of the way it was located, this pattern has been around the
longest among patterns of this kind. This reuse procedure enables the algorithm to prune the
dictionary of strings that may have been encountered in the past but have not been encountered
recently, on a continual basis. In this way, the dictionary is always matched to the current
source statistics.

To reduce the effect of errors, the CCITT recommends setting a maximum string length.
This maximum length is negotiated at link setup. The CCITT recommends a range of 6–250,
with a default value of 6.

The V.42 bis recommendation avoids the need for an exception handler for the case where
the decoder receives a codeword corresponding to an incomplete entry by forbidding the use
of the last entry in the dictionary. Instead of transmitting the codeword corresponding to
the last entry, the recommendation requires the sending of the codewords corresponding to
the constituents of the last entry. In the example used to demonstrate this quirk of the LZW
algorithm, the V.42 bis recommendation would have forced us to send the codewords 3 and 1
instead of transmitting the codeword 5.

5.6 Beyond Compression__Lempel- Ziv
Complexity �

In Chapter 2, we described the notion of Kolmogorov complexity, noting that the Kolmogorov
complexity of a sequence was not something that we could necessarily compute. Lempel and
Ziv provided a definition of complexity in 1976 [57] that is computable. This notion views
complexity as the level of diversity in a sequence. Thus, a sequence that consists of repetitions
of the same letter would not be a complex sequence, while a sequence that appears random
would be complex. The development of this definition of complexity formed the basis for
the two compression approaches that were to follow in the next two years. Since then, this
definition of complexity has had an impact in areas other than compression. We will take a brief
detour into these applications as they confirm our assertion that data compression algorithms
are ways of modeling and understanding how information is organized in data.

The computation of Lempel-Ziv (LZ) complexity is performed in a manner very similar
to the LZ77 algorithm. The basic idea is to parse the input sequence into phrases that do not
exist in the past of the sequence. Thus, a phrase is built up by copying from the past of the
sequence until we add a letter that makes the phrase distinct from anything in the past of the
sequence. Let’s see how this works by using a familiar phrase, cabracadabrarrarrad. We
begin with an empty history so the first letter c is a unique phrase, as are the letters a, b, and r .
The next letter in the sequence is a, which has occurred in the past, so we add the next letter

5.6 Beyond Compression__Lempel-Ziv Complexity � 157

c to form the new phrase ac. Continuing in this manner we get the following parsing of the
sequence:

c · a · b · r · ac · ad · abrar · rarrad

The number of distinct phrases in this parsing, which in this case is eight, is the LZ complexity
of this sequence. We can see how the LZ77 and LZ78 adaptive dictionary compression followed
from this method of computing complexity. However, beyond compression this approach also
provides a method for computing similarity between sequences.

Consider three sequences:

R : abracadabra

Q : rrarracadab

S : arbacbacarc

Parsing these sequences we get

R : a · b · r · ac · ad · abra

Q : r · ra · rrac · ad · ab

S : a · r · b · ac · baca · rc

If we denote the LZ complexity of a sequence by c(·), then we have c(R) = 6, c(Q) = 5,
and c(S) = 6. One way to compare the relatedness of two sequences is to concatenate them
and see how that affects the complexity. Let’s compare the relatedness of sequence R with
sequence Q and sequence S. Sequence RQ is

abracadabrarrarracadab

If we parse this sequence, we get

a · b · r · ac · ad · abrar · rarrac · adab

or c(RQ) = 8. In other words, the concatenation of Q to R raised the complexity from six to
eight. If we now concatenate sequence R with sequence S we get sequence RS:

abracadabraarbacbacarc

Parsing this sequence we obtain

a · b · r · ac · ad · abraa · rb · acb · acar · c
which gives us an LZ complexity c(RS) = 10. Thus in this case the complexity increased
from six to ten, or twice as much as the increase when we concatenated sequences R and Q.
Based on this, we can claim that sequence R is closer to sequence Q than it is to sequence S.

One way of looking at the change in complexity is to note that the parsing of the appended
sequence (S or Q) was conducted using the dictionary of sequence R. Thus the increase in
complexity is a measure of the number of additional words required to represent the appended
sequence. This idea has been used for automatic language recognition and authorship attribu-
tion [58]. By using a known piece of text as the original sequence (sequence R in the example

158 5 D I C T I O N A R Y T E C H N I Q U E S

here), we capture patterns specific to the text. When we append different fragments of text to
the original by monitoring the increase in the LZ complexity (perhaps normalized by the size
of the text), we can get an idea of how close the texts we are examining are to the original.
This can give us an indication of which texts have been authored by the same individual, and
it can provide an easy method for automatically detecting the language of a piece of text. The
Lempel-Ziv approach thus provides a model for the original. The amount of increase in com-
plexity is an indication of how closely the text being examined fits the model of the original
text.

One of the richest sources of information is the DNA sequence of living organisms. By
comparing the same gene from different organisms, we can estimate the evolutionary rela-
tionship between organisms. Model testing of the type described above has been shown to
be highly effective in estimating evolutionary distances between organisms [59,60]. Keeping
within the realm of bioinformatics, one of the ways in which biologists attempt to understand
the function of various biological molecules, such as proteins, is to compare the composition
of proteins with unknown functions with proteins with known functions. LZ complexity has
been shown to be a valuable tool [61–63] for comparing DNA and protein sequences.

LZ complexity has also been used in modeling and analyzing various biomedical signals
[64]. Changes in LZ complexity have been proposed as a means of detecting epileptic seizures
[65] and monitoring of brain activity during anesthesia [66] and in patients with Alzheimer’s
disease [67]. LZ complexity has also been used to analyze cardiac signals [68]. In short,
the concept of LZ complexity has ramifications well outside the area of compression and is a
useful tool for understanding signals of all sorts.

5.7 Summary

In this chapter, we have introduced techniques that keep a dictionary of recurring patterns
and transmit the index of those patterns instead of the patterns themselves in order to achieve
compression. There are a number of ways the dictionary can be constructed.

� In applications where certain patterns consistently recur, we can build application-specific
static dictionaries. Care should be taken not to use these dictionaries outside their area
of intended application. Otherwise, we may end up with data expansion instead of data
compression.

� The dictionary can be the source output itself. This is the approach used by the LZ77
algorithm. When using this algorithm, there is an implicit assumption that recurrence of
a pattern is a local phenomenon.

� This assumption is removed in the LZ78 approach, which dynamically constructs a
dictionary from patterns observed in the source output.

Dictionary-based algorithms are being used to compress all kinds of data; however, care
should be taken with their use. This approach is most useful when structural constraints restrict
the frequently occurring patterns to a small subset of all possible patterns. This is the case
with text, as well as computer-to-computer communication.

5.8 Projects and Problems 159

Further Reading

1. Text Compression, by T.C. Bell, J.G. Cleary, and I.H. Witten [1], provides an excellent
exposition of dictionary-based coding techniques.

2. The Data Compression Book, by M. Nelson and J.-L. Gailley [69], also does a good job
of describing the Ziv-Lempel algorithms. There is also a very nice description of some
of the software implementation aspects.

3. Data Compression, by G. Held and T.R. Marshall [70], contains a description of digram
coding under the name “diatomic coding.” The book also includes BASIC programs that
help in the design of dictionaries.

4. The PNG algorithm is described in a very accessible manner in “PNG Lossless Com-
pression,” by G. Roelofs [71] in the Lossless Compression Handbook.

5. A more in-depth look at dictionary compression is provided in “Dictionary-Based Data
Compression: An Algorithmic Perspective,” by S.C. Şahinalp and N.M. Rajpoot [72] in
the Lossless Compression Handbook.

5.8 Projects and Problems

1. To study the effect of dictionary size on the efficiency of a static dictionary technique,
we can modify Equation (5.1) so that it gives the rate as a function of both p and the
dictionary size M . Plot the rate as a function of p for different values of M , and discuss
the trade-offs involved in selecting larger or smaller values of M .

2. Design and implement a digram coder for text files of interest to you.

(a) Study the effect of the dictionary size and the size of the text file being encoded on
the amount of compression.

(b) Use the digram coder on files that are not similar to the ones you used to design the
digram coder. How much does this affect your compression?

3. Given an initial dictionary consisting of the letters a b r y /b, encode the following message
using the LZW algorithm: a/bbar/barray/bby/bbarrayar/bbay.

4. A sequence is encoded using the LZW algorithm and the initial dictionary shown in Table
5.21.

(a) The output of the LZW encoder is the following sequence:

6 3 4 5 2 3 1 6 2 9 11 16 12 14 4 20 10 8 23 13

Decode this sequence.
(b) Encode the decoded sequence using the same initial dictionary. Does your answer

match the sequence given above?

160 5 D I C T I O N A R Y T E C H N I Q U E S

T A B L E 5 . 21 Initial dictionary for
Problem 4.

Index Entry

1 a
2 /b
3 h
4 i
5 s
6 t

T A B L E 5 . 22 Initial dictionary for
Problem 5.

Index Entry

1 a
2 /b
3 r
4 t

5. A sequence is encoded using the LZW algorithm and the initial dictionary shown in
Table 5.22.

(a) The output of the LZW encoder is the following sequence:

3 1 4 6 8 4 2 1 2 5 10 6 11 13 6

Decode this sequence.
(b) Encode the decoded sequence using the same initial dictionary. Does your answer

match the sequence given above?

6. Encode the following sequence using the LZ77 algorithm:

barrayar/bbar/bby/bbarrayar/bbay

Assume you have a window size of 30 with a lookahead buffer of size 15. Furthermore,
assume that C(a) = 1, C(b) = 2, C(/b) = 3, C(r) = 4, and C(y) = 5.

7. A sequence is encoded using the LZ77 algorithm. Given that C(a) = 1, C(/b) = 2,
C(r) = 3, and C(t) = 4, decode the following sequence of triples:

〈0, 0, 3〉〈0, 0, 1〉〈0, 0, 4〉〈2, 8, 2〉〈3, 1, 2〉〈0, 0, 3〉〈6, 4, 4〉〈9, 5, 4〉
Assume that the size of the window is 20 and the size of the lookahead buffer is 10.
Encode the decoded sequence and make sure you get the same sequence of triples.

5.8 Projects and Problems 161

8. Given the following initial dictionary and the received sequence below, build an LZW
dictionary and decode the transmitted sequence.
Received sequence: 4, 5, 3, 1, 2, 8, 2, 7, 9, 7, 4
Initial dictionary:

Index Entry
1 S
2 /b
3 I
4 T
5 H

9. Given the following initial dictionary and the received sequence below, build an LZW
dictionary and decode the transmitted sequence.
Received sequence: 3, 2, 1, 5, 3, 4, 1, 6, 5
Initial dictionary:

Index Entry
1 I
2 N
3 O
4 P

10. Use the Lempel-Ziv algorithm to classify paragraphs from plays by William Shakespeare
and George Bernard Shaw. Compress the Hamlet soliloquy (To be or not to be, that is
the question ….) and use that as the reference sequence to compress different pieces of
text from Shakespeare’s plays Hamlet and Julius Caeser, and Shaw’s play Caesar and
Cleopatra. Use the compressed file sizes to make your classification decision. Plot the
percentage of correct decisions against the size of the text used for classification.

6
Context-Based Compression

6.1 Overview

I
n this chapter, we present a number of techniques that use minimal prior as-
sumptions about the statistics of the data. Instead they use the context of the
data being encoded and the past history of the data to provide more efficient
compression. We will look at a number of schemes that are principally used for
the compression of text. These schemes use the context in which the data occurs

in different ways.

6.2 Introduction

In Chapters 3 and 4, we learned that we get more compression when the message that is being
coded has a more skewed set of probabilities. By “skewed” we mean that certain symbols
occur with much higher probability than others in the sequence to be encoded. So it makes
sense to look for ways to represent the message that would result in greater skew. One very
effective way to do so is to look at the probability of occurrence of a letter in the context in
which it occurs. That is, we do not look at each symbol in a sequence as if it had just happened
out of the blue. Instead, we examine the history of the sequence before determining the likely
probabilities of different values that the symbol can take.

In the case of English text, Shannon [4] showed the role of context in two very interesting
experiments. In the first, a portion of text was selected and a subject (possibly his wife, Mary
Shannon) was asked to guess each letter. If she guessed correctly, she was told that she was

Introduction to Data Compression. DOI: http://dx.doi.org/10.1016/B978-0-12-415796-5.00006-5
© 2012 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-415796-5.00006-5

164 6 C O N T E X T - B A S E D C O M P R E S S I O N

correct and moved on to the next letter. If she guessed incorrectly, she was told the correct
answer and again moved on to the next letter. Here is a result from one of these experiments.
The dashes represent the letters that were correctly guessed.

Actual Text T H E R O O M W A S N O T V E R Y L I G H T A S M A L L O B L O N G
Subject Performance _ _ _ _ R O O _ _ _ _ _ _ N O T _ V _ _ _ _ _ I _ _ _ _ _ _ S M _ _ _ _ O B L _ _ _

Notice that there is a good chance that the subject will guess the letter, especially if the
letter is at the end of a word or if the word is clear from the context. If we now represent the
original sequence by the subject performance, we would get a very different set of probabilities
for the values that each element of the sequence takes on. The probabilities are definitely much
more skewed in the second row: the “letter” _ occurs with high probability. If a mathematical
twin of the subject were available at the other end, we could send the “reduced” sentence in
the second row and have the twin go through the same guessing process to come up with the
original sequence.

In the second experiment, the subject was allowed to continue guessing until she had
guessed the correct letter and the number of guesses required to correctly predict the letter
was noted. Again, the subject guessed correctly most of the time, resulting in 1 being the
most probable number. The existence of a mathematical twin at the receiving end would allow
this skewed sequence to represent the original sequence to the receiver. Shannon used his
experiments to come up with upper and lower bounds for the English alphabet (1.3 bits per
letter and 0.6 bits per letter, respectively).

The difficulty with using these experiments is that the human subject was much better
at predicting the next letter in a sequence than any mathematical predictor we can develop.
Grammar is hypothesized to be innate to humans [73], in which case development of a predictor
as efficient as a human for language is not possible in the near future. However, the experiments
do provide an approach to compression that is useful for compression of all types of sequences,
not simply language representations.

If a sequence of symbols being encoded does not consist of independent occurrences of the
symbols, then knowledge of which symbols have occurred in the neighborhood of the symbol
being encoded will give us a much better idea of the value of the symbol being encoded. If
we know the context in which a symbol occurs, we can guess what the value of the symbol is
with a much greater likelihood of success. This is just another way of saying that, given the
context, some symbols will occur with much higher probability, or much lower, than without
the context. That is, the probability distribution given the context is more skewed. If the
context is known to both encoder and decoder, we can use this skewed distribution to perform
the encoding, thus increasing the level of compression. The decoder can use its knowledge of
the context to determine the distribution to be used for decoding. If we can somehow group
like contexts together, it is quite likely that the symbols following these contexts will be the
same, allowing for the use of some very simple and efficient compression strategies. We can
see that context can play an important role in enhancing compression, and in this chapter we
will look at several different ways of using context.

Consider the encoding of the word probability. Suppose we have already encoded the
first four letters, and we want to code the fifth letter, a. If we ignore the first four letters, the
probability of the letter a is about 0.06. If we use the information that the previous letter is b,

6.3 Prediction with Partial Match (ppm) 165

this reduces the probability of several letters, such as q and z, occurring and boosts the proba-
bility of an a occurring. In this example, b would be the first-order context for a, ob would be
the second-order context for a, and so on. Using more letters to define the context in which a
occurs, or higher-order contexts, will generally increase the probability of the occurrence of a
in this example and, hence, reduce the number of bits required to encode its occurrence. There-
fore, what we would like to do is to encode each letter using the probability of its occurrence
with respect to a context of high order.

If we want to have probabilities with respect to all possible high-order contexts, this might
be an overwhelming amount of information. Consider an alphabet of size M . The number of
first-order contexts is M , the number of second-order contexts is M2, and so on. Therefore, if
we wanted to encode a sequence from an alphabet of size 256 using contexts of order 5, we
would need 2565, or about 1.09951 × 1012 probability distributions! This is not a practical
alternative. A set of algorithms that resolve this problem in a very simple and elegant way is
based on the prediction with partial match approach. We will describe this in the next section.

6.3 Prediction with Partial Match (ppm)

The best-known context-based algorithm is the ppm algorithm, first proposed by Cleary and
Witten [74] in 1984. It has not been as popular as the various Ziv-Lempel-based algorithms
mainly because of the faster execution speeds of the latter algorithms. Lately, with the devel-
opment of more efficient variants, ppm-based algorithms are becoming increasingly popular.

The idea of the ppm algorithm is elegantly simple. We would like to use large contexts
to determine the probability of the symbol being encoded. However, the use of large contexts
would require us to estimate and store an extremely large number of conditional probabilities,
which might not be feasible. Instead of estimating these probabilities ahead of time, we can
reduce the burden by estimating the probabilities as the coding proceeds. This way we only
need to store those contexts that have occurred in the sequence being encoded. This is a much
smaller number than the number of all possible contexts. While this mitigates the problem of
storage, it also means that, especially at the beginning of an encoding, we will need to code
letters that have not occurred previously in this context. In order to handle this situation, the
source coder alphabet always contains an escape symbol, which is used to signal that the letter
to be encoded has not been seen in this context.

6.3.1 The Basic Algorithm

The basic algorithm initially attempts to use the largest context. The size of the largest context
is predetermined. If the symbol to be encoded has not previously been encountered in this
context, an escape symbol is encoded and the algorithm attempts to use the next smaller context.
If the symbol has not occurred in this context either, the size of the context is further reduced.
This process continues until either we obtain a context that has previously been encountered
with this symbol or we arrive at the conclusion that the symbol has not been encountered
previously in any context. In this case, we use probability of 1/M to encode the symbol,
where M is the size of the source alphabet. For example, when coding the a of probability,

166 6 C O N T E X T - B A S E D C O M P R E S S I O N

T A B L E 6 . 1 Count array for −1 order
context.

Letter Count Cum_Count

t 1 1
h 1 2
i 1 3
s 1 4
e 1 5
/b 1 6

Total_Count 6

we would first attempt to see if the string proba has previously occurred—that is, if a had
previously occurred in the context of prob. If not, we would encode an escape and see if a had
occurred in the context of rob. If the string roba had not occurred previously, we would again
send an escape symbol and try the context ob. Continuing in this manner, we would try the
context b, and failing that, we would see if the letter a (with a zero-order context) had occurred
previously. If a was being encountered for the first time, we would use a model in which
all letters occur with equal probability to encode a. This equiprobable model is sometimes
referred to as the context of order −1.

As the development of the probabilities with respect to each context is an adaptive process,
the count corresponding to a symbol is updated each time the symbol is encountered. The
number of counts to be assigned to the escape symbol is not obvious, and a number of different
approaches have been used. One approach used by Cleary and Witten is to give the escape
symbol a count of one, thus inflating the total count by one. Cleary and Witten call this method
of assigning counts Method A and the resulting algorithm ppma. We will describe some of
the other ways of assigning counts to the escape symbol later in this section.

Before we delve into some of the details, let’s work through an example to see how all this
works together. As we will be using arithmetic coding to encode the symbols, you might wish
to refresh your memory of the arithmetic coding algorithms.

Example 6 .3 .1 :

Let’s encode the sequence
this/bis/bthe/bti the

Assuming we have already encoded the initial seven characters this/bis, the various counts
and Cum_Count arrays to be used in the arithmetic coding of the symbols are shown in
Tables 6.1–6.4. In this example, we are assuming that the longest context length is two. This
is a rather small value and is used here to keep the size of the example reasonably small. A
more common value for the longest context length is five.

We will assume that the word length for arithmetic coding is six. Thus, l = 000000 and
u = 111111. As this/bis has already been encoded, the next letter to be encoded is /b. The
second-order context for this letter is is. Looking at Table 6.4, we can see that the letter /b is
the first letter in this context with a Cum_Count value of 1. As the T otal_Count in this case

6.3 Prediction with Partial Match (ppm) 167

T A B L E 6 . 2 Count array for zero-order
context.

Letter Count Cum_Count

t 1 1
h 1 2
i 2 4
s 2 6
/b 1 7
〈Esc〉 1 8

Total_Count 8

is 2, the update equations for the lower and upper limits are

l = 0+
⌊
(63− 0+ 1)× 0

2

⌋
= 0 = 000000

u = 0+
⌊
(63− 0+ 1)× 1

2

⌋
− 1 = 31 = 011111

As the MSBs of both l and u are the same, we shift that bit out and shift a 0 into the LSB of
l and a 1 into the LSB of u. The transmitted sequence, lower limit, and upper limit after the
update are

Transmitted sequence : 0

l : 000000

u : 111111

We also update the counts in Tables 6.2–6.4.
The next letter to be encoded in the sequence is t . The second-order context is s/b. Looking

at Table 6.4, we can see that t has not appeared before in this context. We therefore encode an
escape symbol. Using the counts listed in Table 6.4, we update the lower and upper limits:

l = 0+
⌊
(63− 0+ 1)× 1

2

⌋
= 32 = 100000

u = 0+
⌊
(63− 0+ 1)× 2

2

⌋
− 1 = 63 = 111111

Again, the MSBs of l and u are the same, so we shift the bit out and shift 0 into the LSB of l
and 1 into u, restoring l to a value of 0 and u to a value of 63. The transmitted sequence is now
01. After transmitting the escape, we look at the first-order context of t , which is /b. Looking
at Table 6.3, we can see that t has not previously occurred in this context. To let the decoder
know this, we transmit another escape. Updating the limits, we get

l = 0+
⌊
(63− 0+ 1)× 1

2

⌋
= 32 = 100000

u = 0+
⌊
(63− 0+ 1)× 2

2

⌋
− 1 = 63 = 111111

168 6 C O N T E X T - B A S E D C O M P R E S S I O N

T A B L E 6 . 3 Count array for first-order
contexts.

Context Letter Count Cum_Count

t h 1 1
〈Esc〉 1 2

Total_Count 2

h i 1 1
〈Esc〉 1 2

Total_Count 2

i s 2 2
〈Esc〉 1 3

Total_Count 3

/b i 1 1
〈Esc〉 1 2

Total_Count 2

s /b 1 1
〈Esc〉 1 2

Total_Count 2

T A B L E 6 . 4 Count array for second-order
contexts.

Context Letter Count Cum_Count

th i 1 1
〈Esc〉 1 2

Total_Count 2

hi s 1 1
〈Esc〉 1 2

Total_Count 2

is /b 1 1
〈Esc〉 1 2

Total_Count 2

s/b i 1 1
〈Esc〉 1 2

Total_Count 2

/bi s 1 1
〈Esc〉 1 2

Total_Count 2

6.3 Prediction with Partial Match (ppm) 169

T A B L E 6 . 5 Updated count array for
zero-order context.

Letter Count Cum_Count

t 1 1
h 1 2
i 2 4
s 2 6
/b 2 8
〈Esc〉 1 9

Total_Count 9

As the MSBs of l and u are the same, we shift the MSB out and shift 0 into the LSB of l and 1
into the LSB of u. The transmitted sequence is now 011. Having escaped out of the first-order
contexts, we examine Table 6.5, the updated version of Table 6.2, to see if we can encode t
using a zero-order context. Indeed we can, and using the Cum_Count array, we can update l
and u:

l = 0+
⌊
(63− 0+ 1)× 0

9

⌋
= 0 = 000000

u = 0+
⌊
(63− 0+ 1)× 1

9

⌋
− 1 = 6 = 000110

The three most significant bits of both l and u are the same, so we shift them out. After the
update we get

Transmitted sequence: 011000

l : 000000

u : 110111

The next letter to be encoded is h. The second-order context /bt has not occurred previously,
so we move directly to the first-order context t . The letter h has occurred previously in this
context, so we update l and u and obtain

Transmitted sequence : 0110000

l : 000000

u : 110101

The method of encoding should now be clear. At this point the various counts are as shown
in Tables 6.6–6.8. �

Now that we have an idea of how the ppm algorithm works, let’s examine some of the
variations.

170 6 C O N T E X T - B A S E D C O M P R E S S I O N

T A B L E 6 . 6 Count array for zero-order
context.

Letter Count Cum_Count

t 2 2
h 2 4
i 2 6
s 2 8
/b 2 10
〈Esc〉 1 11

Total_Count 11

T A B L E 6 . 7 Count array for first-order
contexts.

Context Letter Count Cum_Count

t h 2 2
〈Esc〉 1 3

Total_Count 3

h i 1 1
〈Esc〉 1 2

Total_Count 2

i s 2 2
〈Esc〉 1 3

Total_Count 3

/b i 1 1
t 1 2
〈Esc〉 1 3

Total_Count 3

s /b 2 2
〈Esc〉 1 3

Total_Count 3

6.3.2 The Escape Symbol

In our example we used a count of one for the escape symbol, thus inflating the total count in
each context by one. Cleary and Witten call this Method A, and the corresponding algorithm
is referred to as ppma. There is really no obvious justification for assigning a count of one
to the escape symbol. For that matter, there is no obvious method of assigning counts to the
escape symbol. There have been various methods reported in the literature.

Another method described by Cleary and Witten is to reduce the counts of each symbol by
one and assign these counts to the escape symbol. For example, suppose in a given sequence
a occurs 10 times in the context of prob, l occurs 9 times, and o occurs 3 times in the same

6.3 Prediction with Partial Match (ppm) 171

T A B L E 6 . 8 Count array for second-order
contexts.

Context Letter Count Cum_Count

th i 1 1
〈Esc〉 1 2

Total_Count 2

hi s 1 1
〈Esc〉 1 2

Total_Count 2

is /b 2 2
〈Esc〉 1 3

Total_Count 3

s/b i 1 1
t 1 2
〈Esc〉 1 3

Total_Count 3

/bi s 1 1
〈Esc〉 1 2

Total_Count 2

/bt h 1 1
〈Esc〉 1 2

Total_Count 2

T A B L E 6 . 9 Counts using Method A.

Context Symbol Count

prob a 10
l 09
o 03
〈Esc〉 01

Total_Count 23

context (e.g., problem, proboscis, etc.). In Method A, we assign a count of one to the escape
symbol, resulting in a total count of 23, which is one more than the number of times prob has
occurred. This situation is shown in Table 6.9.

In this second method, known as Method B, we reduce the count of each of the symbols
a, l, and o by one and give the escape symbol a count of three, resulting in the counts shown
in Table 6.10.

The reasoning behind this approach is that if in a particular context more symbols can
occur, there is a greater likelihood that there is a symbol in this context that has not occurred

172 6 C O N T E X T - B A S E D C O M P R E S S I O N

T A B L E 6 . 10 Counts using Method B.

Context Symbol Count

prob a 09
l 08
o 02
〈Esc〉 03

Total_Count 22

T A B L E 6 . 11 Counts using Method C.

Context Symbol Count

prob a 10
l 09
o 03
〈Esc〉 03

Total_Count 25

before. This increases the likelihood that the escape symbol will be used. Therefore, we
should assign a higher probability to the escape symbol.

A variant of Method B, appropriately named Method C, was proposed by Moffat [75].
In Method C, the count assigned to the escape symbol is the number of symbols that have
occurred in that context. In this respect, Method C is similar to Method B. The difference
comes in the fact that, instead of “robbing” this from the counts of individual symbols, the
total count is inflated by this amount. This situation is shown in Table 6.11.

While there is some variation in performance depending on the characteristics of the data
being encoded, Method C, on average, seems to provide the best performance of the three
methods for assigning counts to the escape symbol.

6.3.3 Length of Context

It would seem that as far as the maximum length of the contexts is concerned, more is better.
However, this is not necessarily true. A longer maximum length will usually result in a higher
probability if the symbol to be encoded has a non zero count with respect to that context. How-
ever, a long maximum length also means a higher probability of long sequences of escapes,
which in turn can increase the number of bits used to encode the sequence. If we plot the
compression performance versus maximum context length, we see an initial sharp increase
in performance until some value of the maximum length, followed by a steady drop as the
maximum length is further increased. The value at which we see a downturn in performance
changes depending on the characteristics of the source sequence.

An alternative to the policy of a fixed maximum length is used in the algorithm ppm∗ [76].
This algorithm uses the fact that long contexts that give only a single prediction are seldom
followed by a new symbol. If mike has always been followed by y in the past, it will probably
not be followed by /b the next time it is encountered. Contexts that are always followed by the

6.3 Prediction with Partial Match (ppm) 173

same symbol are called deterministic contexts. The ppm∗ algorithm first looks for the longest
deterministic context. If the symbol to be encoded does not occur in that context, an escape
symbol is encoded and the algorithm defaults to the maximum context length. This approach
seems to provide a small but significant amount of improvement over the basic algorithm.
Currently, the best variant of the ppm∗ algorithm is the ppmz algorithm by Charles Bloom.
Details of the ppmz algorithm as well as implementations of the algorithm can be found at
http://www.cbloom.com/src/ppmz.html.

6.3.4 The Exclusion Principle

The basic idea behind arithmetic coding is the division of the unit interval into subintervals,
each of which represents a particular letter. The smaller the subinterval, the more bits are
required to distinguish it from other subintervals. If we can reduce the number of symbols to
be represented, the number of subintervals goes down as well. This in turn means that the sizes
of the subintervals increase, leading to a reduction in the number of bits required for encoding.
The exclusion principle used in ppm provides this kind of reduction in rate. Suppose we have
been compressing a text sequence and come upon the sequence proba, and suppose we are
trying to encode the letter a. Suppose also that the state of the two-letter context ob and the
one-letter context b are as shown in Table 6.12.

First, we attempt to encode a with the two-letter context. As a does not occur in this
context, we issue an escape symbol and reduce the size of the context. Looking at the table
for the one-letter context b, we see that a does occur in this context with a count of 4 out of a
total possible count of 21. Notice that other letters in this context include l and o. However,
by sending the escape symbol in the context of ob, we have already signalled to the decoder
that the symbol being encoded is not any of the letters that have previously been encountered
in the context of ob. Therefore, we can increase the size of the subinterval corresponding
to a by temporarily removing l and o from the table. Instead of using Table 6.12, we use
Table 6.13 to encode a. This exclusion of symbols from contexts on a temporary basis can
result in cumulatively significant savings in terms of rate.

T A B L E 6 . 12 Counts for exclusion example.

Context Symbol Count

ob l 10
o 03
〈Esc〉 02

Total_Count 15

b l 05
o 03
a 04
r 02
e 02
〈Esc〉 05

Total_Count 21

http://www.cbloom.com/src/ppmz.html

174 6 C O N T E X T - B A S E D C O M P R E S S I O N

T A B L E 6 . 13 Modified table used for
exclusion example.

Context Symbol Count

b a 4
r 2
e 2
〈Esc〉 3

Total_Count 11

You may have noticed that we keep talking about small but significant savings. In lossless
compression schemes, there is usually a basic principle, such as the idea of prediction with
partial match, followed by a host of relatively small modifications. The importance of these
modifications should not be underestimated, because together they often provide the margin
of compression that makes a particular scheme competitive.

6.4 The Burrows-Wheeler Transform

The Burrows-Wheeler transform (BWT) algorithm also uses the context of the symbol being
encoded, but in a very different way, for lossless compression. The transform that is a major
part of this algorithm was developed by Wheeler in 1983. However, the BWT compression
algorithm, which uses this transform, saw the light of day in 1994 [77]. Unlike most of the
previous algorithms we have looked at, the BWT algorithm requires that the entire sequence
to be coded be available to the encoder before the coding takes place. Also, unlike most of
the previous algorithms, the decoding procedure is not immediately evident once we know the
encoding procedure. We will first describe the encoding procedure. If it is not clear how this
particular encoding can be reversed, bear with us and we will get to it.

The algorithm can be summarized as follows. Given a sequence of length N , we create
N − 1 other sequences where each of these N − 1 sequences is a cyclic shift of the original
sequence. These N sequences are arranged in lexicographic order. The encoder then transmits
the sequence of length N created by taking the last letter of each sorted, cyclically shifted,
sequence. This sequence of last letters L , and the position of the original sequence in the
sorted list, are coded and sent to the decoder. As we shall see, this information is sufficient to
recover the original sequence.

We start with a sequence of length N and end with a representation that contains N + 1
elements. However, this sequence has a structure that makes it highly amenable to compression.
In particular we will use a method of coding called move to front (mtf), which is particularly
effective on the type of structure exhibited by the sequence L .

Before we describe the mtf approach, let us work through an example to generate the L
sequence.

6.4 The Burrows-Wheeler Transform 175

Example 6 .4 .1 :

Let’s encode the sequence
this/bis/bthe

We start with all the cyclic permutations of this sequence. As there are a total of 11 characters,
there are 11 permutations, shown in Table 6.14.

Now let’s sort these sequences in lexicographic (dictionary) order (Table 6.15). The se-
quence of the last letters L in this case is

L : sshtth/bii/be

Notice how like letters have come together. If we had a longer sequence of letters, the runs
of like letters would have been even longer. The mtf algorithm, which we will describe later,
takes advantage of these runs.

The original sequence appears as sequence number 10 in the sorted list, so the encoding
of the sequence consists of the sequence L and the index value 10. �

Now that we have an encoding of the sequence, let’s see how we can decode the original
sequence by using the sequence L and the index to the original sequence in the sorted list. The
important thing to note is that all the elements of the initial sequence are contained in L . We
just need to figure out the permutation that will let us recover the original sequence.

The first step in obtaining the permutation is to generate the sequence F consisting of
the first element of each row. That is simple to do because we lexicographically ordered the
sequences. Therefore, the sequence F is simply the sequence L in lexicographic order. In our
example this means that F is given as

F : /b/behhiisstt

We can use L and F to generate the original sequence. Look at Table 6.15 containing the
cyclically shifted sequences sorted in lexicographic order. Because each row is a cyclical shift,
the letter in the first column of any row is the letter appearing after the last column in the row
in the original sequence. If we know that the original sequence is in the kth row, then we can
begin unraveling the original sequence starting with the kth element of F .

T A B L E 6 . 14 Permutations of this/bis/bthe.

00 t h i s /b i s /b t h e
01 h i s /b i s /b t h e t
02 i s /b i s /b t h e t h
03 s /b i s /b t h e t h i
04 /b i s /b t h e t h i s
05 i s /b t h e t h i s /b
06 s /b t h e t h i s /b i
07 /b t h e t h i s /b i s
08 t h e t h i s /b i s /b
09 h e t h i s /b i s /b t
10 e t h i s /b i s /b t h

176 6 C O N T E X T - B A S E D C O M P R E S S I O N

T A B L E 6 . 15 Sequences sorted into
lexicographic order.

0 /b i s /b t h e t h i s
1 /b t h e t h i s /b i s
2 e t h i s /b i s /b t h
3 h e t h i s /b i s /b t
4 h i s /b i s /b t h e t
5 i s /b i s /b t h e t h
6 i s /b t h e t h i s /b
7 s /b i s /b t h e t h i
8 s /b t h e t h i s /b i
9 t h e t h i s /b i s /b
10 t h i s /b i s /b t h e

Example 6 .4 .2 :

In our example

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

/b
/b
e
h
h
i
i
s
s
t
t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s
s
h
t
t
h
/b
i
i
/b
e

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

the original sequence is sequence number 10, so the first letter in the original sequence is
F[10] = t . To find the letter following t , we look for t in the array L . There are two t’s in
L . Which should we use? The t in F that we are working with is the lower of two t’s, so we
pick the lower of two t’s in L . This is L[4]. Therefore, the next letter in our reconstructed
sequence is F[4] = h. The reconstructed sequence to this point is th. To find the next letter,
we look for h in the L array. Again there are two h’s. The h at F[4] is the lower of two h’s in
F , so we pick the lower of the two h’s in L . This is the fifth element of L , so the next element
in our decoded sequence is F[5] = i . The decoded sequence to this point is thi . The process
continues as depicted in Figure 6.1 to generate the original sequence. �

Why go through all this trouble? After all, we are going from a sequence of length N
to another sequence of length N plus an index value. It appears that we are actually causing
expansion instead of compression. The answer is that the sequence L can be compressed much
more efficiently than the original sequence. Even in our small example, we have runs of like
symbols. This will happen a lot more when N is large. Consider a large sample of text that
has been cyclically shifted and sorted in a list A. Consider all the rows of A beginning with

6.4 The Burrows-Wheeler Transform 177

0

1

2

3

4

5

6

7

8

9

10

b

b

e

h

h

i

i

s

s

t

t

s

s

h

t

t

h

b

i

i

b

e

F I GUR E 6 . 1 Decoding process.

he/b. With high probability, he/b would be preceded by t . Therefore, in L we would get a long
run of t ′s.

6.4.1 Move- to- Front Coding

A coding scheme that takes advantage of long runs of identical symbols is move-to-front (mt f)
coding. In this coding scheme, we start with some initial listing of the source alphabet. The
symbol at the top of the list is assigned the number 0, the next one is assigned the number 1,
and so on. The first time a particular symbol occurs, the number corresponding to its place in
the list is transmitted. Then it is moved to the top of the list. If we have a run of this symbol,
we transmit a sequence of 0s. This way, long runs of different symbols get transformed to a
large number of 0s. Applying this technique to our example does not produce very impressive
results due to the small size of the sequence, but we can see how the technique functions.

Example 6 .4 .3 :

Let’s encode L = sshtth/bii/be. Let’s assume that the source alphabet is given by

A = {/b, e, h, i, s, t}
We start out with the assignment

0 1 2 3 4 5
/b e h i s t

178 6 C O N T E X T - B A S E D C O M P R E S S I O N

The first element of L is s, which gets encoded as a 4. We then move s to the top of the list,
which gives us

0 1 2 3 4 5
s /b e h i t

The next s is encoded as 0. Because s is already at the top of the list, we do not need to make
any changes. The next letter is h, which we encode as 3. We then move h to the top of the list:

0 1 2 3 4 5
h s /b e i t

The next letter is t , which gets encoded as 5. Moving t to the top of the list, we get

0 1 2 3 4 5
t h s /b e i

The next letter is also a t , so that gets encoded as a 0.
Continuing in this fashion, we get the sequence

4 0 3 5 0 1 3 5 0 1 5

As we warned, the results are not too impressive with this small sequence, but we can see
how we would get large numbers of 0s and small values if the sequence to be encoded was
longer. These long sequences of 0s could then be efficiently encoded using schemes specifically
designed for encoding long repetitions of the same symbol, such as run-length coding, which
is described in the next chapter. �

6.5 Associative Coder of Buyanovsky (ACB)

A different approach to using context for compression is employed by the eponymous com-
pression utility developed by George Buyanovsky. The details of this very efficient coder
are not well known; however, the way the context is used is interesting and we will briefly
describe this aspect of ACB. More detailed descriptions are available in [78,79]. The ACB
coder develops a sorted dictionary of all encountered contexts. In this it is similar to other
context-based encoders. However, it also keeps track of the content of these contexts. The
content of a context is what appears after the context. In a traditional left-to-right reading of
text, the contexts are unbounded to the left and the contents to the right (to the limits of text
that has already been encoded). When encoding the coder searches for the longest match to
the current context reading right to left. This is, again, not an unusual thing to do. What is
interesting is what the coder does after the best match is found. Instead of simply examining
the content corresponding to the best matched context, the coder also examines the contents
of the coders in the neighborhood of the best matched contexts. Fenwick [78] describes this
process as first finding an anchor point then searching the contents of the neighboring contexts

6.6 Dynamic Markov Compression 179

for the best match. The location of the anchor point is known to both the encoder and the
decoder. The location of the best content match is signaled to the decoder by encoding the
offset δ of the context of this content from the anchor point. We have not specified what we
mean by “best” match. The coder takes the utilitarian approach that the best match is the one
that ends up providing the most compression. Thus, a longer match farther away from the
anchor may not be as advantageous as a shorter match closer to the anchor because of the
number of bits required to encode δ. The length of the match λ is also sent to the decoder.

The interesting aspect of this scheme is that it moves away from the idea of exactly matching
the past. It provides a much richer environment and flexibility to enhance the compression and
will, hopefully, provide a fruitful avenue for further research.

6.6 Dynamic Markov Compression

Quite often the probabilities of the value that the next symbol in a sequence takes on depend
not only on the current value but on past values as well. The ppm scheme relies on this
longer-range correlation. The ppm scheme, in some sense, reflects the application, that is, text
compression, for which it is most used. Dynamic Markov compression (DMC), introduced by
Cormack and Horspool [80], uses a more general framework to take advantage of relationships
and correlations, or contexts, that extend beyond a single symbol.

Consider the sequence of pixels in a scanned document. The sequence consists of runs
of black and white pixels. If we represent black by 0 and white by 1, we have runs of 0s
and 1s. If the current value is 0, the probability that the next value is 0 is higher than if the
current value was 1. The fact that we have two different sets of probabilities is reflected in
the two-state model shown in Figure 6.2. Consider state A. The probability of the next value
being 1 changes depending on whether we reached state A from state B or from state A itself.
We can have the model reflect this by cloning state A, as shown in Figure 6.3, to create state
A′. Now if we see a white pixel after a run of black pixels, we go to state A′. The probability
that the next value will be 1 is very high in this state. This way, when we estimate probabilities
for the next pixel value, we take into account not only the value of the current pixel but also
the value of the previous pixel.

This process can be continued as long as we wish to take into account longer and longer
histories. “As long as we wish” is a rather vague statement when it comes to implementing

1 0

0

1

A B

F I GUR E 6 . 2 A two-state model for binary sequences.

180 6 C O N T E X T - B A S E D C O M P R E S S I O N

0

1

1

1

0

0

B

A

A'

F I GUR E 6 . 3 A three-state model obtained by cloning.

the algorithm. In fact, we have been rather vague about a number of implementation issues.
We will attempt to rectify the situation.

There are a number of issues that need to be addressed in order to implement this algorithm:

1. What is the initial number of states?

2. How do we estimate probabilities?

3. How do we decide when a state needs to be cloned?

4. What do we do when the number of states becomes too large?

Let’s answer each question in turn.
We can start the encoding process with a single state with two self-loops for 0 and 1. This

state can be cloned to two and then a higher number of states. In practice, it has been found
that, depending on the particular application, it is more efficient to start with a larger number
of states than one.

The probabilities from a given state can be estimated by simply counting the number of
times a 0 or a 1 occurs in that state divided by the number of times the particular state is
occupied. For example, if in state V the number of times a 0 occurs is denoted by nV

0 and the
number of times a 1 occurs is denoted by nV

1 , then

P(0|V) = nV
0

nV
0 + nV

1

P(1|V) = nV
1

nV
0 + nV

1

What if a 1 has never previously occurred in this state? This approach would assign a
probability of zero to the occurrence of a 1. This means that there will be no subinterval
assigned to the possibility of a 1 occurring, and when it does occur, we will not be able to

6.6 Dynamic Markov Compression 181

0 1

00

0
1

Cloning

0

A

B

C

0

A C

1

0
C'B

F I GUR E 6 . 4 The cloning process.

represent it. In order to avoid this, instead of counting from zero, we start the count of 1s and
0s with a small number c and estimate the probabilities as

P(0|V) = nV
0 + c

nV
0 + nV

1 + 2c

P(1|V) = nV
1 + c

nV
0 + nV

1 + 2c

Whenever we have two branches leading to a state, it can be cloned. And, theoretically,
cloning is never harmful. By cloning we are providing additional information to the encoder.
This might not reduce the rate, but it should never result in an increase in the rate. However,
cloning does increase the complexity of the coding, and hence the decoding, process. In order
to control the increase in the number of states, we should only perform cloning when there
is a reasonable expectation of a reduction in rate. We can do this by making sure that both
paths leading to the state being considered for cloning are used often enough. Consider the
situation shown in Figure 6.4. Suppose the current state is A and the next state is C . As there
are two paths entering C , C is a candidate for cloning. Cormack and Horspool suggest that C
be cloned if n A

0 > T1 and nB
0 > T2, where T1 and T2 are threshold values set by the user. If

there are more than three paths leading to a candidate for cloning, then we check that both the
number of transitions from the current state is greater than T1 and the number of transitions
from all other states to the candidate state is greater than T2.

Finally, what do we do when, for practical reasons, we cannot accommodate any more
states? A simple solution is to restart the algorithm. In order to make sure that we do not start
from ground zero every time, we can train the initial state configuration using a certain number
of past inputs.

182 6 C O N T E X T - B A S E D C O M P R E S S I O N

6.7 Summary

The context in which a symbol occurs can be very informative about the value that the symbol
takes on. If this context is known to the decoder, then this information need not be encoded;
it can be inferred by the decoder. In this chapter we have looked at several creative ways in
which the knowledge of the context can be used to provide compression.

Further Reading

1. The basic ppm algorithm is described in detail in Text Compression, by T.C. Bell, J.G.
Cleary, and I.H. Witten [1].

2. For an excellent description of Burrows-Wheeler coding, including methods of imple-
mentation and improvements to the basic algorithm, see “Burrows-Wheeler Compres-
sion,” by P. Fenwick [81] in the Lossless Compression Handbook.

3. The ACB algorithm is described in “Symbol Ranking and ACB Compression,” by P.
Fenwick [78] in the Lossless Compression Handbook, and in Data Compression: The
Complete Reference, by D. Salomon [79]. The chapter by Fenwick also explores com-
pression schemes based on Shannon’s experiments.

6.8 Projects and Problems

1. Decode the bitstream generated in Example 6.3.1. Assume you have already decoded
this/bis and Tables 6.1–6.4 are available to you.

2. Consider the sequence the/bbeta/bcat/bate/bthe/bceta/bhat :

(a) Encode the sequence using the ppma algorithm and an adaptive arithmetic coder.
Assume a six-letter alphabet {h, e, t, a, c, /b}.

(b) Decode the encoded sequence.

3. Consider the sequence eta/bceta/band/bbeta/bceta:

(a) Encode the sequence using the Burrows-Wheeler transform and move-to-front cod-
ing.

(b) Decode the encoded sequence.

4. A sequence is encoded using the Burrows-Wheeler transform. Given L = elbkkee, and
index = 5 (we start counting from 1, not 0), find the original sequence.

5. Consider the sequence onionopinion:

(a) Encode the sequence using the ppma algorithm and an adaptive arithmetic coder.
Assume a four-letter alphabet {i, n, o, p}.

(b) Decode the encoded sequence.

7
Lossless Image Compression

7.1 Overview

I
n this chapter, we examine a number of schemes used for lossless compression
of images. We will look at schemes for compression of grayscale and color
images as well as schemes for compression of binary images. Among these
schemes are several that are a part of international standards.

7.2 Introduction

To this point in the book, we have focused on compression techniques. Although some of them
may apply to some preferred applications, the focus has been on the technique rather than on
the application. However, there are certain techniques for which it is impossible to separate
the technique from the application. This is because the techniques rely upon the properties or
characteristics of the application. Therefore, we have several chapters in this book that focus
on particular applications. In this chapter, we will examine techniques specifically geared
toward lossless image compression. Later chapters will examine speech, audio, and video
compression.

In earlier chapters, we observed that a more skewed set of probabilities for the message
being encoded results in better compression. In Chapter 6, we saw how the use of context
to obtain a skewed set of probabilities can be especially effective when encoding text. We
can also transform the sequence (in an invertible fashion) into another sequence that has the
desired property in other ways. For example, consider the following sequence:

Introduction to Data Compression. DOI: http://dx.doi.org/10.1016/B978-0-12-415796-5.00007-7
© 2012 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-415796-5.00007-7

184 7 L O S S L E S S I M A G E C O M P R E S S I O N

1 2 5 7 2 −2 0 −5 −3 −1 1 −2 −7 −4 −2 1 3 4

If we consider this sample to be fairly typical of the sequence, we can see that the probability
of any given number being in the range from −7 to 7 is about the same. If we were to encode
this sequence using a Huffman or arithmetic code, we would use almost 4 bits per symbol.

Instead of encoding this sequence directly, we could do the following: add two to the
previous number in the sequence and send the difference between the current element in the
sequence and this predicted value. The transmitted sequence would be

1 −1 1 0 −7 −4 0 −7 0 0 0 −5 −7 1 0 1 0 −1

This method uses a rule (add two) and the history (value of the previous symbol) to generate
the new sequence. If the rule by which this residual sequence was generated is known to the
decoder, it can recover the original sequence from the residual sequence. The length of the
residual sequence is the same as the original sequence. However, notice that the residual
sequence is much more likely to contain 0s, 1s, and −1s than other values. That is, the
probability of 0, 1, and−1 will be significantly higher than the probabilities of other numbers.
This, in turn, means that the entropy of the residual sequence will be low, and, therefore, the
residual sequence can be encoded using fewer bits.

We used a particular method of prediction in this example (add two to the previous element
of the sequence) that was specific to this sequence. In order to get the best possible performance,
we need to find the prediction approach that is best suited to the particular data we are dealing
with. We will look at several prediction schemes used for lossless image compression in the
following sections.

7.2.1 The Old JPEG Standard

The Joint Photographic Experts Group (JPEG) is a joint International Standards Organization/
International Telecommunication Union (ISO/ITU) committee responsible for developing stan-
dards for continuous-tone still-picture coding. The more famous standard produced by this
group is the lossy image compression standard. However, at the time of the creation of the
famous JPEG standard, the committee also created a lossless standard [82]. It is more or less
obsolete, having been overtaken by the much more efficient JPEG-LS standard described later
in this chapter. However, the old JPEG standard is still useful as a first step into examining
predictive coding in images.

The old JPEG lossless still compression standard [82] provides eight different predictive
schemes from which the user can select. The first scheme makes no prediction. The next
seven are listed below. Three of the seven are one-dimensional predictors, and four are two-
dimensional prediction schemes. Here, I (i, j) is the (i, j)th pixel of the original image, and
Î (i, j) is the predicted value for the (i, j)th pixel.

7.2 Introduction 185

1 Î (i, j) = I (i − 1, j) (1)
2 Î (i, j) = I (i, j − 1) (2)
3 Î (i, j) = I (i − 1, j − 1) (3)
4 Î (i, j) = I (i, j − 1)+ I (i − 1, j)− I (i − 1, j − 1) (4)
5 Î (i, j) = I (i, j − 1)+ (I (i − 1, j)− I (i − 1, j − 1)) /2 (5)
6 Î (i, j) = I (i − 1, j)+ (I (i, j − 1)− I (i − 1, j − 1)) /2 (6)
7 Î (i, j) = (I (i, j − 1)+ I (i − 1, j)) /2 (7)

Different images can have different structures that can best be exploited by one of these
eight modes of prediction. If compression is performed in a non-real-time environment—for
example, for the purposes of archiving—all eight modes of prediction can be tried, and the
one that gives the most compression is used. The mode used to perform the prediction can
be stored in a 3-bit header along with the compressed file. We encoded our four test images
using the various JPEG modes. The residual images were encoded using adaptive arithmetic
coding. The results are shown in Table 7.1.

The best results—that is, the smallest compressed file sizes—are indicated in bold in the
table. From these results, we can see that a different JPEG predictor is the best for the different
images. In Table 7.2, we compare the best JPEG results with the file sizes obtained using GIF
and PNG. Note that PNG also uses predictive coding with four possible predictors, where each
row of the image can be encoded using a different predictor. The PNG approach is described
in Chapter 5.

From this comparison, even if we take into account the overhead associated with GIF, we
can see that the predictive approaches are generally better suited to lossless image compression
than the dictionary-based approach when the images are “natural” grayscale images. The
situation is different when the images are graphic images or pseudocolor images. A possible
exception could be the Earth image. The best compressed file size using the second JPEG
mode and adaptive arithmetic coding is 32,137 bytes, compared to 34,276 bytes using GIF.
The difference between the file sizes is not significant. We can see the reason by looking at
the Earth image. Note that a significant portion of the image is the background, which is of
a constant value. In dictionary coding, this would result in some very long entries that would
provide significant compression. We can see that if the ratio of background to foreground were
just a little different in this image, the dictionary method in GIF might have outperformed the
JPEG approach. The PNG approach which allows the use of a different predictor (or no
predictor) on each row, prior to dictionary coding, significantly outperforms both GIF and
JPEG on this image.

T A B L E 7 . 1 Compressed file size (in bytes) of the residual images obtained
using the various JPEG prediction modes.

Image JPEG 0 JPEG 1 JPEG 2 JPEG 3 JPEG 4 JPEG 5 JPEG 6 JPEG 7

Sena 53,431 37,220 31,559 38,261 31,055 29,742 33,063 32,179
Sensin 58,306 41,298 37,126 43,445 32,429 33,463 35,965 36,428
Earth 38,248 32,295 32,137 34,089 33,570 33,057 33,072 32,672

Omaha 56,061 48,818 51,283 53,909 53,771 53,520 52,542 52,189

186 7 L O S S L E S S I M A G E C O M P R E S S I O N

T A B L E 7 . 2 Comparison of the file sizes
obtained using JPEG lossless
compression, GIF, and PNG.

Image Best JPEG GIF PNG

Sena 31,055 51,085 31,577
Sensin 32,429 60,649 34,488
Earth 32,137 34,276 26,995

Omaha 48,818 61,341 50,185

7.3 CALIC

The Context Adaptive Lossless Image Compression (CALIC) scheme, which came into being
in response to a call for proposals for a new lossless image compression scheme in 1994
[83,84], uses both context and prediction of the pixel values. The CALIC scheme actually
functions in two modes, one for grayscale images and another for bi-level images. In this
section, we will concentrate on the compression of grayscale images.

In an image, a given pixel generally has a value close to one of its neighbors. Which
neighbor has the closest value depends on the local structure of the image. Depending on
whether there is a horizontal or vertical edge in the neighborhood of the pixel being encoded,
the pixel above, or the pixel to the left, or some weighted average of neighboring pixels may
give the best prediction. How close the prediction is to the pixel being encoded depends on
the surrounding texture. In a region of the image with a great deal of variability, the prediction
is likely to be further from the pixel being encoded than in the regions with less variability.

In order to take into account all of these factors, the algorithm has to make a determina-
tion about the environment of the pixel to be encoded. The information used to make this
determination has to be available to both the encoder and decoder.

Let’s take up the question of the presence of vertical or horizontal edges in the neighborhood
of the pixel being encoded. To help our discussion, we will refer to Figure 7.1. In this figure,
the pixel to be encoded has been marked with an X. The pixel above is called the north pixel,
the pixel to the left is the west pixel, and so on. Note that when pixel X is being encoded, all
other marked pixels (N, W, NW, NE, WW, NN, NE, and NNE) are available to both the encoder
and decoder.

NN NNE

NW N NE

WW W X

F I GUR E 7 . 1 Labeling the neighbors of pixel X.

7.3 CALIC 187

We can get an idea of what kinds of boundaries may or may not be in the neighborhood of
X by computing

dh = |W −W W | + |N − N W | + |N E − N |
dv = |W − N W | + |N − N N | + |N E − N N E | .

The relative values of dh and dv are used to obtain the initial prediction of the pixel X. This
initial prediction is then refined by taking other factors into account. If the value of dh is much
higher than the value of dv , this will mean there is a large amount of horizontal variation,
and it would be better to pick N to be the initial prediction. If, on the other hand, dv is much
larger than dh , this would mean that there is a large amount of vertical variation, and the initial
prediction is taken to be W. If the differences are more moderate or smaller, the predicted value
is a weighted average of the neighboring pixels.

The exact algorithm used by CALIC to form the initial prediction is given by the following
pseudocode:

if dh − dv > 80
X̂ ← N

else if dv − dh > 80
X̂ ← W

else
{

X̂ ← (N +W)/2+ (N E − N W)/4
if dh − dv > 32

X̂ ← (X̂ + N)/2
else if dv − dh > 32

X̂ ← (X̂ +W)/2
else if dh − dv > 8

X̂ ← (3X̂ + N)/4
else if dv − dh > 8

X̂ ← (3X̂ +W)/4
}

Using the information about whether the pixel values are changing by large or small
amounts in the vertical or horizontal direction in the neighborhood of the pixel being encoded
results in a good initial prediction. In order to refine this prediction, we need some information
about the interrelationships of the pixels in the neighborhood. Using this information, we can
generate an offset or refinement to our initial prediction. We quantify the information about
the neighborhood by first forming the vector

[N ,W, N W, N E, N N ,W W, 2N − N N , 2W −W W]
We then compare each component of this vector with our initial prediction X̂ . If the value of
the component is less than the prediction, we replace the value with a 1; otherwise we replace
it with a 0. Thus, we end up with an eight-component binary vector. If each component of the
binary vector was independent, we would end up with 256 possible vectors. However, because

188 7 L O S S L E S S I M A G E C O M P R E S S I O N

of the dependence of various components, we actually have 144 possible configurations. We
also compute a quantity that incorporates the vertical and horizontal variations and the previous
error in prediction by

δ = dh + dv + 2
∣∣N − N̂

∣∣ (8)

where N̂ is the predicted value of N. This range of values of δ is divided into four intervals,
each represented by 2 bits. These four possibilities, along with the 144 texture descriptors,
create 144× 4 = 576 contexts for X. As the encoding proceeds, we keep track of how much
prediction error is generated in each context and offset our initial prediction by that amount.
This results in the final predicted value.

Once the prediction is obtained, the difference between the pixel value and the prediction
(the prediction error or residual) has to be encoded. While the prediction process outlined above
removes a lot of the structure that was in the original sequence, there is still some structure
left in the residual sequence. We can take advantage of some of this structure by coding the
residual in terms of its context. The context of the residual is taken to be the value of δ defined
in Eq. (8). In order to reduce the complexity of the encoding, rather than using the actual
value as the context, CALIC uses the range of values in which δ lies as the context. Thus:

0 � δ < q1 ⇒ Context 1

q1 � δ < q2 ⇒ Context 2

q2 � δ < q3 ⇒ Context 3

q3 � δ < q4 ⇒ Context 4

q4 � δ < q5 ⇒ Context 5

q5 � δ < q6 ⇒ Context 6

q6 � δ < q7 ⇒ Context 7

q7 � δ < q8 ⇒ Context 8

The values of q1–q8 can be prescribed by the user.
If the original pixel values lie between 0 and M − 1, the differences or prediction residuals

will lie between −(M − 1) and M − 1. Even though most of the differences will have a
magnitude close to zero, for arithmetic coding we still have to assign a count to all possible
symbols. This means a reduction in the size of the intervals assigned to values that do occur,
which in turn means using a larger number of bits to represent these values. The CALIC
algorithm attempts to resolve this problem in a number of ways. Let’s describe these using an
example.

Consider the sequence
xn : 0, 7, 4, 3, 5, 2, 1, 7

We can see that all of the numbers lie between 0 and 7, a range of values that would require 3
bits to represent. Now suppose we predict a sequence element by the previous element in the
sequence. The sequence of differences

rn = xn − xn−1

is given by
rn : 0, 7,−3,−1, 2,−3,−1, 6

7.3 CALIC 189

If we were given this sequence, we could easily recover the original sequence by using

xn = xn−1 + rn .

However, the prediction residual values rn lie in the [−7, 7] range. That is, the alphabet
required to represent these values is almost twice the size of the original alphabet. However,
if we look closely we can see that the value of rn actually lies between −xn−1 and 7− xn−1.
The smallest value that rn can take on occurs when xn has a value of 0, in which case rn will
have a value of −xn−1. The largest value that rn can take on occurs when xn is 7, in which
case rn has a value of 7− xn−1. In other words, given a particular value for xn−1, the number
of different values that rn can take on is the same as the number of values that xn can take
on. Generalizing from this, we can see that if a pixel takes on values between 0 and M − 1,
then given a predicted value X̂ , the difference X − X̂ will take on values in the range −X̂ to
M − 1− X̂ . We can use this fact to map the difference values into the range [0,M − 1], using
the following mapping:

0 → 0

1 → 1

−1 → 2

2 → 3
...

...

−X̂ → 2X̂

X̂ + 1 → 2X̂ + 1

X̂ + 2 → 2X̂ + 2
...

...

M − 1− X̂ → M − 1

where we have assumed that X̂ � (M − 1)/2.
Another approach used by CALIC to reduce the size of its alphabet is to use a modification

of a technique called recursive indexing [85] described in Chapter 9. Recursive indexing is
a technique for representing a large range of numbers using only a small set. It is easiest
to explain using an example. Suppose we want to represent positive integers using only the
integers between 0 and 7—that is, a representation alphabet of size 8. Recursive indexing
works as follows. If the number to be represented lies between 0 and 6, we simply represent
it by that number. If the number to be represented is greater than or equal to 7, we first send
the number 7, subtract 7 from the original number, and repeat the process. We keep repeating
the process until the remainder is a number between 0 and 6. Thus, for example, 9 would be
represented by 7 followed by a 2, and 17 would be represented by two 7s followed by a 3.
The decoder, when it sees a number between 0 and 6, will decode it at its face value, and
when it sees 7, it will keep accumulating the values until a value between 0 and 6 is received.
This method of representation followed by entropy coding has been shown to be optimal for
sequences that follow a geometric distribution [86].

In CALIC, the representation alphabet is different for different coding contexts. For each
coding context k, we use an alphabet Ak = {0, 1, . . . , Nk}. Furthermore, if the residual occurs

190 7 L O S S L E S S I M A G E C O M P R E S S I O N

in context k, then the first number that is transmitted is coded with respect to context k; if
further recursion is needed, we use the k + 1 context.

We can summarize the CALIC algorithm as follows:

1. Find the initial prediction X̂ .

2. Compute the prediction context.

3. Refine the prediction by removing the estimate of the bias in that context.

4. Update the bias estimate.

5. Obtain the residual and remap it so the residual values lie between 0 and M − 1, where
M is the size of the initial alphabet.

6. Find the coding context k.

7. Code the residual using the coding context.

All these components working together have kept CALIC as the state of the art in lossless
image compression. However, we can get almost as good a performance if we simplify some
of the more involved aspects of CALIC. We study such a scheme in the next section.

7.4 JPEG- LS

The JPEG-LS standard looks more like CALIC than the old JPEG standard. When the initial
proposals for the new lossless compression standard were compared, CALIC was rated first in
six of the seven categories of images tested. Motivated by some aspects of CALIC, a team from
Hewlett-Packard (HP) proposed a much simpler predictive coder, under the name LOCO-I (for
low complexity), that still performed close to CALIC [87].

As in CALIC, the standard has both a lossless and a lossy mode. We will not describe the
lossy coding procedures.

The initial prediction is obtained using the following algorithm:

if N W � max(W, N)
X̂ = max(W, N)
else
{

if N W � min(W, N)
X̂ = min(W, N)
else
X̂ = W + N − N W

}

This prediction approach is a variation of Median Adaptive Prediction [88], in which the
predicted value is the median of the N ,W , and NW pixels. The initial prediction is then
refined using the average value of the prediction error in that particular context.

7.4 JPEG-LS 191

The contexts in JPEG-LS also reflect the local variations in pixel values. However, they
are computed differently from CALIC. First, measures of differences D1, D2, and D3 are
computed as follows:

D1 = N E − N

D2 = N − N W

D3 = N W −W.

The values of these differences define a three-component context vector Q. The components
of Q (Q1, Q2, and Q3) are defined by the following mappings:

Di � −T3 ⇒ Qi = −4

−T3 < Di � −T2 ⇒ Qi = −3

−T2 < Di � −T1 ⇒ Qi = −2

−T1 < Di � 0 ⇒ Qi = −1

Di = 0 ⇒ Qi = 0

0 < Di � T1 ⇒ Qi = 1

T1 < Di � T2 ⇒ Qi = 2

T2 < Di � T3 ⇒ Qi = 3

T3 < Di ⇒ Qi = 4 (9)

where T1, T2, and T3 are positive coefficients that can be defined by the user. Given nine
possible values for each component of the context vector, this results in 9 × 9 × 9 = 729
possible contexts. In order to simplify the coding process, the number of contexts is reduced
by replacing any context vector Q whose first nonzero element is negative by −Q. Whenever
this happens, a variable SIGN is also set to −1; otherwise, it is set to +1. This reduces the
number of contexts to 365. The vector Q is then mapped into a number between 0 and 364.
(The standard does not specify the particular mapping to use.)

The variable SIGN is used in the prediction refinement step. The correction is first multi-
plied by SIGN and then added to the initial prediction.

The prediction error rn is mapped into an interval that is the same size as the range occupied
by the original pixel values. The mapping used in JPEG-LS is as follows:

rn < −M

2
⇒ rn ← rn + M

rn >
M

2
⇒ rn ← rn − M

Finally, the prediction errors are encoded using adaptively selected codes based on Golomb
codes, which have also been shown to be optimal for sequences with a geometric distribution.
In Table 7.3, we compare the performance of the old and new JPEG standards and CALIC.
The results for the new JPEG scheme were obtained using a software implementation courtesy
of HP.

We can see that for most of the images, the new JPEG standard performs very close to
CALIC and outperforms the old standard by 6% to 18%. The only case where the performance
is not as good is for the Omaha image. While the performance improvement in these examples

192 7 L O S S L E S S I M A G E C O M P R E S S I O N

T A B L E 7 . 3 Comparison of the file sizes obtained
using the new and old JPEG lossless
compression standards and CALIC.

Image Old JPEG New JPEG CALIC

Sena 31,055 27,339 26,433
Sensin 32,429 30,344 29,213
Earth 32,137 26,088 25,280

Omaha 48,818 50,765 48,249

may not be very impressive, we should keep in mind that we are picking the best result out
of eight for the old JPEG. In practice, this would mean trying all eight JPEG predictors and
picking the best. On the other hand, both CALIC and the new JPEG standard are single-
pass algorithms. Furthermore, because of the ability of both CALIC and the new standard
to function in multiple modes, both perform very well on compound documents, which may
contain images along with text.

7.5 Prediction Using Conditional Averages

Both of the predictive schemes we have looked at for lossless image coding obtain their pre-
dictive power from the fact that neighboring pixels tend to be alike. However, this assumption
is not necessary for developing a predictive scheme. A somewhat different idea is used in
schemes like ppm, which assume that a similar context will result in a similar value. To obtain
a prediction using this approach, one would try to find a pixel neighborhood similar to the
neighborhood of the pixel being encoded and use that pixel as a predictor for the pixel being
encoded. Using the labeling of Figure 7.1, we look for a pixel in the history of the image
whose neighbors are the same as the neighbors of X in order to find the best predictor for pixel
X. The value of that pixel can then be used as a predictor for the pixel X. We briefly describe
a scheme based on this idea [89,90], which we will call conditional average prediction (cap).
This can be used in place of the initial predictor in JPEG-LS.

The ppm approach implicitly relies on the fact that textual information contains many exact
repeats. As this situation is not duplicated in natural images, the algorithm used in ppm cannot
be applied directly to the problem of generating predictions. Fortunately, while we do not have
exact repeats as in textual data, our objectives are also not the same. We are not looking for
an exact match, rather we are looking for a close value that can be used as a prediction.

In the cap approach, we define sets of pixels in the neighborhood to be the contexts for
which we will look for a match. For example, a context of size 4 consists of the W, NW,
N, and NE pixels, and a context of size 3 consists of the W, NW, and N pixels. In order to
generate a prediction, the encoder looks for matches to the context in the already encoded
portion of the image. A match can be defined rigidly, that is, each pixel in the context has to
be exactly matched, or it can be defined more loosely, that is, two pixels are said to be matched
if the absolute difference between pixel values is less than a threshold. To guard against the
possibility of a bad prediction, the algorithm requires that at least five matches be observed

7.6 Multiresolution Approaches 193

T A B L E 7 . 4 Prediction error entropies and
corresponding file sizes obtained using
the cap prediction.

Image Residual Entropy cap

Sena 3.41 27,934
Sensin 3.81 31,252
Earth 3.20 26,238

Omaha 6.03 49,937

before a prediction can be generated. If more than five matches are observed, the algorithm
takes the average of the pixels that have the matching contexts as the predicted value. If the
larger context cannot garner five or more matches, the algorithm shifts to the next smaller
context in a manner similar to ppm. If there are not sufficient matches for the smallest context
allowed, the algorithm uses the version of the median adaptive predictor used in JPEG-LS as a
default. Note that the decoder does not have to be informed about which context is being used
as the context selection is based on information available to both the encoder and decoder.
Using this approach, we obtain the results shown in Table 7.4.

7.6 Multiresolution Approaches

Our final predictive image compression scheme is perhaps not as competitive as the other
schemes. However, it is an interesting algorithm because it approaches the problem from a
slightly different point of view.

Multiresolution models generate representations of an image with varying spatial resolu-
tion. This usually results in a pyramid-like representation of the image, with each layer of the
pyramid serving as a prediction model for the layer immediately below.

One of the more popular of these techniques is known as HINT (Hierarchical INTerpola-
tion) [91]. The specific steps involved in HINT are as follows. First, residuals corresponding
to the pixels labeled � in Figure 7.2 are obtained using linear prediction, and they are trans-
mitted. Then, the intermediate pixels (◦) are estimated by linear interpolation, and the error
in estimation is then transmitted. Then, the pixels X are estimated from � and ◦, and the
estimation error is transmitted. Finally, the pixels labeled ∗ and then • are estimated from
known neighbors, and the errors are transmitted. The reconstruction process proceeds in a
similar manner.

One use of a multiresolution approach is in progressive image transmission. We describe
this application in the next section.

7.6.1 Progressive Image Transmission

The last few years have seen a very rapid increase in the amount of information stored as
images, especially remotely sensed images (such as images from weather and other satellites)
and medical images (such as computerized axial tomography (CAT) scans, magnetic resonance

194 7 L O S S L E S S I M A G E C O M P R E S S I O N

•

Δ

X

•

Δ

•

X

•

Δ

*

•

•

*

•

*

•

*

•

•

X

•

X

•

•

X

*

•

•

*

•

*

•

*

•

•

X

•

Δ

•

X

•

Δ

*

•

•

*

•

*

•

*

•

•

X

•

X

•

•

X

*

•

•

*

•

*

•

*

•

•

X

•

Δ

•

X

•

Δ

ΔΔ

F I GUR E 7 . 2 The HINT scheme for hierarchical prediction.

images (MRI), and mammograms). It is not enough to have information. We also need to
make these images accessible to individuals who can make use of them. There are many issues
involved with making large amounts of information accessible to a large number of people. In
this section, we will look at one particular issue—transmitting these images to remote users.
(For a more general look at the problem of managing large amounts of information, see [92].)

Suppose a user wants to browse through a number of images in a remote database. The user
is connected to the database via a 1 Mbps link. Suppose the size of the images is 2048×1536,
and on average, users have to look through 30 images before finding the image for which
they are looking. If these images were monochrome with 8 bits per pixel, this process would
take close to 15 minutes, which is not very practical. Even if we compressed these images
before transmission, lossless compression, on average, gives us about a 2:1 compression. This
would only cut the transmission in half, which still makes the approach cumbersome. A better
alternative is to send an approximation of each image first, which does not require too many
bits but is still sufficiently accurate to give users an idea of what the image looks like. If users
find the image to be of interest, they can request a further refinement of the approximation or
the complete image. This approach is called progressive image transmission.

Example 7 .6 .1 :

A simple progressive transmission scheme is to divide the image into blocks and then send
a representative pixel for the block. The receiver replaces each pixel in the block with the
representative value. In this example, the representative value is the value of the pixel in the
top-left corner. Depending on the size of the block, the amount of data that would need to be
transmitted could be substantially reduced. For example, to transmit a 2048×1536 image at 8
bits per pixel over a 1 Mbps link takes about 25 seconds. Using a block size of 8×8 and using
the top-left pixel in each block as the representative value, we can approximate the 1024×1024
image with a 128 × 128 subsampled image. Using 8 bits per pixel and a 1 Mbps link, the
time required to transmit this approximation to the image takes less than a third of a second.

7.6 Multiresolution Approaches 195

Assuming that this approximation was sufficient to let the user decide whether a particular
image was the desired image, the time required now to look through 30 images becomes on
the order of seconds instead of the 15 minutes mentioned earlier. If the approximation using a
block size of 8× 8 does not provide enough resolution to make a decision, the user can ask for
a refinement. The transmitter can then divide the 8× 8 block into four 4× 4 blocks. The pixel
at the upper-left corner of the upper-left block was already transmitted as the representative
pixel for the 8× 8 block, so we need to send three more pixels for the other three 4× 4 blocks.
This takes a little more than a second, so even if the user had to request a finer approximation
every third image, this would only increase the total search time by a very small amount. To
see what these approximations look like, we have taken the Sena image and encoded it using
different block sizes. The results are shown in Figure 7.3. The lowest-resolution image, shown
in the top left, is a 32 × 32 image. The top-right image is a 64 × 64 image. The bottom-left
image is a 128× 128 image, and the bottom-right image is the 256× 256 original.

F I GUR E 7 . 3 Sena image coded using different block sizes for progressive trans-
mission. Top row: block size 8×8 and block size 4×4. Bottom row:
block size 2×2 and original image.

196 7 L O S S L E S S I M A G E C O M P R E S S I O N

Notice that even with a block size of 8, the image is clearly recognizable as a person.
Therefore, if the user was looking for a house, they would probably skip over this image after
seeing the first approximation. If the user was looking for a picture of a person, they could
still make decisions based on the second approximation.

Finally, when an image is built line by line, the eye tends to follow the scan line. With the
progressive transmission approach, the user gets a more global view of the image very early
in the image formation process. Consider the images in Figure 7.4. The images on the left are
the 8×8, 4×4, and 2×2 approximations of the Sena image. On the right, we show how much
of the image we would see in the same amount of time if we used the standard line-by-line
raster scan order. �

We would like the first approximations that we transmit to use as few bits as possible
yet be accurate enough to allow the user to make a decision to accept or reject the image
with a certain degree of confidence. As these approximations are lossy, many progressive
transmission schemes use well-known lossy compression schemes in the first pass.

The more popular lossy compression schemes, such as transform coding, tend to require
a significant amount of computation. As the decoders for most progressive transmission
schemes have to function on a wide variety of platforms, they are generally implemented in
software and need to be simple and fast. This requirement has led to the development of
a number of progressive transmission schemes that do not use lossy compression for their
initial approximations. Most of these schemes have a form similar to the one described in
Example 7.6.1, and they are generally referred to as pyramid schemes because of the manner
in which the approximations are generated and the image is reconstructed.

When we use the pyramid form, we still have a number of ways to generate the approxima-
tions. One of the problems with the simple approach described in Example 7.6.1 is that if the
pixel values vary a lot within a block, the “representative” value may not be very representa-
tive. To prevent this from happening, we could represent the block by some sort of an average
or composite value. For example, suppose we start out with a 512 × 512 image. We first
divide the image into 2× 2 blocks and compute the integer value of the average of each block
[93,94]. The integer values of the averages would constitute the penultimate approximation.
The approximation to be transmitted prior to that can be obtained by taking the average of
2× 2 averages and so on, as shown in Figure 7.5.

Using the simple technique in Example 7.6.1, we ended up transmitting the same number
of values as the original number of pixels. However, when we use the mean of the pixels as
our approximation, after we have transmitted the mean values at each level, we still have to
transmit the actual pixel values. The reason is that when we take the integer part of the average,
we end up throwing away information that cannot be retrieved. To avoid this problem of data
expansion, we can transmit the sum of the values in the 2 × 2 block. Then we only need to
transmit three more values to recover the original four values. With this approach, although
we would be transmitting the same number of values as the number of pixels in the image,
we might still end up sending more bits because representing all possible values of the sum
would require transmitting 2 more bits than was required for the original value. For example,
if the pixels in the image can take on values between 0 and 255, which can be represented by
8 bits, their sum will take on values between 0 and 1024, which would require 10 bits. If we

7.6 Multiresolution Approaches 197

F I GUR E 7 . 4 Comparison between the received image using progressive transmis-
sion and using the standard raster scan order.

are allowed to use entropy coding, we can remove the problem of data expansion by using the
fact that the neighboring values in each approximation are heavily correlated, as are values
in different levels of the pyramid. This means that differences between these values can be
efficiently encoded using entropy coding. By doing so, we end up getting compression instead
of expansion.

198 7 L O S S L E S S I M A G E C O M P R E S S I O N

F I GUR E 7 . 5 The pyramid structure for progressive transmission.

Instead of taking the arithmetic average, we could also form some sort of weighted average.
The general procedure would be similar to that described above. (For one of the more well-
known weighted average techniques, see [95].)

The representative value does not have to be an average. We could use the pixel values
in the approximation at the lower levels of the pyramid as indices into a lookup table. The
lookup table could be designed to preserve important information such as edges. The problem
with this approach would be the size of the lookup table. If we were using 2 × 2 blocks of
8-bit values, the lookup table would have 232 values, which is too large for most applications.
The size of the table could be reduced if the number of bits per pixel was lower or if, instead
of taking 2× 2 blocks, we used rectangular blocks of size 2× 1 and 1× 2 [96].

Finally, we do not have to build the pyramid one layer at a time. After sending the lowest-
resolution approximations, we can use some measure of information contained in a block to
decide whether it should be transmitted [97]. One possible measure could be the difference
between the largest and smallest intensity values in the block. Another might be to look at
the maximum number of similar pixels in a block. Using an information measure to guide the
progressive transmission of images allows the user to see portions of the image first that are
visually more significant.

7.7 Facsimile Encoding

One of the earliest applications of lossless compression in the modern era has been the com-
pression of facsimile, or fax. In facsimile transmission, a page is scanned and converted into
a sequence of black or white pixels. The requirements of how fast the facsimile of an A4
document (210× 297 mm) must be transmitted have changed over the last two decades. The

7.7 Facsimile Encoding 199

Comité Consultatif International Télephoniqué et Télégraphique (CCITT) (now ITU-T) has
issued a number of recommendations based on the speed requirements at a given time. The
CCITT classifies the apparatus for facsimile transmission into four groups. Although several
considerations are used in this classification, if we only consider the time to transmit an A4-size
document over phone lines, the four groups can be described as follows:

� Group 1: This apparatus is capable of transmitting an A4-size document in about 6
minutes over phone lines using an analog scheme. The apparatus is standardized in
recommendation T.2.

� Group 2: This apparatus is capable of transmitting an A4-size document over phone
lines in about 3 minutes. A Group 2 apparatus also uses an analog scheme and, therefore,
does not use data compression. The apparatus is standardized in recommendation T.3.

� Group 3: This apparatus uses a digitized binary representation of the facsimile. Because
it is a digital scheme, it can and does use data compression and is capable of transmitting
an A4-size document in about a minute. The apparatus is standardized in recommendation
T.4.

� Group 4: This apparatus has the same speed requirement as Group 3. The apparatus is
standardized in recommendations T.6, T.503, T.521, and T.563.

With the arrival of the Internet, facsimile transmission has changed as well. Given the wide
range of rates and “apparatus” used for digital communication, it makes sense to focus more
on protocols than on apparatus. The newer recommendations from the ITU provide standards
for compression that are more or less independent of apparatus.

Later in this chapter, we will look at the compression schemes described in ITU-T recom-
mendations T.4, T.6, T.82 (JBIG), T.88 (JBIG2), and T.44 (MRC). We begin with a look at an
earlier technique for facsimile called run-length coding, which still survives as part of the T.4
recommendation.

7.7.1 Run- Length Coding

The model that gives rise to run-length coding is the Capon model [98], a two-state Markov
model with states Sw and Sb (Sw corresponds to the case where the pixel that has just been
encoded is a white pixel, and Sb corresponds to the case where the pixel that has just been
encoded is a black pixel). The transition probabilities P(w|b) and P(b|w) and the probability
of being in each state P(Sw) and P(Sb) completely specify this model. For facsimile images,
P(w|w) and P(w|b) are generally significantly higher than P(b|w) and P(b|b). The Markov
model is represented by the state diagram shown in Figure 7.6.

The entropy of a finite state process with states Si is given by Equation (2.16). Recall that in
Example 2.3.1, the entropy using a probability model and the iid assumption was significantly
more than the entropy using the Markov model.

Let us try to interpret what the model says about the structure of the data. The highly
skewed nature of the probabilities P(b|w) and P(w|w), and to a lesser extent P(w|b) and
P(b|b), says that once a pixel takes on a particular color (black or white), it is highly likely
that the following pixels will also be of the same color. So, rather than code the color of each

200 7 L O S S L E S S I M A G E C O M P R E S S I O N

Sw P(b|b)

P(b|w)

P(w|b)

P(w|w) Sb

F I GUR E 7 . 6 The Capon model for binary images.

pixel separately, we can simply code the length of the runs of each color. For example, if we
had 190 white pixels followed by 30 black pixels, followed by another 210 white pixels, we
would code the sequence 190, 30, 210, along with an indication of the color of the first string
of pixels, instead of coding the 430 pixels individually. Coding the lengths of runs instead of
coding individual values is called run-length coding.

7.7.2 CCITT Group 3 and 4—Recommendations T.4 and
T.6

The recommendations for Group 3 facsimile include two coding schemes. One is a one-
dimensional scheme in which the coding on each line is performed independently of any other
line. The other is two-dimensional; the coding of one line is performed using the line-to-line
correlations.

The one-dimensional coding scheme is a run-length coding scheme in which each line is
represented as a series of alternating white runs and black runs. The first run is always a white
run. If the first pixel is a black pixel, then we assume that we have a white run of length zero.

Runs of different lengths occur with different probabilities; therefore, they are coded using
a variable-length code. The approach taken in CCITT standards T.4 and T.6 is to use a Huffman
code to encode the run lengths. However, the number of possible runlengths is extremely large,
and it is simply not feasible to build a codebook that large. Therefore, instead of generating a
Huffman code for each run length rl , the run length is expressed in the form

rl = 64× m + t for t = 0, 1, . . . , 63, and m = 1, 2, . . . , 27. (10)

When we have to represent a run length rl , instead of finding a code for rl , we use the
corresponding codes for m and t. The codes for t are called the terminating codes, and the
codes for m are called the make-up codes. If rl < 63, we only need to use a terminating code.
Otherwise, both a make-up code and a terminating code are used. For the range of m and t given
here, we can represent lengths of 1728, which is the number of pixels per line in an A4-size
document. However, if the document is wider, the recommendations provide for this with an
optional set of 13 codes. Except for the optional codes, there are separate codes for black and
white run lengths. This coding scheme is generally referred to as a modified Huffman (MH)
scheme. Note that the Huffman codes are static codes based on probability models obtained
using a set of documents that the standards committee considered to be typical.

7.7 Facsimile Encoding 201

In the two-dimensional scheme, instead of reporting the run lengths, which in terms of our
Markov model are the lengths of time we remain in one state, we report the transition times
when we move from one state to another state. Look at Figure 7.7. We can encode this in two
ways. We can say that the first row consists of a sequence of runs 0, 2, 3, 3, 8, and the second
row consists of runs of lengths 0, 1, 8, 3, 4 (notice the first runs of length zero). Or, we can
encode the location of the pixel values that occur at a transition from white to black or black
to white. The first pixel is an imaginary white pixel assumed to be to the left of the first actual
pixel. Therefore, if we were to code transition locations, we would encode the first row as 1,
3, 6, 9 and the second row as 1, 2, 10, 13.

Generally, rows of a facsimile image are heavily correlated. Therefore, it would be easier
to code the transition points with reference to the previous line than to code each one in terms
of its absolute location, or even its distance from the previous transition point. This is the basic
idea behind the recommended two-dimensional coding scheme. This scheme is a modification
of a two-dimensional coding scheme called the Relative Element Address Designate (READ)
code [99,100] and is often referred to as Modified READ (MR). The READ code was the
Japanese proposal to the CCITT for the Group 3 standard.

To understand the two-dimensional coding scheme, we need some definitions.

a0: This is the last pixel whose value is known to both the encoder and decoder. At the
beginning of encoding each line, a0 refers to an imaginary white pixel to the left of the
first actual pixel. While it is often a transition pixel, it does not have to be.

a1: This is the first transition pixel to the right of a0. By definition, its color should be the
opposite of a0. The location of this pixel is known only to the encoder.

a2: This is the second transition pixel to the right of a0. Its color should be the opposite of a1,
which means it has the same color as a0. The location of this pixel is also known only to
the encoder.

b1: This is the first transition pixel on the line above the line currently being encoded to the
right of a0 whose color is the opposite of a0. As the line above is known to both encoder
and decoder, as is the value of a0, the location of b1 is also known to both the encoder and
decoder.

b2: This is the first transition pixel to the right of b1 on the line above the line currently being
encoded.

For the pixels in Figure 7.7, if the second row is the one being currently encoded, and if we
have encoded the pixels up to the second pixel, the assignment of the different pixels is shown
in Figure 7.8. The pixel assignments for a slightly different arrangement of black and white
pixels are shown in Figure 7.9.

F I GUR E 7 . 7 Two rows of an image. The transition pixels are marked with a dot.

202 7 L O S S L E S S I M A G E C O M P R E S S I O N

a0 a1 a2

b1 b2

F I GUR E 7 . 8 Two rows of an image. The transition pixels are marked with a dot.

If b1 and b2 lie between a0 and a1, we call the coding mode used the pass mode. The
transmitter informs the receiver about the situation by sending the code 0001. Upon receipt of
this code, the receiver knows that from the location of a0 to the pixel right below b2, all pixels
are of the same color. If this had not been true, we would have encountered a transition pixel.
As the first transition pixel to the right of a0 is a1 and as b2 occurs before a1, no transitions
have occurred, and all pixels from a0 to right below b2 are the same color. At this time, the
last pixel known to both the transmitter and receiver is the pixel below b2. Therefore, this now
becomes the new a0, and we find the new positions of b1 and b2 by examining the row above
the one being encoded and continue with the encoding process.

If a1 is detected before b2 by the encoder, we do one of two things. If the distance between
a1 and b1 (the number of pixels from a1 to right under b1) is less than or equal to three, then
we send the location of a1 with respect to b1, move a0 to a1, and continue with the coding
process. This coding mode is called the vertical mode. If the distance between a1 and b1 is
large, the coding mode is called the horizontal mode. In his mode, we essentially revert to the
one-dimensional technique and send the distances between a0 and a1 and a1 and a2, using the
modified Huffman code. Let us look at exactly how this is accomplished.

In the vertical mode, if the distance between a1 and b1 is zero (that is, a1 is exactly under
b1), we send the code 1. If a1 is to the right of b1 by one pixel (as in Figure 7.9), we send
the code 011. If a1 is to the right of b1 by two or three pixels, we send the code 000011 or
0000011, respectively. If a1 is to the left of b1 by one, two, or three pixels, we send the code
010, 000010, or 0000010, respectively.

In the horizontal mode, we first send the code 001 to inform the receiver about the mode,
and we then send the modified Huffman codewords corresponding to the run length from a0
to a1, and a1 to a2.

a0 a1 a2

b1 b2

F I GUR E 7 . 9 Two rows of an image. The transition pixels are marked with a dot.

7.7 Facsimile Encoding 203

As the encoding of a line in the two-dimensional algorithm is based on the previous line,
an error in one line could conceivably propagate to all other lines in the transmission. To
prevent this from happening, the T.4 recommendations contain the requirement that after each
line is coded with the one-dimensional algorithm, at most K − 1 lines will be coded using the
two-dimensional algorithm. For standard vertical resolution, K = 2, and for high resolution,
K = 4.

The Group 4 encoding algorithm, as standardized in CCITT recommendation T.6, is iden-
tical to the two-dimensional encoding algorithm in recommendation T.4. The main difference
between T.6 and T.4 from the compression point of view is that T.6 does not have a one-
dimensional coding algorithm, which means that the restriction described in the previous
paragraph is also not present. This slight modification of the modified READ algorithm has
earned the name modified modified READ (MMR)!

7.7.3 JBIG

The JBIG image compression standard provides the user with the option of either sequential
encoding, progressive encoding, or something in between. In the sequential mode the pixels
in the image are encoded and decoded in raster scan order, that is left to right and top to
bottom. In the progressive mode the image to be encoded can be first decomposed into images
of varying resolution. In some applications we may not always need to view an image at
full resolution. For example, if we are looking at the layout of a page, we may not need to
know what each word or letter on the page is. The JBIG standard allows for the generation
of progressively lower-resolution images. If the user is interested in some gross patterns in
the image (for example, if they are interested in seeing if there are any figures on a particular
page) they can request a lower-resolution image, which can be transmitted using fewer bits.
Once the lower-resolution image is available, the user can decide whether a higher-resolution
image is necessary.

The JBIG standard also permits an in-between mode called the progressive compatible
sequential mode. In this mode, the image is divided into stripes that consist of rows of the
image. The image is encoded stripe by stripe in a sequential manner. However, each stripe is
encoded in a progressive manner.

Once the mode has been selected, the JBIG encoding process proceeds with resolution re-
duction (in the progressive modes), redundancy removal, and arithmetic coding of the residuals.
We briefly describe each of these steps below.

Resolution Reduction

The JBIG specification recommends generating one lower-resolution pixel for each 2 × 2
block in the higher-resolution image. The number of lower-resolution images (called layers)
is not specified by JBIG. A straightforward method for generating lower-resolution images is
to replace every 2× 2 block of pixels with the average value of the four pixels, thus reducing
the resolution by two in both the horizontal and vertical directions. This approach works well
as long as three of the four pixels are either black or white. However, when we have two pixels
of each kind, we run into trouble; consistently replacing the four pixels with either a white or

204 7 L O S S L E S S I M A G E C O M P R E S S I O N

a b c

d e f

g h i

A B

C X

F I GUR E 7 . 10 Pixels used to determine the value of a lower-level pixel.

black pixel causes a severe loss of detail, and randomly replacing with a black or white pixel
introduces a considerable amount of noise into the image [92].

Instead of simply taking the average of every 2× 2 block, the JBIG specification provides
a table-based method for resolution reduction. The table is indexed by the neighboring pixels
shown in Figure 7.10, in which the circles represent the lower-resolution layer pixels and the
squares represent the higher-resolution layer pixels.

Each pixel contributes a bit to the index. The table is formed by computing the expression

4e + 2(b + d + f + h)+ (a + c + g + i)− 3(B + C)− A

If the value of this expression is greater than 4.5, pixel X is tentatively declared to be 1. The
table has certain exceptions to this rule to reduce the amount of edge smearing, generally
encountered in a filtering operation. There are also exceptions that preserve periodic patterns
and dither patterns.

Redundancy Removal

There are two kinds of redundancy removal available in the JBIG standard. These are known as
typical prediction and deterministic prediction. Typical prediction exploits the fact that many
bi-level images have large regions that are the same color. This being the case, knowledge of
the low-resolution pixel value is sufficient to determine the value of the high-resolution pixel
for the progressive modes. Deterministic prediction operates on the concept that given the fact
that the low-resolution images were constructed from the high-resolution images, knowledge
of the values of the low-resolution pixels is sufficient to determine the high-resolution pixels
exactly under certain conditions.

Typical Prediction Figure 7.11 indicates the relationship between various high- and low-
resolution pixels. In the figure the squares correspond to the high-resolution pixels and the
circles correspond to low-resolution pixels. Notice that there is one low-resolution pixel
corresponding to each of the four (2× 2) high-resolution pixels.

Many of the pixels in a bi-level document occur in regions of constant color, and many of
the pixels in a document image occur in regions of white pixels. For these regions, pixels in
both high-resolution and low-resolution images have the same color. Therefore, if the low-
resolution pixels are available, the high-resolution pixels need not be transmitted. The typical
prediction is a labeling of the high-resolution pixels that do not need to be transmitted. The

7.7 Facsimile Encoding 205

0
3 2

1
X

F I GUR E 7 . 11 Pixels used for determining the typical prediction status of a pixel.

process begins with comparing each low-resolution pixel in a row, for example pixel X in
Figure 7.11, to the eight neighboring low-resolution pixels (the shaded pixels in the figure)
and the immediate neighboring high-resolution pixels (numbered 1,2,3 and 4). If the pixel
being compared has the same color as the eight low-resolution pixels in the neighborhood but
differs in color from one of the four high-resolution pixels, the pixel is labeled a nontypical
pixel. If a line of low-resolution pixels contains any nontypical pixels, the line is declared to
be nontypical. This information is conveyed to the decoder by inserting a fictitious pixel called
the LNTP (line not typical) pixel prior to every other high-resolution line. If the corresponding
low-resolution line contains pixels that are nontypical, then the value of LNTP is set to one,
otherwise it is set to zero. For each low-resolution line for which the LNTP value is zero, the
color of the high-resolution pixels corresponding to low-resolution pixels that have the same
color as their eight neighbors is known, and, therefore, these high-resolution pixels are not
encoded. In many documents, we can avoid encoding up to 95% of the high-resolution pixels
[101] in this manner.

Typical prediction can also be used for sequentially encoded images or, equivalently, for
the lowest resolution of progressively encoded images. In this case, the encoding makes use
of the fact that in a bi-level image, a line of pixels is often identical to the line above. For
typical prediction in this case, if the current line is the same as the line above, a bit flag called
L N T Pn is set to 0, and the line is not transmitted. If the line is not the same, the flag is set to
1, and the line is coded using the contexts currently used for the low-resolution layer in JBIG.
The value of L N T Pn is encoded by generating another bit, SL N T Pn , according to the rule

SL N T Pn = !(L N T Pn ⊕ L N T Pn−1)

which is treated as a virtual pixel to the left of each row. If the decoder decodes an LNTP
value of 0, it copies the line above. If it decodes an LNTP value of 1, the following bits in the
segment data are decoded using an arithmetic decoder and the contexts described previously.

Deterministic Prediction Deterministic prediction is only used in images encoded using a
progressive mode. Because the resolution reduction is carried out using a table-based algo-
rithm, it is sometimes possible to determine the exact value of a high-resolution pixel given
the values of the pixels already encoded. The amount of reduction available through the use
of deterministic prediction is about 7% [101].

206 7 L O S S L E S S I M A G E C O M P R E S S I O N

Arithmetic Coding

Many bi-level images have a lot of local structure. Consider a digitized page of text. In large
portions of the image we will encounter white pixels with a probability approaching 1. In other
parts of the image, there will be a high probability of encountering a black pixel. We can make
a reasonable guess of the situation for a particular pixel by looking at values of the pixels in
the neighborhood of the pixel being encoded. For example, if the pixels in the neighborhood
of the pixel being encoded are mostly white, then there is a high probability that the pixel to
be encoded is also white. On the other hand, if most of the pixels in the neighborhood are
black, there is a high probability that the pixel being encoded is also black. Each case gives us
a skewed probability—a situation ideally suited for arithmetic coding. If we treat each case
separately, using a different arithmetic coder for each of the two situations, we should be able
to obtain improvement over the case where we use the same arithmetic coder for all pixels.
Consider the following example.

Suppose the probability of encountering a black pixel is 0.2 and the probability of encoun-
tering a white pixel is 0.8. The entropy for this source is given by

H = −0.2 log2 0.2− 0.8 log2 0.8 = 0.722. (11)

If we use a single arithmetic coder to encode this source, we will get an average bit rate close
to 0.722 bits per pixel. Now suppose, based on the neighborhood of the pixels, that we can
divide the pixels into two sets, one comprising 80% of the pixels and the other 20%. In the first
set, the probability of encountering a white pixel is 0.95, and in the second set the probability
of encountering a black pixel is 0.7. The entropy of these sets is 0.286 and 0.881, respectively.
If we used two different arithmetic coders for the two sets with frequency tables matched to
the probabilities, we would get rates close to 0.286 bits per pixel about 80% of the time and
close to 0.881 bits per pixel about 20% of the time. The average rate would be about 0.405
bits per pixel, which is almost half the rate required if we used a single arithmetic coder. If we
used only those pixels in the neighborhood that had already been transmitted to the receiver to
make our decision about which arithmetic coder to use, the decoder could keep track of which
encoder was used to encode a particular pixel.

As we have mentioned before, the arithmetic coding approach is particularly amenable to
the use of multiple coders. All coders use the same computational machinery, with each coder
using a different set of probabilities. The JBIG algorithm makes full use of this feature of
arithmetic coding. Instead of checking to see if most of the pixels in the neighborhood are
white or black, the JBIG encoder uses the pattern of pixels in the neighborhood, or context,
to decide which set of probabilities to use in encoding a particular pixel. If the neighborhood
consists of 10 pixels with each pixel capable of taking on two different values, the number of
possible patterns is 1024. The JBIG coder uses 1024 to 4096 coders, depending on whether a
low- or high-resolution layer is being encoded.

For the low-resolution layer, the JBIG encoder uses one of the two different neighborhoods
shown in Figure 7.12. The pixel to be coded is marked X, while the pixels to be used for
templates are marked A or O. The A and O pixels are previously encoded pixels and are
available to both the encoder and decoder. The A pixel can be thought of as a floating member
of the neighborhood. Its placement is dependent on the input being encoded. Suppose the
image has vertical lines 30 pixels apart. The A pixel would be placed 30 pixels to the left of

7.7 Facsimile Encoding 207

O O O
O O O O A
O O X

O AO O O O
O O O O X

(a) (b)

F I GUR E 7 . 12 (a) Three-line and (b) two-line neighborhoods.

0 0 0
1 0 0 0 1
1 0 0

1 00 0 1 1
0 0 0 1 1

(a) (b)

F I GUR E 7 . 13 (a) Three-line and (b) two-line contexts.

the pixel being encoded. The A pixel can be moved around to capture any structure that might
exist in the image. This is especially useful in halftone images in which the A pixels are used
to capture the periodic structure. The location and movement of the A pixel are transmitted to
the decoder as side information.

In Figure 7.13, the symbols in the neighborhoods have been replaced by 0s and 1s. We take
0 to correspond to white pixels, while 1 corresponds to black pixels. The pixel to be encoded
is enclosed by the heavy box. The pattern of 0s and 1s is interpreted as a binary number,
which is used as an index to the set of probabilities. The context in the case of the three-line
neighborhood (reading left to right, top to bottom) is 0001000110, which corresponds to an
index of 70. For the two-line neighborhood, the context is 0011100001, or 225. Since there
are 10 bits in these templates, we will have 1024 different arithmetic coders.

In the JBIG standard, the 1024 arithmetic coders are a variation of the arithmetic coder
known as the QM coder described in Chapter 4. The QM coder is a modification of an adaptive
binary arithmetic coder called the Q coder [51, 52, 53], which in turn is an extension of another
binary adaptive arithmetic coder called the skew coder [102].

As the lower-resolution layers are obtained from the higher-resolution images, we can use
them when encoding the higher-resolution images. The JBIG specification makes use of the
lower-resolution images when encoding the higher-resolution images by using the pixels of
the lower-resolution images as part of the context for encoding the higher-resolution images.
The contexts used for coding the lowest-resolution layer are those shown in Figure 7.12. The
contexts used in coding the higher-resolution layer are shown in Figure 7.14.

Ten pixels are used in each context. If we include the 2 bits required to indicate which
context template is being used, 12 bits will be used to indicate the context. This means that
we can have 4096 different contexts.

208 7 L O S S L E S S I M A G E C O M P R E S S I O N

A O

O

O

OO ?
O O

O

(a)
O

A O

O

O

OO ?
O O

O

(b)
O

A O

O

O

OO ?
O O

O

(c)
O

A O

O

O

OO ?
O O

O

(d)
O

F I GUR E 7 . 14 Contexts used in the coding of higher-resolution layers.

7.7.4 Comparison of MH, MR, MMR, and JBIG

Before we proceed to the more modern techniques found in T.88 and T.44, lets’s compare the
performance of the earliest of the modern techniques, JBIG, with the older facsimile coding
algorithms, namely modified Huffman, modified READ, and modified modified READ. As we
might expect, the JBIG algorithm performs better than the MMR algorithm, which performs
better than the MR algorithm, which in turn performs better than the MH algorithm. The level
of complexity also follows the same trend, although we could argue that MMR is actually less
complex than MR.

A comparison of the schemes for some facsimile sources is shown in Table 7.5. The
modified READ algorithm was used with K = 4, while the JBIG algorithm was used with an
adaptive three-line template and adaptive arithmetic coder to obtain the results in this table.
As we go from the one-dimensional MH coder to the two-dimensional MMR coder, we get
a factor of two reduction in file size for the sparse text sources. We get even more reduction
when we use an adaptive coder and an adaptive model, as is true for the JBIG coder. When we
come to the dense text, the advantage of the two-dimensional MMR over the one-dimensional
MH is not as significant, as the amount of two-dimensional correlation becomes substantially
less.

The compression schemes specified in T.4 and T.6 break down when we try to use them
to encode halftone images. In halftone images, gray levels are represented using binary pixel
patterns. A gray level closer to black would be represented by a pattern that contains more
black pixels, while a gray level closer to white would be represented by a pattern with fewer
black pixels. Thus, the model that was used to develop the compression schemes specified in

7.7 Facsimile Encoding 209

T A B L E 7 . 5 Comparison of binary image coding schemes. Data from [103].

Source Description Original Size (pixels) MH (bytes) MR (bytes) MMR (bytes) JBIG (bytes)

Letter 4352× 3072 20,605 14,290 8,531 6,682
Sparse text 4352× 3072 26,155 16,676 9,956 7,696
Dense text 4352× 3072 135,705 105,684 92,100 70,703

T.4 and T.6 is not valid for halftone images. The JBIG algorithm, with its adaptive model and
coder, suffers from no such drawbacks and performs well for halftone images [103].

7.7.5 JBIG2–T.88

The JBIG2 standard was approved in February 2000. Besides facsimile transmission, the
standard is also intended for document storage, archiving, wireless transmission, print spool-
ing, and coding of images on the Web. The standard provides specifications only for the
decoder, leaving the encoder design open. This means that the encoder design can be con-
stantly refined, subject only to compatibility with the decoder specifications. This situation
also allows for lossy compression, because the encoder can incorporate lossy transformations
to the data that enhance the level of compression.

The compression algorithm in JBIG provides excellent compression of a generic bi-
level image. The compression algorithm proposed for JBIG2 uses the same arithmetic cod-
ing scheme as JBIG. However, it takes advantage of the fact that a significant number of
bi-level images contain structure that can be used to enhance compression performance. A
large percentage of bi-level images consist of text on some background, while another signifi-
cant percentage of bi-level images are or contain halftone images. The JBIG2 approach allows
the encoder to select the compression technique that would provide the best performance for
the type of data. To do so, the encoder divides the page to be compressed into three types of
regions called symbol regions, halftone regions, and generic regions. The symbol regions are
those containing text data, the halftone regions are those containing halftone images, and the
generic regions are all the regions that do not fit into either category.

The partitioning information has to be supplied to the decoder. The decoder requires that
all information provided to it be organized into segments that are made up of a segment header,
a data header, and segment data. The page information segment contains information about
the page including the size and resolution. The decoder uses this information to set up the
page buffer. It then decodes the various regions using the appropriate decoding procedure and
places the different regions in the appropriate location.

Generic Decoding Procedures

There are two procedures used for decoding the generic regions: the generic region decoding
procedure and the generic refinement region decoding procedure. The generic region decoding
procedure uses one of two procedures; the MMR technique used in the Group 3 and Group

210 7 L O S S L E S S I M A G E C O M P R E S S I O N

10-bit template

X

A1 O O

O O O

A2

O O O

Refined
Bitmap

Reference
Bitmap

X

OO O

OO

OO

OO

O

O O

O

Refined
Bitmap

Reference
Bitmap

13-bit template

F I GUR E 7 . 15 Contexts used in the generic refinement decoding procedure.

4 fax standards or a variation of the technique used to encode the lowest-resolution layer in
the JBIG recommendation. The first procedure, MMR algorithm was described earlier in this
chapter (Section 7.7.2). The second procedure, called typical prediction, is similar to the
procedure used for JBIG as described earlier.

The adaptive arithmetic coding used in JBIG2 uses the same algorithm as that used in
JBIG with four templates available for generating the context. There is a 16-bit template
which contains four variable locations, a 13-bit template with one variable location, and the
two 10-bit templates used for the encoding of the pixels in the JBIG bottom layer.

The generic refinement decoding procedure assumes the existence of a reference layer and
decodes the segment data with reference to this layer. The standard leaves open the specification
of the reference layer. The decoding of the refined layer is done in raster scan order using
both the reference bitmap and the portions of the refined layer that have already been decoded.
The decoding uses context adaptive arithmetic coding where the context consists of already
decoded bits from the refined bitmap as well as bits from the reference bitmap. The two
templates used in the refinement decoding procedure are shown in Figure 7.15. In Figure 7.15,
the pixel marked X is the pixel being decoded while the shaded pixel in the reference bitmap
is the pixel in the same spatial location as the pixel being decoded. The pixels marked A1 and
A2 are the adaptive pixels. The A1 pixel location can be anywhere within 128 pixels of the
pixel being decoded in the vertical and horizontal directions within the set of already decoded
pixels. If we denote the X pixel location as (0,0) the A2 pixel location can be anywhere between
(-128,-128) to (127,127) in the reference bitmap.

The generic refinement procedure can also use a typical prediction mode. In the generic
refinement procedure a pixel is said to be a typical pixel if the 3 × 3 block of pixels in the
reference bitmap centered on the location of the pixel being decoded all have the same value
and the pixel being decoded also has that value. If every pixel in a line corresponding to a 3×3
block of identical valued pixels in the reference bitmap is a typical pixel, the typical pixel flag
LTP is set to one. When the typical pixel flag is set to one, the pixels corresponding to 3× 3
blocks of identically valued pixels are not encoded, and the decoder simply copies that value
from the reference bitmap.

7.8 MRC T.44 211

Symbol Region Decoding

The symbol region decoding procedure is a dictionary-based decoding procedure. The symbol
region segment is decoded with the help of a symbol dictionary contained in the symbol
dictionary segment. The data in the symbol region segment contains the location where
a symbol is to be placed, as well as the index to an entry in the symbol dictionary. The
symbol dictionary consists of a set of bitmaps and is decoded using the generic decoding
procedures. Note that because JBIG2 allows for lossy compression, the symbols do not have
to exactly match the symbols in the original document. This feature can significantly increase
compression performance when the original document contains noise that may preclude exact
matches with the symbols in the dictionary.

Halftone Region Decoding

The halftone region decoding procedure is also a dictionary-based decoding procedure. The
halftone region segment is decoded with the help of a halftone dictionary contained in the
halftone dictionary segment. The halftone dictionary segment is decoded using the generic
decoding procedures. The data in the halftone region segment consists of the location of
the halftone region and indices to the halftone dictionary. The dictionary is a set of fixed-
size halftone patterns. As in the case of the symbol region, if lossy compression is allowed,
the halftone patterns do not have to exactly match the patterns in the original document. By al-
lowing for nonexact matches, the dictionary can be kept small, resulting in higher compression.

7.8 MRC–T.44

With the rapid advance of technology for document production, documents have changed
in appearance. Where a document used to be a set of black and white printed pages, now
documents contain multicolored text as well as color images. To deal with this new type
of document, the ITU-T developed recommendation T.44 for Mixed Raster Content (MRC).
This recommendation takes the approach of separating the document into elements that can
be compressed using available techniques. Thus, it is more an approach of partitioning a
document image than a compression technique. The compression strategies employed here
are borrowed from previous standards such as JPEG (T.81), JBIG (T.82), and even T.6.

The T.44 recommendation divides a page into slices where the width of the slice is equal
to the width of the entire page. The height of the slice is variable. In the base mode, each
slice is represented by three layers: a background layer, a foreground layer, and a mask layer.
These layers are used to effectively represent three basic data types: color images (which
may be continuous tone or color mapped), bi-level data, and multilevel (multicolor) data.
The multilevel image data is put in the background layer, and the mask and foreground lay-
ers are used to represent the bi-level and multilevel nonimage data. To work through the
various definitions, let us use the document shown in Figure 7.16 as an example. We have di-
vided the document into two slices. The top slice contains the picture of the cake and two lines

212 7 L O S S L E S S I M A G E C O M P R E S S I O N

It Will Soon Be June 4

You are invited to a PARTY

with Ruby and Hanna

to CELEBRATE

×

That’s Ruby’s Birthday!

F I GUR E 7 . 16 Ruby’s birthday invitation.

This area not coded

or sent

F I GUR E 7 . 17 The background layer.

of writing in two “colors.” Notice that the heights of the two slices are not the same, and
the complexity of the information contained in the two slices is not the same. The top slice
contains multicolored text, and a continuous tone image whereas the bottom slice contains
only bi-level text. Let us take the upper slice first, and see how to divide it into the three layers.
We will discuss how to code these layers later. The background layer consists of the cake and
nothing else. The default color for the background layer is white (though this can be changed).
Therefore, we do not need to send the left half of this layer, which contains only white pixels
(Figure 7.17).

The mask layer (Figure 7.18) consists of a bi-level representation of the textual information,
while the foreground layer contains the colors used in the text. To reassemble the slice, we
begin with the background layer. We then add to it pixels from the foreground layer using the
mask layer as the guide. Wherever the mask layer pixel is black (1), we pick the corresponding
pixel from the foreground layer. Wherever the mask pixel is white (0), we use the pixel from
the background layer. Because of its role in selecting pixels, the mask layer is also known as
the selector layer. During transmission, the mask layer is transmitted first, followed by the
background and the foreground layers. During the rendering process, the background layer is
rendered first (Figure 7.19).

When we look at the lower slice, we notice that it contains only bi-level information. In
this case, we only need the mask layer because the other two layers would be superfluous. In
order to deal with this kind of situation, the standard defines three different kinds of stripes.
Three-layer stripes (3LS) contain all three layers and are useful when there is both image and

7.9 Summary 213

It Will Soon Be June 4

That’s Ruby’s Birthday!

F I GUR E 7 . 18 The mask layer.

This area not

coded or sent.

F I GUR E 7 . 19 The foreground layer.

textual data in the stripe. Two-layer stripes (2LS) only contain two layers, with the third set to
a constant value. This kind of stripe would be useful when encoding a stripe with multicolored
text and no images, or a stripe with images and bi-level text or line drawings. The third kind
of stripe is a one-layer stripe (1LS), which would be used when a stripe contains only bi-level
text or line art or only continuous tone images.

Once the document has been partitioned it can be compressed. Notice that the types of
data we have after partitioning are continuous tone images, bi-level information, and multi-
level regions. We already have efficient standards for compressing these types of data. For
the mask layer containing bi-level information, the recommendation suggests that one of sev-
eral approaches can be used, including modified Huffman or modified READ (as described in
recomendation T.4), MMR (as described in recommendation T.6), or JBIG (recommendation
T.82). The encoder includes information in the datastream about which algorithm has been
used. For the continuous tone images and the multilevel regions contained in the foreground
and background layers, the recommendation suggests the use of the JPEG standard (recom-
mendation T.81) or the JBIG standard. The header for each slice contains information about
which algorithm is used for compression-3.

7.9 Summary

In this chapter, we have examined a number of ways to compress images. All of these ap-
proaches exploit the fact that pixels in an image are generally highly correlated with their
neighbors. This correlation can be used to predict the actual value of the current pixel. The
prediction error can then be encoded and transmitted. Where the correlation is especially high,
as in the case of bi-level images, long stretches of pixels can be encoded together using their

214 7 L O S S L E S S I M A G E C O M P R E S S I O N

similarity with previous rows. Finally, by identifying different components of an image that
have common characteristics, an image can be partitioned and each partition encoded using
the algorithm best suited to it.

Further Reading

1. A detailed survey of lossless image compression techniques can be found in “Lossless
Image Compression” by K.P. Subbalakshmi. This chapter appears in the Lossless Com-
pression Handbook, Academic Press, 2003 [268].

2. For a detailed description of the LOCO-I and JPEG-LS compression algorithm, see
“The LOCO-I Lossless Image Compression Algorithm: Principles and Standardization
into JPEG-LS,” Hewlett-Packard Laboratories Technical Report HPL-98-193, November
1998 [87].

3. The JBIG and JBIG2 standards are described in a very accessible manner in “Lossless
Bilevel Image Compression,” by M.W. Hoffman. This chapter appears in the Lossless
Compression Handbook, Academic Press, 2003 [269].

4. The area of lossless image compression is a very active one, and new schemes are being
published all the time. These articles appear in a number of journals, including Journal of
Electronic Imaging, Optical Engineering, IEEE Transactions on Image Processing, IEEE
Transactions on Communications, Communications of the ACM, IEEE Transactions on
Computers, and Image Communication, among others.

7.10 Projects and Problems

1. Encode the binary image shown in Figure 7.20 using the modified Huffman scheme.

2. Encode the binary image shown in Figure 7.20 using the modified READ scheme.

F I GUR E 7 . 20 An 8×16 binary image.

7.10 Projects and Problems 215

3. Encode the binary image shown in Figure 7.20 using the modified modified READ
scheme.

4. Suppose we want to transmit a 512 × 512, 8-bits-per-pixel image over a 9600 bits per
second line.

(a) If we were to transmit this image using raster scan order, after 15 seconds how many
rows of the image will the user have received? To what fraction of the image does
this correspond?

(b) If we were to transmit the image using the method of Example 7.6.1, how long would
it take the user to receive the first approximation? How long would it take to receive
the first two approximations?

5. An implementation of the progressive transmission example (Example 7.6.1) is included
in the programs accompanying this book. The program is called prog_tran1.c.
Using this program as a template, experiment with different ways of generating ap-
proximations (you could use various types of weighted averages) and comment on the
qualitative differences (or lack thereof) with using various schemes. Try different block
sizes and comment on the practical effects in terms of quality and rate.

6. The program jpegll_enc.c generates the residual image for the different JPEG pre-
diction modes, while the programjpegll_dec.c reconstructs the original image from
the residual image. The output of the encoder program can be used as the input to the
public domain arithmetic coding program mentioned in Chapter 4 and the Huffman cod-
ing programs mentioned in Chapter 3. Study the performance of different combinations
of prediction mode and entropy coder using three images of your choice. Account for
any differences you see.

7. Extendjpegll_enc.c andjpegll_dec.cwith an additional prediction mode—be
creative! Compare the performance of your predictor with the JPEG predictors.

8. Implement the portions of the CALIC algorithm described in this chapter. Encode the
Sena image using your implementation.

8
Mathematical Preliminaries for
Lossy Coding

8.1 Overview

B
efore we discussed lossless compression, we presented some of the mathemat-
ical background necessary for understanding and appreciating the compression
schemes that followed. We will try to do the same here for lossy compres-
sion schemes. In lossless compression schemes, rate is the general concern.
With lossy compression schemes, the loss of information associated with such

schemes is also a concern. We will look at different ways of assessing the impact of the loss
of information. We will also briefly revisit the subject of information theory, mainly to get
an understanding of the part of the theory that deals with the trade-offs involved in reducing
the rate, or number of bits per sample, at the expense of the introduction of distortion in the
decoded information. This aspect of information theory is also known as rate distortion the-
ory. We will also look at some of the models used in the development of lossy compression
schemes.

8.2 Introduction

This chapter will provide some mathematical background that is necessary for discussing
lossy compression techniques. Most of the material covered in this chapter is common to
many of the compression techniques described in the later chapters. Material that is spe-
cific to a particular technique is described in the chapter in which the technique is presented.

Introduction to Data Compression. DOI: http://dx.doi.org/10.1016/B978-0-12-415796-5.00008-9
© 2012 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-415796-5.00008-9

218 8 M A T H E M A T I C A L P R E L I M I N A R I E S

Some of the material presented in this chapter is not essential for understanding the techniques
described in this book. However, to follow some of the literature in this area, familiarity
with these topics is necessary. We have marked these sections with a �. If you are primarily
interested in the techniques, you may wish to skip these sections, at least on first reading. On
the other hand, if you wish to delve more deeply into these topics, we have included a list of
resources at the end of this chapter that provide a more mathematically rigorous treatment of
this material.

When we were looking at lossless compression, one thing we never had to worry about
was how the reconstructed sequence would differ from the original sequence. By definition,
the reconstruction of a losslessly constructed sequence is identical to the original sequence.
However, there is only a limited amount of compression that can be obtained with lossless
compression. There is a floor (a hard one) defined by the entropy of the source, below which
we cannot drive the size of the compressed sequence. As long as we wish to preserve all of
the information in the source, the entropy, like the speed of light, is a fundamental limit.

The limited amount of compression available from using lossless compression schemes
may be acceptable in several circumstances. The storage or transmission resources available
to us may be sufficient to handle our data requirements after lossless compression. Or the
possible consequences of a loss of information may be much more expensive than the cost of
additional storage and/or transmission resources. This would be the case with the storage and
archiving of bank records; an error in the records could turn out to be much more expensive
than the cost of buying additional storage media.

If neither of these conditions hold—that is, resources are limited and we do not require
absolute integrity—we can improve the amount of compression by accepting a certain degree
of loss during the compression process. Performance measures are necessary to determine
the efficiency of our lossy compression schemes. For the lossless compression schemes, we
essentially used only the rate as the performance measure. That would not be feasible for lossy
compression. If rate were the only criterion for lossy compression schemes, where loss of
information is permitted, the best lossy compression scheme would be simply to throw away
all the data! Therefore, we need some additional performance measure, such as some measure
of the difference between the original and reconstructed data, which we will refer to as the
distortion in the reconstructed data. In the next section, we will look at some of the more
well-known measures of difference and discuss their advantages and shortcomings.

In the best of all possible worlds, we would like to incur the minimum amount of distor-
tion while compressing to the lowest rate possible. Obviously, there is a trade-off between
minimizing the rate and keeping the distortion small. The extreme cases are when we trans-
mit no information, in which case the rate is zero, or keep all the information, in which case
the distortion is zero. The rate for a discrete source is simply the entropy. The study of the
situations between these two extremes is called rate distortion theory. In this chapter we will
take a brief look at some important concepts related to this theory.

We will need to expand the dictionary of models available for our use, for several reasons.
First, because we are now able to introduce distortion, we need to determine how to add
distortion intelligently. For this, we often need to look at the sources somewhat differently
than we have done previously. Another reason is that we will be looking at compression
schemes for sources that are analog in nature, even though we have treated them as discrete
sources in the past. We need models that more precisely describe the true nature of these

8.2 Introduction 219

Information Source

xn Source
coder

Channel

xc,n

y(t)

x(t)

yn Source
decoder x̂c,n

cource
Information

sampling

Filtering

ReconstructUser
decoder
Channel

coder
Channel

Channel

User

and

F I GUR E 8 . 1 A simplified block diagram of a communication system.

sources. We will describe several different models that are widely used in the development of
lossy compression algorithms.

Finally, let us briefly look at the context of the compression operation. A very simplified
block diagram of a communication system is shown in Figure 8.1. An information source
generates a signal (often an analog signal). In the figure we have represented the signal as a
function of time. This would be the case if the signal was a speech or audio signal. However,
the information signal may be a two-dimensional spatial signal such as an image, or a function
of both space and time such as video. If this information is not in discrete form it is discretized
to generate a sequence of values. Again we have depicted this signal as being a function of a
single index as would be the case for a speech or audio signal. However, it could just as well
be a function of two or three indices. This discrete sequence is the input to the compression
algorithm, or in more general terms, the source coder, which attempts to reduce the average
number of bits per sample used to encode the sequence. The process of source coding usually
results in the removal of redundancy in the signal, making it vulnerable to noise. In order to
protect against errors the output of the source coder is encoded using a channel encoder that
introduces redundancy in a controlled fashion. The block labeled “channel” is usually thought
of as the medium over which the information is transmitted from one location to another. In
the case of something like a cell phone the locations may be spatially distinct—the information
is transmitted from “here” to “there.” However, in many cases, such as when we store the
information to be examined later, the locations my be temporally distinct—a communication
from “now” to “then.” We will generally only deal with the discrete form of the data and then
only the source coding aspect, so we tend to simplify this diagram even further by lumping
together the blocks in the dashed boxes. Thus we have an information source generating a
sequence of samples {xn} which are encoded by the source coder and transmitted, spatially or
temporally, over the channel. We will assume in this book that the channel does not introduce
any distortion so the source coder output is identical to the source decoder input. The source
decoder output {yn} is then supplied to the user. The goal of the source coder is to use as few bits
as possible to encode the information-bearing sequence {xn}while still keeping the reconstruc-
tion sequence {yn} as a close approximation. We are using very fuzzy language here when we

220 8 M A T H E M A T I C A L P R E L I M I N A R I E S

Source Source
encoder

Channel

X Xc

User Source
decoderY Xc

F I GUR E 8 . 2 Block diagram of a generic compression scheme.

talk about “as few bits as possible," and “close approximation," and in the following sections
we will introduce quantitative measures that will allow us to be more precise in our language.

The information-bearing sequence {xn} is generally highly correlated, with significant de-
pendencies between samples. However, for many of the theoretical results we will assume
that the sequence can be modeled as independent identically distributed random variables.
Surprisingly, even with this gross level of simplification we can obtain results that provide
significant insight into the source coding process. For these theoretical developments we will
use the block diagram and notation shown in Figure 8.2. The output of the source is modeled as
a random variable X . The source coder takes the source output and produces the compressed
representation Xc. The channel block represents all transformations the compressed represen-
tation undergoes before the source is reconstructed. We will take the channel to be the identity
mapping, which means Xc = X̂c. The source decoder takes the compressed representation
and produces a reconstruction of the source output for the user.

In the following section we will examine the more popular measures of fidelity, or closeness,
between the information sequence {xn} and the reconstructed sequence {yn}.

8.3 Distortion Criteria

How do we measure the closeness or fidelity of a reconstructed source sequence to the original?
The answer frequently depends on what is being compressed and who is doing the answering.
Suppose we were to compress and then reconstruct an image. If the image is a work of art
and the resulting reconstruction is to be part of a book on art, the best way to find out how
much distortion was introduced and in what manner is to ask a person familiar with the work
to look at the image and provide an opinion. If the image is that of a house and is to be used
in an advertisement, the best way to evaluate the quality of the reconstruction is probably to
ask a real estate agent. However, if the image is from a satellite and is to be processed by
a machine to obtain information about the objects in the image, the best measure of fidelity
is to see how the distortion introduced affects the functioning of the machine. Similarly, if
we were to compress and then reconstruct an audio segment, the judgment of how close the
reconstructed sequence is to the original depends on the type of material being examined as
well as the manner in which the judging is done. An audiophile is much more likely to perceive

8.3 Distortion Criteria 221

distortion in the reconstructed sequence, and distortion is much more likely to be noticed in a
musical piece than in a politician’s speech.

In the best of all worlds, we would always use the end user of a particular source output
to assess quality and provide the feedback required for the design. In practice this is not often
possible, especially when the end user is a human, because it is difficult to incorporate the human
response into mathematical design procedures. Also, there is difficulty in objectively reporting
the results. The people asked to assess one person’s design may be more easygoing than the
people who were asked to assess another person’s design. Even though the reconstructed
output using one person’s design is rated “excellent” and the reconstructed output using the
other person’s design is only rated “acceptable,” switching observers may change the ratings.
We could reduce this kind of bias by recruiting a large number of observers in the hope that
the various biases will cancel each other out. This is often the option used, especially in the
final stages of the design of compression systems. However, the rather cumbersome nature of
this process is limiting. We generally need a more practical method for looking at how close
the reconstructed signal is to the original.

A natural thing to do when looking at the fidelity of a reconstructed sequence is to look at
the differences between the original and reconstructed values—in other words, the distortion
introduced in the compression process. Two popular measures of distortion or difference
between the original and reconstructed sequences are the squared error measure and the absolute
difference measure. These are called difference distortion measures. If {xn} is the source output
and {yn} is the reconstructed sequence, then the squared error measure is given by

d(xn, yn) = (xn − yn)
2 (1)

and the absolute difference measure is given by

d(xn, yn) = |xn − yn| (2)

In general, it is difficult to examine the difference on a term-by-term basis. Therefore, a
number of average measures are used to summarize the information in the difference sequence.
The most often used average measure is the average of the squared error measure. This is called
the mean squared error (mse). If we model the information sequence as a sequence of random
variables {Xn} and the reconstruction sequence as the sequence of random variables {Yn}, for
a sequence of length N we can define the mean squared error as

D = E

{
1

N

N∑
n=1

(Xn − Yn)
2

}
= 1

N

N∑
n=1

E
[
(Xn − Yn)

2
]

(3)

where the expectation is with respect to the joint distribution of Xn and Yn . If we assume the
sequences are independent and identically distributed this expression simplifies to

D = E
[
(X − Y)2

]
In practice we assume the information and reconstruction sequences are ergodic and replace
the ensemble averages in Equation (3) with time averages to obtain

σ 2
d =

1

N

N∑
n=1

(xn − yn)
2 (4)

222 8 M A T H E M A T I C A L P R E L I M I N A R I E S

Notice we have used the symbol σ 2
d for the mean squared error, which implies that the variance

of the distortion sequence d(xn, yn) is equal to the second moment, or that the distortion
sequence is zero mean. This would happen if the error introduced during source coding is
additive. This idea that the error incurred during compression is additive is a common (though
often unstated) assumption. If we are interested in the size of the error relative to the signal,
we can find the ratio of the average squared value of the source output and the mse. This is
called the signal-to-noise ratio (SNR):

SNR = σ 2
x

σ 2
d

(5)

where σ 2
x is the average squared value of the source output, or signal, and σ 2

d is the mse.
The SNR is often measured on a logarithmic scale, and the units of measurement are decibels
(abbreviated to dB):

SNR(dB) = 10 log10
σ 2

x

σ 2
d

(6)

Sometimes we are more interested in the size of the error relative to the peak value of the
signal xpeak than in the size of the error relative to the average squared value of the signal. This
ratio is called the peak-signal-to-noise-ratio (PSNR) and is given by

PSNR(dB) = 10 log10

x2
peak

σ 2
d

(7)

Another difference distortion measure that is used quite often, although not as often as the
mse, is the average of the absolute difference, or

d1 = 1

N

N∑
n=1

|xn − yn| (8)

This measure seems especially useful for evaluating image compression algorithms.
In some applications, the distortion is not perceptible as long as it is below some threshold.

In these situations, we might be interested in the maximum value of the error magnitude,

d∞ = max
n
|xn − yn| (9)

We have looked at two approaches to measuring the fidelity of a reconstruction. The first
method involving humans may provide a very accurate measure of perceptible fidelity, but it
is not practical or useful in mathematical design approaches. The second is mathematically
tractable, but it usually does not provide a very accurate indication of the perceptible fidelity
of the reconstruction. A middle ground is to find a mathematical model for human percep-
tion, transform both the source output and the reconstruction to this perceptual space, and
then measure the difference in the perceptual space. For example, suppose we could find a
transformation V that represented the actions performed by the human visual system (HVS)
on the light intensity impinging on the retina before it is “perceived” by the cortex. We could

8.3 Distortion Criteria 223

then find V(x) and V(y) and examine the difference between them. There are two problems
with this approach. First, the process of human perception is inferential and very difficult to
model. Second, even if we could find a mathematical model for perception, the odds are that
it would be so complex that it would be mathematically intractable.

In spite of these disheartening prospects, the study of perception mechanisms is still im-
portant from the perspective of design and analysis of compression systems. Even if we cannot
obtain a transformation that accurately models perception, we can learn something about the
properties of perception that may come in handy in the design of compression systems. In the
following, we will look at some of the properties of the human visual system and the perception
of sound. Our review will be far from thorough, but the intent here is to present some properties
that will be useful in later chapters when we talk about compression of images, video, speech,
and audio.

8.3.1 The Human Visual System

The eye is a globe-shaped object with a lens in the front that focuses objects onto the retina
in the back of the eye. The retina contains two kinds of receptors, called rods and cones. The
rods are more sensitive to light than cones, and in low light most of our vision is due to the
operation of rods. There are three kinds of cones, each of which is most sensitive at a different
wavelength of the visible spectrum. The peak sensitivities of the cones are in the red, blue,
and green regions of the visible spectrum [104]. The cones are mostly concentrated in a very
small area of the retina called the fovea. Although the rods are more numerous than the cones,
the cones provide better resolution because they are more closely packed in the fovea. The
muscles of the eye move the eyeball, positioning the image of the object on the fovea. This
becomes a drawback in low light. One way to improve what you see in low light is to focus to
one side of the object. This way the object is imaged on the rods, which are more sensitive to
light.

The eye is sensitive to light over an enormously large range of intensities; the upper end of
the range is about 1010 times the lower end of the range. However, at a given instant we cannot
perceive the entire range of brightness. Instead, the eye adapts to an average brightness level.
The range of brightness levels that the eye can perceive at any given instant is much smaller
than the total range it is capable of perceiving.

If we illuminate a screen with a certain intensity I and shine a spot on it with different
intensity, the spot becomes visible when the difference in intensity is �I . This is called the
just noticeable difference (jnd). The ratio �I

I is known as the Weber fraction or Weber ratio.
This ratio is known to be constant at about 0.02 over a wide range of intensities in the absence
of background illumination. However, if the background illumination is changed, the range
over which the Weber ratio remains constant becomes relatively small. The constant range is
centered around the intensity level to which the eye adapts.

If �I
I is constant, then we can infer that the sensitivity of the eye to intensity is a logarithmic

function (d(log I) = d I/I). Thus, we can model the eye as a receptor whose output goes to a
logarithmic nonlinearity. We also know that the eye acts as a spatial low-pass filter [105,106].
Putting all of this information together, we can develop a model for monochromatic vision,
shown in Figure 8.3.

224 8 M A T H E M A T I C A L P R E L I M I N A R I E S

Light
source

Spatial
low-pass

filter

Logarithmic
nonlinearity

F I GUR E 8 . 3 A model of monochromatic vision.

How does this description of the human visual system relate to coding schemes? Notice
that the mind does not perceive everything the eye sees. We can use this knowledge to design
compression systems such that the distortion introduced by our lossy compression scheme is
not noticeable.

8.3.2 Auditory Perception

The ear is divided into three parts, creatively named the outer ear, the middle ear, and the
inner ear. The outer ear consists of the structure that directs the sound waves, or pressure
waves, to the tympanic membrane, or eardrum. This membrane separates the outer ear from
the middle ear. The middle ear is an air-filled cavity containing three small bones that provide
coupling between the tympanic membrane and the oval window, which leads into the inner
ear. The tympanic membrane and the bones convert the pressure waves in the air to acoustical
vibrations. The inner ear contains, among other things, a snail-shaped passage called the
cochlea that contains the transducers that convert the acoustical vibrations to nerve impulses.

The human ear can hear sounds from approximately 20 Hz to 20 kHz, a 1000:1 range of
frequencies. The range decreases with age; older people are usually unable to hear the higher
frequencies. As in vision, auditory perception has several nonlinear components. One is that
loudness is a function not only of the sound level, but also of the frequency. Thus, for example,
a pure 1 kHz tone presented at a 20 dB intensity level will have the same apparent loudness as a
50 Hz tone presented at a 50 dB intensity level. By plotting the amplitude of tones at different
frequencies that sound equally loud, we get a series of curves called the Fletcher-Munson
curves [107].

Another very interesting audio phenomenon is that of masking, where one sound blocks
out or masks the perception of another sound. The fact that one sound can drown out another
seems reasonable. What is not so intuitive about masking is that if we were to try to mask a
pure tone with noise, only the noise in a small frequency range around the tone being masked
contributes to the masking. This range of frequencies is called the critical band. For most
frequencies, when the noise just masks the tone, the ratio of the power of the tone divided by
the power of the noise in the critical band is a constant [108]. The width of the critical band
varies with frequency. This fact has led to the modeling of auditory perception as a bank of
band-pass filters. There are a number of other, more complicated masking phenomena that also
lend support to this theory (see [108,109] for more information). The limitations of auditory
perception play a major role in the design of audio compression algorithms. We will delve
further into these limitations when we discuss audio compression in Chapter 17.

8.4 Information Theory Revisited � 225

8.4 Information Theory Revisited �

In order to study the trade-offs between rate and the distortion of lossy compression schemes,
we would like to have rate defined explicitly as a function of the distortion for a given dis-
tortion measure. Unfortunately, this is generally not possible; and we have to go about it in
a more roundabout way. Before we head down this path, we need a few more concepts from
information theory.

In Chapter 2, when we talked about information, we were referring to letters from a single
alphabet. In the case of lossy compression, we have to deal with two alphabets, the source
alphabet and the reconstruction alphabet. These two alphabets are generally different from
each other.

Example 8 .4 .1 :

A simple lossy compression approach is to drop a certain number of the least significant
bits from the source output. We might use such a scheme between a source that generates
monochrome images at 8 bits per pixel and a user whose display facility can display only 64
different shades of gray. We could drop the two least significant bits from each pixel before
transmitting the image to the user. There are other methods we can use in this situation that
are much more effective, but this is certainly simple.

Suppose our source output consists of 4-bit words {0, 1, 2, . . . , 15}. The source encoder
encodes each value by shifting out the least significant bit. The output alphabet for the
source coder is {0, 1, 2, . . . , 7}. At the receiver we cannot recover the original value ex-
actly. However, we can get an approximation by shifting in a 0 as the least significant bit or,
in other words, multiplying the source encoder output by two. Thus, the reconstruction alpha-
bet is {0, 2, 4, . . . , 14}, and the source and reconstruction do not take values from the same
alphabet. �

As the source and reconstruction alphabets can be distinct, we need to be able to talk
about the information relationships between two random variables that take on values from
two different alphabets.

8.4.1 Conditional Entropy

Let X be a random variable that takes values from the source alphabet X = {x0, x1, . . . , xN−1}.
Let Y be a random variable that takes on values from the reconstruction alphabet
Y = {y0, y1, . . . , yM−1}. From Chapter 2, we know that the entropy of the source and
the reconstruction are given by

H(X) = −
N−1∑
i=0

P(xi) log2 P(xi)

226 8 M A T H E M A T I C A L P R E L I M I N A R I E S

and

H(Y) = −
M−1∑
j=0

P(y j) log2 P(y j)

A measure of the relationship between two random variables is the conditional entropy
(the average value of the conditional self-information). Recall that the self-information for an
event A is defined as

i(A) = log
1

P(A)
= − log P(A)

In a similar manner, the conditional self-information of an event A, given that another event
B has occurred, can be defined as

i(A|B) = log
1

P(A|B) = − log P(A|B)

Suppose B is the event “Frazer has not drunk anything in two days,” and A is the event
“Frazer is thirsty.” Then P(A|B) should be close to one, which means that the conditional
self-information i(A|B) would be close to zero. This makes sense from an intuitive point of
view as well. If we know that Frazer has not drunk anything in two days, then the statement that
Frazer is thirsty would not be at all surprising to us and would contain very little information.

As in the case of self-information, we are generally interested in the average value of
the conditional self-information. This average value is called the conditional entropy. The
conditional entropies of the source and reconstruction alphabets are given as

H(X |Y) = −
N−1∑
i=0

M−1∑
j=0

P(xi |y j)P(y j) log2 P(xi |y j) (10)

and

H(Y |X) = −
N−1∑
i=0

M−1∑
j=0

P(y j |xi)P(xi) log2 P(y j |xi) (11)

The conditional entropy H(X |Y) can be interpreted as the amount of uncertainty remaining
about the random variable X , or the source output, given that we know what value the recon-
struction Y took. The additional knowledge of Y should reduce the uncertainty about X , and
we can show that

H(X |Y) � H(X) (12)

(see Problem 5 at the end of this chapter).

Example 8 .4 .2 :

Suppose we have the 4-bits-per-symbol source and compression scheme described in
Example 8.4.1. Assume that the source is equally likely to select any letter from its alphabet.
Let us calculate the various entropies for this source and compression scheme.

8.4 Information Theory Revisited � 227

As the source outputs are all equally likely, P(X = i) = 1
16 for all i ∈ {0, 1, 2, . . . , 15},

and, therefore,

H(X) = −
∑

i

1

16
log

1

16
= log 16 = 4 bits (13)

We can calculate the probabilities of the reconstruction alphabet:

P(Y = j) = P(X = j)+ P(X = j + 1) = 1

16
+ 1

16
= 1

8
(14)

Therefore, H(Y) = 3 bits. To calculate the conditional entropy H(X |Y), we need the condi-
tional probabilities {P(xi |y j)}. From our construction of the source encoder, we see that

P(X = i |Y = j) =
⎧⎨
⎩

1

2
if i = j or i = j + 1, for j = 0, 2, 4, . . . , 14

0 otherwise
(15)

Substituting this in the expression for H(X |Y) in Equation (10), we get

H(X |Y) = −
∑

i

∑
j

P(X = i |Y = j)P(Y = j) log P(X = i |Y = j)

= −
∑

j

[
P(X = j |Y = j)P(Y = j) log P(X = j |Y = j)

+P(X = j + 1|Y = j)P(Y = j) log P(X = j + 1|Y = j)
]

−8

[
1

2
· 1

8
log

1

2
+ 1

2
· 1

8
log

1

2

]
(16)

= 1 (17)

Let us compare this answer to what we would have intuitively expected the uncertainty to
be, based on our knowledge of the compression scheme. With the coding scheme described
here, knowledge of Y means that we know the first 3 bits of the input X . The only thing about
the input that we are uncertain about is the value of the last bit. In other words, if we know
the value of the reconstruction, our uncertainty about the source output is 1 bit. Therefore, at
least in this case, our intuition matches the mathematical definition.

To obtain H(Y |X), we need the conditional probabilities {P(y j |xi)}. From our knowledge
of the compression scheme, we see that

P(Y = j |X = i) =
{

1 if i = j or i = j + 1, for j = 0, 2, 4, . . . , 14
0 otherwise

(18)

If we substitute these values into Equation (11), we get H(Y |X) = 0 bits (note that 0 log 0 = 0).

228 8 M A T H E M A T I C A L P R E L I M I N A R I E S

This also makes sense. For the compression scheme described here, if we know the source
output, we know 4 bits, the first 3 of which are the reconstruction. Therefore, in this example,
knowledge of the source output at a specific time completely specifies the corresponding
reconstruction. �

8.4.2 Average Mutual Information

We make use of one more quantity that relates the uncertainty or entropy of two random
variables. This quantity is called mutual information and is defined as

i(xk; y j) = log

[
P(xk |y j)

P(xk)

]
(19)

We will use the average value of this quantity, appropriately called average mutual information,
which is given by

I (X; Y) =
∑N−1

i=0

M−1∑
j=0

P(xi , y j) log

[
P(xi |y j)

P(xi)

]
(20)

=
N−1∑
i=0

∑M−1

j=0
P(xi |y j)P(y j) log

[
P(xi |y j)

P(xi)

]
(21)

We can write the average mutual information in terms of the entropy and the conditional
entropy by expanding the argument of the logarithm in Equation (21):

I (X; Y) =
N−1∑
i=0

M−1∑
j=0

P(xi , y j) log

[
P(xi |y j)

P(xi)

]
(22)

=
N−1∑
i=0

M−1∑
j=0

P(xi , y j) log P(xi |y j)

−
N−1∑
i=0

M−1∑
j=0

P(xi , y j) log P(xi) (23)

= H(X)− H(X |Y) (24)

where the second term in Equation (23) is H(X), and the first term is −H(X |Y). Thus, the
average mutual information is the entropy of the source minus the uncertainty that remains
about the source output after the reconstructed value has been received. The average mutual
information can also be written as

I (X; Y) = H(Y)− H(Y |X) = I (Y ; X). (25)

We can show this easily by using Bayes’ theorem. According to Bayes’ theorem

P(xi |y j) = P(y j |xi)P(xi)

P(y j)

8.4 Information Theory Revisited � 229

Substituting this expression for P(xi |y j) in Equation (20) we get

I (X; Y) =
N−1∑
i=0

M−1∑
j=0

P(xi , y j) log

[
P(y j |xi)P(xi)

P(y j)P(xi)

]
(26)

=
N−1∑
i=0

M−1∑
j=0

P(y j |xi)P(xi) log

[
P(y j |xi)

P(y j)

]
(27)

Expanding the argument of the logarithm in Equation (27) we obtain Equation (25).

Example 8 .4 .3 :

For the source coder of Example 8.4.2, H(X) = 4 bits, and H(X |Y) = 1 bit. Therefore, using
Equation (24), the average mutual information I (X; Y) is 3 bits. If we wish to use Equation
(25) to compute I (X; Y), we would need H(Y) and H(Y |X), which from Example 8.4.2 are
3 and 0, respectively. Thus, the value of I (X; Y) still works out to be 3 bits. �

8.4.3 Differential Entropy

Up to this point, we have assumed that the source picks its outputs from a discrete alphabet.
When we study lossy compression techniques, we will see that for many sources of interest to
us this assumption is not true. In this section, we will extend some of the information theoretic
concepts defined for discrete random variables to the case of random variables with continuous
distributions.

Unfortunately, we run into trouble from the very beginning. Recall that the first quantity
we defined was self-information, which was given by log 1

P(xi)
, where P(xi) is the probability

that the random variable will take on the value xi . For a random variable with a continu-
ous distribution, this probability is zero. Therefore, if the random variable has a continuous
distribution, the “self information” associated with any value is infinity.

If we do not have the concept of self-information, how do we go about defining entropy,
which is the average value of the self-information? We know that many continuous functions
can be written as limiting cases of their discretized version. We will try to take this route in
order to define the entropy of a continuous random variable X with probability density function
(pdf) fX (x).

While the random variable X cannot generally take on a particular value with nonzero
probability, it can take on a value in an interval with nonzero probability. Therefore, let us
divide the range of the random variable into intervals of size �. Then, by the mean value
theorem, in each interval [(i − 1)�, i�), there exists a number xi , such that

fX (xi)� =
∫ i�

(i−1)�
fX (x) dx (28)

Let us define a discrete random variable Xd with pdf

P(Xd = xi) = fX (xi)� (29)

230 8 M A T H E M A T I C A L P R E L I M I N A R I E S

Then we can obtain the entropy of this random variable as

H(Xd) = −
∞∑

i=−∞
P(xi) log P(xi) (30)

= −
∞∑

i=−∞
fX (xi)� log fX (xi)� (31)

= −
∞∑

i=−∞
fX (xi)� log fX (xi)−

∞∑
i=−∞

fX (xi)� log� (32)

= −
∞∑

i=−∞

[
fX (xi) log fX (xi)

]
�− log� (33)

Taking the limit as�→ 0 of Equation (33), the first term goes to− ∫∞−∞ fX (x) log fX (x) dx ,
which looks like the analog to our definition of entropy for discrete sources. However, the
second term is− log�, which goes to plus infinity when� goes to zero. It seems there is not
an analog to entropy as defined for discrete sources. However, the first term in the limit serves
some functions similar to that served by entropy in the discrete case and is a useful function
in its own right. We call this term the differential entropy of a continuous source and denote
it by h(X). In an analogous manner we can also define the conditional entropy h(X |Y) as

h(X |Y) = −
∫ ∞
−∞

fXY (x, y) log fX |Y (x |y)dxdy

Example 8 .4 .4 :

Suppose we have a random variable X that is uniformly distributed in the interval [a, b). The
differential entropy of this random variable is given by

h(X) = −
∫ ∞
−∞

fX (x) log fX (x)dx (34)

= −
∫ b

a

1

b − a
log

1

b − a
dx (35)

= log(b − a) (36)

Notice that when b−a is less than one, the differential entropy becomes negative—in contrast
to the entropy, which never takes on negative values. �

Later in this chapter, we will find particular use for the differential entropy of the Gaussian
source.

8.4 Information Theory Revisited � 231

Example 8 .4 .5 :

Suppose we have a random variable X that has a Gaussian pdf,

fX (x) = 1√
2πσ 2

exp
−(x − μ)2

2σ 2 (37)

The differential entropy is given by

h(X) = −
∫ ∞
−∞

1√
2πσ 2

exp
−(x − μ)2

2σ 2 log

[
1√

2πσ 2
exp
−(x − μ)2

2σ 2

]
dx (38)

= − log
1√

2πσ 2

∫ ∞
−∞

fX (x)dx +
∫ ∞
−∞

(x − μ)2
2σ 2 log e fX (x)dx (39)

= 1

2
log 2πσ 2 + 1

2
log e (40)

= 1

2
log 2πeσ 2 (41)

Thus, the differential entropy of a Gaussian random variable is an increasing function of its
variance. �

The differential entropy for the Gaussian distribution has the added distinction that it is
larger than the differential entropy for any other continuously distributed random variable with
the same variance. That is, for any random variable X , with variance σ 2

h(X) � 1

2
log 2πeσ 2 (42)

The proof of this statement depends on the fact that for any two continuous distributions
fX (X) and gX (X)

−
∫ ∞
−∞

fX (x) log fX (x)dx � −
∫ ∞
−∞

fX (x) log gX (x)dx (43)

We will not prove Equation (43) here, but you may refer to [110] for a simple proof. To obtain
Equation (42), we substitute the expression for the Gaussian distribution for gX (x). Noting
that the left-hand side of Equation (43) is simply the differential entropy of the random variable
X , we have

h(X) � −
∫ ∞
−∞

fX (x) log
1√

2πσ 2
exp
−(x − μ)2

2σ 2 dx

= 1

2
log (2πσ 2)+ log e

∫ ∞
−∞

fX (x)
(x − μ)2

2σ 2 dx

= 1

2
log (2πσ 2)+ log e

2σ 2

∫ ∞
−∞

fX (x)(x − μ)2dx

= 1

2
log (2πeσ 2) (44)

232 8 M A T H E M A T I C A L P R E L I M I N A R I E S

We seem to be striking out with continuous random variables. There is no analog for
self-information and really none for entropy either. However, the situation improves when we
look for an analog for the average mutual information. Let us define the random variable Yd in
a manner similar to the random variable Xd , as the discretized version of a continuous valued
random variable Y . Then we can show (see Problem 4 at the end of this chapter)

H(Xd |Yd) = −
∞∑

i=−∞

∞∑
j=−∞

[
fX |Y (xi |y j) fY (y j) log fX |Y (xi |y j)

]
��− log� (45)

Therefore, the average mutual information for the discretized random variables is given by

I (Xd ; Yd) = H(Xd)− H(Xd |Yd) (46)

= −
∞∑

i=−∞
fX (xi)� log fX (xi) (47)

−
∞∑

i=−∞

⎡
⎣ ∞∑

j=−∞
fX |Y (xi |y j) fY (y j) log fX |Y (xi |y j)�

⎤
⎦� (48)

Notice that the two log�s in the expression for H(Xd) and H(Xd |Yd) cancel each other out,
and as long as h(X) and h(X |Y) are not equal to infinity, when we take the limit as�→ 0 of
I (Xd ; Yd) we get

I (X; Y) = h(X)− h(X |Y) (49)

The average mutual information in the continuous case can be obtained as a limiting case of
the average mutual information for the discrete case and has the same physical significance.

We have gone through a lot of mathematics in this section. But the information will be
used immediately to define the rate distortion function for a random source.

8.5 Rate Distortion Theory �

Rate distortion theory is concerned with the trade-offs between distortion and rate in lossy
compression schemes. Rate is defined as the average number of bits used to represent each
sample value. One way of representing the trade-offs is via a rate distortion function R(D).
The rate distortion function R(D) specifies the lowest rate at which the output of a source can
be encoded while keeping the distortion less than or equal to D. The distortion D is generally
taken to be the expected value of a single letter distortion measure d(xi , y j), which is a measure
of the difference between xi and y j :

D = E[d(X,Y)] =
N−1∑
i=0

M−1∑
j=0

d(xi , y j)P(xi , y j)

On our way to mathematically defining the rate distortion function, let us look at the rate and
distortion for some different lossy compression schemes.

8.5 Rate Distortion Theory � 233

In Example 8.4.2, knowledge of the value of the input at time k completely specifies the
reconstructed value at time k. In this situation,

P(y j |xi) =
{

1 for some j = ji
0 otherwise

(50)

Therefore,

D =
∑N−1

i=0

∑M−1

j=0
P(y j |xi)P(xi)d(xi , y j) (51)

=
N−1∑
i=0

P(xi)d(xi , y ji) (52)

where we used the fact that P(xi , y j) = P(y j |xi)P(xi) in Equation (51). The rate for this
source coder is the output entropy H(Y) of the source decoder. If this were always the case,
the task of obtaining a rate distortion function would be relatively simple. Given a distortion
constraint D∗, we could look at all encoders with distortion less than D∗ and pick the one
with the lowest output entropy. This entropy would be the rate corresponding to the distortion
D∗. However, the requirement that knowledge of the input at time k completely specifies the
reconstruction at time k is very restrictive, and there are many efficient compression techniques
that would have to be excluded under this requirement. Consider the following example.

Example 8 .5 .1 :

With a data sequence that consists of height and weight measurements, obviously height and
weight are quite heavily correlated. In fact, after studying a long sequence of data, we find
that if we plot the height along the x axis and the weight along the y axis, the data points
cluster along the line y = 2.5x . In order to take advantage of this correlation, we devise the
following compression scheme. For a given pair of height and weight measurements, we find
the orthogonal projection on the y = 2.5x line as shown in Figure 8.4. The point on this line
can be represented as the distance to the nearest integer from the origin. Thus, we encode a
pair of values into a single value. At the time of reconstruction, we simply map this value back
into a pair of height and weight measurements.

For instance, suppose somebody is 72 inches tall and weighs 200 pounds (point A in
Figure 8.4). This corresponds to a point at a distance of 212 along the y = 2.5x line. The
reconstructed values of the height and weight corresponding to this value are 79 and 197.
Notice that the reconstructed values differ from the original values. Suppose we now have
another individual who is also 72 inches tall but weighs 190 pounds (point B in Figure 8.4).
The source coder output for this pair would be 203, and the reconstructed values for height
and weight are 75 and 188, respectively. Notice that while the height value in both cases was
the same, the reconstructed value of the height is different from the actual value. The reason
for this is that the reconstructed value for the height depends on the weight. Thus, for this
particular source coder, we do not have a conditional probability density function {P(y j |xi)}
of the form shown in Equation (50). �

234 8 M A T H E M A T I C A L P R E L I M I N A R I E S

72

190

200

W
ei

gh
t

(l
b)

 Height (in)

A

B

F I GUR E 8 . 4 Compression scheme for encoding height-weight pairs.

Let us examine the distortion for this scheme a little more closely. As the conditional
probability for this scheme is not of the form of Equation (50), we can no longer write the
distortion in the form of Equation (52). Recall that the general form of the distortion is

D =
N−1∑
i=0

M−1∑
j=0

d(xi , y j)P(xi)P(y j |xi) (53)

Each term in the summation consists of three factors: the distortion measure d(xi , y j), the
source density P(xi), and the conditional probability P(y j |xi). The distortion measure is a
measure of closeness of the original and reconstructed versions of the signal and is generally
determined by the particular application. The source probabilities are solely determined by
the source. The third factor, the set of conditional probabilities, can be seen as a description
of the compression scheme.

Therefore, for a given source with some pdf {P(xi)} and a specified distortion measure
d(·, ·), the distortion is a function of only the conditional probabilities {P(y j |xi)}; that is,

D = D({P(y j |xi)}) (54)

Therefore, we can write the constraint that the distortion D be less than some value D∗ as a
requirement that the conditional probabilities for the compression scheme belong to a set of
conditional probabilities � that have the property that

� = {{P(y j |xi } such that D({P(y j |xi)}) � D∗} (55)

8.5 Rate Distortion Theory � 235

Once we know the set of compression schemes to which we have to confine ourselves, we
can start to look at the rate of these schemes. In Example 8.4.2, the rate was the entropy of Y .
However, that was a result of the fact that the conditional probability describing that particular
source coder took on only the values 0 and 1. Consider the following trivial situation.

Example 8 .5 .2 :

Suppose we have the same source as in Example 8.4.2 and the same reconstruction alphabet.
Suppose the distortion measure is

d(xi , y j) = (xi − y j)
2

and D∗ = 225. One compression scheme that satisfies the distortion constraint randomly
maps the input to any one of the outputs; that is,

P(y j |xi) = 1

8
for i = 0, 1, . . . , 15 and j = 0, 2, . . . , 14

We can see that this conditional probability assignment satisfies the distortion constraint:

D =
∑N−1

i=0

∑M−1

j=0
d(xi , y j)P(xi)P(y j |xi)

=
∑N−1

i=0

∑M−1

j=0
(xi − y j)

2 1

16

1

8

= 1

128

∑15

i=0

∑7

j=0
(i − 2 j)2

= 42.5

As each of the eight reconstruction values is equally likely, H(Y) is 3 bits. However, we
are not transmitting any information. We could get exactly the same results by transmitting
0 bits and randomly picking Y at the receiver. �

Therefore, the entropy of the reconstruction H(Y) cannot be a measure of the rate. In
his 1959 paper on source coding [111], Shannon showed that the minimum rate for a given
distortion is given by

R(D) = min{P(y j |xi)}∈�
I (X; Y) (56)

To prove this is beyond the scope of this book. (Further information can be found in [38,112].)
However, we can at least convince ourselves that defining the rate as average mutual information
gives sensible answers when used for the examples shown here. Consider Example 8.4.2. The
average mutual information in this case is 3 bits as shown in Example 8.4.3, which is what we
said the rate was. In fact, notice that whenever the conditional probabilities are constrained to
be of the form of Equation (50),

H(Y |X) = 0

236 8 M A T H E M A T I C A L P R E L I M I N A R I E S

then

I (X; Y) = H(Y)

which had been our measure of rate.
In Example 8.5.2, the average mutual information is 0 bits, which accords with our intuitive
feeling of what the rate should be. Again, whenever

H(Y |X) = H(Y)

that is, knowledge of the source gives us no knowledge of the reconstruction,

I (X; Y) = 0

which seems entirely reasonable. We should not have to transmit any bits when we are not
sending any information.

At least for the examples here, it seems that the average mutual information does represent
the rate. However, earlier we said that the average mutual information between the source
output and the reconstruction is a measure of the information conveyed by the reconstruction
about the source output. Then why are we looking for compression schemes that minimize this
value? To understand this, we have to remember that the process of finding the performance
of the optimum compression scheme had two parts. In the first part, we specified the desired
distortion. The entire set of conditional probabilities over which the average mutual informa-
tion is minimized satisfies the distortion constraint. Therefore, we can leave the question of
distortion, or fidelity, aside and concentrate on minimizing the rate.

Finally, how do we find the rate distortion function? There are two ways. One is a
computational approach developed by Arimoto [113] and Blahut [114]. While the derivation
of the algorithm is beyond the scope of this book, the algorithm itself is relatively simple. The
other approach is to find a lower bound for the average mutual information and then show that
we can achieve this bound. We use this approach to find the rate distortion functions for two
important sources.

Example 8 .5 .3 : Rate distortion function for the binary source

Suppose we have a source alphabet {0, 1}, with P(0) = p. The reconstruction alphabet is also
binary. Given the distortion measure

d(xi , y j) = xi ⊕ y j , (57)

where⊕ is modulo 2 addition, let us find the rate distortion function. Assume for the moment
that p < 1

2 . For D > p an encoding scheme that would satisfy the distortion criterion would
be not to transmit anything and fix Y = 1. So for D � p

R(D) = 0 (58)

We will find the rate distortion function for the distortion range 0 � D < p.

8.5 Rate Distortion Theory � 237

Hb(p)

p

1.0

0.5 1.0

F I GUR E 8 . 5 The binary entropy function.

Find a lower bound for the average mutual information:

I (X; Y) = H(X)− H(X |Y) (59)
= H(X)− H(X ⊕ Y |Y) (60)
� H(X)− H(X ⊕ Y) from Equation (12) (61)

In the second step, we have used the fact that if we know Y , then knowing X we can obtain
X ⊕ Y and vice versa as X ⊕ Y ⊕ Y = X .

Let us look at the terms on the right-hand side of (12):

H(X) = −p log2 p − (1− p) log2(1− p) = Hb(p) (62)

where Hb(p) is called the binary entropy function and is plotted in Figure 8.5. Note that
Hb(p) = Hb(1− p).

Given that H(X) is completely specified by the source probabilities, our task now is to find
the conditional probabilities {P(xi |y j)} such that H(X⊕Y) is maximized while the average dis-
tortion E[d(xi , y j)] � D.H(X⊕Y) is simply the binary entropy function Hb(P(X⊕Y = 1)),
where

P(X ⊕ Y = 1) = P(X = 0,Y = 1)+ P(X = 1,Y = 0) (63)

Therefore, to maximize H(X ⊕ Y), we would want P(X ⊕ Y = 1) to be as close as possible
to one-half. However, the selection of P(X ⊕ Y) also has to satisfy the distortion constraint.
The distortion is given by

E[d(xi , y j)] = 0× P(X = 0,Y = 0)+ 1× P(X = 0,Y = 1)

+1× P(X = 1,Y = 0)+ 0× P(X = 1,Y = 1)

= P(X = 0,Y = 1)+ P(X = 1,Y = 0)

= P(Y = 1|X = 0)p + P(Y = 0|X = 1)(1− p) (64)

238 8 M A T H E M A T I C A L P R E L I M I N A R I E S

But this is simply the probability that X ⊕ Y = 1. Therefore, the maximum value that
P(X ⊕ Y = 1) can have is D. Our assumptions were that D < p and p � 1

2 , which means
that D < 1

2 . Therefore, P(X ⊕ Y = 1) is closest to 1
2 while being less than or equal to D

when P(X ⊕ Y = 1) = D. Therefore,

I (X; Y) � Hb(p)− Hb(D) (65)

We can show that for P(X = 0|Y = 1) = P(X = 1|Y = 0) = D, this bound is achieved.
That is, if P(X = 0|Y = 1) = P(X = 1|Y = 0) = D, then

I (X; Y) = Hb(p)− Hb(D) (66)

Therefore, for D < p and p � 1
2 ,

R(D) = Hb(p)− Hb(D) (67)

Finally, if p > 1
2 , then we simply switch the roles of p and 1− p. Putting all this together,

the rate distortion function for a binary source is

R(D) =
{

Hb(p)− Hb(D) for D < min{p, 1− p}
0 otherwise

(68)

�

Example 8 .5 .4 : Rate Distortion Function for the Gaussian

Source
Suppose we have a continuous amplitude source that has a zero mean Gaussian pdf with
variance σ 2. If our distortion measure is given by

d(x, y) = (x − y)2 (69)

our distortion constraint is given by

E
[
(X − Y)2

]
� D (70)

Our approach to finding the rate distortion function will be the same as in the previous
example; that is, find a lower bound for I (X; Y) given a distortion constraint, and then show
that this lower bound can be achieved.

First we find the rate distortion function for D < σ 2:

I (X; Y) = h(X)− h(X |Y) (71)
= h(X)− h(X − Y |Y) (72)
� h(X)− h(X − Y) (73)

In order to minimize the right-hand side of Equation (73), we have to maximize the second
term subject to the constraint given by Equation (70). This term is maximized if X − Y is

8.5 Rate Distortion Theory � 239

Gaussian, and the constraint can be satisfied if E
[
(X − Y)2

] = D. Therefore, h(X − Y) is
the differential entropy of a Gaussian random variable with variance D, and the lower bound
becomes

I (X; Y) � 1

2
log(2πeσ 2)− 1

2
log(2πeD) (74)

= 1

2
log

σ 2

D
(75)

This average mutual information can be achieved if Y is zero mean Gaussian with variance
σ 2 − D, and

fX |Y (x |y) = 1√
2πD

exp
−x2

2D
(76)

For D > σ 2 , if we set Y = 0, then

I (X; Y) = 0 (77)

and
E
[
(X − Y)2

]
= σ 2 < D (78)

Therefore, the rate distortion function for the Gaussian source can be written as

R(D) =
{

1
2 log σ 2

D for D < σ 2

0 for D > σ 2 (79)

We plot the rate distortion function for σ 2 = 1 in Figure 8.6 �

Like the differential entropy for the Gaussian source, the rate distortion function for the
Gaussian source also has the distinction of being larger than the rate distortion function for any
other source with a continuous distribution and the same variance. This is especially valuable
because for many sources it can be very difficult to calculate the rate distortion function. In
these situations, it is helpful to have an upper bound for the rate distortion function. It would be
very nice if we also had a lower bound for the rate distortion function of a continuous random
variable. Shannon described such a bound in his 1948 paper [3], and it is appropriately called
the Shannon lower bound. We will simply state the bound here without derivation (for more
information, see [112]).

The Shannon lower bound for a random variable X and the magnitude error criterion

d(x, y) = |x − y| (80)

is given by
RSL B(D) = h(X)− log(2eD) (81)

If we use the squared error criterion, the Shannon lower bound is given by

RSL B(D) = h(X)− 1

2
log(2πeD). (82)

240 8 M A T H E M A T I C A L P R E L I M I N A R I E S

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.2 0.4 0.6 0.8 1 1.2

R
at

e

Distortion

F I GUR E 8 . 6 The rate distortion function for a Gaussian randomvariablewith vari-
ance 1.

In this section, we have defined the rate distortion function and obtained the rate distortion
function for two important sources. We have also obtained upper and lower bounds on the
rate distortion function for an arbitrary iid source. These functions and bounds are especially
useful when we want to know if it is possible to design compression schemes to provide a
specified rate and distortion given a particular source. They are also useful in determining the
amount of performance improvement that we could obtain by designing a better compression
scheme. In these ways, the rate distortion function plays the same role for lossy compression
that entropy plays for lossless compression.

8.6 Models

As in the case of lossless compression, models play an important role in the design of lossy
compression algorithms; there are a variety of approaches available. The set of models we can
draw on for lossy compression is much wider than the set of models we studied for lossless
compression. We will look at some of these models in this section. What is presented here is
by no means an exhaustive list of models. Our only intent is to describe those models that will
be useful in the following chapters.

8.6.1 Probability Models

An important method for characterizing a particular source is through the use of probability
models. As we shall see later, knowledge of the probability model is important for the design
of a number of compression schemes.

8.6 Models 241

Probability models used for the design and analysis of lossy compression schemes differ
from those used in the design and analysis of lossless compression schemes. When developing
models in the lossless case, we tried for an exact match. The probability of each symbol was
estimated as part of the modeling process. When modeling sources in order to design or analyze
lossy compression schemes, we look more to the general rather than exact correspondence.
The reasons are more pragmatic than theoretical. Certain probability distribution functions
are more analytically tractable than others, and we try to match the distribution of the source
with one of these “nice” distributions.

The uniform, Gaussian, Laplacian, and gamma distributions are four probability models
commonly used in the design and analysis of lossy compression systems:

� Uniform Distribution: As for lossless compression, this is again our ignorance model.
If we do not know anything about the distribution of the source output, except possibly the
range of values, we can use the uniform distribution to model the source. The probability
density function for a random variable uniformly distributed between a and b is

fX (x) =
⎧⎨
⎩

1

b − a
for a � x � b

0 otherwise
(83)

� Gaussian Distribution: The Gaussian distribution is one of the most commonly used
probability models for two reasons: it is mathematically tractable and, by virtue of the
central limit theorem, it can be argued that in the limit the distribution of interest goes
to a Gaussian distribution. The probability density function for a random variable with
a Gaussian distribution and mean μ and variance σ 2 is

fX (x) = 1√
2πσ 2

exp− (x − μ)
2

2σ 2 (84)

� Laplacian Distribution: Many sources that we deal with have distributions that have a
sharp peak at zero. For example, speech consists mainly of silence. Therefore, samples of
speech will be zero or close to zero with high probability. Image pixels themselves do not
have any attraction to small values. However, there is a high degree of correlation among
pixels. Therefore, a large number of the pixel-to-pixel differences will have values close
to zero. In these situations, a Gaussian distribution is not a very close match to the data.
A closer match is the Laplacian distribution, which is peaked at zero. The distribution
function for a zero mean random variable with Laplacian distribution and variance σ 2 is

fX (x) = 1√
2σ 2

exp
−√2 |x |
σ

(85)

� Gamma Distribution: A distribution that is even more peaked, though considerably
less tractable, than the Laplacian distribution is the gamma distribution. The distribution
function for a gamma-distributed random variable with zero mean and variance σ 2 is

242 8 M A T H E M A T I C A L P R E L I M I N A R I E S

0

0.2

0.8

1.0

0.4

0.6

1.2

−4−6 −2 0 2 4 6

Uniform

Gaussian

Laplacian

Gamma

F I GUR E 8 . 7 Uniform, Gaussian, Laplacian, and gamma distributions.

given by

fX (x) =
4
√

3√
8πσ |x | exp

−√3 |x |
2σ

(86)

The shapes of these four distributions, assuming a mean of zero and a variance of one, are
shown in Figure 8.7.

One way of obtaining the estimate of the distribution of a particular source is to divide the
range of outputs into “bins” or intervals Ik . We can then find the number of values nk that
fall into each interval. A plot of nk

nT
, where nT is the total number of source outputs being

considered, should give us some idea of what the input distribution looks like. Be aware that
this is a rather crude method and can at times be misleading. For example, if we were not
careful in our selection of the source output, we might end up modeling some local peculiarities
of the source. If the bins are too large, we might effectively filter out some important properties
of the source. If the bin sizes are too small, we may miss out on some of the gross behavior of
the source.

Once we have decided on some candidate distributions, we can select between them using
a number of sophisticated tests. These tests are beyond the scope of this book but are described
in [115].

Many of the sources that we deal with when we design lossy compression schemes have
a great deal of structure in the form of sample-to-sample dependencies. The probability
models described here capture none of these dependencies. Fortunately, we have a lot of
models that can capture most of this structure. We describe some of these models in the next
section.

8.6 Models 243

8.6.2 Linear System Models

In the previous sections we have assumed that the information sequence {xn} can be modeled
by a sequence of iid random variables. In practice most information sequences derived from
real sources such as speech will contain dependencies. In an ideal world we would characterize
these dependencies using the joint pdf of the sequence elements. In practice such an approach
is not feasible. Instead, we try to characterize the dependencies in terms of correlation between
samples. An intuitive and useful way of modeling the correlation between samples is to view
the information sequence as the output of a linear system governed by a difference equation
with an iid input. The structure of the linear system as reflected in the parameters of the
difference equation introduces the correlation we observe in the information sequence.

The information sequence can be modeled in the form of the following difference equation:

xn =
N∑

i=1

ai xn−i +
M∑

j=1

b jεn− j + εn (87)

where {xn} are samples of the process we wish to model, and {εn} is a white noise sequence.
We will assume throughout this book that we are dealing with real valued samples. Recall that
a zero-mean wide-sense-stationary noise sequence {εn} is a sequence with an autocorrelation
function

Rεε(k) =
{
σ 2
ε for k = 0

0 otherwise
(88)

In digital signal-processing terminology, Equation (87) represents the output of a linear
discrete time invariant filter with N poles and M zeros. In the statistical literature, this model
is called an autoregressive moving average model of order (N,M), or an ARMA (N,M) model.
The autoregressive label is because of the first summation in Equation (87), while the second
summation gives us the moving average portion of the name.

If all of the b j were zero in Equation (87), only the autoregressive part of the ARMA model
would remain:

xn =
N∑

i=1

ai xn−i + εn (89)

This model is called an N th-order autoregressive model and is denoted by AR(N). In digital
signal-processing terminology, this is an all pole filter. The AR(N) model is the most popular of
all the linear models, especially in speech compression, where it arises as a natural consequence
of the speech production model. We will look at it a bit more closely.

First notice that for the AR(N) process, knowing all of the past history of the process gives
no more information than knowing the last N samples of the process; that is,

P(xn|xn−1, xn−2, . . .) = P(xn|xn−1, xn−2, . . . , xn−N) (90)

which means that the AR(N) process is a Markov model of order N .
The autocorrelation function of a process can tell us a lot about the sample-to-sample

behavior of a sequence. A slowly decaying autocorrelation function indicates a high sample-
to-sample correlation, while a fast decaying autocorrelation denotes low sample-to-sample

244 8 M A T H E M A T I C A L P R E L I M I N A R I E S

correlation. In the case of no sample-to-sample correlation, such as white noise, the autocorre-
lation function is zero for lags greater than zero, as seen in Equation (88). The autocorrelation
function for the AR(N) process can be obtained as follows:

Rxx (k) = E
[
xn xn−k

]
(91)

= E

[(
N∑

i=1

ai xn−i + εn

)
(xn−k)

]
(92)

= E

[
N∑

i=1

ai xn−i xn−k

]
+ E

[
εn xn−k

]
(93)

=
{ ∑N

i=1 ai Rxx (k − i) for k > 0∑N
i=1 ai Rxx (i)+ σ 2

ε for k = 0
(94)

where

E
[
εn xn−k

] = {σ 2
ε for k = 0

0 for k > 0
(95)

Example 8 .6 .1 :

Suppose we have an AR(3) process. Let us write out the equations for the autocorrelation
coefficient for lags 1, 2, and 3:

Rxx (1) = a1 Rxx (0)+ a2 Rxx (1)+ a3 Rxx (2)

Rxx (2) = a1 Rxx (1)+ a2 Rxx (0)+ a3 Rxx (1)

Rxx (3) = a1 Rxx (2)+ a2 Rxx (1)+ a3 Rxx (0)

If we know the values of the autocorrelation function Rxx (k), for k = 0, 1, 2, 3, we can use
this set of equations to find the AR(3) coefficients {a1, a2, a3}. On the other hand, if we know
the model coefficients and σ 2

ε , we can use the above equations along with the equation for
Rxx (0) to find the first four autocorrelation coefficients. All of the other autocorrelation values
can be obtained by using Equation (94). �

To see how the autocorrelation function is related to the temporal behavior of the sequence,
let us look at the behavior of a simple AR(1) source.

Example 8 .6 .2 :

An AR(1) source is defined by the equation

xn = a1xn−1 + εn (96)

The autocorrelation function for this source (see Problem 8 at the end of this chapter) is given
by

Rxx (k) = 1

1− a2
1

ak
1σ

2
ε (97)

8.6 Models 245

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
1.0

0 2 4 6 8 10 12 14 16 18 20

R(k)

k

a1 = 0.6
a1 = 0.99

F I GUR E 8 . 8 Autocorrelation function of an AR(1) process with two values of a1.

4

3

2

1

0

−1

−2

−3

−4

−5
0 10 20 30 40 50 60 70 80 90 100

xn

n

F I GUR E 8 . 9 Sample function of an AR(1) process with a1= 0.99.

From this we can see that the autocorrelation will decay more slowly for larger values of
a1. Remember that the value of a1 in this case is an indicator of how closely the current sample
is related to the previous sample. The autocorrelation function is plotted for two values of a1 in
Figure 8.8. Notice that for a1 close to 1, the autocorrelation function decays extremely slowly.
As the value of a1 moves farther away from 1, the autocorrelation function decays much faster.

Sample waveforms for a1 = 0.99 and a1 = 0.6 are shown in Figures 8.9 and 8.10. Notice
the slower variations in the waveform for the process with a higher value of a1. Because the
waveform in Figure 8.9 varies more slowly than the waveform in Figure 8.10, samples of this
waveform are much more likely to be close in value than the samples of the waveform of
Figure 8.10.

246 8 M A T H E M A T I C A L P R E L I M I N A R I E S

−1.0

0

1.0

2.0

3.0

–2
0 10 20 30 40 50 60 70 80 90 100

xn

n

F I GUR E 8 . 10 Sample function of an AR(1) process with a1= 0.6.

12

−10

−8

−6

−4

−2

0

2

4

6

8

10

0 10 20 30 40 50 60 70 80 90 100

xn

n

F I GUR E 8 . 11 Sample function of an AR(1) process with a1= -0.99.

Let’s look at what happens when the AR(1) coefficient is negative. The sample waveforms
are plotted in Figures 8.11 and 8.12. The sample-to-sample variation in these waveforms is
much higher than in the waveforms shown in Figures 8.9 and 8.10. However, if we were to
look at the variation in magnitude, we can see that the higher value of a1 results in magnitude
values that are closer together.

This behavior is also reflected in the autocorrelation function, shown in Figure 8.13, as we
might expect from looking at Equation (97). �

8.6 Models 247

3

−4

−3

−2

−1

0

1

2

0 10 20 30 40 50 60 70 80 90 100

xn

n

F I GUR E 8 . 12 Sample function of an AR(1) process with a1= -0.6.

1.0

0.8

0.6

0.4

0.2

0

−0.2

−0.4

−0.6

−0.8

−1.0
0 2 4 6 8 10 12 14 16 18 20

R(k)

k

a1 = −0.99
a1 = −0.6

F I GUR E 8 . 13 Autocorrelation function of an AR(1) process with two negative val-
ues of a1.

In Equation (87), instead of setting all of the {b j } coefficients to zero, if we set all of the
{ai } coefficients to zero, we will be left with the moving average part of the ARMA process:

xn =
M∑

j=1

b jεn− j + εn (98)

This process is called an M th-order moving average process. This is a weighted average of
the current and M past samples. Because of the form of this process, it is most useful when
modeling slowly varying processes.

248 8 M A T H E M A T I C A L P R E L I M I N A R I E S

8.6.3 Physical Models

Physical models are based on the physics of the source output production. The physics are
generally complicated and not amenable to a reasonable mathematical approximation. An
exception to this rule is speech generation.

Speech Production

There has been a significant amount of research conducted in the area of speech production
[116], and volumes have been written about it. We will try to summarize some of the pertinent
aspects in this section.

Speech is produced by forcing air through an elastic opening, the vocal cords, and then
through cylindrical tubes with nonuniform diameter (the laryngeal, oral, nasal, and pharynx
passages), and finally through cavities with changing boundaries, such as the mouth and the
nasal cavity. Everything past the vocal cords is generally referred to as the vocal tract. The
first action generates the sound, which is then modulated into speech as it traverses through
the vocal tract.

We will often be talking about filters in the coming chapters. We will try to describe filters
more precisely at that time. For our purposes at present, a filter is a system that has an input
and an output and a rule for converting the input to the output, which we will call the transfer
function. If we think of speech as the output of a filter, the sound generated by the air rushing
past the vocal cords can be viewed as the input, while the rule for converting the input to the
output is governed by the shape and physics of the vocal tract.

The output depends on the input and the transfer function. Let’s look at each in turn.
There are several different forms of input that can be generated by different conformations
of the vocal cords and the associated cartilages. If the vocal cords are stretched shut and we
force air through, the vocal cords vibrate, providing a periodic input. If a small aperture is left
open, the input resembles white noise. By opening an aperture at different locations along the
vocal cords, we can produce a white noise–like input with certain dominant frequencies that
depend on the location of the opening. The vocal tract can be modeled as a series of tubes
of unequal diameter. If we now examine how an acoustic wave travels through this series of
tubes, we find that the mathematical model that best describes this process is an autoregressive
model. We will often encounter the autoregressive model when we discuss speech compression
algorithms.

8.7 Summary

In this chapter, we have looked at a variety of topics that will be useful to us when we study
various lossy compression techniques, including distortion and its measurement, some new
concepts from information theory, average mutual information and its connection to the rate
of a compression scheme, and the rate distortion function. We have also briefly looked at
some of the properties of the human visual and auditory systems—most importantly, visual
and auditory masking. The masking phenomena allow us to incur distortion in such a way that

8.8 Projects and Problems 249

the distortion is not perceptible to the human observer. We also presented a model for speech
production.

Further Reading

There are a number of excellent books available that delve more deeply in the area of infor-
mation theory:

1. Information Theory, by R.B. Ash [117].
2. Information Transmission, by R.M. Fano [20].
3. Information Theory and Reliable Communication, by R.G. Gallagher [7].
4. Entropy and Information Theory, by R.M. Gray [118].
5. Elements of Information Theory, by T.M. Cover and J.A. Thomas [38].

The subject of rate distortion theory is discussed in very clear terms in Rate Distortion
Theory, by T. Berger [112].

For an introduction to the concepts behind speech perception, see Voice and Speech Proc-
essing, by T. Parsons [119].

8.8 Projects and Problems

1. Although SNR is a widely used measure of distortion, it often does not correlate with
perceptual quality. In order to see this, we can conduct the following experiment. Using
one of the images provided, generate two “reconstructed” images. For one of the recon-
structions, add a value of 10 to each pixel. For the other reconstruction, randomly add
either +10 or -10 to each pixel.

(a) What is the SNR for each of the reconstructions? Do the relative values reflect the
difference in the perceptual quality?

(b) Devise a mathematical measure that will better reflect the difference in perceptual
quality for this particular case.

2. Consider the following lossy compression scheme for binary sequences. We divide the
binary sequence into blocks of size M . For each block we count the number of 0s. If
this number is greater than or equal to M/2, we send a 0; otherwise, we send a 1.

(a) If the sequence is random with P(0) = 0.8, compute the rate and distortion (use
Equation (57)) for M = 1, 2, 4, 8, 16. Compare your results with the rate distortion
function for binary sources.

(b) Repeat assuming that the output of the encoder is encoded at a rate equal to the
entropy of the output.

3. Write a program to implement the compression scheme described in the previous prob-
lem.

250 8 M A T H E M A T I C A L P R E L I M I N A R I E S

(a) Generate a random binary sequence with P(0) = 0.8, and compare your simulation
results with the analytical results.

(b) Generate a binary first-order Markov sequence with P(0|0) = 0.9, and P(1|1) =
0.9. Encode it using your program. Discuss and comment on your results.

4. Show that

H(Xd |Yd) = −
∞∑

j=−∞

∞∑
i=−∞

fX |Y (xi |y j) fY (y j)�� log fX |Y (xi |y j)− log� (99)

5. For two random variables X and Y, show that

H(X |Y) � H(X)

with equality if X is independent of Y.
Hint: E[log(f (x))] � log{E[f (x)]} (Jensen’s inequality).

6. Given two random variables X and Y, show that I (X; Y) = I (Y ; X).
7. For a binary source with P(0) = p, P(X = 0|Y = 1) = P(X = 1|Y = 0) = D, and

distortion measure
d(xi , y j) = xi ⊕ y j

show that
I (X; Y) = Hb(p)− Hb(D) (100)

8. Find the autocorrelation function in terms of the model coefficients and σ 2
ε for

(a) an AR(1) process,
(b) an MA(1) process, and
(c) an AR(2) process.

9
Scalar Quantization

9.1 Overview

I
n this chapter, we begin our study of quantization, one of the simplest and
most general ideas in lossy compression. We will look at scalar quantization
and continue with vector quantization in the next chapter. First, the general
quantization problem is stated, then various solutions are examined, starting
with the simpler solutions, which require the most assumptions, and proceeding

to more complex solutions that require fewer assumptions. We describe uniform quantization
with fixed-length codewords, first assuming a uniform source, then a source with a known
probability density function (pdf) that is not necessarily uniform, and finally a source with
unknown or changing statistics. We then look at pdf-optimized nonuniform quantization,
followed by companded quantization. Finally, we return to the more general statement of the
quantizer design problem and study entropy-coded quantization.

9.2 Introduction

In many lossy compression applications, we are required to represent each source output using
one of a small number of codewords. The number of possible distinct source output values is
generally much larger than the number of codewords available to represent them. The process
of representing a large—possibly infinite—set of values with a much smaller set is called
quantization.

Introduction to Data Compression. DOI: http://dx.doi.org/10.1016/B978-0-12-415796-5.00009-0
© 2012 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-415796-5.00009-0

252 9 S C A L A R Q U A N T I Z A T I O N

Consider a source that generates numbers between−10.0 and 10.0. A simple quantization
scheme would be to represent each output of the source with the integer value closest to it. (If
the source output is equally close to two integers, we will randomly pick one of them.) For
example, if the source output is 2.47, we would represent it as 2, and if the source output is
3.1415926, we would represent it as 3.

This approach reduces the size of the alphabet required to represent the source output; the
infinite number of values between−10.0 and 10.0 are represented with a set that contains only
21 values ({−10, . . . , 0, . . . , 10}). At the same time we have also forever lost the original
value of the source output. If we are told that the reconstruction value is 3, we cannot tell
whether the source output was 2.95, 3.16, 3.057932, or any other of an infinite set of values.
In other words, we have lost some information. This loss of information is the reason for the
use of the word “lossy” in many lossy compression schemes.

The set of inputs and outputs of a quantizer can be scalars or vectors. If they are scalars,
we call the quantizers scalar quantizers. If they are vectors, we call the quantizers vector
quantizers. We will study scalar quantizers in this chapter and vector quantizers in Chapter 10.

9.3 The Quantization Problem

Quantization is a very simple process. However, the design of the quantizer has a significant
impact on the amount of compression obtained and loss incurred in a lossy compression scheme.
Therefore, we will devote a lot of attention to issues related to the design of quantizers.

In practice, the quantizer consists of two mappings: an encoder mapping and a decoder
mapping. The encoder divides the range of values that the source generates into a number of
intervals. Each interval is represented by a distinct codeword. The encoder represents all the
source outputs that fall into a particular interval by the codeword representing that interval.
As there could be many—possibly infinitely many—distinct sample values that can fall in any
given interval, the encoder mapping is irreversible. Knowing the code only tells us the interval
to which the sample value belongs. It does not tell us which of the many values in the interval
is the actual sample value. When the sample value comes from an analog source, the encoder
is called an analog-to-digital (A/D) converter.

The encoder mapping for a quantizer with eight reconstruction values is shown in Figure 9.1.
For this encoder, all samples with values between−1 and 0 would be assigned the code 011. All

3.02.01.00−1.0−2.0−3.0

110 111101100011010001000

Input

Codes

F I GUR E 9 . 1 Mapping for a 3-bit encoder.

9.3 The Quantization Problem 253

Input Codes Output
000 − 3 5
001 − 2 5
010 − 1 5
011 − 0

0
1
2
3

5
100 5
101 5
110 5
111 5

F I GUR E 9 . 2 Mapping for a 3-bit D/A converter.

values between 0 and 1.0 would be assigned the code 100, and so on. On the two boundaries,
all inputs with values greater than 3 would be assigned the code 111, and all inputs with values
less than−3.0 would be assigned the code 000. Thus, any input that we receive will be assigned
a codeword depending on the interval in which it falls. As we are using 3 bits to represent each
value, we refer to this quantizer as a 3-bit quantizer.

For every codeword generated by the encoder, the decoder generates a reconstruction value.
Because a codeword represents an entire interval, and there is no way of knowing which value
in the interval was actually generated by the source, the decoder puts out a value that, in some
sense, best represents all the values in the interval. Later, we will see how to use information
we may have about the distribution of the input in the interval to obtain a representative value.
For now, we simply use the midpoint of the interval as the representative value generated by the
decoder. If the reconstruction is analog, the decoder is often referred to as a digital-to-analog
(D/A) converter. A decoder mapping corresponding to the 3-bit encoder shown in Figure 9.1
is shown in Figure 9.2.

Example 9 .3 .1 :

Suppose a sinusoid 4 cos(2π t) was sampled every 0.05 second. The sample was digitized
using the A/D mapping shown in Figure 9.1 and reconstructed using the D/A mapping shown
in Figure 9.2. The first few inputs, codewords, and reconstruction values are given in Table 9.1.
Notice the first two samples in Table 9.1. Although the two input values are distinct, they both
fall into the same interval in the quantizer. The encoder, therefore, represents both inputs with
the same codeword, which in turn leads to identical reconstruction values.

T A B L E 9 . 1 Digitizing a sine wave.

t 4 cos(2π t) A/D Output D/A Output Error

0.05 3.804 111 3.5 0.304
0.10 3.236 111 3.5 −0.264
0.15 2.351 110 2.5 −0.149
0.20 1.236 101 1.5 −0.264 �

254 9 S C A L A R Q U A N T I Z A T I O N

−4.0 −3.0 −2.0 −1.0
0.5

−0.5

−1.5

−2.5

−3.5

1.5

2.5

3.5
Output

Input

1.0 2.0 3.0 4.0

F I GUR E 9 . 3 Quantizer input-output map.

Construction of the intervals (their location, etc.) can be viewed as part of the design of
the encoder. Selection of reconstruction values is part of the design of the decoder. However,
the fidelity of the reconstruction depends on both the intervals and the reconstruction values.
Therefore, when designing or analyzing encoders and decoders, it is reasonable to view them
as a pair. We call this encoder-decoder pair a quantizer. The quantizer mapping for the 3-bit
encoder-decoder pair shown in Figures 9.1 and 9.2 can be represented by the input-output map
shown in Figure 9.3. The quantizer accepts sample values, and depending on the interval in
which the sample values fall, it provides an output codeword and a representation value. Using
the map of Figure 9.3, we can see that an input to the quantizer of 1.7 will result in an output
of 1.5, and an input of −0.3 will result in an output of −0.5.

From Figures 9.1, 9.2, 9.3 we can see that we need to know how to divide the input range
into intervals, assign binary codes to these intervals, and find representation or output values
for these intervals in order to specify a quantizer. We need to do all of this while satisfying
distortion and rate criteria. In this chapter, we will define distortion to be the average squared
difference between the quantizer input and output. We call this the mean squared quantization
error (msqe) and denote it by σ 2

q . The rate of the quantizer is the average number of bits

9.3 The Quantization Problem 255

required to represent a single quantizer output. We would like to get the lowest distortion for
a given rate or the lowest rate for a given distortion.

Let us pose the design problem in precise terms. Suppose we have an input modeled by a
random variable X with pdf fX (x). If we wished to quantize this source using a quantizer with
M intervals, we would have to specify M + 1 endpoints for the intervals and a representative
value for each of the M intervals. The endpoints of the intervals are known as decision
boundaries, while the representative values are called reconstruction levels. We will often
model discrete sources with continuous distributions. For example, the difference between
neighboring pixels is often modeled using a Laplacian distribution even though the differences
can only take on a limited number of discrete values. Discrete processes are modeled with
continuous distributions because these models can simplify the design process considerably,
and the resulting designs perform well in spite of the incorrect assumption. Several of the
continuous distributions used to model source outputs are unbounded—that is, the range of
values is infinite. In these cases, the first and last endpoints are generally chosen to be ±∞.

Let us denote the decision boundaries by {bi }Mi=0, the reconstruction levels by {yi }Mi=1, and
the quantization operation by Q(·). Then

Q(x) = yi if bi−1 < x � bi (1)

The mean squared quantization error is then given by

σ 2
q =

∫ ∞
−∞

(x − Q(x))2 fX (x)dx (2)

=
M∑

i=1

∫ bi

bi−1

(x − yi)
2 fX (x)dx (3)

The difference between the quantizer input x and output y = Q(x), besides being referred
to as the quantization error, is also called the quantizer distortion or quantization noise. But
the word “noise” is somewhat of a misnomer. Generally, when we talk about noise we mean
a process external to the source process. Because of the manner in which the quantization
error is generated, it is dependent on the source process and, therefore, cannot be regarded as
external to the source process. One reason for the use of the word “noise” in this context is
that from time to time we will find it useful to model the quantization process as an additive
noise process, as shown in Figure 9.4.

If we use fixed-length codewords to represent the quantizer output, then the size of the
output alphabet immediately specifies the rate. If the number of quantizer outputs is M, then
the rate is given by

R = �log2 M� (4)

For example, if M = 8, then R = 3. In this case, we can pose the quantizer design problem
as follows:

Given an input pd f fx (x) and the number of levels M in the quantizer, find the
decision boundaries {bi } and the reconstruction levels {yi } so as to minimize the
mean squared quantization error given by Equation (3).

256 9 S C A L A R Q U A N T I Z A T I O N

Quantization noise

Quantizer outputQuantizer input

F I GUR E 9 . 4 Additive noise model of a quantizer.

T A B L E 9 . 2 Codeword assignment for an
eight-level quantizer.

y1 1110
y2 1100
y3 100
y4 00
y5 01
y6 101
y7 1101
y8 1111

However, if we are allowed to use variable-length codes, such as Huffman codes or arith-
metic codes, along with the size of the alphabet, the selection of the decision boundaries will
also affect the rate of the quantizer. Consider the codeword assignment for the output of an
eight-level quantizer shown in Table 9.2.

According to this codeword assignment, if the output y4 occurs, we use 2 bits to encode
it, while if the output y1 occurs, we need 4 bits to encode it. Obviously, the rate will depend
on how often we have to encode y4 versus how often we have to encode y1. In other words,
the rate will depend on the probability of occurrence of the outputs. If li is the length of the
codeword corresponding to the output yi , and P(yi) is the probability of occurrence of yi , then
the rate is given by

R =
M∑

i=1

li P(yi) (5)

However, the probabilities {P(yi)} depend on the decision boundaries {bi }. For example,
the probability of yi occurring is given by

P(yi) =
∫ bi

bi−1

fX (x)dx

9.4 Uniform Quantizer 257

Therefore, the rate R is a function of the decision boundaries and is given by the expression

R =
M∑

i=1

li

∫ bi

bi−1

fX (x)dx (6)

From this discussion and Equations (3) and (6), we see that for a given source input, the
partitions we select and the representation for those partitions will determine the distortion
incurred during the quantization process. The partitions we select and the binary codes for the
partitions will determine the rate for the quantizer. Thus, the problem of finding the optimum
partitions, codes, and representation levels are all linked. In light of this information, we can
restate our problem statement:

Given a distortion constraint

σ 2
q � D∗ (7)

find the decision boundaries, reconstruction levels, and binary codes that minimize the
rate given by Equation (6) while satisfying Equation (7).
Or, given a rate constraint

R � R∗ (8)

find the decision boundaries, reconstruction levels, and binary codes that minimize the
distortion given by Equation (3), while satisfying Equation (8).

This problem statement of quantizer design, while more general than our initial statement,
is substantially more complex. Fortunately, in practice there are situations in which we can
simplify the problem. We often use fixed-length codewords to encode the quantizer output.
In this case, the rate is simply the number of bits used to encode each output, and we can use
our initial statement of the quantizer design problem. We start our study of quantizer design
by looking at this simpler version of the problem and later use what we have learned in this
process to attack the more complex version.

9.4 Uniform Quantizer

The simplest type of quantizer is the uniform quantizer. All intervals are the same size in the
uniform quantizer, except possibly for the two outer intervals. In other words, the decision
boundaries are spaced evenly. The reconstruction values are also spaced evenly, with the same
spacing as the decision boundaries; in the inner intervals, they are the midpoints of the intervals.
This constant spacing is usually referred to as the step size and is denoted by�. The quantizer
shown in Figure 9.3 is a uniform quantizer with� = 1. It does not have zero as one of its rep-
resentation levels. Such a quantizer is called a midrise quantizer. An alternative uniform quan-
tizer could be the one shown in Figure 9.5. This is called a midtread quantizer. As the midtread
quantizer has zero as one of its output levels, it is especially useful in situations where it is im-
portant that the zero value be represented—for example, control systems in which it is important
to represent a zero value accurately, and audio coding schemes in which we need to represent

258 9 S C A L A R Q U A N T I Z A T I O N

−3.5 −2.5 −1.5 −0.5

−1.0

−2.0

−3.0

1.0

2.0

3.0

Output

Input

0.5 1.5 2.5 3.5

F I GUR E 9 . 5 A midtread quantizer.

silence periods. Notice that the midtread quantizer has only seven intervals or levels. That
means that if we were using a fixed-length 3-bit code, we would have one codeword left over.

Usually, we use a midrise quantizer if the number of levels is even and a midtread quantizer
if the number of levels is odd. For the remainder of this chapter, unless we specifically mention
otherwise, we will assume that we are dealing with midrise quantizers. We will also generally
assume that the input distribution is symmetric around the origin and the quantizer is also
symmetric. (The optimal minimum mean squared error quantizer for a symmetric distribution
need not be symmetric [120].) Given all these assumptions, the design of a uniform quantizer
consists of finding the step size � that minimizes the distortion for a given input process and
number of decision levels.

Uniform Quantization of a Uniformly Distributed Source

We start our study of quantizer design with the simplest of all cases: design of a uniform
quantizer for a uniformly distributed source. Suppose we want to design an M-level uniform
quantizer for an input that is uniformly distributed in the interval [−Xmax, Xmax]. This means
we need to divide the [−Xmax, Xmax] interval into M equally sized intervals. In this case, the
step size � is given by

� = 2Xmax

M
(9)

9.4 Uniform Quantizer 259

−4Δ −3Δ −2Δ −Δ

−Δ/2

Δ/2

x − Q(x)

Xmax x–Xmax

 2ΔΔ 3Δ 4Δ

F I GUR E 9 . 6 Quantization error for a uniform midrise quantizer with a uniformly
distributed input.

The distortion in this case becomes

σ 2
q = 2

M
2∑

i=1

∫ i�

(i−1)�

(
x − 2i − 1

2
�

)2 1

2Xmax
dx (10)

If we evaluate this integral (after some suffering), we find that the msqe is �2/12.
The same result can be more easily obtained if we examine the behavior of the quantization

error q given by

q = x − Q(x) (11)

In Figure 9.6, we plot the quantization error versus the input signal for an eight-level uniform
quantizer with an input that lies in the interval [−Xmax, Xmax]. Notice that the quantization
error lies in the interval [−�2 , �2]. As the input is uniform, it is not difficult to establish that the
quantization error is also uniform over this interval. Thus, the mean squared quantization error
is the second moment of a random variable uniformly distributed in the interval [−�2 , �2]:

σ 2
q =

1

�

∫ �
2

−�2
q2dq (12)

= �2

12
(13)

Let us also calculate the signal-to-noise ratio for this case. The signal variance σ 2
s for a

uniform random variable that takes on values in the interval [−Xmax, Xmax] is (2Xmax)
2

12 . The
value of the step size � is related to Xmax and the number of levels M by

� = 2Xmax

M

For the case where we use a fixed-length code, with each codeword being made up of n bits,
the number of codewords or the number of reconstruction levels M is 2n . Combining all this,
we have

260 9 S C A L A R Q U A N T I Z A T I O N

SNR(dB) = 10 log10

(
σ 2

s

σ 2
q

)
(14)

= 10 log10

(
(2Xmax)

2

12
· 12

�2

)
(15)

= 10 log10

(
(2Xmax)

2

12

12

(2Xmax
M)2

)
(16)

= 10 log10(M
2)

= 20 log10(2
n)

= 6.02n dB (17)

This equation says that for every additional bit in the quantizer, we get an increase in the signal-
to-noise ratio of 6.02 dB. This is a well-known result and is often used to get an indication of
the maximum gain available if we increase the rate. However, remember that we obtained this
result under some assumptions about the input. If the assumptions are not true, this result will
not hold true either.

Example 9 .4 .1 : Image Compression

A probability model for the variations of pixels in an image is almost impossible to obtain
because of the great variety of images available. A common approach is to declare the pixel
values to be uniformly distributed between 0 and 2b − 1, where b is the number of bits per
pixel. For most of the images we deal with, the number of bits per pixel is 8; therefore, the
pixel values would be assumed to vary uniformly between 0 and 255. Let us quantize our test
image Sena using a uniform quantizer.

If we wanted to use only 1 bit per pixel, we would divide the range [0, 255] into two
intervals, [0, 127] and [128, 255]. The first interval would be represented by the value 64,
the midpoint of the first interval; the pixels in the second interval would be represented by the
pixel value 196, the midpoint of the second interval. In other words, the boundary values are
{0, 128, 255}, while the reconstruction values are {64, 196}. The quantized image is shown
in Figure 9.7. As expected, almost all the details in the image have disappeared. If we were to
use a 2-bit quantizer, with boundary values {0, 64, 128, 196, 255} and reconstruction levels
{32, 96, 160, 224}, we would get considerably more detail. The level of detail increases as the
use of bits increases until at 6 bits per pixel, the reconstructed image is indistinguishable from
the original, at least to a casual observer. The 1-, 2-, and 3-bit images are shown in Figure 9.7.

Looking at the lower-rate images, we notice a couple of things. First, the lower-rate images
are darker than the original, and the lowest-rate reconstructions are the darkest. The reason
for this is that the quantization process usually results in scaling down of the dynamic range
of the input. For example, in the 1-bit-per-pixel reproduction, the highest pixel value is 196,
as opposed to 255 for the original image. As higher gray values represent lighter shades, there
is a corresponding darkening of the reconstruction. The other thing to notice in the low-rate
reconstruction is that wherever there were smooth changes in gray values there are now abrupt

9.4 Uniform Quantizer 261

F I GUR E 9 . 7 Top left: original Sena image; top right: 1 bit/pixel image; bottom
left: 2 bits/pixel; bottom right: 3 bits/pixel.

transitions. This is especially evident in the face and neck area, where gradual shading has
been transformed to blotchy regions of constant values. This is because a range of values is
being mapped to the same value, as was the case for the first two samples of the sinusoid in
Example 9.3.1. For obvious reasons, this effect is called contouring. The perceptual effect of
contouring can be reduced by a procedure called dithering [121]. �

Uniform Quantization of Nonuniform Sources

Quite often the sources we deal with do not have a uniform distribution; however, we still want
the simplicity of a uniform quantizer. In these cases, even if the sources are bounded, simply
dividing the range of the input by the number of quantization levels does not produce a very
good design.

262 9 S C A L A R Q U A N T I Z A T I O N

Example 9 .4 .2 :

Suppose our input fell within the interval [−1, 1]with probability 0.95, and fell in the intervals
[−100, 1), (1, 100] with probability 0.05. Suppose we wanted to design an eight-level uniform
quantizer. If we followed the procedure described in the previous section, the step size would be
25. This means that inputs in the [−1, 0) interval would be represented by the value−12.5, and
inputs in the interval [0, 1) would be represented by the value 12.5. The maximum quantization
error that can be incurred is 12.5. However, at least 95% of the time, the minimum error that
will be incurred is 11.5. Obviously, this is not a very good design. A much better approach
would be to use a smaller step size, which would result in better representation of the values
in the [−1, 1] interval, even if it meant a larger maximum error. Suppose we pick a step size
of 0.3. In this case, the maximum quantization error goes from 12.5 to 98.95. However, 95%
of the time the quantization error will be less than 0.15. Therefore, the average distortion, or
msqe, for this quantizer would be substantially less than the msqe for the first quantizer. �

We can see that when the distribution is no longer uniform, it is not a good idea to obtain
the step size by simply dividing the range of the input by the number of levels. This approach
becomes totally impractical when we model our sources with distributions that are unbounded,
such as the Gaussian distribution. Therefore, we include the pdf of the source in the design
process.

Our objective is to find the step size that, for a given value of M, will minimize the distortion.
The simplest way to do this is to write the distortion as a function of the step size, and then
minimize this function. An expression for the distortion, or msqe, for an M-level uniform
quantizer as a function of the step size can be found by replacing the bi s and yi s in Equation
(3) with functions of�. As we are dealing with a symmetric condition, we need only compute
the distortion for positive values of x; the distortion for negative values of x will be the same.

From Figure 9.8, we see that the decision boundaries are integral multiples of �, and the
representation level for the interval [(k − 1)�, k�) is simply 2k−1

2 �. Therefore, the expression
for msqe becomes

σ 2
q = 2

M
2 −1∑
i=1

∫ i�

(i−1)�

(
x − 2i − 1

2
�

)2

fX (x)dx

+2
∫ ∞(

M
2 −1

)
�

(
x − M − 1

2
�

)2

fX (x)dx (18)

To find the optimal value of�, we simply take a derivative of this equation and set it equal
to zero [122] (see Problem 1 at the end of this chapter):

dσ 2
q

d�
= −

M
2 −1∑
i=1

(2i − 1)
∫ i�

(i−1)�
(x − 2i − 1

2
�) fX (x)dx

−(M − 1)
∫ ∞(

M
2 −1

)
�

(
x − M − 1

2
�

)
fX (x)dx = 0 (19)

9.4 Uniform Quantizer 263

−3Δ −2Δ −Δ

−7Δ/2

−5Δ/2

−3Δ/2

−Δ/2

7Δ/2

5Δ/2

3Δ/2

Δ/2

Output

Input

Δ 2Δ 3Δ

F I GUR E 9 . 8 A uniform midrise quantizer.

This is a rather messy-looking expression, but given the pd f fX (x), it is easy to solve using
any one of a number of numerical techniques (see Problem 2 at the end of the chapter). In
Table 9.3, we list step sizes found by solving (19) for nine different alphabet sizes and three
different distributions.

Before we discuss the results in Table 9.3, let’s take a look at the quantization noise for the
case of nonuniform sources. Nonuniform sources are often modeled by pdfs with unbounded
support. That is, there is a nonzero probability of getting an unbounded input. In practical
situations, we are not going to get inputs that are unbounded, but often it is very convenient
to model the source process with an unbounded distribution. The classic example of this
is measurement error, which is often modeled as having a Gaussian distribution, even when
the measurement error is known to be bounded. If the input is unbounded, the quantization
error is no longer bounded either. The quantization error as a function of input is shown in
Figure 9.9. We can see that in the inner intervals the error is still bounded by �

2 ; however, the
quantization error in the outer intervals is unbounded. These two types of quantization errors
are given different names. The bounded error is called granular error or granular noise, while
the unbounded error is called overload error or overload noise. In the expression for the msqe
in Equation (18), the first term represents the granular noise, while the second term represents

2
6

4
9

S
C

A
L

A
R

Q
U

A
N

T
I

Z
A

T
I

O
N

T A B L E 9 . 3 Optimum step size and SNR for uniform quantizers for different
distributions and alphabet sizes. The variance for each distribution is
1.[122,123]

.

Alphabet Size Uniform Gaussian Laplacian
Step Size SNR Step Size SNR Step Size SNR

2 1.732 6.02 1.596 4.40 1.414 3.00
4 0.866 12.04 0.9957 9.24 1.0873 7.05
6 0.577 15.58 0.7334 12.18 0.8707 9.56
8 0.433 18.06 0.5860 14.27 0.7309 11.39
10 0.346 20.02 0.4908 15.90 0.6334 12.81
12 0.289 21.60 0.4238 17.25 0.5613 13.98
14 0.247 22.94 0.3739 18.37 0.5055 14.98
16 0.217 24.08 0.3352 19.36 0.4609 15.84
32 0.108 30.10 0.1881 24.56 0.2799 20.46

9.4 Uniform Quantizer 265

−4Δ −3Δ −2Δ −Δ Δ

−Δ/2

Granular noise

Overload noise

Δ/2

x − Q(x)

x

 2Δ 3Δ 4Δ

F I GUR E 9 . 9 Quantization error for a uniform midrise quantizer.

−4Δ −3Δ −2Δ −Δ

Overload probability

Granular probability

Δ 2Δ 3Δ

x

4Δ

F I GUR E 9 . 10 Overload and granular regions for a 3-bit uniform quantizer.

the overload noise. The probability that the input will fall into the overload region is called
the overload probability (Figure 9.10).

The nonuniform sources we deal with have probability density functions that are generally
peaked at zero and decay as we move away from the origin. Therefore, the overload probability
is generally much smaller than the probability of the input falling in the granular region. As we
see from Equation (19), an increase in the step size� will result in an increase in the value of(M

2 − 1
)
�, which in turn will result in a decrease in the overload probability and the second

term in Equation (19). However, an increase in the step size � will also increase the granular

266 9 S C A L A R Q U A N T I Z A T I O N

noise, which is the first term in Equation (19). The design process for the uniform quantizer
is a balancing of these two effects. An important parameter that describes this trade-off is the
loading factor fl , defined as the ratio of the maximum value the input can take in the granular
region to the standard deviation. A common value of the loading factor is 4. This is also
referred to as 4σ loading.

Recall that when quantizing an input with a uniform distribution, the SNR and bit rate are
related by Equation (17), which says that for each bit increase in the rate there is an increase
of 6.02 dB in the SNR. In Table 9.3, along with the step sizes, we have also listed the SNR
obtained when a million input values with the appropriate pdf are quantized using the indicated
quantizer.

From this table, we can see that, although the SNR for the uniform distribution follows
the rule of a 6.02 dB increase in the signal-to-noise ratio for each additional bit, this is not
true for the other distributions. Remember that we made some assumptions when we obtained
the 6.02n rule that are only valid for the uniform distribution. Notice that the more peaked a
distribution is (that is, the further away from uniform it is), the more it seems to vary from the
6.02 dB rule.

We also said that the selection of� is a balance between the overload and granular errors.
The Laplacian distribution has more of its probability mass away from the origin in its tails than
the Gaussian distribution. This means that for the same step size and number of levels, there is
a higher probability of being in the overload region if the input has a Laplacian distribution than
if the input has a Gaussian distribution. The uniform distribution is the extreme case, where
the overload probability is zero. If we increase the step size for the same number of levels,
the size of the overload region (and hence the overload probability) is reduced at the expense
of granular noise. Therefore, for a given number of levels, if we are picking the step size to
balance the effects of the granular and overload noise, distributions that have heavier tails will
tend to have larger step sizes. This effect can be seen in Table 9.3. For example, for eight
levels, the step size for the uniform quantizer is 0.433. The step size for the Gaussian quantizer
is larger (0.586), while the step size for the Laplacian quantizer is larger still (0.7309).

Mismatch Effects

We have seen that for a result to hold, the assumptions we used to obtain the result have to hold.
When we obtain the optimum step size for a particular uniform quantizer using Equation (19),
we make some assumptions about the statistics of the source. We assume a certain distribution
and certain parameters of the distribution. What happens when our assumptions do not hold?
Let’s try to answer this question empirically.

We will look at two types of mismatches. The first is when the assumed distribution
type matches the actual distribution type, but the variance of the input is different from the
assumed variance. The second mismatch is when the actual distribution type is different from
the distribution type assumed when obtaining the value of the step size. Throughout our
discussion, we will assume that the mean of the input distribution is zero.

In Figure 9.11, we have plotted the signal-to-noise ratio as a function of the ratio of the
actual to assumed variance of a 4-bit Gaussian uniform quantizer, with a Gaussian input. (To
see the effect under different conditions, see Problem 5 at the end of this chapter.) Remember

9.4 Uniform Quantizer 267

20

−2
0

2

4

6

8

10
SNR (dB)

14

12

18

16

0 0.5 1.0 1.5 2.0
Ratio of input variance to design variance

2.5 3.0 3.5 4.0

F I GUR E 9 . 11 Effect of variance mismatch on the performance of a 4-bit uniform
quantizer.

T A B L E 9 . 4 Demonstration of the effect of mismatch using eight-level quantizers
(dB). Each input distribution has unit variance.

Input Distribution Uniform Quantizer Gaussian Quantizer Laplacian Quantizer Gamma Quantizer

Uniform 18.06 15.56 13.29 12.41
Gaussian 12.40 14.27 13.37 12.73
Laplacian 8.80 10.79 11.39 11.28
Gamma 6.98 8.06 8.64 8.76

that for a distribution with zero mean, the variance is given by σ 2
x = E[X2], which is also a

measure of the power in the signal X. As we can see from the figure, the signal-to-noise ratio
is maximum when the input signal variance matches the variance assumed when designing
the quantizer. From the plot we also see that there is an asymmetry; the SNR is considerably
worse when the input variance is lower than the assumed variance. This is because the SNR is a
ratio of the input variance and the mean squared quantization error. When the input variance is
smaller than the assumed variance, the mean squared quantization error actually drops because
there is less overload noise. However, because the input variance is low, the ratio is small.
When the input variance is higher than the assumed variance, the msqe increases substantially,
but because the input power is also increasing, the ratio does not decrease as dramatically.
To see this more clearly, we have plotted the mean squared error versus the signal variance
separately in Figure 9.12. We can see from these figures that the decrease in signal-to-noise
ratio does not always correlate directly with an increase in msqe.

The second kind of mismatch is where the input distribution does not match the distribution
assumed when designing the quantizer. In Table 9.4 we have listed the SNR when inputs
with different distributions are quantized using several different eight-level quantizers. The
quantizers were designed assuming a particular input distribution.

268 9 S C A L A R Q U A N T I Z A T I O N

2.0

0

0.2

0.4

0.6

0.8

1.0msqe

1.4

1.2

1.8

1.6

0 1 2 3 4
Ratio of input variance to design variance

5 6 7 8 9 10

F I GUR E 9 . 12 The msqe as a function of variance mismatch with a 4-bit uniform
quantizer.

Notice that as we go from left to right in the table, the designed step size becomes pro-
gressively larger than the “correct” step size. This is similar to the situation where the input
variance is smaller than the assumed variance. As we can see when we have a mismatch
that results in a smaller step size relative to the optimum step size, there is a greater drop in
performance than when the quantizer step size is larger than its optimum value.

9.5 Adaptive Quantization

One way to deal with the mismatch problem is to adapt the quantizer to the statistics of the
input. Several things might change in the input relative to the assumed statistics, including
the mean, the variance, and the pdf. The strategy for handling each of these variations can be
different, though certainly not exclusive. If more than one aspect of the input statistics changes,
it is possible to combine the strategies for handling each case separately. If the mean of the
input is changing with time, the best strategy is to use some form of differential encoding
(discussed in some detail in Chapter 11). For changes in the other statistics, the common
approach is to adapt the quantizer parameters to the input statistics.

There are two main approaches to adapting the quantizer parameters: an offline or for-
ward adaptive approach, and an online or backward adaptive approach. In forward adaptive
quantization, the source output is divided into blocks of data. Each block is analyzed before
quantization, and the quantizer parameters are set accordingly. The settings of the quantizer
are then transmitted to the receiver as side information. In backward adaptive quantization, the
adaptation is performed based on the quantizer output. As this is available to both transmitter
and receiver, there is no need for side information.

9.5 Adaptive Quantization 269

9.5.1 Forward Adaptive Quantization

Let us first look at approaches for adapting to changes in input variance using the forward
adaptive approach. This approach necessitates a delay of at least the amount of time required
to process a block of data. The insertion of side information in the transmitted data stream may
also require the resolution of some synchronization problems. The size of the block of data
processed also affects a number of other things. If the size of the block is too large, then the
adaptation process may not capture the changes taking place in the input statistics. Furthermore,
large block sizes mean more delay, which may not be tolerable in certain applications. On the
other hand, small block sizes mean that the side information has to be transmitted more often,
which in turn means the amount of overhead per sample increases. The selection of the block
size is a trade-off between the increase in side information necessitated by small block sizes
and the loss of fidelity due to large block sizes (see Problem 7 at the end of this chapter).

The variance estimation procedure is rather simple. At time n we use a block of N future
samples to compute an estimate of the variance:

σ̂ 2
q =

1

N

N−1∑
i=0

x2
n+i (20)

Note that we are assuming that our input has a mean of zero. The variance information also
needs to be quantized so that it can be transmitted to the receiver. Usually, the number of bits
used to quantize the value of the variance is significantly larger than the number of bits used
to quantize the sample values.

Example 9 .5 .1 :

In Figure 9.13, we show a segment of speech quantized using a fixed 3-bit quantizer. The step
size of the quantizer was adjusted based on the statistics of the entire sequence. The sequence
was the testm.raw sequence from the sample data sets, consisting of about 4000 samples
of a male speaker saying the word “test.” The speech signal was sampled at 8000 samples per
second and digitized using a 16-bit A/D.

We can see from the figure that, as in the case of the example of the sinusoid earlier in
this chapter, there is a considerable loss in amplitude resolution. Sample values that are close
together have been quantized to the same value.

The same sequence quantized with a forward adaptive quantizer is shown in Figure 9.14.
For this example, we divided the input into blocks of 128 samples. Before quantizing the
samples in a block, the standard deviation for the samples in the block was obtained. This
value was quantized using an 8-bit quantizer and sent to both the transmitter and receiver. The
samples in the block were then normalized using this value of the standard deviation. Notice
that the reconstruction follows the input much more closely, though there seems to be room
for improvement, especially in the latter half of the displayed samples. �

Example 9 .5 .2 :

In Example 9.4.1, we used a uniform quantizer with the assumption that the input is uniformly
distributed. Let us refine this source model a bit and say that while the source is uniformly

270 9 S C A L A R Q U A N T I Z A T I O N

2.5

−2.0

0

1.0

1.5

2.0

0.5

−0.5

−1.0

−1.5

180 200 220 240 260 280 300 320

Original
Reconstructed

F I GUR E 9 . 13 Original 16-bit speech and compressed 3-bit speech sequences.

2.5

−2.5

−0.5

0.5

1.0

1.5

2.0

0

−1.0

−1.5

−2.0

180 200 220 240 260 280 300 320

Original
Reconstructed

F I GUR E 9 . 14 Original 16-bit speech sequence and sequence obtained using an
eight-level forward adaptive quantizer.

distributed over different regions, the range of the input changes. In a forward adaptive
quantization scheme, we would obtain the minimum and maximum values for each block of
data, which would be transmitted as side information. In Figure 9.15, we see the Sena image
quantized with a block size of 8 × 8 using 3-bit forward adaptive uniform quantization. The
side information consists of the minimum and maximum values in each block, which require
8 bits each. Therefore, the overhead in this case is 16

8×8 or 0.25 bits per pixel, which is quite
small compared to the number of bits per sample used by the quantizer.

The resulting image is hardly distinguishable from the original. Certainly at higher rates,
forward adaptive quantization seems to be a very good alternative. �

9.5 Adaptive Quantization 271

F I GUR E 9 . 15 Sena image quantized to 3.25 bits per pixel using forward adaptive
quantization.

9.5.2 Backward Adaptive Quantization

In backward adaptive quantization, only the past quantized samples are available for use in
adapting the quantizer. The values of the input are only known to the encoder; therefore,
this information cannot be used to adapt the quantizer. How can we get information about
mismatch simply by examining the output of the quantizer without knowing what the input
was? If we studied the output of the quantizer for a long period of time, we could get some
idea about mismatch from the distribution of output values. If the quantizer step size� is well
matched to the input, the probability that an input to the quantizer would land in a particular
interval would be consistent with the pdf assumed for the input. However, if the actual pdf
differs from the assumed pdf, the number of times the input falls in the different quantization
intervals will be inconsistent with the assumed pdf. If� is smaller than what it should be, the
input will fall in the outer levels of the quantizer an excessive number of times. On the other
hand, if � is larger than it should be for a particular source, the input will fall in the inner
levels an excessive number of times. Therefore, it seems that we should observe the output of
the quantizer for a long period of time, then expand the quantizer step size if the input falls in
the outer levels an excessive number of times, and contract the step size if the input falls in the
inner levels an excessive number of times.

Nuggehally S. Jayant at Bell Labs showed that we did not need to observe the quantizer
output over a long period of time [124]. In fact, we could adjust the quantizer step size after
observing a single output. Jayant named this quantization approach “quantization with one
word memory.” The quantizer is better known as the Jayant quantizer. The idea behind the
Jayant quantizer is very simple. If the input falls in the outer levels, the step size needs to be
expanded, and if the input falls in the inner quantizer levels, the step size needs to be reduced.
The expansions and contractions should be done in such a way that once the quantizer is
matched to the input, the product of the expansions and contractions is unity.

272 9 S C A L A R Q U A N T I Z A T I O N

−3Δ −2Δ −Δ

−7Δ/2

−5Δ/2

−3Δ/2

–Δ/2

7Δ/2

5Δ/2

3Δ/2

Δ/2

Output

Input

Δ 2Δ 3Δ

3

2

0

1

4

5

6

7

F I GUR E 9 . 16 Output levels for the Jayant quantizer.

The expansion and contraction of the step size is accomplished in the Jayant quantizer by
assigning a multiplier Mk to each interval. If the (n−1)th input falls in the kth interval, the step
size to be used for the nth input is obtained by multiplying the step size used for the (n − 1)th
input with Mk . The multiplier values for the inner levels in the quantizer are less than one, and
the multiplier values for the outer levels of the quantizer are greater than one. Therefore, if an
input falls into the inner levels, the quantizer used to quantize the next input will have a smaller
step size. Similarly, if an input falls into the outer levels, the step size will be multiplied with
a value greater than one, and the next input will be quantized using a larger step size. Notice
that the step size for the current input is modified based on the previous quantizer output. The
previous quantizer output is available to both the transmitter and receiver, so there is no need to
send any additional information to inform the receiver about the adaptation. Mathematically,
the adaptation process can be represented as

�n = Ml(n−1)�n−1 (21)

where l(n − 1) is the quantization interval at time n − 1.
In Figure 9.16 we show a 3-bit uniform quantizer. We have eight intervals represented by

the different quantizer outputs. However, the multipliers for symmetric intervals are identical

9.5 Adaptive Quantization 273

T A B L E 9 . 5 Operation of a Jayant quantizer.

n �n Input Output Level Output Error Update Equation

0 0.5 0.1 0 0.25 0.15 �1 = M0 ×�0
1 0.4 −0.2 4 −0.2 0.0 �2 = M4 ×�1
2 0.32 0.2 0 0.16 0.04 �3 = M0 ×�2
3 0.256 0.1 0 0.128 0.028 �4 = M0 ×�3
4 0.2048 −0.3 5 −0.3072 −0.0072 �5 = M5 ×�4
5 0.1843 0.1 0 0.0922 −0.0078 �6 = M0 ×�5
6 0.1475 0.2 1 0.2212 0.0212 �7 = M1 ×�6
7 0.1328 0.5 3 0.4646 −0.0354 �8 = M3 ×�7
8 0.1594 0.9 3 0.5578 −0.3422 �9 = M3 ×�8
9 0.1913 1.5 3 0.6696 −0.8304 �10 = M3 ×�9

10 0.2296 1.0 3 0.8036 0.1964 �11 = M3 ×�10
11 0.2755 0.9 3 0.9643 0.0643 �12 = M3 ×�11

because of symmetry:

M0 = M4 M1 = M5 M2 = M6 M3 = M7

Therefore, we only need four multipliers. To see how the adaptation proceeds, let us work
through a simple example using this quantizer.

Example 9 .5 .3 : Jayant Quantizer

For the quantizer in Figure 9.16, suppose the multiplier values are M0 = M4 = 0.8, M1 =
M5 = 0.9, M2 = M6 = 1, and M3 = M7 = 1.2; the initial value of the step size, �0, is
0.5; and the sequence to be quantized is 0.1,−0.2, 0.2, 0.1,−0.3, 0.1, 0.2, 0.5, 0.9, 1.5,
When the first input is received, the quantizer step size is 0.5. Therefore, the input falls into
level 0, and the output value is 0.25, resulting in an error of 0.15. As this input fell into
quantizer level 0, the new step size�1 is M0×�0 = 0.8×0.5 = 0.4. The next input is−0.2,
which falls into level 4. As the step size at this time is 0.4, the output is −0.2. To update, we
multiply the current step size with M4. Continuing in this fashion, we get the sequence of step
sizes and outputs shown in Table 9.5.

Notice how the quantizer adapts to the input. In the beginning of the sequence, the input
values are mostly small, and the quantizer step size becomes progressively smaller, providing
better and better estimates of the input. At the end of the sample sequence, the input values are
large, and the step size becomes progressively bigger. However, the size of the error is quite
large during the transition. This means that if the input was changing rapidly, which would
happen if we had a high-frequency input, such transition situations would be much more likely
to occur, and the quantizer would not function very well. However, in cases where the statistics
of the input change slowly, the quantizer could adapt to the input. As most natural sources
such as speech and images tend to be correlated, their values do not change drastically from
sample to sample. Even when some of this structure is removed through some transformation,
the residual structure is generally enough for the Jayant quantizer (or some variation of it) to
function quite effectively. �

274 9 S C A L A R Q U A N T I Z A T I O N

The step size in the initial part of the sequence in this example is progressively getting
smaller. We can easily conceive of situations where the input values would be small for a long
period. Such a situation could occur during a silence period in speech-encoding systems or
while encoding a dark background in image-encoding systems. If the step size continues to
shrink for an extended period of time, it would result in a value of zero in a finite precision
system. This would be catastrophic, effectively replacing the quantizer with a zero output
device. Usually, a minimum value�min is defined, and the step size is not allowed to go below
this value to prevent this from happening. Similarly, if we get a sequence of large values, the
step size could increase to a point that, when we started getting smaller values, the quantizer
would not be able to adapt fast enough. To prevent this from happening, a maximum value
�max is defined, and the step size is not allowed to increase beyond this value.

The adaptivity of the Jayant quantizer depends on the values of the multipliers. The further
the multiplier values are from unity, the more adaptive the quantizer. However, if the adaptation
algorithm reacts too fast, this could lead to instability. So how do we go about selecting the
multipliers?

First of all, we know that the multipliers correponding to the inner levels are less than one,
and the multipliers for the outer levels are greater than one. If the input process is stationary
and Pk represents the probability of being in quantizer interval k (generally estimated by using
a fixed quantizer for the input data), then we can impose a stability criterion for the Jayant
quantizer based on our requirement that once the quantizer is matched to the input, the product
of the expansions and contractions are equal to unity. That is, if nk is the number of times the
input falls in the kth interval,

M∏
k=0

Mnk
k = 1 (22)

Taking the Nth root of both sides (where N is the total number of inputs), we obtain

M∏
k=0

M
nk
N

k = 1

or
M∏

k=0

M Pk
k = 1 (23)

where we have assumed that Pk = nk/N .
There are an infinite number of multiplier values that would satisfy Equation (23). One

way to restrict this number is to impose some structure on the multipliers by requiring them
to be of the form

Mk = γ lk (24)

where γ is a number greater than one and lk takes on only integer values [125,126]. If we
substitute this expression for Mk into Equation (23), we get

M∏
k=0

γ lk Pk = 1 (25)

9.5 Adaptive Quantization 275

which implies that
M∑

k=0

lk Pk = 0 (26)

The final step is the selection of γ , which involves a significant amount of creativity. The
value we pick for γ determines how fast the quantizer will respond to changing statistics. A
large value of γ will result in faster adaptation, while a smaller value of γ will result in greater
stability.

Example 9 .5 .4 :

Suppose we have to obtain the multiplier functions for a 2-bit quantizer with input probabilities
P0 = 0.8, P1 = 0.2. First, note that the multiplier value for the inner level has to be less than
1. Therefore, l0 is less than 0. If we pick l0 = −1 and l1 = 4, this would satisfy Equation (26),
while making M0 less than 1 and M1 greater than 1. Finally, we need to pick a value for γ .

In Figure 9.17, we see the effect of using different values of γ in a rather extreme example.
The input is a square wave that switches between 0 and 1 every 30 samples. The input is
quantized using a 2-bit Jayant quantizer. We have used l0 = −1 and l1 = 2. Notice what
happens when the input switches from 0 to 1. At first the input falls in the outer level of the
quantizer, and the step size increases. This process continues until � is just greater than 1. If
γ is close to 1, � has been increasing quite slowly and should have a value close to 1 right
before its value increases to greater than 1. Therefore, the output at this point is close to 1.5.
When � becomes greater than 1, the input falls in the inner level, and if γ is close to 1, the
output suddenly drops to about 0.5. The step size now decreases until it is just below 1, and
the process repeats, causing the “ringing” seen in Figure 9.17. As γ increases, the quantizer
adapts more rapidly, and the magnitude of the ringing effect decreases. The reason for the
decrease is that right before the value of � increases above 1, its value is much smaller than
1, and subsequently the output value is much smaller than 1.5. When � increases beyond
1, it may increase by a significant amount, so the inner level may be much greater than 0.5.
These two effects together compress the ringing phenomenon. Looking at this phenomenon,
we can see that it may have been better to have two adaptive strategies, one for when the input
is changing rapidly, as in the case of the transitions between 0 and 1, and one for when the
input is constant, or nearly so. We will explore this approach further when we describe the
quantizer used in CCITT standard G.726. �

When selecting multipliers for a Jayant quantizer, the best quantizers expand more rapidly
than they contract. This makes sense when we consider that when the input falls into the
outer levels of the quantizer, it is incurring overload error, which is essentially unbounded.
This situation needs to be mitigated with dispatch. On the other hand, when the input falls
in the inner levels, the noise incurred is granular noise, which is bounded and, therefore, may
be more tolerable. Finally, the discussion of the Jayant quantizer was motivated by the need
for robustness in the face of changing input statistics. Let us repeat the earlier experiment
with changing input variance and distributions and see the performance of the Jayant quantizer

276 9 S C A L A R Q U A N T I Z A T I O N

1.2

0

0.2

0.4

0.6Amplitude

0.8

1.0

0 10 20 30 40 50
Time

60 70 80 90

F I GUR E 9 . 17 Effect of γ on the performance of the Jayant quantizer.

20

15

10SNR (dB)

5

0
0 1 2 3 4 5

Ratio of input variance to design variance
6 7 8 9 10

F I GUR E 9 . 18 Performance of the Jayant quantizer for different input variances.

compared to the pdf-optimized quantizer. The results for these experiments are presented in
Figure 9.18.

Notice how flat the performance curve is. Compare this with the performance curve shown
in Figure 9.11, which shows the drastic effects of mismatch between the design and source
variance. While the performance of the Jayant quantizer is much better than the nonadaptive
uniform quantizer over a wide range of input variances, the performance of the nonadaptive
quantizer is significantly better than the performance of the Jayant quantizer at the point where
the input variance and design variance agree. This means that if we know the input statistics
and we are reasonably certain that the input statistics will not change over time, it is better to
design for those statistics than to design an adaptive system.

9.6 Nonuniform Quantization 277

9.6 Nonuniform Quantization

As we can see from Figure 9.10, the input is more likely to fall in the inner levels of the quantizer
if the input distribution has more mass near the origin. Recall that in lossless compression, in
order to minimize the average number of bits per input symbol, we assigned shorter codewords
to symbols that occurred with higher probability and longer codewords to symbols that occurred
with lower probability. In an analogous fashion we can try to approximate the input better
in regions of high probability, perhaps at the cost of worse approximations in regions of
lower probability, in order to decrease the average distortion. We can do this by making the
quantization intervals smaller in those regions that have more probability mass. If the source
distribution is like the distribution shown in Figure 9.10, we would have smaller intervals near
the origin. If we wanted to keep the number of intervals constant, this would mean we would
have larger intervals away from the origin. A quantizer that has nonuniform intervals is called
a nonuniform quantizer, an example of which is shown in Figure 9.19.

b1 b2 b3 b4

y1

y4

y8

y7

y3

y2

y6

y5

Output

Inputb5 b6 b7

F I GUR E 9 . 19 A nonuniform midrise quantizer.

278 9 S C A L A R Q U A N T I Z A T I O N

Notice that the intervals closer to zero are smaller. Hence, the maximum value that the
quantizer error can take on is also smaller, resulting in a better approximation. We pay for
this improvement in accuracy at lower input levels by incurring larger errors when the input
falls in the outer intervals. However, as the probability of getting smaller input values is much
higher than getting larger signal values, on average the distortion will be lower than if we
had a uniform quantizer. While a nonuniform quantizer provides lower average distortion, the
design of nonuniform quantizers is also somewhat more complex. However, the basic idea
is quite straightforward: find the decision boundaries and reconstruction levels that minimize
the mean squared quantization error. We look at the design of nonuniform quantizers in more
detail in the following sections.

9.6.1 pdf- Optimized Quantization

A direct approach for locating the best nonuniform quantizer, if we have a probability model
for the source, is to find the {bi } and {yi } that minimize Equation (3). Setting the derivative of
Equation (3) with respect to y j to zero, and solving for y j , we get

y j =
∫ b j

b j−1
x fX (x)dx∫ b j

b j−1
fX (x)dx

(27)

The output point for each quantization interval is the centroid of the probability mass in
that interval. Using the Leibniz integral rule, and taking the derivative of Equation (3) with
respect to b j and setting it equal to zero, we get an expression for b j as

b j = y j+1 + y j

2
(28)

The decision boundary is simply the midpoint of the two neighboring reconstruction levels.
Solving these two equations will give us the values for the reconstruction levels and decision
boundaries that minimize the mean squared quantization error. Unfortunately, to solve for
y j , we need the values of b j and b j−1, and to solve for b j , we need the values of y j+1 and
y j . In a 1960 paper, Joel Max [122] showed how to solve the two equations iteratively. The
same approach was described by Stuart P. Lloyd in a 1957 internal Bell Labs memorandum.
Generally, credit goes to whomever publishes first, but in this case, because much of the early
work in quantization was done at Bell Labs, Lloyd’s work was given due credit and the algorithm
became known as the Lloyd-Max algorithm. However, the story does not end (begin?) there.
Allen Gersho [127] points out that the same algorithm was published by Lukaszewicz and
Steinhaus in a Polish journal in 1955 [128]! Lloyd’s paper remained unpublished until 1982,
when it was finally published in a special issue of the IEEE Transactions on Information Theory
devoted to quantization [129].

To see how this algorithm works, let us apply it to a specific situation. Suppose we want to
design an M-level symmetric midrise quantizer. To define our symbols, we will use Figure 9.20.
From the figure, we see that we need to obtain the reconstruction levels {y1, y2, . . . , y M

2
} and

the decision boundaries {b1, b2, . . . , b M
2 −1} to design this quantizer. The reconstruction levels

9.6 Nonuniform Quantization 279

b b b Input

Output

1 2 3

−

y
3

y
4

y
2

b0b −2b
−1
b−3

−1
y

y
−2

y
−3

y
−4

y
1

F I GUR E 9 . 20 A symmetric nonuniform midrise quantizer.

{y−1, y−2, . . . , y− M
2
} and the decision boundaries {b−1, b−2, . . . , b−(M

2 −1)} can be obtained
through symmetry, the decision boundary b0 is zero, and the decision boundary b M

2
is simply

the largest value the input can take on (for unbounded inputs this would be∞).
Let us set j equal to 1 in Equation (27):

y1 =
∫ b1

b0
x fX (x)dx∫ b1

b0
fX (x)dx

(29)

As b0 is known to be 0, we have two unknowns in this equation, b1 and y1. We make a guess at
y1, and later we will try to refine this guess. Using this guess in Equation (29), we numerically
find the value of b1 that satisfies Equation (29). Setting j equal to 1 in Equation (28) and
rearranging things slightly, we get

y2 = 2b1 − y1 (30)

from which we can compute y2. This value of y2 can then be used in Equation (27) with j = 2
to find b2, which in turn can be used to find y3. We continue this process, until we obtain a
value for {y1, y2, . . . , y M

2
} and {b1, b2, . . . , b M

2 −1}. Note that the accuracy of all the values
obtained to this point depends on the quality of our initial estimate of y1. We can check this by

280 9 S C A L A R Q U A N T I Z A T I O N

T A B L E 9 . 6 Quantizer boundary and reconstruction levels for nonuniform
Gaussian and Laplacian quantizers. The input distributions have unit
variance.

Gaussian Laplacian
Levels bi yi SNR bi yi SNR

4 0.0 0.4528 0.0 0.4196
0.9816 1.510 9.3 dB 1.1269 1.8340 7.54 dB

6 0.0 0.3177 0.0 0.2998
0.6589 1.0 0.7195 1.1393
1.447 1.894 12.41 dB 1.8464 2.5535 10.51 dB

8 0.0 0.2451 0.0 0.2334
0.5006 0.7550 0.5332 0.8330
1.050 1.3440 1.2527 1.6725
1.748 2.1520 14.62 dB 2.3796 3.0867 12.64 dB

noting that y M
2

is the centroid of the probability mass of the interval [b M
2 −1, b M

2
]. We know

b M
2

from our knowledge of the data. Therefore, we can compute the integral

∫ b M
2

b M
2 −1

x fX (x)dx

∫ b M
2

b M
2 −1

fX (x)dx

(31)

and compare it with the previously computed value of y M
2

. If the difference is less than some
tolerance threshold, we can stop. Otherwise, we adjust the estimate of y1 in the direction
indicated by the sign of the difference and repeat the procedure.

Decision boundaries and reconstruction levels for various distributions and number of
levels generated using this procedure are shown in Table 9.6. Notice that the distributions
that have heavier tails also have larger outer step sizes. However, these same quantizers have
smaller inner step sizes because they are more heavily peaked. The SNR for these quantizers
is also listed in the table. Comparing these values with those for the pdf-optimized uniform
quantizers, we can see a significant improvement, especially for distributions further away
from the uniform distribution. Both uniform and nonuniform pdf-optimized, or Lloyd-Max,
quantizers have a number of interesting properties. We list these properties here (their proofs
can be found in [270–272]):

� Property 1: The mean values of the input and output of a Lloyd-Max quantizer are equal.

� Property 2: For a given Lloyd-Max quantizer, the variance of the output is always less
than or equal to the variance of the input.

� Property 3: The mean squared quantization error for a Lloyd-Max quantizer is given by

σ 2
q = σ 2

x −
M∑

j=1

y2
j P[b j−1 � X < b j] (32)

9.6 Nonuniform Quantization 281

18.5

13.5

15.5

16.5

17.0

17.5

18.0

16.0SNR (dB)

15.0

14.5

14.0

0.5 1.0 1.5

Ratio of input variance to assumed variance

2.0 2.5 3.0

F I GUR E 9 . 21 Effect of mismatch on nonuniform quantization.

where σ 2
x is the variance of the quantizer input, and the second term on the right-hand

side is the second moment of the output (or variance if the input is zero mean).

� Property 4: Let N be the random variable corresponding to the quantization error. Then
for a given Lloyd-Max quantizer,

E[X N] = −σ 2
q (33)

� Property 5: For a given Lloyd-Max quantizer, the quantizer output and the quantization
noise are orthogonal:

E[Q(X)N |b0, b1, . . . , bM] = 0 (34)

Mismatch Effects

As in the case of uniform quantizers, the pdf-optimized nonuniform quantizers also have
problems when the assumptions underlying their design are violated. In Figure 9.21 we show
the effects of variance mismatch on a 4-bit Laplacian nonuniform quantizer.

This mismatch effect is a serious problem because in most communication systems, the
input variance can change considerably over time. A common example of this is the telephone
system. Different people speak with differing amounts of loudness into the telephone. The
quantizer used in the telephone system needs to be quite robust to the wide range of input
variances in order to provide satisfactory service.

One solution to this problem is the use of adaptive quantization to match the quantizer
to the changing input characteristics. We have already looked at adaptive quantization for
the uniform quantizer. Generalizing the uniform adaptive quantizer to the nonuniform case is
relatively straightforward, and we leave that as a practice exercise (see Problem 8 at the end

282 9 S C A L A R Q U A N T I Z A T I O N

Input

Output

Expander

Input

Output

Uniform quantizer

Input

Output

Compressor

F I GUR E 9 . 22 Block diagram for companded quantization.

of this chapter). A somewhat different approach is to use a nonlinear mapping to flatten the
performance curve shown in Figure 9.21. In order to study this approach, we need to view the
nonuniform quantizer in a slightly different manner.

9.6.2 Companded Quantization

Instead of making the step size small, we could make the interval in which the input lies with
high probability large—that is, expand the region in which the input lands in proportion to the
probability with which it lands there. This is the idea behind companded quantization. This
quantization approach can be represented by the block diagram shown in Figure 9.22. The input
is first mapped through a compressor function. This function “stretches” the high-probability
regions close to the origin and correspondingly “compresses” the low-probability regions away
from the origin. Thus, regions close to the origin in the input to the compressor occupy a greater
fraction of the total region covered by the compressor. If the output of the compressor function
is quantized using a uniform quantizer and the quantized value is transformed via an expander
function, the overall effect is the same as using a nonuniform quantizer. To see this, we devise
a simple compander and see how the process functions.

Example 9 .6 .1 :

Suppose we have a source that can be modeled as a random variable taking values in the
interval [−4, 4] with more probability mass near the origin than away from it. We want to
quantize this using the quantizer of Figure 9.3. Let us try to flatten out this distribution using
the following compander and then compare the companded quantization with straightforward
uniform quantization. The compressor characteristic we will use is given by the following
equation:

c(x) =

⎧⎪⎨
⎪⎩

2x if − 1 � x � 1
2x
3 + 4

3 x > 1
2x
3 − 4

3 x < −1

(35)

9.6 Nonuniform Quantization 283

−3 −2 −1 1 2 3

−4

−4

−3

−2

−1

c(x)

3

2

1

x

4

F I GUR E 9 . 23 Compressor mapping.

−4 −3 −2 −1 1 2 3

−3

−2

−1

c−1(x)

3

2

1

x

4

−4

F I GUR E 9 . 24 Expander mapping.

The mapping is shown graphically in Figure 9.23. The inverse mapping is given by

c−1(x) =

⎧⎪⎨
⎪⎩

x
2 if − 2 � x � 2
3x
2 − 2 x > 2

3x
2 + 2 x < −2

(36)

The inverse mapping is shown graphically in Figure 9.24.
Let’s see how using these mappings affects the quantization error both near and far from the

origin. Suppose we had an input of 0.9. If we quantize directly with the uniform quantizer, we
get an output of 0.5, resulting in a quantization error of 0.4. If we use the companded quantizer,
we first use the compressor mapping, mapping the input value of 0.9 to 1.8. Quantizing this

284 9 S C A L A R Q U A N T I Z A T I O N

−3 −2 −1 1 2 3

−4

−3

−2

−1

Output

3

2

1

Input

4−4

F I GUR E 9 . 25 Nonuniform companded quantizer.

with the same uniform quantizer results in an output of 1.5, with an apparent error of 0.3. The
expander then maps this to the final reconstruction value of 0.75, which is 0.15 away from
the input. Comparing 0.15 with 0.4, we can see that relative to the input we get a substantial
reduction in the quantization error. In fact, we will not get any increase in the quantization
error for all values in the interval [−1, 1], and for most values, we will get a decrease in the
quantization error (see Problem 6 at the end of this chapter). Of course, this will not be true
for values outside the [−1, 1] interval. Suppose we have an input of 2.7. If we quantized this
directly with the uniform quantizer, we would get an output of 2.5 with a corresponding error
of 0.2. Applying the compressor mapping, the value of 2.7 would be mapped to 3.13 resulting
in a quantized value of 3.5. Mapping this back through the expander, we get a reconstructed
value of 3.25, which differs from the input by 0.55.

As we can see, the companded quantizer effectively works like a nonuniform quantizer
with smaller quantization intervals in the interval [−1, 1] and larger quantization intervals
outside this interval. What is the effective input-output map of this quantizer? Notice that all
inputs in the interval [0, 0.5] get mapped into the interval [0, 1], for which the quantizer output
is 0.5, which in turn corresponds to the reconstruction value of 0.25. Essentially, all values in
the interval [0, 0.5] are represented by the value 0.25. Similarly, all values in the interval [0.5,
1] are represented by the value 0.75 and so on. The effective quantizer input-output map is
shown in Figure 9.25. �

If we bound the source output by some value xmax, any nonuniform quantizer can always
be represented as a companding quantizer. Let us see how we can use this fact to come up
with quantizers that are robust to mismatch. First we need to look at some of the properties of
high-rate quantizers, or quantizers with a large number of levels.

Define
�k = bk − bk−1 (37)

9.6 Nonuniform Quantization 285

xmax

c(bk)

c(bk − 1)

xmaxΔk

. . .

. . .

F I GUR E 9 . 26 A compressor function.

If the number of levels is high, then the size of each quantization interval will be small, and we
can assume that the pdf of the input fX (x) is essentially constant in each quantization interval.
Then

fX (x) = fX (yk) if bk−1 � x < bk (38)

Using this, we can rewrite Equation (3) as

σ 2
q =

M∑
i=1

fX (yi)

∫ bi

bi−1

(x − yi)
2dx (39)

= 1

12

M∑
i=1

fX (yi)�
3
i (40)

where we have used

yi = bi + bi−1

2

Armed with this result, let us return to companded quantization. Let c(x) be a companding
characteristic for a symmetric quantizer, and let c′(x) be the derivative of the compressor
characteristic with respect to x. If the rate of the quantizer is high, that is, if there are a
large number of levels, then within the kth interval, the compressor characteristic can be
approximated by a straight line segment (see Figure 9.26). We can write

c′(yk) = c(bk)− c(bk−1)

�k
(41)

From Figure 9.26, we can also see that c(bk) − c(bk−1) is the step size of a uniform M-level
quantizer. Therefore,

c(bk)− c(bk−1) = 2xmax

M
(42)

286 9 S C A L A R Q U A N T I Z A T I O N

Substituting this into Equation (41) and solving for �k , we get

�k = 2xmax

Mc′(yk)
(43)

Finally, substituting this expression for�k into Equation (40), we get the following relationship
between the quantizer distortion, the pdf of the input, and the compressor characteristic:

σ 2
q =

1

12

M∑
i=1

fX (yi)

(
2xmax

Mc′(yi)

)3

= x2
max

3M2

M∑
i=1

fX (yi)

c′2(yi)
· 2xmax

Mc′(yi)

= x2
max

3M2

M∑
i=1

fX (yi)

c′2(yi)
�i (44)

which for small �i can be written as

σ 2
q =

x2
max

3M2

∫ xmax

−xmax

fX (x)

(c′(x))2
dx (45)

This is a famous result, known as the Bennett integral after its discoverer, W.R. Bennett
[130], and it has been widely used to analyze quantizers. We can see from this integral that
the quantizer distortion is dependent on the pdf of the source sequence. However, it also tells
us how to get rid of this dependence. Assume

c′(x) = xmax

α |x | (46)

where α is a constant. From the Bennett integral we get

σ 2
q =

x2
max

3M2

α2

x2
max

∫ xmax

−xmax

x2 fX (x)dx (47)

= α2

3M2 σ
2
x (48)

where

σ 2
x =

∫ xmax

−xmax

x2 fX (x)dx (49)

Substituting the expression for σ 2
q into the expression for SNR, we get

SNR = 10 log10
σ 2

x

σ 2
q

(50)

= 10 log10(3M2)− 20 log10 α (51)

9.7 Entropy-Coded Quantization 287

which is independent of the input pdf. This means that if we use a compressor characteristic
whose derivative satisfies Equation (46), the signal-to-noise ratio will remain constant regard-
less of the input variance. This is an impressive result. However, we do need some caveats.

Notice that we are not saying that the mean squared quantization error is independent of
the quantizer input. It is not, as is clear from Equation (48). Remember also that this result is
valid as long as the underlying assumptions are valid. When the input variance is very small,
our assumption about the pdf being constant over the quantization interval is no longer valid,
and when the variance of the input is very large, our assumption about the input being bounded
by xmax may no longer hold.

With fair warning, let us look at the resulting compressor characteristic. We can obtain the
compressor characteristic by integrating Equation (46):

c(x) = xmax + β log
|x |

xmax
(52)

where β is a constant. The only problem with this compressor characteristic is that it becomes
very large for small x. Therefore, in practice we approximate this characteristic with a function
that is linear around the origin and logarithmic away from it.

Two companding characteristics that are widely used today are μ-law companding and
A-law companding. The μ-law compressor function is given by

c(x) = xmax

ln
(

1+ μ |x |xmax

)
ln(1+ μ) sgn(x) (53)

The expander function is given by

c−1(x) = xmax

μ
[(1+ μ) |x |xmax − 1]sgn(x) (54)

This companding characteristic with μ = 255 is used in the telephone systems in North
America and Japan. The rest of the world uses the A-law characteristic, which is given by

c(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A |x |
1+ ln A

sgn(x) 0 � |x |
xmax

� 1
A

xmax
1+ln A |x |

xmax
1+ln A sgn(x)

1

A
� |x |

xmax
� 1

(55)

and

c−1(x) =

⎧⎪⎨
⎪⎩

|x |
A (1+ ln A) 0 � |x |

xmax
� 1

1+ln A

xmax
A exp

[|x |
xmax

(1+ ln A)− 1
]

1
1+ln A � |x |

xmax
� 1

(56)

9.7 Entropy- Coded Quantization

In Section 9.3 we mentioned three tasks: selection of boundary values, selection of reconstruc-
tion levels, and selection of codewords. Up to this point we have talked about accomplishment

288 9 S C A L A R Q U A N T I Z A T I O N

of the first two tasks, with the performance measure being the mean squared quantization
error. In this section we will look at accomplishing the third task, assigning codewords to the
quantization interval. Recall that this becomes an issue when we use variable-length codes.
In this section we will be looking at the latter situation, with the rate being the performance
measure.

We can take two approaches to the variable-length coding of quantizer outputs. We can
redesign the quantizer by taking into account the fact that the selection of the decision bound-
aries will affect the rate, or we can keep the design of the quantizer the same (i.e., Lloyd-Max
quantization) and simply entropy-code the quantizer output. Since the latter approach is by
far the simpler one, let’s look at it first.

9.7.1 Entropy Coding of Lloyd-Max Quantizer Outputs

The process of trying to find the optimum quantizer for a given number of levels and rate is a
rather difficult task. An easier approach to incorporating entropy coding is to design a quantizer
that minimizes the msqe, that is, a Lloyd-Max quantizer, then entropy-code its output.

In Table 9.7 we list the output entropies of uniform and nonuniform Lloyd-Max quantizers.
Notice that while the difference in rate for lower levels is relatively small, for a larger number
of levels, there can be a substantial difference between the fixed-rate and entropy-coded cases.
For example, for 32 levels a fixed-rate quantizer would require 5 bits per sample. However,
the entropy of a 32-level uniform quantizer for the Laplacian case is 3.779 bits per sample,
which is more than 1 bit less. Notice that the difference between the fixed rate and the uniform
quantizer entropy is generally greater than the difference between the fixed rate and the entropy
of the output of the nonuniform quantizer. This is because the nonuniform quantizers have
smaller step sizes in high-probability regions and larger step sizes in low-probability regions.
This brings the probability of an input falling into a low-probability region and the probability
of an input falling in a high-probability region closer together. This, in turn, raises the output
entropy of the nonuniform quantizer with respect to the uniform quantizer. Finally, the closer
the distribution is to being uniform, the less difference in the rates. Thus, the difference in
rates is much less for the quantizer for the Gaussian source than the quantizer for the Laplacian
source.

T A B L E 9 . 7 Output entropies in bits per sample for minimum mean squared error
quantizers.

Number of Levels Gaussian Laplacian
Uniform Nonuniform Uniform Nonuniform

4 1.904 1.911 1.751 1.728
6 2.409 2.442 2.127 2.207
8 2.759 2.824 2.394 2.479
16 3.602 3.765 3.063 3.473
32 4.449 4.730 3.779 4.427

9.7 Entropy-Coded Quantization 289

9.7.2 Entropy- Constrained Quantization �
Although entropy coding the Lloyd-Max quantizer output is certainly simple, it is easy to see
that we could probably do better if we take a fresh look at the problem of quantizer design,
this time with the entropy as a measure of rate rather than the alphabet size. The entropy of
the quantizer output is given by

H(Q) = −
M∑

i=1

Pi log2 Pi (57)

where Pi is the probability of the input to the quantizer falling in the ith quantization interval
and is given by

Pi =
∫ bi

bi−1

fX (x)dx (58)

Notice that the selection of the representation values {y j } has no effect on the rate. This
means that we can select the representation values solely to minimize the distortion. However,
the selection of the boundary values affects both the rate and the distortion. Initially, we found
the reconstruction levels and decision boundaries that minimized the distortion, while keeping
the rate fixed by fixing the quantizer alphabet size and assuming fixed-rate coding. In an
analogous fashion, we can now keep the entropy fixed and try to minimize the distortion. Or,
more formally:

For a given Ro, find the decision boundaries {b j } that minimize σ 2
q given by

Equation (3), subject to H(Q) � Ro.

The solution to this problem involves the solution of the following M − 1 nonlinear equa-
tions [131]:

ln
Pl+1

Pl
= λ(yk+1 − yk)(yk+1 + yk − 2bk) (59)

where λ is adjusted to obtain the desired rate, and the reconstruction levels are obtained using
Equation (27). A generalization of the method used to obtain the minimum mean squared
error quantizers can be used to obtain solutions for this equation [132]. The process of finding
optimum entropy-constrained quantizers looks complex. Fortunately, at higher rates we can
show that the optimal quantizer is a uniform quantizer, simplifying the problem. Furthermore,
while these results are derived for the high-rate case, it has been shown that the results also
hold for lower rates [132].

9.7.3 High- Rate Optimum Quantization �
At high rates, the design of optimum quantizers becomes simple, at least in theory. Gish and
Pierce’s work [133] says that at high rates the optimum entropy-coded quantizer is a uniform
quantizer. Recall that any nonuniform quantizer can be represented by a compander and a
uniform quantizer. Let us try to find the optimum compressor function at high rates that
minimizes the entropy for a given distortion. Using the calculus of variations approach, we
will construct the functional

290 9 S C A L A R Q U A N T I Z A T I O N

J = H(Q)+ λσ 2
q (60)

then find the compressor characteristic to minimize it.
For the distortion σ 2

q , we will use the Bennett integral shown in Equation (45). The
quantizer entropy is given by Equation (57). For high rates, we can assume (as we did before)
that the pdf fX (x) is constant over each quantization interval�i , and we can replace Equation
(58) by

Pi = fX (yi)�i (61)

Substituting this into Equation (57), we get

H(Q) = −
∑

fX (yi)�i log[fX (yi)�i] (62)

= −
∑

fX (yi) log[fX (yi)]�i −
∑

fX (yi) log[�i]�i (63)

= −
∑

fX (yi) log[fX (yi)]�i −
∑

fX (yi) log
2xmax/M

c′(yi)
�i (64)

where we have used Equation (43) for �i . For small �i we can write this as

H(Q) = −
∫

fX (x) log fX (x)dx −
∫

fX (x) log
2xmax/M

c′(x)
dx (65)

= −
∫

fX (x) log fX (x)dx − log
2xmax

M
+
∫

fX (x) log c′(x)dx (66)

where the first term is the differential entropy of the source h(X). Let’s define g = c′(x).
Then substituting the value of H(Q) into Equation (60) and differentiating with respect to g,
we get ∫

fX (x)[g−1 − 2λ
x2

max

3M2 g−3]dx = 0 (67)

This equation is satisfied if the integrand is zero, which gives us

g =
√

2λ

3

xmax

M
= K (constant) (68)

Therefore,
c′(x) = K (69)

and
c(x) = K x + α (70)

If we now use the boundary conditions c(0) = 0 and c(xmax) = xmax, we get c(x) = x ,
which is the compressor characteristic for a uniform quantizer. Thus, at high rates the optimum
quantizer is a uniform quantizer.

Substituting this expression for the optimum compressor function in the Bennett integral,
we get an expression for the distortion for the optimum quantizer:

σ 2
q =

x2
max

3M2 (71)

9.7 Entropy-Coded Quantization 291

Substituting the expression for c(x) in Equation (66), we get the expression for the entropy of
the optimum quantizer:

H(Q) = h(X)− log
2xmax

M
(72)

Note that while this result provides us with an easy method for designing optimum quan-
tizers, our derivation is only valid if the source pdf is entirely contained in the interval
[−xmax, xmax], and if the step size is small enough that we can reasonably assume the pdf
to be constant over a quantization interval. Generally, these conditions can only be satisfied if
we have an extremely large number of quantization intervals. While theoretically this is not
much of a problem, most of these reconstruction levels will be rarely used. In practice, as men-
tioned in Chapter 3, entropy-coding a source with a large output alphabet is very problematic.
One way we can get around this is through the use of a technique called recursive indexing.

Recursive indexing is a mapping of a countable set to a collection of sequences of symbols
from another set with finite size [85]. Given a countable set A = {a0, a1, . . .} and a finite set
B = {b0, b1, . . . , bM } of size M + 1, we can represent any element in A by a sequence of
elements in B in the following manner:

1. Take the index i of element ai of A.
2. Find the quotient m and remainder r of the index i such that

i = m M + r

3. Generate the sequence bM bM · · · bM︸ ︷︷ ︸
m times

br

B is called the representation set. We can see that given any element in A we will have a
unique sequence from B representing it. Furthermore, no representative sequence is a prefix
of any other sequence. Therefore, recursive indexing can be viewed as a trivial, uniquely
decodable prefix code. The inverse mapping is given by

bM bM · · · bM︸ ︷︷ ︸
m times

br �→ am M+r

Since the mapping is one-to-one, if it is used to convert the index sequence of the quantizer
output into the sequence of the recursive indices, the former can be recovered without error
from the latter. Furthermore, when the size M + 1 of the representation set B is chosen
appropriately, in effect we can achieve a reduction in the size of the output alphabets that are
used for entropy coding.

Example 9 .7 .1 :

Suppose we want to represent the set of nonnegative integers A = {0, 1, 2, . . .} with the
representation set B = {0, 1, 2, 3, 4, 5}. Then the value 12 would be represented by the
sequence 5, 5, 2, and the value 16 would be represented by the sequence 5, 5, 5, 1. Whenever
the decoder sees the value 5, it simply adds on the next value until the next value is smaller
than 5. For example, the sequence 3, 5, 1, 2, 5, 5, 1, 5, 0 would be decoded as 3, 6, 2, 11, 5.�

292 9 S C A L A R Q U A N T I Z A T I O N

Recursive indexing is applicable to any representation of a large set by a small set. One
way of applying recursive indexing to the problem of quantization is as follows: For a given
step size � > 0 and a positive integer K, define xl and xh as follows:

xl = −
⌊

K − 1

2

⌋
�

xh = xl + (K − 1)�

where 	x
 is the largest integer not exceeding x. We define a recursively indexed quantizer of
size K to be a uniform quantizer with step size � and with xl and xh being its smallest and
largest output levels. (Q defined this way also has 0 as its output level.) The quantization rule
Q, for a given input value x, is as follows:

1. If x falls in the interval (xl + �
2 , xh − �

2), then Q(x) is the nearest output level.
2. If x is greater than xh − �

2 , see if x1 = x − xh ∈ (xl + �
2 , xh − �

2). If so, Q(x) =
(xh, Q(x1)). If not, form x2 = x−2xh and do the same as for x1. This process continues
until for some m, xm = x −mxh falls in (xl + �

2 , xh − �
2), which will be quantized into

Q(x) = (xh, xh, . . . , xh︸ ︷︷ ︸
m times

, Q(xm)) (73)

3. If x is smaller than xl + �
2 , a similar procedure to the above is used; that is, form

xm = x+mxl so that it falls in (xl+�2 , xh−�2), and quantize it to (xl , xl , . . . , xl , Q(xm)).

In summary, the quantizer operates in two modes: one when the input falls in the range (xl , xh),
the other when it falls outside of the specified range. The recursive nature of the second mode
gives it the name.

We pay for the advantage of encoding a larger set by a smaller set in several ways. If we
get a large input to our quantizer, the representation sequence may end up being intolerably
large. We also get an increase in the rate. If H(Q) is the entropy of the quantizer output, and
γ is the average number of representation symbols per input symbol, then the minimum rate
for the recursively indexed quantizer is γ H(Q).

In practice, neither cost is too large. We can avoid the problem of intolerably large se-
quences by adopting some simple strategies for representing these sequences, and the value of
γ is quite close to one for reasonable values of M. For Laplacian and Gaussian quantizers, a
typical value for M would be 15 [85].

9.8 Summary

Quantization is a well-researched area and much is known about the subject. In this chapter,
we looked at the design and performance of uniform and nonuniform quantizers for a variety of
sources, and how the performance is affected when the assumptions used in the design process
are not correct. When the source statistics are not well known or change with time, we can

9.9 Projects and Problems 293

use an adaptive strategy. One of the more popular approaches to adaptive quantization is the
Jayant quantizer. We also looked at the issues involved with entropy-coded quantization.

Further Reading

With an area as broad as quantization, we had to keep some of the coverage rather cursory.
However, there is a wealth of information on quantization available in the published literature.
The following sources are especially useful for a general understanding of the area:

1. A very thorough coverage of quantization can be found in Digital Coding of Waveforms,
by N.S. Jayant and P. Noll [134].

2. The paper “Quantization,” by A. Gersho, in IEEE Communication Magazine, September
1977 [127], provides excellent tutorial coverage of many of the topics listed here.

3. The original paper by J. Max, “Quantization for Minimum Distortion,” IRE Transactions
on Information Theory [122], contains a very accessible description of the design of
pdf-optimized quantizers.

4. A thorough study of the effects of mismatch is provided by W. Mauersberger in [135].

9.9 Projects and Problems

1. Show that the derivative of the distortion expression in Equation (18) results in the
expression in Equation (19). You will have to use a result called Leibnitz’s rule and the
idea of a telescoping series. Leibnitz’s rule states that if a(t) and b(t) are monotonic,
then

δ

δt

∫ b(t)

a(t)
f (x, t)dx =

∫ b(t)

a(t)

δ f (x, t)

δt
dx + f (b(t), t)

δb(t)

δt
− f (a(t), t)

δa(t)

δt
(74)

2. Use the program falspos to solve Equation (19) numerically for the Gaussian and
Laplacian distributions. You may have to modify the function func in order to do this.

3. Design a 3-bit uniform quantizer (specify the decision boundaries and representation
levels) for a source with a Laplacian pdf, with a mean of 3 and a variance of 4.

4. The pixel values in the Sena image are not really distributed uniformly. Obtain a histogram
of the image (you can use thehist_image routine), and using the fact that the quantized
image should be as good an approximation as possible for the original, design 1-, 2-, and
3-bit quantizers for this image. Compare these with the results displayed in Figure 9.7.
(For better comparison, you can reproduce the results in the book using the program
uquan_img.)

5. Use the program misuquan to study the effect of mismatch between the input and
assumed variances. How do these effects change with the quantizer alphabet size and
the distribution type?

6. For the companding quantizer of Example 9.6.1, what are the outputs for the following
inputs: −0.8, 1.2, 0.5, 0.6, 3.2,−0.3? Compare your results with the case when the input
is directly quantized with a uniform quantizer with the same number of levels. Comment
on your results.

294 9 S C A L A R Q U A N T I Z A T I O N

7. Use the test images Sena and Bookshelf1 to study the trade-offs involved in the selection
of block sizes in the forward adaptive quantization scheme described in Example 9.5.2.
Compare this with a more traditional forward adaptive scheme in which the variance
is estimated and transmitted. The variance information should be transmitted using a
uniform quantizer with differing number of bits.

8. Generalize the Jayant quantizer to the nonuniform case. Assume that the input is from a
known distribution with unknown variance. Simulate the performance of this quantizer
over the same range of ratio of variances as we have done for the uniform case. Compare
your results to the fixed nonuniform quantizer and the adaptive uniform quantizer. To
get a start on your program, you may wish to use misnuq.c and juquan.c.

9. Let’s look at the rate distortion performance of the various quantizers.

(a) Plot the rate-distortion function R(D) for a Gaussian source with mean zero and
variance σ 2

X = 2.
(b) Assuming fixed length codewords, compute the rate and distortion for 1-, 2-, and 3-

bit pdf-optimized nonuniform quantizers. Also, assume that X is a Gaussian random
variable with mean zero and σ 2

X = 2. Plot these values on the same graph with x’s.
(c) For the 2- and 3-bit quantizers, compute the rate and distortion assuming that the

quantizer outputs are entropy coded. Plot these on the graph with o’s.

10
Vector Quantization

10.1 Overview

B
y grouping source outputs together and encoding them as a single block, we
can obtain efficient lossy as well as lossless compression algorithms. Many of
the lossless compression algorithms that we looked at took advantage of this
fact. We can do the same with quantization. In this chapter, several quantization
techniques that operate on blocks of data are described. We can view these

blocks as vectors, hence the name “vector quantization.” We will describe several different
approaches to vector quantization. We will explore how to design vector quantizers and how
these quantizers can be used for compression.

10.2 Introduction

In the last chapter, we looked at different ways of quantizing the output of a source. In all
cases the quantizer inputs were scalar values, and each quantizer codeword represented a single
sample of the source output. In Chapter 2 we saw that, by taking longer and longer sequences of
input samples, it is possible to extract the structure in the source coder output. In Chapter 4 we
saw that, even when the input is random, encoding sequences of samples instead of encoding
individual samples separately provides a more efficient code. Encoding sequences of samples
is more advantageous in the lossy compression framework as well. By “advantageous” we
mean a lower distortion for a given rate, or a lower rate for a given distortion. As in the previous
chapter, by “rate” we mean the average number of bits per input sample, and the measures of
distortion will generally be the mean squared error and the signal-to-noise ratio.

Introduction to Data Compression. DOI: http://dx.doi.org/10.1016/B978-0-12-415796-5.00010-7
© 2012 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-415796-5.00010-7

296 10 V E C T O R Q U A N T I Z A T I O N

The idea that encoding sequences of outputs can provide an advantage over the encoding
of individual samples was first put forward by Shannon, and the basic results in information
theory were all proved by taking longer and longer sequences of inputs. This indicates that
a quantization strategy that works with sequences or blocks of output would provide some
improvement in performance over scalar quantization. In other words, we wish to generate a
representative set of sequences. Given a source output sequence, we would represent it with
one of the elements of the representative set.

In vector quantization we group the source output into blocks or vectors. For example,
we can treat L consecutive samples of speech as the components of an L-dimensional vector.
Or, we can take a block of L pixels from an image and treat each pixel value as a component
of a vector of size or dimension L . This vector of source outputs forms the input to the
vector quantizer. At both the encoder and decoder of the vector quantizer, we have a set of L-
dimensional vectors called the codebook of the vector quantizer. The vectors in this codebook,
known as code-vectors, are selected to be representative of the vectors we generate from the
source output. Each code-vector is assigned a binary index. At the encoder, the input vector
is compared to each code-vector in order to find the code-vector closest to the input vector.
The elements of this code-vector are the quantized values of the source output. In order to
inform the decoder about which code-vector was found to be the closest to the input vector, we
transmit or store the binary index of the code-vector. Because the decoder has exactly the same
codebook, it can retrieve the code-vector given its binary index. A pictorial representation of
this process is shown in Figure 10.1.

Although the encoder may have to perform a considerable amount of computations in order
to find the closest reproduction vector to the vector of source outputs, the decoding consists of a
table lookup. This makes vector quantization a very attractive encoding scheme for applications
in which the resources available for decoding are considerably less than the resources available
for encoding. For example, in multimedia applications, considerable computational resources

Source
output

Group
into

vectors

Find
closest

code-vector

Codebook Index

Unblock

ReconstructionDecoderEncoder

Table
lookup

CodebookIndex

. . .

F I GUR E 10 . 1 The vector quantization procedure.

10.2 Introduction 297

may be available for the encoding operation. However, if the decoding is to be done in software,
the amount of computational resources available to the decoder may be quite limited.

The subject of vector quantization is a broad one. In this chapter we will try to introduce
you to as much of this fascinating area as we can. If your appetite is whetted by what is
available here and you wish to explore further, there is an excellent book by Gersho and Gray
[136] devoted to the subject of vector quantization.

Our approach in this chapter is as follows: First, we try to answer the question of why
we would want to use vector quantization over scalar quantization. There are several answers
to this question, each illustrated through examples. In our discussion, we assume that you
are familiar with the material in Chapter 9. We will then turn to one of the most important
elements in the design of a vector quantizer, the generation of the codebook. While there are
a number of ways of obtaining the vector quantizer codebook, most of them are based on one
particular approach, popularly known as the Linde-Buzo-Gray (LBG) algorithm. We devote a
considerable amount of time to describing some of the details of this algorithm. Our intent here
is to provide you with enough information so that you can write your own programs for design
of vector quantizer codebooks. In the software accompanying this book, we have also included
programs for designing codebooks that are based on the descriptions in this chapter. If you
are not currently thinking of implementing vector quantization routines, you may wish to skip
these sections (Sections 10.4.1 and 10.4.2). We follow our discussion of the LBG algorithm
with some examples of image compression using codebooks designed with this algorithm,
and then with a brief sampling of the many different kinds of vector quantizers. Finally, we
describe another quantization strategy, called trellis-coded quantization (TCQ), which, though
different in implementation from vector quantizers, also makes use of the advantage to be
gained from operating on sequences.

Before we begin our discussion of vector quantization, let us define some of the terminology
we will be using. The amount of compression will be described in terms of the rate, which will
be measured in bits per sample. Suppose we have a codebook of size K , and the input vector is
of dimension L . In order to inform the decoder of which code-vector was selected, we need to
use �log2 K � bits. For example, if the codebook contained 256 code-vectors, we would need
8 bits to specify which of the 256 code-vectors had been selected at the encoder. Thus, the
number of bits per vector is �log2 K � bits. As each code-vector contains the reconstruction
values for L source output samples, the number of bits per sample would be �log2 K �

L . Thus,

the rate for an L-dimensional vector quantizer with a codebook of size K is �log2 K �
L . As our

measure of distortion we will use the mean squared error. When we say that in a codebook C,
containing the K code-vectors {yi }, the input vector x is closest to y j , we will mean that

∥∥x − y j
∥∥2 � ‖x − yi‖2 for all yi ∈ C (1)

where x = (x1x2 · · · xL) and

‖x‖2 =
L∑

i=1

x2
i (2)

The term sample will always refer to a scalar value. Thus, when we are discussing com-
pression of images, a sample refers to a single pixel. The output points of the quantizer are
often referred to as levels. Thus, when we wish to refer to a quantizer with K output points

298 10 V E C T O R Q U A N T I Z A T I O N

or code-vectors, we may refer to it as a K -level quantizer. Finally, whenever we measure the
performance of the quantizer by computing the distortion, it will always be on a per-sample
basis.

10.3 Advantages of Vector Quantization over
Scalar Quantization

For a given rate (in bits per sample), use of vector quantization results in a lower distortion than
when scalar quantization is used at the same rate, for several reasons. In this section we will
explore these reasons with examples (for a more theoretical explanation, see [38,112,118]).
Note that whenever we compare performance it is always on a per-sample basis rather than on
a per-vector basis.

If the source output is correlated, vectors of source output values will tend to fall in
clusters. By selecting the quantizer output points to lie in these clusters, we have a more
accurate representation of the source output. Consider the following example.

Example 10 .3 .1 :

In Example 8.5.1, we introduced a source that generates the height and weight of individuals.
Suppose the height of these individuals varies uniformly between 40 and 80 inches, and the
weight varies uniformly between 40 and 240 pounds. Suppose we are allowed a total of 6
bits to represent each pair of values. We can use 3 bits to quantize the height and 3 bits to
quantize the weight. Thus, the weight range between 40 and 240 pounds will be divided into
eight intervals of equal width of 25, with reconstruction values {52, 77, . . . , 227}. Similarly,
the height range between 40 and 80 inches can be divided into eight intervals of width 5,
with reconstruction levels {42, 47, . . . , 77}. When we look at the representation of height and
weight separately, this approach seems reasonable. But let’s look at this quantization scheme
in two dimensions. We will plot the height values along the x-axis and the weight values along
the y-axis. Note that we are not changing anything in the quantization process. The height
values are still being quantized to the same eight different values, as are the weight values.
The two-dimensional representation of these two quantizers is shown in Figure 10.2.

From the figure we can see that we effectively have a quantizer output for a person who
is 80 inches (6 feet 8 inches) tall and weighs 40 pounds, as well as a quantizer output for an
individual who is 42 inches tall but weighs more than 200 pounds. Obviously, these outputs
will never be used, as is the case for many of the other outputs. A more sensible approach
would be to use a quantizer like the one shown in Figure 10.3, where we take account of the
fact that the height and weight are correlated. This quantizer has exactly the same number of
output points as the quantizer in Figure 10.2; however, the output points are clustered in the
area occupied by the input. Using this quantizer, we can no longer quantize the height and
weight separately. We have to consider them as the coordinates of a point in two dimensions
in order to find the closest quantizer output point. However, this method provides a much finer
quantization of the input.

10.3 Advantages of Vector Quantization over Scalar Quantization 299

40

65

90

115

140Weight (lb)

165

190

215

40 50 60
Height-weight quantizerWeight quantizer

70 Height (in)

40 50 60
Height quantizer

70

65

90

115

140

165

190

215

Quantizer
output

F I GUR E 10 . 2 The height/weight scalar quantizers when viewed in two
dimensions.

Note that we have not said how we would obtain the locations of the quantizer outputs
shown in Figure 10.3. These output points make up the codebook of the vector quantizer, and
we will be looking at codebook design in some detail later in this chapter. �

We can see from this example that, as in lossless compression, looking at longer sequences
of inputs brings out the structure in the source output. This structure can then be used to
provide more efficient representations.

We can easily see how structure in the form of correlation between source outputs can
make it more efficient to look at sequences of source outputs rather than looking at each sample
separately. However, the vector quantizer is also more efficient than the scalar quantizer when
the source output values are not correlated. The reason for this is actually quite simple. As
we look at longer and longer sequences of source outputs, we are afforded more flexibility in
terms of our design. This flexibility in turn allows us to match the design of the quantizer to
the source characteristics. Consider the following example.

300 10 V E C T O R Q U A N T I Z A T I O N

165

40

190

215

Weight (lb)

140

115

90

65

40 50 60 70 Height (in)

F I GUR E 10 . 3 The height-weight vector quantizer when height and weight are
taken to be components of a vector.

Example 10 .3 .2 :

Suppose we have to design a uniform quantizer with eight output values for a Laplacian input.
Using the information from Table 9.3 in Chapter 9, we would obtain the quantizer shown
in Figure 10.4, where � is equal to 0.7309. As the input has a Laplacian distribution, the
probability of the source output falling in the different quantization intervals is not the same.
For example, the probability that the input will fall in the interval [0,�) is 0.3242, while the
probability that a source output will fall in the interval [3�,∞) is 0.0225. Let’s look at how
this quantizer will quantize two consecutive source outputs. As we did in the previous example,
let’s plot the first sample along the x-axis and the second sample along the y-axis. We can
represent this two-dimensional view of the quantization process as shown in Figure 10.5. Note
that, as in the previous example, we have not changed the quantization process; we are simply
representing it differently. The first quantizer input, which we have represented in the figure
as x1, is quantized to the same eight possible output values as before. The same is true for the
second quantizer input, which we have represented in the figure as x2. This two-dimensional
representation allows us to examine the quantization process in a slightly different manner.

10.3 Advantages of Vector Quantization over Scalar Quantization 301

−3Δ −2Δ −Δ

−7Δ/2

−5Δ/2

−3Δ/2

−Δ /2

7Δ/2

5Δ/2

3Δ/2

Δ/2

Output

Input

Δ 2Δ 3Δ

Quantizer
output

−3Δ −2Δ −Δ Δ0 2Δ 3Δ

F I GUR E 10 . 4 Two representations of an eight-level scalar quantizer.

Each filled-in circle in the figure represents a sequence of two quantizer outputs. For example,
the top right-most circle represents the two quantizer outputs that would be obtained if we had
two consecutive source outputs with a value greater than 3�. We computed the probability
of a single source output greater than 3� to be 0.0225. The probability of two consecutive
source outputs greater than 2.193 is simply 0.0225× 0.0225 = 0.0005, which is quite small.
Given that we do not use this output point very often, we could simply place it somewhere
else where it would be of more use. Let us move this output point to the origin, as shown in
Figure 10.6. We have now modified the quantization process. Now if we get two consecutive
source outputs with values greater than 3�, the quantizer output corresponding to the second
source output may not be the same as the first source output.

If we compare the rate distortion performance of the two vector quantizers, the SNR for
the first vector quantizer is 11.44 dB, which agrees with the result in Chapter 9 for the uniform
quantizer with a Laplacian input. The SNR for the modified vector quantizer, however, is 11.73
dB, an increase of about 0.3 dB. Recall that the SNR is a measure of the ratio of the average

302 10 V E C T O R Q U A N T I Z A T I O N

−3Δ − 2Δ −Δ

−3Δ

−2Δ

−Δ

3Δ

2Δ

Δ

x2

x1

Δ 2Δ 3Δ

Quantizer
output

F I GUR E 10 . 5 Input-output map for consecutive quantization of two inputs using
an eight-level scalar quantizer.

squared value of the source output samples and the mean squared error. As the average squared
value of the source output is the same in both cases, an increase in SNR means a decrease
in the mean squared error. Whether this increase in SNR is significant will depend on the
particular application. What is important here is that by treating the source output in groups
of two we could effect a positive change with only a minor modification. We could argue
that this modification is really not that minor since the uniform characteristic of the original
quantizer has been destroyed. However, if we begin with a nonuniform quantizer and modify
it in a similar way, we get similar results.

Could we do something similar with the scalar quantizer? If we move the output point at
7�
2 to the origin, the SNR drops from 11.44 dB to 10.8 dB. What is it that permits us to make

modifications in the vector case, but not in the scalar case? This advantage is caused by the
added flexibility we get by viewing the quantization process in higher dimensions. Consider
the effect of moving the output point from 7�

2 to the origin in terms of two consecutive inputs.
This one change in one dimension corresponds to moving 15 output points in two dimensions.
Thus, modifications at the scalar quantizer level are gross modifications when viewed from

10.3 Advantages of Vector Quantization over Scalar Quantization 303

F I GUR E 10 . 6 Modified two-dimensional vector quantizer.

the point of view of the vector quantizer. Remember that in this example we have only looked
at two-dimensional vector quantizers. As we block the input into larger and larger blocks or
vectors, these higher dimensions provide even greater flexibility and the promise of further
gains to be made. �

In Figure 10.6, notice how the quantization regions have changed for the outputs around
the origin, as well as for the two neighbors of the output point that were moved. The decision
boundaries between the reconstruction levels can no longer be described as easily as in the
case for the scalar quantizer. However, if we know the distortion measure, simply knowing the
output points gives us sufficient information to implement the quantization process. Instead of
defining the quantization rule in terms of the decision boundary, we can define the quantization
rule as follows:

Q(x) = y j iff d(x, y j) < d(x, yi) ∀i �= j (3)

For the case where the input x is equidistant from two output points, we can use a simple tie-
breaking rule such as “use the output point with the smaller index.” The quantization regions

304 10 V E C T O R Q U A N T I Z A T I O N

Vj can then be defined as

Vj = {x : d(x, y j) < d(x, yi) ∀i �= j} (4)

Thus, the quantizer is completely defined by the output points and a distortion measure.
From a multidimensional point of view, using a scalar quantizer for each input restricts

the output points to a rectangular grid. Observing several source output values at once allows
us to move the output points around. Another way of looking at this is that in one dimension
the quantization intervals are restricted to be intervals, and the only parameter that we can
manipulate is the size of these intervals. When we divide the input into vectors of some length
n, the quantization regions are no longer restricted to be rectangles or squares. We have the
freedom to divide the range of the inputs in an infinite number of ways.

These examples have shown two ways in which the vector quantizer can be used to improve
performance. In the first case, we exploited the sample-to-sample dependence of the input. In
the second case, there was no sample-to-sample dependence; the samples were independent.
However, looking at two samples together still improved performance.

These two examples can be used to motivate two somewhat different approaches toward
vector quantization. One approach is a pattern-matching approach, similar to the process used
in Example 10.3.1, while the other approach deals with the quantization of random inputs. We
will look at both of these approaches in this chapter.

10.4 The Linde- Buzo-Gray Algorithm

In Example 10.3.1 we saw that one way of exploiting the structure in the source output is to
place the quantizer output points where the source output points (blocked into vectors) are most
likely to congregate. The set of quantizer output points is called the codebook of the quantizer,
and the process of placing these output points is often referred to as codebook design. When
we group the source output in two-dimensional vectors, as in the case of Example 10.3.1,
we might be able to obtain a good codebook design by plotting a representative set of source
output points and then visually locating where the quantizer output points should be. However,
this approach to codebook design breaks down when we design higher-dimensional vector
quantizers. Consider designing the codebook for a 16-dimensional quantizer. Obviously, a
visual placement approach will not work in this case. We need an automatic procedure for
locating where the source outputs are clustered.

This is a familiar problem in the field of pattern recognition. It is no surprise, therefore,
that the most popular approach to designing vector quantizers is a clustering procedure known
as the k-means algorithm, which was developed for pattern recognition applications.

The k-means algorithm functions as follows: Given a large set of output vectors from the
source, known as the training set, and an initial set of k representative patterns, assign each
element of the training set to the closest representative pattern. After an element is assigned,
the representative pattern is updated by computing the centroid of the training set vectors
assigned to it. When the assignment process is complete, we will have k groups of vectors
clustered around each of the output points.

10.4 The Linde-Buzo-Gray Algorithm 305

Stuart Lloyd [129] used this approach to generate the pdf-optimized scalar quantizer, except
that instead of using a training set, he assumed that the source distribution fX (x) was known.
The Lloyd algorithm functions as follows:

1. Start with an initial set of reconstruction values
{

y(1)i

}M

i=1
. Set k = 1, D(0) = 0. Select

threshold ε.
2. Find decision boundaries

b(k)j =
y(k)j+1 + y(k)j

2
j = 1, 2, . . . ,M − 1

3. Compute the distortion

D(k) =
M∑

i=1

∫ b(k)i

b(k)i−1

(x − yi)
2 fX (x)dx

4. If D(k) − D(k−1) < ε, stop; otherwise, continue.
5. k = k + 1. Compute new reconstruction values

y(k)j =
∫ b(k−1)

j

b(k−1)
j−1

x fX (x)dx

∫ b(k−1)
j

b(k−1)
j−1

fX (x)dx

Go to Step 2.

Linde, Buzo, and Gray generalized this algorithm to the case where the inputs are no longer
scalars [137]. For the case where the distribution is known, the algorithm looks very much
like the Lloyd algorithm described above.

1. Start with an initial set of reconstruction values
{

y(1)i

}M

i=1
. Set k = 1, D(0) = 0. Select

threshold ε.
2. Find quantization regions

V (k)
i = {x : d(x, yi) < d(x, y j) ∀ j �= i} j = 1, 2, . . . ,M

3. Compute the distortion

D(k) =
M∑

i=1

∫
V (k)

i

∥∥∥x − y(k)i

∥∥∥2
fX (x)dx

4. If (D
(k)−D(k−1))

D(k) < ε, stop; otherwise, continue.

5. k = k+ 1. Find new reconstruction values
{

y(k)i

}M

i=1
that are the centroids of

{
V (k−1)

i

}
.

Go to Step 2.

306 10 V E C T O R Q U A N T I Z A T I O N

This algorithm is not very practical because the integrals required to compute the distortions
and centroids are over odd-shaped regions in n dimensions, where n is the dimension of the input
vectors. Generally, these integrals are extremely difficult to compute, making this particular
algorithm more of an academic interest.

Of more practical interest is the algorithm for the case where we have a training set available.
In this case, the algorithm looks very much like the k-means algorithm.

1. Start with an initial set of reconstruction values
{

y(1)i

}M

i=1
and a set of training vectors

{xn}Nn=1. Set k = 1, D(0) = 0. Select threshold ε.

2. The quantization regions
{

V (k)
i

}M

i=1
are given by

V (k)
i = {xn : d(xn, yi) < d(xn, y j) ∀ j �= i} i = 1, 2, . . . ,M

We assume that none of the quantization regions are empty. (Later we will deal with the
case where V (k)

i is empty for some i and k.)
3. Compute the average distortion D(k) between the training vectors and the representative

reconstruction value:

D(k) = 1

N

M∑
i=1

∑
xn∈V (k)

i

||xn − yi ||2

4. If (D
(k)−D(k−1))

D(k) < ε, stop; otherwise, continue.

5. k = k + 1. Find new reconstruction values
{

y(k)i

}M

i=1
that are the average value of the

elements of each of the quantization regions V (k−1)
i . Go to Step 2.

This algorithm forms the basis of most vector quantizer designs. It is popularly known
as the Linde-Buzo-Gray or LBG algorithm, or the generalized Lloyd algorithm (GLA) [137].
Although the paper of Linde, Buzo, and Gray [137] is a starting point for most of the work
on vector quantization, the latter algorithm had been used several years prior by Edward E.
Hilbert at the NASA Jet Propulsion Laboratories in Pasadena, California. Hilbert’s starting
point was the idea of clustering, and although he arrived at the same algorithm as described
above, he called it the cluster compression algorithm [138].

In order to see how this algorithm functions, consider the following example of a two-
dimensional vector quantizer codebook design.

Example 10 .4 .1 :

Suppose our training set consists of the height and weight values shown in Table 10.1. The
initial set of output points is shown in Table 10.2. (For ease of presentation, we will always
round the coordinates of the output points to the nearest integer.) The inputs, outputs, and
quantization regions are shown in Figure 10.7.

The input (44, 41) has been assigned to the first output point; the inputs (56, 91), (57, 88),
(59, 119), and (60, 110) have been assigned to the second output point; the inputs (62, 114), and
(65, 120) have been assigned to the third output; and the five remaining vectors from the training

10.4 The Linde-Buzo-Gray Algorithm 307

T A B L E 10 . 1 Training set for designing
vector quantizer codebook.

Height Weight

72 180
65 120
59 119
64 150
65 162
57 88
72 175
44 41
62 114
60 110
56 91
70 172

T A B L E 10 . 2 Initial set of output points for
codebook design.

Height Weight

45 50
75 117
45 117
80 180

set have been assigned to the fourth output. The distortion for this assignment is 387.25. We
now find the new output points. There is only one vector in the first quantization region, so
the first output point is (44, 41). The average of the four vectors in the second quantization
region (rounded up) is the vector (58, 102), which is the new second output point. In a similar
manner, we can compute the third and fourth output points as (64, 117) and (69, 168). The
new output points and the corresponding quantization regions are shown in Figure 10.8. From
Figure 10.8, we can see that, while the training vectors that were initially part of the first
and fourth quantization regions are still in the same quantization regions, the training vectors
(59,115) and (60,120), which were in quantization region 2, are now in quantization region 3.
The distortion corresponding to this assignment of training vectors to quantization regions is 89,
considerably less than the original 387.25. Given the new assignments, we can obtain a new set
of output points. The first and fourth output points do not change because the training vectors in
the corresponding regions have not changed. However, the training vectors in regions 2 and 3
have changed. Recomputing the output points for these regions, we get (57, 90) and (62, 116).
The final form of the quantizer is shown in Figure 10.9. The distortion corresponding to the
final assignments is 60.17. �

308 10 V E C T O R Q U A N T I Z A T I O N

40

60

80

100

120

140

160

180Weight (lb)

Height (in)04 05 06 07

4

32

1

x

x

x
x
x

x
x

x
x

x
x

x

F I GUR E 10 . 7 Initial state of the vector quantizer.

40

60

80

100

120

140

160

180Weight (lb)

Height (in)04 05 06 07

4

3

2

1

x

x

x
x
x

x
x

x

x

x
x

x

F I GUR E 10 . 8 The vector quantizer after one iteration.

The LBG algorithm is conceptually simple, and as we shall see later, the resulting vector
quantizer is remarkably effective in the compression of a wide variety of inputs, both by itself
and in conjunction with other schemes. In the next two sections we will look at some of
the details of the codebook design process. While these details are important to consider
when designing codebooks, they are not necessary for the understanding of the quantization
process. If you are not currently interested in these details, you may wish to proceed directly
to Section 10.4.3.

10.4 The Linde-Buzo-Gray Algorithm 309

40

60

80

100

120

140

160

180Weight (lb)

Height (in)04 05 06 07

4

3

2

1

x

x

x
x
x

x
x

x

x

x
x

x

F I GUR E 10 . 9 Final state of the vector quantizer.

T A B L E 10 . 3 An alternate initial set of
output points.

Height Weight

75 50
75 117
75 127
80 180

10.4.1 Initializing the LBG Algorithm

The LBG algorithm guarantees that the distortion from one iteration to the next will not increase.
However, there is no guarantee that the procedure will converge to the optimal solution. The
solution to which the algorithm converges is heavily dependent on the initial conditions. For
example, if our initial set of output points in Example 10.4.1 had been those shown in Table 10.3
instead of the set in Table 10.2, by using the LBG algorithm we would get the final codebook
shown in Table 10.4.

The resulting quantization regions and their membership are shown in Figure 10.10. This
is a very different quantizer than the one we previously obtained. Given this heavy dependence
on initial conditions, the selection of the initial codebook is a matter of some importance. We
will look at some of the better-known methods of initialization in the following section.

Linde, Buzo, and Gray described a technique in their original paper [137] called the splitting
technique for initializing the design algorithm. In this technique, we begin by designing a vector
quantizer with a single output point; in other words, a codebook of size one, or a one-level

310 10 V E C T O R Q U A N T I Z A T I O N

T A B L E 10 . 4 Final codebook obtained using
the alternative initial
codebook.

Height Weight

44 41
60 107
64 150
70 172

40

60

80

100

120

140

160

180Weight (lb)

Height (in)04 05 06 07

4

3

2

1

x

x

x
x
x

x
x

x

x

x
x

x

F I GUR E 10 . 10 Final state of the vector quantizer using the alternative initial
codebook.

vector quantizer. With a one-element codebook, the quantization region is the entire input
space, and the output point is the average value of the entire training set. From this output
point, the initial codebook for a two-level vector quantizer can be obtained by including the
output point for the one-level quantizer and a second output point obtained by adding a fixed
perturbation vector ε. We then use the LBG algorithm to obtain the two-level vector quantizer.
Once the algorithm has converged, the two codebook vectors are used to obtain the initial
codebook of a four-level vector quantizer. This initial four-level codebook consists of the two
codebook vectors from the final codebook of the two-level vector quantizer and another two
vectors obtained by adding ε to the two codebook vectors. The LBG algorithm can then be
used until this four-level quantizer converges. In this manner we keep doubling the number
of levels until we reach the desired number of levels. By including the final codebook of the
previous stage at each “splitting,” we guarantee that the codebook after splitting will be at least
as good as the codebook prior to splitting.

10.4 The Linde-Buzo-Gray Algorithm 311

T A B L E 10 . 5 Progression of codebooks
using splitting.

Codebook Height Weight

One-level 62 127
Initial two-level 62 127

72 137
Final two-level 58 98

69 168
Initial four-level 58 98

68 108
69 168
79 178

Final four-level 52 73
62 116
65 156
71 176

Example 10 .4 .2 :

Let’s revisit Example 10.4.1. This time, instead of using the initial codewords used in Example
10.4.1, we will use the splitting technique. For the perturbations, we will use a fixed vector
ε = (10, 10). The perturbation vector is usually selected randomly; however, for purposes of
explanation it is more useful to use a fixed perturbation vector.

We begin with a single-level codebook. The codeword is simply the average value of the
training set. The progression of codebooks is shown in Table 10.5.

The perturbed vectors are used to initialize the LBG design of a two-level vector quantizer.
The resulting two-level vector quantizer is shown in Figure 10.11. The resulting distortion
is 468.58. These two vectors are perturbed to get the initial output points for the four-level
design. Using the LBG algorithm, the final quantizer obtained is shown in Figure 10.12.
The distortion is 156.17. The average distortion for the training set for this quantizer using
the splitting algorithm is higher than the average distortion obtained previously. However,
because the sample size used in this example is rather small, this is no indication of relative
merit. �

If the desired number of levels is not a power of two, then in the last step, instead of
generating two initial points from each of the output points of the vector quantizer designed
previously, we can perturb as many vectors as necessary to obtain the desired number of
vectors. For example, if we needed an eleven-level vector quantizer, we would generate a
one-level vector quantizer first, then a two-level, then a four-level, and then an eight-level
vector quantizer. At this stage, we would perturb only three of the eight vectors to get the
eleven initial output points of the eleven-level vector quantizer. The three points should be
those with the largest number of training set vectors, or the largest distortion.

312 10 V E C T O R Q U A N T I Z A T I O N

40

60

80

100

120

140

160

180Weight (lb)

Height (in)04 05 06 07

2

1x

x

x
x
x

x
x

x

x

x
x

x

F I GUR E 10 . 11 Two-level vector quantizer using splitting approach.

40

60

80

100

120

140

160

180Weight (lb)

Height (in)04 05 06 07

1

2

x

x

x
x
x

x
x

x

x

x
x

x

F I GUR E 10 . 12 Final design using the splitting approach.

The approach used by Hilbert [138] to obtain the initial output points of the vector quantizer
was to pick the output points randomly from the training set. This approach guarantees that,
in the initial stages, there will always be at least one vector from the training set in each
quantization region. However, we can still get different codebooks if we use different subsets
of the training set as our initial codebook.

10.4 The Linde-Buzo-Gray Algorithm 313

T A B L E 10 . 6 Effect of using different subsets
of the training sequence as the
initial codebook.

Codebook Height Weight

Initial Codebook 1 72 180
72 175
65 120
59 119

Final Codebook 1 71 176
65 156
62 116
52 73

Initial Codebook 2 65 120
44 41
59 119
57 88

Final Codebook 2 69 168
44 41
62 116
57 90

Example 10 .4 .3 :

Using the training set of Example 10.4.1, we selected different vectors of the training set as the
initial codebook. The results are summarized in Table 10.6. If we pick the codebook labeled
“Initial Codebook 1,” we obtain the codebook labeled “Final Codebook 1.” This codebook
is identical to the one obtained using the split algorithm. The set labeled “Initial Codebook
2” results in the codebook labeled “Final Codebook 2.” This codebook is identical to the
quantizer we obtained in Example 10.4.1. In fact, most of the other selections result in one of
these two quantizers. �

Notice that by picking different subsets of the input as our initial codebook, we can generate
different vector quantizers. A good approach to codebook design is to initialize the codebook
randomly several times, and pick the one that generates the least distortion in the training set
from the resulting quantizers.

In 1989, Equitz [139] introduced a method for generating the initial codebook called the
pairwise nearest neighbor (PNN) algorithm. In the PNN algorithm, we start with as many
clusters as there are training vectors and end with the initial codebook. At each stage, we
combine the two closest vectors into a single cluster and replace the two vectors by their mean.
The idea is to merge those clusters that would result in the smallest increase in distortion.
Equitz showed that when we combine two clusters Ci and C j , the increase in distortion is

ni n j

ni + n j

∥∥yi − y j
∥∥2 (5)

314 10 V E C T O R Q U A N T I Z A T I O N

72,180
72,175
65,120
44,41
59,119
62,114
64,150
60,110
65,162
56,91
57,88
70,172

72,180
71,174 (2)
65,120
44,41
61,117 (2)

65,156 (2)
60,110

57,90 (2)

71,176 (3)

65,120
44,41
61,117 (2)

65,156 (2)
60,110

57,90 (2)

71,176 (3)

65,120
44,41
60,114 (3)

65,156 (2)

57,90 (2)

69,168 (5)

65,120
44,41
60,114 (3)

57,90 (2)

69,168 (5)

62,116 (4)
44,41

57,90 (2)

F I GUR E 10 . 13 Obtaining initial output points using the PNN approach.

where ni is the number of elements in the cluster Ci , and yi is the corresponding output point.
In the PNN algorithm, we combine clusters that cause the smallest increase in the distortion.

Example 10 .4 .4 :

Using the PNN algorithm, we combine the elements in the training set as shown in Figure 10.13.
At each step we combine the two clusters that are closest in the sense of Equation (5). If we
use these values to initialize the LBG algorithm, we get a vector quantizer shown with output
points (70, 172), (60, 107), (44, 41), and (64, 150), and a distortion of 104.08. �

Although it was a relatively easy task to generate the initial codebook using the PNN
algorithm in Example 10.4.4, we can see that, as the size of the training set increases, this
procedure becomes progressively more time-consuming. In order to avoid this cost, we can
use a fast PNN algorithm that does not attempt to find the absolute smallest cost at each step
(see [139] for details).

Finally, a simple initial codebook is the set of output points from the corresponding scalar
quantizers. In the beginning of this chapter we saw how scalar quantization of a sequence of
inputs can be viewed as vector quantization using a rectangular vector quantizer. We can use
this rectangular vector quantizer as the initial set of outputs.

Example 10 .4 .5 :

Return once again to the quantization of the height-weight data set. If we assume that the
heights are uniformly distributed between 40 and 180, then a two-level scalar quantizer would
have reconstruction values 75 and 145. Similarly, if we assume that the weights are uniformly
distributed between 40 and 80, the reconstruction values would be 50 and 70. The initial
reconstruction values for the vector quantizer are (50, 75), (50, 145), (70, 75), and (70, 145).

10.4 The Linde-Buzo-Gray Algorithm 315

The final design for this initial set is the same as the one obtained in Example 10.4.1 with a
distortion of 60.17. �

We have looked at four different ways of initializing the LBG algorithm. Each has its own
advantages and drawbacks. The PNN initialization has been shown to result in better designs,
producing a lower distortion for a given rate than the splitting approach [139]. However, the
procedure for obtaining the initial codebook is much more involved and complex. We cannot
make any general claims regarding the superiority of any one of these initialization techniques.
Even the PNN approach cannot be proven to be optimal. In practice, if we are dealing with
a wide variety of inputs, the effect of using different initialization techniques appears to be
insignificant.

10.4.2 The Empty Cell Problem

Let’s take a closer look at the progression of the design in Example 10.4.5. When we assign
the inputs to the initial output points, no input point gets assigned to the output point at (70,
75). This is a problem because in order to update an output point, we need to take the average
value of the input vectors. Obviously, some strategy is needed. The strategy that we actually
used in Example 10.4.5 was not to update the output point if there were no inputs in the
quantization region associated with it. This strategy seems to have worked in this particular
example; however, there is a danger that we will end up with an output point that is never used.
A common approach to avoid this is to remove an output point that has no inputs associated
with it, and replace it with a point from the quantization region with the most output points.
This can be done by selecting a point at random from the region with the highest population of
training vectors, or the highest associated distortion. A more systematic approach is to design
a two-level quantizer for the training vectors in the most heavily populated quantization region.
This approach is computationally expensive and provides no significant improvement over the
simpler approach. In the program accompanying this book, we have used the first approach.
(To compare the two approaches, see Problem 3 at the end of this chapter.)

10.4.3 Use of LBG for Image Compression

One application for which the vector quantizer described in this section has been extremely
popular is image compression. For image compression, the vector is formed by taking blocks
of pixels of size N × M and treating them as an L = N M dimensional vector. Generally,
we take N = M . Instead of forming vectors in this manner, we could form the vector by
taking L pixels in a row of the image. However, this does not allow us to take advantage of
the two-dimensional correlations in the image. Recall that correlation between the samples
provides the clustering of the input, and the LBG algorithm takes advantage of this clustering.

316 10 V E C T O R Q U A N T I Z A T I O N

F I GUR E 10 . 14 Original Sinan image.

Example 10 .4 .6 :

Let us quantize the Sinan image shown in Figure 10.14 using a 16-dimensional quantizer. The
input vectors are constructed using 4 × 4 blocks of pixels. The codebook was trained on the
Sinan image.

The results of the quantization using codebooks of size 16, 64, 256, and 1024 are shown in
Figure 10.15. The rates and compression ratios are summarized in Table 10.7. To see how these
quantities were calculated, recall that if we have K vectors in a codebook, we need �log2 K �
bits to inform the receiver which of the K vectors is the quantizer output. This quantity is
listed in the second column of Table 10.7 for the different values of K . If the vectors are of
dimension L , this means that we have used �log2 K � bits to send the quantized value of L

pixels. Therefore, the rate in bits per pixel is �log2 K �
L . (We have assumed that the codebook

is available to both transmitter and receiver, and therefore we do not have to use any bits to
transmit the codebook from the transmitter to the receiver.) This quantity is listed in the third
column of Table 10.7. Finally, the compression ratio, given in the last column of Table 10.7,
is the ratio of the number of bits per pixel in the original image to the number of bits per pixel
in the compressed image. The Sinan image was digitized using 8 bits per pixel. Using this
information and the rate after compression, we can obtain the compression ratios.

Looking at the images, we see that reconstruction using a codebook of size 1024 is very
close to the original. At the other end, the image obtained using a codebook with 16 recon-
struction vectors contains a lot of visible artifacts. The utility of each reconstruction depends
on the demands of the particular application. �

10.4 The Linde-Buzo-Gray Algorithm 317

F I GUR E 10 . 15 Top left: codebook size 16; top right: codebook size 64; bottom
left: codebook size 256; bottom right: codebook size 1024.

In this example, we used codebooks trained on the image itself. Generally, this is not the
preferred approach because the receiver has to have the same codebook in order to reconstruct
the image. Either the codebook must be transmitted along with the image, or the receiver

T A B L E 10 . 7 Summary of compression measures for image
compression example.

Codebook Size Bits Needed to
(# of codewords) Select a Codeword Bits per Pixel Compression Ratio

16 4 0.25 32:1
64 6 0.375 21.33:1

256 8 0.50 16:1
1024 10 0.625 12.8:1

318 10 V E C T O R Q U A N T I Z A T I O N

has the same training image so that it can generate an identical codebook. This is impractical
because, if the receiver already has the image in question, much better compression can be
obtained by simply sending the name of the image to the receiver. Sending the codebook with
the image is not unreasonable. However, the transmission of the codebook is overhead that
could be avoided if a more generic codebook, one that is available to both transmitter and
receiver, were to be used.

In order to compute the overhead, we need to calculate the number of bits required to
transmit the codebook to the receiver. If each codeword in the codebook is a vector with
L elements and if we use B bits to represent each element, then in order to transmit the
codebook of a K -level quantizer we need B× L×K bits. In our example, B = 8 and L = 16.
Therefore, we need K ×128 bits to transmit the codebook. As our image consists of 256×256
pixels, the overhead in bits per pixel is 128K/65, 536. The overhead for different values of
K is summarized in Table 10.8. We can see that while the overhead for a codebook of size
16 seems reasonable, the overhead for a codebook of size 1024 is over three times the rate
required for quantization.

Given the excessive amount of overhead required for sending the codebook along with
the vector quantized image, there has been substantial interest in the design of codebooks
that are more generic in nature and, therefore, can be used to quantize a number of images.
To investigate the issues that might arise, we quantized the Sinan image using four different
codebooks generated by the Sena, Sensin, Earth, and Omaha images. The results are shown
in Figure 10.16.

As expected, the reconstructed images from this approach are not of the same quality as
when the codebook is generated from the image to be quantized. However, this is only true
as long as the overhead required for storage or transmission of the codebook is ignored. If
we include the extra rate required to encode and transmit the codebook of output points, using
the codebook generated by the image to be quantized seems unrealistic. Although using the
codebook generated by another image to perform the quantization may be realistic, the quality
of the reconstructions is quite poor. Later in this chapter we will take a closer look at the subject
of vector quantization of images and consider a variety of ways to improve this performance.

You may have noticed that the bit rates for the vector quantizers used in the examples are
quite low. The reason is that the size of the codebook increases exponentially with the rate.
Suppose we want to encode a source using R bits per sample; that is, the average number of bits
per sample in the compressed source output is R. By “sample” we mean a scalar element of
the source output sequence. If we wanted to use an L-dimensional quantizer, we would group

T A B L E 10 . 8 Overhead in bits per pixel for
codebooks of different sizes.

Codebook Size K Overhead in Bits per Pixel

16 0.03125
64 0.125

256 0.50
1024 2.0

10.4 The Linde-Buzo-Gray Algorithm 319

F I GUR E 10 . 16 Sinan image quantized at the rate of 0.5 bits per pixel. The im-
ages used to obtain the codebook were (clockwise from top left)
Sensin, Sena, Earth, and Omaha.

L samples together into vectors. This means that we would have RL bits available to represent
each vector. With RL bits, we can represent 2RL different output vectors. In other words, the
size of the codebook for an L-dimensional R-bits-per-sample quantizer is 2RL . From Table
10.7, we can see that when we quantize an image using 0.25 bits per pixel and 16-dimensional
quantizers, we have 16× 0.25 = 4 bits available to represent each vector. Hence, the size of
the codebook is 24 = 16. The quantity RL is often called the rate dimension product. Note
that the size of the codebook grows exponentially with this product.

Consider the problems. The codebook size for a 16-dimensional, 2-bits-per-sample vector
quantizer would be 216×2! (If the source output was originally represented using 8 bits per
sample, a rate of 2 bits per sample for the compressed source corresponds to a compression ratio
of 4:1.) This large size causes problems both with storage and with the quantization process.
To store 232 16-dimensional vectors, assuming that we can store each component of the vector
in a single byte, requires 232×16 bytes—approximately 64 gigabytes of storage. Furthermore,

320 10 V E C T O R Q U A N T I Z A T I O N

to quantize a single input vector would require over four billion vector comparisons to find
the closest output point. Obviously, neither the storage requirements nor the computational
requirements are realistic. Because of this problem, most vector quantization applications
operate at low bit rates. In many applications, such as low-rate speech coding, we want to
operate at very low rates; therefore, this is not a drawback. However, for applications such as
high-quality video coding, which requires higher rates, this is definitely a problem.

There are several approaches to solving these problems. Each entails the introduction
of some structure in the codebook and/or the quantization process. While the introduction
of structure mitigates some of the storage and computational problems, there is generally a
trade-off in terms of the distortion performance. We will look at some of these approaches in
the following sections.

10.5 Tree- Structured Vector Quantizers

One way we can introduce structure is to organize our codebook in such a way that it is easy
to pick which part contains the desired output vector. Consider the two-dimensional vector
quantizer shown in Figure 10.17. Note that the output points in each quadrant are the mirror
image of the output points in neighboring quadrants. Given an input to this vector quantizer,
we can reduce the number of comparisons necessary for finding the closest output point by
using the sign on the components of the input. The sign on the components of the input vector
will tell us in which quadrant the input lies. Because all the quadrants are mirror images of the
neighboring quadrants, the closest output point to a given input will lie in the same quadrant
as the input itself. Therefore, we only need to compare the input to the output points that lie
in the same quadrant, thus reducing the number of required comparisons by a factor of four.
This approach can be extended to L dimensions, where the signs on the L components of the
input vector can tell us in which of the 2L hyperquadrants the input lies, which in turn would
reduce the number of comparisons by 2L .

This approach works well when the output points are distributed in a symmetrical manner.
However, it breaks down as the distribution of the output points becomes less symmetrical.

Example 10 .5 .1 :

Consider the vector quantizer shown in Figure 10.18. This is different from the output points
in Figure 10.17; we have dropped the mirror image requirement of the previous example. The
output points are shown as filled circles, and the input point is the X. It is obvious from the figure
that while the input is in the first quadrant, the closest output point is in the fourth quadrant.
However, the quantization approach described above will force the input to be represented by
an output in the first quadrant.

The situation gets worse as we lose more and more of the symmetry. Consider the situation
in Figure 10.19. In this quantizer, not only will we get an incorrect output point when the input
is close to the boundaries of the first quadrant, but also there is no significant reduction in the
amount of computation required.

10.5 Tree-Structured Vector Quantizers 321

F I GUR E 10 . 17 A symmetrical vector quantizer in two dimensions.

x

F I GUR E 10 . 18 Breakdown of the method using the quadrant approach.

Most of the output points are in the first quadrant. Therefore, whenever the input falls in the
first quadrant, which it will do quite often if the quantizer design is reflective of the distribution
of the input, knowing that it is in the first quadrant does not lead to a great reduction in the
number of comparisons. �

The idea of using the L-dimensional equivalents of quadrants to partition the output points
in order to reduce the computational load can be extended to nonsymmetrical situations, like
those shown in Figure 10.19, in the following manner. Divide the set of output points into two
groups, group0 and group1, and assign to each group a test vector such that output points in
each group are closer to the test vector assigned to that group than to the test vector assigned to
the other group (Figure 10.20). Label the two test vectors 0 and 1. When we get an input vector,
we compare it against the test vectors. Depending on the outcome, the input is compared to the
output points associated with the test vector closest to the input. After these two comparisons,
we can discard half of the output points. Comparison with the test vectors takes the place of

322 10 V E C T O R Q U A N T I Z A T I O N

F I GUR E 10 . 19 Failure of the quadrant approach when the data is not uniformly
distributed amongst quadrants.

looking at the signs of the components to decide which set of output points to discard from
contention. If the total number of output points is K , with this approach we have to make
K
2 + 2 comparisons instead of K comparisons.

This process can be continued by splitting the output points in each group into two groups
and assigning a test vector to the subgroups. So group0 would be split into group00 and
group01, with associated test vectors labeled 00 and 01, and group1 would be split into group10
and group11, with associated test vectors labeled 10 and 11. Suppose the result of the first set
of comparisons was that the output point would be searched for in group1. The input would
be compared to the test vectors 10 and 11. If the input was closer to the test vector 10, then the
output points in group11 would be discarded, and the input would be compared to the output
points in group10. We can continue the procedure by successively dividing each group of
output points into two, until finally, if the number of output points is a power of two, the last
set of groups would consist of single points. The number of comparisons required to obtain
the final output point would be 2 log K instead of K . Thus, for a codebook of size 4096 we
would need 24 vector comparisons instead of 4096 vector comparisons.

This is a remarkable decrease in computational complexity. However, we pay for this
decrease in two ways. The first penalty is a possible increase in distortion. It is possible at
some stage that the input is closer to one test vector while at the same time being closest to an

0

1

F I GUR E 10 . 20 Division of output points into two groups.

10.5 Tree-Structured Vector Quantizers 323

output belonging to the rejected group. This is similar to the situation shown in Figure 10.18.
The other penalty is an increase in storage requirements. Now we not only have to store the
output points from the vector quantizer codebook, we also must store the test vectors. This
means almost a doubling of the storage requirement.

The comparisons that must be made at each step are shown in Figure 10.21. The label
inside each node is the label of the test vector that we compare the input against. This tree
of decisions is what gives tree-structured vector quantizers (TSVQ) their name. Notice also
that, as we are progressing down a tree, we are also building a binary string. As the leaves of
the tree are the output points, by the time we reach a particular leaf or, in other words, select
a particular output point, we have obtained the binary codeword corresponding to that output
point.

This process of building the binary codeword as we progress through the series of decisions
required to find the final output can result in some other interesting properties of tree-structured
vector quantizers. For instance, even if a partial codeword is transmitted, we can still get an
approximation of the input vector. In Figure 10.21, if the quantized value was the codebook
vector 5, the binary codeword would be 011. However, if only the first two bits 01 were
received by the decoder, the input can be approximated by the test vector labeled 01.

10.5.1 Design of Tree- Structured Vector Quantizers

In the last section we saw how we could reduce the computational complexity of the design
process by imposing a tree structure on the vector quantizer. Rather than imposing this structure
after the vector quantizer has been designed, it makes sense to design the vector quantizer within
the framework of the tree structure. We can do this by a slight modification of the splitting
design approach proposed by Linde et al. [137].

We start the design process in a manner identical to the splitting technique. First, obtain
the average of all the training vectors, perturb it to obtain a second vector, and use these
vectors to form a two-level vector quantizer. Let us label these two vectors 0 and 1, and the

01

001 000

0

0011

011 010111 110 101 100

1

10

F I GUR E 10 . 21 Decision tree for quantization.

324 10 V E C T O R Q U A N T I Z A T I O N

groups of training set vectors that would be quantized to each of these two vectors group 0
and group1. We will later use these vectors as test vectors. We perturb these output points
to get the initial vectors for a four-level vector quantizer. At this point, the design procedure
for the tree-structured vector quantizer deviates from the splitting technique. Instead of using
the entire training set to design a four-level vector quantizer, we use the training set vectors
in group0 to design a two-level vector quantizer with output points labeled 00 and 01. We
use the training set vectors in group1 to design a two-level vector quantizer with output points
labeled 10 and 11. We also split the training set vectors in group0 and group1 into two groups
each. The vectors in group0 are split, based on their proximity to the vectors labeled 00 and
01, into group00 and group01, and the vectors in group1 are divided in a like manner into the
groups group10 and group11. The vectors labeled 00, 01, 10, and 11 will act as test vectors
at this level. To get an eight-level quantizer, we use the training set vectors in each of the four
groups to obtain four two-level vector quantizers. We continue in this manner until we have
the required number of output points. Notice that in the process of obtaining the output points,
we have also obtained the test vectors required for the quantization process.

10.5.2 Pruned Tree- Structured Vector Quantizers

Once we have built a tree-structured codebook, we can sometimes improve its rate distortion
performance by removing carefully selected subgroups. Removal of a subgroup, referred to
as pruning, will reduce the size of the codebook and hence the rate. It may also result in an
increase in distortion. Therefore, the objective of the pruning is to remove those subgroups
that will result in the best trade-off of rate and distortion. Chou, Lookabaugh, and Gray [140]
have developed an optimal pruning algorithm called the generalized BFOS algorithm. The
name of the algorithm derives from the fact that it is an extension of an algorithm originally
developed by Brieman, Freidman, Olshen, and Stone [141] for classification applications. (See
[140,136] for description and discussion of the algorithm.)

Pruning output points from the codebook has the unfortunate effect of removing the struc-
ture that was previously used to generate the binary codeword corresponding to the output
points. If we used the structure to generate the binary codewords, the pruning would cause
the codewords to be of variable length. As the variable-length codes would correspond to
the leaves of a binary tree, this code would be a prefix code and, therefore, certainly usable.
However, it would not require a large increase in complexity to assign fixed-length codewords
to the output points using another method. This increase in complexity is generally offset by
the improvement in performance that results from the pruning [142].

10.6 Structured Vector Quantizers

The tree-structured vector quantizer solves the complexity problem, but exacerbates the storage
problem. We now take an entirely different tack and develop vector quantizers that do not have
these storage problems; however, we pay for this relief in other ways.

Example 10.3.1 was our motivation for the quantizer obtained by the LBG algorithm.
This example showed that the correlation between samples of the output of a source leads

10.6 Structured Vector Quantizers 325

to clustering. This clustering is exploited by the LBG algorithm by placing output points at
the location of these clusters. However, in Example 10.3.2, we saw that even when there is
no correlation between samples, there is a kind of probabilistic structure that becomes more
evident as we group the random inputs of a source into larger and larger blocks or vectors.

In Example 10.3.2, we changed the position of the output point in the top-right corner. All
four corner points have the same probability, so we could have chosen any of these points. In
the case of the two-dimensional Laplacian distribution in Example 10.3.2, all points that lie
on the contour described by |x | + |y| = constant have equal probability. These are called
contours of constant probability. For spherically symmetrical distributions like the Gaussian
distribution, the contours of constant probability are circles in two dimensions, spheres in three
dimensions, and hyperspheres in higher dimensions.

We mentioned in Example 10.3.2 that the points away from the origin have very little
probability mass associated with them. Based on what we have said about the contours of
constant probability, we can be a little more specific and say that the points on constant
probability contours farther away from the origin have very little probability mass associated
with them. Therefore, we can get rid of all of the points outside some contour of constant
probability without incurring much of a distortion penalty. In addition, as the number of
reconstruction points is reduced, there is a decrease in rate, thus improving the rate distortion
performance.

Example 10 .6 .1 :

Let us design a two-dimensional uniform quantizer by keeping only the output points in the
quantizer of Example 10.3.2 that lie on or within the contour of constant probability given
by |x1| + |x2| = 5�. If we count all the points that are retained, we get 60 points. This is
close enough to 64 that we can compare it with the eight-level uniform scalar quantizer. If we
simulate this quantization scheme with a Laplacian input, and the same step size as the scalar
quantizer, that is, � = 0.7309, we get an SNR of 12.22 dB. Comparing this to the 11.44 dB
obtained with the scalar quantizer, we see that there is a definite improvement. We can get
slightly more improvement in performance if we modify the step size. �

Notice that the improvement in the previous example is obtained only by restricting the
outer boundary of the quantizer. Unlike Example 10.3.2, we did not change the shape of
any of the inner quantization regions. This gain is referred to in the quantization literature as
boundary gain. In terms of the description of quantization noise in Chapter 8, we reduced
the overload error by reducing the overload probability, without a commensurate increase in
the granular noise. In Figure 10.22, we have marked the 12 output points that belonged to
the original 64-level quantizer, but do not belong to the 60-level quantizer, by drawing circles
around them. Removal of these points results in an increase in overload probability. We also
marked the eight output points that belong to the 60-level quantizer, but were not part of the
original 64-level quantizer, by drawing squares around them. Adding these points results in a
decrease in the overload probability. If we calculate the increases and decreases (see Problem
5 at the end of this chapter), we find that the net result is a decrease in overload probability.
This overload probability is further reduced as the dimension of the vector is increased.

326 10 V E C T O R Q U A N T I Z A T I O N

F I GUR E 10 . 22 Contours of constant probability.

10.6.1 Pyramid Vector Quantization

As the dimension of the input vector increases, something interesting happens. Suppose we
are quantizing a random variable X with pdf fX (X) and differential entropy h(X). Suppose we
block samples of this random variable into a random vector X. A result of Shannon’s, called
the asymptotic equipartition property (AEP), states that for sufficiently large L and arbitrarily
small ε ∣∣∣∣ log fX(X)

L
+ h(X)

∣∣∣∣ < ε (6)

for all but a set of vectors with a vanishingly small probability [3]. This means that almost all
the L-dimensional vectors will lie on a contour of constant probability given by∣∣∣∣ log fX(X)

L

∣∣∣∣ = −h(X) (7)

Given that this is the case, Sakrison [143] suggested that an optimum manner to encode the
source would be to distribute 2RL points uniformly in this region. Fischer [144] used this insight

10.6 Structured Vector Quantizers 327

to design a vector quantizer called the pyramid vector quantizer for the Laplacian source that
looks quite similar to the quantizer described in Example 10.6.1. The vector quantizer consists
of points of the rectangular quantizer that fall on the hyperpyramid given by

L∑
i=1

|xi | = C

where C is a constant depending on the variance of the input. Shannon’s result is asymptotic,
and for realistic values of L , the input vector is generally not localized to a single hyperpyramid.

For this case, Fischer first finds the distance

r =
L∑

i=1

|xi |

This value is quantized and transmitted to the receiver. The input is normalized by this gain
term and quantized using a single hyperpyramid. The quantization process for the shape term
consists of two stages: finding the output point on the hyperpyramid closest to the scaled
input, and finding a binary codeword for this output point. (See [144] for details about the
quantization and coding process.) This approach is quite successful, and for a rate of 3 bits
per sample and a vector dimension of 16, we get an SNR value of 16.32 dB. If we increase the
vector dimension to 64, we get an SNR value of 17.03. Compared to the SNR obtained from
using a nonuniform scalar quantizer, this is an improvement of more than 4 dB.

Notice that in this approach we separated the input vector into a gain term and a pattern or
shape term. Quantizers of this form are called gain-shape vector quantizers, or product code
vector quantizers [145].

10.6.2 Polar and Spherical Vector Quantizers

For the Gaussian distribution, the contours of constant probability are circles in two dimensions
and spheres and hyperspheres in three and higher dimensions. In two dimensions, we can
quantize the input vector by first transforming it into polar coordinates r and θ :

r =
√

x2
1 + x2

2 (8)

and
θ = tan−1 x2

x1
(9)

r and θ can then be either quantized independently [146], or we can use the quantized value
of r as an index to a quantizer for θ [147]. The former is known as a polar quantizer; the
latter, an unrestricted polar quantizer. The advantage to quantizing r and θ independently is
one of simplicity. The quantizers for r and θ are independent scalar quantizers. However, the
performance of the polar quantizers is not significantly higher than that of scalar quantization
of the components of the two-dimensional vector. The unrestricted polar quantizer has a more
complex implementation, as the quantization of θ depends on the quantization of r . However,
the performance is also somewhat better than the polar quantizer. The polar quantizer can be
extended to three or more dimensions [148].

328 10 V E C T O R Q U A N T I Z A T I O N

F I GUR E 10 . 23 Possible quantization regions.

10.6.3 Lattice Vector Quantizers

Recall that quantization error is composed of two kinds of error, overload error and granular
error. The overload error is determined by the location of the quantization regions furthest
from the origin, or the boundary. We have seen how we can design vector quantizers to reduce
the overload probability and thus the overload error. We called this the boundary gain of
vector quantization. In scalar quantization, the granular error was determined by the size of
the quantization interval. In vector quantization, the granular error is affected by the size and
shape of the quantization interval.

Consider the square and circular quantization regions shown in Figure 10.23. We show
only the quantization region at the origin. These quantization regions need to be distributed in
a regular manner over the space of source outputs. However, for now, let us simply consider
the quantization region at the origin. Let’s assume they both have the same area so that we
can compare them. This way it would require the same number of quantization regions to
cover a given area. That is, we will be comparing two quantization regions of the same “size.”
To have an area of one, the square has to have sides of length one. As the area of a circle is
given by πr2, the radius of the circle is 1√

π
. The maximum quantization error possible with

the square quantization region is when the input is at one of the four corners of the square. In
this case, the error is 1√

2
, or about 0.707. For the circular quantization region, the maximum

error occurs when the input falls on the boundary of the circle. In this case, the error is 1√
π

, or

about 0.56. Thus, the maximum granular error is larger for the square region than the circular
region.

In general, we are more concerned with the average squared error than the maximum error.
If we compute the average squared error for the square region, we obtain∫

Square
‖x‖2 dx = 0.1666̄

For the circle, we obtain ∫
Circle
‖x‖2 dx = 0.159

Thus, the circular region would introduce less granular error than the square region.
Our choice seems to be clear; we will use the circle as the quantization region. Unfor-

tunately, a basic requirement for the quantizer is that for every possible input vector there
should be a unique output vector. In order to satisfy this requirement and have a quantizer
with sufficient structure that can be used to reduce the storage space, a union of translates

10.6 Structured Vector Quantizers 329

of the quantization region should cover the output space of the source. In other words, the
quantization region should tile space. A two-dimensional region can be tiled by squares, but it
cannot be tiled by circles. If we tried to tile the space with circles, we would either get overlaps
or holes.

Apart from squares, other shapes that tile space include rectangles and hexagons. It turns
out that the best shape to pick for a quantization region in two dimensions is a hexagon [149].

In two dimensions, it is relatively easy to find the shapes that tile space, then select the one
that gives the smallest amount of granular error. However, when we start looking at higher
dimensions, it is difficult, if not impossible, to visualize different shapes, let alone find which
ones tile space. An easy way out of this dilemma is to remember that a quantizer can be
completely defined by its output points. In order for this quantizer to possess structure, these
points should be spaced in some regular manner.

Regular arrangements of output points in space are called lattices. Mathematically, we can
define a lattice as follows:

Let {a1, a2, . . . , aL}be L independent L-dimensional vectors. Then the set

L =
{

x : x =
L∑

i=1

ui ai

}
(10)

is a lattice if {ui } are all integers.
When a subset of lattice points is used as the output points of a vector quantizer, the quantizer
is known as a lattice vector quantizer. From this definition, the pyramid vector quantizer
described earlier can be viewed as a lattice vector quantizer. Basing a quantizer on a lattice
solves the storage problem. As any lattice point can be regenerated if we know the basis set,
there is no need to store the output points. Further, the highly structured nature of lattices
makes finding the closest output point to an input relatively simple. Note that what we give
up when we use lattice vector quantizers is the clustering property of LBG quantizers.

Let’s take a look at a few examples of lattices in two dimensions. If we pick a1 = (1, 0) and
a2 = (0, 1), we obtain the integer lattice—the lattice that contains all points in two dimensions
whose coordinates are integers.

If we pick a1 = (1, 1) and a2 = (1,−1), we get the lattice shown in
Figure 10.24. This lattice has a rather interesting property. Any point in the lattice is given by
na1 + ma2, where n and m are integers. But

na1 + ma2 =
[

n + m
n − m

]

and the sum of the coefficients is n +m + n −m = 2n, which is even for all n. Therefore, all
points in this lattice have an even coordinate sum. Lattices with these properties are called D
lattices.

Finally, if a1 = (1, 0) and a2 =
(
− 1

2 ,
√

3
2

)
, we get the hexagonal lattice shown in

Figure 10.25. This is an example of an A lattice.
There are a large number of lattices that can be used to obtain lattice vector quantizers.

In fact, given a dimension L , there are an infinite number of possible sets of L independent
vectors. Among these, we would like to pick the lattice that produces the greatest reduction in

330 10 V E C T O R Q U A N T I Z A T I O N

−6−7 −4 −2−5 −3 −1

−6

−4

−2

−3

−5

−1

6

4

2

1

3

5

2 4 6 71 3 5 8−8

F I GUR E 10 . 24 The D2 lattice.

F I GUR E 10 . 25 The A2 lattice.

granular noise. When comparing the square and circle as candidates for quantization regions,
we used the integral over the shape of ‖x‖2. This is simply the second moment of the shape.
The shape with the smallest second moment for a given volume is known to be the circle in
two dimensions and the sphere and hypersphere in higher dimensions [150]. Unfortunately,
circles and spheres cannot tile space; either there will be overlap or there will be holes. As the
ideal case is unattainable, we can try to approximate it. We can look for ways of arranging

10.6 Structured Vector Quantizers 331

spheres so that they cover space with minimal overlap [151], or look for ways of packing
spheres with the least amount of space left over [150]. The centers of these spheres can then
be used as the output points. The quantization regions will not be spheres, but they may be
close approximations to spheres.

The problems of sphere covering and sphere packing are widely studied in a number of
different areas. Lattices discovered in these studies have also been useful as vector quantizers
[150]. Some of these lattices, such as the A2 and D2 lattices described earlier, are based on
the root systems of Lie algebras [152]. The study of Lie algebras is beyond the scope of this
book; however, we have included a brief discussion of the root systems and how to obtain the
corresponding lattices in Appendix C.

One of the nice things about root lattices is that we can use their structural properties to
obtain fast quantization algorithms. For example, consider building a quantizer based on the
D2 lattice. Because of the way in which we described the D2 lattice, the size of the lattice is
fixed. We can change the size by picking the basis vectors as (�,�) and (�,−�), instead
of (1,1) and (1,−1). We can have exactly the same effect by dividing each input by � before
quantization, and then multiplying the reconstruction values by�. Suppose we pick the latter
approach and divide the components of the input vector by �. If we want to find the closest
lattice point to the input, all we need to do is find the closest integer to each coordinate of
the scaled input. If the sum of these integers is even, we have a lattice point. If not, find the
coordinate that incurred the largest distortion during conversion to an integer and then find
the next closest integer. The sum of coordinates of this new vector differs from the sum of
coordinates of the previous vector by one. Therefore, if the sum of the coordinates of the
previous vector was odd, the sum of the coordinates of the current vector will be even, and we
have the closest lattice point to the input.

Example 10 .6 .2 :

Suppose the input vector is given by (2.3, 1.9). Rounding each coefficient to the nearest integer,
we get the vector (2, 2). The sum of the coordinates is even; therefore, this is the closest lattice
point to the input.

Suppose the input is (3.4, 1.8). Rounding the components to the nearest integer, we get
(3, 2). The sum of the components is 5, which is odd. The differences between the components
of the input vector and the nearest integer are 0.4 and 0.2. The largest difference was incurred
by the first component, so we round it up to the next closest integer, and the resulting vector
is (4, 2). The sum of the coordinates is 6, which is even; therefore, this is the closest lattice
point. �

Many of the lattices have similar properties that can be used to develop fast algorithms for
finding the closest output point to a given input [153,152].

To review our coverage of lattice vector quantization, overload error can be reduced by
careful selection of the boundary, and we can reduce the granular noise by selection of the
lattice. The lattice also provides us with a way to avoid storage problems. Finally, we can use
the structural properties of the lattice to find the closest lattice point to a given input.

332 10 V E C T O R Q U A N T I Z A T I O N

Now we need two things: to know how to find the closest output point (remember, not
all lattice points are output points), and to find a way of assigning a binary codeword to the
output point and recovering the output point from the binary codeword. This can be done by
again making use of the specific structures of the lattices. While the procedures necessary are
simple, explanations of the procedures are lengthy and involved (see [154,152] for details).

10.7 Variations on the Theme

Because of its capability to provide high compression with relatively low distortion, vector
quantization has been one of the more popular lossy compression techniques over the last
decade in such diverse areas as video compression and low-rate speech compression. During
this period, several people have come up with variations on the basic vector quantization
approach. We briefly look at a few of the more well-known variations here, but this is by no
means an exhaustive list. For more information, see [136,155].

10.7.1 Gain- Shape Vector Quantization

In some applications such as speech, the dynamic range of the input is quite large. One effect of
this is that, in order to be able to represent the various vectors from the source, we need a very
large codebook. This requirement can be reduced by normalizing the source output vectors,
then quantizing the normalized vector and the normalization factor separately [156,145]. In
this way, the variation due to the dynamic range is represented by the normalization factor or
gain, while the vector quantizer is free to do what it does best, which is to capture the structure
in the source output. Vector quantizers that function in this manner are called gain-shape
vector quantizers. The pyramid quantizer discussed earlier is an example of a gain-shape
vector quantizer.

10.7.2 Mean- Removed Vector Quantization

If we were to generate a codebook from an image, differing amounts of background illumination
would result in vastly different codebooks. This effect can be significantly reduced if we remove
the mean from each vector before quantization. The mean and the mean-removed vector can
then be quantized separately. The mean can be quantized using a scalar quantization scheme,
while the mean-removed vector can be quantized using a vector quantizer. Of course, if this
strategy is used, the vector quantizer should be designed using mean-removed vectors as well.

Example 10 .7 .1 :

Let us encode the Sinan image using a codebook generated by the Sena image, as we did in
Figure 10.16 However, this time we will use a mean-removed vector quantizer. The result is

10.7 Variations on the Theme 333

F I GUR E 10 . 26 Left: Reconstructed image using mean-removed vector quantiza-
tion and the Sena image as the training set. Right: LBG vector
quantization with the Sena image as the training set.

shown in Figure 10.26. For comparison we have also included the reconstructed image from
Figure 10.16. Notice the annoying blotches on the shoulder have disappeared. However, the
reconstructed image also suffers from more blockiness. The blockiness increases because
adding the mean back into each block accentuates the discontinuity at the block boundaries.

Each approach has its advantages and disadvantages. Which approach we use in a particular
application depends very much on the application. �

10.7.3 Classified Vector Quantization

We can sometimes divide the source output into separate classes with different spatial prop-
erties. In these cases, it can be very beneficial to design separate vector quantizers for the
different classes. This approach, referred to as classified vector quantization, is especially
useful in image compression, where edges and nonedge regions form two distinct classes. We
can separate the training set into vectors that contain edges and vectors that do not. A separate
vector quantizer can be developed for each class. During the encoding process, the vector is
first tested to see if it contains an edge. A simple way to do this is to check the variance of the
pixels in the vector. A large variance will indicate the presence of an edge. More sophisticated
techniques for edge detection can also be used. Once the vector is classified, the correspond-
ing codebook can be used to quantize the vector. The encoder transmits both the label for the
codebook used and the label for the vector in the codebook [157].

A slight variation of this strategy is to use different kinds of quantizers for the different
classes of vectors. For example, if certain classes of source outputs require quantization at a
higher rate than is possible using LBG vector quantizers, we can use lattice vector quantizers.
An example of this approach can be found in [158].

334 10 V E C T O R Q U A N T I Z A T I O N

Index

X Q1
Y1

+− Y2

−−
− Y3

− −

− Index

Q3

F I GUR E 10 . 27 A three-stage vector quantizer.

10.7.4 Multistage Vector Quantization

Multistage vector quantization [159] is an approach that reduces both the encoding complexity
and the memory requirements for vector quantization, especially at high rates. In this approach,
the input is quantized in several stages. In the first stage, a low-rate vector quantizer is used to
generate a coarse approximation of the input. This coarse approximation, in the form of the
label of the output point of the vector quantizer, is transmitted to the receiver. The error between
the original input and the coarse representation is quantized by the second-stage quantizer, and
the label of the output point is transmitted to the receiver. In this manner, the input to the
nth-stage vector quantizer is the difference between the original input and the reconstruction
obtained from the outputs of the preceding n − 1 stages. The difference between the input to
a quantizer and the reconstruction value is often called the residual, and the multistage vector
quantizers are also known as residual vector quantizers [160]. The reconstructed vector is the
sum of the output points of each of the stages. Suppose we have a three-stage vector quantizer,
with the three quantizers represented by Q1,Q2, and Q3. Then for a given input x, we find

y1 = Q1(x)

y2 = Q2(x −Q1(x))

y3 = Q3(x −Q1(x)−Q2(x −Q1(x))) (11)

The reconstruction x̂ is given by
x̂ = y1 + y2 + y3 (12)

This process is shown in Figure 10.27.
If we have K stages, and the codebook size of the nth-stage vector quantizer is Ln , then

the effective size of the overall codebook is L1 × L2 × · · · × L K . However, we need to
store only L1 + L2 + · · · + L K vectors, which is also the number of comparisons required.
Suppose we have a five-stage vector quantizer, each with a codebook size of 32, meaning that
we would have to store 160 codewords. This would provide an effective codebook size of
325 = 33, 554, 432. The computational savings are also of the same order.

This approach allows us to use vector quantization at much higher rates than we could
otherwise. However, at rates at which it is feasible to use LBG vector quantizers, the perfor-
mance of the multistage vector quantizers is generally lower than the LBG vector quantizers
[136]. The reason for this is that after the first few stages, much of the structure used by the
vector quantizer has been removed, and the vector quantization advantage that depends on this
structure is not available. Details on the design of residual vector quantizers can be found in
[160,161].

10.7 Variations on the Theme 335

There may be some vector inputs that can be well represented by fewer stages than others. A
multistage vector quantizer with a variable number of stages can be implemented by extending
the idea of recursively indexed scalar quantization to vectors. It is not possible to do this
directly because there are some fundamental differences between scalar and vector quantizers.
The input to a scalar quantizer is assumed to be iid. On the other hand, the vector quantizer can
be viewed as a pattern-matching algorithm [162]. The input is assumed to be one of a number
of different patterns. The scalar quantizer is used after the redundancy has been removed from
the source sequence, while the vector quantizer takes advantage of the redundancy in the data.

With these differences in mind, the recursively indexed vector quantizer (RIVQ) can be
described as a two-stage process. The first stage performs the normal pattern-matching func-
tion, while the second stage recursively quantizes the residual if the magnitude of the residual
is greater than some prespecified threshold. The codebook of the second stage is ordered so
that the magnitude of the codebook entries is a nondecreasing function of its index. We then
choose an index I that will determine the mode in which the RIVQ operates.

The quantization rule Q, for a given input value x, is as follows:

� Quantize x with the first-stage quantizer Q1.

� If the residual ‖x −Q1(x)‖ is below a specified threshold, then Q1(x) is the nearest
output level.

� Otherwise, generate x1 = x−Q1(x) and quantize using the second-stage quantizer Q2.
Check if the index J1 of the output is below the index I . If so,

Q(x) = Q1(x)+Q2(x1)

If not, form

x2 = x1 −Q(x1)

and do the same for x2 as we did for x1.

This process is repeated until for some m, the index Jm falls below the index I , in which
case x will be quantized to

Q(x) = Q1(x)+Q2(x1)+ · · · +Q2(xM)

Thus, the RIVQ operates in two modes: when the index J of the quantized input falls below
a given index I and when the index J falls above the index I .

Details on the design and performance of the recursively indexed vector quantizer can be
found in [163,164].

10.7.5 Adaptive Vector Quantization

While LBG vector quantizers function by using the structure in the source output, this reliance
on the use of the structure can also be a drawback when the characteristics of the source change

336 10 V E C T O R Q U A N T I Z A T I O N

over time. For situations like these, we would like to have the quantizer adapt to the changes
in the source output.

For mean-removed and gain-shape vector quantizers, we can adapt the scalar aspect of the
quantizer, that is, the quantization of the mean or the gain, using the techniques discussed in
the previous chapter. In this section, we look at a few approaches to adapting the codebook of
the vector quantizer to changes in the characteristics of the input.

One way of adapting the codebook to changing input characteristics is to start with a very
large codebook designed to accommodate a wide range of source characteristics [165]. This
large codebook can be ordered in some manner known to both transmitter and receiver. Given
a sequence of input vectors to be quantized, the encoder can select a subset of the larger
codebook to be used. Information about which vectors from the large codebook were used
can be transmitted as a binary string. For example, if the large codebook contained 10 vectors,
and the encoder was to use the second, third, fifth, and ninth vectors, we would send the
binary string 0110100010, with a 1 representing the position of the codeword used in the large
codebook. This approach permits the use of a small codebook that is matched to the local
behavior of the source.

This approach can be used with particular effectiveness with the recursively indexed vector
quantizer [163]. Recall that in the recursively indexed vector quantizer, the quantized output
is always within a prescribed distance of the inputs, determined by the index I . This means
that the set of output values of the RIVQ can be viewed as an accurate representation of the
inputs and their statistics. Therefore, we can treat a subset of the output set of the previous
intervals as our large codebook. We can then use the method described in [165] to inform the
receiver of which elements of the previous outputs form the codebook for the next interval.
This method (while not the most efficient) is quite simple. Suppose an output set, in order of
first appearance, is {p, a, q, s, l, t, r}, and the desired codebook for the interval to be encoded
is {a, q, l, r}. Then we would transmit the binary string 0110101 to the receiver. The 1s
correspond to the letters in the output set, which would be elements of the desired codebook.
We select the subset for the current interval by finding the closest vectors from our collection
of past outputs to the input vectors of the current set. This means that there is an inherent
delay of one interval imposed by this approach. The overhead required to send the codebook
selection is M/N , where M is the number of vectors in the output set and N is the interval
size.

Another approach to updating the codebook is to check the distortion incurred while quan-
tizing each input vector. Whenever this distortion is above some specified threshold, a different
higher-rate mechanism is used to encode the input. The higher-rate mechanism might be the
scalar quantization of each component, or the use of a high-rate lattice vector quantizer. This
quantized representation of the input is transmitted to the receiver and, at the same time, added
to both the encoder and decoder codebooks. In order to keep the size of the codebook the
same, an entry must be discarded when a new vector is added to the codebook. Selecting an
entry to discard is handled in a number of different ways. Variations of this approach have
been used for speech coding, image coding, and video coding (see [154, 155, 156, 157, 158]
for more details).

10.8 Trellis-Coded Quantization 337

Q1,1 Q3,1

Set #1

Set #2

Q1,2 Q2,2 Q3,2Q0,1 Q2,1 Q0,2

F I GUR E 10 . 28 Reconstruction levels for a 2-bit trellis-coded quantizer.

10.8 Trellis- Coded Quantization

Finally, we look at a quantization scheme that appears to be somewhat different from other
vector quantization schemes. In fact, some may argue that it is not a vector quantizer at all.
However, the trellis-coded quantization (TCQ) algorithm gets its performance advantage by
exploiting the statistical structure exploited by the lattice vector quantizer. Therefore, we can
argue that it should be classified as a vector quantizer.

The trellis-coded quantization algorithm was inspired by the appearance of a revolutionary
concept in modulation called trellis-coded modulation (TCM). The TCQ algorithm and its
entropy-constrained variants provide some of the best performance when encoding random
sources. This quantizer can be viewed as a vector quantizer with very large dimension, but a
restricted set of values for the components of the vectors.

Like a vector quantizer, the TCQ quantizes sequences of source outputs. Each element of a
sequence is quantized using 2R reconstruction levels selected from a set of 2R+1 reconstruction
levels, where R is the number of bits per sample used by a trellis-coded quantizer. The 2R

element subsets are predefined; which particular subset is used is based on the reconstruction
level used to quantize the previous quantizer input. However, the TCQ algorithm allows us to
postpone a decision on which reconstruction level to use until we can look at a sequence of
decisions. This way we can select the sequence of decisions that gives us the lowest amount
of average distortion.

Let’s take the case of a 2-bit quantizer. As described above, this means that we will need 23,
or 8, reconstruction levels. Let’s label these reconstruction levels as shown in Figure 10.28. The
set of reconstruction levels is partitioned into two subsets: one consisting of the reconstruction
values labeled Q0,i and Q2,i , and the remainder comprising the second set. We use the first
set to perform the quantization if the previous quantization level was one labeled Q0,i or
Q1,i ; otherwise, we use the second set. Because the current reconstructed value defines the
subset that can be used to perform the quantization on the next input, sometimes it may be

338 10 V E C T O R Q U A N T I Z A T I O N

advantageous to actually accept more distortion than necessary for the current sample in order
to have less distortion in the next quantization step. In fact, at times it may be advantageous
to accept poor quantization for several samples so that several samples down the line the
quantization can result in less distortion. If you have followed this reasoning, you can see how
we might be able to get lower overall distortion by looking at the quantization of an entire
sequence of source outputs. The problem with delaying a decision is that the number of choices
increases exponentially with each sample. In the 2-bit example, for the first sample we have
four choices; for each of these four choices we have four choices for the second sample. For
each of these 16 choices we have four choices for the third sample, and so on. Luckily, there
is a technique that can be used to keep this explosive growth of choices under control. The
technique, called the Viterbi algorithm [166], is widely used in error control coding.

In order to explain how the Viterbi algorithm works, we will need to formalize some of
what we have been discussing. The sequence of choices can be viewed in terms of a state
diagram. Let’s suppose we have four states: S0, S1, S2, and S3. We will say we are in state Sk

if we use the reconstruction levels Qk,1 or Qk,2. Thus, if we use the reconstruction levels Q0,i ,
we are in state S0. We have said that we use the elements of Set #1 if the previous quantization
levels were Q0,i or Q1,i . As Set #1 consists of the quantization levels Q0,i and Q2,i , this
means that we can go from state S0 and S1 to states S0 and S2. Similarly, from states S2 and S3
we can only go to states S1 and S3. The state diagram can be drawn as shown in Figure 10.29.

Let’s suppose we go through two sequences of choices that converge to the same state, after
which both sequences are identical. This means that the sequence of choices that had incurred
a higher distortion at the time the two sequences converged will have a higher distortion from
then on. In the end we will select the sequence of choices that results in the lowest distortion;
therefore, there is no point in continuing to keep track of a sequence that we will discard
anyway. This means that whenever two sequences of choices converge, we can discard one
of them. How often does this happen? In order to see this, let’s introduce time into our
state diagram. The state diagram with the element of time introduced into it is called a trellis
diagram. The trellis for this particular example is shown in Figure 10.30. At each time instant,
we can go from one state to two other states. And, at each step we have two sequences that
converge to each state. If we discard one of the two sequences that converge to each state, we
can see that, no matter how long a sequence of decisions we use, we will always end up with
four sequences.

Notice that, assuming the initial state is known to the decoder, any path through this
particular trellis can be described to the decoder using 1 bit per sample. From each state we
can only go to two other states. In Figure 10.31, we have marked the branches with the bits
used to signal that transition. Given that each state corresponds to two quantization levels,
specifying the quantization level for each sample would require an additional bit, resulting in
a total of 2 bits per sample. Let’s see how all this works together in an example.

Example 10 .8 .1 :

Using the quantizer whose quantization levels are shown in Figure 10.32, we will quantize the
sequence of values 0.2, 1.6, 2.3. For the distortion measure we will use the sum of absolute
differences. If we simply used the quantization levels marked as Set #1 in Figure 10.28, we
would quantize 0.2 to the reconstruction value 0.5, for a distortion of 0.3. The second sample

10.8 Trellis-Coded Quantization 339

S3

S0

S1 S2

F I GUR E 10 . 29 State diagram for the selection process.

S0

S2

S1

S3

F I GUR E 10 . 30 Trellis diagram for the selection process.

value of 1.6 would be quantized to 2.5, and the third sample value of 2.3 would also be quantized
to 2.5, resulting in a total distortion of 1.4. If we used Set #2 to quantize these values, we
would end up with a total distortion of 1.6. Let’s see how much distortion results when using
the TCQ algorithm.

We start by quantizing the first sample using the two quantization levels Q0,1 and Q0,2.
The reconstruction level Q0,2, or 0.5, is closer and results in an absolute difference of 0.3.
We mark this on the first node corresponding to S0. We then quantize the first sample using
Q1,1 and Q1,2. The closest reconstruction value is Q1,2, or 1.5, which results in a distortion
value of 1.3. We mark the first node corresponding to S1. Continuing in this manner, we get
a distortion value of 1.7 when we use the reconstruction levels corresponding to state S2 and
a distortion value of 0.7 when we use the reconstruction levels corresponding to state S3. At
this point the trellis looks like Figure 10.33. Now we move on to the second sample. Let’s first
quantize the second sample value of 1.6 using the quantization levels associated with state S0.

340 10 V E C T O R Q U A N T I Z A T I O N

S0

S2

S1

S3

0 0 0

0 0 0
0 0 0

0 0 0

1 1 1

1 1 1

1 1 1

1 1 1

F I GUR E 10 . 31 Trellis diagram for the selection process with binary labels for the
state transitions.

The reconstruction levels associated with state S0 are −3.5 and 0.5. The closest value to 1.6
is 0.5. This results in an absolute difference for the second sample of 1.1. We can reach S0
from S0 and from S1. If we accept the first sample reconstruction corresponding to S0, we will
end up with an accumulated distortion of 1.4. If we accept the reconstruction corresponding
to state S1, we get an accumulated distortion of 2.4. Since the accumulated distortion is less
if we accept the transition from state S0, we do so and discard the transition from state S1.
Continuing in this fashion for the remaining states, we end up with the situation depicted in
Figure 10.34. The sequence of decisions that have been terminated are shown by an X on the
branch corresponding to the particular transition. The accumulated distortion is listed at each
node. Repeating this procedure for the third sample value of 2.3, we obtain the trellis shown
in Figure 10.35. If we want to terminate the algorithm at this time, we can pick the sequence
of decisions with the smallest accumulated distortion. In this particular example, the sequence
would be S3, S1, S2. The accumulated distortion is 1.0, which is less than what we would have
obtained using either Set #1 or Set #2. �

10.9 Summary

In this chapter we introduced the technique of vector quantization. We have seen how we can
make use of the structure exhibited by groups, or vectors, of values to obtain compression.
Because there are different kinds of structure in different kinds of data, there are a number of
different ways to design vector quantizers. Because data from many sources, when viewed as
vectors, tend to form clusters, we can design quantizers that essentially consist of representa-
tions of these clusters. We also described aspects of the design of vector quantizers and looked

Q1,1 Q3,1 Q1,2 Q2,2 Q3,2Q0,1 Q2,1 Q0,2

−2.5 −0.5 1.5 2.5 3.5−3.5 −1.5 0.5

F I GUR E 10 . 32 Reconstruction levels for a 2-bit trellis-coded quantizer.

10.9 Summary 341

S0

S2

S1

S3

00.3

1.7

1.3

0.7

0 0

0 0 0
0 0 0

0 0 0

1 1 1

1 1 1

1 1 1

1 1 1

F I GUR E 10 . 33 Quantizing the first sample.

0

0
0

0

1

1

1

S0

S2

S1

00.3

1.7
X

X

X
X

1.3

0.7

1.4

1.2

0.8

2.6

0

0 0
0 0

0 0

1 1

1 1

1 1

1 1 1

F I GUR E 10 . 34 Quantizing the second sample.

S0

S2

S1

S3

00.3

1.7

X

X

X

X

X

X

1.3

0.7

2.6

1.0

2.0

2.4

1.4
X

X

1.2

0.8

2.60 0 0

0 0

0 0 00 0 0

1 1 1

1 1 1

1 1 1

1 1 1

F I GUR E 10 . 35 Quantizing the third sample.

at some applications. Recent literature in this area is substantial, and we have barely skimmed
the surface of the large number of interesting variations of this technique.

Further Reading The subject of vector quantization is dealt with extensively in the book
Vector Quantization and Signal Compression, by A. Gersho and R.M. Gray [136]. There
is also an excellent collection of papers called Vector Quantization, edited by H. Abut and
published by IEEE Press [155].

There are a number of excellent tutorial articles on this subject:

342 10 V E C T O R Q U A N T I Z A T I O N

1. “Vector Quantization,” by R.M. Gray, in the April 1984 issue of IEEE Acoustics, Speech,
and Signal Processing Magazine [273].

2. “Vector Quantization: A Pattern Matching Technique for Speech Coding,” by A. Gersho
and V. Cuperman, in the December 1983 issue of IEEE Communications Magazine [162].

3. “Vector Quantization in Speech Coding,” by J. Makhoul, S. Roucos, and H. Gish, in the
November 1985 issue of the Proceedings of the IEEE [167].

4. “Vector Quantization,” by P.F. Swaszek, in Communications and Networks, edited by
I.F. Blake and H.V. Poor [274].

5. A survey of various image-coding applications of vector quantization can be found
in “Image Coding Using Vector Quantization: A Review,” by N.M. Nasrabadi and
R.A. King, in the August 1988 issue of the IEEE Transactions on Communications
[168].

6. A thorough review of lattice vector quantization can be found in “Lattice Quantization,”
by J.D. Gibson and K. Sayood, in Advances in Electronics and Electron Physics [152].

The area of vector quantization is an active one, and new techniques that use vector quanti-
zation are continually being developed. The journals that report work in this area include IEEE
Transactions on Information Theory, IEEE Transactions on Communications, IEEE Transac-
tions on Signal Processing, and IEEE Transactions on Image Processing, among others.

10.10 Projects and Problems

1. In Example 10.3.2 we increased the SNR by about 0.3 dB by moving the top-left output
point to the origin. What would happen if we moved the output points at the four corners
to the positions (±�, 0), (0,±�)? As in the example, assume the input has a Laplacian
distribution with mean zero and variance one, and � = 0.7309. You can obtain the
answer analytically or through simulation.

2. For the quantizer of the previous problem, rather than moving the output points to (±�, 0)
and (0,±�), we could have moved them to other positions that might have provided a
larger increase in SNR. Write a program to test different (reasonable) possibilities and
report on the best and worst cases.

3. In the program trainvq.c the empty cell problem is resolved by replacing the vector
with no associated training set vectors with a training set vector from the quantization
region with the largest number of vectors. In this problem, we will investigate some
possible alternatives.
Generate a sequence of pseudorandom numbers with a triangular distribution between 0
and 2. (You can obtain a random number with a triangular distribution by adding two
uniformly distributed random numbers.) Design an eight-level, two-dimensional vector
quantizer with the initial codebook shown in Table 10.9.

(a) Use the trainvq program to generate a codebook with 10,000 random numbers
as the training set. Comment on the final codebook you obtain. Plot the elements of
the codebook and discuss why they ended up where they did.

10.10 Projects and Problems 343

T A B L E 10 . 9 Initial codebook for Problem 3.

1 1
1 2
1 0.5
0.5 1
0.5 0.5
1.5 1
2 5
3 3

(b) Modify the program so that the empty cell vector is replaced with a vector from
the quantization region with the largest distortion. Comment on any changes in
the distortion (or lack of change). Is the final codebook different from the one you
obtained earlier?

(c) Modify the program so that whenever an empty cell problem arises, a two-level
quantizer is designed for the quantization region with the largest number of output
points. Comment on any differences in the codebook and distortion from the previous
two cases.

4. Generate a 16-dimensional codebook of size 64 for the Sena image. Construct the vector
as a 4×4 block of pixels, an 8×2 block of pixels, and a 16×1 block of pixels. Comment
on the differences in the mean squared errors and the quality of the reconstructed images.
You can use the program trvqsp_img to obtain the codebooks.

5. In Example10.6.1 we designed a 60-level two-dimensional quantizer by taking the two-
dimensional representation of an 8-level scalar quantizer, removing 12 output points
from the 64 output points, and adding 8 points in other locations. Assume the input is
Laplacian with zero mean and unit variance, and � = 0.7309.

(a) Calculate the increase in the probability of overload by the removal of the 12 points
from the original 64.

(b) Calculate the decrease in overload probability when we added the 8 new points to
the remaining 52 points.

6. In this problem we will compare the performance of a 16-dimensional pyramid vector
quantizer and a 16-dimensional LBG vector quantizer for two different sources. In each
case the codebook for the pyramid vector quantizer consists of 272 elements:

� 32 vectors with 1 element equal to ±�, and the other 15 equal to zero, and

� 240 vectors with 2 elements equal to ±� and the other 14 equal to zero.

The value of � should be adjusted to give the best performance. The codebook for the
LBG vector quantizer will be obtained by using the programtrvqsp_img on the source
output. You will have to modify trvqsp_img slightly to give you a codebook that is
not a power of two.

344 10 V E C T O R Q U A N T I Z A T I O N

(a) Use the two quantizers to quantize a sequence of 10,000 zero mean unit variance
Laplacian random numbers. Using either the mean squared error or the SNR as a
measure of performance, compare the performance of the two quantizers.

(b) Use the two quantizers to quantize the Sinan image. Compare the two quantizers us-
ing either the mean squared error or the SNR and the reconstructed image. Compare
the difference between the performance of the two quantizers with the difference
when the input was random.

7. Design one-, two-, three-, four-, and eight-dimensional quantizers at the rate of 1 bit/sample
using the LGB algorithm (you can use trvqsplit), for the uniform, Gaussian, and Laplacian
distributions. Study how your design algorithm performs and suggest ways of improving
it.
Use the random number generator programs to design and test the quantizers (rangen.c).

8. The purpose of this project is to have you familiarize yourself with vector quantization,
in particular with vector quantization of images. The programs you will use include
trvqsp_img, vqimg_enc, and vqimg_dec. The trvqsp_img program designs
vector quantization codebooks for images using the splitting approach. The programs
vqimg_enc and vqimg_dec are the vector quantization encoder and decoder for
images. The indices generated by the encoder are coded using fixed-length codes.
Experiment with different ways of selecting vectors and examine the effect of the training
set used for obtaining a codebook on the VQ performance. Suggest some ways of
resolving the mismatch problem between the image being encoded and the codebook.

11
Differential Encoding

11.1 Overview

S
ources such as speech and images have a great deal of correlation from sample
to sample. We can use this fact to predict each sample based on its past and
only encode and transmit the differences between the prediction and the sample
value. Differential encoding schemes are built around this premise. Because
the prediction techniques are rather simple, these schemes are much easier to

implement than other compression schemes. In this chapter, we will look at various components
of differential encoding schemes and study how they are used to encode sources—in particular,
speech. We will also look at a widely used international differential encoding standard for
speech encoding.

11.2 Introduction

In the last chapter we looked at vector quantization—a rather complex scheme requiring a
significant amount of computational resources—as one way of taking advantage of the structure
in the data to perform lossy compression. In this chapter, we look at a different approach that
uses the structure in the source output in a slightly different manner, resulting in a significantly
less complex system.

When we design a quantizer for a given source, the size of the quantization interval depends
on the variance of the input. If we assume the input is uniformly distributed, the variance
depends on the dynamic range of the input. In turn, the size of the quantization interval
determines the amount of quantization noise incurred during the quantization process.

Introduction to Data Compression. DOI: http://dx.doi.org/10.1016/B978-0-12-415796-5.00011-9
© 2012 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-415796-5.00011-9

346 11 D I F F E R E N T I A L E N C O D I N G

1.0

−0.2

0.2

0.4

0.6

0.6

0.8

0.8

0

0

0
10 2 3 4 5 6

Original
Difference

F I GUR E 11 . 1 Sinusoid and sample-to-sample differences.

In many sources of interest, the sampled source output {xn} does not change a great deal
from one sample to the next. This means that both the dynamic range and the variance of
the sequence of differences {dn = xn − xn−1} are significantly smaller than that of the source
output sequence. Furthermore, for correlated sources the distribution of dn is highly peaked at
zero. We made use of this skew, and resulting loss in entropy, for the lossless compression of
images in Chapter 7. Given the relationship between the variance of the quantizer input and
the incurred quantization error, it is also useful, in terms of lossy compression, to look at ways
to encode the difference from one sample to the next rather than encoding the actual sample
value. Techniques that transmit information by encoding differences are called differential
encoding techniques.

Example 11 .2 .1 :

Consider the half cycle of a sinusoid shown in Figure 11.1 that has been sampled at the rate
of 30 samples per cycle. The value of the sinusoid ranges between 1 and −1. If we wanted
to quantize the sinusoid using a uniform four-level quantizer, we would use a step size of 0.5,
which would result in quantization errors in the range [−0.25, 0.25]. If we take the sample-
to-sample differences (excluding the first sample), the differences lie in the range [−0.2, 0.2].
To quantize this range of values with a four-level quantizer requires a step size of 0.1, which
results in quantization noise in the range [−0.05, 0.05]. �

The sinusoidal signal in the previous example is somewhat contrived. However, if we look
at some of the real-world sources that we want to encode, we see that the dynamic range that con-
tains most of the differences is significantly smaller than the dynamic range of the source output.

Example 11 .2 .2 :

Figure 11.2 is the histogram of the Sinan image. Notice that the pixel values vary over almost
the entire range of 0 to 255. To represent these values exactly, we need 8 bits per pixel. To

11.2 Introduction 347

represent these values in a lossy manner to within an error in the least significant bit, we need
7 bits per pixel. Figure 11.3 is the histogram of the differences.

1200

1000

800

600

400

200

0
0 50 100 150 200 250

F I GUR E 11 . 2 Histogram of the Sinan image.

8000

7000

6000

5000

4000

1000

0

3000

2000

–100 –50 0 50 100

F I GUR E 11 . 3 Histogram of pixel-to-pixel differences of the Sinan image.

More than 99% of the pixel values lie in the range −31 to 31. Therefore, if we are willing
to accept distortion in the least significant bit, for more than 99% of the difference values we
need 5 bits per pixel rather than 7. In fact, if we are willing to have a small percentage of the
differences with a larger error, we could get by with 4 bits for each difference value. �

In both examples, we have shown that the dynamic range of the differences between samples
is substantially less than the dynamic range of the source output. In the following sections we
describe encoding schemes that take advantage of this fact to provide improved compression
performance.

348 11 D I F F E R E N T I A L E N C O D I N G

11.3 The Basic Algorithm

Although it takes fewer bits to encode differences than it takes to encode the original pixel,
we have not said whether it is possible to recover an acceptable reproduction of the original
sequence from the quantized difference value. When we were looking at lossless compression
schemes, we found that if we encoded and transmitted the first value of a sequence, followed
by the encoding of the differences between samples, we could losslessly recover the original
sequence. Unfortunately, a strictly analogous situation does not exist for lossy compression.

Example 11 .3 .1 :

Suppose a source puts out the sequence

6.2 9.7 13.2 5.9 8 7.4 4.2 1.8

We could generate the following sequence by taking the difference between samples (assume
that the first sample value is zero):

6.2 3.5 3.5 −7.3 2.1 −0.6 −3.2 −2.4

If we losslessly encoded these values, we could recover the original sequence at the receiver
by adding back the difference values. For example, to obtain the second reconstructed value,
we add the difference 3.5 to the first received value 6.2 to obtain a value of 9.7. The third
reconstructed value can be obtained by adding the received difference value of 3.5 to the second
reconstructed value of 9.7, resulting in a value of 13.2, which is the same as the third value
in the original sequence. Thus, by adding the nth received difference value to the (n − 1)th
reconstruction value, we can recover the original sequence exactly.

Now let us look at what happens if these difference values are encoded using a lossy
scheme. Suppose we had a seven-level quantizer with output values −6,−4,−2, 0, 2, 4, 6.
The quantized sequence would be

6 4 4 −6 2 0 −4 −2

If we follow the same procedure for reconstruction as we did for the lossless compression
scheme, we get the sequence

6 10 14 8 10 10 6 4

The difference or error between the original sequence and the reconstructed sequence is

0.2 −0.3 −0.8 −2.1 −2 −2.6 −1.8 −2.2

Notice that initially the magnitudes of the error are quite small (0.2, 0.3). As the reconstruction
progresses, the magnitudes of the error become significantly larger (2.6, 1.8, 2.2). �

To see what is happening, consider a sequence {xn}. A difference sequence {dn} is generated
by taking the differences xn − xn−1. This difference sequence is quantized to obtain the
sequence {d̂n}:

11.3 The Basic Algorithm 349

d̂n = Q[dn] = dn + qn

where qn is the quantization error. At the receiver, the reconstructed sequence {x̂n} is obtained
by adding d̂n to the previous reconstructed value x̂n−1:

x̂n = x̂n−1 + d̂n

Let us assume that both transmitter and receiver start with the same value x0, that is,
x̂0 = x0. Follow the quantization and reconstruction process for the first few samples:

d1 = x1 − x0 (1)

d̂1 = Q[d1] = d1 + q1 (2)

x̂1 = x0 + d̂1 = x0 + d1 + q1 = x1 + q1 (3)
d2 = x2 − x1 (4)

d̂2 = Q[d2] = d2 + q2 (5)

hatx2 = x̂1 + d̂2 = x1 + q1 + d2 + q2 (6)
= x2 + q1 + q2 (7)

Continuing this process, at the nth iteration we get

x̂n = xn +
n∑

k=1

qk (8)

We can see that the quantization error accumulates as the process continues. Theoretically, if
the quantization error process is zero mean, the errors will cancel each other out in the long
run. In practice, often long before that can happen, the finite precision of the machines causes
the reconstructed value to overflow.

Notice that the encoder and decoder are operating with different pieces of information.
The encoder generates the difference sequence based on the original sample values, while
the decoder adds back the quantized difference onto a distorted version of the original signal.
We can solve this problem by forcing both encoder and decoder to use the same information
during the differencing and reconstruction operations. The only information available to the
receiver about the sequence {xn} is the reconstructed sequence {x̂n}. As this information is also
available to the transmitter, we can modify the differencing operation to use the reconstructed
value of the previous sample, instead of the previous sample itself, that is,

dn = xn − x̂n−1 (9)

Using this new differencing operation, let’s repeat our examination of the quantization and
reconstruction process. We again assume that x̂0 = x0.

350 11 D I F F E R E N T I A L E N C O D I N G

d1 = x1 − x0 (10)

d̂1 = Q[d1] = d1 + q1 (11)

x̂1 = x0 + d̂1 = x0 + d1 + q1 = x1 + q1 (12)
d2 = x2 − x̂1 (13)

d̂2 = Q[d2] = d2 + q2 (14)

x̂2 = x̂1 + d̂2 = x̂1 + d2 + q2 (15)
= x2 + q2 (16)

At the nth iteration we have
x̂n = xn + qn (17)

and there is no accumulation of the quantization noise. In fact, the quantization noise in the
nth reconstructed sequence is the quantization noise incurred by the quantization of the nth
difference. The quantization error for the difference sequence is substantially less than the
quantization error for the original sequence. Therefore, this procedure leads to an overall
reduction of the quantization error. If we are satisfied with the quantization error for a given
number of bits per sample, then we can use fewer bits with a differential encoding procedure
to attain the same distortion.

Example 11 .3 .2 :

Let us try to quantize and then reconstruct the sinusoid of Example 11.2.1 using the two different
differencing approaches. Using the first approach, we get a dynamic range of differences from
−0.2 to 0.2. Therefore, we use a quantizer step size of 0.1. In the second approach, the
differences lie in the range [−0.4, 0.4]. In order to cover this range, we use a step size in the
quantizer of 0.2. The reconstructed signals are shown in Figure 11.4.

Notice in the first case that the reconstruction diverges from the signal as we process more
and more of the signal. Although the second differencing approach uses a larger step size, this
approach provides a more accurate representation of the input. �

A block diagram of the differential encoding system as we have described it to this point
is shown in Figure 11.5. We have drawn a dotted box around the portion of the encoder that
mimics the decoder. The encoder must mimic the decoder in order to obtain a copy of the
reconstructed sample used to generate the next difference.

We would like our difference value to be as small as possible. For this to happen, given the
system we have described to this point, x̂n−1 should be as close to xn as possible. However,
x̂n−1 is the reconstructed value of xn−1; therefore, we would like x̂n−1 to be close to xn−1.
Unless xn−1 is always very close to xn , some function of past values of the reconstructed
sequence can often provide a better prediction of xn . We will look at some of these predictor
functions later in this chapter. For now, let’s modify Figure 11.5 and replace the delay block
with a predictor block to obtain our basic differential encoding system as shown in Figure 11.6.
The output of the predictor is the prediction sequence {pn} given by

pn = f (x̂n−1, x̂n−2, . . . , x̂0) (18)

11.3 The Basic Algorithm 351

1.0

0.6

0.4

0

0.8

0.2

–1.0

0.2

0.5 1.0 1.5 2.0 2.5 3.0

Original

Approach 2
Approach 1

+
+

+

+

+

+

+

+

+

+

++

++

–

0.4–

0.6–

0.8–

F I GUR E 11 . 4 Sinusoid and reconstructions.

Q

Delay

Encoder

Decoder

dnxn

xn

xn−1

xn−1

dn

−
dn xn

^

^

^

^ ^

^

F I GUR E 11 . 5 A simple differential encoding system.

Q

P

P

Encoder

Decoder

dnxn

xn

pn

pn

pn

dn+

–

+
+

dn xn

^

^^

^
+

+

F I GUR E 11 . 6 The basic algorithm.

This basic differential encoding system is known as the differential pulse code modulation
(DPCM) system. The DPCM system was developed at Bell Laboratories a few years after
World War II [169]. It is most popular as a speech-encoding system and is widely used in
telephone communications.

As we can see from Figure 11.6, the DPCM system consists of two major components, the
predictor and the quantizer. The study of DPCM is basically the study of these two components.

352 11 D I F F E R E N T I A L E N C O D I N G

In the following sections, we will look at various predictor and quantizer designs and see how
they function together in a differential encoding system.

11.4 Prediction in DPCM

Differential encoding systems like DPCM gain their advantage by the reduction in the variance
and dynamic range of the difference sequence. How much the variance is reduced depends on
how well the predictor can predict the next symbol based on the past reconstructed symbols. In
this section we will mathematically formulate the prediction problem. The analytical solution
to this problem will give us one of the more widely used approaches to the design of the
predictor. In order to follow this development, some familiarity with the mathematical concepts
of expectation and correlation is needed. These concepts are described in Appendix A.

Define σ 2
d , the variance of the difference sequence, as

σ 2
d = E[(xn − pn)

2] (19)

where E[] is the expectation operator. As the predictor outputs pn are given by (18), the design
of a good predictor is essentially the selection of the function f (·) that minimizes σ 2

d . One
problem with this formulation is that x̂n is given by

x̂n = xn + qn

and qn depends on the variance of dn . Thus, by picking f (·), we affect σ 2
d , which in turn

affects the reconstruction x̂n , which then affects the selection of f (·). This coupling makes
an explicit solution extremely difficult for even the most well-behaved source [170]. As most
real sources are far from well behaved, the problem becomes computationally intractable in
most applications.

We can avoid this problem by making an assumption known as the fine quantization as-
sumption. We assume that quantizer step sizes are so small that we can replace x̂n by xn , and
therefore

pn = f (xn−1, xn−2, . . . , x0) (20)

Once the function f (·) has been found, we can use it with the reconstructed values x̂n to ob-
tain pn . If we now assume that the output of the source is a stationary process, from the study
of random processes [171] we know that the function that minimizes σ 2

d is the conditional
expectation E[xn|xn−1, xn−2, . . . , x0]. Unfortunately, the assumption of stationarity is gener-
ally not true, and even if it were, finding this conditional expectation requires the knowledge
of nth-order conditional probabilities, which would generally not be available.

Given the difficulty of finding the best solution, in many applications we simplify the
problem by restricting the predictor function to be linear. That is, the prediction pn is given
by

pn =
N∑

i=1

ai x̂n−i (21)

11.4 Prediction in DPCM 353

The value of N specifies the order of the predictor. Using the fine quantization assumption,
we can now write the predictor design problem as follows: Find the {ai } so as to minimize σ 2

d :

σ 2
d = E

⎡
⎣(xn −

N∑
i=1

ai xn−i

)2⎤⎦ (22)

where we assume that the source sequence is a realization of a real-valued wide-sense stationary
process. Take the derivative of σ 2

d with respect to each of the ai and set this equal to zero. We
get N equations and N unknowns:

∂σ 2
d

∂a1
= −2E

[(
xn −

N∑
i=1

ai xn−i

)
xn−1

]
= 0 (23)

∂σ 2
d

∂a2
= −2E

[(
xn −

N∑
i=1

ai xn−i

)
xn−2

]
= 0 (24)

...
...

∂σ 2
d

∂aN
= −2E

[(
xn −

N∑
i=1

ai xn−i

)
xn−N

]
= 0 (25)

Taking the expectations, we can rewrite these equations as

N∑
i=1

ai Rxx (i − 1) = Rxx (1) (26)

N∑
i=1

ai Rxx (i − 2) = Rxx (2) (27)

...
...

N∑
i=1

ai Rxx (i − N) = Rxx (N) (28)

where Rxx (k) is the autocorrelation function of xn :

Rxx (k) = E[xn xn+k] (29)

We can write these equations in matrix form as

Ra = p (30)

where

R =

⎡
⎢⎢⎢⎢⎢⎣

Rxx (0) Rxx (1) Rxx (2) · · · Rxx (N − 1)
Rxx (1) Rxx (0) Rxx (1) · · · Rxx (N − 2)
Rxx (2) Rxx (1) Rxx (0) · · · Rxx (N − 3)
...

...
...

Rxx (N − 1) Rxx (N − 2) Rxx (N − 3) · · · Rxx (0)

⎤
⎥⎥⎥⎥⎥⎦ (31)

354 11 D I F F E R E N T I A L E N C O D I N G

a =

⎡
⎢⎢⎢⎢⎢⎣

a1
a2
a3
...

aN

⎤
⎥⎥⎥⎥⎥⎦ (32)

p =

⎡
⎢⎢⎢⎢⎢⎣

Rxx (1)
Rxx (2)
Rxx (3)
...

Rxx (N)

⎤
⎥⎥⎥⎥⎥⎦ (33)

where we have used the fact that Rxx (−k) = Rxx (k) for real-valued wide-sense stationary
processes. These equations are referred to as the discrete form of the Wiener-Hopf equations.
If we know the autocorrelation values {Rxx (k)} for k = 0, 1, . . . , N , then we can find the
predictor coefficients as

a = R−1p (34)

Example 11 .4 .1 :

For the speech sequence shown in Figure 11.7, let us find predictors of orders one, two, and
three and examine their performance. We begin by estimating the autocorrelation values from
the data. Given M data points, we use the following average to find the value for Rxx (k):

Rxx (k) = 1

M − k

M−k∑
i=1

xi xi+k (35)

3

1

0

−2

−3

2

−1

500 1000 1500 2000 2500 3000 3500 4000

F I GUR E 11 . 7 A segment of speech: a male speaker saying the word “test.”

11.4 Prediction in DPCM 355

3

1

0

−2

−3

2

−1

500 1000 1500 2000 2500 3000 3500 4000

F I GUR E 11 . 8 The residual sequence using a third-order predictor.

Using these autocorrelation values, we obtain the following coefficients for the three differ-
ent predictors. For N = 1, the predictor coefficient is a1 = 0.66; for N = 2, the coefficients
are a1 = 0.596 and a2 = 0.096; and for N = 3, the coefficients are a1 = 0.577, a2 = −0.025,
and a3 = 0.204. We used these coefficients to generate the residual sequence. In order to see
the reduction in variance, we computed the ratio of the source output variance to the variance
of the residual sequence. For comparison, we also computed this ratio for the case where the
residual sequence is obtained by taking the difference of neighboring samples. The sample-to-
sample differences resulted in a ratio of 1.63. Compared to this, the ratio of the input variance
to the variance of the residuals from the first-order predictor was 2.04. With a second-order
predictor, this ratio rose to 3.37, and with a third-order predictor, the ratio was 6.28.

The residual sequence for the third-order predictor is shown in Figure 11.8. Notice that
although there has been a reduction in the dynamic range, there is still substantial structure
in the residual sequence, especially in the range of samples from about the 700th sample to
the 2000th sample. We will look at ways of removing this structure when we discuss speech
coding.

Let us now introduce a quantizer into the loop and look at the performance of the DPCM
system. For simplicity, we will use a uniform quantizer. If we look at the histogram of the
residual sequence, we find that it is highly peaked. Therefore, we will assume that the input
to the quantizer will be Laplacian. We will also adjust the step size of the quantizer based on
the variance of the residual. The step sizes provided in Chapter 9 are based on the assumption
that the quantizer input has a unit variance. It is easy to show that when the variance differs
from unity, the optimal step size can be obtained by multiplying the step size for a variance of
one with the standard deviation of the input. Using this approach for a four-level Laplacian
quantizer, we obtain step sizes of 0.75, 0.59, and 0.43 for the first-, second-, and third-order
predictors, and step sizes of 0.3, 0.4, and 0.5 for an eight-level Laplacian quantizer. We
measure the performance using two different measures, the signal-to-noise ratio (SNR) and

356 11 D I F F E R E N T I A L E N C O D I N G

T A B L E 11 . 1 Performance of DPCM system
with different predictors and
quantizers.

Quantizer Predictor Order SNR (dB) SPER (dB)

Four-level None 2.43 0
1 3.37 2.65
2 8.35 5.9
3 8.74 6.1

Eight-level None 3.65 0
1 3.87 2.74
2 9.81 6.37
3 10.16 6.71

the signal-to-prediction error ratio. These are defined as follows:

SNR(dB) = 10 log10

(∑M
i=1 x2

i∑M
i=1(xi − x̂i)2

)
(36)

SPER(dB) = 10 log10

(∑M
i=1 x2

i∑M
i=1(xi − pi)2

)
(37)

The results are tabulated in Table 11.1. For comparison we have also included the results
when no prediction is used; that is, we directly quantize the input. Notice the large difference
between using a first-order predictor and a second-order predictor, and then the relatively minor
increase when going from a second-order predictor to a third-order predictor. This is fairly
typical when using a fixed quantizer.

Finally, let’s take a look at the reconstructed speech signal. The speech coded using
a third-order predictor and an eight-level quantizer is shown in Figure 11.9. Although the
reconstructed sequence looks like the original, notice that there is significant distortion in
areas where the source output values are small. This is because in these regions the input to the
quantizer is close to zero. Because the quantizer does not have a zero output level, the output
of the quantizer flips between the two inner levels. If we listened to this signal, we would hear
a hissing sound in the reconstructed signal.

The speech signal used to generate this example is contained among the data sets accom-
panying this book in the file testm.raw. The function readau.c can be used to read the
file. You are encouraged to reproduce the results in this example and listen to the resulting
reconstructions. �

If we look at the speech sequence in Figure 11.7, we can see that there are several distinct
segments of speech. Between sample number 700 and sample number 2000, the speech looks
periodic. Between sample number 2200 and sample number 3500, the speech is low amplitude
and noiselike. Given the distinctly different characteristics in these two regions, it would make
sense to use different approaches to encode these segments. Some approaches to dealing with

11.5 Adaptive DPCM 357

3

1

0

−2

−3

2

−1

500 1000 1500 2000 2500 3000 3500 4000

F I GUR E 11 . 9 The reconstructed sequence using a third-order predictor and an
eight-level uniform quantizer.

these issues are specific to speech coding, and we will encounter them when we specifically
discuss encoding speech using DPCM. However, the problem is also much more widespread
than when encoding speech. A general response to the nonstationarity of the input is the use
of adaptation in prediction. We will look at some of these approaches in the next section.

11.5 Adaptive DPCM

As DPCM consists of two main components, the quantizer and the predictor, making DPCM
adaptive means making the quantizer and the predictor adaptive. Recall that we can adapt a
system based on its input or output. The former approach is called forward adaptation; the
latter, backward adaptation. In the case of forward adaptation, the parameters of the system are
updated based on the input to the encoder, which is not available to the decoder. Therefore, the
updated parameters have to be sent to the decoder as side information. In the case of backward
adaptation, the adaptation is based on the output of the encoder. As this output is also available
to the decoder, there is no need for transmission of side information.

In cases where the predictor is adaptive, especially when it is backward adaptive, we
generally use adaptive quantizers (forward or backward). The reason for this is that the
backward adaptive predictor is adapted based on the quantized outputs. If for some reason
the predictor does not adapt properly at some point, this results in predictions that are far
from the input, and the residuals will be large. In a fixed quantizer, these large residuals will
tend to fall in the overload regions with consequently unbounded quantization errors. The
reconstructed values with these large errors will then be used to adapt the predictor, which will
result in the predictor moving further and further from the input.

The same constraint is not present for quantization, and we can have adaptive quantization
with fixed predictors.

358 11 D I F F E R E N T I A L E N C O D I N G

11.5.1 Adaptive Quantization in DPCM

In forward adaptive quantization, the input is divided into blocks. The quantizer parameters are
estimated for each block. These parameters are transmitted to the receiver as side information.
In DPCM, the quantizer is in a feedback loop, which means that the input to the quantizer is not
conveniently available in a form that can be used for forward adaptive quantization. Therefore,
most DPCM systems use backward adaptive quantization.

The backward adaptive quantization used in DPCM systems is basically a variation of the
backward adaptive Jayant quantizer described in Chapter 9. In Chapter 9, the Jayant algorithm
was used to adapt the quantizer to a stationary input. In DPCM, the algorithm is used to adapt
the quantizer to the local behavior of nonstationary inputs. Consider the speech segment shown
in Figure 11.7 and the residual sequence shown in Figure 11.8. Obviously, the quantizer used
around the 3000th sample should not be the same quantizer that was used around the 1000th
sample. The Jayant algorithm provides an effective approach to adapting the quantizer to the
variations in the input characteristics.

Example 11 .5 .1 :

Let’s encode the speech sample shown in Figure 11.7 using a DPCM system with a backward
adaptive quantizer. We will use a third-order predictor and an eight-level quantizer. We will
also use the following multipliers [124]:

M0 = 0.90 M1 = 0.90 M2 = 1.25 M3 = 1.75

The results are shown in Figure 11.10. Notice the region at the beginning of the speech
sample and between the 3000th and 3500th sample, where the DPCM system with the fixed
quantizer had problems. Because the step size of the adaptive quantizer can become quite
small, these regions have been nicely reproduced. However, right after this region, the speech
output has a larger spike than the reconstructed waveform. This is an indication that the
quantizer is not expanding rapidly enough. This can be remedied by increasing the value of
M3. The program used to generate this example is dpcm_aqb. You can use this program to
study the behavior of the system for different configurations. �

11.5.2 Adaptive Prediction in DPCM

The equations used to obtain the predictor coefficients were derived based on the assumption
of stationarity. However, we see from Figure 11.7 that this assumption is not true. In the
speech segment shown in Figure 11.7, different segments have different characteristics. This
is true for most sources we deal with; while the source output may be locally stationary over
any significant length of the output, the statistics may vary considerably. In this situation, it
is better to adapt the predictor to match the local statistics. This adaptation can be forward
adaptive or backward adaptive.

11.5 Adaptive DPCM 359

3

1

0

−2

−3

2

−1

500 1000 1500 2000 2500 3000 3500 4000

F I GUR E 11 . 10 The reconstructed sequence using a third-order predictor and an
eight-level Jayant quantizer.

DPCM with Forward Adaptive Prediction (DPCM-APF)

In forward adaptive prediction, the input is divided into segments or blocks. In speech coding
this block usually consists of about 16 ms of speech. At a sampling rate of 8000 samples per
second, this corresponds to 128 samples per block [134,172]. In image coding, we use an
8× 8 block [173].

The autocorrelation coefficients are computed for each block. The predictor coefficients
are obtained from the autocorrelation coefficients and quantized using a relatively high-rate
quantizer. If the coefficient values are to be quantized directly, we need to use at least 12
bits per coefficient [134]. This number can be reduced considerably if we represent the
predictor coefficients in terms of parcor coefficients; we will describe how to obtain the parcor
coefficients in Chapter 17. For now, let’s assume that the coefficients can be transmitted with
an expenditure of about 6 bits per coefficient.

In order to estimate the autocorrelation for each block, we generally assume that the sample
values outside each block are zero. Therefore, for a block length of M , the autocorrelation
function for the lth block would be estimated by

R(l)xx (k) =
1

M − k

l M−k∑
i=(l−1)M+1

xi xi+k (38)

for k positive, or

R(l)xx (k) =
1

M + k

l M∑
i=(l−1)M+1−k

xi xi+k (39)

for k negative. Notice that R(l)xx (k) = R(l)xx (−k), which agrees with our initial assumption.

360 11 D I F F E R E N T I A L E N C O D I N G

dn

a1

2

F I GUR E 11 . 11 A plot of the residual squared versus the predictor coefficient.

DPCM with Backward Adaptive Prediction (DPCM-APB)

Forward adaptive prediction requires that we buffer the input. This introduces delay in the
transmission of the speech. As the amount of buffering is small, the use of forward adaptive
prediction when there is only one encoder and decoder is not a big problem. However, in
the case of speech, the connection between two parties may be several links, each of which
may consist of a DPCM encoder and decoder. In such tandem links, the amount of delay can
become large enough to be a nuisance. Furthermore, the need to transmit side information
makes the system more complex. In order to avoid these problems, we can adapt the predictor
based on the output of the encoder, which is also available to the decoder. The adaptation is
done in a sequential manner [172,174].

In our derivation of the optimum predictor coefficients, we took the derivative of the
statistical average of the squared prediction error or residual sequence. In order to do this, we
had to assume that the input process was stationary. Let us now remove that assumption and
try to figure out how to adapt the predictor to the input algebraically. To keep matters simple,
we will start with a first-order predictor and then generalize the result to higher orders.

For a first-order predictor, the value of the residual squared at time n would be given by

d2
n = (xn − a1 x̂n−1)

2 (40)

If we could plot the value of d2
n against a1, we would get a graph similar to the one shown in

Figure 11.11. Let’s take a look at the derivative of d2
n as a function of whether the current value

of a1 is to the left or right of the optimal value of a1—that is, the value of a1 for which d2
n is

minimum. When a1 is to the left of the optimal value, the derivative is negative. Furthermore,
the derivative will have a larger magnitude when a1 is further away from the optimal value. If
we were asked to adapt a1, we would add to the current value of a1. The amount to add would
be large if a1 was far from the optimal value, and small if a1 was close to the optimal value.
If the current value was to the right of the optimal value, the derivative would be positive, and
we would subtract some amount from a1 to adapt it. The amount to subtract would be larger if
we were further from the optimal, and as before, the derivative would have a larger magnitude
if a1 were further from the optimal value.

11.6 Delta Modulation 361

At any given time, in order to adapt the coefficient at time n + 1, we add an amount
proportional to the magnitude of the derivative with a sign that is opposite to that of the
derivative of d2

n at time n:

a(n+1)
1 = a(n)1 − α

∂d2
n

∂a1
(41)

where α is some positive proportionality constant.

∂d2
n

∂a1
= −2(xn − a1 x̂n−1)x̂n−1 (42)

= −2dn x̂n−1. (43)

Substituting this into (41), we get

a(n+1)
1 = a(n)1 + αdn x̂n−1 (44)

where we have absorbed the 2 into α. The residual value dn is available only to the encoder.
Therefore, in order for both the encoder and decoder to use the same algorithm, we replace dn

by d̂n in (44) to obtain
a(n+1)

1 = a(n)1 + αd̂n x̂n−1 (45)

Extending this adaptation equation for a first-order predictor to an N th-order predictor is
relatively easy. The equation for the squared prediction error is given by

d2
n =

(
xn −

N∑
i=1

ai x̂n−i

)2

(46)

Taking the derivative with respect to a j will give us the adaptation equation for the j th predictor
coefficient:

a(n+1)
j = a(n)j + αd̂n x̂n− j (47)

We can combine all N equations in vector form to get

A(n+1) = A(n) + αd̂n X̂n−1 (48)

where

X̂n =

⎡
⎢⎢⎢⎣

x̂n

x̂n−1
...

x̂n−N+1

⎤
⎥⎥⎥⎦ (49)

This particular adaptation algorithm is called the least mean squared (LMS) algorithm [175].

11.6 Delta Modulation

A very simple form of DPCM that has been widely used in a number of speech-coding appli-
cations is the delta modulator (DM). The DM can be viewed as a DPCM system with a 1-bit

362 11 D I F F E R E N T I A L E N C O D I N G

F I GUR E 11 . 12 A signal sampled at two different rates.

(two-level) quantizer. With a two-level quantizer with output values±�, we can only represent
a sample-to-sample difference of �. If, for a given source sequence, the sample-to-sample
difference is often very different from �, then we may incur substantial distortion. One way
to limit the difference is to sample more often. In Figure 11.12 we see a signal that has been
sampled at two different rates. The lower-rate samples are shown by open circles, while the
higher-rate samples are represented by +. It is apparent that the lower-rate samples are not
only further apart in time, they are also further apart in value.

The rate at which a signal is sampled is governed by the highest frequency component of
a signal. If the highest frequency component in a signal is W , then in order to obtain an exact
reconstruction of the signal, we need to sample it at least at twice the highest frequency, or
2W (see Section 12.7). In systems that use delta modulation, we usually sample the signal at
much more than twice the highest frequency. If Fs is the sampling frequency, then the ratio of
Fs to 2W can range from almost 1 to almost 100 [134]. The higher sampling rates are used
for high-quality A/D converters, while the lower rates are more common for low-rate speech
coders.

If we look at a block diagram of a delta modulation system, we see that, while the block
diagram of the encoder is identical to that of the DPCM system, the standard DPCM decoder is
followed by a filter. The reason for the existence of the filter is evident from Figure 11.13, where
we show a source output and the unfiltered reconstruction. The samples of the source output
are represented by the filled circles. As the source is sampled at several times the highest
frequency, the staircase shape of the reconstructed signal results in distortion in frequency
bands outside the band of frequencies occupied by the signal. The filter can be used to remove
these spurious frequencies.

The reconstruction shown in Figure 11.13 was obtained with a delta modulator using a
fixed quantizer. Delta modulation systems that use a fixed step size are often referred to as
linear delta modulators. Notice that the reconstructed signal shows one of two behaviors. In
regions where the source output is relatively constant, the output alternates up or down by �;
these regions are called the granular regions. In the regions where the source output rises or
falls fast, the reconstructed output cannot keep up; these regions are called the slope overload
regions. If we want to reduce the granular error, we need to make the step size � small.
However, this will make it more difficult for the reconstruction to follow rapid changes in the
input. In other words, it will result in an increase in the overload error. To avoid the overload
condition, we need to make the step size large so that the reconstruction can quickly catch up
with rapid changes in the input. However, this will increase the granular error.

11.6 Delta Modulation 363

Granular region

Slope overload
region

F I GUR E 11 . 13 A source output sampled and coded using delta modulation.

Granular region

Slope overload
region

F I GUR E 11 . 14 A source output sampled and coded using adaptive delta modula-
tion.

One way to avoid this impasse is to adapt the step size to the characteristics of the input, as
shown in Figure 11.14. In quasi-constant regions, make the step size small in order to reduce
the granular error. In regions of rapid change, increase the step size in order to reduce overload
error. There are various ways of adapting the delta modulator to the local characteristics of
the source output. We describe two of the more popular ways here.

11.6.1 Constant Factor Adaptive Delta Modulation
(CFDM)

The objective of adaptive delta modulation is clear: increase the step size in overload regions
and decrease it in granular regions. The problem lies in knowing when the system is in each
of these regions. Looking at Figure 11.13, we see that in the granular region the output of the
quantizer changes sign with almost every input sample; in the overload region, the sign of the
quantizer output is the same for a string of input samples. Therefore, we can define an overload
or granular condition based on whether the output of the quantizer has been changing signs.
A very simple system [176] uses a history of one sample to decide whether the system is in
overload or granular condition and whether to expand or contract the step size. If sn denotes

364 11 D I F F E R E N T I A L E N C O D I N G

the sign of the quantizer output d̂n ,

sn =
{

1 i f d̂n > 0
−1 i f d̂n < 0

(50)

the adaptation logic is given by

�n =
{

M1�n−1 sn = sn−1
M2�n−1 sn �= sn−1

(51)

where M1 = 1
M2
= M > 1. In general, M < 2.

By increasing the memory, we can improve the response of the CFDM system. For example,
if we looked at two past samples, we could decide that the system was moving from overload
to granular condition if the sign had been the same for the past two samples and then changed
with the current sample:

sn �= sn−1 = sn−2 (52)

In this case it would be reasonable to assume that the step size had been expanding previously
and, therefore, needed a sharp contraction. If

sn = sn−1 �= sn−2 (53)

then it would mean that the system was probably entering the overload region, while

sn = sn−1 = sn−2 (54)

would mean the system was in overload and the step size should be expanded rapidly.
For the encoding of speech, the following multipliers Mi are recommended by [177] for a

CFDM system with two-sample memory:

sn �= sn−1sn−2 M1 = 0.4 (55)
sn �= sn−1 �= sn−2 M2 = 0.9 (56)
sn = sn−1 �= sn−2 M3 = 1.5 (57)
sn = sn−1 = sn−2 M4 = 2.0 (58)

The amount of memory can be increased further with a concurrent increase in complexity. The
space shuttle used a delta modulator with a memory of seven [178].

11.6.2 Continuously Variable Slope Delta Modulation

The CFDM systems described use a rapid adaptation scheme. For low-rate speech coding, it is
more pleasing if the adaptation is over a longer period of time. This slower adaptation results in
a decrease in the granular error and generally an increase in overload error. Delta modulation
systems that adapt over longer periods of time are referred to as syllabically companded. A
popular class of syllabically companded delta modulation systems are continuously variable
slope delta modulation systems.

11.7 Speech Coding 365

1.0

0.6

−0.2

−0.4

0.8

0.4

0

0.2

0 20 40 60 80 100

F I GUR E 11 . 15 Autocorrelation function for test.snd.

The adaptation logic used in CVSD systems is as follows [134]:

�n = β�n−1 + αn�0 (59)

where β is a number less than but close to one, and αn is equal to one if J of the last K
quantizer outputs were of the same sign. That is, we look in a window of length K to obtain
the behavior of the source output. If this condition is not satisfied, then αn is equal to zero.
Standard values for J and K are J = 3 and K = 3.

11.7 Speech Coding

Differential encoding schemes are immensely popular for speech encoding. They are used in
the telephone system, voice messaging, and multimedia applications, among others. Adaptive
DPCM is a part of several international standards (ITU-T G.721, ITU G.723, ITU G.726,
ITU-T G.722), which we will look at here and in later chapters.

Before we do that, let’s take a look at one issue specific to speech coding. In Figure 11.7,
we see that there is a segment of speech that looks highly periodic. We can see this periodicity
if we plot the autocorrelation function of the speech segment (Figure 11.15).

The autocorrelation peaks at a lag value of 47 and multiples of 47. This indicates a
periodicity of 47 samples. This period is called the pitch period. The predictor we originally
designed did not take advantage of this periodicity, as the largest predictor was a third-order
predictor, and this periodic structure takes 47 samples to show up. We can take advantage of
this periodicity by constructing an outer prediction loop around the basic DPCM structure as
shown in Figure 11.16. This can be a simple single coefficient predictor of the form bx̂n−τ ,
where τ is the pitch period. Using this system on testm.raw, we get the residual sequence
shown in Figure 11.17. Notice the decrease in amplitude in the periodic portion of the speech.

Finally, remember that we have been using mean squared error as the distortion measure in
all of our discussions. However, perceptual tests do not always correlate with the mean squared

366 11 D I F F E R E N T I A L E N C O D I N G

^ ^dn dn
xn

xn
^

+
–

+

+
Q

dn

Encoder

Decoder

P

P
pn pn

pn

xn

–
+

+

+

Pp

PP

+

+

+
+

F I GUR E 11 . 16 The DPCM structure with a pitch predictor.

3

1

0

−2

−3

2

−1

500 1000 1500 2000 2500 3000 3500 4000

F I GUR E 11 . 17 The residual sequence using the DPCM system with a pitch
predictor.

error. The level of distortion we perceive is often related to the level of the speech signal. In
regions where the speech signal is of higher amplitude, we have a harder time perceiving the
distortion, but the same amount of distortion in a different frequency band, where the speech
is of lower amplitude, might be very perceptible. We can take advantage of this by shaping
the quantization error so that most of the error lies in the region where the signal has a higher
amplitude. This variation of DPCM is called noise feedback coding (NFC) (see [134] for
details).

11.7.1 G.726

The International Telecommunications Union has published several recommendations for a
standard ADPCM system, including recommendations G.721, G.723, and G.726. G.726 su-
persedes G.721 and G.723. In this section we will describe the G.726 recommendation for
ADPCM systems at rates of 40, 32, 24, and 16 kbits.

11.7 Speech Coding 367

T A B L E 11 . 2 Recommended input-output
characteristics of the quantizer
for 24-kbits-per-second
operation.

Input Range Label Output

log2
dk
αk

|Ik | log2
dk
αk[2.58,∞) 3 2.91

[1.70, 2.58) 2 2.13
[0.06, 1.70) 1 1.05
(−∞,−0.06) 0 −∞

The Quantizer

The recommendation assumes that the speech output is sampled at the rate of 8000 samples
per second, so the rates of 40, 32, 24, and 16 kbits per second translate 5 bits per sample, 4
bits per sample, 3 bits per sample, and 2 bits per sample. Comparing this to the PCM rate of
8 bits per sample, this would mean compression ratios of 1.6:1, 2:1, 2.67:1, and 4:1. Except
for the 16 kbits per second system, the number of levels in the quantizer are 2nb − 1, where
nb is the number of bits per sample. Thus, the number of levels in the quantizer is odd, which
means that for the higher rates we use a midtread quantizer.

The quantizer is a backward adaptive quantizer with an adaptation algorithm that is similar
to the Jayant quantizer. The recommendation describes the adaptation of the quantization
interval in terms of the adaptation of a scale factor. The input dk is normalized by a scale
factor αk . This normalized value is quantized, and the normalization removed by multiplying
with αk . In this way the quantizer is kept fixed and αk is adapted to the input. Therefore, for
example, instead of expanding the step size, we would increase the value of αk .

The fixed quantizer is a nonuniform midtread quantizer. The recommendation describes
the quantization boundaries and reconstruction values in terms of the log of the scaled input.
The input-output characteristics for the 24 kbit system are shown in Table 11.2. An output
value of −∞ in the table corresponds to a reconstruction value of 0.

The adaptation algorithm is described in terms of the logarithm of the scale factor:

y(k) = log2 αk (60)

The adaptation of the scale factor α or its log y(k) depends on whether the input is speech or
speechlike, where the sample-to-sample difference can fluctuate considerably, or whether the
input is voice-band data, which might be generated by a modem, where the sample-to-sample
fluctuation is quite small. In order to handle both these situations, the scale factor is composed
of two values, a locked slow scale factor for when the sample-to-sample differences are quite
small, and an unlocked value for when the input is more dynamic:

y(k) = al(k)yu(k − 1)+ (1− al(k))yl(k − 1) (61)

The value of al(k) depends on the variance of the input. It will be close to one for speech
inputs and close to zero for tones and voice-band data.

368 11 D I F F E R E N T I A L E N C O D I N G

The unlocked scale factor is adapted using the Jayant algorithm with one slight modifica-
tion. If we were to use the Jayant algorithm, the unlocked scale factor could be adapted as

αu(k) = αk−1 M[Ik−1] (62)

where M[·] is the multiplier. In terms of logarithms, this becomes

yu(k) = y(k − 1)+ log M[Ik−1] (63)

The modification consists of introducing some memory into the adaptive process so that the
encoder and decoder converge following transmission errors:

yu(k) = (1− ε)y(k − 1)+ εW [Ik−1] (64)

where W [·] = log M[·], and ε = 2−5.
The locked scale factor is obtained from the unlocked scale factor through

yl(k) = (1− γ)yl(k − 1)+ γ yu(k), γ = 2−6 (65)

The Predictor

The recommended predictor is a backward adaptive predictor that uses a linear combination
of the past two reconstructed values as well as the six past quantized differences to generate
the prediction:

pk =
2∑

i=1

a(k−1)
i x̂k−i +

6∑
i=1

b(k−1)
i d̂k−i (66)

The set of predictor coefficients is updated using a simplified form of the LMS algorithm:

a(k)1 = (1− 2−8)a(k−1)
1 + 3× 2−8sgn[z(k)]sgn[z(k − 1)] (67)

a(k)2 = (1− 2−7)a(k−1)
2 + 2−7(sgn[z(k)]sgn[z(k − 2)]

− f
(

a(k−1)
1 sgn[z(k)]sgn[z(k − 1)]

)
) (68)

where

z(k) = d̂k +
6∑

i=1

b(k−1)
i d̂k−i (69)

f (β) =
{

4β |β| � 1
2

2sgn(β) |β| > 1
2

(70)

The coefficients {bi } are updated using the following equation:

b(k)i = (1− 2−8)b(k−1)
i + 2−7sgn[d̂k]sgn[d̂k−i] (71)

Notice that in the adaptive algorithms we have replaced products of reconstructed values
and products of quantizer outputs with products of their signs. This is computationally much
simpler and does not lead to any significant degradation of the adaptation process. Furthermore,
the values of the coefficients are selected such that multiplication with these coefficients can

11.8 Image Coding 369

be accomplished using shifts and adds. The predictor coefficients are all set to zero when the
input moves from tones to speech.

11.8 Image Coding

We saw in Chapter 7 that differential encoding provided an efficient approach to the lossless
compression of images. The case for using differential encoding in the lossy compression of
images has not been made as clearly. In the early days of image compression, both differential
encoding and transform coding were popular forms of lossy image compression. At the
current time differential encoding has a much more restricted role as part of other compression
strategies. Several currently popular approaches to image compression decompose the image
into lower and higher frequency components. As low-frequency signals have high sample-to-
sample correlation, several schemes use differential encoding to compress the low-frequency
components. We will see this use of differential encoding when we look at subband- and
wavelet-based compression schemes and, to a lesser extent, when we study transform coding.

For now let us look at the performance of a couple of stand-alone differential image com-
pression schemes. We will compare the performance of these schemes with the performance
of the JPEG compression standard.

Consider a simple differential encoding scheme in which the predictor p[j, k] for the pixel
in the j th row and the kth column is given by

p[j, k] =
⎧⎨
⎩

x̂[j, k − 1] for k > 0
x̂[j − 1, k] for k = 0 and j > 0
128 for j = 0 and k = 0

where x̂[j, k] is the reconstructed pixel in the j th row and kth column. We use this predictor in
conjunction with a fixed four-level uniform quantizer and code the quantizer output using an
arithmetic coder. The coding rate for the compressed image is approximately 1 bit per pixel.
We compare this reconstructed image with a JPEG-coded image at the same rate in Figure
11.18. The signal-to-noise ratio for the differentially encoded image is 22.33 dB (PSNR 31.42
dB), while for the JPEG-encoded image it is 32.52 dB (PSNR 41.60 dB), a difference of more
than 10 dB!

However, this is an extremely simple system compared to the JPEG standard, which has
been fine-tuned for encoding images. Let’s make our differential encoding system slightly
more complicated by replacing the uniform quantizer with a recursively indexed quantizer and
by using a somewhat more complex predictor. For each pixel (except for the boundary pixels)
we compute the following three values:

p1 = 0.5× x̂[j − 1, k] + 0.5× x̂[j, k − 1]
p2 = 0.5× x̂[j − 1, k − 1] + 0.5× x̂[j, k − 1]
p3 = 0.5× x̂[j − 1, k − 1] + 0.5× x̂[j − 1, k] (72)

then obtain the predicted value as

p[j, k] = median{p1, p2, p3}

370 11 D I F F E R E N T I A L E N C O D I N G

F I GUR E 11 . 18 Left: Reconstructed image using differential encoding at 1 bit per
pixel. Right: Reconstructed image using JPEG at 1 bit per pixel.

F I GUR E 11 . 19 Left: Reconstructed image using differential encoding at 1 bit per
pixel using median predictor and recursively indexed quantizer.
Right: Reconstructed image using JPEG at 1 bit per pixel.

For the boundary pixels we use the simple prediction scheme. At a coding rate of 1 bit per
pixel, we obtain the image shown in Figure 11.19. For reference we show it next to the JPEG-
coded image at the same rate. The signal-to-noise ratio for this reconstruction is 29.20 dB
(PSNR 38.28 dB). We have made up two-thirds of the difference using some relatively minor
modifications. We can see that it might be feasible to develop differential encoding schemes
that are competitive with other image compression techniques. Therefore, it makes sense not
to dismiss differential encoding out of hand when we need to develop image compression
systems.

11.10 Projects and Problems 371

11.9 Summary

In this chapter we described some of the more well-known differential encoding techniques.
Although differential encoding does not provide compression as high as vector quantization,
it is very simple to implement. This approach is especially suited to the encoding of speech,
where it has found broad application. The DPCM system consists of two main components, the
quantizer and the predictor. We spent a considerable amount of time discussing the quantizer
in Chapter 9, so most of the discussion in this chapter focused on the predictor. We have seen
different ways of making the predictor adaptive, and looked at some of the improvements to
be obtained from source-specific modifications to the predictor design.

Further Reading

1. Digital Coding of Waveforms, by N.S. Jayant and P. Noll [134], contains some very
detailed and highly informative chapters on differential encoding.

2. “Adaptive Prediction in Speech Differential Encoding Systems,” by J.D. Gibson [172],
is a comprehensive treatment of the subject of adaptive prediction.

3. A real-time video coding system based on DPCM has been developed by NASA. Details
can be found in [179].

11.10 Projects and Problems

1. Generate an AR(1) process using the relationship

xn = 0.9× xn−1 + εn

where εn is the output of a Gaussian random number generator (this is option 2 in
rangen).

(a) Encode this sequence using a DPCM system with a one-tap predictor with predictor
coefficient 0.9 and a three-level Gaussian quantizer. Compute the variance of the
prediction error. How does this compare with the variance of the input? How does
the variance of the prediction error compare with the variance of the {εn} sequence?

(b) Repeat using predictor coefficient values of 0.5, 0.6, 0.7, 0.8, and 1.0. Comment on
the results.

2. Generate an AR(5) process using the following coefficients: 1.381, 0.6, 0.367, −0.7,
0.359.

(a) Encode this with a DPCM system with a 3-bit Gaussian nonuniform quantizer and
a first-, second-, third-, fourth-, and fifth-order predictor. Obtain these predictors by
solving (30). For each case compute the variance of the prediction error and the SNR
in dB. Comment on your results.

(b) Repeat using a 3-bit Jayant quantizer.

372 11 D I F F E R E N T I A L E N C O D I N G

3. DPCM can also be used for encoding images. Encode the Sinan image using a one-tap
predictor of the form

x̂i, j = a × xi, j−1

and a 2-bit quantizer. Experiment with quantizers designed for different distributions.
Comment on your results.

4. Repeat the image-coding experiment of the previous problem using a Jayant quantizer.

5. DPCM-encode the Sinan, Elif, and Bookshelf1 images using a one-tap predictor and a
four-level quantizer followed by a Huffman coder. Repeat using a five-level quantizer.
Compute the SNR for each case, and compare the rate distortion performances.

6. We want to DPCM-encode images using a two-tap predictor of the form

x̂i, j = a × xi, j−1 + b × xi−1, j

and a four-level quantizer followed by a Huffman coder. Find the equations we need to
solve to obtain coefficients a and b that minimize the mean squared error.

7. (a) DPCM-encode the Sinan, Elif, and Bookshelf1 images using a two-tap predictor
and a four-level quantizer followed by a Huffman coder.

(b) Repeat using a five-level quantizer. Compute the SNR and rate (in bits per pixel)
for each case.

(c) Compare the rate distortion performances with the one-tap case.
(d) Repeat using a five-level quantizer. Compute the SNR for each case, and compare

the rate distortion performances using a one-tap and two-tap predictor.

12
Mathematical Preliminaries for
Transforms, Subbands, and
Wavelets

12.1 Overview

I
n this chapter we will review some of the mathematical background necessary
for the study of transforms, subbands, and wavelets. The topics include Fourier
series, Fourier transforms, and their discrete counterparts. We will also look at
sampling and briefly review some linear system concepts.

12.2 Introduction

The roots of many of the techniques we will study can be found in the mathematical literature.
Therefore, in order to understand the techniques, we will need some mathematical background.
Our approach in general will be to introduce the mathematical tools just prior to when they
are needed. However, there is a certain amount of background that is required for most of
what we will be looking at. In this chapter we will present only that material that is a common
background to all the techniques we will be studying. Our approach will be rather utilitarian;
more sophisticated coverage of these topics can be found in [180]. We will be introducing a
rather large number of concepts, many of which depend on each other. In order to make it
easier for you to find a particular concept, we will identify the paragraph in which the concept
is first introduced.

Introduction to Data Compression. DOI: http://dx.doi.org/10.1016/B978-0-12-415796-5.00012-0
© 2012 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-415796-5.00012-0

374 12 M A T H E M A T I C A L P R E L I M I N A R I E S

We will begin our coverage with a brief introduction to the concept of vector spaces, and
in particular the concept of the inner product. We will use these concepts in our description of
Fourier series and Fourier transforms. Next is a brief overview of linear systems, then a look at
the issues involved in sampling a function. Finally, we will revisit the Fourier concepts in the
context of sampled functions and provide a brief introduction to Z-transforms. Throughout,
we will try to get a physical feel for the various concepts.

12.3 Vector Spaces

The techniques we will be using to obtain compression will involve manipulations and decom-
positions of (sampled) functions of time. In order to do this we need some sort of mathematical
framework. This framework is provided through the concept of vector spaces.

We are very familiar with vectors in two- or three-dimensional space. An example of a
vector in two-dimensional space is shown in Figure12.1. This vector can be represented in
a number of different ways: we can represent it in terms of its magnitude and direction, or
we can represent it as a weighted sum of the unit vectors in the x and y directions, or we can
represent it as an array whose components are the coefficients of the unit vectors. Thus, the
vector v in Figure12.1 has a magnitude of 5 and an angle of 36.86 degrees,

v = 4ux + 3uy

and

v =
[

4
3

]

We can view the second representation as a decomposition of V into simpler building
blocks, namely, the basis vectors. The nice thing about this is that any vector in two dimensions
can be decomposed in exactly the same way. Given a particular vector A and a basis set (more

4321

4

3

2

1

ux

v
uy

F I GUR E 12 . 1 A vector.

12.3 Vector Spaces 375

on this later), decomposition means finding the coefficients with which to weight the unit
vectors of the basis set. In our simple example it is easy to see what these coefficients should
be. However, we will encounter situations where it is not a trivial task to find the coefficients
that constitute the decomposition of the vector. We therefore need some machinery to extract
these coefficients. The particular machinery we will use here is called the dot product or the
inner product.

12.3.1 Dot or Inner Product

Given two vectors a and b such that

a =
[

a1
a2

]
, b =

[
b1
b2

]

the inner product between a and b is defined as

a · b = a1b1 + a2b2

Two vectors are said to be orthogonal if their inner product is zero. A set of vectors is said
to be orthogonal if each vector in the set is orthogonal to every other vector in the set. The
inner product between a vector and a unit vector from an orthogonal basis set will give us the
coefficient corresponding to that unit vector. It is easy to see that this is indeed so. We can
write ux and uy as

ux =
[

1
0

]
, uy =

[
0
1

]
These are obviously orthogonal. Therefore, the coefficient a1 can be obtained by

a · ux = a1 × 1+ a2 × 0 = a1

and the coefficient of uy can be obtained by

a · uy = a1 × 0+ a2 × 1 = a2

The inner product between two vectors is in some sense a measure of how “similar” they are,
but we have to be a bit careful in how we define “similarity.” For example, consider the vectors
in Figure 12.2. The vector a is closer to ux than to uy . Therefore a · ux will be greater than
a · uy . The reverse is true for b.

12.3.2 Vector Space

In order to handle not just two- or three-dimensional vectors but general sequences and func-
tions of interest to us, we need to generalize these concepts. Let us begin with a more general
definition of vectors and the concept of a vector space.

A vector space consists of a set of elements called vectors that have the operations of
vector addition and scalar multiplication defined on them. Furthermore, the results of these
operations are also elements of the vector space.

376 12 M A T H E M A T I C A L P R E L I M I N A R I E S

ux

b

a

uy

F I GUR E 12 . 2 Example of different vectors.

By vector addition of two vectors, we mean the vector obtained by the pointwise addition
of the components of the two vectors. For example, given two vectors a and b:

a =
⎡
⎣a1

a2
a3

⎤
⎦ , b =

⎡
⎣ b1

b2
b3

⎤
⎦ (1)

the vector addition of these two vectors is given as

a + b =
⎡
⎣ a1 + b1

a2 + b2
a3 + b3

⎤
⎦ (2)

By scalar multiplication, we mean the multiplication of a vector with a real or complex
number. For this set of elements to be a vector space it has to satisfy certain axioms.

Suppose V is a vector space; x, y, and z are vectors; and α and β are scalars. Then the
following axioms are satisfied:

1. x + y = y+ x (commutativity).

2. (x + y)+ z = x + (y+ z) and (αβ)x = α(βx) (associativity).

3. There exists an element θ in V such that x+ θ = x for all x in V . θ is called the additive
identity.

4. α(x + y) = αx + αy, and (α + β)x = αx + βx (distributivity).

5. 1 · x = x, and 0 · x = θ .

6. For every x in V , there exists a (−x) such that x + (−x) = θ .

A simple example of a vector space is the set of real numbers. In this set zero is the
additive identity. We can easily verify that the set of real numbers with the standard operations
of addition and multiplication obey the axioms stated above. See if you can verify that the set
of real numbers is a vector space. One of the advantages of this exercise is to emphasize the
fact that a vector is more than a line with an arrow at its end.

12.3 Vector Spaces 377

Example 12 .3 .1 :

Another example of a vector space that is of more practical interest to us is the set of all
functions f (t) with finite energy. That is,∫ ∞

−∞
| f (t)|2 dt <∞ (3)

Let’s see if this set constitutes a vector space. If we define additions as pointwise addition and
scalar multiplication in the usual manner, the set of functions f (t) obviously satisfies axioms
1, 2, and 4.

� If f (t) and g(t) are functions with finite energy, and α is a scalar, then the functions
f (t)+ g(t) and α f (t) also have finite energy.

� If f (t) and g(t) are functions with finite energy, then f (t)+ g(t) = g(t)+ f (t) (axiom
1).

� If f (t), g(t), and h(t) are functions with finite energy, and α and β are scalars, then
(f (t)+ g(t))+ h(t) = f (t)+ (g(t)+ h(t)) and (αβ) f (t) = α(β f (t)) (axiom 2).

� If f (t), g(t), and h(t) are functions with finite energy, and α is a scalar, then α(f (t) +
g(t)) = α f (t)+ αg(t) and (α + β) f (t) = α f (t)+ β f (t) (axiom 4).

Let us define the additive identity function θ(t) as the function that is identically zero for
all t . This function satisfies the requirement of finite energy, and we can see that axioms 3
and 5 are also satisfied. Finally, if a function f (t) has finite energy, then from Equation (3),
the function − f (t) also has finite energy, and axiom 6 is satisfied. Therefore, the set of all
functions with finite energy constitutes a vector space. This space is denoted by L2(f), or
simply L2. �

12.3.3 Subspace

A subspace S of a vector space V is a subset of V whose members satisfy all the axioms of
the vector space. It has the additional property that if x and y are in S, and α is a scalar, then
x + y and αx are also in S.

Example 12 .3 .2 :

Consider the set S of continuous bounded functions on the interval [0, 1]. Then S is a subspace
of the vector space L2. �

12.3.4 Basis

One way we can generate a subspace is by taking linear combinations of a set of vectors. If
this set of vectors is linearly independent, then the set is called a basis for the subspace.

378 12 M A T H E M A T I C A L P R E L I M I N A R I E S

A set of vectors {x1, x2, . . .} is said to be linearly independent if no vector of the
set can be written as a linear combination of the other vectors in the set.

A direct consequence of this definition is the following theorem:

Theorem 12.1 A set of vectors X = {x1, x2, . . . , xN } is linearly independent if and

only if the expression
∑N

i=1 αi xi = θ implies that αi = 0 for all i = 1, 2, . . . , N.

Proof The proof of this theorem can be found in most books on linear algebra [180].

The set of vectors formed by all possible linear combinations of vectors from a linearly
independent set X forms a vector space (see Problem 1 at the end of this chapter). The set X is
said to be the basis for this vector space. The basis set contains the smallest number of linearly
independent vectors required to represent each element of the vector space. More than one set
can be the basis for a given space.

Example 12 .3 .3 :

Consider the vector space consisting of vectors [a b]T , where a and b are real numbers, and
T denotes transpose (the transpose of a vector involves writing rows as columns and columns
as rows). Then the set

X =
{[

1
0

]
,

[
0
1

]}
forms a basis for this space, as does the set

X =
{[

1
1

]
,

[
1
0

]}

In fact, any two vectors that are not scalar multiples of each other form a basis for this
space. �

The number of basis vectors required to generate the space is called the dimension of the
vector space. In the previous example the dimension of the vector space is two. The dimension
of the space of all continuous functions on the interval [0, 1] is infinity.

Given a particular basis, we can find a representation with respect to this basis for any
vector in the space.

Example 12 .3 .4 :

If a = [3 4]T , then

a = 3

[
1
0

]
+ 4

[
0
1

]

12.3 Vector Spaces 379

and

a = 4

[
1
1

]
+ (−1)

[
1
0

]
so the representation of a with respect to the first basis set is (3, 4), and the representation of
a with respect to the second basis set is (4, -1). �

In the beginning of this section we had described a mathematical machinery for finding the
components of a vector that involved taking the dot product or inner product of the vector to
be decomposed with basis vectors. In order to use the same machinery in more abstract vector
spaces we need to generalize the notion of inner product.

12.3.5 Inner Product—Formal Definition

An inner product between two vectors x and y, denoted by 〈x, y〉, associates a scalar value
with each pair of vectors. The inner product satisfies the following axioms:

1. 〈x, y〉 = 〈y, x〉∗, where ∗ denotes complex conjugate.

2. 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉.
3. 〈αx, y〉 = α〈x, y〉, where α can be a real or complex number.

4. 〈x, x〉 � 0, with equality if and only if x = θ . The quantity
√〈x, x〉 denoted by ‖x‖ is

called the norm of x and is analogous to our usual concept of distance.

12.3.6 Orthogonal and Orthonormal Sets

As in the case of Euclidean space, two vectors are said to be orthogonal if their inner product
is zero. If we select our basis set to be orthogonal (that is, each vector is orthogonal to every
other vector in the set) and further require that the norm of each vector be one (that is, the
basis vectors are unit vectors), such a basis set is called an orthonormal basis set. Given an
orthonormal basis, it is easy to find the representation of any vector in the space in terms of the
basis vectors using the inner product. Suppose we have a vector space SN with an orthonormal
basis set {xi }Ni=1. Given a vector y in the space SN , by definition of the basis set we can write
y as a linear combination of the vectors xi :

y =
N∑

i=1

αi xi

To find the coefficient αk , we find the inner product of both sides of this equation with xk :

〈y, xk〉 =
N∑

i=1

αi 〈xi , xk〉

380 12 M A T H E M A T I C A L P R E L I M I N A R I E S

Because of orthonormality,

〈xi , xk〉 =
{

1 i = k
0 i �= k

and
〈y, xk〉 = αk

By repeating this with each xi , we can get all the coefficients αi . Note that in order to use this
machinery, the basis set has to be orthonormal.

We now have sufficient information in hand to begin looking at some of the well-known
techniques for representing functions of time. This was somewhat of a crash course in vector
spaces, and you might, with some justification, be feeling somewhat dazed. Basically, the
important ideas that we would like you to remember are the following:

� Vectors are not simply points in two- or three-dimensional space. In fact, functions of
time can be viewed as elements in a vector space.

� Collections of vectors that satisfy certain axioms make up a vector space.

� All members of a vector space can be represented as linear, or weighted, combinations of
the basis vectors (keep in mind that you can have many different basis sets for the same
space). If the basis vectors have unit magnitude and are orthogonal, they are known as
an orthonormal basis set.

� If a basis set is orthonormal, the weights, or coefficients, can be obtained by taking the
inner product of the vector with the corresponding basis vector.

In the next section we use these concepts to show how we can represent periodic functions as
linear combinations of sines and cosines.

12.4 Fourier Series

The representation of periodic functions in terms of a series of sines and cosines was used by
Jean Baptiste Joseph Fourier to solve equations describing heat diffusion. This approach has
since become indispensable in the analysis and design of systems. The work was awarded
the grand prize for mathematics in 1812 and has been called one of the most revolutionary
contributions of the last century. A very readable account of the life of Fourier and the impact
of his discovery can be found in [181].

Fourier showed that any periodic function, no matter how awkward looking, could be
represented as the sum of smooth, well-behaved sines and cosines. Given a periodic function
f (t) with period T ,

f (t) = f (t + nT) n = ±1,±2, . . .

we can write f (t) as

f (t) = a0 +
∞∑

n=1

an cos nw0t +
∞∑

n=1

bn sin nw0t, w0 = 2π

T
(4)

This form is called the trigonometric Fourier series representation of f (t).

12.4 Fourier Series 381

A more useful form of the Fourier series representation from our point of view is the
exponential form of the Fourier series:

f (t) =
∞∑

n=−∞
cne jnw0t (5)

We can easily move between the exponential and trigonometric representations by using Euler’s
identity

e jφ = cosφ + j sin φ

where j = √−1.
In the terminology of the previous section, all periodic functions with period T form a

vector space. The complex exponential functions {e jnω0t } constitute a basis for this space.
The parameters {cn}∞n=−∞ are the representations of a given function f (t) with respect to this
basis set. Therefore, by using different values of {cn}∞n=−∞, we can build different periodic
functions. If we wanted to inform somebody what a particular periodic function looked like,
we could send the values of {cn}∞n=−∞ and they could synthesize the function.

We would like to see if this basis set is orthonormal. If it is, we want to be able to obtain
the coefficients that make up the Fourier representation using the approach described in the
previous section. In order to do all this, we need a definition of the inner product on this vector
space. If f (t) and g(t) are elements of this vector space, the inner product is defined as

〈 f (t), g(t)〉 = 1

T

∫ t0+T

t0
f (t)g(t)∗dt (6)

where t0 is an arbitrary constant and ∗ denotes complex conjugate. For convenience we will
take t0 to be zero.

Using this inner product definition, let us check to see if the basis set is orthonormal.

〈e jnω0t , e jmω0t 〉 = 1

T

∫ T

0
e jnω0t e− jmω0t dt (7)

= 1

T

∫ T

0
e j (n−m)ω0t dt (8)

When n = m, Equation (7) becomes the norm of the basis vector, which is clearly one. When
n �= m, let us define k = n − m. Then

〈e jnω0t , e jmω0t 〉 = 1

T

∫ T

0
e jkω0t dt (9)

= 1

jkω0T
(e jkω0T − 1) (10)

= 1

jkω0T
(e jk2π − 1) (11)

= 0 (12)

382 12 M A T H E M A T I C A L P R E L I M I N A R I E S

where we have used the facts that ω0 = 2π
T and

e jk2π = cos(2kπ)+ j sin(2kπ) = 1

Thus, the basis set is orthonormal.
Using this fact, we can find the coefficient cn by taking the inner product of f (t) with the

basis vector e jnω0t :

cn = 〈 f (t), e jnω0t 〉 = 1

T

∫ T

0
f (t)e− jnω0t dt (13)

What do we gain from obtaining the Fourier representation {cn}∞n=−∞ of a function f (t)?
Before we answer this question, let us examine the context in which we generally use Fourier
analysis. We start with some signal generated by a source. If we wish to look at how this
signal changes its amplitude over a period of time (or space), we represent it as a function
of time f (t) (or a function of space f (x)). Thus, f (t) (or f (x)) is a representation of the
signal that brings out how this signal varies in time (or space). The sequence {cn}∞n=−∞ is a
different representation of the same signal which brings out a different aspect of the signal.
The basis functions are sinusoids that differ from each other in how fast they fluctuate in a
given time interval. The basis vector e2 jω0t fluctuates twice as fast as the basis vector e jω0t .
The coefficients of the basis vectors {cn}∞n=−∞ give us a measure of the different amounts
of fluctuation present in the signal. Fluctuation of this sort is usually measured in terms
of frequency. A frequency of 1 Hz denotes the completion of one period in one second, a
frequency of 2 Hz denotes the completion of two cycles in one second, and so on. Thus, the
coefficients {cn}∞n=−∞ provide us with a frequency profile of the signal: how much of the
signal changes at the rate of ω0

2π Hz, how much of the signal changes at the rate of 2ω0
2π Hz,

and so on. This information cannot be obtained by looking at the time representation f (t).
Note that the use of the {cn}∞n=−∞ representation tells us little about how the signal changes
with time. Each representation emphasizes a different aspect of the signal. The ability to view
the same signal in different ways helps us to better understand the nature of the signal, and
thus develop tools for manipulation of the signal. Later, when we talk about wavelets, we will
look at representations that provide information about both the time profile and the frequency
profile of the signal.

The Fourier series provides us with a frequency representation of periodic signals. How-
ever, many of the signals we will be dealing with are not periodic. Fortunately, the Fourier
series concepts can be extended to nonperiodic signals.

12.5 Fourier Transform

Consider the function f (t) shown in Figure 12.3. Let us define a function fP (t) as

fP (t) =
∞∑

n=−∞
f (t − nT) (14)

where T > t1. This function, which is obviously periodic (fP (t + T) = fP (t)), is called the
periodic extension of the function f (t). Because the function fP (t) is periodic, we can define

12.5 Fourier Transform 383

f(t)

t1 t

F I GUR E 12 . 3 A function of time.

a Fourier series expansion for it:

cn = 1

T

∫ T
2

− T
2

fP (t)e
− jnω0t dt (15)

fP (t) =
∑∞

n=−∞cne jnω0t (16)

Define
C(n, T) = cnT

and
�ω = ω0

and let us slightly rewrite the Fourier series equations:

C(n, T) =
∫ T

2

− T
2

fP (t)e
− jn�ωt dt (17)

fP (t) =
∑∞

n=−∞
C(n, T)

T
e jn�ωt (18)

We can recover f (t) from fP (t) by taking the limit of fP (t) as T goes to infinity. Because
�ω = ω0 = 2π

T , this is the same as taking the limit as �ω goes to zero. As �ω goes to zero,
n�ω goes to a continuous variable ω. Therefore,

lim
T→∞�ω→0

∫ T
2

− T
2

fP (t)e
− jn�ωt dt =

∫ ∞
−∞

f (t)e− jωt dt (19)

From the right-hand side, we can see that the resulting function is a function only of ω. We
call this function the Fourier transform of f (t), and we will denote it by F(ω). To recover
f (t) from F(w), we apply the same limits to Equation (18):

f (t) = lim
T→∞ fP (t) = lim

T→∞�ω→0

∞∑
n=−∞

C(n, T)
�ω

2π
e jn�ωt (20)

= 1

2π

∫ ∞
−∞

F(ω)e jωt dω (21)

384 12 M A T H E M A T I C A L P R E L I M I N A R I E S

The equation

F(ω) =
∫ ∞
−∞

f (t)e− jωt dt (22)

is generally called the Fourier transform. The function F(ω) tells us how the signal fluctuates
at different frequencies. The equation

f (t) = 1

2π

∫ ∞
−∞

F(w)e jωt dω (23)

is called the inverse Fourier transform, and it shows us how we can construct a signal using
components that fluctuate at different frequencies. We will denote the operation of the Fourier
transform by the symbol F . Thus, in the preceding, F(ω) = F[f (t)].

There are several important properties of the Fourier transform, three of which will be of
particular use to us. We state them here and leave the proof to the problems (problems 2, 3,
and 4 at the end of this chapter).

12.5.1 Parseval’ s Theorem

The Fourier transform is an energy-preserving transform; that is, the total energy when we
look at the time representation of the signal is the same as the total energy when we look at the
frequency representation of the signal. This makes sense because the total energy is a physical
property of the signal and should not change when we look at it using different representations.
Mathematically, this is stated as∫ ∞

−∞
| f (t)|2 = 1

2π

∫ ∞
−∞
|F(ω)|2 dω (24)

The 1
2π factor is a result of using units of radians (ω) for frequency instead of Hertz (f). If

we substitute ω = 2π f in Equation (24), the 2π factor will go away. This property applies to
any vector space representation obtained using an orthonormal basis set.

12.5.2 Modulation Property

If f (t) has the Fourier transform F(ω), then the Fourier transform of f (t)e jω0t is F(w−w0).
That is, multiplication with a complex exponential in the time domain corresponds to a shift
in the frequency domain. As a sinusoid can be written as a sum of complex exponentials,
multiplication of f (t) by a sinusoid will also correspond to shifts of F(ω). For example,

cos(ω0t) = e jω0t + e− jω0t

2

Therefore,

F[f (t) cos(ω0t)] = 1

2
(F(ω − ω0)+ F(ω + ω0))

12.6 Linear Systems 385

12.5.3 Convolution Theorem

When we examine the relationships between the input and output of linear systems, we will
encounter integrals of the following forms:

f (t) =
∫ ∞
−∞

f1(τ) f2(t − τ)dτ

or

f (t) =
∫ ∞
−∞

f1(t − τ) f2(τ)dτ

These are called convolution integrals. The convolution operation is often denoted as

f (t) = f1(t)⊗ f2(t)

The convolution theorem states that if F(ω) = F[f (t)] = F[f1(t) ⊗ f2(t)], F1(ω) =
F[f1(t)], and F2(ω) = F[f2(t)], then

F(ω) = F1(ω)F2(ω)

We can also go in the other direction. If

F(ω) = F1(ω)⊗ F2(ω) =
∫

F1(σ)F2(ω − σ)dσ

then
f (t) = f1(t) f2(t)

As mentioned earlier, this property of the Fourier transform is important because the
convolution integral relates the input and output of linear systems, which brings us to one
of the major reasons for the popularity of the Fourier transform. We have claimed that the
Fourier series and Fourier transform provide us with an alternative frequency profile of a signal.
Although sinusoids are not the only basis set that can provide us with a frequency profile, they
do have an important property that helps us study linear systems, which we describe in the
next section.

12.6 Linear Systems

A linear system is a system that has the following two properties:

� Homogeneity: Suppose we have a linear system L with input f (t) and output g(t):

g(t) = L[f (t)]
If we have two inputs, f1(t) and f2(t), with corresponding outputs, g1(t) and g2(t), then
the output of the sum of the two inputs is simply the sum of the two outputs:

L[f1(t)+ f2(t)] = g1(t)+ g2(t)

386 12 M A T H E M A T I C A L P R E L I M I N A R I E S

� Scaling: Given a linear system L with input f (t) and output g(t), if we multiply the
input with a scalar α, then the output will be multiplied by the same scalar:

L[α f (t)] = αL[f (t)] = αg(t)

The two properties together are referred to as superposition.

12.6.1 Time Invariance

Of specific interest to us are linear systems that are time invariant. A time-invariant system
has the property that the shape of the response of the system does not depend on the time at
which the input was applied. If the response of a linear system L to an input f (t) is g(t),

L[f (t)] = g(t)

and we delay the input by some interval t0, then if L is a time-invariant system, the output will
be g(t) delayed by the same amount:

L[f (t − t0)] = g(t − t0) (25)

12.6.2 Transfer Function

Linear time-invariant systems have a very interesting (and useful) response when the input is a
sinusoid. If the input to a linear system is a sinusoid of a certain frequency ω0, then the output
is also a sinusoid of the same frequency that has been scaled and delayed; that is,

L[cos(ω0t)] = α cos(ω0(t − td))

or in terms of the complex exponential

L[e jω0t] = αe jω0(t−td)

Thus, given a linear system, we can characterize its response to sinusoids of a particular
frequency by a pair of parameters, the gain α and the delay td . In general, we use the phase
φ = ω0td in place of the delay. The parameters α and φ will generally be a function of
the frequency, so in order to characterize the system for all frequencies, we will need a pair
of functions α(ω) and φ(ω). As the Fourier transform allows us to express the signal as
coefficients of sinusoids, given an input f (t), all we need to do is, for each frequency ω,
multiply the Fourier transform of f (t) with some α(ω)e jφ(ω), where α(ω) and φ(ω) are the
gain and phase terms of the linear system for that particular frequency.

This pair of functions α(ω) and φ(ω) constitute the transfer function of the linear time-
invariant system H(ω):

H(ω) = |H(ω)| e jφ(ω)

where |H(ω)| = α(ω).

12.6 Linear Systems 387

Because of the specific way in which a linear system responds to a sinusoidal input, given a
linear system with transfer function H(ω), input f (t), and output g(t), the Fourier transforms
of the input and output F(ω) and G(ω) are related by

G(w) = H(ω)F(ω)

Using the convolution theorem, f (t) and g(t) are related by

g(t) =
∫ ∞
−∞

f (τ)h(t − τ)dτ

or

g(t) =
∫ ∞
−∞

f (t − τ)h(τ)dτ

where H(ω) is the Fourier transform of h(t).

12.6.3 Impulse Response

To see what h(t) is, let us look at the input-output relationship of a linear time-invariant system
from a different point of view. Let us suppose we have a linear system L with input f (t). We
can obtain a staircase approximation fS(t) to the function f (t), as shown in Figure 12.4:

fS(t) =
∑

f (n�t)rect

(
t − n�t

�t

)
(26)

where

rect

(
t

T

)
=
{

1 |t | < T
2

0 otherwise
(27)

The response of the linear system can be written as

L[fS(t)] = L

[∑
f (n�t)rect

(
t − n�t

�t

)]
(28)

= L

[∑
f (n�t)

rect
(t−n�t

�t

)
�t

�t

]
(29)

For a given value of �t , we can use the superposition property of linear systems to obtain

L[fS(t)] =
∑

f (n�t)L

[
rect(t−n�t

�t)

�t

]
�t (30)

If we now take the limit as �t goes to zero in this equation, on the left-hand side fS(t) will
go to f (t). To see what happens on the right-hand side of the equation, first let’s look at the
effect of this limit on the function rect(t

�t)/�t . As �t goes to zero, this function becomes
narrower and taller. However, at all times the integral of this function is equal to one. The

388 12 M A T H E M A T I C A L P R E L I M I N A R I E S

Δt

F I GUR E 12 . 4 A function of time.

limit of this function as�t goes to zero is called the Dirac delta function, or impulse function,
and is denoted by δ(t):

lim
�t→0

rect(t
�t)

�t
= δ(t) (31)

Therefore,

L[f (t)] = lim
�t→0

L[fS(t)] =
∫

f (τ)L[δ(t − τ)]dτ (32)

where n�t goes to τ as �t goes to zero. Denote the response of the system L to an impulse,
or the impulse response, by h(t):

h(t) = L[δ(t)] (33)

Then, if the system is also time invariant,

L[f (t)] =
∫

f (τ)h(t − τ)dτ (34)

Using the convolution theorem, we can see that the Fourier transform of the impulse response
h(t) is the transfer function H(ω).

The Dirac delta function is an interesting function. In fact, it is not clear that it is a function
at all. It has an integral that is clearly one, but at the only point where it is not zero, it is
undefined! One property of the delta function that makes it very useful is the sifting property:

∫ t2

t1
f (t)δ(t − t0)dt =

{
f (t0) t1 � t0 � t2
0 otherwise

(35)

12.6.4 Filter

The linear systems of most interest to us will be systems that permit certain frequency com-
ponents of the signal to pass through, while attenuating all other components of the signal.
Such systems are called filters. If the filter allows only frequency components below a certain

12.6 Linear Systems 389

frequency W Hz to pass through, the filter is called a low-pass filter. The transfer function of
an ideal low-pass filter is given by

H(ω) =
{

e− jω |ω| < 2πW
0 otherwise

(36)

This filter is said to have a bandwidth of W Hz. The magnitude of this filter is shown in
Figure 12.5. A low-pass filter will produce a smoothed version of the signal by blocking
higher-frequency components that correspond to fast variations in the signal.

A filter that attenuates the frequency components below a certain frequency W and allows
the frequency components above this frequency to pass through is called a high-pass filter. A
high-pass filter will remove slowly changing trends from the signal. Finally, a signal that lets
through a range of frequencies between two specified frequencies, say, W1 and W2, is called
a band-pass filter. The bandwidth of this filter is said to be W2 − W1 Hz. The magnitude of
the transfer functions of an ideal high-pass filter and an ideal band-pass filter with bandwidth
W are shown in Figure 12.6. In all the ideal filter characteristics, there is a sharp transition
between the passband of the filter (the range of frequencies that are not attenuated) and the
stopband of the filter (those frequency intervals where the signal is completely attenuated).

2πW ω

H(ω)

F I GUR E 12 . 5 Magnitude of the transfer function of an ideal low-pass filter.

2πW ωω ω0 ω0 + 2πW

H(ω) H(ω)

F I GUR E 12 . 6 Magnitudes of the transfer functions of ideal high-pass (left) and
ideal band-pass (right) filters.

390 12 M A T H E M A T I C A L P R E L I M I N A R I E S

2πW ω

H(ω)

F I GUR E 12 . 7 Magnitude of the transfer functions of a realistic low-pass filter.

Real filters do not have such sharp transitions, or cutoffs. The magnitude characteristics of a
more realistic low-pass filter are shown in Figure 12.7. Notice the more gentle rolloff. But
when the cutoff between stopband and passband is not sharp, how do we define the bandwidth?
There are several different ways of defining the bandwidth. The most common way is to define
the frequency at which the magnitude of the transfer function is 1/

√
2 of its maximum value

(or the magnitude squared is 1/2 of its maximum value) as the cutoff frequency.

12.7 Sampling

In 1928 Harry Nyquist at Bell Laboratories showed that if we have a signal whose Fourier
transform is zero above some frequency W Hz, it can be accurately represented using 2W
equally spaced samples per second. This very important result, known as the sampling theorem,
is at the heart of our ability to transmit analog waveforms such as speech and video using digital
means. There are several ways to prove this result. We will use the results presented in the
previous section to do so.

12.7.1 Ideal Sampling–Frequency Domain View

Let us suppose we have a function f (t) with Fourier transform F(ω), shown in Figure 12.8,
which is zero for ω greater than 2πW . Define the periodic extension of F(ω) as

FP (ω) =
∞∑

n=−∞
F(ω − nσ0), σ0 = 4πW (37)

The periodic extension is shown in Figure 12.9. As FP (ω) is periodic, we can express it in
terms of a Fourier series expansion:

FP (ω) =
∞∑

n=−∞
cne jn 1

2W ω (38)

12.7 Sampling 391

2πW ω−2πW

F(ω)

F I GUR E 12 . 8 A function F (ω).

2πW ω−2πW

FP(ω)

F I GUR E 12 . 9 The periodic extension FP(ω).

The coefficients of the expansion {cn}∞n=−∞ are then given by

cn = 1

4πW

∫ 2πW

−2πW
FP (ω)e

− jn 1
2W ωdω (39)

However, in the interval (−2πW, 2πW), F(ω) is identical to FP (ω); therefore,

cn = 1

4πW

∫ 2πW

−2πW
F(ω)e− jn 1

2W ωdω (40)

The function F(ω) is zero outside the interval (−2πW, 2πW), so we can extend the limits to
infinity without changing the result:

cn = 1

2W

[
1

2π

∫ ∞
−∞

F(ω)e− jn 1
2W ωdω

]
(41)

The expression in brackets is simply the inverse Fourier transform evaluated at t = n
2W ;

therefore,

cn = 1

2W
f
(n

2W

)
(42)

Knowing {cn}∞n=−∞ and the value of W , we can reconstruct FP (ω). Because FP (ω) and
F(ω) are identical in the interval (−2πW, 2πW), we can also reconstruct F(ω) in this interval.
But {cn}∞n=−∞ are simply the samples of f (t) every 1

2W seconds, and F(ω) is zero outside this
interval. Therefore, given the samples of a function f (t) obtained at a rate of 2W samples per
second, we should be able to exactly reconstruct the function f (t).

392 12 M A T H E M A T I C A L P R E L I M I N A R I E S

Let us see how we can do this:

f (t) = 1

2π

∫ ∞
−∞

F(ω)e− jωt dω (43)

= 1

2π

∫ 2πW

−2πW
F(ω)e− jωt dω (44)

= 1

2π

∫ 2πW

−2πW
FP (ω)e

− jωt dω (45)

= 1

2π

∫ 2πW

−2πW

∞∑
n=−∞

cne jn 1
2W ωe− jωt dω (46)

= 1

2π

∞∑
n=−∞

cn

∫ 2πW

−2πW
e jw(t− n

2W)dω (47)

Evaluating the integral and substituting for cn from Equation (42), we obtain

f (t) =
∞∑

n=−∞
f
(n

2W

)
Sinc

[
2W

(
t − n

2W

)]
(48)

where

Sinc[x] = sin(πx)

πx
(49)

Thus, given samples of f (t) taken every 1
2W seconds, or, in other words, samples of f (t)

obtained at a rate of 2W samples per second, we can reconstruct f (t) by interpolating between
the samples using the Sinc function.

12.7.2 Ideal Sampling—Time Domain View

Let us look at this process from a slightly different point of view, starting with the sampling op-
eration. Mathematically, we can represent the sampling operation by multiplying the function
f (t) with a train of impulses to obtain the sampled function fS(t):

fS(t) = f (t)
∞∑

n=−∞
δ(t − nT), T <

1

2W
(50)

To obtain the Fourier transform of the sampled function, we use the convolution theorem:

F
[

f (t)
∞∑

n=−∞
δ(t − nT)

]
= F [f (t)]⊗ F

[∞∑
n=−∞

δ(t − nT)

]
(51)

Let us denote the Fourier transform of f (t) by F(ω). The Fourier transform of a train of
impulses in the time domain is a train of impulses in the frequency domain (see Problem 5 at
the end of this chapter):

F
[∞∑

n=−∞
δ(t − nT)

]
= σ0

∞∑
n=−∞

δ(w − nσ0) σ0 = 2π

T
(52)

12.7 Sampling 393

2πW ωσ0−2πW

F I GUR E 12 . 10 Fourier transform of the sampled function.

2πW ω−2πW

2πW ω−2πW

F I GUR E 12 . 11 Effect of sampling at a rate less than 2W samples per second.

2πW ω−2πW

F I GUR E 12 . 12 Aliased reconstruction.

Thus, the Fourier transform of fS(t) is

FS(ω) = F(ω)⊗
∑∞

n=−∞δ(w − nσ0) (53)

=
∑∞

n=−∞F(ω)⊗ δ(w − nσ0) (54)

=
∑∞

n=−∞F(ω − nσ0) (55)

where the last equality is due to the sifting property of the delta function.
Pictorially, for F(ω) as shown in Figure 12.8, FS(ω) is shown in Figure 12.10. Note that

if T is less than 1
2W , σ0 is greater than 4πW , and as long as σ0 is greater than 4πW , we can

recover F(ω) by passing FS(ω) through an ideal low-pass filter with bandwidth W Hz (2πW
radians).

394 12 M A T H E M A T I C A L P R E L I M I N A R I E S

What happens if we do sample at a rate less than 2W samples per second (that is, σ0 is less
than 4πW)? Again we can see the results most easily in a pictorial fashion. The result for σ0
equal to 3πW is shown in Figure 12.11. Filtering this signal through an ideal low-pass filter,
we get the distorted signal shown in Figure 12.12. Therefore, if σ0 is less than 4πW , we can
no longer recover the signal f (t) from its samples. This distortion is known as aliasing. In
order to prevent aliasing, it is useful to filter the signal prior to sampling using a low-pass filter
with a bandwidth less than half the sampling frequency.

Once we have the samples of a signal, sometimes the actual times they were sampled at
are not important. In these situations we can normalize the sampling frequency to unity. This
means that the highest frequency component in the signal is at 0.5 Hz, or π radians. Thus,
when dealing with sampled signals, we will often talk about frequency ranges of −π to π .

12.8 Discrete Fourier Transform

The procedures that we gave for obtaining the Fourier series and transform were based on the
assumption that the signal we were examining could be represented as a continuous function of
time. However, for the applications that we will be interested in, we will primarily be dealing
with samples of a signal. To obtain the Fourier transform of nonperiodic signals, we started
from the Fourier series and modified it to take into account the nonperiodic nature of the signal.
To obtain the discrete Fourier transform (DFT), we again start from the Fourier series. We
begin with the Fourier series representation of a sampled function, the discrete Fourier series.

Recall that the Fourier series coefficients of a periodic function f (t) with period T are
given by

ck = 1

T

∫ T

0
f (t)e− jkw0t dt (56)

Suppose instead of a continuous function, we have a function sampled N times during each
period T . We can obtain the coefficients of the Fourier series representation of this sampled
function as

Fk = 1

T

∫ T

0
f (t)

N−1∑
n=0

δ
(

t − n

N
T
)

e− jkw0t dt (57)

= 1

T

N−1∑
n=0

f
(n

N
T
)

e− j 2πkn
N (58)

where we have used the fact that w0 = 2π
T , and we have replaced ck by Fk . Taking T = 1 for

convenience and defining

fn = f
(n

N

)
we get the coefficients for the discrete Fourier series (DFS) representation:

Fk =
N−1∑
n=0

fne− j 2πkn
N (59)

12.8 Discrete Fourier Transform 395

Notice that the sequence of coefficients {Fk} is periodic with period N .
The Fourier series representation was given by

f (t) =
∞∑

k=−∞
cke jnω0t (60)

Evaluating this for t = n
N T , we get

fn = f (
n

N
T) =

∞∑
k=−∞

cke j 2πkn
N (61)

Let us write this in a slightly different form:

fn =
N−1∑
k=0

∞∑
l=−∞

ck+l N e j 2πn(k+l N)
N (62)

but

e j 2πn(k+l N)
N = e j 2πkn

N e j2πnl (63)

= e j 2πkn
N (64)

Therefore,

fn =
N−1∑
k=0

e j 2πkn
N

∞∑
l=−∞

ck+l N (65)

Define

c̄k =
∞∑

l=−∞
ck+l N (66)

Clearly, c̄k is periodic with period N . In fact, we can show that c̄k = 1
N Fk and

fn = 1

N

N−1∑
k=0

Fke j 2πkn
N (67)

Obtaining the discrete Fourier transform from the discrete Fourier series is simply a matter
of interpretation. We are generally interested in the discrete Fourier transform of a finite-length
sequence. If we assume that the finite-length sequence is one period of a periodic sequence,
then we can use the DFS equations to represent this sequence. The only difference is that the
expressions are only valid for one “period” of the “periodic” sequence.

The DFT is an especially powerful tool because of the existence of a fast algorithm,
appropriately called the fast Fourier transform (FFT), that can be used to compute it.

396 12 M A T H E M A T I C A L P R E L I M I N A R I E S

12.9 Z- Transform

In the previous section we saw how to extend the Fourier series for use with sampled functions.
We can also do the same with the Fourier transform. Recall that the Fourier transform was
given by the equation

F(ω) =
∫ ∞
−∞

f (t)e− jωt dt (68)

Replacing f (t) with its sampled version, we get

F(ω) =
∫ ∞
−∞

f (t)
∑∞

n=−∞δ(t − nT)e− jωt dt (69)

=
∑∞

n=−∞ fne− jωnT (70)

where fn = f (nT). This is called the discrete time Fourier transform. The Z-transform of
the sequence { fn} is a generalization of the discrete time Fourier transform and is given by

F(z) =
∞∑

n=−∞
fnz−n (71)

where
z = eσT+ jwT (72)

Notice that if we let σ equal zero, we get the original expression for the Fourier transform
of a discrete time sequence. We denote the Z-transform of a sequence by

F(z) = Z[fn]
We can express this another way. Notice that the magnitude of z is given by

|z| = eσT

Thus, when σ equals zero, the magnitude of z is one. Because z is a complex number, the
magnitude of z is equal to one on the unit circle in the complex plane. Therefore, we can say
that the Fourier transform of a sequence can be obtained by evaluating the Z-transform of the
sequence on the unit circle. Notice that the Fourier transform thus obtained will be periodic,
which we expect because we are dealing with a sampled function. Further, if we assume T
to be one, ω varies from −π to π , which corresponds to a frequency range of −0.5 to 0.5 Hz.
This makes sense because, by the sampling theorem, if the sampling rate is one sample per
second, the highest frequency component that can be recovered is 0.5 Hz.

For the Z-transform to exist—in other words, for the power series to converge—we need
to have ∞∑

n=−∞

∣∣ fnz−n
∣∣ <∞

Whether this inequality holds will depend on the sequence itself and the value of z. The values
of z for which the series converges are called the region of convergence of the Z-transform.
From our earlier discussion, we can see that for the Fourier transform of the sequence to exist,
the region of convergence should include the unit circle. Let us look at a simple example.

12.9 Z-Transform 397

Example 12 .9 .1 :

Given the sequence
fn = anu[n]

where u[n] is the unit step function

u[n] =
{

1 n � 0
0 n < 0

(73)

the Z-transform is given by

F(z) =
∑∞

n=0
anz−n (74)

=
∑∞

n=0
(az−1)n (75)

This is simply the sum of a geometric series. As we confront this kind of sum quite often, let
us briefly digress and obtain the formula for the sum of a geometric series.

Suppose we have a sum

Smn =
n∑

k=m

xk = xm + xm+1 + · · · + xn (76)

Then
x Smn = xm+1 + xm+2 + · · · + xn+1 (77)

Subtracting Equation (77) from Equation (76), we get

(1− x)Smn = xm − xn+1

and

Smn = xm − xn+1

1− x

If the upper limit of the sum is infinity, we take the limit as n goes to infinity. This limit exists
only when |x | < 1.

Using this formula, we get the Z-transform of the { fn} sequence as

F(z) = 1

1− az−1 ,

∣∣∣az−1
∣∣∣ < 1 (78)

= z

z − a
, |z| > |a| . (79)

�

In this example the region of convergence is the region |z| > a. For the Fourier transform
to exist, we need to include the unit circle in the region of convergence. In order for this to
happen, a has to be less than one.

Using this example, we can get some other Z-transforms that will be useful to us.

398 12 M A T H E M A T I C A L P R E L I M I N A R I E S

Example 12 .9 .2 :

In the previous example we found that

∞∑
n=0

anz−n = z

z − a
, |z| > |a| (80)

If we take the derivative of both sides of the equation with respect to a, we get

∞∑
n=0

nan−1z−n = z

(z − a)2
, |z| > |a| (81)

Thus,

Z[nan−1u[n]] = z

(z − a)2
, |z| > |a|

If we differentiate Equation (80) m times, we get

∞∑
n=0

n(n − 1) · · · (n − m + 1)an−m z−n = m!z
(z − a)m+1

In other words,

Z
[(

n

m

)
an−mu[n]

]
= z

(z − a)m+1 (82)

�

In these examples the Z-transform is a ratio of polynomials in z. For sequences of interest
to us, this will generally be the case, and the Z-transform will be of the form

F(z) = N (z)

D(z)

The values of z for which F(z) is zero are called the zeros of F(z); the values for which F(z)
is infinity are called the poles of F(z). For finite values of z, the poles will occur at the roots
of the polynomial D(z).

The inverse Z-transform is formally given by the contour integral [?]

1

2π j

∮
C

F(z)zn−1dz

where the integral is over the counterclockwise contour C , and C lies in the region of con-
vergence. This integral can be difficult to evaluate directly; therefore, in most cases we use
alternative methods for finding the inverse Z-transform.

12.9 Z-Transform 399

T A B L E 12 . 1 Some Z-transform pairs.

{ fn} F(z)
anu[n] z

z−a

nT u[n] T z−1

(1−z−1)2

sin(αnT) (sin αnT)z−1

1−2 cos(αT)z−1+z−2

cos(αnT) (cosαnT)z−1

1−2 cos(αT)z−1+z−2

δn 1

12.9.1 Tabular Method

The inverse Z-transform has been tabulated for a number of interesting cases (see Table. 12.1).
If we can write F(z) as a sum of these functions

F(z) =
∑

αi Fi (z)

then the inverse Z-transform is given by

fn =
∑

αi fi,n

where Fi (z) = Z[{ fi,n}].

Example 12 .9 .3 :

F(z) = z

z − 0.5
+ 2z

z − 0.3
From our earlier example we know the inverse Z-transform of z/(z−a). Using that, the inverse
Z-transform of F(z) is

fn = 0.5nu[n] + 2(0.3)nu[n]
�

12.9.2 Partial Fraction Expansion

In order to use the tabular method, we need to be able to decompose the function of interest to
us as a sum of simpler terms. The partial fraction expansion approach does exactly that when
the function is a ratio of polynomials in z.

Suppose F(z) can be written as a ratio of polynomials N (z) and D(z). For the moment let
us assume that the degree of D(z) is greater than the degree of N (z), and that all the roots of
D(z) are distinct (distinct roots are referred to as simple roots); that is,

F(z) = N (z)

(z − z1)(z − z2) · · · (z − zL)
(83)

400 12 M A T H E M A T I C A L P R E L I M I N A R I E S

Then we can write F(z)/z as

F(z)

z
=

L∑
i=1

Ai

z − zi
(84)

If we can find the coefficients Ai , then we can write F(z) as

F(z) =
L∑

i=1

Ai z

z − zi

and the inverse Z-transform will be given by

fn =
L∑

i=1

Ai z
n
i u[n]

The question then becomes one of finding the value of the coefficients Ai . This can be simply
done as follows: Suppose we want to find the coefficient Ak . Multiply both sides of Equation
(84) by (z − zk). Simplifying this we obtain

F(z)(z − zk)

z
=
∑L

i=1

Ai (z − zk)

z − zi
(85)

= Ak +
∑L

i = 1
i �= k

Ai (z − zk)

z − zi
(86)

Evaluating this equation at z = zk , all the terms in the summation go to zero and

Ak = F(z)(z − zk)

z

∣∣∣∣
z=zk

(87)

Example 12 .9 .4 :

Let us use the partial fraction expansion method to find the inverse Z-transform of

F(z) = 6z2 − 9z

z2 − 2.5z + 1

Then

F(z)

z
= 1

z

6z2 − 9z

z2 − 2.5z + 1
(88)

= 6z − 9

(z − 0.5)(z − 2)
(89)

We want to write F(z)/z in the form

F(z)

z
= A1

z − 0.5
+ A2

z − 2

12.9 Z-Transform 401

Using the approach described above, we obtain

A1 = (6z − 9)(z − 0.5)

(z − 0.5)(z − 2)

∣∣∣∣
z=0.5

(90)

= 4 (91)

A2 = (6z − 9)(z − 2)

(z − 0.5)(z − 2)

∣∣∣∣
z=2

(92)

= 2 (93)

Therefore,

F(z) = 4z

z − 0.5
+ 2z

z − 2

and
fn = [4(0.5)n + 2(2)n]u[n] �

The procedure becomes slightly more complicated when we have repeated roots of D(z).
Suppose we have a function

F(z) = N (z)

(z − z1)(z − z2)2

The partial fraction expansion of this function is

F(z)

z
= A1

z − z1
+ A2

z − z2
+ A3

(z − z2)2

The values of A1 and A3 can be found as shown previously:

A1 = F(z)(z − z1)

z

∣∣∣∣
z=z1

(94)

A3 = F(z)(z − z2)
2

z

∣∣∣∣
z=z2

(95)

However, we run into problems when we try to evaluate A2. Let’s see what happens when
we multiply both sides by (z − z2):

F(z)(z − z2)

z
= A1(z − z2)

z − z1
+ A2 + A3

z − z2
(96)

If we now evaluate this equation at z = z2, the third term on the right-hand side becomes
undefined. In order to avoid this problem, we first multiply both sides by (z − z2)

2 and take
the derivative with respect to z prior to evaluating the equation at z = z2:

F(z)(z − z2)
2

z
= A1(z − z2)

2

z − z1
+ A2(z − z2)+ A3 (97)

402 12 M A T H E M A T I C A L P R E L I M I N A R I E S

Taking the derivative of both sides with respect to z, we get

d

dz

F(z)(z − z2)
2

z
= 2A1(z − z2)(z − z1)− A1(z − z2)

2

(z − z1)2
+ A2 (98)

If we now evaluate the expression at z = z2, we get

A2 = d

dz

F(z)(z − z2)
2

z

∣∣∣∣
z=z2

(99)

Generalizing this approach, we can show that if D(z) has a root of order m at some zk , that
portion of the partial fraction expansion can be written as

F(z)

z
= A1

z − zk
+ A2

(z − zk)2
+ · · · + Am

(z − zk)m
(100)

and the lth coefficient can be obtained as

Al = 1

(m − l)!
d(m−l)

dz(m−l)

F(z)(z − zk)
m

z

∣∣∣∣∣
z=zk

(101)

Finally, let us drop the requirement that the degree of D(z) be greater or equal to the degree
of N (z). When the degree of N (z) is greater than the degree of D(z), we can simply divide
N (z) by D(z) to obtain

F(z) = N (z)

D(z)
= Q(z)+ R(z)

D(z)
(102)

where Q(z) is the quotient and R(z) is the remainder of the division operation. Clearly, R(z)
will have degree less than D(z).

To see how all this works together, consider the following example.

Example 12 .9 .5 :

Let us find the inverse Z-transform of the function

F(z) = 2z4 + 1

2z3 − 5z2 + 4z − 1
(103)

The degree of the numerator is greater than the degree of the denominator, so we divide once
to obtain

F(z) = z + 5z3 − 4z2 + z + 1

2z3 − 5z2 + 4z − 1
(104)

The inverse Z-transform of z is δn−1, where δn is the discrete delta function defined as

δn =
{

1 n = 0
0 otherwise

(105)

12.9 Z-Transform 403

Let us call the remaining ratio of polynomials F1(z). We find the roots of the denominator of
F1(z) as

F1(z) = 5z3 − 4z2 + z + 1

2(z − 0.5)(z − 1)2
(106)

Then

F1(z)

z
= 5z3 − 4z2 + z + 1

2z(z − 0.5)(z − 1)2
(107)

= A1

z
+ A2

z − 0.5
+ A3

z − 1
+ A4

(z − 1)2
(108)

Thus

A1 = 5z3 − 4z2 + z + 1

2(z − 0.5)(z − 1)2

∣∣∣∣
z=0
= −1 (109)

A2 = 5z3 − 4z2 + z + 1

2z(z − 1)2

∣∣∣∣
z=0.5

= 4.5 (110)

A4 = 5z3 − 4z2 + z + 1

2z(z − 0.5)

∣∣∣∣
z=1
= 3 (111)

To find A3, we take the derivative with respect to z, then set z = 1:

A3 = d

dz

[
5z3 − 4z2 + 2z + 1

2z(z − 0.5)

]∣∣∣∣
z=1
= −3 (112)

Therefore,

F1(z) = −1+ 4.5z

z − 0.5
− 3z

z − 1
+ 3z

(z − 1)2
(113)

and
f1,n = −δn + 4.5(0.5)nu[n] − 3u[n] + 3nu[n] (114)

and
fn = δn−1 − δn + 4.5(0.5)nu[n] − (3− 3n)u[n] (115)

�

12.9.3 Long Division

If we could write F(z) as a power series, then from the Z-transform expression the coefficients
of z−n would be the sequence values fn .

Example 12 .9 .6 :

Let’s find the inverse z-transform of

F(z) = z

z − a

404 12 M A T H E M A T I C A L P R E L I M I N A R I E S

Dividing the numerator by the denominator we get the following:

1 + az−1 + a2z−2 · · ·
z − a

)
z
z − a

a
a − a2z−1

a2z−1

Thus, the quotient is

1+ az−1 + a2z−2 + · · · =
∞∑

n=0

anz−n

We can easily see that the sequence for which F(z) is the Z-transform is

fn = anu[n] �

12.9.4 Z- Transform Properties

Analogous to the continuous linear systems, we can define the transfer function of a discrete
linear system as a function of z that relates the Z-transform of the input to the Z-transform of
the output. Let { fn}∞n=−∞ be the input to a discrete linear time-invariant system, and {gn}∞n=−∞
be the output. If F(z) is the Z-transform of the input sequence, and G(z) is the Z-transform
of the output sequence, then these are related to each other by

G(z) = H(z)F(z) (116)

and H(z) is the transfer function of the discrete linear time-invariant system.
If the input sequence { fn}∞n=−∞ had a Z-transform of one, then G(z) would be equal to

H(z). It is an easy matter to find the requisite sequence:

F(z) =
∞∑

n=−∞
fnz−n = 1⇒ fn =

{
1 n = 0
0 otherwise

(117)

This particular sequence is called the discrete delta function. The response of the system to
the discrete delta function is called the impulse response of the system. Obviously, the transfer
function H(z) is the Z-transform of the impulse response.

12.9.5 Discrete Convolution

In the continuous time case, the output of the linear time-invariant system was a convolution of
the input with the impulse response. Does the analogy hold in the discrete case? We can check
this out easily by explicitly writing out the Z-transforms in Equation (116). For simplicity

12.9 Z-Transform 405

a0

a1

a2

b1

b2

fk
k

gk–1

gk–2

fk–1

fk–2

Delay

Delay

Delay

Delay

F I GUR E 12 . 13 A discrete system.

let us assume the sequences are all one-sided; that is, they are only nonzero for nonnegative
values of the subscript:

∞∑
n=0

gnz−n =
∞∑

n=0

hnz−n
∞∑

m=0

fm z−m (118)

Equating like powers of z, we obtain:

g0 = h0 f0

g1 = f0h1 + f1h0

g2 = f0h2 + f1h1 + f2h0

...

gn =
n∑

m=0

fmhn−m

Thus, the output sequence is a result of the discrete convolution of the input sequence with the
impulse response.

Most of the discrete linear systems we will be dealing with will be made up of delay
elements, and their input-output relations can be written as constant coefficient difference
equations. For example, for the system shown in Figure 12.13, the input-output relationship
can be written in the form of the following difference equation:

gk = a0 fk + a1 fk−1 + a2 fk−2 + b1gk−1 + b2gk−2 (119)

The transfer function of this system can be easily found by using the shifting theorem. The
shifting theorem states that if the Z-transform of a sequence { fn} is F(z), then the Z-transform
of the sequence shifted by some integer number of samples n0 is z−n0 F(z).

406 12 M A T H E M A T I C A L P R E L I M I N A R I E S

The theorem is easy to prove. Suppose we have a sequence { fn} with Z-transform F(z).
Let us look at the Z-transform of the sequence { fn−n0}:

Z[{ fn−n0}] =
∞∑

n=−∞
fn−n0 z−n (120)

=
∞∑

m=−∞
fm z−m−n0 (121)

= z−n0

∞∑
m=−∞

fm z−m (122)

= z−n0 F(z) (123)

Assuming G(z) is the Z-transform of {gn} and F(z) is the Z-transform of { fn}, we can take
the Z-transform of both sides of the difference Equation (119):

G(z) = a0 F(z)+ a1z−1 F(z)+ a2z−2 F(z)+ b1z−1G(z)+ b2z−2G(z) (124)

From this we obtain the relationship between G(z) and F(z) as

G(z) = a0 + a1z−1 + a2z−2

1− b1z−1 − b2z−2 F(z) (125)

By definition the transfer function H(z) is therefore

H(z) = G(z)

F(z)
(126)

= a0 + a1z−1 + a2z−2

1− b1z−1 − b2z−2 (127)

12.10 Summary

In this chapter we have reviewed some of the mathematical tools we will be using throughout
the remainder of this book. We started with a review of vector space concepts, followed by a
look at a number of ways we can represent a signal, including the Fourier series, the Fourier
transform, the discrete Fourier series, the discrete Fourier transform, and the Z-transform. We
also looked at the operation of sampling and the conditions necessary for the recovery of the
continuous representation of the signal from its samples.

Further Reading

1. There are a large number of books that provide a much more detailed look at the concepts
described in this chapter. A nice one is Signal Processing and Linear Systems, by B.P.
Lathi [275].

12.11 Projects and Problems 407

2. For a through treatment of the fast Fourier transform (FFT), see Numerical Recipes in C,
by W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.J. Flannery [182].

12.11 Projects and Problems

1. Let X be a set of N linearly independent vectors, and let V be the collection of vectors
obtained using all linear combinations of the vectors in X .

(a) Show that given any two vectors in V , the sum of these vectors is also an element
of V .

(b) Show that V contains an additive identity.
(c) Show that for every x in V , there exists a (−x)= in V such that their sum is the

additive identity.

2. Prove Parseval’s theorem for the Fourier transform.

3. Prove the modulation property of the Fourier transform.

4. Prove the convolution theorem for the Fourier transform.

5. Show that the Fourier transform of a train of impulses in the time domain is a train of
impulses in the frequency domain:

F
[∞∑

n=−∞
δ(t − nT)

]
= σ0

∞∑
n=−∞

δ(w − nσ0) σ0 = 2π

T
(128)

6. Find the Z-transform for the following sequences:

(a) hn = 2−nu[n], where u[n] is the unit step function
(b) hn = (n2 − n)3−nu[n]
(c) hn = (n2−n + (0.6)n)u[n]

7. Consider the following input-output relationship:

yn = 0.6yn−1 + 0.5xn + 0.2xn−1

(a) Find the transfer function H(z).
(b) Find the impulse response {hn}.

8. Find the inverse Z-transform of the following:

(a) H(z) = 5
z−2

(b) H(z) = z
z2−0.25

(c) H(z) = z
z−0.5

13
Transform Coding

13.1 Overview

I
n this chapter we will describe a technique in which the source output is de-
composed, or transformed, into components that are then coded according to
their individual characteristics. We will then look at a number of different trans-
forms, including the popular discrete cosine transform, and discuss the issues of
quantization and coding of the transformed coefficients. This chapter concludes

with a description of the baseline sequential JPEG image-coding algorithm and some of the
issues involved with transform coding of audio signals.

13.2 Introduction

In the previous chapter, we developed a number of tools that can be used to transform a
given sequence into different representations. If we take a sequence of inputs and transform
them into another sequence in which most of the information is contained in only a few
elements, we can then encode and transmit those elements, along with their location in the new
sequence, resulting in data compression. In our discussion, we will use the terms “variance” and
“information” interchangeably. The justification for this is shown in the results in Chapter 7.
For example, recall that for a Gaussian source the differential entropy is given as 1

2 log 2πeσ 2.
Thus, an increase in the variance results in an increase in the entropy, which is a measure of
the information contained in the source output.

To begin our discussion of transform coding, consider the following example.

Introduction to Data Compression. DOI: http://dx.doi.org/10.1016/B978-0-12-415796-5.00013-2
© 2012 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-415796-5.00013-2

410 13 T R A N S F O R M C O D I N G

T A B L E 13 . 1 Original sequence.

Height Weight

65 170
75 188
60 150
70 170
56 130
80 203
68 160
50 110
40 80
50 153
69 148
62 140
76 164
64 120

Example 13 .2 .1 :

Let’s revisit Example 8.5.1. In Example 8.5.1, we studied the encoding of the output of a
source that consisted of a sequence of pairs of numbers. Each pair of numbers corresponds
to the height and weight of an individual. In particular, let’s look at the sequence of outputs
shown in Table 13.1.

If we look at the height and weight as the coordinates of a point in two-dimensional space,
the sequence can be shown graphically as in Figure 13.1. Notice that the output values tend to
cluster around the line y = 2.5x . We can rotate this set of values by the transformation

θ = Ax (1)

190

200

180

170

160

150

140

130

120

110

100

90

80

10 20 30 40 50 60 70 80

F I GUR E 13 . 1 Source output sequence.

13.2 Introduction 411

5

−5

10

−10

80 90 100 110 130 160 170 180 190 200 210 220 230120 140 150

F I GUR E 13 . 2 The transformed sequence.

where x is the two-dimensional source output vector

x =
[

x0
x1

]
(2)

x0 corresponds to height and x1 corresponds to weight, A is the rotation matrix

A =
[

cosφ sin φ
− sin φ cosφ

]
(3)

φ is the angle between the x-axis and the y = 2.5x line, and

θ =
[
θ0
θ1

]
(4)

is the rotated or transformed set of values. For this particular case, the matrix A is

A =
[

0.37139068 0.92847669
−0.92847669 0.37139068

]
(5)

and the transformed sequence (rounded to the nearest integer) is shown in Table 13.2. (For a
brief review of matrix concepts, see Appendix B.)

Notice that for each pair of values, almost all the energy is compacted into the first element
of the pair, while the second element of the pair is significantly smaller. If we plot this sequence
in pairs, we get the result shown in Figure 13.2. Note that we have rotated the original values
by an angle of approximately 68 degrees (arctan 2.5).

Suppose we set all of the second elements of the transformation to zero, that is, the second
coordinates of the sequence shown in Table 13.2. This reduces the number of elements that
need to be encoded by half. What is the effect of throwing away half the elements of the
sequence? We can find that out by taking the inverse transform of the reduced sequence. The
inverse transform consists of reversing the rotation. We can do this by multiplying the blocks
of two of the transformed sequences with the second element in each block set to zero with
the matrix

A−1 =
[

cosφ − sin φ
sin φ cosφ

]
(6)

We obtain the reconstructed sequence shown in Table 13.3. Comparing this to the original
sequence in Table 13.1, we see that, even though we transmitted only half the number of

412 13 T R A N S F O R M C O D I N G

T A B L E 13 . 2 Transformed sequence.

First Coordinate Second Coordinate

182 3
202 0
162 0
184 −2
141 −4
218 1
174 −4
121 −6
90 −7
161 10
163 −9
153 −6
181 −9
135 −15

T A B L E 13 . 3 Reconstructed sequence.

Height Weight

68 169
75 188
60 150
68 171
53 131
81 203
65 162
45 112
34 84
60 150
61 151
57 142
67 168
50 125

elements present in the original sequence, this “reconstructed” sequence is very close to the
original. The reason there is so little error introduced in the sequence {xn} is that for this
particular transformation the error introduced into the {xn} sequence is equal to the error
introduced into the {θn} sequence. That is,

N−1∑
i=0

(xi − x̂i)
2 =

N−1∑
i=0

(θi − θ̂i)
2 (7)

where {x̂n} is the reconstructed sequence, and

θ̂i =
{
θi i = 0, 2, 4, . . .
0 otherwise

(8)

13.2 Introduction 413

(see Problem 1 at the end of this chapter). The error introduced in the {θn} sequence is the
sum of squares of the θns that are set to zero. The magnitudes of these elements are quite
small and, therefore, the total error introduced into the reconstructed sequence is quite small
also. �

We could reduce the number of samples we need to code because most of the information
contained in each pair of values is put into one element of each pair. As the other element
of the pair contains very little information, we could discard it without a significant effect on
the fidelity of the reconstructed sequence. The transform in this case acts on pairs of values;
therefore, the maximum reduction in the number of significant samples is a factor of two. We
can extend this idea to longer blocks of data. By compacting most of the information in a source
output sequence into a few elements of the transformed sequence using a reversible transform,
and then discarding the elements of the sequence that do not contain much information, we
can get a large amount of compression. This is the basic idea behind transform coding.

In Example 13.2.1 we present a geometric view of the transform process. We can also
examine the transform process in terms of the changes in statistics between the original and
transformed sequences. It can be shown that we can get the maximum amount of compaction
if we use a transform that decorrelates the input sequence; that is, the sample-to-sample
correlation of the transformed sequence is zero. The first transform to provide decorrelation
for discrete data was presented by Hotelling [183] in the Journal of Educational Psychology in
1933. He called his approach the method of principal components. The analogous transform
for continuous functions was obtained by Karhunen [184] and Loéve [185]. This decorrelation
approach was first utilized for compression, in what we now call transform coding, by Kramer
and Mathews [186], and Huang and Schultheiss [187].

Transform coding consists of three steps. First, the data sequence {xn} is divided into
blocks of size N . Each block is mapped into a transform sequence {θn} using a reversible
mapping in a manner similar to that described in Example 13.2.1. As shown in the example,
different elements of each block of the transformed sequence generally have different statistical
properties. In Example 13.2.1, most of the energy of the block of two input values was
contained in the first element of the block of two transformed values, while very little of the
energy was contained in the second element. This meant that the second element of each
block of the transformed sequence would have a small magnitude, while the magnitude of the
first element could vary considerably depending on the magnitude of the elements in the input
block. The second step consists of quantizing the transformed sequence. The quantization
strategy used will depend on three main factors: the desired average bit rate, the statistics of the
various elements of the transformed sequence, and the effect of distortion in the transformed
coefficients on the reconstructed sequence. In Example 13.2.1, we could take all the bits
available to us and use them to quantize the first coefficient. In more complex situations,
the strategy used may be very different. In fact, we may use different techniques, such as
differential encoding and vector quantization [151], to encode the different coefficients.

Finally, the quantized value needs to be encoded using some binary encoding technique.
The binary coding may be as simple as using a fixed-length code or as complex as a combination
of run-length coding and Huffman or arithmetic coding. We will see an example of the latter
when we describe the JPEG algorithm.

414 13 T R A N S F O R M C O D I N G

The various quantization and binary coding techniques have been described at some length
in previous chapters, so we will spend the next section describing various transforms. We will
then discuss quantization and coding strategies in the context of these transforms.

13.3 The Transform

All of the transforms we deal with will be linear transforms; that is, we can get the sequence
{θn} from the sequence {xn} as

θn =
N−1∑
i=0

xi an,i (9)

This is referred to as the forward transform. For the transforms that we will be considering,
a major difference between the transformed sequence {θn} and the original sequence {xn} is
that the characteristics of the elements of the θ sequence are determined by their position
within the sequence. For instance, in Example 13.2.1 the first element of each pair of the
transformed sequence is more likely to have a large magnitude compared to the second element.
In general, we cannot make such statements about the source output sequence {xn}. A measure
of the differing characteristics of the different elements of the transformed sequence {θn} is
the variance σ 2

n of each element. These variances will strongly influence how we encode
the transformed sequence. The size of the block N is dictated by practical considerations.
In general, the complexity of the transform grows more than linearly with N . Therefore,
beyond a certain value of N , the computational costs overwhelm any marginal improvements
that might be obtained by increasing N . Furthermore, in most real sources, the statistical
characteristics of the source output can change abruptly. For example, when we go from a
silence period to a voiced period in speech, the statistics change drastically. Similarly, in
images, the statistical characteristics of a smooth region of the image can be very different
from the statistical characteristics of a busy region of the image. If N is large, the probability
that the statistical characteristics change significantly within a block increases. This generally
results in a larger number of transform coefficients with large values, which in turn leads to a
reduction in the compression ratio.

The original sequence {xn} can be recovered from the transformed sequence {θn} via the
inverse transform:

xn =
N−1∑
i=0

θi bn,i (10)

The transforms can be written in matrix form as

θ = Ax (11)
x = Bθ (12)

where A and B are N × N matrices, and the (i, j)th element of the matrices is given by

[A]i, j = ai, j (13)
[B]i, j = bi, j (14)

13.3 The Transform 415

The forward and inverse transform matrices A and B are inverses of each other; that is,
AB = BA = I, where I is the identity matrix.

Equations (9) and (10) deal with the transform coding of one-dimensional sequences, such
as sampled speech and audio sequences. However, transform coding is one of the most popular
methods used for image compression. In order to take advantage of the two-dimensional nature
of dependencies in images, we need to look at two-dimensional transforms.

Let Xi, j be the (i, j)th pixel in an image. A general linear, two-dimensional transform for
a block of size N × N is given as

�k,l =
N−1∑
i=0

N−1∑
j=0

Xi, j ai, j,k,l (15)

All two-dimensional transforms in use today are separable transforms; that is, we can transform
a two-dimensional block by first taking the transform along one dimension, then repeating the
operation along the other direction. In terms of matrices, this involves first taking the (one-
dimensional) transform of the rows and then taking the column-by-column transform of the
resulting matrix. We can also reverse the order of the operations, first taking the transform of
the columns, and then taking the row-by-row transform of the resulting matrix. The transform
operation can be represented as

�k,l =
N−1∑
i=0

N−1∑
j=0

ak,i Xi, j a j,l (16)

which in matrix terminology would be given by

� = AXAT (17)

The inverse transform is given as
X = B�BT (18)

All of the transforms we deal with will be orthonormal transforms. An orthonormal
transform has the property that the inverse of the transform matrix is simply its transpose
because the rows of the transform matrix form an orthonormal basis set:

B = A−1 = AT (19)

For an orthonormal transform, the inverse transform will be given as

X = AT�A (20)

Orthonormal transforms are energy preserving; that is, the sum of the squares of the
transformed sequence is the same as the sum of the squares of the original sequence. We can
see this most easily in the case of the one-dimensional transform:

N−1∑
i=0

θ2
i = θT θ (21)

= (Ax)T Ax (22)
= xT AT Ax (23)

416 13 T R A N S F O R M C O D I N G

If A is an orthonormal transform, AT A = A−1A = I, then

xT AT Ax = xT x (24)

=
N−1∑
n=0

x2
n (25)

and
N−1∑
i=0

θ2
i =

N−1∑
n=0

x2
n (26)

The efficacy of a transform depends on how much energy compaction is provided by the
transform. One way of measuring the amount of energy compaction afforded by a particular
orthonormal transform is to take a ratio of the arithmetic mean of the variances of the transform
coefficient to their geometric means [134]. This ratio is also referred to as the transform coding
gain GT C :

GT C =
1
N

∑N−1
i=0 σ 2

i

(
∏N−1

i=0 σ 2
i)

1
N

(27)

where σ 2
i is the variance of the i th coefficient θi .

Transforms can be interpreted in several ways. We have already mentioned a geometric
interpretation and a statistical interpretation. We can also interpret them as a decomposition of
the signal in terms of a basis set. For example, suppose we have a two-dimensional orthonormal
transform A. The inverse transform can be written as[

x0
x1

]
=

[
a00 a10
a01 a11

] [
θ0
θ1

]
= θ0

[
a00
a01

]
+ θ1

[
a10
a11

]
(28)

We can see that the transformed values are actually the coefficients of an expansion of the input
sequence in terms of the rows of the transform matrix. The rows of the transform matrix are
often referred to as the basis vectors for the transform because they form an orthonormal basis
set, and the elements of the transformed sequence are often called the transform coefficients.
By characterizing the basis vectors in physical terms, we can get a physical interpretation of
the transform coefficients.

Example 13 .3 .1 :

Consider the following transform matrix:

A = 1√
2

[
1 1
1 −1

]
(29)

We can verify that this is indeed an orthonormal transform.
Notice that the first row of the matrix would correspond to a “low-pass” signal (no change

from one component to the next), while the second row would correspond to a “high-pass”
signal. Thus, if we tried to express a sequence in which each element has the same value in

13.3 The Transform 417

terms of these two rows, the second coefficient should be zero. Suppose the original sequence
is (α, α). Then [

θ0
θ1

]
= 1√

2

[
1 1
1 −1

] [
α

α

]
=

[√
2α
0

]
(30)

The “low-pass” coefficient has a value of
√

2α, while the “high-pass” coefficient has a value of
0. The “low-pass” and “high-pass” coefficients are generally referred to as the low-frequency
and high-frequency coefficients.

Let us take two sequences in which the components are not the same and the degree of
variation is different. Consider the two sequences (3, 1) and (3,−1). In the first sequence, the
second element differs from the first by 2; in the second sequence, the magnitude of the differ-
ence is 4. We could say that the second sequence is more “high pass” than the first sequence.
The transform coefficients for the two sequences are (2

√
2,
√

2) and (
√

2, 2
√

2), respectively.
Notice that the high-frequency coefficient for the sequence in which we see a larger change is
twice that of the high-frequency coefficient for the sequence with less change. Thus, the two
coefficients do seem to behave like the outputs of a low-pass filter and a high-pass filter.

Finally, notice that in every case the sum of the squares of the original sequence is the
same as the sum of the squares of the transform coefficients; that is, the transform is energy
preserving, as it must be, since A is orthonormal. �

We can interpret one-dimensional transforms as an expansion in terms of the rows of the
transform matrix. Similarly, we can interpret two-dimensional transforms as expansions in
terms of matrices that are formed by the outer product of the rows of the transform matrix.
Recall that the outer product is given by

xxT =

⎡
⎢⎢⎢⎣

x0x0 x0x1 · · · x0xN−1
x1x0 x1x1 · · · x1xN−1
...

...
...

xN−1x0 xN−1x1 · · · xN−1xN−1

⎤
⎥⎥⎥⎦ (31)

To see this more clearly, let us use the transform introduced in Example 13.3.1 for a
two-dimensional transform.

Example 13 .3 .2 :

For an N × N transform A, let αi, j be the outer product of the i th and j th rows:

αi, j =

⎡
⎢⎢⎢⎣

ai0
ai1
...

ai N−1

⎤
⎥⎥⎥⎦[

a j0 a j1 · · · a j N−1
]

(32)

=

⎡
⎢⎢⎢⎣

ai0a j0 ai0a j1 · · · ai0a j N−1
ai1a j0 ai1a j1 · · · ai1a j N−1
...

...
...

ai N−1a j0 ai N−1a j1 · · · ai N−1a j N−1

⎤
⎥⎥⎥⎦ (33)

418 13 T R A N S F O R M C O D I N G

For the transform of Example 13.3.1, the outer products are

α0,0 = 1

2

[
1 1
1 1

]
α0,1 = 1

2

[
1 −1
1 −1

]
(34)

α1,0 = 1

2

[
1 1
−1 −1

]
α1,1 = 1

2

[
1 −1
−1 1

]
(35)

From (20), the inverse transform is given by[
x01 x01
x10 x11

]
= 1

2

[
1 1
1 −1

] [
θ00 θ01
θ10 θ11

] [
1 1
1 −1

]
(36)

= 1

2

[
θ00 + θ01 + θ10 + θ11 θ00 − θ01 + θ10 − θ11
θ00 + θ01 − θ10 − θ11 θ00 − θ01 − θ10 + θ11

]
(37)

= θ00α0,0 + θ01α0,1 + θ10α1,0 + θ11α1,1 (38)

The transform values θi j can be viewed as the coefficients of the expansion of x in terms of
the matrices αi, j . The matrices αi, j are known as the basis matrices.

For historical reasons, the coefficient θ00, corresponding to the basis matrix α0,0, is called
the DC coefficient, while the coefficients corresponding to the other basis matrices are called
AC coefficients. DC stands for direct current, which is current that does not change with time.
AC stands for alternating current, which does change with time. Notice that all of the elements
of the basis matrix α0,0 are the same, hence the DC designation. �

In the following section, we will look at some of the variety of transforms available to us,
then at some of the issues involved in quantization and coding. Finally, we will describe in
detail two applications, one for image coding and one for audio coding.

13.4 Transforms of Interest

In Example 13.2.1, we construct a transform that is specific to the data. In practice, it is
generally not feasible to construct a transform for the specific situation for several reasons.
Unless the characteristics of the source output are stationary over a long interval, the transform
needs to be recomputed often, and it is generally burdensome to compute a transform for every
different set of data. Furthermore, the overhead required to transmit the transform itself might
negate any compression gains. Both of these problems become especially acute when the size
of the transform is large. However, there are times when we want to find out the best we can
do with transform coding. In these situations, we can use data-dependent transforms to obtain
an idea of the best performance available. The best-known data-dependent transform is the
discrete Karhunen-Loéve transform (KLT). We will describe this transform in the next section.

13.4.1 Karhunen- Loéve Transform

The rows of the discrete Karhunen-Loéve transform [189], also known as the Hotelling trans-
form, consist of the eigenvectors of the autocorrelation matrix. The autocorrelation matrix for

13.4 Transforms of Interest 419

a random process X is a matrix whose (i, j)th element [R]i, j is given by

[R]i, j = E[Xn Xn+|i− j |] (39)

We can show [134] that a transform constructed in this manner will minimize the geometric
mean of the variance of the transform coefficients. Hence, the Karhunen-Loéve transform
provides the largest transform coding gain of any transform coding method.

If the source output being compressed is nonstationary, the autocorrelation function will
change with time. Thus, the autocorrelation matrix will change with time, and the KLT will
have to be recomputed. For a transform of any reasonable size, this is a significant amount of
computation. Furthermore, as the autocorrelation is computed based on the source output, it
is not available to the receiver. Therefore, either the autocorrelation or the transform itself has
to be sent to the receiver. The overhead can be significant and remove any advantages to using
the optimum transform. However, in applications where the statistics change slowly and the
transform size can be kept small, the KLT can be of practical use [190].

Example 13 .4 .1 :

Let us see how to obtain the KLT transform of size two for an arbitrary input sequence. The
autocorrelation matrix of size two for a stationary process is

R =
[

Rxx (0) Rxx (1)
Rxx (1) Rxx (0)

]
(40)

Solving the equation |λI− R| = 0, we get the two eigenvalues λ1 = Rxx (0) + Rxx (1) and
λ2 = Rxx (0)− Rxx (1). The corresponding eigenvectors are

V1 =
[
α

α

]
V2 =

[
β

−β
]

(41)

where α and β are arbitrary constants. If we now impose the orthonormality condition, which
requires the vectors to have a magnitude of 1, we get

α = β = 1√
2

and the transform matrix K is

K = 1√
2

[
1 1
1 −1

]
(42)

Notice that this matrix is not dependent on the values of Rxx (0) and Rxx (1). This is only true
of the 2× 2 KLT. The transform matrices of higher order are functions of the autocorrelation
values. �

Although the Karhunen-Loéve transform maximizes the transform coding gain as defined
by (27), it is not practical in most circumstances. Therefore, we need transforms that do not
depend on the data being transformed. We describe some of the more popular transforms in
the following sections.

420 13 T R A N S F O R M C O D I N G

0 3 6

7

1

4

2 5

F I GUR E 13 . 3 Basis set for the discrete cosine transform. The numbers in the circles
correspond to the row of the transform matrix.

13.4.2 Discrete Cosine Transform

The discrete cosine transform (DCT) gets its name from the fact that the rows of the N × N
transform matrix C are obtained as a function of cosines:

[C]i, j =

⎧⎪⎨
⎪⎩

√
1
N cos (2 j+1)iπ

2N i = 0, j = 0, 1, . . . , N − 1√
2
N cos (2 j+1)iπ

2N i = 1, 2, . . . , N − 1, j = 0, 1, . . . , N − 1

(43)

The rows of the transform matrix are shown in graphical form in Figure 13.3. Notice how the
amount of variation increases as we progress down the rows; that is, the frequency of the rows
increases as we go from top to bottom.

The outer products of the rows are shown in Figure 13.4. Notice that the basis matrices
show increased variation as we go from the top-left matrix, corresponding to the θ00 coefficient,
to the bottom-right matrix, corresponding to the θ(N−1)(N−1) coefficient.

The DCT is closely related to the discrete Fourier transform (DFT) mentioned in Chapter 11
and, in fact, can be obtained from the DFT. However, in terms of compression, the DCT
performs better than the DFT.

To see why, recall that when we find the Fourier coefficients for a sequence of length N ,
we assume that the sequence is periodic with period N . If the original sequence is as shown in
Figure 13.5(a), the DFT assumes that the sequence outside the interval of interest behaves in the
manner shown in Figure 13.5(b). This introduces sharp discontinuities at the beginning and the

13.4 Transforms of Interest 421

F I GUR E 13 . 4 The basis matrices for the DCT.

end of the sequence. In order to represent these sharp discontinuities, the DFT needs nonzero
coefficients for the high-frequency components. Because these components are needed only
at the two endpoints of the sequence, their effect needs to be canceled out at other points in the
sequence. Thus, the DFT adjusts other coefficients accordingly. When we discard the high-
frequency coefficients (which should not have been there anyway) during the compression
process, the coefficients that were canceling out the high-frequency effect in other parts of the
sequence result in the introduction of additional distortion.

The DCT can be obtained using the DFT by mirroring the original N -point sequence to
obtain a 2N -point sequence, as shown in Figure 13.6(b). The DCT is simply the first N points
of the resulting 2N -point DFT. When we take the DFT of the 2N -point mirrored sequence, we
again have to assume periodicity. However, as we can see from Figure 13.6(c), this does not
introduce any sharp discontinuities at the edges.

The DCT is substantially better at energy compaction for most correlated sources when
compared to the DFT [134]. In fact, for Markov sources with high correlation coefficient ρ,

ρ = E[xn xn+1]
E[x2

n]
(44)

422 13 T R A N S F O R M C O D I N G

(a)

(b)

F I GUR E 13 . 5 Taking the discrete Fourier transform of a sequence.

(a)

(b)

(c)

F I GUR E 13 . 6 Taking the discrete cosine transform of a sequence.

the compaction ability of the DCT is very close to that of the KLT. As many sources can be
modeled as Markov sources with high values for ρ, this superior compaction ability has made
the DCT the most popular transform. It is a part of many international standards, including
JPEG, MPEG, and CCITT H.261, among others.

13.4 Transforms of Interest 423

13.4.3 Discrete Sine Transform

The discrete sine transform (DST) is a complementary transform to the DCT. Where the DCT
provides performance close to the optimum KLT when the correlation coefficient ρ is large,
the DST performs close to the optimum KLT in terms of compaction when the magnitude of
ρ is small. Because of this property, it is often used as the complementary transform to DCT
in image [191] and audio [192] coding applications.

The elements of the transform matrix for an N × N DST are

[S]i j =
√

2

N + 1
sin

π(i + 1)(j + 1)

N + 1
i, j = 0, 1, . . . , N − 1 (45)

13.4.4 Discrete Walsh- Hadamard Transform

A transform that is especially simple to implement is the discrete Walsh-Hadamard transform
(DWHT). The DWHT transform matrices are rearrangements of discrete Hadamard matrices,
which are of particular importance in coding theory [193]. A Hadamard matrix of order N is
defined as an N × N matrix H , with the property that H H T = N I , where I is the N × N
identity matrix. Hadamard matrices whose dimensions are a power of two can be constructed
in the following manner:

H2N =
[

HN HN

HN −HN

]
(46)

with H1 = [1]. Therefore,

H2 =
[

H1 H1
H1 −H1

]
=

[
1 1
1 −1

]
(47)

H4 =
[

H2 H2
H2 −H2

]
=

⎡
⎢⎢⎣

1 1
1 −1

1 1
1 −1

1 1
1 −1

−1 −1
−1 1

⎤
⎥⎥⎦ (48)

H8 =
[

H4 H4
H4 −H4

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(49)

The DWHT transform matrix H can be obtained from the Hadamard matrix by multiplying
it by a normalizing factor so that H H T = I instead of N I and by reordering the rows in
increasing order of sequency. The sequency of a row is half the number of sign changes in
that row. In H8, the first row has a sequency of 0, the second row has a sequency of 7/2, the
third row has a sequency of 3/2, and so on. Normalization involves multiplying the matrix by

1√
N

. Reordering the H8 matrix in increasing order of sequency, we get

424 13 T R A N S F O R M C O D I N G

H = 1√
8

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 −1 −1 1 1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1
1 −1 1 −1 −1 1 −1 1
1 −1 1 −1 1 −1 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(50)

Because the matrix without the scaling factor consists of ±1, the transform operation
consists simply of addition and subtraction. For this reason, this transform is useful in situations
where minimizing the amount of computations is very important. However, the amount of
energy compaction obtained with this transform is substantially less than the compaction
obtained by the use of the DCT. Therefore, where sufficient computational power is available,
DCT is the transform of choice.

13.5 Quantization and Coding of Transform
Coefficients

If the amount of information conveyed by each coefficient is different, it makes sense to assign
differing numbers of bits to the different coefficients. There are two approaches to assigning
bits. One approach relies on the average properties of the transform coefficients, while the
other approach assigns bits as needed by individual transform coefficients.

In the first approach, we first obtain an estimate of the variances of the transform coeffi-
cients. These estimates can be used by one of two algorithms to assign the number of bits used
to quantize each of the coefficients. We assume that the relative variance of the coefficients
corresponds to the amount of information contained in each coefficient. Thus, coefficients
with higher variance are assigned more bits than coefficients with smaller variance.

Let us find an expression for the distortion, then find the bit allocation that minimizes the
distortion. To perform the minimization, we will use the method of Lagrange [194]. If the
average number of bits per sample to be used by the transform coding system is R and the
average number of bits per sample used by the kth coefficient is Rk , then

R = 1

M

M∑
k=1

Rk (51)

where M is the number of transform coefficients. The reconstruction error variance for the kth
quantizer σ 2

rk
is related to the kth quantizer input variance σ 2

θk
by the following:

σ 2
rk
= αk2−2Rkσ 2

θk
(52)

where αk is a factor that depends on the input distribution and the quantizer.

13.5 Quantization and Coding of Transform Coefficients 425

The total reconstruction error is given by

σ 2
r =

M∑
k=1

αk2−2Rkσ 2
θk

(53)

The objective of the bit allocation procedure is to find Rk to minimize (53) subject to the
constraint of (51). If we assume that αk is a constant α for all k, we can set up the minimization
problem in terms of Lagrange multipliers as

J = α
M∑

k=1

2−2Rkσ 2
θk
− λ

(
R − 1

M

M∑
k=1

Rk

)
(54)

Taking the derivative of J with respect to Rk and setting it equal to zero, we can obtain this
expression for Rk :

Rk = 1

2
log2

(
2α ln 2σ 2

θk

)
− 1

2
log2

(
λ

M

)
(55)

Substituting this expression for Rk in (51), we get a value for λ/M :

λ

M
=

M∏
k=1

(
2α ln 2σ 2

θk

) 1
M

2−2R (56)

Substituting this expression for λ/M in (55), we finally obtain the individual bit allocations:

Rk = R + 1

2
log2

σ 2
θk∏M

k=1(σ
2
θk
)

1
M

(57)

Although these values of Rk will minimize (53), they are not guaranteed to be integers or
even positive. The standard approach at this point is to set the negative Rks to zero. This will
increase the average bit rate above the constraint. Therefore, the nonzero Rks are uniformly
reduced until the average rate is equal to R.

If we substitute the value of Rk from Equation (57) into the expression for the reconstruction
error variance for the kth quantizer shown in Equation (52), we obtain

σ 2
rk
= αkσ

2
θk

2

−2(R+ 1

2
log2

σ 2
θk∏M

k=1(σ
2
θk
)

1
M

)

= αkσ
2
θk

2−2R2

− log2

σ 2
θk∏M

k=1(σ
2
θk
)

1
M

= αkσ
2
θk

∏M
k=1(σ

2
θk
)

1
M 2−2R

σ 2
θk

= αk

M∏
k=1

(σ 2
θk
)

1
M 2−2R (58)

426 13 T R A N S F O R M C O D I N G

T A B L E 13 . 4 Bit allocation map for an 8 × 8 transform.

8 7 5 3 1 1 0 0
7 5 3 2 1 0 0 0
4 3 2 1 1 0 0 0
3 3 2 1 1 0 0 0
2 1 1 1 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Defining

γ =
M∏

k=1

(σ 2
θk
)

1
M (59)

and assuming that αk is a constant α for all k, we obtain the reconstruction error variance for
the kth quantizer to be

σ 2
rk
= αγ 2−2R

Note that the expression of the reconstruction error variance is independent of k. That is, each
of the quantizers in this idealized situation, where the reconstruction error variance is given
by Equation (52) with αk = α and rates Rk are allowed to be nonintegers, contributes equally
to the total reconstruction error variance! We can use this insight to develop a recursive bit
allocation algorithm. Notice from Equation (52) that an increase in one bit for the value of Rk

will result in a reduction by half in the standard deviation of the reconstruction error σrk .
Combining these two insights, we obtain the following recursive bit allocation algorithm.

1. Compute σrk for each coefficient. As the number of bits allocated to each coefficient is
zero, initially, σrk = σθk .

2. Set Rk = 0 for all k, and set Rb = M R, where Rb is the total number of bits available
for distribution.

3. Sort the standard deviations {σrk }. Suppose σrl is the maximum.
4. Increment Rl by 1, and divide σrl by 2.
5. Decrement Rb by 1. If Rb = 0, then stop; otherwise, go to Step 3.

If we follow this procedure, we end up allocating more bits to the coefficients with higher
variance. Furthermore, we tend to equalize the amount of distortion contributed by each
coefficient.

This form of bit allocation is called zonal sampling. The reason for this name can be seen
from the example of a bit allocation map for the 8× 8 DCT of an image shown in Table 13.4.
Notice that there is a zone of coefficients that roughly comprises the right lower diagonal of the
bit map that has been assigned zero bits. In other words, these coefficients are to be discarded.
The advantage to this approach is its simplicity. Once the bit allocation has been obtained,
every coefficient at a particular location is always quantized using the same number of bits.
The disadvantage is that, because the bit allocations are performed based on average value,
variations that occur on the local level are not reconstructed properly. For example, consider

13.5 Quantization and Coding of Transform Coefficients 427

an image of an object with sharp edges in front of a relatively plain background. The number of
pixels that occur on edges is quite small compared to the total number of pixels. Therefore, if
we allocate bits based on average variances, the coefficients that are important for representing
edges (the high-frequency coefficients) will get few or no bits assigned to them. This means
that the reconstructed image will not contain a very good representation of the edges.

This problem can be avoided by using a different approach to bit allocation known as thresh-
old coding [195,104,196]. In this approach, which coefficient to keep and which to discard is
not decided a priori. In the simplest form of threshold coding, we specify a threshold value.
Coefficients with magnitude below this threshold are discarded, while the other coefficients
are quantized and transmitted. The information about which coefficients have been retained is
sent to the receiver as side information. A simple approach, described by Pratt [104], is to code
the first coefficient on each line regardless of the magnitude. After this, when we encounter a
coefficient with a magnitude above the threshold value, we send two codewords: one for the
quantized value of the coefficient and one for the count of the number of coefficients since the
last coefficient with a magnitude greater than the threshold. For the two-dimensional case, the
block size is usually small, and each “line” of the transform is very short. Thus, this approach
would be quite expensive. Chen and Pratt [196] suggest scanning the block of transformed
coefficients in a zigzag fashion, as shown in Figure 13.7. If we scan an 8×8 block of quantized
transform coefficients in this manner, we will find that, in general, a large section of the tail
end of the scan will consist of zeros. This is because, generally, the higher-order coefficients
have smaller amplitude. This is reflected in the bit allocation table shown in Table 13.4. As we

F I GUR E 13 . 7 The zigzag scanning pattern for an 8×8 transform.

428 13 T R A N S F O R M C O D I N G

shall see later, if we use midtread quantizers (quantizers with a zero output level), combined
with the fact that the step sizes for the higher-order coefficients are generally chosen to be
quite large, many of these coefficients will be quantized to zero. Therefore, there is a high
probability that after a few coefficients along the zigzag scan, all coefficients will be zero. In
this situation, Chen and Pratt suggest the transmission of a special end-of-block (EOB) sym-
bol. Upon reception of the EOB signal, the receiver would automatically set all remaining
coefficients along the zigzag scan to zero.

The algorithm developed by the Joint Photographic Experts Group (JPEG), described in
Section 13.6, uses a rather clever variation of this approach.

The bit allocation schemes described above assume knowledge about both the source and
the quantizer performance that may not be accurate. An approach that attempts to limit the
assumptions needed for bit allocation is called operational rate-distortion bit allocation. We
briefly describe the operational approach in the next section.

13.5.1 Operational Rate- Distortion Bit Allocation

The bit allocation algorithms considered in the previous section assume that a quantizer perfor-
mance function is available to the user. For example, in the previous section, we assumed that
the reconstruction error variance could be obtained using Equation (52). We further idealized
the situation by assuming that the αk factor, which depends on the input distribution and the
quantizer, is identical for all coefficients and quantizers. In practice, none of these assumptions
may be correct. The alternative to using theoretical performance characteristics for quantizers
is to use empirically obtained performance characteristics for bit allocation.

Let B = {b1, b2, . . . , bm} be a set of bit allocations available for quantizing a particular
coefficient θi . For each bit rate, we can find the quantizer that gives the minimum distortion
when used for quantizing θi . We can find the best quantizer for θi by using a model for
the distribution of θi or by using a training set of representative values. The bit rates and
corresponding distortions can be organized into an operational rate-distortion function or an
operational distortion-rate function. The rate-distortion and distortion-rate functions differ
only in whether we plot the distortion on the ordinate and the rate on the abscissa, or vice
versa. We will use the rate-distortion and distortion-rate functions interchangeably depending
on whichever is more convenient. An example of an operational rate-distortion function is
shown in Figure 13.8. In the figure, the circles represent rate-distortion coordinates for different
quantizers. The empty circles denote the best quantizers for this particular source. The dashed
line is the operational rate-distortion function while the solid line is the convex hull of the
operational points. The operational rate-distortion function specifies the distortion and rate
associated with quantizers that can feasibly be used in the compression process. We have also
plotted the convex hull of the operational points. The convex hull is the convex function that
comes closest in a Euclidean sense to the operational rate-distortion function. A usual way of
visualizing the convex hull of a set of points in two dimensions is to visualize the points as
pins stuck into a board and the convex hull as a rubber band enclosing the pins.

Given an operational rate-distortion function for each coefficient we can use a number of
brute force algorithms to obtain the bit allocation. For example, we can initially assign zero
bits to each coefficient. We can then sort the distortion corresponding to each coefficient and

13.5 Quantization and Coding of Transform Coefficients 429

Distortion

Operational rate-distortion curve
Convex hull

R
at

e

F I GUR E 13 . 8 Operational rate-distortion function.

assign an additional bit to the coefficient contributing the highest distortion. The reduction
in distortion can then be obtained using the operational rate-distortion function or through a
simulation process using a training set. This process can be repeated until the bit budget is
exhausted. This is a greedy approach in that at each step we try to maximize the impact of
one bit—the bit that is being allocated. However, that might not be the best use for the bit
when we look at the overall impact. Maybe it would have been better in terms of reducing the
overall distortion if instead of assigning one bit to the coefficient with the highest distortion
we assigned two bits to the coefficient with the next highest distortion. Exploring all the
possibilities available can be computationally expensive. To obtain a computationally tractable
solution, the problem of bit allocation can be posed as a dynamic programming problem.

A different approach was pioneered in the work of Shoham and Gersho [197]. Suppose
we have a bit allocation B, the corresponding average distortion D(B), and rate R(B). The
problem of bit allocation can then be posed as that of finding the allocation B∗ that minimizes
D(B) while satisfying the constraint that R(B) � Rb. Shoham and Gersho examined the
simpler unconstrained minimization of a function of the form

J = D(B)+ λR(B)

where the minimization is over all B in a specified set S. They noted that for any λ � 0,
the solution B∗(λ) to the unconstrained problem of minimizing J over all B ∈ S is also the
solution of the problem of minimizing D(B) over all B ∈ S while satisfying the constraint that
R(B) � R(B∗(λ)). This latter constrained problem seems to be exactly the problem we are
interested in solving if we take B to be bit allocation, D(B) and R(B) to be the corresponding
distortion and rate, and R(B∗(λ)) to be our rate constraint Rb. Of course, there is no indication
that for a given value of λ, R(B∗(λ)) is equal to, or even close to, Rb. However, if we can find

430 13 T R A N S F O R M C O D I N G

a relationship between λ, the distortion, and the rate, we can develop an algorithm to find the
λ that will result in the desired rate.

Let’s take another look at the unconstrained problem proposed by Shoham and Gersho in
the context of our bit allocation problem. Define

D(B) =
∑

i

Di (Ri) and R(B) =
∑

i

Ri

where Ri is the number of bits allocated to the coefficient θi and Di (Ri) is the corresponding
distortion. The function for the unconstrained minimization problem then becomes

J =
∑

i

Di (Ri)+ λ
∑

i

Ri

Taking the derivative of this function with respect to the bit allocation for the j th coefficient
R j for j = 1, 2, . . . N , we obtain

∂ J

∂R j
= ∂D j (R j)

∂R j
+ λ j = 1, 2, . . . N

Setting this equal to zero for all j , we obtain

∂D j (R j)

∂R j
= −λ j = 1, 2, . . . N (60)

This is an interesting result with several consequences. It provides us with an explanation
for what λ represents. The left side of Equation (60) is the derivative of the distortion-rate
function for the j th coefficient. Thus λ is simply the negative of the slope of the distortion-rate
function for the j th coefficient. This equation also indicates that for an optimal bit allocation,
this slope of −λ is identical for each coefficient. Thus for the optimum bit allocation for each
coefficient θ j we should pick a rate R j at which point the slope of the rate-distortion function
for θ j is exactly the same as the slope for the distortion-rate function for all other coefficients
θi , i �= j .

We can easily show this latter result that the slopes of the distortion-rate functions at the
operating rates for an optimum bit allocation have to be the same for each coefficient. Consider
the case of a transform with two coefficients. Let’s suppose that the optimum bit assignment
(R∗1 , R∗2) for a rate constraint Rb results in distortions D∗1 and D∗2 and, contrary to our assertion
above, that the slopes −λ1 and −λ2 at (R∗1 , D∗1) and (R∗2 , D∗2) are not the same. Without loss
of generality, we can assume λ1 < λ2, and we can define λ1 = λ2 − λ. Because these
are the optimum bit assignments, any change in these assignments should lead to a decrease
in the total distortion. Let’s check to see if this is actually true. Let’s increase R∗1 by an
arbitrarily small amount ε > 0. This will result in a decrease in the distortion. As ε is
very small, we can approximate the distortion-rate function with the first term of the Taylor
series expansion of the distortion-rate function and represent the decrease by D∗1 − λ1ε. If we
increase R∗1 by ε, the total rate R∗1 + R∗2 increases by ε. In order to keep the total number of
bits the same, the bit assignment R∗2 has to be decreased by ε. This will increase the distortion
for the second coefficient by an amount equal to λ2ε. Thus the new total distortion will be

13.5 Quantization and Coding of Transform Coefficients 431

b

R()

R

λ

λ

F I GUR E 13 . 9 A typical relationship between λ and the corresponding rate R∗(λ)

[197].

D∗1−λ1ε+D∗2+λ2ε. But as λ1 = λ2−λ, the new distortion is D∗1−(λ2−λ)ε+D∗2+λ2ε,
which is equal to D∗1 + D∗2 + λε. But this is an increase in distortion that contradicts our
assumption that the allocation was optimum. Thus, it is not possible to pick an optimum bit
allocation in a manner that will result in differing slopes at the operating points of the respective
distortion-rate functions.

We have reduced the problem of bit allocation to the problem of finding a value for λ that
will result in rates that satisfy the rate constraint. Once we have this value, we can use the
individual distortion-rate functions for the different coefficients to obtain the bit allocation and
the corresponding distortion. In order to do this we need a relationship between λ and the rate.

Shoham and Gersho [197] show that while for a given value of λ there may be several rates
that achieve the optimum value, the optimal rate for each λ is monotonically nonincreasing
with λ. A plot of the typical dependency between the value of λ and the corresponding optimal
rate is shown in Figure 13.9. In the figure, the filled-in circles correspond to multiple solutions
for those values of λ. These multiple solutions cause the relationship between R∗(λ) and λ to
have a stair-step appearance.

Given this relationship, in order to find the value of λ needed for an optimal solution, we
need only find a value λ1 that results in a rate below the target rate and a value λ2 that results in
a rate above the target rate. We can then search between these two values of λ to find the rate
that comes closest to satisfying our constraint. Note that it is possible that no set of quantizers
exist that will exactly satisfy our rate constraint.

This approach will only allow us to select quantizers corresponding to the points on the
convex hull. Points interior to the convex hull are unreachable using this approach. There
might be situations where the points on the convex hull are not the best practical solution. For
example, we might have a situation in which because of the allocations to other coefficients

432 13 T R A N S F O R M C O D I N G

certain high rate points on the convex hull are no longer allowed. In such situations one could
use the points on the convex hull to initiate a search for a point on the operational rate-distortion
curve interior to the convex hull that would satisfy the operational constraint.

13.6 Application to Image Compression__JPEG

The JPEG standard is one of the most widely known standards for lossy image compression.
It is a result of the collaboration of the International Standards Organization (ISO), which is a
private organization, and what was the CCITT (now ITU-T), a part of the United Nations. The
approach recommended by JPEG is a transform coding approach using the DCT. The approach
is a modification of the scheme proposed by Chen and Pratt [196]. In this section, we will
briefly describe the baseline JPEG algorithm. In order to illustrate the various components of
the algorithm, we will use an 8× 8 block of the Sena image, shown in Table 13.5. For more
details, see [6].

13.6.1 The Transform

The transform used in the JPEG scheme is the DCT transform described earlier. The input
image is first “level shifted” by 2P−1; that is, we subtract 2P−1 from each pixel value, where
P is the number of bits used to represent each pixel. Thus, if we are dealing with 8-bit images
whose pixels take on values between 0 and 255, we would subtract 128 from each pixel so that
the value of the pixel varies between −128 and 127. The image is divided into blocks of size
8× 8, which are then transformed using an 8× 8 forward DCT. If any dimension of the image
is not a multiple of eight, the encoder replicates the last column or row until the final size is a
multiple of eight. These additional rows or columns are removed during the decoding process.
If we take the 8 × 8 block of pixels shown in Table 13.5, subtract 128 from it, and take the
DCT of this level-shifted block, we obtain the DCT coefficients shown in Table 13.6. Notice
that the lower-frequency coefficients in the top-left corner of the table have larger values than
the higher-frequency coefficients. This is generally the case, except for situations in which
there is substantial activity in the image block.

13.6.2 Quantization

The JPEG algorithm uses uniform midtread quantization to quantize the various coefficients.
The quantizer step sizes are organized in a table called the quantization table and can be
viewed as the fixed part of the quantization. An example of a quantization table from the JPEG
recommendation [6] is shown in Table 13.7. Each quantized value is represented by a label.
The label corresponding to the quantized value of the transform coefficient θi j is obtained as

li j =
⌊
θi j

Qi j
+ 0.5

⌋
(61)

13.6 Application to Image Compression__JPEG 433

T A B L E 13 . 5 An 8 × 8 block from the Sena
image.

124 125 122 120 122 119 117 118
121 121 120 119 119 120 120 118
126 124 123 122 121 121 120 120
124 124 125 125 126 125 124 124
127 127 128 129 130 128 127 125
143 142 143 142 140 139 139 139
150 148 152 152 152 152 150 151
156 159 158 155 158 158 157 156

T A B L E 13 . 6 The DCT coefficients corresponding to the block of data from
the Sena image after level shift.

39.88 6.56 −2.24 1.22 −0.37 −1.08 0.79 1.13
−102.43 4.56 2.26 1.12 0.35 −0.63 −1.05 −0.48

37.77 1.31 1.77 0.25 −1.50 −2.21 −0.10 0.23
−5.67 2.24 −1.32 −0.81 1.41 0.22 −0.13 0.17
−3.37 −0.74 −1.75 0.77 −0.62 −2.65 −1.30 0.76

5.98 −0.13 −0.45 −0.77 1.99 −0.26 1.46 0.00
3.97 5.52 2.39 −0.55 −0.051 −0.84 −0.52 −0.13
−3.43 0.51 −1.07 0.87 0.96 0.09 0.33 0.01

where Qi j is the (i, j)th element of the quantization table, and �x� is the largest integer
smaller than x . Consider the θ00 coefficient from Table 13.6. The value of θ00 is 39.88. From
Table 13.7, Q00 is 16. Therefore,

l00 =
⌊

39.88

16
+ 0.5

⌋
= �2.9925� = 2 (62)

The reconstructed value is obtained from the label by multiplying the label with the cor-
responding entry in the quantization table. Therefore, the reconstructed value of θ00 would
be l00 × Q00, which is 2 × 16 = 32. The quantization error in this case is 39.88−32 = 7.88.
Similarly, from Tables 13.6 and 13.7, θ01 is 6.56 and Q01 is 11. Therefore,

l01 =
⌊

6.56

11
+ 0.5

⌋
= �1.096� = 1 (63)

The reconstructed value is 11, and the quantization error is 11−6.56 = 4.44. Continuing in
this fashion, we obtain the labels shown in Table 13.8.

From the sample quantization table shown in Table 13.7, we can see that the step size gen-
erally increases as we move from the DC coefficient to the higher-order coefficients. Because
the quantization error is an increasing function of the step size, more quantization error will be
introduced in the higher-frequency coefficients than in the lower-frequency coefficients. The
decision on the relative size of the step sizes is based on how errors in these coefficients will

434 13 T R A N S F O R M C O D I N G

T A B L E 13 . 7 Sample quantization table.

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

T A B L E 13 . 8 The quantizer labels obtained
by using the quantization table
on the coefficients.

2 1 0 0 0 0 0 0
−9 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

be perceived by the human visual system. Different coefficients in the transform have widely
different perceptual importance. Quantization errors in the DC and lower AC coefficients are
more easily detectable than quantization errors in the higher AC coefficients. Therefore, we
use larger step sizes for perceptually less important coefficients.

Because the quantizers are all midtread quantizers (that is, they all have a zero output
level), the quantization process also functions as the thresholding operation. All coefficients
with magnitudes less than half the corresponding step size will be set to zero. Because the
step sizes at the tail end of the zigzag scan are larger, the probability of finding a long run of
zeros increases at the end of the scan. This is the case for the 8× 8 block of labels shown in
Table 13.8. The entire run of zeros at the tail end of the scan can be coded with an EOB code
after the last nonzero label, resulting in substantial compression.

Furthermore, this effect also provides us with a method to vary the rate. By making the
step sizes larger, we can reduce the number of nonzero values that need to be transmitted,
which translates to a reduction in the number of bits that need to be transmitted.

13.6.3 Coding

Chen and Pratt [196] used separate Huffman codes for encoding the label for each coefficient
and the number of coefficients since the last nonzero label. The JPEG approach is somewhat
more complex but results in higher compression. In the JPEG approach, the labels for the DC
and AC coefficients are coded differently.

13.6 Application to Image Compression__JPEG 435

T A B L E 13 . 9 Coding of the differences of the DC labels.

0 0
1 −1 1
2 −3 −2 2 3
3 −7 · · · −4 4 · · · 7
4 −15 · · · −8 8 · · · 15
5 −31 · · · −16 16 · · · 31
6 −63 · · · −32 32 · · · 63
7 −127 · · · −64 64 · · · 127
8 −255 · · · −128 128 · · · 255
9 −511 · · · −256 256 · · · 511

10 −1,023 · · · −512 512 · · · 1,023
11 −2,047 · · · −1,024 1,024 · · · 2,047
12 −4,095 · · · −2,048 2,048 · · · 4,095
13 −8,191 · · · −4,096 4,096 · · · 8,191
14 −16,383 · · · −8,192 8,192 · · · 16,383
15 −32,767 · · · −16,384 16,384 · · · 32,767
16 32,768

From Figure 13.4, we can see that the basis matrix corresponding to the DC coefficient
is a constant matrix. Thus, the DC coefficient is some multiple of the average value in the
8× 8 block. The average pixel value in any 8× 8 block will not differ substantially from the
average value in the neighboring 8×8 block; therefore, the DC coefficient values will be quite
close. Given that the labels are obtained by dividing the coefficients with the corresponding
entry in the quantization table, the labels corresponding to these coefficients will be closer still.
Therefore, it makes sense to encode the differences between neighboring labels rather than to
encode the labels themselves.

Depending on the number of bits used to encode the pixel values, the number of values that
the labels and, hence, the differences can take on may become quite large. A Huffman code
for such a large alphabet would be quite unmanageable. The JPEG recommendation resolves
this problem by partitioning the possible values that the differences can take on into categories.
The size of these categories grows as a power of two. Thus, Category 0 has only one member
(0), Category 1 has two members (−1 and 1), Category 2 has four members (−3, −2, 2, 3),
and so on. The category numbers are then Huffman coded. The number of codewords in the
Huffman code is equal to the base two logarithm of the number of possible values that the label
differences can take on. If the differences can take on 4,096 possible values, the size of the
Huffman code is log2 4096 = 12. The elements within each category are specified by tacking
on extra bits to the end of the Huffman code for that category. As the categories are different
sizes, we need a differing number of bits to identify the value in each category. For example,
because Category 0 contains only one element, we need no additional bits to specify the value.
Category 1 contains two elements, so we need 1 bit tacked on to the end of the Huffman code
for Category 1 to specify the particular element in that category. Similarly, we need 2 bits to
specify the element in Category 2, 3 bits for Category 3, and n bits for Category n.

436 13 T R A N S F O R M C O D I N G

T A B L E 13 . 10 Sample table for obtaining the Huffman code for a given
label value and run length. The values of Z are
represented in hexadecimal.

Z/C Codeword Z/C Codeword · · · Z/C Codeword

0/0 (EOB) 1010 · · · F/0 (ZRL) 11111111001
0/1 00 1/1 1100 · · · F/1 1111111111110101
0/2 01 1/2 11011 · · · F/2 1111111111110110
0/3 100 1/3 1111001 · · · F/3 1111111111110111
0/4 1011 1/4 111110110 · · · F/4 1111111111111000
0/5 11010 1/5 11111110110 · · · F/5 1111111111111001
...

...
...

...
...

The categories and the corresponding difference values are shown in Table 13.9. For
example, if the difference between two labels was 6, we would send the Huffman code for
Category 3. As Category 3 contains the eight values {−7,−6,−5,−4, 4, 5, 6, 7}, the Huffman
code for Category 3 would be followed by 3 bits that would specify which of the eight values
in Category 3 was being transmitted.

The binary code for the AC coefficients is generated in a slightly different manner. The
category C that a nonzero label falls in and the number of zero-valued labels Z since the last
nonzero label form a pointer to a specific Huffman code, as shown in Table 13.10. Thus, if the
label being encoded falls in Category 3, and there have been 15 zero-valued labels prior to this
nonzero label in the zigzag scan, then we form the pointer F/3, which points to the codeword
1111111111110111. Because the label falls in Category 3, we follow this codeword with
3 bits that indicate which of the eight possible values in Category 3 the label takes on.

There are two special codes shown in Table 13.10. The first is for the end-of-block (EOB).
This is used in the same way as in the Chen and Pratt [196] algorithm; that is, if a particular
label value is the last nonzero value along the zigzag scan, the code for it is immediately
followed by the EOB code. The other code is the ZRL code, which is used when the number
of consecutive zero values along the zigzag scan exceeds 15.

To see how all of this fits together, let’s encode the labels in Table 13.8. The label cor-
responding to the DC coefficient is coded by first taking the difference between the value of
the quantized label in this block and the quantized label in the previous block. If we assume
that the corresponding label in the previous block was −1, then the difference would be 3.
From Table 13.9, we can see that this value falls in Category 2. Therefore, we would send the
Huffman code for Category 2 followed by the 2-bit sequence 11 to indicate that the value in
Category 2 being encoded was 3, and not −3, −2, or 2. To encode the AC coefficients, we
first order them using the zigzag scan. We obtain the sequence

1 −9 3 0 0 0 · · · 0
The first value, 1, belongs to Category 1. Because there are no zeros preceding it, we transmit
the Huffman code corresponding to 0/1, which from Table 13.10 is 00. We then follow this
by a single bit 1 to indicate that the value being transmitted is 1 and not −1. Similarly, −9

13.6 Application to Image Compression__JPEG 437

T A B L E 13 . 11 The quantized values of the
coefficients.

32 11 0 0 0 0 0 0
−108 0 0 0 0 0 0 0

42 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

T A B L E 13 . 12 The reconstructed block.

123 122 122 121 120 120 119 119
121 121 121 120 119 118 118 118
121 121 120 119 119 118 117 117
124 124 123 122 122 121 120 120
130 130 129 129 128 128 128 127
141 141 140 140 139 138 138 137
152 152 151 151 150 149 149 148
159 159 158 157 157 156 155 155

is the seventh element in Category 4. Therefore, we send the binary string 1011, which is
the Huffman code for 0/4, followed by 0110 to indicate that −9 is the seventh element in
Category 4. The next label is 3, which belongs to Category 2, so we send the Huffman code
01 corresponding to 0/2, followed by the 2 bits 11. All the labels after this point are 0, so we
send the EOB Huffman code, which in this case is 1010. If we assume that the Huffman code
for the DC coefficient is 2 bits long, we have sent a grand total of 21 bits to represent this 8×8
block. This translates to an average of 21

64 bits per pixel.
To obtain a reconstruction of the original block, we perform the dequantization, which

simply consists of multiplying the labels in Table 13.8 with the corresponding values in
Table 13.7. Taking the inverse transform of the quantized coefficients shown in Table 13.11
and adding 128, we get the reconstructed block shown in Table 13.12. We can see that in spite
of going from 8 bits per pixel to 9

32 bits per pixel, the reproduction is remarkably close to the
original.

If we wanted an even more accurate reproduction, we could do so at the cost of an increased
bit rate by multiplying the step sizes in the quantization table by one-half and using these values
as the new step sizes. Using the same assumptions as before, we can show that this will result
in an increase in the number of bits transmitted. We can go in the other direction by multiplying
the step sizes with a number greater than one. This will result in a reduction in bit rate at the
cost of increased distortion.

438 13 T R A N S F O R M C O D I N G

13.6.4 Format__JFIF

The most common format used for storing JPEG encoded images is the JPEG File Interchange
Format (JFIF). It uses markers to partition the bitstream. The first byte of each marker is FF
and the second byte is constrained to be neither FF nor 0. Markers can be stand-alone or they
can be followed by a payload. Examples of standalone markers are the SOI (start of image)
(FFD8) markers, which initiate all JFIF files, and the EOI (end of image) (FFD9) markers,
which terminate all JFIF files. In the markers which act as headers for a payload, the first two
bytes encode the length of the payload.

The application-specific APP0 marker (FFE0), which immediately follows the SOI marker
has the following format:

Field Size Content
Length 2 bytes Length of the header
Identifier 5 bytes 0x4A 0x46 0x49 0x46 0x00 (JFIF0)
Version 2 bytes MSB for major revision, LSB for minor revisions
Units 1 byte 0: no units, 1: dots per inch, 2: dots per cm
Xdensity 2 bytes Horizontal pixel density
Ydensity 2 bytes Vertical pixel density
Xthumbnail 1 byte Thumbnail horizontal pixel count
Ythumbnail 1 byte Thumbnail vertical pixel count
(RGB)n 3n bytes 24-bit RGB values for thumbnail

n = Xthumbnail× Ythumbnail

The structure of the JFIF file is shown in Figure 13.10 in which the representation optional
elements are shown as dashed boxes. Optional elements include table markers such as DHT
(define Huffman table) (FFC4) and DQT (define quantization table) (FFDB). The syntax of the
DHT marker is shown in Figure 13.11. The first two bytes contain the length of the payload.
The four most significant bits of the next byte indicate whether the Huffman code is for the
DC coefficient or the AC coefficients. The number of Huffman codewords of lengths from 1
bit through 16 bits are stored in the next 16 bytes. This is followed by a variable number of
bytes that describe the Huffman codes in terms of their lengths.

The syntax of the quantization table marker is shown in Figure 13.12. Again, the first
two bytes contain the payload length. The most significant four bits of the next byte specify
whether the quantization table values are stored in one or two bytes. A value of 0 indicates a
single byte is used for each quantization value while a value of 1 indicates 2 bytes are used
for each quantization value. The next 64 or 128 bytes contain the 64 quantization table values
stored in zigzag order.

Optional table marker segments are followed by the frame header, which indicates the start
of a frame and in turn can be followed by a number of scans. Each new scan begins with a
marker segment, the DNL marker segment (FFDC), which defines the number of lines in the
next scan. This is used to reset the dimension of the image set in the frame header. The scan
can begin with optional tables followed by the scan header. The first two bytes in the scan
header are the start of scan (SOS) marker followed by the length, number of components, and
component parameters. The scan header is followed by the entropy-coded data interleaved with
restart markers (DRI). These markers provide a degree of robustness to the JPEG datastream.

13.6 Application to Image Compression__JPEG 439

APP0 Frame EOI

Tables Scan 2 Scan n
Frame
Header

Scan 1 DNL

Tables
Header
Scan

ECS 0 RST 0 ECS 1 ECS nRST n

SOI APP0

F I GUR E 13 . 10 Syntax of the JFIF file.

D
es

t

FFC4 Length
length 1

codes# codes # codes
length 2 length 16

Symbol Length
AssignmentC

la
ss

F I GUR E 13 . 11 Syntax of the Huffman table marker.

Q[2,2]Length

Pr
ec

.

D
es

t

FFDB Q[8,8]Q[1,1] Q[1,2] Q[2,1] Q[3,1]

F I GUR E 13 . 12 Syntax of the quantization table marker.

One of the drawbacks of using variable length codes is that bit errors tend to propagate. The
DRI markers prevent the error from propagating beyond a restart interval. The file is terminated
with an end of image (EOI) marker.

Finally, we present some examples of JPEG-coded images in Figures 13.8 and 13.9. These
were coded using shareware generated by the Independent JPEG Group (organizer, Dr. Thomas
G. Lane). Notice the high degree of “blockiness” in the lower-rate image (Figure 13.8). This
is a standard problem of most block-based techniques and specifically of the transform coding
approach. A number of solutions have been suggested for removing this blockiness, including
postfiltering at the block edges as well as transforms that overlap the block boundaries. Each
approach has its own drawbacks. The filtering approaches tend to reduce the resolution of
the reconstructions, while the overlapped approaches increase the complexity. One particular
overlapped approach that is widely used in audio compression is the modified DCT (MDCT),
which is described in the next section (see Figs. 13.13 and 13.14).

440 13 T R A N S F O R M C O D I N G

F I GUR E 13 . 13 Sinan image coded at 0.5 bits per pixel using the JPEG algorithm.

13.7 Application to Audio Compression__The
MDCT

As mentioned in the previous section, the use of the block-based transform has the unfortunate
effect of causing distortion at the block boundaries at low rates. A number of techniques that
use overlapping blocks have been developed over the years [198]. One that has gained wide
acceptance in audio compression is a transform based on the discrete cosine transform called
the modified discrete cosine transform (MDCT). It is used in almost all popular audio coding
standards from MP3 and AAC to Ogg Vorbis.

The MDCT used in these algorithms uses 50% overlap. That is, each block overlaps half
of the previous block and half of the next block of data. Consequently, each audio sample is
part of two blocks. If we were to keep all the frequency coefficients, we would end up with
twice as many coefficients as samples. Reducing the number of frequency coefficients results
in the introduction of distortion in the inverse transform. The distortion is referred to as time
domain aliasing [199]. The reason for the name is evident if we consider that the distortion is
being introduced by subsampling in the frequency domain. Recall that sampling at less than the
Nyquist frequency in the time domain leads to an overlap of replicas of the frequency spectrum,
or frequency aliasing. The lapped transforms are successful because they are constructed in
such a way that while the inverse transform of each block results in time-domain aliasing, the
aliasing in consecutive blocks cancels each other out.

Consider the scenario shown in Figure 13.15. Let’s look at the coding for block i and
block i + 1. The inverse transform of the coefficients resulting from both these blocks results
in the audio samples in the subblock q. We assume that the blocksize is N , and, therefore, the
subblock size is N/2. The forward transform can be represented by an N/2 × N matrix P .

13.7 Application to Audio Compression__The MDCT 441

F I GUR E 13 . 14 Sinan image coded at 0.25 bits per pixel using the JPEG algorithm.

[] [] [] [

Block i

Block i + 1

Block i + 2

Block i – 1
rp q

F I GUR E 13 . 15 Source output sequence.

Let us partition the matrix into two N/2× N/2 blocks, A and B. Thus

P = [A|B]

Let xi = [p|q], then the forward transform Pxi can be written in terms of the subblocks as

Xi = [A|B]

[
p
q

]

The inverse transform matrix Q can be represented by an N × N/2 matrix, which can be
partitioned into two N/2× N/2 blocks, C and D.

Q =
[

C
D

]

Applying the inverse transform, we get the reconstruction values x̂ :

x̂i = Q Xi = Q Pxi =
[

C
D

]
[A|B]

[
p
q

]
=

[
C Ap + C Bq
D Ap + DBq

]

Repeating the process for block i + 1 we get

x̂i+1 = Q Xi+1 = Q Pxi+1 =
[

C
D

]
[A|B]

[
q
r

]
=

[
C Aq + C Br
D Aq + DBr

]

442 13 T R A N S F O R M C O D I N G

To cancel out the aliasing in the second half of the block, we need

C Aq + C Br + D Ap + DBq = q

From this we can get the requirements for the transform:

C B = 0 (64)

D A = 0 (65)
C A + DB = I (66)

Note that the same requirements will help cancel the aliasing in the first half of block i by
using the second half of the inverse transform of block i − 1. One selection that satisfies the
last condition is

C A = 1

2
(I − J) (67)

DB = 1

2
(I + J) (68)

where J is the counteridentity matrix.
The forward modified discrete transform is given by the following equation:

Xk =
N−1∑
n=0

xn cos

(
2π

N
(k + 1

2
)(n + 1

2
+ N

4
)

)
(69)

where xn are the audio samples and Xk are the frequency coefficients. The inverse MDCT is
given by

yn = 2

N

N
2 −1∑
k=0

Xk cos

(
2π

N
(k + 1

2
)(n + 1

2
+ N

4
)

)
(70)

or in terms of our matrix notation,

[P]i, j = cos

(
2π

N
(i + 1

2
)(j + 1

2
+ N

4
)

)
(71)

[Q]i, j = 2

N
cos

(
2π

N
(i + 1

2
)(j + 1

2
+ N

4
)

)
(72)

It is easy to verify that, given a value of N , these matrices satisfy the conditions for alias
cancellation.

Thus, while the inverse transform for any one block will contain aliasing, by using the
inverse transform of neighboring blocks, the aliasing can be canceled. What about blocks that
do not have neighbors—that is, the first and last blocks? One way to resolve this problem is
to pad the sampled audio sequence with N/2 zeros at the beginning and end of the sequence.
In practice, this is not necessary, because the data to be transformed is windowed prior to the
transform. For the first and last blocks, we use a special window that has the same effect as
introducing zeros. For information on the design of windows for the MDCT, see [200]. For
more on how the MDCT is used in audio compression techniques, see Chapter 16.

13.8 Summary 443

13.8 Summary

In this chapter, we have described the concept of transform coding and provided some of the
details needed for the investigation of this compression scheme. The basic encoding scheme
works as follows:

� Divide the source output into blocks. In the case of speech or audio data, they will be
one-dimensional blocks. In the case of images, they will be two-dimensional blocks. In
image coding, a typical block size is 8 × 8. In audio coding, the blocks are generally
overlapped by 50%.

� Take the transform of this block. In the case of one-dimensional data, this involves
premultiplying the N ×1 vector of source output samples by the transform matrix. In the
case of image data, for the transforms we have looked at, this involves premultiplying the
N × N block by the transform matrix and post-multiplying the result with the transpose
of the transform matrix. Fast algorithms exist for performing the transforms described
in this chapter (see [201]).

� Quantize the coefficients. Various techniques exist for the quantization of these coeffi-
cients. We have described the approach used by JPEG. In Chapter 16 we describe the
quantization techniques used in various audio coding algorithms.

� Encode the quantized value. The quantized value can be encoded using a fixed-length
code or any of the different variable-length codes described in earlier chapters. We have
described the approach taken by JPEG.

The decoding scheme is the inverse of the encoding scheme for image compression. For the
overlapped transform used in audio coding, the decoder adds the overlapped portions of the
inverse transform to cancel aliasing.

The basic approach can be modified depending on the particular characteristics of the
data. We have described some of the modifications used by various commercial algorithms
for transform coding of audio signals.

Further Reading

1. For detailed information about the JPEG standard, JPEG Still Image Data Compression
Standard, by W.B. Pennebaker and J.L. Mitchell [6], is an invaluable reference. This
book also contains the entire text of the official draft JPEG recommendation, ISO DIS
10918-1 and ISO DIS 10918-2.

2. For a detailed discussion of the MDCT and how it is used in audio coding, an excellent
source is Introduction to Digital Audio Coding Standards, by M. Bosi and R.E. Goldberg
[200].

3. Chapter 11 in Digital Coding of Waveforms, by N.S. Jayant and P. Noll [134], provides
a more mathematical treatment of the subject of transform coding.

4. A good source for information about transforms is Fundamentals of Digital Image Proc-
essing, by A.K. Jain [202]. Another one is Digital Image Processing, by R.C. Gonzales

444 13 T R A N S F O R M C O D I N G

and R.E. Wood [96]. This book has an especially nice discussion of the Hotelling trans-
form.

5. The bit allocation problem and its solutions are described in Vector Quantization and
Signal Compression, by A. Gersho and R.M. Gray [136].

6. A very readable description of transform coding of images is presented in Digital Image
Compression Techniques, by M. Rabbani and P.W. Jones [91].

7. The Data Compression Book, by M. Nelson and J.-L. Gailly [69], provides a very readable
discussion of the JPEG algorithm.

13.9 Projects and Problems

1. A square matrix A has the property that AT A = AAT = I, where I is the identity matrix.
If X1 and X2 are two N -dimensional vectors and

�1 = AX1

�2 = AX2

then show that
|X1 − X2|2 = |�1 −�2|2 (73)

2. Consider the following sequence of values:

10 11 12 11 12 13 12 11
10 −10 8 −7 8 −8 7 −7

(a) Transform each row separately using an eight-point DCT. Plot the resulting 16
transform coefficients.

(b) Combine all 16 numbers into a single vector, and transform it using a 16-point DCT.
Plot the 16 transform coefficients.

(c) Compare the results of (a) and (b). For this particular case would you suggest a
block size of 8 or 16 for greater compression? Justify your answer.

3. Consider the following “image”:

4 3 2 1
3 2 1 1
2 1 1 1
1 1 1 1

(a) Obtain the two-dimensional DWHT transform by first taking the one-dimensional
transform of the rows, then taking the column-by-column transform of the resulting
matrix.

13.9 Projects and Problems 445

(b) Obtain the two-dimensional DWHT transform by first taking the one-dimensional
transform of the columns, then taking the row-by-row transform of the resulting
matrix.

(c) Compare and comment on the results of (a) and (b).

4. (This problem was suggested by P.F. Swaszek.) Let us compare the energy compaction
properties of the DCT and the DWHT transforms.

(a) For the Sena image, compute the mean squared value of each of the 64 coefficients
using the DCT. Plot these values.

(b) For the Sena image, compute the mean squared value of each of the 64 coefficients
using the DWHT. Plot these values.

(c) Compare the results of (a) and (b). Which transform provides more energy com-
paction? Justify your answer.

5. Implement the transform and quantization portions of the JPEG standard. For coding the
labels, use an arithmetic coder instead of the modified Huffman code described in this
chapter.

(a) Encode the Sena image using this transform coder at rates of (approximately) 0.25,
0.5, and 0.75 bits per pixel. Compute the mean squared error at each rate and plot
the rate versus the mse.

(b) Repeat part (a) using one of the public domain implementations of JPEG.
(c) Compare the plots obtained using the two coders and comment on the relative per-

formance of the coders.

6. One of the extensions to the JPEG standard allows for the use of multiple quantization
matrices. Investigate the issues involved in designing a set of quantization matrices.
Should the quantization matrices be similar or dissimilar? How would you measure their
similarity? Given a particular block, do you need to quantize it with each quantization
matrix to select the best? Or is there a computationally more efficient approach? Describe
your findings in a report.

7. Assume we use the following transform coding scheme on the source sequence of i id Xs.
First we form a vector with two consecutive X values. Then we take a one-dimensional
transform using the following transform matrix:

A = 1√
2

[
1 1
1 −1

]
(74)

We discard the second coefficient θ2 and only transmit the first coefficient θ1 (assume θ1
is transmitted after being quantized using a pdf-optimized nonuniform quantizer). The
two consecutive samples of X are then reconstructed using the inverse transform.
Starting with

2D = E
[
(X1 − X̂1)

2
]
+ E

[
(X2 − X̂2)

2
]

(75)

show that

D = σ 2
X

2
+ σ 2

q (76)

446 13 T R A N S F O R M C O D I N G

where σ 2
X represents the variance of each input random variable and σ 2

q denotes the
variance of the quantization error.

8. Write a program simulating an 8×8 transform coder without quantization. The program
should read the basis set from a file, perform the transform, retain specified coefficients
only, and perform the inverse transform and reconstruction.

(a) Use this program to compare the discrete cosine transform and the discrete Walsh-
Hadamard transform. Compare the transforms based on objective measures such
as geometric mean and correlation among the coefficients, and by comparing the
quality of the reconstructed image when only the first three and first six coefficients
are retained.

(b) Finally examine the importance of the DC coefficient by looking at a reconstruction
in which the DC coefficient has been discarded.

14
Subband Coding

14.1 Overview

I
n this chapter we present the second of three approaches to compression in
which the source output is decomposed into constituent parts. Each constituent
part is encoded using one or more of the methods that have been described
previously. The approach described in this chapter, known as subband coding,
relies on separating the source output into different bands of frequencies using

digital filters. We provide a general description of the subband coding system and, for those
readers with some knowledge of Z-transforms, a more mathematical analysis of the system.
The sections containing the mathematical analysis are not essential to understanding the rest
of the chapter and are marked with a �. If you are not interested in the mathematical analysis,
you should skip these sections. This is followed by a description of a popular approach to bit
allocation. We conclude the chapter with applications to audio and image compression.

14.2 Introduction

In previous chapters we looked at a number of different compression schemes. Each of these
schemes is most efficient when the data have certain characteristics. A vector quantization
scheme is most effective if blocks of the source output show a high degree of clustering. A
differential encoding scheme is most effective when the sample-to-sample difference is small.
If the source output is truly random, it is best to use scalar quantization or lattice vector
quantization. Thus, if a source exhibits certain well-defined characteristics, we can choose

Introduction to Data Compression. DOI: http://dx.doi.org/10.1016/B978-0-12-415796-5.00014-4
© 2012 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-415796-5.00014-4

448 14 S U B B A N D C O D I N G

a compression scheme most suited to that characteristic. Unfortunately, most source outputs
exhibit a combination of characteristics, which makes it difficult to select a compression scheme
exactly suited to the source output.

In the last chapter we looked at techniques for decomposing the source output into differ-
ent frequency bands using block transforms. The transform coefficients had differing statistics
and differing perceptual importance. We made use of these differences in allocating bits for
encoding the different coefficients. This variable bit allocation resulted in a decrease in the av-
erage number of bits required to encode the source output. One of the drawbacks of transform
coding is the artificial division of the source output into blocks, which results in the generation
of coding artifacts at the block edges, or blocking. One approach to avoiding this blocking is
the lapped orthogonal transform (LOT) [198]. In this chapter we look at a popular approach to
decomposing the image into different frequency bands without the imposition of an arbitrary
block structure. After the input has been decomposed into its constituents, we can use the
coding technique best suited to each constituent to improve compression performance. Fur-
thermore, each component of the source output may have different perceptual characteristics.
For example, quantization error that is perceptually objectionable in one component may be
acceptable in a different component of the source output. Therefore, a coarser quantizer that
uses fewer bits can be used to encode the component that is perceptually less important.

Consider the sequence {xn} plotted in Figure 14.1. We can see that, while there is a
significant amount of sample-to-sample variation, there is also an underlying long-term trend
shown by the dotted line that varies slowly.

One way to extract this trend is to average the sample values in a moving window. The
averaging operation smooths out the rapid variations, making the slow variations more evident.
Let’s pick a window of size two and generate a new sequence {yn} by averaging neighboring
values of xn :

yn = xn + xn−1

2
(1)

The consecutive values of yn will be closer to each other than the consecutive values of xn .
Therefore, the sequence {yn} can be coded more efficiently using differential encoding than
the sequence {xn}. However, we want to encode the sequence {xn}, not the sequence {yn}.
Therefore, we follow the encoding of the averaged sequence {yn} by the difference sequence
{zn}:

zn = xn − yn = xn − xn + xn−1

2
= xn − xn−1

2
(2)

The sequences {yn} and {zn} can be coded independently of each other. This way we can use
the compression schemes that are best suited for each sequence.

F I GUR E 14 . 1 A rapidly changing source output that contains a long-term compo-
nent with slow variations.

14.2 Introduction 449

Example 14 .2 .1 :

Suppose we want to encode the following sequence of values {xn}:

10 14 10 12 14 8 14 12 10 8 10 12

There is a significant amount of sample-to-sample correlation, so we might consider using a
DPCM scheme to compress this sequence. In order to get an idea of the requirements on the
quantizer in a DPCM scheme, let us take a look at the sample-to-sample differences xn− xn−1:

10 4 −4 2 2 −6 6 −2 −2 −2 2 2

Ignoring the first value, the dynamic range of the differences is from −6 to 6. Suppose we
want to quantize these values using m bits per sample. This means we could use a quantizer
with M = 2m levels or reconstruction values. If we choose a uniform quantizer, the size of
each quantization interval,�, is the range of possible input values divided by the total number
of reconstruction values. Therefore,

� = 12

M

which would give us a maximum quantization error of �2 or 6
M .

Now let’s generate two new sequences {yn} and {zn} according to (1) and (2). All three
sequences are plotted in Figure 14.2. Notice that given yn and zn , we can always recover xn :

xn = yn + zn (3)

2

0

Value

Sample
number

2

4

4

6

8

10

12

14 + + +

+

+

+

++

+

+

+

++

xn

zn

yn

2 4 6 8 10 12

2

0

Value

Sample
number

2

4

4

6

8

10

12

14 + + +

+

+

+

++

+

+

+

++

xn

zn

yn

2 4 6 8 10 12

−

−

F I GUR E 14 . 2 Original set of samples and the two components.

450 14 S U B B A N D C O D I N G

0Value
Sample
number

4

2

6

2

4

6

+

+

+

+

+

+

+

+

+

xn − xn−1

yn − yn−1

2 4 6 8 1210

−

−

−

F I GUR E 14 . 3 Difference sequences generated from the original and averaged se-
quences.

Let’s try to encode each of these sequences. The sequence {yn} is

10 12 12 11 13 11 11 13 11 10 9 11

Notice that the {yn} sequence is “smoother” than the {xn} sequence—the sample-to-sample
variation is much smaller. This becomes evident when we look at the sample-to-sample
differences:

10 2 0 −1 2 −2 0 2 −2 −1 −1 2

The difference sequences {xn − xn−1} and {yn − yn−1} are plotted in Figure 14.3. Again,
ignoring the first difference, the dynamic range of the differences yn − yn−1 is 4. If we take
the dynamic range of these differences as a measure of the range of the quantizer, then for an
M-level quantizer, the step size of the quantizer is 4

M and the maximum quantization error is 2
M .

This maximum quantization error is one-third the maximum quantization error incurred when
the {xn} sequence is quantized using an M-level quantizer. However, in order to reconstruct
{xn}, we also need to transmit {zn}. The {zn} sequence is

14.2 Introduction 451

0 2 −2 1 1 −3 3 −1 −1 −1 1 1

The dynamic range for zn is 6, half the dynamic range of the difference sequence for
{xn}. (We could have inferred this directly from the definition of zn .) The sample-to-sample
difference varies more than the actual values. Therefore, instead of differentially encoding this
sequence, we quantize each individual sample. For an M-level quantizer, the required step
size would be 6

M , giving a maximum quantization error of 3
M .

For the same number of bits per sample, we can code both yn and zn and incur less distortion.
At the receiver, we add yn and zn to get the original sequence xn back. The maximum possible
quantization error in the reconstructed sequence would be 5

M , which is less than the maximum
error we would incur if we encoded the {xn} sequence directly.

Although we use the same number of bits for each value of yn and zn , the number of
elements in each of the {yn} and {zn} sequences is the same as the number of elements in the
original {xn} sequence. Although we are using the same number of bits per sample, we are
transmitting twice as many samples and, in effect, doubling the bit rate.

We can avoid this by sending every other value of yn and zn . Let’s divide the sequence
{yn} into subsequences {y2n} and {y2n−1}—that is, a subsequence containing only the odd-
numbered elements {y1, y3, . . .}, and a subsequence containing only the even-numbered ele-
ments {y2, y4, . . .}. Similarly, we divide the {zn} sequence into subsequences {z2n} and {z2n−1}.
If we transmit either the even-numbered subsequences or the odd-numbered subsequences, we
would transmit only as many elements as in the original sequence. To see how we recover the
sequence {xn} from these subsequences, suppose we only transmitted the subsequences {y2n}
and {z2n}:

y2n = x2n + x2n−1

2

z2n = x2n − x2n−1

2

To recover the even-numbered elements of the {xn} sequence, we add the two subsequences.
In order to obtain the odd-numbered members of the {xn} sequence, we take the difference:

y2n + z2n = x2n (4)

y2n − z2n = x2n−1 (5)

Thus, we can recover the entire original sequence {xn}, sending only as many bits as required
to transmit the original sequence while incurring less distortion.

Is the last part of the previous statement still true? In our original scheme we proposed
to transmit the sequence {yn} by transmitting the differences yn − yn−1. As we now need to
transmit the subsequence {y2n}, we will be transmitting the differences y2n− y2n−2 instead. In
order for our original statement about reduction in distortion to hold, the dynamic range of this
new sequence of differences should be less than or equal to the dynamic range of the original
difference. A quick check of the {yn} shows us that the dynamic range of the new differences
is still 4, and our claim of incurring less distortion still holds. �

452 14 S U B B A N D C O D I N G

There are several things we can see from this example. First, the number of different
values that we transmit is the same, whether we send the original sequence {xn} or the two
subsequences {yn} and {zn}. Decomposing the {xn} sequence into subsequences did not result
in any increase in the number of values that we need to transmit. Second, the two subsequences
had distinctly different characteristics, which led to our use of different techniques to encode
the different sequences. If we had not split the {xn} sequence, we would have been using
essentially the same approach to compress both subsequences. Finally, we could have used
the same decomposition approach to decompose the two constituent sequences, which then
could be decomposed further still.

While this example was specific to a particular set of values, we can see that decomposing
a signal can lead to different ways of looking at the problem of compression. This added
flexibility can lead to improved compression performance.

Before we leave this example let us formalize the process of decomposing or analysis, and
recomposing or synthesis. In our example, we decomposed the input sequence {xn} into two
subsequences {yn} and {zn} by the operations

yn = xn + xn−1

2
(6)

zn = xn − xn−1

2
(7)

We can implement these operations using discrete time filters. We briefly considered discrete
time filters in Chapter 11. We take a slightly more detailed look at filters in the next section.

14.3 Filters

A system that isolates certain frequency components is called a filter. The analogy here with
mechanical filters such as coffee filters is obvious. A coffee filter or a filter in a water purification
system blocks coarse particles and allows only the finer-grained components of the input to pass
through. The analogy is not complete, however, because mechanical filters always block the
coarser components of the input, while the filters we are discussing can selectively let through
or block any range of frequencies. Filters that only let through components below a certain
frequency f0 are called low-pass filters; filters that block all frequency components below a
certain value f0 are called high-pass filters. The frequency f0 is called the cutoff frequency.
Filters that let through components that have frequency content above some frequency f1 but
below frequency f2 are called band-pass filters.

One way to characterize filters is by their magnitude transfer function—the ratio of the
magnitude of the input and output of the filter as a function of frequency. In Figure 14.4 we
show the magnitude transfer function for an ideal low-pass filter and a more realistic low-pass
filter, both with a cutoff frequency of f0. In the ideal case, all components of the input signal
with frequencies below f0 are unaffected except for a constant amount of amplification. All
frequencies above f0 are blocked. In other words, the cutoff is sharp. In the case of the more
realistic filter, the cutoff is more gradual. Also, the amplification for the components with

14.3 Filters 453

Magnitude

 Frequency

f0

Magnitude

 Frequency

f0

F I GUR E 14 . 4 Ideal and realistic low-pass filter characteristics.

frequency less than f0 is not constant, and components with frequencies above f0 are not
totally blocked. This phenomenon is referred to as ripple in the passband and stopband.

The filters we will discuss are digital filters, which operate on a sequence of numbers that
are usually samples of a continuously varying signal. We discussed sampling in Chapter 12.
For those of you who skipped that chapter, let us take a brief look at the sampling operation.

How often does a signal have to be sampled in order to reconstruct the signal from the
samples? If one signal changes more rapidly than another, it is reasonable to assume that we
would need to sample the more rapidly varying signal more often than the slowly varying signal
in order to achieve an accurate representation. In fact, it can be shown mathematically that if
the highest frequency component of a signal is f0, then we need to sample the signal at more
than 2 f0 times per second. This result is known as the Nyquist theorem or Nyquist rule after
Harry Nyquist, a famous mathematician from Bell Laboratories. His pioneering work laid the
groundwork for much of digital communication. The Nyquist rule can also be extended to
signals that only have frequency components between two frequencies f1 and f2. If f1 and f2
satisfy certain criteria, then we can show that in order to recover the signal exactly, we need
to sample the signal at a rate of at least 2(f2 − f1) samples per second [134].

What would happen if we violated the Nyquist rule and sampled at less than twice the
highest frequency? In Chapter 12 we showed that it would be impossible to recover the
original signal from the sample. Components with frequencies higher than half the sampling
rate show up at lower frequencies. This process is called aliasing. In order to prevent aliasing,
most systems that require sampling will contain an “anti-aliasing filter” that restricts the input
to the sampler to be less than half the sampling frequency. If the signal contains components
at more than half the sampling frequency, we will introduce distortion by filtering out these
components. However, the distortion due to aliasing is generally more severe than the distortion
we introduce due to filtering.

Digital filtering involves taking a weighted sum of current and past inputs to the filter and,
in some cases, the past outputs of the filter. The general form of the input-output relationships
of the filter is given by

yn =
N∑

i=0

ai xn−i +
M∑

i=1

bi yn−i (8)

454 14 S U B B A N D C O D I N G

where the sequence {xn} is the input to the filter, the sequence {yn} is the output from the filter,
and the values {ai } and {bi } are called the filter coefficients.

If the input sequence is a single 1 followed by all 0s, the output sequence is called the
impulse response of the filter. Notice that if the bi are all 0, then the impulse response will die
out after N samples. These filters are called finite impulse response (FIR) filters. The number
N is sometimes called the number of taps in the filter. If any of the bi have nonzero values,
the impulse response can, in theory, continue forever. Filters with nonzero values for some of
the bi are called infinite impulse response (IIR) filters.

Example 14 .3 .1 :

Suppose we have a filter with a0 = 1.25 and a1 = 0.5. If the input sequence {xn} is given by

xn =
{

1 n = 0

0 n �= 0
(9)

then the output is given by

y0 = a0x0 + a1x−1 = 1.25

y1 = a0x1 + a1x0 = 0.5

yn = 0 n < 0 or n > 1

This output is called the impulse response of the filter. The impulse response sequence is
usually represented by {hn}. Therefore, for this filter we would say that

hn =

⎧⎪⎪⎨
⎪⎪⎩

1.25 n = 0

0.5 n = 1

0 otherwise

(10)

Notice that if we know the impulse response we also know the values of ai . Knowledge of the
impulse response completely specifies the filter. Furthermore, because the impulse response
goes to zero after a finite number of samples (two in this case), the filter is an FIR filter.

The filters we used in Example 14.2.1 are both two-tap FIR filters with impulse responses

hn =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

2
n = 0

1

2
n = 1

0 otherwise

(11)

14.3 Filters 455

for the “averaging” or low-pass filter, and

hn =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

2
n = 0

−1

2
n = 1

0 otherwise

(12)

for the “difference” or high-pass filter.
Now let’s consider a different filter with a0 = 1 and b1 = 0.9. For the same input as above,

the output is given by

y0 = a0x0 + b1 y−1 = 1(1)+ 0.9(0) = 1 (13)
y1 = a0x1 + b1 y0 = 1(0)+ 0.9(1) = 0.9 (14)
y2 = a0x2 + b1 y1 = 1(0)+ 0.9(0.9) = 0.81 (15)
...

...

yn = (0.9)n (16)

The impulse response can be written more compactly as

hn =
{

0 n < 0
(0.9)n n � 0

(17)

Notice that the impulse response is nonzero for all n � 0, which makes this an IIR filter. �

Although it is not as clear in the IIR case as it was in the FIR case, the impulse response
completely specifies the filter. Once we know the impulse response of the filter, we know the
relationship between the input and output of the filter. If {xn} and {yn} are the input and output,
respectively, of a filter with impulse response {hn}Mn=0, then {yn} can be obtained from {xn}
and {hn} via the following relationship:

yn =
M∑

k=0

hk xn−k (18)

where M is finite for an FIR filter and infinite for an IIR filter. The relationship shown in
(18) is known as convolution and can be easily obtained through the use of the properties of
linearity and shift invariance (see Problem 1 at the end of this chapter).

Because FIR filters are simply weighted averages, they are always stable. When we say a
filter is stable we mean that as long as the input is bounded, the output will also be bounded.
This is not true of IIR filters. Certain IIR filters can give an unbounded output even when the
input is bounded.

456 14 S U B B A N D C O D I N G

Example 14 .3 .2 :

Consider a filter with a0 = 1 and b1 = 2. Suppose the input sequence is a single 1 followed
by 0s. Then the output is

y0 = a0x0 + b1 y−1 = 1(1)+ 2(0) = 1 (19)
y1 = a0x0 + b1 y0 = 1(0)+ 2(1) = 2 (20)
y2 = a0x1 + b1 y1 = 1(0)+ 2(2) = 4 (21)
...

...

yn = 2n (22)

Even though the input contained a single 1, the output at time n = 30 is 230, or more than a
billion! �

Although IIR filters can become unstable, they can also provide better performance, in
terms of sharper cutoffs and less ripple in the passband and stopband for a fewer number of
coefficients.

The study of design and analysis of digital filters is a fascinating and important subject.
We provide some of the details in Sections 14.5, 14.6, 14.7, 14.8. If you are not interested in
these topics, you can take a more utilitarian approach and make use of the literature to select
the necessary filters rather than design them. In the following section we briefly describe some
of the families of filters used to generate the examples in this chapter. We also provide filter
coefficients that you can use for experiment.

14.3.1 Some Filters Used in Subband Coding

The most frequently used filter banks in subband coding consist of a cascade of stages, where
each stage consists of a low-pass filter and a high-pass filter, as shown in Figure 14.5. The
most popular among these filters are the quadrature mirror filters (QMF), which were first
proposed by Crosier, Esteban, and Galand [203]. These filters have the property that if the
impulse response of the low-pass filter is given by {hn}, then the high-pass impulse response is
given by {(−1)nhN−1−n}. The quadrature mirror filters designed by Johnston [204] are widely
used in a number of applications. The filter coefficients for 8-, 16-, and 32-tap filters are given
in Tables 14.1, 14.2, 14.3. Notice that the filters are symmetric; that is,

hN−1−n = hn n = 0, 1, . . . ,
N

2
− 1 (23)

As we shall see later, the filters with fewer taps are less efficient in their decomposition than
the filters with more taps. However, from Equation (18) we can see that the number of taps
dictates the number of multiply-add operations necessary to generate the filter outputs. Thus,
if we want to obtain more efficient decompositions, we do so by increasing the amount of
computation.

14.3 Filters 457

Low-pass
filter

High-pass
filter

Low-pass
filter

High-pass
filter

Low-pass
filter

Low-pass
filter

High-pass
filter

Low-pass
filter

High-pass
filter

Low-pass
filter

High-pass
filter

High-pass
filter

Low-pass
filter

High-pass
filter

F I GUR E 14 . 5 An eight-band filter bank.

T A B L E 14 . 1 Coefficients for the eight-tap
Johnston low-pass filter.

h0, h7 0.00938715
h1, h6 0.06942827
h2, h5 −0.07065183
h3, h4 0.48998080

Another popular set of filters are the Smith-Barnwell filters [205], some of which are shown
in Tables 14.4 and 14.5.

These families of filters differ in a number of ways. For example, consider the Johnston
eight-tap filter and the Smith-Barnwell eight-tap filter. The magnitude transfer functions for
these two filters are plotted in Figure 14.6. Notice that the cutoff for the Smith-Barnwell filter
is much sharper than the cutoff for the Johnston filter. This means that the separation provided
by the eight-tap Johnston filter is not as good as that provided by the eight-tap Smith-Barnwell
filter. We will see the effect of this when we look at image compression later in this chapter.

These filters are examples of some of the more popular filters. Many more filters exist in
the literature, and more are being discovered.

458 14 S U B B A N D C O D I N G

T A B L E 14 . 2 Coefficients for the 16-tap
Johnston low-pass filter.

h0, h15 0.002898163
h1, h14 −0.009972252
h2, h13 −0.001920936
h3, h12 0.03596853
h4, h11 −0.01611869
h5, h10 −0.09530234
h6, h9 0.1067987
h7, h8 0.4773469

T A B L E 14 . 3 Coefficients for the 32-tap
Johnston low-pass filter.

h0, h31 0.0022551390
h1, h30 −0.0039715520
h2, h29 −0.0019696720
h3, h28 0.0081819410
h4, h27 0.00084268330
h5, h26 −0.014228990
h6, h25 0.0020694700
h7, h24 0.022704150
h8, h23 −0.0079617310
h9, h22 −0.034964400
h10, h21 0.019472180
h11, h20 0.054812130
h12, h19 −0.044524230
h13, h18 −0.099338590
h14, h17 0.13297250
h15, h16 0.46367410

T A B L E 14 . 4 Coefficients for the eight-tap
Smith-Barnwell low-pass filter.

h0 0.0348975582178515
h1 −0.01098301946252854
h2 −0.06286453934951963
h3 0.223907720892568
h4 0.556856993531445
h5 0.357976304997285
h6 −0.02390027056113145
h7 −0.07594096379188282

14.4 The Basic Subband Coding Algorithm 459

T A B L E 14 . 5 Coefficients for the 16-tap
Smith-Barnwell low-pass
filter.

h0 0.02193598203004352
h1 0.001578616497663704
h2 −0.06025449102875281
h3 −0.0118906596205391
h4 0.137537915636625
h5 0.05745450056390939
h6 −0.321670296165893
h7 −0.528720271545339
h8 −0.295779674500919
h9 0.0002043110845170894
h10 0.02906699789446796
h11 −0.03533486088708146
h12 −0.006821045322743358
h13 0.02606678468264118
h14 0.001033363491944126
h15 −0.01435930957477529

14.4 The Basic Subband Coding Algorithm

The basic subband coding system is shown in Figure 14.7.

14.4.1 Analysis

The source output is passed through a bank of filters, called the analysis filter bank, which
covers the range of frequencies that make up the source output. The passbands of the filters can
be nonoverlapping or overlapping. Nonoverlapping and overlapping filter banks are shown in
Figure 14.8. The outputs of the filters are then subsampled.

The justification for the subsampling is the Nyquist rule and its generalization, which tells
us that we only need twice as many samples per second as the range of frequencies. This
means that we can reduce the number of samples at the output of the filter because the range
of frequencies at the output of the filter is less than the range of frequencies at the input to the
filter. This process of reducing the number of samples is called decimation,1 or downsampling.
The amount of decimation depends on the ratio of the bandwidth of the filter output to the
filter input. If the bandwidth at the output of the filter is 1/M of the bandwidth at the input to
the filter, we would decimate the output by a factor of M by keeping every M th sample. The
symbol M ↓ is used to denote this decimation.

1 The word decimation has a rather bloody origin. During the time of the Roman empire, if a legion broke
ranks and ran during battle, its members were lined up and every tenth person was killed. This process was called
decimation.

460 14 S U B B A N D C O D I N G

40000 500 1000 1500 2000 2500 3000 3500

 Frequency in Hz

(a)

(b)

40000 500 1000 1500 2000 2500 3000 3500

 Frequency in Hz

40

60

20

0

20

dB

0

20

dB

−

−

−

40

60

20

−

−

−

F I GUR E 14 . 6 Magnitude transfer functions of the (a) eight-tap Johnston and (b)
eight-tap Smith-Barnwell filters.

Synthesis
filter M

Decoder M M

Synthesis
filter 3

Decoder 3Encoder 3 MM

Synthesis
filter 2

Decoder 2Encoder 2 MM

Synthesis
filter 1

Decoder 1Encoder 1 MM

Encoder MM
Analysis
filter M

Analysis
filter 3

Analysis
filter 2

Analysis
filter 1

C
ha

nn
el

F I GUR E 14 . 7 Block diagram of the subband coding system.

Once the output of the filters has been decimated, the output is encoded using one of several
encoding schemes, including ADPCM, PCM, and vector quantization.

14.4 The Basic Subband Coding Algorithm 461

Magnitude

 Frequency

Magnitude

 Frequency

F I GUR E 14 . 8 Nonoverlapping and overlapping filter banks.

14.4.2 Quantization and Coding

Along with the selection of the compression scheme, the allocation of bits between the subbands
is an important design parameter. Different subbands contain differing amounts of information.
Therefore, we need to allocate the available bits among the subbands according to some measure
of the information content. There are a number of different ways we can distribute the available
bits. For example, suppose we are decomposing the source output into four bands and we want
a coding rate of 1 bit per sample. We can accomplish this by using 1 bit per sample for each of
the four bands (recall that a 1/4 decimation occurs in each band). On the other hand, we can
simply discard the output of two of the bands and use 2 bits per sample for the two remaining
bands. Or, we can discard the output of three of the four filters and use 4 bits per sample to
encode the output of the remaining filter.

This bit allocation procedure can have a significant impact on the quality of the final
reconstruction, especially when the information content of different bands is very different.

If we use the variance of the output of each filter as a measure of information, and assume
that the compression scheme is scalar quantization, we can arrive at several simple bit allocation
schemes (see Section 13.5). If we use a slightly more sophisticated model for the outputs of
the filters, we can arrive at significantly better bit allocation procedures (see Section 14.9).

14.4.3 Synthesis

The quantized and coded coefficients are used to reconstruct a representation of the original
signal at the decoder. First, the encoded samples from each subband are decoded at the receiver.
These decoded values are then upsampled by inserting an appropriate number of 0s between
samples. Once the number of samples per second has been brought back to the original rate,
the upsampled signals are passed through a bank of reconstruction filters. The outputs of the
reconstruction filters are added to give the final reconstructed outputs.

462 14 S U B B A N D C O D I N G

We can see that the basic subband system is simple. The three major components of
this system are the analysis and synthesis filters, the bit allocation scheme, and the encoding
scheme. A substantial amount of research has focused on each of these components. Various
filter bank structures have been studied in order to find filters that are simple to implement and
provide good separation between the frequency bands. In the next section we briefly look at
some of the techniques used in the design of filter banks, but our descriptions are necessarily
limited. For a (much) more detailed look, see the excellent book by P.P. Vaidyanathan [206].

The bit allocation procedures have also been extensively studied in the contexts of subband
coding, wavelet-based coding, and transform coding. We have already described some bit
allocation schemes in Section 13.5, and we describe a different approach in Section 14.9.
There are also some bit allocation procedures that have been developed in the context of
wavelets, which we describe in the next chapter.

The separation of the source output according to frequency also opens up the possibility
for innovative ways to use compression algorithms. The decomposition of the source output
in this manner provides inputs for the compression algorithms, each of which has more clearly
defined characteristics than the original source output. We can use these characteristics to
select separate compression schemes appropriate to each of the different inputs.

Human perception of audio and video inputs is frequency dependent. We can use this
fact to design our compression schemes so that the frequency bands that are most important to
perception are reconstructed most accurately. Whatever distortion there has to be is introduced
in the frequency bands to which humans are least sensitive. We describe some applications to
the coding of speech, audio, and images later in this chapter.

Before we proceed to bit allocation procedures and implementations, we provide a more
mathematical analysis of the subband coding system. We also look at some approaches to
the design of filter banks for subband coding. The analysis relies heavily on the Z-transform
concepts introduced in Chapter 11 and will primarily be of interest to readers with an electrical
engineering background. The material is not essential to understanding the rest of the chapter;
if you are not interested in these details, you should skip these sections and go directly to
Section 14.9.

14.5 Design of Filter Banks �

In this section we will take a closer look at the analysis, downsampling, upsampling, and
synthesis operations. Our approach follows that of [207]. We assume familiarity with the
Z-transform concepts of Chapter 12. We begin with some notation. Suppose we have a
sequence x0, x1, x2, We can divide this sequence into two subsequences: x0, x2, x4, . . .

and x1, x3, x5, . . . using the scheme shown in Figure 14.9, where z−1 corresponds to a delay
of one sample and ↓ M denotes a subsampling by a factor of M . This subsampling process is
called downsampling or decimation.

The original sequence can be recovered from the two downsampled sequences by inserting
0s between consecutive samples of the subsequences, delaying the top branch by one sample
and adding the two together. Adding 0s between consecutive samples is called upsampling
and is denoted by ↑ M . The reconstruction process is shown in Figure 14.10.

14.5 Design of Filter Banks � 463

2
x0 x1 x2 x0 x2 x4

2
0 x1 x3 x5

z–1

F I GUR E 14 . 9 Decomposition of an input sequence into its odd and even
components.

2
x0 x2 x4 x0 0 x2 0 x4

2
x1 x3 x5

x1 0 x3 0 x500

0 x0 x1 x20

z –1

F I GUR E 14 . 10 Reconstructing the input sequence from its odd and even
components.

While we have decomposed the source output sequence into two subsequences, there is
no reason for the statistical and spectral properties of these subsequences to be different. As
our objective is to decompose the source output sequences into subsequences with differing
characteristics, there is much more yet to be done.

Generalizing this, we obtain the system shown in Figure 14.11. The source output sequence
is fed to an ideal low-pass filter and an ideal high-pass filter, each with a bandwidth of π/2.
We assume that the source output sequence had a bandwidth of π . If the original source signal
was sampled at the Nyquist rate, as the output of the two filters have bandwidths half that of
the original sequence, the filter outputs are actually oversampled by a factor of two. We can,
therefore, subsample these signals by a factor of two without any loss of information. The two
bands now have different characteristics and can be encoded differently. For the moment let’s
assume that the encoding is performed in a lossless manner so that the reconstructed sequence
exactly matches the source output sequence.

Let us look at how this system operates in the frequency domain. We begin by looking at
the downsampling operation.

14.5.1 Downsampling �

To see the effects of downsampling, we will obtain the Z-transform of the downsampled
sequence in terms of the original source sequence. Because it is easier to understand what is
going on if we can visualize the process, we will use the example of a source sequence that has

464 14 S U B B A N D C O D I N G

2
xn y1, n

z –1
z –1

Ideal
low-pass

filter

2

2

2
y2, n xn

Ideal
high-pass

filter

Ideal
low-pass

filter

Ideal
high-pass

filter

Encoder 1

Encoder 2

Decoder 1

Decoder 2

F I GUR E 14 . 11 Decomposition into two bands using ideal filters.

 π/2 π ω

X (e jω)

F I GUR E 14 . 12 Spectrum of the source output.

 π/2 ω

Y 1(e jω)

 π/2 π ω

Y 2(e jω)

F I GUR E 14 . 13 Spectrum of the outputs of the ideal filters.

the frequency profile shown in Figure 14.12. For this sequence the output of the ideal filters
will have the shape shown in Figure 14.13.

Let’s represent the downsampled sequence as {wi,n}. The Z-transform W1(z) of the down-
sampled sequence w1,n is

W1(z) =
∑

w1,nz−n (24)

The downsampling operation means that

w1,n = y1,2n (25)

14.5 Design of Filter Banks � 465

In order to find the Z-transform of this sequence, we go through a two-step process. Define
the sequence

y′1,n =
1

2
(1+ e jnπ)y1,n (26)

=
{

y1,n n even
0 otherwise

(27)

We could also have written Equation (26) as

y′1,n =
1

2
(1+ (−1)n)y1,n

however, writing the relationship as in Equation (26) makes it easier to extend this development
to the case where we divide the source output into more than two bands.

The Z-transform of y′1,n is given as

Y ′1(z) =
∞∑

n=−∞

1

2
(1+ e jnπ)y1,nz−n (28)

Assuming all summations converge,

Y ′1(z) =
1

2

∞∑
n=−∞

y1,nz−n + 1

2

∞∑
n=−∞

y1,n(ze− jπ)−n (29)

= 1

2
Y1(z)+ 1

2
Y1(−z) (30)

where we have used the fact that

e− jπ = cos(π)− j sin π = −1

Note that

w1,n = y′1,2n (31)

W1(z) =
∑∞

n=−∞w1,nz−n =
∑∞
−∞y′1,2nz−n (32)

Substituting m = 2n,

W1(z) =
∑∞
−∞y′1,m z

−m
2 (33)

= Y ′1
(

z
1
2

)
(34)

= 1

2
Y1

(
z

1
2

)
+ 1

2
Y1

(
−z

1
2

)
(35)

Why didn’t we simply write the Z-transform of w1,n directly in terms of y1,n and use
the substitution m = 2n? If we had, the equivalent equation to (33) would contain the odd
indexed terms of y1,n , which we know do not appear at the output of the downsampler. In

466 14 S U B B A N D C O D I N G

 π/2 π ω

W1(e jω)

F I GUR E 14 . 14 Spectrum of the downsampled low-pass filter output.

Equation (33), we also get the odd indexed terms of y′1,n ; however, as these terms are all zero
(see Equation (26)), they do not contribute to the Z-transform.

Substituting z = e jω we get

W1(e
jω) = 1

2
Y1(e

j ω2)+ 1

2
Y1(−e j ω2) (36)

Plotting this for the Y1(e jω) of Figure 14.13, we get the spectral shape shown in Figure 14.14;
that is, the spectral shape of the downsampled signal is a stretched version of the spectral shape
of the original signal. A similar situation exists for the downsampled signal w2,n .

14.5.2 Upsampling �
Let’s take a look now at what happens after the upsampling. The upsampled sequence v1,n
can be written as

v1,n =
{
w1, n

2
n even

0 n odd
(37)

The Z-transform V1(z) is thus

V1(z) =
∑∞

n=−∞v1,nz−n (38)

=
∑∞

n=−∞w1, n
2

z−n n even (39)

=
∑∞

m=−∞w1,m z−2m (40)

= W1(z
2) (41)

The spectrum is sketched in Figure 14.15. The “stretching” of the sequence in the time
domain has led to a compression in the frequency domain. This compression has also resulted
in a replication of the spectrum in the [0, π] interval. This replication effect is called imaging.
We remove the images by using an ideal low-pass filter in the top branch and an ideal high-pass
filter in the bottom branch.

Because the use of the filters prior to sampling reduces the bandwidth, which in turn allows
the downsampling operation to proceed without aliasing, these filters are called anti-aliasing

14.6 Perfect Reconstruction Using Two-Channel Filter Banks � 467

 /2

V1(e j)

F I GUR E 14 . 15 Spectrum of the upsampled signal.

filters. Because they decompose the source output into components, they are also called
analysis filters. The filters after the upsampling operation are used to recompose the original
signal; therefore, they are called synthesis filters. We can also view these filters as interpolating
between nonzero values to recover the signal at the point that we have inserted zeros. Therefore,
these filters are also called interpolation filters.

Although the use of ideal filters would give us perfect reconstruction of the source output,
in practice we do not have ideal filters available. When we use more realistic filters in place of
the ideal filters, we end up introducing distortion. In the next section we look at this situation
and discuss how we can reduce or remove this distortion.

14.6 Perfect Reconstruction Using Two- Channel
Filter Banks �

Suppose we replace the ideal low-pass filter in Figure 14.11 with a more realistic filter with the
magnitude response shown in Figure 14.4. The spectrum of the output of the low-pass filter is
shown in Figure 14.16. Notice that we now have nonzero values for frequencies above π

2 . If we
now subsample by two, we will end up sampling at less than twice the highest frequency, or in
other words, we will be sampling at below the Nyquist rate. This will result in the introduction
of aliasing distortion, which will show up in the reconstruction. A similar situation will occur
when we replace the ideal high-pass filter with a realistic high-pass filter.

In order to get perfect reconstruction after synthesis, we need to somehow get rid of the
aliasing and imaging effects. Let us look at the conditions we need to impose upon the filters
H1(z), H2(z), K1(z), and K2(z) in order to accomplish this. These conditions are called
perfect reconstruction (PR) conditions.

Consider Figure 14.17. Let’s obtain an expression for X̂(z) in terms of H1(z), H2(z),
K1(z), and K2(z). We start with the reconstruction:

X̂(z) = U1(z)+U2(z) (42)

= V1(z)K1(z)+ V2(z)K2(z) (43)

468 14 S U B B A N D C O D I N G

 π/2 ω

V 1(e jω)

F I GUR E 14 . 16 Output of the low-pass filter.

xn xnˆ

y1, n w1, n
H1(z) K1(z)2 2

v1, n

y2, n w2, n
H2(z) K2(z)2 2

v2, n

u1, n

u2, n

F I GUR E 14 . 17 Two-channel subband decimation and interpolation.

Therefore, we need to find V1(z) and V2(z). The sequence v1,n is obtained by upsampling
w1,n . Therefore, from Equation (41),

V1(z) = W1(z
2) (44)

The sequence w1,n is obtained by downsampling y1,n ,

Y1(z) = X (z)H1(z)

Therefore, from Equation (35),

W1(z) = 1

2

[
X (z

1
2)H1(z

1
2)+ X (−z

1
2)H1(−z

1
2)
]

(45)

and

V1(z) = 1

2
[X (z)H1(z)+ X (−z)H1(−z)] (46)

Similarly, we can also show that

V2(z) = 1

2
[X (z)H2(z)+ X (−z)H2(−z)] (47)

Substituting the expressions for V1(z) and V2(z) into Equation (43) we obtain

X̂(z) = 1

2
[H1(z)K1(z)+ H2(z)K2(z)] X (z)

+1

2
[H1(−z)K1(z)+ H2(−z)K2(z)] X (−z) (48)

14.6 Perfect Reconstruction Using Two-Channel Filter Banks � 469

For perfect reconstruction we would like X̂(z) to be a delayed and perhaps amplitude-scaled
version of X (z); that is,

X̂(z) = cX (z)z−n0 (49)

In order for this to be true, we need to impose conditions on H1(z), H2(z), K1(z), and K2(z).
There are several ways we can do this, with each approach providing a different solution. One
approach involves writing Equation (48) in matrix form as

X̂(z) = 1

2

[
K1(z) K2(z)

] [H1(z) H1(−z)
H2(z) H2(−z)

] [
X (z)

X (−z)

]
(50)

For perfect reconstruction, we need

[
K1(z) K2(z)

] [H1(z) H1(−z)
H2(z) H2(−z)

]
= [cz−n0 0

]
(51)

where we have absorbed the factor of 1
2 into the constant c. This means that the synthesis

filters K1(z) and K2(z) satisfy

[
K1(z) K2(z)

] = cz−n0

det[H(z)]
[

H2(−z) −H1(−z)
]

(52)

where

H(z) =
[

H1(z) H1(−z)
H2(z) H2(−z)

]
(53)

If H1(z) and/or H2(z) are IIR filters, the reconstruction filters can become quite complex.
Therefore, we would like to have both the analysis and synthesis filters be FIR filters. If we
select the analysis filters to be FIR, then in order to guarantee that the synthesis filters are also
FIR we need

det[H(z)] = γ z−n1

where γ is a constant. Examining det[H(z)],
det[H(z)] = H1(z)H2(−z)− H1(−z)H2(z)

= P(z)− P(−z) = γ z−n1 (54)

where P(z) = H1(z)H2(−z). If we examine Equation (54), we can see that n1 has to be odd
because all terms containing even powers of z in P(z)will be canceled out by the corresponding
terms in P(−z). Thus, P(z) can have an arbitrary number of even-indexed coefficients (as
they will get canceled out), but there must be only one nonzero coefficient of an odd power of z.
By choosing any valid factorization of the form

P(z) = P1(z)P2(z) (55)

we can obtain many possible solutions of perfect reconstruction FIR filter banks with

H1(z) = P1(z) (56)

470 14 S U B B A N D C O D I N G

and
H2(z) = P2(−z) (57)

Although these filters are perfect reconstruction filters, for applications in data compression
they suffer from one significant drawback. Because these filters may be of unequal bandwidth,
the output of the larger bandwidth filter suffers from severe aliasing. If the output of both bands
is available to the receiver, this is not a problem because the aliasing is canceled out in the
reconstruction process. However, in many compression applications we discard the subband
containing the least amount of energy, which will generally be the output of the filter with
the smaller bandwidth. In this case the reconstruction will contain a large amount of aliasing
distortion. In order to avoid this problem for compression applications, we generally wish to
minimize the amount of aliasing in each subband. Quadrature mirror filters (QMF) are a class
of filters that are useful in this situation. We look at these filters in the next section.

14.6.1 Two- Channel PR Quadrature Mirror Filters �

Before we introduce quadrature mirror filters, let’s rewrite Equation (48) as

X̂(z) = T (z)X (z)+ S(z)X (−z) (58)

where

T (z) = 1

2
[H1(z)K1(z)+ H2(z)K2(z)] (59)

S(z) = 1

2
[H1(−z)K1(z)+ H2(−z)K2(z)] (60)

In order for the reconstruction of the input sequence {xn} to be a delayed, and perhaps scaled,
version of {xn}, we need to get rid of the aliasing term X (−z) and have T (z) be a pure delay.
To get rid of the aliasing term, we need

S(z) = 0, ∀z
From Equation (60), this will happen if

K1(z) = H2(−z) (61)
K2(z) = −H1(−z) (62)

After removing the aliasing distortion, a delayed version of the input will be available at
the output if

T (z) = cz−n0 c is a constant (63)

Replacing z by e jω, this means that we want∣∣∣T (e jω)

∣∣∣ = constant (64)

arg(T (e jω)) = Kw K constant (65)

14.6 Perfect Reconstruction Using Two-Channel Filter Banks � 471

The first requirement eliminates amplitude distortion, while the second, the linear phase
requirement, is necessary to eliminate phase distortion. If these requirements are satisfied,

x̂(n) = cx(n − n0) (66)

That is, the reconstructed signal is a delayed version of input signal x(n). However, meeting
both requirements simultaneously is not a trivial task.

Consider the problem of designing T (z) to have linear phase. Substituting (61) and (62)
into Equation (59), we obtain

T (z) = 1

2
[H1(z)H2(−z)− H1(−z)H2(z)] (67)

Therefore, if we choose H1(z) and H2(z) to be linear phase FIR, T (z) will also be a linear
phase FIR filter. In the QMF approach, we first select the low-pass filter H1(z), then define
the high-pass filter H2(z) to be a mirror image of the low-pass filter:

H2(z) = H1(−z) (68)

This is referred to as a mirror condition and is the original reason for the term quadrature mirror
filter [206]. We can see that this condition will force both filters to have equal bandwidth.

Given the mirror condition and H1(z), a linear phase FIR filter, we will have linear phase
and

T (z) = 1

2
[H2

1 (z)− H2
1 (−z)] (69)

It is not clear that
∣∣T (e jω)

∣∣ is a constant. In fact, we will show in Section 14.8 that a linear
phase two-channel FIR QMF bank with the filters chosen as in Equation (68) can have the PR
property if and only if H1(z) is in the simple two-tap form

H1(z) = h0z−2k0 + h1z−(2k1+1) (70)

Then T (z) is given by
T (z) = 2h0h1z−(2k0+2k1+1) (71)

which is of the desired form cz−n0 . However, if we look at the magnitude characteristics of the
two filters, we see that they have poor cutoff characteristics. The magnitude of the low-pass
filter is given by

∣∣∣H1(e
jω)

∣∣∣2 = h2
0 + h2

1 + 2h0h1 cos(2k0 − 2k1 − 1)ω (72)

and the high-pass filter is given by

∣∣∣H2(e
jω)

∣∣∣2 = h2
0 + h2

1 − 2h0h1 cos(2k0 − 2k1 − 1)ω (73)

For h0 = h1 = k0 = k1 = 1, the magnitude responses are plotted in Figure 14.18. Notice the
poor cutoff characteristics of these two filters.

472 14 S U B B A N D C O D I N G

−30

10

5

0

−5

−10

−15

−20

−25

0 0.5 1 1.5 2 2.5 3

Frequency

M
ag

ni
tu

de
 (

dB
)

F I GUR E 14 . 18 Magnitude characteristics of the two-tap PR filters.

Thus, for perfect reconstruction with no aliasing and no amplitude or phase distortion, the
mirror condition does not seem like such a good idea. However, if we slightly relax these rather
strict conditions, we can obtain some very nice designs. For example, instead of attempting
to eliminate all phase and amplitude distortion, we could elect to eliminate only the phase
distortion and minimize the amplitude distortion. We can optimize the coefficients of H1(z)
such that

∣∣T (e jω)
∣∣ is made as close to a constant as possible, while minimizing the stopband

energy of H1(z) in order to have a good low-pass characteristic. Such an optimization has
been suggested by Johnston [204] and Jain and Crochiere [208]. They construct the objective
function

J = α
∫ π

ωs

∣∣∣H1(e
jω)

∣∣∣2 dω + (1− α)
∫ π

0
(1−

∣∣∣T (e jω)

∣∣∣2)dω (74)

which has to be minimized to obtain H1(z) and T1(z), where ωs is the cutoff frequency of the
filter.

We can also go the other way and eliminate the amplitude distortion, then attempt to
minimize the phase distortion. A review of these approaches can be found in [207,206].

14.6.2 Power Symmetric FIR Filters �

Another approach, independently discovered by Smith and Barnwell [205] and Mintzer [209],
can be used to design a two-channel filter bank in which aliasing, amplitude distortion, and

14.6 Perfect Reconstruction Using Two-Channel Filter Banks � 473

phase distortion can be completely eliminated. As discussed earlier, choosing

K1(z) = −H2(−z)

K2(z) = H1(−z) (75)

eliminates aliasing. This leaves us with

T (z) = 1

2
[H1(−z)H2(z)− H1(z)H2(−z)]

In the approach due to Smith and Barnwell [205] and Mintzer [209], with N an odd integer,
we select

H2(z) = z−N H1(−z−1) (76)

so that

T (z) = 1

2
z−N [H1(z)H1(z

−1)+ H1(−z)H1(−z−1)] (77)

Therefore, the perfect reconstruction requirement reduces to finding a prototype low-pass filter
H(z) = H1(z) such that

Q(z) = H(z)H(z−1)+ H(−z)H(−z−1) = constant (78)

Defining
R(z) = H(z)H(z−1) (79)

the perfect reconstruction requirement becomes

Q(z) = R(z)+ R(−z) = constant (80)

But R(z) is simply the Z-transform of the autocorrelation sequence of h(n). The autocor-
relation sequence ρ(n) is given by

ρ(n) =
N∑

k=0

hkhk+n (81)

The Z-transform of ρ(n) is given by

R(z) = Z[ρ(n)] = Z
[

N∑
k=0

hkhk+n

]
(82)

We can express the sum
∑N

k=0 hkhk+n as a convolution:

hn ⊗ h−n =
N∑

k=0

hkhk+n (83)

Using the fact that the Z-transform of a convolution of two sequences is the product of the
Z-transforms of the individual sequences, we obtain

R(z) = Z[hn]Z[h−n] = H(z)H(z−1) (84)

474 14 S U B B A N D C O D I N G

Writing out R(z) as the Z-transform of the sequence {ρ(n)} we obtain

R(z) = ρ(N)zN + ρ(N − 1)zN−1 + · · · + ρ(0)+ · · · + ρ(N − 1)z−N−1 + ρ(N)z−N (85)

Then R(−z) is

R(−z) = −ρ(N)zN +ρ(N−1)zN−1−· · ·+ρ(0)−· · ·+ρ(N−1)z−N−1−ρ(N)z−N (86)

Adding R(z) and R(−z), we obtain Q(z) as

Q(z) = 2ρ(N − 1)zN−1 + 2ρ(N − 3)zN−3 + · · · + ρ(0)+ · · · + 2ρ(N − 1)z−N−1 (87)

Notice that the terms containing the odd powers of z got canceled out. Thus, for Q(z) to
be a constant all we need is that for even values of the lag n (except for n = 0), ρ(n) be zero.
In other words

ρ(2n) =
N∑

k=0

hkhk+2n = 0, n �= 0 (88)

Writing this requirement in terms of the impulse response,

N∑
k=0

hkhk+2n =
{

0 n �= 0
ρ(0) n = 0

(89)

If we now normalize the impulse response,

N∑
k=0

|hk |2 = 1 (90)

we obtain the perfect reconstruction requirement

N∑
k=0

hkhk+2n = δn (91)

In other words, for perfect reconstruction, the impulse response of the prototype filter is
orthogonal to the twice-shifted version of itself.

14.7 M- Band Quadrature Mirror Filter Banks �

We have looked at how we can decompose an input signal into two bands. In many applications
it is necessary to divide the input into multiple bands. We can do this by using a recursive
two-band splitting as shown in Figure 14.19, or we can obtain banks of filters that directly split
the input into multiple bands. Given that we have good filters that provide two-band splitting,
it would seem that using a recursive splitting, as shown in Figure 14.19, would be an efficient
way of obtaining an M-band split. Unfortunately, even when the spectral characteristics of the

14.7 M-Band Quadrature Mirror Filter Banks � 475

Low-pass
filter

High-pass
filter

Low-pass
filter

A B C

High-pass
filter

Low-pass
filter

Low-pass
filter

High-pass
filter

Low-pass
filter

High-pass
filter

Low-pass
filter

High-pass
filter

Low-pass
filter

High-pass
filter

High-pass
filter

F I GUR E 14 . 19 Decomposition of an input sequence into multiple bands by recur-
sively using a two-band split.

filters used for the two-band split are quite good, when we employ them in the tree structure
shown in Figure 14.19, the spectral characteristics may not be very good. For example, consider
the four-tap filter with filter coefficients shown in Table 14.6. In Figure 14.20 we show what
happens to the spectral characteristics when we look at the two-band split (at point A in Figure
14.19), the four-band split (at point B in Figure 14.19), and the eight-band split (at point C in
Figure 14.19). For a two-band split the magnitude characteristic is flat, with some aliasing.
When we employ these same filters to obtain a four-band split from the two-band split, there
is an increase in the aliasing. When we go one step further to obtain an eight-band split, the
magnitude characteristic deteriorates substantially, as evidenced by Figure 14.20. The various
bands are no longer clearly distinct. There is significant overlap between the bands, and hence
there will be a significant amount of aliasing in each band.

In order to see why there is an increase in distortion, let us follow the top branch of the tree.
The path followed by the signal is shown in Figure 14.21(a). As we will show later (Section
14.8), the three filters and downsamplers can be replaced by a single filter and downsampler
as shown in Figure 14.21(b), where

A(z) = HL(z)HL(z
2)HL(z

4) (92)

476 14 S U B B A N D C O D I N G

T A B L E 14 . 6 Coefficients for the four-tap
Daubechies low-pass filter.

h0 0.4829629131445341
h1 0.8365163037378079
h2 0.2241438680420134
h3 −0.1294095225512604

1

0

2

3

0.5 1 1.5 2 2.50 3

1

0

2

3

0.5 1 1.5 2 2.50 3

1

0

2

3

0.5 1 1.5 2 2.50 3

Two-band

M
ag

ni
tu

de
M

ag
ni

tu
de

M
ag

ni
tu

de

Four-band

Eight-band

F I GUR E 14 . 20 Spectral characteristics at points A, B, and C.

If HL(z) corresponds to a 4-tap filter, then A(z) corresponds to a 22-tap filter! However, this
is a severely constrained filter because it was generated using only four coefficients. If we had
set out to design a 22-tap filter from scratch, we would have had significantly more freedom
in selecting the coefficients. This is a strong motivation for designing filters directly for the
M-band case.

An M-band filter bank has two sets of filters that are arranged as shown in Figure 14.7.
The input signal x(n) is split into M frequency bands using an analysis bank of M filters of
bandwidth π/M . The signal in any of these M channels is then downsampled by a factor L .

14.8 The Polyphase Decomposition � 477

2HL(z) HL(z) 2 2HL(z)

A(z) 8

(a)

(b)

F I GUR E 14 . 21 Equivalent structures for recursive filtering using a two-band split.

This constitutes the analysis bank. The subband signals yk(n) are encoded and transmitted.
At the synthesis stage the subband signals are then decoded, upsampled by a factor of L
by interlacing adjacent samples with L − 1 zeros, and then passed through the synthesis or
interpolation filters. The output of all these synthesis filters is added together to obtain the
reconstructed signal. This constitutes the synthesis filter bank. Thus, the analysis and synthesis
filter banks together take an input signal x(n) and produce an output signal x̂(n). These filters
could be any combination of FIR and IIR filters.

Depending on whether M is less than, equal to, or greater than L , the filter bank is called
an underdecimated, critically (maximally) decimated, or overdecimated filter bank. For most
practical applications, maximal decimation or “critical subsampling” is used.

A detailed study of M-band filters is beyond the scope of this chapter. Suffice it to say that
in broad outline much of what we said about two-band filters can be generalized to M-band
filters. (For more on this subject, see [206].)

14.8 The Polyphase Decomposition �

A major problem with representing the combination of filters and downsamplers is the time-
varying nature of the up- and downsamplers. An elegant way of solving this problem is with
the use of polyphase decomposition. In order to demonstrate this concept, let us first consider
the simple case of two-band splitting. We will first consider the analysis portion of the system
shown in Figure 14.22. Suppose the analysis filter H1(z) is given by

H1(z) = h0 + h1z−1 + h2z−2 + h3z−3 + · · · (93)

2H1(z)

2H2(z)

F I GUR E 14 . 22 Analysis portion of a two-band subband coder.

478 14 S U B B A N D C O D I N G

2H10(z)

H11(z)

z –1

2H20(z)

H21(z)

z –1

F I GUR E 14 . 23 Alternative representation of the analysis portion of a two-band
subband coder.

By grouping the odd and even terms together, we can write this as

H1(z) = (h0 + h2z−2 + h4z−4 + · · ·)+ z−1(h1 + h3z−2 + h5z−4 + · · ·) (94)

Define

H10(z) = h0 + h2z−1 + h4z−2 + · · · (95)
H11(z) = h1 + h3z−1 + h5z−2 + · · · (96)

Then H1(z) = H10(z2) + z−1 H11(z2). Similarly, we can decompose the filter H2(z) into
components H20(z) and H21(z), and we can represent the system of Figure 14.22 as shown in
Figure 14.23. The filters H10(z), H11(z) and H20(z), H21(z) are called the polyphase compo-
nents of H1(z) and H2(z).

Let’s take the inverse Z-transform of the polyphase components of H1(z):

h10(n) = h2n n = 0, 1, . . . (97)
h11(n) = h2n+1 n = 0, 1, . . . (98)

Thus, h10(n) and h11(n) are simply the impulse response hn downsampled by two. Consider
the output of the downsampler for a given input X (z). The input to the downsampler is
X (z)H1(z); thus, the output from Equation (35) is

Y1(z) = 1

2
X
(

z
1
2

)
H1

(
z

1
2

)
+ 1

2
X
(
−z

1
2

)
H1

(
−z

1
2

)
(99)

14.8 The Polyphase Decomposition � 479

2

2

H10(z)

H11(z)

z–1

2

2

H20(z)

H21(z)

z–1

F I GUR E 14 . 24 Polyphase representation of the analysis portion of a two-band
subband coder.

2 G1(z)

2 G2(z)

F I GUR E 14 . 25 The synthesis portion of a two-band subband coder.

Replacing H1(z) with its polyphase representation, we get

Y1(z) = 1

2
X
(

z
1
2

) [
H10(z)+ z−

1
2 H11(z)

]
+ 1

2
X
(
−z

1
2

) [
H10(z)− z−

1
2 H11(z)

]
(100)

= H10(z)

[
1

2
X
(

z
1
2

)
+ 1

2
X
(
−z

1
2

)]
+H11(z)

[
1

2
z−

1
2 X

(
z

1
2

)
− 1

2
z−

1
2 X

(
−z

1
2

)]
(101)

Note that the first expression in square brackets is the output of a downsampler whose input is
X (z), while the quantity in the second set of square brackets is the output of a downsampler
whose input is z−1 X (z). Therefore, we could implement this system as shown in Figure 14.24.

Now let us consider the synthesis portion of the two-band system shown in Figure 14.25.
As in the case of the analysis portion, we can write the transfer functions in terms of their

480 14 S U B B A N D C O D I N G

polyphase representation. Thus,

G1(z) = G10(z
2)+ z−1G11(z

2) (102)
G2(z) = G20(z

2)+ z−1G21(z
2) (103)

Consider the output of the synthesis filter G1(z) given an input Y1(z). From Equation (41),
the output of the upsampler is

U1(z) = Y1(z
2) (104)

and the output of G1(z) is

V1(z) = Y1(z
2)G1(z) (105)

= Y1(z
2)G10(z

2)+ z−1Y1(z
2)G11(z

2) (106)

The first term in the equation above is the output of an upsampler that follows a filter
with transfer function G10(z) with input Y (z). Similarly, Y1(z2)G11(z2) is the output of an
upsampler that follows a filter with transfer function G11(z)with input Y (z). Thus, this system
can be represented as shown in Figure 14.26.

Putting the polyphase representations of the analysis and synthesis portions together, we
get the system shown in Figure 14.27. Looking at the portion in the dashed box, we can see
that this is a completely linear time-invariant system.

The polyphase representation can be a very useful tool for the design and analysis of filters.
While many of its uses are beyond the scope of this chapter, we can use this representation to
prove our statement about the two-band perfect reconstruction quadrature mirror filters.

Recall that we want

T (z) = 1

2
[H1(z)H2(−z)− H1(−z)H2(z)] = cz−n0

G10(z) 2

G11(z)

z–1

2

G20(z) 2

G21(z)

z–1

2

F I GUR E 14 . 26 Polyphase representation of the synthesis portion of a two-band
subband coder.

14.8 The Polyphase Decomposition � 481

G10(z) 2

G11(z)

z–1

2

G20(z) 2

G21(z)

z–1

2

2

2

H10(z)

H11(z)

z–1

2

2

H20(z)

H21(z)

z–1

F I GUR E 14 . 27 Polyphase representation of the two-band subband coder.

If we impose the mirror condition H2(z) = H1(−z), T (z) becomes

T (z) = 1

2

[
H2

1 (z)− H2
1 (−z)

]
(107)

The polyphase decomposition of H1(z) is

H1(z) = H10(z
2)+ z−1 H11(z

2)

Substituting this into Equation (107) for H1(z) and

H1(−z) = H10(z
2)− z−1 H11(z

2)

for H1(−z), we obtain

T (z) = 2z−1 H10(z
2)H11(z

2) (108)

Clearly, the only way T (z) can have the form cz−n0 is if both H10(z) and H11(z) are simple
delays; that is,

H10(z) = h0z−k0 (109)
H11(z) = h1z−k1 (110)

This results in

T (z) = 2h0h1z−(2k0+2k1+1) (111)

which is of the form cz−n0 as desired. The resulting filters have the transfer functions

H1(z) = h0z−2k0 + h1z−(2k1+1) (112)

H2(z) = h0z−2k0 − h1z−(2k1+1) (113)

482 14 S U B B A N D C O D I N G

14.9 Bit Allocation

Once we have separated the source output into the constituent sequences, we need to decide
how much of the coding resource should be used to encode the output of each synthesis filter.
In other words, we need to allocate the available bits between the subband sequences. In
the previous chapter we described a bit allocation procedure that uses the variances of the
transform coefficient. In this section we describe a bit allocation approach that attempts to use
as much information about the subbands as possible to distribute the bits.

Let’s begin with some notation. We have a total of BT bits that we need to distribute
among M subbands. Suppose R corresponds to the average rate in bits per sample for the
overall system, and Rk is the average rate for subband k. Let’s begin with the case where
the input is decomposed into M equal bands, each of which is decimated by a factor of M .
Finally, let’s assume that we know the rate distortion function for each band. (If you recall from
Chapter 8, this is a rather strong assumption and we will relax it shortly.) We also assume that
the distortion measure is such that the total distortion is the sum of the distortion contribution
of each band.

We want to find the bit allocation Rk such that

R = 1

M

M∑
k=1

Rk (114)

and the reconstruction error is minimized. Each value of Rk corresponds to a point on the rate
distortion curve. The question is where should we operate on the rate distortion curve for each
subband to minimize the average distortion. There is a trade-off between rate and distortion.
If we decrease the rate (that is, move down the rate distortion curve), we will increase the
distortion. Similarly, if we want to move to the left on the rate distortion curve and minimize
the distortion, we end up increasing the rate. We need a formulation that incorporates both
rate and distortion and the trade-off involved. The formulation we use is based on a landmark
paper in 1988 by Yaacov Shoham and Allen Gersho [197]. Let’s define a functional Jk :

Jk = Dk + λRk (115)

where Dk is the distortion contribution from the kth subband and λ is a Lagrangian parameter.
This is the quantity we wish to minimize. In this expression the parameter λ in some sense
specifies the trade-off. If we are primarily interested in minimizing the distortion, we can set
λ to a small value. If our primary interest is in minimizing the rate, we keep the value of λ
large. We can show that the values of Dk and Rk that minimize Jk occur where the slope of
the rate distortion curve is λ. Thus, given a value of λ and the rate distortion function, we can
immediately identify the values of Rk and Dk . So what should the value of λ be, and how
should it vary between subbands?

Let’s take the second question first. We would like to allocate bits in such a way that any
increase in any of the rates will have the same impact on the distortion. This will happen
when we pick Rk in such a way that the slopes of the rate distortion functions for the different
subbands are the same; that is, we want to use the same λ for each subband. Let’s see what

14.9 Bit Allocation 483

Distortion

Rate

R1

Distortion

Rate R2

F I GUR E 14 . 28 Two rate distortion functions.

happens if we do not. Consider the two rate distortion functions shown in Figure 14.28.
Suppose the points marked x on the rate distortion functions correspond to the selected rates.
Obviously, the slopes, and hence the values of λ, are different in the two cases. Because of
the differences in the slope, an increase by �R in the rate R1 will result in a much larger
decrease in the distortion than the increase in distortion if we decreased R2 by �R. Because
the total distortion is the sum of the individual distortions, we can therefore reduce the overall
distortions by increasing R1 and decreasing R2. We will be able to keep doing this until the
slope corresponding to the rates is the same in both cases. Thus, the answer to our second
question is that we want to use the same value of λ for all the subbands.

Given a set of rate distortion functions and a value of λ, we automatically get a set of
rates Rk . We can then compute the average and check if it satisfies our constraint on the total
number of bits we can spend. If it does not, we modify the value of λ until we get a set of rates
that satisfies our rate constraint.

However, generally we do not have rate distortion functions available. In these cases we
use whatever is available. For some cases we might have operational rate distortion curves
available. By “operational” we mean performance curves for particular types of encoders
operating on specific types of sources. For example, if we know we are going to be using
pdf-optimized nonuniform quantizers with entropy coding, we can estimate the distribution
of the subband and use the performance curve for pdf-optimized nonuniform quantizers for
that distribution. We might only have the performance of the particular encoding scheme for
a limited number of rates. In this case we need to have some way of obtaining the slope from
a few points. We could estimate this numerically from these points. Or we could fit the points
to a curve and estimate the slope from the curve. In these cases we might not be able to get
exactly the average rate we wanted.

Finally, we have been talking about a situation where the number of samples in each
subband is exactly the same, and therefore the total rate is simply the sum of the individual

484 14 S U B B A N D C O D I N G

rates. If this is not true, we need to weight the rates of the individual subbands. The functional
to be minimized becomes

J =
∑

Dk + λ
∑

βk Rk (116)

where βk is the weight reflecting the relative length of the sequence generated by the kth filter.
The distortion contribution from each subband might not be equally relevant, perhaps because
of the filter construction or because of the perceptual weight attached to those frequencies [210].
In these cases we can modify our functional still further to include the unequal weighting of
the distortion:

J =
∑

wk Dk + λ
∑

βk Rk (117)

14.10 Application to Speech Coding__G.722

ITU-T recommendation G.722 provides a technique for wideband coding of speech signals
that is based on subband coding. The basic objective of this recommendation is to provide
high-quality speech at 64 kbits per second (kbps). The recommendation also contains two
other modes that encode the input at 56 and 48 kbps. These two modes are used when an
auxiliary channel is needed. These two modes provide for auxiliary channels of 8 and 16 kbps,
respectively.

The speech output or audio signal is filtered to 7 kHz to prevent aliasing, then sampled at
16,000 samples per second. Notice that the cutoff frequency for the anti-aliasing filter is 7 kHz,
not 8 kHz, even though we are sampling at 16,000 samples per second. One reason for this is
that the cutoff for the anti-aliasing filter is not going to be sharp like that of the ideal low-pass
filter. Therefore, the highest frequency component in the filter output will be greater than
7 kHz. Each sample is encoded using a 14-bit uniform quantizer. This 14-bit input is passed
through a bank of two 24-coefficient FIR filters. The coefficients of the low-pass quadrature
mirror filter are shown in Table 14.7.

The coefficients for the high-pass quadrature mirror filter can be obtained by the relationship

hH P,n = (−1)nhL P,n (118)

The low-pass filter passes all frequency components in the range of 0 to 4 kHz, while the
high-pass filter passes all remaining frequencies. The output of the filters is downsampled by
a factor of two. The downsampled sequences are encoded using adaptive differential PCM
(ADPCM) systems.

The ADPCM system that encodes the downsampled output of the low-frequency filter uses
6 bits per sample, with the option of dropping 1 or 2 least significant bits in order to provide
room for the auxiliary channel. The output of the high-pass filter is encoded using 2 bits per
sample. Because the 2 least significant bits of the quantizer output of the low-pass ADPCM
system could be dropped and thus not be available to the receiver, the adaptation and prediction
at both the transmitter and receiver are performed using only the 4 most significant bits of the
quantizer output.

14.11 Application to Audio Coding__MPEG Audio 485

T A B L E 14 . 7 Transmit and receive QMF
coefficient values.

h0, h23 3.66211× 10−4

h1, h22 −1.34277× 10−3

h2, h21 −1.34277× 10−3

h3, h20 6.46973× 10−3

h4, h19 1.46484× 10−3

h5, h18 −1.90430× 10−2

h6, h17 3.90625× 10−3

h7, h16 4.41895× 10−2

h8, h15 −2.56348× 10−2

h9, h14 −9.82666× 10−2

h10, h13 1.16089× 10−1

h11, h12 4.73145× 10−1

If all 6 bits are used in the encoding of the low-frequency subband, we end up with a rate
of 48 kbps for the low band. Since the high band is encoded at 2 bits per sample, the output
rate for the high subband is 16 kbps. Therefore, the total output rate for the subband-ADPCM
system is 64 kbps.

The quantizer is adapted using a variation of the Jayant algorithm [124]. Both ADPCM
systems use the past two reconstructed values and the past six quantizer outputs to predict the
next sample, in the same way as the predictor for recommendation G.726 described in Chapter
11. The predictor is adapted in the same manner as the predictor used in the G.726 algorithm.

At the receiver, after being decoded by the ADPCM decoder, each output signal is upsam-
pled by the insertion of a zero after each sample. The upsampled signals are passed through the
reconstruction filters. These filters are identical to the filters used for decomposing the signal.
The low-pass reconstruction filter coefficients are given in Table 14.7, and the coefficients for
the high-pass filter can be obtained using Equation (118).

14.11 Application to Audio Coding__MPEG Audio

The Moving Picture Experts Group (MPEG) has proposed an audio coding scheme that is
based in part on subband coding. Actually, MPEG has proposed three coding schemes, called
Layer I, Layer II, and Layer III coding. Each is more complex than the previous and provides
higher compression. The coders are also “upward” compatible; a Layer N decoder is able to
decode the bitstream generated by the Layer N − 1 encoder.

The Layer I and Layer II coders both use a bank of 32 filters, splitting the input into
32 bands, each with a bandwidth of fs/64, where fs is the sampling frequency. Allowable
sampling frequencies are 32,000 samples per second, 44,100 samples per second, and 48,000
samples per second. Details of these coders are provided in Chapter 17.

486 14 S U B B A N D C O D I N G

14.12 Application to Image Compression

We have discussed how to separate a sequence into its components. However, all the ex-
amples we have used are one-dimensional sequences. What do we do when the sequences
contain two-dimensional dependencies such as images? The obvious answer is that we need
two-dimensional filters that separate the source output into components based on both the
horizontal and vertical frequencies. Fortunately, in most cases, this two-dimensional filter can
be implemented as two one-dimensional filters, which can be applied first in one dimension,
then in the other. Filters that have this property are called separable filters. Two-dimensional
nonseparable filters do exist [211]; however, the gains are offset by the increase in complexity.

Generally, for subband coding of images we filter each row of the image separately using a
high-pass and low-pass filter. The output of the filters is decimated by a factor of two. Assume
that the images were of size N × N . After this first stage, we will have two images of size
N × N

2 . We then filter each column of the two subimages, decimating the outputs of the filters
again by a factor of two. This results in four images of size N

2 × N
2 . We can stop at this point

or continue the decomposition process with one or more of the four subimages, resulting in 7,
10, 13, or 16 images. Generally, of the four original subimages, only one or two are further
decomposed. The reason for not decomposing the other subimages is that many of the pixel
values in the high-frequency subimages are close to zero. Thus, there is little reason to spend
computational power to decompose these subimages.

Example 14 .12 .1 :

Let’s take the “image” in Table 14.8 and decompose it using the low-pass and high-pass filters
of Example 14.2.1. After filtering each row with the low-pass filter, the output is decimated
by a factor of two. Each output from the filter depends on the current input and the past input.
For the very first input (that is, the pixels at the left edge of the image), we will assume that
the past values of the input were zero. The decimated output of the low-pass and high-pass
filters is shown in Table 14.9.

We take each of these subimages and filter them column by column using the low-pass
and high-pass filters and decimate the outputs by two. In this case, the first input to the filters
is the top element in each row. We assume that there is a zero row of pixels right above this

T A B L E 14 . 8 A sample “image.”

10 14 10 12 14 8 14 12
10 12 8 12 10 6 10 12
12 10 8 6 8 10 12 14
8 6 4 6 4 6 8 10

14 12 10 8 6 4 6 8
12 8 12 10 6 6 6 6
12 10 6 6 6 6 6 6
6 6 6 6 6 6 6 6

14.12 Application to Image Compression 487

T A B L E 14 . 9 Filtered and decimated output.

Decimated Decimated
Low-Pass Output High-Pass Output

5 12 13 11 5 −2 1 3
5 10 11 8 5 −2 −1 2
6 9 7 11 6 −1 1 1
4 5 5 7 4 −1 −1 1
7 11 7 5 7 −1 −1 1
6 10 8 6 6 2 −2 0
6 8 6 6 6 −2 0 0
3 6 6 6 3 0 0 0

T A B L E 14 . 10 Four subimages.

Low-Low Image Low-High Image

2.5 6 6.5 5.5 2.5 6 6.5 5.5
5.5 9.5 9 9.5 0.5 −0.5 −2 1.5
5.5 8 6 6 1.5 3 1 −1
6 9 7 6 0 −1 −1 0

High-Low Image High-High Image
2.5 −1 0.5 1.5 2.5 −1 0.5 1.5
5.5 −1.5 0 1.5 0.5 0.5 1 −0.5
5.5 −1 −1 1 1.5 0 0 0
6 0 −1 0 0 −2 1 0

row in order to provide the filter with “past” values. After filtering and decimation, we get
four subimages (Table 14.10). The subimage obtained by low-pass filtering of the columns of
the subimage (which was the output of the row low-pass filtering) is called the low-low (LL)
image. Similarly, the other images are called the low-high (LH), high-low (HL), and high-high
(HH) images. �

If we look closely at the final set of subimages in the previous example, we notice that there
is a difference in the characteristics of the values in the left or top row and the interiors of some
of the subimages. For example, in the high-low subimage, the values in the first column are
significantly larger than the other values in the subimage. Similarly, in the low-high subimage,
the values in the first row are generally very different than the other values in the subimage.
The reason for this variance is our assumption that the “past” of the image above the first row
and to the left of the column is zero. The difference between zero and the image values is much
larger than the normal pixel-to-pixel differences. Therefore, we end up adding some spurious
structure to the image reflected in the subimages. Generally, this is undesirable because it is
easier to select appropriate compression schemes when the characteristics of the subimages

488 14 S U B B A N D C O D I N G

T A B L E 14 . 11 Alternate four subimages.

Low-Low Image Low-High Image

10 12 13 11 0 0 −0.5 −0.5
11 9.5 9 9.5 1 −0.5 −2 1.5
11 8 6 6 3 3 1 −1
12 9 7 6 0 −1 −1 0

High-Low Image High-High Image
0 −2 1 3 0 0 0 0
0 −1.5 0 1.5 0 0.5 1 −0.5
0 −1 −1 1 0 0 0 0
0 0 −1 0 0 −2 1 0

are as uniform as possible. For example, if we did not have the relatively large values in the
first column of the high-low subimage, we could choose a quantizer with a smaller step size.

In this example, this effect is limited to a single row or column because the filters use a
single past value. However, most filters use a substantially larger number of past values in the
filtering operation, and a larger portion of the subimage is affected.

We can avoid this problem by assuming a different “past.” There are a number of ways
this can be done. A simple method that works well is to reflect the values of the pixels at the
boundary. For example, for the sequence 6 9 5 4 7 2 · · ·, which is to be filtered with a three-tap
filter, we assume the past as 9 6 6 9 5 4 7 2 · · ·. If we use this approach for the image in
Example 14.12.1, the four subimages would be as shown in Table 14.11.

Notice how much sparser each image is, except for the low-low image. Most of the energy
in the original image has been compacted into the low-low image. Since the other subimages
have very few values that need to be encoded, we can devote most of our resources to the
low-low subimage.

14.12.1 Decomposing an Image

Earlier a set of filters was provided for one-dimensional subband coding. We can use those
same filters to decompose an image into its subbands.

Example 14 .12 .2 :

Let’s use the eight-tap Johnston filter to decompose the Sinan image into four subbands. The
results of the decomposition are shown in Figure 14.29. Notice that, as in the case of the
image in Example 14.12.1, most of the signal energy is concentrated in the low-low subimage.
However, there remains a substantial amount of energy in the higher bands. To see this more
clearly, let’s look at the decomposition using the 16-tap Johnston filter. The results are shown
in Figure 14.30. Notice how much less energy there is in the higher subbands. In fact, the
high-high subband seems completely empty. As we shall see later, this difference in energy
compaction can have a drastic effect on the reconstruction.

14.12 Application to Image Compression 489

F I GUR E 14 . 29 Decomposition of Sinan image using the eight-tap Johnston filter.

F I GUR E 14 . 30 Decomposition of Sinan image using the 16-tap Johnston filter.

Increasing the size of the filter is not necessarily the only way of improving the energy com-
paction. Figure 14.31 shows the decomposition obtained using the eight-tap Smith-Barnwell
filter. The results are almost identical to the 16-tap Johnston filter. Therefore, rather than in-
crease the computational load by going to a 16-tap filter, we can keep the same computational
load and simply use a different filter. �

490 14 S U B B A N D C O D I N G

F I GUR E 14 . 31 Decomposition of Sinan image using the the eight-tap
Smith-Barnwell filter.

14.12.2 Coding the Subbands

Once we have decomposed an image into subbands, we need to find the best encoding scheme
to use with each subband. The coding schemes we have studied to date are scalar quantization,
vector quantization, and differential encoding. Let us encode some of the decomposed images
from the previous section using two of the coding schemes we have studied earlier, scalar
quantization and differential encoding.

Example 14 .12 .3 :

In the previous example we noted the fact that the eight-tap Johnston filter did not compact
the energy as well as the 16-tap Johnston filter or the eight-tap Smith-Barnwell filter. Let’s see
how this affects the encoding of the decomposed images.

When we encode these images at an average rate of 0.5 bits per pixel, there are 4×0.5 = 2
bits available to encode four values, one value from each of the four subbands. If we use the
recursive bit allocation procedure on the eight-tap Johnston filter outputs, we end up allocating
1 bit to the low-low band and 1 bit to the high-low band. As the pixel-to-pixel difference in
the low-low band is quite small, we use a DPCM encoder for the low-low band. The high-low
band does not show this behavior, which means we can simply use scalar quantization for the
high-low band. As there are no bits available to encode the other two bands, these bands can
be discarded. This results in the image shown in Figure 14.32, which is far from pleasing.
However, if we use the same compression approach with the image decomposed using the
eight-tap Smith-Barnwell filter, the result is Figure 14.33, which is much more pleasing.

To understand why we get such different results from using the two filters, we need to look
at the way the bits were allocated to the different bands. In this implementation, we used the

14.12 Application to Image Compression 491

F I GUR E 14 . 32 Sinan image coded at 0.5 bits per pixel using the eight-tap
Johnston filter.

F I GUR E 14 . 33 Sinan image coded at 0.5 bits per pixel using the eight-tap
Smith-Barnwell filter.

recursive bit allocation algorithm. In the image decomposed using the Johnston filter, there
was significant energy in the high-low band. The algorithm allocated 1 bit to the low-low band
and 1 bit to the high-low band. This resulted in poor encoding for both, and subsequently poor
reconstruction. There was very little signal content in any of the bands other than the low-low
band for the image decomposed using the Smith-Barnwell filter. Therefore, the bit allocation
algorithm assigned both bits to the low-low band, which provided a reasonable reconstruction.

492 14 S U B B A N D C O D I N G

If the problem with the encoding of the image decomposed by the Johnston filter is
an insufficient number of bits for encoding the low-low band, why not simply assign both
bits to the low-low band? The problem is that the bit allocation scheme assigned a bit to
the high-low band because there was a significant amount of information in that band. If
both bits were assigned to the low-low band, we would have no bits left for use in encod-
ing the high-low band, and we would end up throwing away information necessary for the
reconstruction. �

The issue of energy compaction becomes a very important factor in reconstruction quality.
Filters that allow for more energy compaction permit the allocation of bits to a smaller number
of subbands. This in turn results in a better reconstruction.

The coding schemes used in this example were DPCM and scalar quantization, the tech-
niques generally preferred in subband coding. The advantage provided by subband coding
is readily apparent if we compare the result shown in Figure 14.33 to results in the previous
chapters where we used either DPCM or scalar quantization without prior decomposition.

It would appear that the subband approach lends itself naturally to vector quantization.
After decomposing an image into subbands, we could design separate codebooks for each
subband to reflect the characteristics of that particular subband. The only problem with this idea
is that the low-low subband generally requires a large number of bits per pixel. As we mentioned
in Chapter 10, it is generally not feasible to operate the nonstructured vector quantizers at high
rates. Therefore, when vector quantizers are used, they are generally used only for encoding
the higher frequency bands. This may change as vector quantization algorithms that operate
at higher rates are developed.

14.13 Summary

In this chapter we introduced another approach to the decomposition of signals. In subband
coding we decompose the source output into components. Each of these components can
then be encoded using one of the techniques described in the previous chapters. The general
subband encoding procedure can be summarized as follows:

� Select a set of filters for decomposing the source. We have provided a number of filters
in this chapter. Many more filters can be obtained from the published literature (we give
some references below).

� Using the filters, obtain the subband signals {yk,n}:

yk,n =
N−1∑
i=0

hk,i xn−i (119)

where {hk,n} are the coefficients of the kth filter.

14.14 Projects and Problems 493

� Decimate the output of the filters.

� Encode the decimated output.

The decoding procedure is the inverse of the encoding procedure. When encoding images
the filtering and decimation operations have to be performed twice, once along the rows and
once along the columns. Care should be taken to avoid problems at edges, as described in
Section 14.12.

Further Reading

1. Handbook for Digital Signal Processing, edited by S.K. Mitra and J.F. Kaiser, is an
excellent source of information about digital filters [276].

2. Multirate Systems and Filter Banks, by P.P. Vaidyanathan [206], provides detailed in-
formation on quadrature mirror filters, as well as the relationship between wavelets and
filter banks and much more.

3. The topic of subband coding is also covered in Digital Coding of Waveforms, by N.S.
Jayant and P. Noll [134].

4. The MPEG-1 audio coding algorithm is described in “ISO-MPEG-1 Audio: A Generic
Standard for Coding of High-Quality Digital Audio,” by K. Brandenburg and G. Stoll ,
in the October 1994 issue of the Journal of the Audio Engineering Society [277].

5. A review of the rate distortion method of bit allocation is provided in “Rate Distortion
Methods for Image and Video Compression,” by A. Ortega and K. Ramachandran, in the
November 1998 issue of IEEE Signal Processing Magazine [278].

14.14 Projects and Problems

1. A linear shift invariant system has the following properties:

� If for a given input sequence {xn} the output of the system is the sequence {yn},
then if we delay the input sequence by k units to obtain the sequence {xn−k}, the
corresponding output will be the sequence {yn} delayed by k units.

� If the output corresponding to the sequence {x (1)n } is {y(1)n }, and the output cor-

responding to the sequence {x (2)n } is {y(2)n }, then the output corresponding to the
sequence {αx (1)n + βx (2)n } is {αy(1)n + βy(2)n }.

Use these two properties to show the convolution property given in Equation (18).

2. Let’s design a set of simple four-tap filters that satisfies the perfect reconstruction
condition.

494 14 S U B B A N D C O D I N G

(a) We begin with the low-pass filter. Assume that the impulse response of the filter is
given by {h1,k}k=3

k=0. Further assume that∣∣h1,k
∣∣ = ∣∣h1, j

∣∣ ∀ j, k

Find a set of values for {hi, j } that satisfies Equation (91).
(b) Plot the magnitude of the transfer function H1(z).
(c) Using Equation (23), find the high-pass filter coefficients {h2,k}.
(d) Find the magnitude of the transfer function H2(z).

3. Consider the input sequence

xn =
{
(−1)n n = 0, 1, 2, . . .

0 otherwise

(a) Find the output sequence yn if the filter impulse response is

hn =
{

1√
2

n = 0, 1

0 otherwise

(b) Find the output sequence wn if the impulse response of the filter is

hn =

⎧⎪⎨
⎪⎩

1√
2

n = 0

− 1√
2

n = 1

0 otherwise

(c) Looking at the sequences yn and wn , what can you say about the sequence xn?

4. Consider the input sequence

xn =
{

1 n = 0, 1, 2, . . .
0 otherwise

(a) Find the output sequence yn if the filter impulse response is

hn =
{

1√
2

n = 0, 1

0 otherwise

(b) Find the output sequence wn if the impulse response of the filter is

hn =

⎧⎪⎨
⎪⎩

1√
2

n = 0

− 1√
2

n = 1

0 otherwise

(c) Looking at the sequences yn and wn , what can you say about the sequence xn?

14.14 Projects and Problems 495

5. Write a program to perform the analysis and downsampling operations and another to
perform the upsampling and synthesis operations for an image compression application.
The programs should read the filter parameters from a file. The synthesis program
should read the output of the analysis program and write out the reconstructed images.
The analysis program should also write out the subimages scaled so that they can be
displayed. Test your program using the Johnston eight-tap filter and the Sena image.

6. In this problem we look at some of the many ways we can encode the subimages obtained
after subsampling. Use the eight-tap Johnston filter to decompose the Sena image into
four subimages.

(a) Encode the low-low band using an adptive delta modulator (CFDM or CVSD).
Encode all other bands using a 1-bit scalar quantizer.

(b) Encode the low-low band using a 2-bit adaptive DPCM system. Encode the low-high
and high-low bands using a 1-bit scalar quantizer.

(c) Encode the low-low band using a 3-bit adaptive DPCM system. Encode the low-high
and high-low band using a 0.5 bit/pixel vector quantizer.

(d) Compare the reconstructions obtained using the different schemes.

15
Wavelets

15.1 Overview

I
n this chapter, we introduce the concept of wavelets and describe how to use
wavelet-based decompositions in compression schemes. We begin with an in-
troduction to wavelets and multiresolution analysis and then describe how we
can implement a wavelet decomposition using filters. We then examine the
implementations of several wavelet-based compression schemes.

15.2 Introduction

In the previous two chapters, we looked at a number of ways to decompose a signal. In this
chapter, we look at another approach to decompose a signal that has become increasingly
popular: the use of wavelets. Wavelets are being used in a number of different applications.
Depending on the application, different aspects of wavelets can be emphasized. As our particu-
lar application is compression, we will emphasize those aspects of wavelets that are important
in the design of compression algorithms. You should be aware that there is much more to
wavelets than is presented in this chapter. At the end of the chapter we suggest options if you
want to delve more deeply into this subject.

The practical implementation of wavelet compression schemes is very similar to that of
subband coding schemes. As in the case of subband coding, we decompose the signal using
analysis filter banks. The outputs of the filter banks are downsampled, quantized, and encoded.
The decoder decodes the coded representations, upsamples, and recomposes the signal using
a synthesis filter bank.

Introduction to Data Compression. DOI: http://dx.doi.org/10.1016/B978-0-12-415796-5.00015-6
© 2012 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-415796-5.00015-6

498 15 W A V E L E T S

In the next several sections, we will briefly examine the construction of wavelets and
describe how we can obtain a decomposition of a signal using multiresolution analysis. We
will then describe some of the currently popular schemes for image compression. If you are
primarily interested at this time in implementation of wavelet-based compression schemes,
you should skip the next few sections and go directly to Section 15.5.

In the last two chapters, we have described several ways of decomposing signals. Why do
we need another one? To answer this question, let’s begin with our standard tool for analysis,
the Fourier transform. Given a function f (t), we can find the Fourier transform F(ω) as

F(ω) =
∫ ∞
−∞

f (t)e− jωt dt

Integration is an averaging operation; therefore, the analysis we obtain, using the Fourier
transform, is in some sense an “average” analysis, where the averaging interval is all of time.
Thus, by looking at a particular Fourier transform, we can say, for example, that there is a large
component of frequency 10 kHz in a signal, but we cannot tell when in time this component
occurred. In other words, Fourier analysis provides excellent localization in frequency and
none in time. The converse is true for the time function f (t), which provides exact information
about the value of the function at each instant of time but does not directly provide spectral
information. It should be noted that both f (t) and F(ω) represent the same function, and
all the information is present in each representation. However, each representation makes
different kinds of information easily accessible.

If we have a very nonstationary signal, like the one shown in Figure 15.1, we would like to
know not only the frequency components but when in time the particular frequency components
occurred. One way to obtain this information is via the short-term Fourier transform (STFT).
With the STFT, we break the time signal f (t) into pieces of length T and apply Fourier analysis
to each piece. This way we can say, for example, that a component at 10 kHz occurred in
the third piece—that is, between time 2T and time 3T . Thus, we obtain an analysis that is a
function of both time and frequency. If we simply chopped the function into pieces, we could
get distortion in the form of boundary effects (see Problem 1 at the end of this chapter). In order
to reduce the boundary effects, we window each piece before we take the Fourier transform.
If the window shape is given by g(t), the STFT is formally given by

F(ω, τ) =
∫ ∞
−∞

f (t)g∗(t − τ)e jωt dt (1)

t0
2t0

F I GUR E 15 . 1 A nonstationary signal.

15.2 Introduction 499

If the window function g(t) is a Gaussian, the STFT is called the Gabor transform.
The problem with the STFT is the fixed window size. Consider Figure 15.1. In order to

obtain the low-pass component at the beginning of the function, the window size should be
at least t0 so that the window will contain at least one cycle of the low-frequency component.
However, a window size of t0 or greater means that we will not be able to accurately localize
the high-frequency spurt. A large window in the time domain corresponds to a narrow filter
in the frequency domain, which is what we want for the low-frequency components—and
what we do not want for the high-frequency components. This dilemma is formalized in the
uncertainty principle, which states that for a given window g(t), the product of the time spread
σ 2

t and the frequency spread σ 2
ω is lower bounded by

√
1/2, where

σ 2
t =

∫
t2 |g(t)|2 dt∫ |g(t)|2 dt

(2)

σ 2
ω =

∫
ω2 |G(ω)|2 dω∫ |G(ω)|2 dω

(3)

Thus, if we wish to have finer resolution in time, that is, reduce σ 2
t , we end up with an increase

in σ 2
ω or a lower resolution in the frequency domain. How do we get around this problem?
Let’s take a look at the discrete STFT in terms of basis expansion, and, for the moment,

let’s look at just one interval:

F(m, 0) =
∫ ∞
−∞

f (t)g∗(t)e− jmω0t dt (4)

The basis functions are g(t), g(t)e jωot , g(t)e j2ωot , and so on. The first three basis functions
are shown in Figure 15.2. We can see that we have a window with constant size, and within
this window, we have sinusoids with an increasing number of cycles. Let’s conjure up a
different set of functions in which the number of cycles is constant, but the size of the window
keeps changing, as shown in Figure 15.3. Notice that although the number of cycles of the
sinusoid in each window is the same, as the size of the window gets smaller, these cycles occur
in a smaller time interval; that is, the frequency of the sinusoid increases as the size of the
window gets smaller. The lower frequency functions cover a longer time interval, while the
higher frequency functions cover a shorter time interval, thus avoiding the problem that we
had with the STFT. If we can write our function in terms of these functions and their translates,
we have a representation that gives us time and frequency localization and can provide high
frequency resolution at low frequencies (longer time window) and high time resolution at high
frequencies (shorter time window). This, crudely speaking, is the basic idea behind wavelets.

F I GUR E 15 . 2 The first three STFT basis functions for the first time interval.

500 15 W A V E L E T S

F I GUR E 15 . 3 Three wavelet basis functions.

In the following section, we will formalize the concept of wavelets. Then we will discuss
how to get from a wavelet basis set to an implementation. If you wish to move directly to
implementation issues, you should skip to Section 15.5.

15.3 Wavelets

In the example at the end of the previous section, we started out with a single function. All
other functions were obtained by changing the size of the function or scaling and translating
this single function. This function is called the mother wavelet. Mathematically, we can scale
a function f (t) by replacing t with t/a, where the parameter a governs the amount of scaling.
For example, consider the function

f (t) =
{

cos(π t) −1 � t � 1
0 otherwise

We have plotted this function in Figure 15.4. To scale this function by 0.5, we replace t by
t/0.5:

f

(
t

0.5

)
=
{

cos(π t
0.5) −1 � t

0.5 � 1
0 otherwise

=
{

cos(2π t) − 1
2 � t � 1

2
0 otherwise

We have plotted the scaled function in Figure 15.5. If we define the norm of a function f (t)
by

‖ f (t)‖2 =
∫ ∞
−∞

f 2(t)dt

scaling obviously changes the norm of the function:

∥∥∥∥ f

(
t

a

)∥∥∥∥
2

=
∫ ∞
−∞

f 2
(

t

a

)
dt

= a
∫ ∞
−∞

f 2(x)dx

15.3 Wavelets 501

−1.5

1

0.5

0

−0.5

−1

1.5

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
t

f(t)

F I GUR E 15 . 4 The function f(t).

where we have used the substitution x = t/a. Thus,∥∥∥∥ f

(
t

a

)∥∥∥∥
2

= a ‖ f (t)‖2

If we want the scaled function to have the same norm as the original function, we need to
multiply it by 1/

√
a. Transformations that change the size of an object but not its shape are

often referred to as dilation, which is a term we will use interchangeably with scaling in our
discussion.

Mathematically, we can represent the translation of a function to the right or left by an
amount b by replacing t by t − b or t + b. For example, if we want to translate the scaled
function shown in Figure 15.5 by one, we have

f

(
t − 1

0.5

)
=
{

cos(2π(t − 1)) − 1
2 � t − 1 � 1

2
0 otherwise

=
{

cos(2π(t − 1)) 1
2 � t � 3

2
0 otherwise

The scaled and translated function is shown in Figure 15.6.
We can use the translation and scaling operations to generate a family of functions from

a single function. Thus, given a mother function ψ(t), we can generate a whole family of
functions {ψa,b(t)} with

ψa,b(t) = 1√
a
ψ

(
t − b

a

)
(5)

and Fourier transforms

�(ω) = F[ψ(t)]
�a,b(ω) = F[ψa,b(t)] (6)

502 15 W A V E L E T S

−1.5

1

0.5

0

−0.5

−1

1.5

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
t

f(t/0.5)

F I GUR E 15 . 5 The function f (t
0.5).

−1.5

1

0.5

0

−0.5

−1

1.5

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
t

f((t–1)/0.5)

F I GUR E 15 . 6 A scaled and translated function.

If this family of functions satisfies certain properties we can use them to represent signals of
interest in a manner similar to the Fourier basis functions. Unlike the Fourier basis functions,
because these functions are localized in time and frequency we can use them without giving up
all the temporal information contained in the original function. Because of their limited spatial
extent these functions were originally called ondelettes, which is French for small waves, or
wavelets.

15.3 Wavelets 503

Our expansion using coefficients with respect to these functions is obtained from the inner
product of f (t) with the wavelet functions:

wa,b = 〈ψa,b(t), f (t)〉 =
∫ ∞
−∞

ψa,b(t) f (t)dt (7)

We can recover the function f (t) from the wa,b by

f (t) = 1

Cψ

∫ ∞
−∞

∫ ∞
−∞

wa,bψa,b(t)
dadb

a2 (8)

where

Cψ =
∫ ∞

0

|� (ω)|2
ω

dω (9)

For integral (8) to exist, we need Cψ to be finite. For Cψ to be finite, we need �(0) = 0.
Otherwise, we have a singularity in the integrand of (9). Note that�(0) is the average value of
ψ(t); therefore, the mother wavelet must have zero mean. The condition that Cψ be finite is
often called the admissibility condition. We would also like the wavelets to have finite energy;
that is, we want the wavelets to belong to the vector space L2 (see Example 12.3.1). Using
Parseval’s relationship, we can write this requirement as

∫ ∞
−∞
|�(ω)|2 dω <∞

For this to happen, |�(ω)|2 has to decay as ω goes to infinity. These requirements mean that
the energy in �(ω) is concentrated in a narrow frequency band, which gives the wavelet its
frequency localization capability.

If a and b are continuous, thenwa,b is called the continuous wavelet transform (CWT). Just
as with other transforms, we will be more interested in the discrete version of this transform.
However, we first obtain a series representation where the basis functions are continuous
functions of time with discrete scaling and translating parameters a and b. The discrete versions
of the scaling and translating parameters have to be related to each other, because if the scale is
such that the basis functions are narrow, the translation step should be correspondingly small
and vice versa. There are a number of ways we can choose these parameters. The most popular
approach is to select a and b according to

a = a−m
0 , b = nb0a−m

0 (10)

where m and n are integers, a0 is selected to be 2, and b0 has a value of 1. This gives us the
wavelet set

ψm,n(t) = am/2
0 ψ(am

0 t − nb0), m, n ∈ Z (11)

For a0 = 2 and b0 = 1, we have

ψm,n(t) = 2m/2ψ(2mt − n) (12)

504 15 W A V E L E T S

(Note that these are the most commonly used choices, but they are not the only choices.) If this
set is complete, then {ψm,n(t)} are called affine wavelets. The wavelet coefficients are given by

wm,n = 〈 f (t), ψm,n(t)〉 (13)

= am/2
0

∫
f (t)ψ(am

0 t − nb0)dt (14)

The function f (t) can be reconstructed from the wavelet coefficients by

f (t) =
∑

m

∑
n

wm,nψm,n(t) (15)

Wavelets come in many shapes. We will look at some of the more popular ones later in
this chapter. One of the simplest wavelets is the Haar wavelet, which we will use to explore
the various aspects of wavelets. The Haar wavelet is given by

ψ(t) =
{

1 0 � t < 1
2−1 1

2 � t < 1
(16)

By translating and scaling this mother wavelet, we can synthesize a variety of functions.
This version of the transform, where f (t) is a continuous function while the transform

consists of discrete values, is a wavelet series analogous to the Fourier series. It is also called
the discrete time wavelet transform (DTWT). We have moved from the continuous wavelet
transform, where both the time function f (t) and its transformwa,b were continuous functions
of their arguments, to the wavelet series, where the time function is continuous but the time-
scale wavelet representation is discrete. Given that in data compression we are generally
dealing with sampled functions that are discrete in time, we would like both the time and
frequency representations to be discrete. This is called the discrete wavelet transform (DWT).
However, before we get to that, let’s look into one additional concept—multiresolution analysis.

15.4 Multiresolution Analysis and the Scaling
Function

The idea behind multiresolution analysis is fairly simple. Let’s define a function φ(t) that
we call a scaling function. We will later see that the scaling function is closely related to the
mother wavelet. By taking linear combinations of the scaling function and its translates, we
can generate a large number of functions

f (t) =
∑

k

akφ(t − k) (17)

The scaling function has the property that a function that can be represented by the scaling
function can also be represented by the dilated versions of the scaling function.

15.4 Multiresolution Analysis and the Scaling Function 505

For example, one of the simplest scaling functions is the Haar scaling function:

φ(t) =
{

1 0 � t < 1

0 otherwise
(18)

Then f (t) can be any piecewise continuous function that is constant in the interval [k, k + 1)
for all k.

Let’s define
φk(t) = φ(t − k) (19)

The set of all functions that can be obtained using a linear combination of the set {φk(t)},
represented by

f (t) =
∑

k

akφk(t) (20)

is called the span of the set {φk(t)}, or Span{φk(t)}. If we now add all functions that are limits
of sequences of functions in Span{φk(t)}, this is referred to as the closure of Span{φk(t)} and
denoted by Span{φk(t)}. Let’s call this set V0.

If we want to generate functions at a higher resolution, say functions that are required to
be constant over only half a unit interval, we can use a dilated version of the “mother” scaling
function. In fact, we can obtain scaling functions at different resolutions in a manner similar
to the procedure used for wavelets:

φ j,k(t) = 2 j/2φ(2 j t − k) (21)

The indexing scheme is the same as that used for wavelets, with the first index referring to
the resolution while the second index denotes the translation. For the Haar example,

φ1,0(t) =
{√

2 0 � t < 1
2

0 otherwise
(22)

We can use translates of φ1,0(t) to represent all functions that are constant over intervals
[k/2, (k + 1)/2) for all k. Notice that in general any function that can be represented by the
translates of φ(t) can also be represented by a linear combination of translates of φ1,0(t). The
converse, however, is not true. Defining

V1 = Span{φ1,k(t)} (23)

we can see that V0 ⊂ V1. Similarly, we can show that V1 ⊂ V2 and so on.

Example 15 .4 .1 :

Consider the function shown in Figure 15.7. We can approximate this function using translates
of the Haar scaling function φ(t). The approximation is shown in Figure 15.8(a). If we call
this approximation φ(0)f (t), then

φ
(0)
f (t) =

∑
k

c0,kφk(t) (24)

506 15 W A V E L E T S

f(t)

t

F I GUR E 15 . 7 A sample function.

φf (t)

φf (t)

(0)

(2)

t

t

t

(a)

(b)

(c)

F I GUR E 15 . 8 Approximations of the function shown in Figure 15.7.

where

c0,k =
∫ k+1

k
f (t)φk(t)dt (25)

We can obtain a more refined approximation, or an approximation at a higher resolution,
φ
(1)
f (t), shown in Figure 15.8(b), if we use the set {φ1,k(t)}:

φ
(1)
f (t) =

∑
k

c1,kφ1,k(t) (26)

15.4 Multiresolution Analysis and the Scaling Function 507

Notice that we need twice as many coefficients at this resolution compared to the previous
resolution. The coefficients at the two resolutions are related by

c0,k = 1√
2
(c1,2k + c1,2k+1) (27)

Continuing in this manner (Figure 15.8(c)), we can get higher and higher resolution approxi-
mations of f (t) with

φ
(m)
f (t) =

∑
k

cm,kφm,k(t) (28)

Recall that, according to the Nyquist rule, if the highest frequency component of a signal
is at f0 Hz, we need 2 f0 samples per second to accurately represent it. Therefore, we could
obtain an accurate representation of f (t) using the set of translates {φ j,k(t)}, where 2− j < 1

2 f0
.

As

c j,k = 2 j/2
∫ k+1

2 j

k
2 j

f (t)dt (29)

by the mean value theorem of calculus, c j,k is equal to a sample value of f (t) (within a constant

scale factor) in the interval [k2− j , (k+1)2− j). Therefore, the function φ(j)
f (t)would represent

more than 2 f0 samples per second of f (t). �

We said earlier that a scaling function has the property that any function that can be
represented exactly by an expansion at some resolution j can also be represented by dilations
of the scaling function at resolution j + 1. In particular, this means that the scaling function
itself can be represented by its dilations at a higher resolution:

φ(t) =
∑

k

hkφ1,k(t) (30)

Substituting φ1,k(t) =
√

2φ(2t − k), we obtain the multiresolution analysis (MRA) equation:

φ(t) =
∑

k

hk
√

2φ(2t − k) (31)

This equation will be of great importance to us when we begin looking at ways of implementing
the wavelet transform.

Example 15 .4 .2 :

Consider the Haar scaling function. Picking

h0 = h1 = 1√
2

and
hk = 0 for k > 1

satisfies the recursion equation. �

508 15 W A V E L E T S

Example 15 .4 .3 :

Consider the triangle scaling function shown in Figure 15.9. We can write this as

φ	(t) =
⎧⎨
⎩

t 0 � t � 1
2− t 1 � t � 2
0 t > 2

We can see from Figure 15.9 that we can decompose φ	(t) as

φ	(t) = 1

2
φ	(2t)+ φ	(2t − 1)+ 1

2
φ	(2t − 2)

= 1

2
√

2

√
2φ	(2t − 0)+ 1√

2

√
2φ	(2t − 1)+ 1

2
√

2

√
2φ	(2t − 2)

Thus,

h0 = 1

2
√

2
, h1 = 1√

2
, h2 = 1

2
√

2

satisfies the recursion equation.

t

φ(2t−2)0.5

t1 2

φ(t)

1 2

φ (2t−1)

(2t)φ0.5

F I GUR E 15 . 9 Triangular scaling function. �

While both the Haar scaling function and the triangle scaling functions are valid scaling
functions, there is an important difference between the two. The Haar function is orthogonal
to its translates; that is, ∫

φ(t)φ(t − m)dt = δm

This is obviously not true of the triangle function. In this chapter we will be principally
concerned with scaling functions that are orthogonal because they give rise to orthonormal
transforms that, as we have previously seen, are very useful in compression.

How about the Haar wavelet? Can it be used as a scaling function? Some reflection will
show that we cannot obtain the Haar wavelet from a linear combination of its dilated versions.

So, where do wavelets come into the picture? Let’s continue with our example using the
Haar scaling function. Let us assume for the moment that there is a function g(t) that can be
exactly represented by φ(1)g (t); that is, g(t) is a function in the set V1. We can decompose

15.4 Multiresolution Analysis and the Scaling Function 509

φ
(1)
g (t) into the sum of a lower-resolution version of itself, namely, φ(0)g (t), and the difference

φ
(1)
g (t)− φ(0)g (t). Let’s examine this difference over an arbitrary unit interval [k, k + 1):

φ(1)g (t)− φ(0)g (t) =
{

c0,k −
√

2c1,2k k � t < k + 1
2

c0,k −
√

2c1,2k+1 k + 1
2 � t < k + 1

(32)

Substituting for c0,k from (27), we obtain

φ(1)g (t)− φ(0)g (t) =
{− 1√

2
c1,2k + 1√

2
c1,2k+1 k � t < k + 1

2
1√
2

c1,2k − 1√
2

c1,2k+1 k + 1
2 � t < k + 1

(33)

Defining

d0,k = − 1√
2

c1,2k + 1√
2

c1,2k+1

over the arbitrary interval [k, k + 1),

φ(1)g (t)− φ(0)g (t) = d0,kψ0,k(t) (34)

where

ψ0,k(t) =
{

1 k � t < k + 1
2−1 k + 1

2 � t < k + 1
(35)

But this is simply the kth translate of the Haar wavelet. Thus, for this particular case the function
can be represented as the sum of a scaling function and a wavelet at the same resolution:

φ(1)g (t) =
∑

k

c0,kφ0,k(t)+
∑

k

d0,kψ0,k(t) (36)

In fact, we can show that this decomposition is not limited to this particular example. A
function in V1 can be decomposed into a function in V0—that is, a function that is a linear
combination of the scaling function at resolution 0 and a function that is a linear combination
of translates of a mother wavelet. Denoting the set of functions that can be obtained by a linear
combination of the translates of the mother wavelet as W0, we can write this symbolically as

V1 = V0 ⊕W0 (37)

In other words, any function in V1 can be represented using functions in V0 and W0.
Obviously, once a scaling function is selected, the choice of the wavelet function cannot be

arbitrary. The wavelet that generates the set W0 and the scaling function that generates the sets
V0 and V1 are intrinsically related. In fact, from (37), W0 ⊂ V1, and therefore any function
in W0 can be represented by a linear combination of {φ1,k}. In particular, we can write the
mother wavelet ψ(t) as

ψ(t) =
∑

k

wkφ1,k(t) (38)

or
ψ(t) =

∑
k

wk
√

2φ(2t − k) (39)

510 15 W A V E L E T S

This is the counterpart of the multiresolution analysis equation for the wavelet function and
will be of primary importance in the implementation of the decomposition.

All of this development has been for a function in V1. What if the function can only be
accurately represented at resolution j + 1? If we define W j as the closure of the span of
ψ j,k(t), we can show that

Vj+1 = Vj ⊕W j (40)

But, as j is arbitrary,
Vj = Vj−1 ⊕W j−1 (41)

and
Vj+1 = Vj−1 ⊕W j−1 ⊕W j (42)

Continuing in this manner, we can see that for any k � j

Vj+1 = Vk ⊕Wk ⊕Wk+1 ⊕ · · · ⊕W j (43)

In other words, if we have a function that belongs to Vj+1 (i.e., that can be exactly represented
by the scaling function at resolution j + 1), we can decompose it into a sum of functions
starting with a lower-resolution approximation followed by a sequence of functions generated
by dilations of the wavelet that represent the leftover details. This is very much like what we
did in subband coding. A major difference is that, while the subband decomposition is in terms
of sines and cosines, the decomposition in this case can use a variety of scaling functions and
wavelets. Thus, we can adapt the decomposition to the signal being decomposed by selecting
the scaling function and wavelet.

15.5 Implementation Using Filters

One of the most popular approaches to implementing the decomposition discussed in the
previous section is using a hierarchical filter structure similar to the one used in subband
coding. In this section, we will look at how to obtain the structure and the filter coefficients.

We start with the MRA equation

φ(t) =
∑

k

hk
√

2φ(2t − k) (44)

Substituting t = 2 j t − m, we obtain the equation for an arbitrary dilation and translation:

φ(2 j t − m) =
∑

k

hk
√

2φ(2(2 j t − m)− k) (45)

=
∑

k

hk
√

2φ(2 j+1t − 2m − k) (46)

=
∑

l

hl−2m
√

2φ(2 j+1t − l) (47)

15.5 Implementation Using Filters 511

where in the last equation we have used the substitution l = 2m+k. Suppose we have a function
f (t) that can be accurately represented at resolution j + 1 by some scaling function φ(t). We
assume that the scaling function and its dilations and translations form an orthonormal set.
The coefficients c j+1 can be obtained by

c j+1,k =
∫

f (t)φ j+1,k(t)dt (48)

If we can represent f (t) accurately at resolution j + 1 with a linear combination of φ j+1,k(t),
then from the previous section we can decompose it into two functions: one in terms of φ j,k(t)
and one in terms of the j th dilation of the corresponding wavelet {ψ j,k(t)}. The coefficients
c j,k are given by

c j,k =
∫

f (t)φ j,k(t)dt (49)

=
∫

f (t)2
j
2 φ(2 j t − k)dt (50)

Substituting for φ(2 j t − k) from (47), we get

c j,k =
∫

f (t)2
j
2
∑

l

hl−2k
√

2φ(2 j+1t − l)dt (51)

Interchanging the order of summation and integration, we get

c j,k =
∑

l

hl−2k

∫
f (t)2

j
2
√

2φ(2 j+1t − l)dt (52)

But the integral is simply c j+1,l . Therefore,

c j,k =
∑

l

hl−2kc j+1,l (53)

We have encountered this relationship before in the context of the Haar function. Equation
(27) provides the relationship between coefficients of the Haar expansion at two resolution
levels. In a more general setting, the coefficients {h j } provide a link between the coefficients
{c j,k} at different resolutions. Thus, given the coefficients at resolution level j + 1, we can
obtain the coefficients at all other resolution levels. But how do we start the process? Recall
that f (t) can be accurately represented at resolution j + 1. Therefore, we can replace c j+1,k
by the samples of f (t). Let’s represent these samples by xk . Then the coefficients of the
low-resolution expansion are given by

c j,m =
∑

k

hk−2m xk (54)

In Chapter 12, we introduced the input-output relationship of a linear filter as

ym =
∑

k

hk xm−k =
∑

k

hm−k xk (55)

512 15 W A V E L E T S

Replacing m by 2m, we get every other sample of the output:

y2m =
∑

k

h2m−k xk (56)

Comparing (56) with (54), we can see that the coefficients of the low-resolution approximation
are every other output of a linear filter whose impulse response is h−k . Recall that {hk} are
the coefficients that satisfy the MRA equation. Using the terminology of subband coding, the
coefficients c j,k are the downsampled output of the linear filter with impulse response {h−k}.

The detail portion of the representation is obtained in a similar manner. Again we start
from the recursion relationship. This time we use the recursion relationship for the wavelet
function as our starting point:

ψ(t) =
∑

k

wk
√

2φ(2t − k) (57)

Again substituting t = 2 j t − m and using the same simplifications, we get

ψ(2 j t − m) =
∑

k

wk−2m
√

2φ(2 j+1t − k) (58)

Using the fact that the dilated and translated wavelets form an orthonormal basis, we can obtain
the detail coefficients d j,k by

d j,k =
∫

f (t)ψ j,k(t)dt (59)

=
∫

f (t)2
j
2ψ(2 j t − k)dt (60)

=
∫

f (t)2
j
2
∑

l

wl−2k
√

2φ(2 j+1t − l)dt (61)

=
∑

l

wl−2k

∫
f (t)2

j+1
2 φ(2 j+1t − l)dt (62)

=
∑

l

wl−2kc j+1,l (63)

Thus, the detail coefficients are the decimated outputs of a filter with impulse response {w−k}.
At this point, we can use exactly the same arguments to further decompose the coefficients

{c j }. A block diagram of a three-level decomposition is shown in Figure 15.10.
In order to retrieve {c j+1,k} from {c j,k} and {d j,k}, we upsample the lower resolution

coefficients and use filters with impulse response {hk} and {wk}:
c j+1,k =

∑
l

c j,l hk−2l +
∑

l

d j,lwk−2l

Assuming the three-level decomposition described above, the block diagram for the synthesis
process is shown in Figure 15.11.

15.5 Implementation Using Filters 513

k

2

2 2

2

2

2

h−k{ }

h−k{ }

h−k{ }

}w−k{

}w−k{

}w−k{

c j+1,k

cj,k

cj−1,k

dj,k

dj−1,k

dj−2,k

c j−2,k

)(x

F I GUR E 15 . 10 Block diagram of a three-level wavelet decomposition.

d

k{ }2

2

2

wk{ }2 2
cj,k

cj−1,k

wk{ }2
cj+1,k

x()k

cj−2,k

dj−2,k

dj−1,k

j,k

w

k{ }h

k{ }h

k{ }h

F I GUR E 15 . 11 Block diagram of a three-level wavelet reconstruction.

15.5.1 Scaling and Wavelet Coefficients

In order to implement the wavelet decomposition, the coefficients {hk} and {wk} are of primary
importance. In this section, we look at some of the properties of these coefficients that will
help us in finding different decompositions.

We start with the MRA equation. Integrating both sides of the equation over all t , we
obtain

∫ ∞
−∞

φ(t)dt =
∫ ∞
−∞

∑
k

hk
√

2φ(2t − k)dt (64)

Interchanging the summation and integration on the right-hand side of the equation, we get

∫ ∞
−∞

φ(t)dt =
∑

k

hk
√

2
∫ ∞
−∞

φ(2t − k)dt (65)

514 15 W A V E L E T S

Substituting x = 2t − k with dx = 2dt in the right-hand side of the equation, we get∫ ∞
−∞

φ(t)dt =
∑

k

hk
√

2
∫ ∞
−∞

φ(x)
1

2
dx (66)

=
∑

k

hk
1√
2

∫ ∞
−∞

φ(x)dx (67)

Assuming that the average value of the scaling function is not zero, we can divide both sides
by the integral to obtain ∑

k

hk =
√

2 (68)

If we normalize the scaling function to have a magnitude of one, we can use the orthogonality
condition on the scaling function to get another condition on {hk}:∫

|φ(t)|2 dt =
∫ ∑

k

hk
√

2φ(2t − k)
∑

m

hm
√

2φ(2t − m)dt (69)

=
∑

k

∑
m

hkhm2
∫
φ(2t − k)φ(2t − m)dt (70)

=
∑

k

∑
m

hkhm

∫
φ(x − k)φ(x − m)dx (71)

where in the last equation we have used the substitution x = 2t . The integral on the right-hand
side is zero except when k = m. When k = m, the integral is unity and we obtain∑

k

h2
k = 1 (72)

We can actually elicit a more general property by using the orthogonality of the translates
of the scaling function ∫

φ(t)φ(t − m)dt = δm (73)

Rewriting this using the MRA equation to substitute for φ(t) and φ(t − m), we obtain∫ [∑
k

hk
√

2φ(2t − k)

][∑
l

hl
√

2φ(2t − 2m − l)

]
dt

=
∑

k

∑
l

hkhl2
∫
φ(2t − k)φ(2t − 2m − l)dt (74)

Substituting x = 2t , we obtain∫
φ(t)φ(t − m)dt =

∑
k

∑
l

hkhl

∫
φ(x − k)φ(x − 2m − l)dx (75)

=
∑

k

∑
l

hkhlδk−(2m+l) (76)

=
∑

k

hkhk−2m (77)

15.5 Implementation Using Filters 515

Therefore, we have ∑
k

hkhk−2m = δm (78)

Notice that this is the same relationship we had to satisfy for perfect reconstruction in the
previous chapter.

Using these relationships, we can generate scaling coefficients for filters of various lengths.

Example 15 .5 .1 :

For k = 2, we have from (68) and (72)

h0 + h1 =
√

2 (79)
h2

0 + h2
1 = 1 (80)

These equations are uniquely satisfied by

h0 = h1 = 1√
2

which is the Haar scaling function. �

An orthogonal expansion does not exist for all lengths. In the following example, we
consider the case of k = 3.

Example 15 .5 .2 :

For k = 3, from the three conditions (68), (72), and (78), we have

h0 + h1 + h2 =
√

2 (81)
h2

0 + h2
1 + h2

2 = 1 (82)
h0h2 = 0 (83)

The last condition can only be satisfied if h0 = 0 or h2 = 0. In either case we will be left with
the two-coefficient filter for the Haar scaling function. �

In fact, we can see that for k odd, we will always end up with a condition that will force
one of the coefficients to zero, thus leaving an even number of coefficients. When the number
of coefficients gets larger than the number of conditions, we end up with an infinite number of
solutions.

516 15 W A V E L E T S

Example 15 .5 .3 :

Consider the case when k = 4. The three conditions give us the following three equations:

h0 + h1 + h2 + h3 =
√

2 (84)
h2

0 + h2
1 + h2

2 + h2
3 = 1 (85)

h0h2 + h1h3 = 0 (86)

We have three equations and four unknowns; that is, we have one degree of freedom. We can
use this degree of freedom to impose further conditions on the solution. The solutions to these
equations include the Daubechies four-tap solution:

h0 = 1+√3

4
√

2
, h1 = 3+√3

4
√

2
, h2 = 3−√3

4
√

2
, h3 = 1−√3

4
√

2
�

Given the close relationship between the scaling function and the wavelet, it seems reason-
able that we should be able to obtain the coefficients for the wavelet filter from the coefficients
of the scaling filter. In fact, if the wavelet function is orthogonal to the scaling function at the
same scale ∫

φ(t − k)ψ(t − m)dt = 0 (87)

then
wk = ±(−1)khN−k (88)

and ∑
k

hkwn−2k = 0 (89)

Furthermore, ∑
k

wk = 0 (90)

The proof of these relationships is somewhat involved [212].

15.5.2 Families of Wavelets

We have said that there is an infinite number of possible wavelets. Which one is best depends
on the application. In this section, we list different wavelets and their corresponding filters.
You are encouraged to experiment with these to find those best suited to your application.

The 4-tap, 12-tap, and 20-tap Daubechies filters are shown in Tables 15.1, 15.2, 15.3. The
6-tap, 12-tap, and 18-tap Coiflet filters are shown in Tables 15.4, 15.5, 15.6.

15.6 Biorthogonal Wavelets

We have focused on orthogonal wavelets in order to develop various concepts regarding wavelet
decomposition. However, in various image compression schemes, which will be the focus of

15.6 Biorthogonal Wavelets 517

T A B L E 15 . 1 Coefficients for the 4-tap
Daubechies low-pass filter.

h0 0.4829629131445341
h1 0.8365163037378079
h2 0.2241438680420134
h3 −0.1294095225512604

T A B L E 15 . 2 Coefficients for the 12-tap
Daubechies low-pass filter.

h0 0.111540743350
h1 0.494623890398
h2 0.751133908021
h3 0.315250351709
h4 −0.226264693965
h5 −0.129766867567
h6 0.097501605587
h7 0.027522865530
h8 −0.031582039318
h9 0.000553842201
h10 0.004777257511
h11 −0.001077301085

the next chapter, the type of wavelets used in practice are biorthogonal wavelets. In this section,
we will describe what biorthogonal wavelets are and why we would want to use them rather
than orthogonal wavelets in image compression applications. In order to do that, we first need
to make a brief detour and discuss some implementation issues with the use of discrete time
filters.

Until now in our development we have ignored the length of the sequence being decom-
posed. This length becomes important when we examine wavelet decomposition of images.
Suppose we wish to filter a sequence of length N , {xk}N−1

k=0 , using a filter with M coefficients
{hk}M−1

k=0 (Figure 15.12). The output of the filter is given by the convolution equation

yk =
N−1∑
m=0

hk−m xm

where the limits on the summation are because xm is nonzero only for m = 0, · · · , N − 1. If
we plot xm and hk−m for different values of k as shown in Figure 15.13, we can see that the
product of hk−m and xm is nonzero only for specific values of k. When k < 0, the nonzero
values of hk−m and xm do not overlap, and, therefore, the product, and hence yk , is zero.
When k � 0 and k − M + 1 � 0, the output yk is given by

518 15 W A V E L E T S

T A B L E 15 . 3 Coefficients for the 20-tap
Daubechies low-pass filter.

h0 0.026670057901
h1 0.188176800078
h2 0.527201188932
h3 0.688459039454
h4 0.281172343661
h5 −0.249846424327
h6 −0.195946274377
h7 0.127369340336
h8 0.093057364604
h9 −0.071394147166
h10 −0.029457536822
h11 0.033212674059
h12 0.003606553567
h13 −0.010733175483
h14 0.001395351747
h15 0.001992405295
h16 −0.000685856695
h17 −0.000116466855
h18 0.000093588670
h19 −0.000013264203

T A B L E 15 . 4 Coefficients for the 6-tap
Coiflet low-pass filter.

h0 −0.051429728471
h1 0.238929728471
h2 0.602859456942
h3 0.272140543058
h4 −0.051429972847
h5 −0.011070271529

yk =
k∑

m=0

hk−m xm

When k − M + 1 � 0 and k � N − 1, the output yk is given by

yk =
k∑

m=k−M+1

hk−m xm

15.6 Biorthogonal Wavelets 519

T A B L E 15 . 5 Coefficients for the 12-tap
Coiflet low-pass filter.

h0 0.011587596739
h1 −0.029320137980
h2 −0.047639590310
h3 0.273021046535
h4 0.574682393857
h5 0.294867193696
h6 −0.054085607092
h7 −0.042026480461
h8 0.016744410163
h9 0.003967883613
h10 −0.001289203356
h11 −0.000509505539

T A B L E 15 . 6 Coefficients for the 18-tap
Coiflet low-pass filter.

h0 −0.002682418671
h1 0.005503126709
h2 0.016583560479
h3 −0.046507764479
h4 −0.043220763560
h5 0.286503335274
h6 0.561285256870
h7 0.302983571773
h8 −0.050770140755
h9 −0.058196250762
h10 0.024434094321
h11 0.011229240962
h12 −0.006369601011
h13 −0.001820458916
h14 0.000790205101
h15 0.000329665174
h16 −0.000050192775
h17 −0.000024465734

When N − 1 < k � N + M − 2 the output yk is given by

yk =
N−1∑

m=k−M+1

hk−m xm

Finally, when k > N + M − 2, the nonzero portions of the two sequences no longer overlap
and the output is 0. Thus for an input of length N , the output is of length N +M − 1 where M

520 15 W A V E L E T S

k1 2 M−1 1 2 3 4 N−1

h xk k

k

F I GUR E 15 . 12 An example filter of length M and an input sequence of length N.

(a) (b)

(c) (d)

x m

k−M+1 k−2 k−1 k

h k−m

m

x m

h k−m

mk−M+1 k−2 k−1 k

h k−m

mk−M+1 k−2 k−1 k

h k−m

mk−M+1 k−2 k−1 k

1 2 3 4

x m

1 2 3 4

x m

1 2 3 4 N−1 m 1 2 3 4 N−1 m

N−1 m N− 1 m

F I GUR E 15 . 13 A pictorial representation of the components in the convolution
sum for different values of k: (a) for k < 0; (b) for 0 � k � M + 1;
(c) for M + 1 < k � N − 1; and (d) for N − 1 < k � N + M − 2.

is the length of the filter. We have increased the number of coefficients that need to be encoded.
Clearly this is not a desirable feature for a data compression system. The problem becomes
worse as we go through several levels of filtering operations, each resulting in an increase in
the number of coefficients.

15.6 Biorthogonal Wavelets 521

N1 2 3 4

x p,k

k
N−1 2N−1

F I GUR E 15 . 14 Periodic extension of the input sequence.

There are several approaches to resolving this problem. One is to generate a periodic
extension of the input signal, as shown in Figure 15.14. At first sight this seems counterintuitive
as we are increasing the length of the input sequence. However, for a linear time-invariant
filter, a periodic input results in a periodic output. As the period is N , for an input sequence of
length N , we need to retain only N coefficients. The problem with this approach is identical
to the problem we discussed when describing the use of the discrete cosine transform in
Chapter 13. Because the initial sample in the sequence and the final sample in the sequence
can be very different, the periodic extension requires a significant change in the sample values
at the boundaries, for example from the sample at k = N − 1 to the sample at k = N in
Figure 15.14. As in the case of the Fourier transform discussed in Chapter 13, this results in
an increase in the magnitude of the high-frequency coefficients. These coefficients will need
to be encoded, resulting in an expenditure of resources. If they are discarded, the result will
be distortion in the reconstructed image.

Instead of generating a periodic extension, we can mimic the approach we used for the
discrete cosine transform and generate a symmetric extension, as shown in Figure 15.15. In
this case, the sequence being filtered is periodic with period 2N so we cannot use the fact that
linear time-invariant filters preserve periodicity to reduce the number of output samples to N .
However, if the output of the filter is also symmetric, we can use the symmetry property to again
retain only N samples. This way we can retain the advantage of using the periodic extension
without the cost involved with the introduction of spurious high frequencies. Fortunately,
there are filters which will provide a symmetric output for a symmetric input. However, for an
FIR filter to provide a symmetric output it must itself be symmetric, which in turn means that
the filter has to have linear phase. Unfortunately, the only orthogonal wavelet that generates
a linear phase FIR filter is the Haar wavelet. If we examine our development of wavelet
decomposition we can see that we keep piling more and more requirements on the mother
wavelet. Both the analysis filters and both the synthesis filters are based on the same wavelet.
Now, in addition to the four filters, we want to add the requirement that the filters also have
linear phase. It seems reasonable that the wavelet cannot satisfy this additional constraint. In
order to generate linear-phase filters we need to relax some other constraint. The constraint
we relax is the requirement of orthogonality.

We relax the condition of orthogonality on a wavelet and its translates by, in a sense,
spreading this constraint over a broader set. Instead of requiring that the wavelet or scaling
functions be orthogonal to their translates, we require they be orthogonal to the translates of a
different separate set of wavelets.

522 15 W A V E L E T S

N1 2 3 4

xs,k

kN−1 2N−1

F I GUR E 15 . 15 Symmetric extension of the input sequence.

Let’s suppose we have a set of functions {gk(t)} that can be used to represent all functions
f (t) in some space V as

f (t) =
∑

k

ak gk(t) (91)

If the set {gk(t)} is orthonormal, we can obtain the coefficients a j by taking the inner product
of both sides of Equation (91) with g j (t):

〈 f (t), g j (t)〉 = 〈
∑

k

ak gk(t), g j (t)〉

Also,
〈gk(t), g j (t)〉 = δk, j

and
〈 f (t), g j (t)〉 = a j

This is the standard result we have used for finding various orthogonal representations. How-
ever, suppose we cannot impose an orthogonality condition on {gk(t)}. If we can find another
set of functions {g̃k(t)} such that

〈gk(t), g̃ j (t)〉 = δk, j

then taking the inner product of both sides of Equation (91) with g̃ j (t)we can find the coefficient
a j as

a j = 〈 f (t), g̃ j (t)〉 (92)

and we have a biorthogonal expansion instead of an orthogonal expansion. In the case of the
orthogonal expansion, the same set is used to provide both the analysis and the synthesis of the
function. If {gk(t)} is an orthogonal basis set, then the analysis equation for a function f (t) is
given by

a j = 〈 f (t), g j (t)〉 (93)

and the synthesis equation is given by

f (t) =
∑

k

ak gk(t)

15.7 Lifting 523

That is, both the analysis and synthesis functions are carried out using the same basis set. In
this case of the biorthogonal expansion, analysis and synthesis are carried out by dual basis
sets. In the development above, the synthesis is carried out using the set {gk(t)} as in Equation
(91) while the analysis is carried out using the set {g̃ j (t)} as in Equation (92).

In terms of wavelets, if we have a scaling function that satisfies the multiresolution analysis
equation

φ(t) =
∑

k

hk
√

2φ(2t − k)

and a dual set that also satisfies the MRA

φ̃(t) =
∑

k

h̃k
√

2φ̃(2t − k)

and the two sets {φ(t)} and {φ̃(t)} are orthogonal, that is

〈φ(t), φ̃(t − k)〉 = δ(k)
then we can obtain analysis filters from one set and synthesis filters from the other [212].

Because we do not have to obtain all four filters from the same mother wavelet or scaling
function, we have much more freedom in picking wavelets to use. In particular, we can find
scaling functions and wavelets with linear phase implementations.

15.7 Lifting

We have discussed the idea of wavelet decomposition mainly in terms of the separation of
signals in the frequency domain. The input signal, through appropriate use of filters based on
wavelets, gets decomposed into a low-frequency signal and a high-frequency signal. The low-
and high-frequency signals are then downsampled, encoded, and transmitted. The received
signal is decoded and upsampled, and the low- and high-frequency signals are recovered
using low- and high-frequency reconstruction filters. An alternative way of looking at the
decomposition is to view it on spatial, or temporal, terms. Frequency can be thought of as
a way to measure how fast a signal changes either in space or in time, and as we saw in
Chapter 11, the slowly changing components of a signal can be extracted through the use of
prediction. Thus, high frequencies correspond to less predictable components of the signal and
low frequencies correspond to more predictable components of the signal where the prediction
is based on spatial or temporal correlation. This fact is utilized in an efficient implementation
of wavelets developed by Wim Sweldens called lifting [213].

We began Chapter 14 on subband coding with a simple motivating example where we
separated a sequence into its even-indexed and odd-indexed components. We return to that
example again using different terminology to motivate our discussion of lifting. Consider the
system shown in Figure 15.16 where the box labeled Split breaks the incoming sequence into
the even- and odd-indexed sequences. At the decoder, the box Merge performs the opposite
function. If the sequence is relatively slow changing, we can reduce the data rate by predicting

524 15 W A V E L E T S

x

x
k Split

xk

xo,k

Merge

e,kx

xo,k

e,k

F I GUR E 15 . 16 Decomposing a sequence into its odd- and even-indexed
components.

P
xk Split

xk

xo,k

Merge

e,kx

xo,k

e,kx

P

F I GUR E 15 . 17 Generating the high-frequency difference sequence.

one sequence using the other. In this case, let’s use the even sequence to predict the odd
sequence as shown in Figure 15.17:

dk = xo,k − P({xe,k})
As long as the values of the sequences are preserved, the original sequence can be reconstructed
by reversing the operation at the encoder. If we have a good model for the signal, the prediction
residual {dn} will have a much smaller dynamic range than the original sequence {xo,n}. Let’s
suppose the input sequence is highly correlated. In this case, we can predict an odd-indexed
value by using the even-indexed neighbor,

dk = xo,k − xe,k

= x2k+1 − x2k

The magnitude of the {dk} values will depend on the linear correlation between the samples
of the original signal. We can see that the sequence {dk} corresponds, in some sense, to the
high-frequency component of the original sequence. The sequence {xe,k}, on the other hand, is
simply the sampled version of the original signal. Depending on the frequency content of the
original signal, this subsampling could lead to significant aliasing. We can try and reduce this
aliasing effect by attempting to preserve some of the statistical properties of the original signal.
The simplest thing is to preserve the average value of the sequence. We can do this by using
the odd values, or rather the residual of the odd-indexed values, to update the even-indexed
values as shown in Figure 15.18, where

sk = xe,k +U ({xo,k})

15.7 Lifting 525

k

x
k Split

xk

xo,k

Merge

e,kx

x o,k

e,kx

P UU P

d

s

k

F I GUR E 15 . 18 Decomposing a sequence using prediction and updating
operations.

Corresponding to the simple prediction operation we can create a simple update equation using
the weighted sum of the neighboring residual values:

sk = xe,k + αdk

We would like the sequence {sk} to have the same average value as the sequence {xk}. As there
are only half as many elements in the sequence {sk} as in the sequence {xk}, this means that

∑
k

sk = 1

2

∑
k

xk (94)

where the summation range for the right-hand sum is twice that of the left-hand sum. Substi-
tuting for sk we obtain ∑

k
sk =

∑
k

(
xe,k + αdk

)
=
∑

k

(x2k + α (x2k+1 − x2k))

= (1− α)
∑

k

x2k + α
∑

k

x2k+1

where we have ignored boundary effects. One way we can get this sum to satisfy Equation (94)
is to assume that the sum of the even-indexed components and the odd-indexed components
is the same. Therefore,

1− α = α = 1

2
Thus,

sk = xe,k + dk

2
(95)

= xe,k + x2k+1 − x2k

2
(96)

= x2k+1 + x2k

2
(97)

But this (within a scale factor) is simply the Haar wavelet expansion! The Haar wavelet ex-
pansion is such a simple expansion that this might seem like a rather small return for all this

526 15 W A V E L E T S

work, except for two factors. We developed this expansion without using any of the machinery
of wavelets, in fact without explicitly using the idea of the frequency domain. All the devel-
opment was in the spatial domain using spatial concepts like prediction. Secondly, we have
used very simple (the simplest) predictor and update operators. By using more complicated
predictors and update operators, we can get more sophisticated wavelet implementations.

Let’s use slightly more complicated prediction and update operators. Instead of using
single neighbor lets predict an odd-indexed value by using the the average of two even-indexed
neighbors:

dk = xo,k − xe,k + xe,k+1

2

= x2k+1 − x2k + x2k+2

2

Notice that if the input sequence corresponds to a linear or constant function, in other words
a polynomial of degree less than 2, the detail coefficients will all be zero.

For the corresponding update operator, let’s use the weighted sum of the residual neighbors:

sk = xe,k + α(dk−1 + dk)

To preserve the average value, we need to satisfy Equation (94):

∑
k
sk =

∑
k

(
xe,k + α(dk−1 + dk)

)

=
∑

k

(
x2k + α

(
x2k−1 − x2k−2 + x2k

2
+ x2k+1 − x2k + x2k+2

2

))

= (1− 2α)
∑

k

x2k + 2α
∑

k

x2k+1

Again, assuming that the sum of the even-indexed components and the odd-indexed compo-
nents are the same, we get

1− 2α = 2α = 1

2

which implies that α equals 1/4. Thus,

sk = xe,k + (dk−1 + dk)

4

This is an implementation of the Cohen-Daubechies-Feaveau (2,2) (CDF(2,2)) wavelet [213].
The numbers in parenthesis indicate the number of moments that are preserved in the update
step and the order of the input polynomial below which the detail coefficients will be zero. In
both of these examples we have used one prediction and one update step. In practice this is not
a restriction. We can use any number of update and prediction steps to implement more and
more sophisticated wavelet decompositions. An example that will be especially useful to us
in the next chapter is CDF(4,4) biorthogonal wavelets. This requires two prediction and two

15.8 Summary 527

T A B L E 15 . 7 Coefficients for the lifting
implementation of the
CDF(4,4) biorthogonal wavelet
decomposition [214].

α −1.58613432
β −0.052980118
γ 0.882911075
δ 0.443506852

update steps:

dk ← xo,k + α(xe,k + xe,k+1)

sk ← xe,k + β(dk−1 + dk)

dk ← dk + γ (sk + sk+1)

sk ← sk + δ(dk−1 + dk)

Here, we have used← instead of the equality sign to indicate that the computations are in-
place. The values of the coefficients needed to satisfy the moment preservation constraints are
given in Table 15.7. Unlike the previous case, in this example we also need to scale the two
sets of coefficients where the scaling factor is κ = 1.230174105. The detail coefficients are
divided by κ while the low-frequency coefficients are multiplied by κ .

As the decoder is a simple reversal of whatever is done at the encoder all we need to do
is to focus on either the analysis or synthesis steps. Daubechies and Swelden [214] provide a
step-by-step implementation of a general wavelet decomposition using a factorization of the
polyphase matrix described in Chapter 14.

Apart from a mechanism for generating new kinds of wavelets based on some very simple
steps, there are a number of benefits to lifting implementations. Lifting operations can provide
significant reductions in implementation complexity. Also, we can see that the lifting opera-
tions are being performed “in-place.” We do not need to store the values that occur earlier in
the lifting pipeline. This can result in a significant reduction in the amount of memory needed
for implementation. Finally, the use of the lifting approach provides us with a very concrete
way of looking at wavelet decompositions, which can lead to better insight and better designs.

15.8 Summary

In this chapter, we have introduced the concepts of wavelets and multiresolution analysis; and
we have seen how we can use wavelets to provide an efficient decomposition of signals prior
to compression. We have introduced the concept of biorthogonal wavelets, which significantly
enrich the choices we have for developing efficient wavelet decomposition approaches. We
have also described several ways of implementing wavelets, including the lifting approach,
which gives us a more physical feel for the process of wavelet decomposition. Wavelets and
their applications are currently areas of intensive research.

528 15 W A V E L E T S

Further Reading

1. There are a number of excellent introductory books on wavelets. One of the most ac-
cessible is Introduction to Wavelets and Wavelet Transforms—A Primer, by C.S. Burrus,
R.A. Gopinath, and H. Guo [212].

2. Probably the best mathematical source on wavelets is the book Ten Lectures on Wavelets,
by I. Daubechies [279].

3. There are a number of tutorials on wavelets available on the Internet. The best source
for all matters related to wavelets (and more) on the Internet is “The Wavelet Digest”
(<http://www.wavelet.org>). This site includes pointers to many other interesting and
useful sites dealing with different applications of wavelets.

15.9 Projects and Problems

1. In this problem we consider the boundary effects encountered when using the short-term
Fourier transform. Consider the signal

f (t) = sin(2t)

(a) Find the Fourier transform F(ω) of f (t).
(b) Find the STFT F1(ω) of f (t) using a rectangular window

g(t) =
{

1 −2 � t � 2
0 otherwise

for the interval [−2, 2].
(c) Find the STFT F2(ω) of f (t) using a window

g(t) =
{

1+ cos(π2 t) −2 � t � 2
0 otherwise

(d) Plot |F(ω)| , |F1(ω)|, and |F2(ω)|. Comment on the effect of using different window
functions.

2. For the function

f (t) =
{

1+ sin(2t) 0 � t � 1
sin(2t) otherwise

use the Haar wavelet to find and plot the coefficients {c j,k}, j = 0, 1, 2; k = 0, . . . , 10.

http://www.wavelet.org

16
Wavelet-Based Image Compression

16.1 Overview

I
n this chapter we examine the implementations of several wavelet-based im-
age compression schemes. We begin with the earliest, the embedded zerotree
wavelet coder, and then look at an image coder based on set partitioning, and
finally, we look at JPEG2000—the latest image compression standard.

16.2 Introduction

One of the most popular applications of wavelets has been image compression. The JPEG 2000
standard, which is increasingly becoming the compression method of choice for a wide range
of applications from compression of movies to compression of medical images, uses wavelets
instead of the discrete cosine transform (DCT) to perform decomposition of the image. During
our discussion, we have always referred to the signal to be decomposed as a one-dimensional
signal; however, images are two-dimensional signals. There are two approaches to the subband
decomposition of two-dimensional signals: using two-dimensional filters, or using separable
transforms that can be implemented using one-dimensional filters on the rows first and then on
the columns (or vice versa). Most approaches, including JPEG 2000, use the second approach.

In Figure 16.1 we show how an image can be decomposed using subband decomposition.
We begin with an N × M image. We filter each row and then downsample to obtain two
N × M

2 images. We then filter each column and subsample the filter output to obtain four
N
2 × M

2 images. Of the four subimages, the one obtained by low-pass filtering of the rows

Introduction to Data Compression. DOI: http://dx.doi.org/10.1016/B978-0-12-415796-5.00016-8
© 2012 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-415796-5.00016-8

530 16 W A V E L E T - B A S E D I M A G E C O M P R E S S I O N

a0
H0

H0

H1

2

2

2

LL N/2

N
M/2

M/2

N

M

x

LH

a1
H1

H0

H1

2

2

2

HL

HH

F I GUR E 16 . 1 Subband decomposition of an N×M image.

N/2 LL

M/2

LH

N/2 HL HH

M/2

F I GUR E 16 . 2 First-level decomposition.

and columns is referred to as the LL image; the one obtained by low-pass filtering of the rows
and high-pass filtering of the columns is referred to as the LH image; the one obtained by
high-pass filtering of the rows and low-pass filtering of the columns is called the HL image;
and the subimage obtained by high-pass filtering of both the rows and columns is referred to as
the HH image. This decomposition is sometimes represented as shown in Figure 16.2. Each
of the subimages obtained in this fashion can then be filtered and subsampled to obtain four
more subimages. This process can be continued until the desired subband structure is obtained.
Three popular structures are shown in Figure 16.3. In the structure in Figure 16.3(a), in each
step the LL subimage is further decomposed into four more subimages, resulting in a total of
thirteen subimages. This is one of the more popular decompositions.

Example 16 .2 .1 :

Let’s use the Daubechies wavelet filter to repeat what we did in Examples 14.12.2 and 14.12.3
using the Johnston and the Smith-Barnwell filters. If we use the 4-tap Daubechies filter, we
obtain the decomposition shown in Figure 16.4. Notice that even though we are only using a 4-
tap filter, we get results comparable to the 16-tap Johnston filter and the 8-tap Smith-Barnwell
filters.

16.2 Introduction 531

(a) (b) (c)

F I GUR E 16 . 3 Three popular subband structures.

F I GUR E 16 . 4 Decomposition of Sinan image using the four-tap Daubechies filter.

If we now encode this image at the rate of 0.5 bits per pixel, we get the reconstructed
image shown in Figure 16.5. Notice that the quality is comparable to that obtained using filters
requiring two or four times as much computation. �

In this example, we used a simple scalar quantizer for quantization of the coefficients.
However, if we use strategies that are motivated by the properties of the coefficients themselves,
we can obtain significant performance improvements. In the next sections, we examine two
popular quantization strategies developed specifically for wavelets.

532 16 W A V E L E T - B A S E D I M A G E C O M P R E S S I O N

F I GUR E 16 . 5 Reconstruction of Sinan image encoded using 0.5 bits per pixel and
the four-tap Daubechies filter.

16.3 Embedded Zerotree Coder

The embedded zerotree wavelet (EZW) coder was introduced by Shapiro [215]. It is a quan-
tization and coding strategy that incorporates some characteristics of the wavelet decomposi-
tion. Just as the quantization and coding approaches used in the JPEG standard, which were
motivated by the characteristics of the coefficients, were superior to the generic zonal cod-
ing algorithms, the EZW approach and its descendants significantly outperform some of the
generic approaches. The particular characteristic used by the EZW algorithm is that there are
wavelet coefficients in different subbands that represent the same spatial location in the image.
If the decomposition is such that the size of the different subbands is different (the first two
decompositions in Figure 16.3), then a single coefficient in the smaller subband may represent
the same spatial location as multiple coefficients in the other subbands.

In order to put our discussion on more solid ground, consider the ten-band decomposition
shown in Figure 16.6. The coefficient a in the upper-left corner of Band I represents the
same spatial location as coefficients a1 in Band II, a2 in Band III, and a3 in Band IV. In turn,
the coefficient a1 represents the same spatial location as coefficients a11, a12, a13, and a14
in Band V. Each of these pixels represents the same spatial location as four pixels in Band
VIII, and so on. In fact, we can visualize the relationships of these coefficients in the form
of a tree. The coefficient a forms the root of the tree with three descendants a1, a2, and a3.
The coefficient a1 has descendants a11, a12, a13, and a14. The coefficient a2 has descendants
a21, a22, a23, and a24, and the coefficient a3 has descendants a31, a32, a33, and a34. Each of
these coefficients in turn has four descendants, making a total of 64 coefficients in this tree. A
pictorial representation of the tree is shown in Figure 16.7.

16.3 Embedded Zerotree Coder 533

a

I II

III
IV

VI

VIII

XIX

V

VII

a1 a11 a12

a13 a14

a111 a112

a113 a114

a121 a122

a123 a124

a131 a132

a133 a134

a141 a142

a143 a144

a2 a3

F I GUR E 16 . 6 A ten-band wavelet decomposition.

Recall that when natural images are decomposed in this manner, most of the energy is
compacted into the lower bands. Thus, in many cases, the coefficients closer to the root of
the tree have higher magnitudes than coefficients further away from the root. This means that
often if a coefficient has a magnitude less than a given threshold, all its descendants will have
magnitudes less than that threshold. In a scalar quantizer, the outer levels of the quantizer
correspond to larger magnitudes. Consider the 3-bit quantizer shown in Figure 16.8. If we
determine that all coefficients arising from a particular root have magnitudes smaller than T0
and we inform the decoder of this situation, then for all coefficients in that tree we need only
use 2 bits per sample, while getting the same performance as we would have obtained using the
3-bit quantizer. If the binary coding scheme used in Figure 16.8 is used, in which the first bit
is the sign bit and the next bit is the most significant bit of the magnitude, then the information
that a set of coefficients has value less than T0 is the same as saying that the most significant
bit of the magnitude is 0. If there are N coefficients in the tree, this is a savings of N bits minus
however many bits are needed to inform the decoder of this situation.

534 16 W A V E L E T - B A S E D I M A G E C O M P R E S S I O N

a111

a11 a12

a1 a2

a

a3

a13 a14 a21 a22 a23 a24 a31 a32 a33 a34

a112 a113 a114 a121 a122 a123 a124 a131 a132 a133 a134 a141 a142 a143 a144

F I GUR E 16 . 7 Data structure used in the EZW coder.

100

000

001

010

011

101

110

111

−T0 T0

F I GUR E 16 . 8 A 3-bit midrise quantizer.

Before we describe the EZW algorithm, we need to introduce some terminology. Given
a threshold T, if a given coefficient has a magnitude greater than T, it is called a significant
coefficient at level T. If the magnitude of the coefficient is less than T (it is insignificant) and
all of its descendants have magnitudes less than T, then the coefficient is called a zerotree root.
Finally, it might happen that the coefficient itself is less than T, but some of its descendants
have a value greater than T. Such a coefficient is called an isolated zero.

The EZW algorithm is a multiple-pass algorithm with each pass consisting of two steps:
significance map encoding or the dominant pass, and refinement or the subordinate pass. If
cmax is the value of the largest coefficient, the initial value of the threshold T0 is given by

16.3 Embedded Zerotree Coder 535

−T

−1.5 T

T

1.5 T

F I GUR E 16 . 9 A three-level midtread quantizer.

T0 = 2�log2 cmax� (1)
This selection guarantees that the largest coefficient will lie in the interval [T0, 2T0). In each
pass, the threshold Ti is reduced to half the value it had in the previous pass:

Ti = 1

2
Ti−1 (2)

For a given value of Ti , we assign one of four possible labels to the coefficients: significant
positive (sp), significant negative (sn), zerotree root (zr), and isolated zero (iz). If we use a
fixed-length code, we need 2 bits to represent each of the labels. Note that when a coefficient
is labeled a zerotree root, we do not need to label its descendants. This assignment is referred
to as significance map coding.

We can view the significance map coding in part as quantization using a three-level midtread
quantizer. This situation is shown in Figure 16.9. The coefficients labeled significant are simply
those that fall in the outer levels of the quantizer and are assigned an initial reconstructed
value of 1.5Ti or −1.5Ti , depending on whether the coefficient is positive or negative. Note
that selecting Ti according to (1) and (2) guarantees the significant coefficients will lie in
the interval [T, 2T]. Once a determination of significance has been made, the significant
coefficients are included in a list for further refinement in the refinement or subordinate passes.
In the refinement pass, we determine whether the coefficient lies in the upper or lower half
of the interval [T, 2T]. In successive refinement passes, as the value of T is reduced, the
interval containing the significant coefficient is narrowed still further and the reconstruction is
updated accordingly. An easy way to perform the refinement is to take the difference between
the coefficient value and its reconstruction and quantize it using a two-level quantizer with
reconstruction values±T/4. This quantized value is then added on to the current reconstruction
value as a correction term.

536 16 W A V E L E T - B A S E D I M A G E C O M P R E S S I O N

F I GUR E 16 . 10 Scanning of wavelet coefficients for encoding using the EZW
algorithm.

The wavelet coefficients not previously determined to be significant are scanned in the
manner depicted in Figure 16.10, with each parent node in a tree scanned before its offspring.
This makes sense because if the parent is determined to be a zerotree root, we would not need
to encode the offspring.

Although this may sound confusing, in order to see how simple the encoding procedure
actually is, let’s use an example.

Example 16 .3 .1 :

Let’s use the following seven-level decomposition to demonstrate the various steps of EZW:

26 6 13 10

− 7 7 6 4

4 − 4 4 − 3

2 − 2 − 2 0

To obtain the initial threshold value T0, we find the maximum magnitude coefficient, which in
this case is 26. Then

T0 = 2�log2 26� = 16

16.3 Embedded Zerotree Coder 537

Comparing the coefficients against 16, we find 26 is greater than 16 so we send sp. The next
coefficient in the scan is 6, which is less than 16. Furthermore, its descendants (13, 10, 6, and
4) are all less than 16. Therefore, 6 is a zerotree root, and we encode this entire set with the
label zr. The next coefficient in the scan is −7, which is also a zerotree root, as is 7, the final
element in the scan. We do not need to encode the rest of the coefficients separately because
they have already been encoded as part of the various zerotrees. The sequence of labels to be
transmitted at this point is

sp zr zr zr

Since each label requires 2 bits (for fixed-length encoding), we have used up 8 bits from
our bit budget. The only significant coefficient in this pass is the coefficient with a value
of 26. We include this coefficient in our list to be refined in the subordinate pass. Calling the
subordinate list L S , we have

L S = {26}

The reconstructed value of this coefficient is 1.5T0 = 24, and the reconstructed bands look
like this:

24 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

The next step is the subordinate pass, in which we obtain a correction term for the recon-
struction value of the significant coefficients. In this case, the list L S contains only one element.
The difference between this element and its reconstructed value is 26 − 24 = 2. Quantizing
this with a two-level quantizer with reconstruction levels ±T0/4, we obtain a correction term
of 4. Thus, the reconstruction becomes 24+4=28. Transmitting the correction term costs a
single bit, therefore at the end of the first pass we have used up 9 bits. Using only these 9 bits,
we obtain the following reconstruction:

28 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

We now reduce the value of the threshold by a factor of two and repeat the process. The
value of T1 is 8. We rescan the coefficients that have not yet been deemed significant. To
emphasize the fact that we do not consider the coefficients that have been deemed significant

538 16 W A V E L E T - B A S E D I M A G E C O M P R E S S I O N

in the previous pass, we replace them with �:

6 1 3 10

− 7 7 6 4

4 − 4 4 − 3

2 − 2 − 2 0

The first coefficient we encounter has a value of 6. This is less than the threshold value of
8; however, the descendants of this coefficient include coefficients with values of 13 and 10.
Therefore, this coefficient cannot be classified as a zerotree root. This is an example of what
we defined as an isolated zero. The next two coefficients in the scan are −7 and 7. Both of
these coefficients have magnitudes less than the threshold value of 8. Furthermore, all of their
descendants also have magnitudes less than 8. Therefore, these two coefficients are coded as
zr. The next two elements in the scan are 13 and 10, which are both coded as sp. The final
two elements in the scan are 6 and 4. These are both less than the threshold, but they do not
have any descendants. We code these coefficients as iz. Thus, this dominant pass is coded as

i z zr zr sp sp i z i z

which requires 14 bits, bringing the total number of bits used to 23. The significant coefficients
are reconstructed with values 1.5T1 = 12. Thus, the reconstruction at this point is

28 0 12 12

0 0 0 0

0 0 0 0

0 0 0 0

We add the new significant coefficients to the subordinate list:

L S = {26, 13, 10}
In the subordinate pass, we take the difference between the coefficients and their recon-

structions and quantize these to obtain the correction or refinement values for these coefficients.
The possible values for the correction terms are ±T1/4 = ±2:

26− 28 = −2⇒ Correction term = −2

13− 12 = 1⇒ Correction term = 2 (3)
10− 12 = −2⇒ Correction term = −2

16.3 Embedded Zerotree Coder 539

Each correction requires a single bit, bringing the total number of bits used to 26.
With these corrections, the reconstruction at this stage is

26 0 14 10

0 0 0 0

0 0 0 0

0 0 0 0

If we go through one more pass, we reduce the threshold value to 4. The coefficients to be
scanned are

6

− 7 7 6 4

4 − 4 4 − 3

2 − 2 − 2 0

The dominant pass results in the following coded sequence:

sp sn sp sp sp sp sn i z i z sp i z i z i z

This pass cost 26 bits, equal to the total number of bits used previous to this pass. The
reconstruction upon decoding of the dominant pass is

26 6 14 10

−6 6 6 6

6 −6 6 0

0 0 0 0

The subordinate list is

L S = {26, 13, 10, 6− 7, 7, 6, 4, 4,−4, 4}
By now it should be reasonably clear how the algorithm works. We continue encoding

until we have exhausted our bit budget or until some other criterion is satisfied. �

There are several observations we can make from this example. Notice that the encoding
process is geared to provide the most bang for the bit at each step. At each step the bits are used
to provide the maximum reduction in the reconstruction error. If at any time the encoding is
interrupted, the reconstruction using this (interrupted) encoding is the best that the algorithm
can provide using this many bits. The encoding improves as more bits are transmitted. This

540 16 W A V E L E T - B A S E D I M A G E C O M P R E S S I O N

form of coding is called embedded coding. In order to enhance this aspect of the algorithm,
we can also sort the subordinate list at the end of each pass using information available to both
encoder and decoder. This increases the likelihood of larger coefficients being encoded first,
thus providing for a greater reduction in the reconstruction error.

Finally, in the example we determined the number of bits used by assuming fixed-length
encoding. In practice, arithmetic coding is used, providing a further reduction in rate.

16.4 Set Partitioning in Hierarchical Trees

The SPIHT (Set Partitioning in Hierarchical Trees) algorithm is a generalization of the EZW
algorithm and was proposed by Amir Said and William Pearlman [216]. Recall that in EZW we
transmit a lot of information for little cost when we declare an entire subtree to be insignificant
and represent all the coefficients in it with a zerotree root label zr. The SPIHT algorithm uses a
partitioning of the trees (which in SPIHT are called spatial orientation trees) in a manner that
tends to keep insignificant coefficients together in larger subsets. The partitioning decisions
are binary decisions that are transmitted to the decoder, providing a significance map encoding
that is more efficient than EZW. In fact, the efficiency of the significance map encoding in
SPIHT is such that arithmetic coding of the binary decisions provides very little gain. The
thresholds used for checking significance are powers of two, so in essence the SPIHT algorithm
sends the binary representation of the integer value of the wavelet coefficients. As in EZW, the
significance map encoding, or set partitioning and ordering step, is followed by a refinement
step in which the representations of the significant coefficients are refined.

Let’s briefly describe the algorithm and then look at some examples of its operation.
However, before we do that we need to get familiar with some notation. The data structure
used by the SPIHT algorithm is similar to that used by the EZW algorithm—although not
the same. The wavelet coefficients are again divided into trees originating from the lowest
resolution band (Band I in our case). The coefficients are grouped into 2×2 arrays that, except
for the coefficients in Band I, are offsprings of a coefficient of a lower resolution band. The
coefficients in the lowest resolution band are also divided into 2× 2 arrays. However, unlike
the EZW case, all but one of them are root nodes. The coefficient in the top-left corner of the
array does not have any offsprings. The data structure is shown pictorially in Figure 16.11 for
a seven-band decomposition.

The trees are further partitioned into four types of sets, which are sets of coordinates of the
coefficients:

� O(i, j) This is the set of coordinates of the offsprings of the wavelet coefficient at location
(i, j). As each node can either have four offsprings or none, the size of O(i, j) is either
zero or four. For example, in Figure 16.11 the set O(0, 1) consists of the coordinates of
the coefficients b1, b2, b3, and b4.

� D(i, j) This is the set of all descendants of the coefficient at location (i, j). De-
scendants include the offsprings, the offsprings of the offsprings, and so on. For ex-
ample, in Figure 16.11 the set D(0, 1) consists of the coordinates of the coefficients
b1, . . . , b4, b11, . . . , b14, . . . , b44. Because the number of offsprings can either be zero

16.4 Set Partitioning in Hierarchical Trees 541

III

IV

I

II

V

VIIVI

b1 b2

b3 b4

b11 b12

b13 b14

b21 b22

b23 b24

b31 b32

b33 b34

b41 b42

b43 b44

a b

d c

F I GUR E 16 . 11 Data structure used in the SPIHT algorithm.

or four, the size of D(i, j) is either zero or a sum of powers of four.

� H This is the set of all root nodes—essentially Band I in the case of Figure 16.11.

� L(i, j) This is the set of coordinates of all the descendants of the coefficient at location
(i, j) except for the immediate offsprings of the coefficient at location (i, j). In other
words,

L(i, j) = D(i, j)−O(i, j)

In Figure 16.11 the set L(0, 1) consists of the coordinates of the coefficients
b11, . . . , b14, . . . , b44.

A set D(i, j) or L(i, j) is said to be significant if any coefficient in the set has a magnitude
greater than the threshold. Finally, thresholds used for checking significance are powers of
two, so in essence the SPIHT algorithm sends the binary representation of the integer value of

542 16 W A V E L E T - B A S E D I M A G E C O M P R E S S I O N

the wavelet coefficients. The bits are numbered with the least significant bit being the zeroth
bit, the next bit being the first significant bit, and the kth bit being referred to as the k− 1 most
significant bit.

With these definitions under our belt, let us now describe the algorithm. The algo-
rithm makes use of three lists: the list of insignificant pixels (LIP), the list of significant
pixels (LSP), and the list of insignificant sets (LIS). The LSP and LIP will contain the co-
ordinates of coefficients, while the LIS will contain the coordinates of the roots of sets of
type D or L. We start by determining the initial value of the threshold. We do this by
calculating

n = �log2 cmax�
where cmax is the maximum magnitude of the coefficients to be encoded. The LIP is initialized
with set H. Those elements of H that have descendants are also placed in the LIS as type D
entries. The LSP is initially empty.

In each pass, we will first process the members of the LIP, then the members of the LIS.
This is essentially the significance map encoding step. We then process the elements of the
LSP in the refinement step.

We begin by examining each coordinate contained in the LIP. If the coefficient at that
coordinate is significant (that is, it is greater than 2n), we transmit a 1 followed by a bit
representing the sign of the coefficient (we will assume 1 for positive, 0 for negative). We
then move that coefficient to the LSP. If the coefficient at that coordinate is not significant, we
transmit a 0.

After examining each coordinate in the LIP, we begin examining the sets in the LIS. If
the set at the coordinate (i, j) is not significant, we transmit a 0. If the set is significant, we
transmit a 1. What we do after that depends on whether the set is of type D or L.

If the set is of type D, we check each of the offsprings of the coefficient at that coordinate.
In other words, we check the four coefficients whose coordinates are in O(i, j). For each
coefficient that is significant, we transmit a 1, the sign of the coefficient, and then move the
coefficient to the LSP. For the rest we transmit a 0 and add their coordinates to the LIP. Now
that we have removed the coordinates of O(i, j) from the set, what is left is simply set L(i, j).
If this set is not empty, we move it to the end of the LIS and mark it to be of type L. Note that
this new entry into the LIS has to be examined during this pass. If the set is empty, we remove
the coordinate i, j from the list.

If the set is of type L, we add each coordinate in O(i, j) to the end of the LIS as the root
of a set of type D. Again, note that these new entries in the LIS have to be examined during
this pass. We then remove (i, j) from the LIS.

Once we have processed each of the sets in the LIS (including the newly formed ones),
we proceed to the refinement step. In the refinement step we examine each coefficient that
was in the LSP prior to the current pass and output the nth most significant bit of

∣∣ci, j
∣∣. We

ignore the coefficients that have been added to the list in this pass because, by declaring them
significant at this particular level, we have already informed the decoder of the value of the
nth most significant bit.

This completes one pass. Depending on the availability of more bits or external factors,
if we decide to continue with the coding process, we decrement n by one and continue. Let’s
see the functioning of this algorithm in an example.

16.4 Set Partitioning in Hierarchical Trees 543

Example 16 .4 .1 :

Let’s use the same example we used for demonstrating the EZW algorithm:

26 6 1 3 10

− 7 7 6 4

4 − 4 4 − 3

2 − 2 − 2 0

We will go through three passes at the encoder and generate the transmitted bitstream, then
decode this bitstream.

First Pass The value for n in this case is 4. The three lists at the encoder are

LIP : {(0, 0)→ 26, (0, 1)→ 6, (1, 0)→−7, (1, 1)→ 7}
LIS : {(0, 1)D, (1, 0)D, (1, 1)D}
LSP : {}

In the listing for the LIP, we have included the arrows to make it easier to follow the example.
Beginning our algorithm, we examine the contents of the LIP. The coefficient at location (0, 0)
is greater than 16. In other words, it is significant; therefore, we transmit a 1, then a 0 to indicate
the coefficient is positive and move the coordinate to the LSP. The next three coefficients are
all insignificant at this value of the threshold; therefore, we transmit a 0 for each coefficient
and leave them in the LIP. The next step is to examine the contents of the LIS. Looking at the
descendants of the coefficient at location (0, 1) (13, 10, 6, and 4), we see that none of them are
significant at this value of the threshold so we transmit a 0. Looking at the descendants of c10
and c11, we can see that none of these are significant at this value of the threshold. Therefore,
we transmit a 0 for each set. As this is the first pass, there are no elements from the previous
pass in the LSP; therefore, we do not do anything in the refinement pass. We have transmitted
a total of 8 bits at the end of this pass (10000000), and the situation of the three lists is as
follows:

LIP : {(0, 1)→ 6, (1, 0)→−7, (1, 1)→ 7}
LIS : {(0, 1)D, (1, 0)D, (1, 1)D}
LSP : {(0, 0)→ 26}

Second Pass For the second pass we decrement n by 1 to 3, which corresponds to a threshold
value of 8. Again, we begin our pass by examining the contents of the LIP. There are three
elements in the LIP. Each is insignificant at this threshold so we transmit three 0s. The next
step is to examine the contents of the LIS. The first element of the LIS is the set containing
the descendants of the coefficient at location (0, 1). Of this set, both 13 and 10 are significant
at this value of the threshold; in other words, the set D(0, 1) is significant. We signal this by
sending a 1 and examine the offsprings of c01. The first offspring has a value of 13, which

544 16 W A V E L E T - B A S E D I M A G E C O M P R E S S I O N

is significant and positive, so we send a 1 followed by a 0. The same is true for the second
offspring, which has a value of 10. So we send another 1 followed by a 0. We move the
coordinates of these two to the LSP. The next two offsprings are both insignificant at this level;
therefore, we move these to the LIP and transmit a 0 for each. As L(0, 1) = {}, we remove
(0, 1)D from the LIS. Looking at the other elements of the LIS, we can clearly see that both of
these are insignificant at this level; therefore, we send a 0 for each. In the refinement pass we
examine the contents of the LSP from the previous pass. There is only one element in there
that is not from the current sorting pass, and it has a value of 26. The third MSB of 26 is 1;
therefore, we transmit a 1 and complete this pass. In the second pass we have transmitted 13
bits: 0001101000001. The condition of the lists at the end of the second pass is as follows:

LIP : {(0, 1)→ 6, (1, 0)→−7, (1, 1)→ 7, (1, 2)→ 6, (1, 3)→ 4}
LIS : {(1, 0)D, (1, 1)D}
LSP : {(0, 0)→ 26, (0, 2)→ 13, (0, 3)→ 10}

Third Pass The third pass proceeds with n = 2. As the threshold is now smaller, there
are significantly more coefficients that are deemed significant, and we end up sending 26
bits. You can easily verify for yourself that the transmitted bitstream for the third pass is
10111010101101100110000010. The condition of the lists at the end of the third pass is as
follows:

LIP : {(3, 0)→ 2, (3, 1)→−2, (2, 3)→−3, (3, 2)→−2, (3, 3)→ 0}
LIS : {}
LSP : {(0, 0)→ 26, (0, 2)→ 13, (0, 3)→ 10, (0, 1)→ 6, (1, 0)→−7, (1, 1)→ 7,

(1, 2)→ 6, (1, 3)→ 4, (2, 0)→ 4, (2, 1)→−4, (2, 2)→ 4}

Now for decoding this sequence. At the decoder we also start out with the same lists as
the encoder:

LIP : {(0, 0), (0, 1), (1, 0), (1, 1)}
LIS : {(0, 1)D, (1, 0)D, (1, 1)D}
LSP : {}

We assume that the initial value of n is transmitted to the decoder. This allows us to set the
threshold value at 16. Upon receiving the results of the first pass (10000000), we can see that
the first element of the LIP is significant and positive and no other coefficient is significant
at this level. Using the same reconstruction procedure as in EZW, we can reconstruct the
coefficients at this stage as

16.4 Set Partitioning in Hierarchical Trees 545

24 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

and, following the same procedure as at the encoder, the lists can be updated as

LIP : {(0, 1), (1, 0), (1, 1)}
LIS : {(0, 1)D, (1, 0)D, (1, 1)D}
LSP : {(0, 0)}

For the second pass we decrement n by one and examine the transmitted bitstream:
0001101000001. Since the first 3 bits are 0 and there are only three entries in the LIP, all
of the entries in the LIP are still insignificant. The next 9 bits give us information about the
sets in the LIS. The fourth bit of the received bitstream is 1. This means that the set with root at
coordinate (0,1) is significant. Since this set is of type D, the next bits relate to its offsprings.
The 101000 sequence indicates that the first two offsprings are significant at this level and
positive and the last two are insignificant. Therefore, we move the first two offsprings to the
LSP and the last two to the LIP. We can also approximate these two significant coefficients
in our reconstruction by 1.5 × 23 = 12. We also remove (0, 1)D from the LIS. The next
two bits are both 0, indicating that the two remaining sets are still insignificant. The final bit
corresponds to the refinement pass. It is a 1, so we update the reconstruction of the (0, 0)
coefficient to 24+ 8/2 = 28. The reconstruction at this stage is

28 0 12 12

0 0 0 0

0 0 0 0

0 0 0 0

and the lists are as follows:

LIP : {(0, 1), (1, 0), (1, 1), (1, 2), (1, 3)}
LIS : {(1, 0)D, (1, 1)D}
LSP : {(0, 0), (0, 2), (0, 3)}

For the third pass, we again decrement n, which is now 2, giving a threshold value of 4.
Decoding the bitstream generated during the third pass (10111010101101100110000010), we

546 16 W A V E L E T - B A S E D I M A G E C O M P R E S S I O N

F I GUR E 16 . 12 Reconstruction of Sinan image encoded using SPIHT at 0.5 bits per
pixel.

update our reconstruction to

26 6 1 4 10

− 6 6 6 6

6 − 6 6 0

0 0 0 0

and our lists become

LIP : {3, 0), (3, 1)}
LIS : {}
LSP : {(0, 0), (0, 2), (0, 3), (0, 1), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (3, 2)}

At this stage, we do not have any sets left in the LIS, and we simply update the values of the
coefficients. �

Finally, let’s look at an example of an image coded using SPIHT. The image shown in
Figure 16.12 is the reconstruction obtained from a compressed representation that used 0.5
bits per pixel. (The programs used to generate this image were obtained from the authors.)
Comparing this with Figure 16.5, we can see a definite improvement in the quality.

16.5 JPEG 2000 547

Control

Component
Color

Transform
Tiling Tier I

Coder
Wavelet

Transform Quantization Coder
Tier II

Rate

F I GUR E 16 . 13 A block diagram for the JPEG2000 algorithm.

Wavelet decomposition has been finding its way into various standards. The earliest ex-
ample was the FBI fingerprint image compression standard. The latest is the increasingly
dominant image compression standard developed by the JPEG committee, commonly referred
to as JPEG 2000.

16.5 JPEG 2000

The JPEG standard provides excellent performance at rates above 0.25 bits per pixel. However,
at lower rates there is a sharp degradation in the quality of the reconstructed image. To correct
this and other shortcomings, the JPEG committee developed another standard, commonly
known as JPEG2000. The JPEG2000 standard is based on wavelet decomposition. The
standard has multiple parts dealing with a variety of applications, from basic image compression
to volumetric imaging and wireless applications. In this section we will look at Part 1 of the
standard, which deals with the basic image compression algorithm.

A block diagram of the JPEG 2000 algorithm is shown in Figure 16.13.
The coding is based on a scheme originally proposed by Taubman [217] and Taubman and

Zakhor [218] known as EBCOT. The acronym EBCOT stands for “Embedded Block Coding
with Optimized Truncation,” which nicely summarizes the technique. It is a block coding
scheme that generates an embedded bitstream. The block coding is independently performed
on nonoverlapping blocks within individual subbands. Within a subband all blocks that do not
lie on the right or lower boundaries are required to have the same dimensions. A dimension
cannot exceed 256.

Embedding and independent block coding seem inherently contradictory. The way EBCOT
resolves this contradiction is to organize the bitstream in a succession of layers. Each layer
corresponds to a certain distortion level. Within each layer, each block is coded with a variable
number of bits (which could be zero). Rate control is obtained using a Lagrangian optimiza-
tion, called Post Compression Rate Distortion (PCRD) optimization, that makes use of the
partitioning or truncation points that are part of the EBCOT algorithm. The quality of the
reproduction is proportional to the numbers of layers received. It should be noted that PCRD
is not required by the standard.

In the following, we briefly describe each of these blocks in the JPEG 2000 block diagram.
We will pay particular attention to the process of generating an embedded bitstream for a code-
block. We then give a brief overview of the PCRD optimization used to obtain the quality

548 16 W A V E L E T - B A S E D I M A G E C O M P R E S S I O N

layers. Finally we discuss the way all of this comes together to generate the JPEG 2000
bitstream. As with all standards, this is necessarily an overview with the details left to the
standards documents themselves. The book by Taubman and Marcellin [220] also provides a
detailed description of the JPEG 2000 algorithm.

16.5.1 Color Component Transform

The JPEG 2000 standard assumes the existence of multiple components in an image. These
are likely color components though the standard does not require this. To improve the com-
pression efficiency the standard provides the option of transforming the components. Prior
to transformation, as in the JPEG standard, if the samples of the image are unsigned they are
level-shifted by 2B−1 where B is the number of bits per sample used for each component of a
pixel. There are two transformations available: a reversible component transform (RCT) that
allows for lossless recovery of the original samples, and an irreversible component transform
(ICT) that provides no such guarantee. Both transformations can be viewed as a means of
going from red-green-blue components to a luminance and two chrominance components.

Referring to the three (level-shifted) components of the image by I0, I1, and I2 the forward
reversible transform is given by

Y0(x, y) =
⌊

I0(x, y)+ 2I1(x, y)+ I2(x, y)

4

⌋
Y1(x, y) = I2(x, y)− I1(x, y)

Y2(x, y) = I0(x, y)− I1(x, y)

where Y0 corresponds to the luminance component and Y1 and Y2 represent the chrominance
components.

The inverse RCT can be derived as

I1(x, y) = Y0(x, y)−
⌊

Y1(x, y)+ Y2(x, y)

4

⌋
I0(x, y) = Y2(x, y)+ I1(x, y)

I2(x, y) = Y1(x, y)+ I1(x, y)

Where loss of information is acceptable the JPEG 2000 standard uses an irreversible trans-
formation to go from what is probably, though not necessarily, the red, green, and blue compo-
nents to the luminance and chrominance components using the ICT. The forward ICT is given
by

Y0(x, y) = 0.299I0(x, y)+ 0.587I1(x, y)+ 0.144I2(x, y)

Y1(x, y) = −0.16875I0(x, y)− 0.33126I1(x, y)+ 0.5I2(x, y)

Y2(x, y) = 0.5I0(x, y)− 0.41869I1(x, y)− 0.08131I2(x, y)

16.5 JPEG 2000 549

YT
si

z
T5

T10 T11 T12 T13 T14

T15 T17

T0 T1 T2 T3 T4

T6 T7 T8 T9

T16 T18 T19

XTsiz

Tile index number(XTOsiz,YTOsiz)

YT
O

si
z

XTOsiz

F I GUR E 16 . 14 Position of tiles with respect to a high-resolution reference grid
[219].

The inverse ICT is given by

I0(x, y) = Y0(x, y)+ 1.402Y2(x, y)

I1(x, y) = Y0(x, y)− 0.34413Y1(x, y)− 0.71414Y2(x, y)

I2(x, y) = Y0(x, y)+ 1.772Y1(x, y)

16.5.2 Tiling

One of the major strengths of the JPEG 2000 standard is its flexibility. The standard allows
multiple resolutions, multiple levels of quality, and the ability for region-of-interest encod-
ing and multiple access. The latter attributes are made available through options for spatial
partitioning of the image. Tiles are rectangular partitions of the image, defined with respect
to a high-resolution grid, which are coded independently allowing for random access as well
as editing functions such as cropping. The tile components at each resolution can be further
partitioned into precincts that allow for a much more complete random access capability. The
relationships of the tile parameters with respect to the high-resolution grid can be seen in
Figure 16.14. We will describe how the various parameters shown in Figure 16.14 are encoded
in the bitstream in Section 16.5.7.

16.5.3 Wavelet Transform

There are two types of wavelet filters that are included in the standard. One type consists
of filters that generate integer coefficients; this type is particularly useful when the wavelet
decomposition is part of a lossless compression scheme as it makes the wavelet transform
lossless. This decomposition is referred to as the reversible transform. The low-pass filter in
the reversible transform contains five coefficients while the high-pass filter impulse response

550 16 W A V E L E T - B A S E D I M A G E C O M P R E S S I O N

T A B L E 16 . 1 Filter coefficients for the
reversible transform.

Low-Pass Filter

k hk
0 3

4

±1 1
4

±2 − 1
8

High-Pass Filter
k hk
0 1
±1 − 1

2

T A B L E 16 . 2 Filter coefficients for the 9/7
ireversible transform.

Low-Pass Filter

k hk
0 0.602949018236
±1 0.266864118443
±2 −0.078223266529
±3 −0.016864118443
±4 0.026748757411

High-pass filter
k hk
0 0.557543526229
±1 −0.29635881557
±2 −0.028771763114
±3 0.045635881557

contains three nonzero coefficients. Because of this the filter is also referred to as the (5,3)
filter. The coefficients are given in Table 16.1. Notice that the filters are symmetric, which
means they have linear phase. This in turn means that we can use them without any coefficient
expansion. This filter can be implemented using lifting. The lifting procedure consists of one
prediction and one update step. Using the terminology of the previous chapter, these are given
by

dk = x2k+1 −
⌊

x2k + x2k+2

2

⌋
and

sk = x2k+2 +
⌊

dk−1 + dk + 2

4

⌋

The irreversible wavelet transform is the CDF(4,4) transform described in the previous
chapter. We have already given the lifting implementation of this wavelet. The corresponding
filters are given in Table 16.2. The filter again is symmetric and because the analysis filters
contain nine and seven coefficients it is known as the 9/7 transform.

16.5 JPEG 2000 551

msb0 0 0 0

0 0

0 0

0

0

0

00 0

11

1

1

1

1 0

0

1 1 1

1 1

1

1 1

0 1 1 10 0

2 −5 −2 5 6 29 −20

Sign bit

F I GUR E 16 . 15 Embedded coding of quantization values 2, −5, −25, 6, 29,
and −20.

16.5.4 Quantization

The coefficients are quantized using a midtread quantizer in which the step-sizes are uni-
form except for the middle step size, which is twice the size. The quantization index can be
generated as

qb(u, v) = sign (ab(u, v)) � |ab(u, v)|
�b

��b

where ab(u, v) is the coefficient at location (u, v) in subband b,�b is the step size, and
qb(u, v) is the quantization index. The reconstructed value âb(u, v) can be obtained from the
quantization index by

âb(u, v) = (qb(u, v)+ δb)

where δb can take on a value in the interval [0, 1) and is usually taken to be 0.5 [220]. The
quantized values are encoded in an embedded manner as shown in Figure 16.15.

The assumption implicit in the example in Figure 16.15 is that the highest resolution or
depth is five. The value of�b is 1. The encoder scans the most significant bit of each quantized
value, then the next most significant bit, and so on. When a quantized value first becomes
significant, the encoder encodes a sign bit. Truncating the bitstream is effectively equivalent
to multiplying the step size by 2discard where discard is the number of bitplanes discarded. In
this example, if we truncated the bitstream after the first two rows, we would obtain quantized
values of 0, 0, −24, 0, 24, and −16. As we are discarding three bitplanes these would be the
results one would expect with �b = 8.

552 16 W A V E L E T - B A S E D I M A G E C O M P R E S S I O N

16.5.5 Tier I Coding

Block Coding

The EBCOT algorithm is a bitplane coder that independently encodes the bitplanes of the
coefficients in a code-block in multiple passes. Each code-block is first divided into subblocks.
For each bitplane the subblocks that contain any coefficients that are significant at that level
are deemed to be significant subblocks. A coefficient ci j is said to be significant at level
n if

∣∣ci j
∣∣ � 2n . If we denote the significance of a subblock Bi at level n by σ n(Bi), then

σ n(Bi) = 1 if there is a coefficient ci j in the block with a magnitude greater than or equal to
2n , otherwise σ n(Bi) = 0. These significance values are encoded using a quad-tree structure.
The subblocks are identified with leaf nodes. Four neighboring subblocks are viewed as
offsprings of an internal node that corresponds to the union of the four subblocks. These
are, in turn, organized into sets of 2 × 2 quads, and so on. A node in this tree is said to be
significant at level n if any of its descendants are significant at that level. The significant values
of the nodes starting from the root node are encoded using an MQ coder with equiprobable
contexts. The significance values that can be inferred from previously encoded significance
values are not encoded. For example, if the significance value of the parent code is 0 then the
significance values of all of the descendants are also going to be zero and, therefore, are not
encoded. Similarly, if a node of the tree has been encoded as significant at a higher level then it
is clearly significant at the lower level and, therefore, does not need to be encoded. Finally, if a
quad is declared to be significant and three of its descendants have been coded as insignificant,
then the fourth descendant is clearly significant and, therefore, the significance value for this
descendant does not need to be encoded.

Each bitplane is encoded in three passes, namely, the significance propagation pass, the
magnitude refinement pass, and the cleanup pass. In each pass the coefficients are encoded
using either a zero-coding mode or a run-length mode. The first time a coefficient becomes
significant, the encoder encodes its sign using a predictive coding approach. The results of the
passes are encoded using an MQ coder (described in Chapter 4) with 18 different contexts.
Nine of these contexts are used in the zero-coding mode, five are used for sign coding, three are
used for magnitude refinement, and one is used for run-length coding. Each bit in a bitplane
is encoded only once.

In the significance propagation pass, only the zero-coding mode is used. The nine zero-
coding contexts are obtained by looking at the significance value of the two horizontal, two
vertical, and four diagonal neighbors of the coefficient being encoded. The rule for context
determination is shown in Table 16.3. Only coefficients with known significant neighbors are
encoded in this pass. The idea is that neighbors of coefficients that were declared significant
in previous bitplanes are most likely to become significant in subsequent bitplanes. Each
coefficient with significant neighbors is encoded as either significant or insignificant in the
appropriate context as determined by the rule in Table 16.3. If the coefficient is encoded as
significant the significance status of the coefficient is followed by the sign of the bit. The sign
is encoded as a prediction residual. The prediction for the sign is generated using the sign of
the two horizontal and the two vertical neighbors. The sign of the two horizontal neighbors
and the two vertical neighbors are each encoded into a single value sx (where x is either h for

16.5 JPEG 2000 553

T A B L E 16 . 3 Context determination for the zero-coding
mode.

LL & LH HL HH Context
σh σv σd σh σv σd σd σh+v
0 0 0 0 0 0 0 0 ZC0
0 0 1 0 0 1 0 1 ZC1
0 0 � 2 0 0 � 2 0 � 2 ZC2
0 1 x 1 0 x 1 0 ZC3
0 2 x 2 0 x 1 1 ZC4
1 0 0 0 1 0 1 � 2 ZC5
1 0 � 1 0 1 � 1 2 0 ZC6
1 � 1 x � 1 1 x 2 � 1 ZC1
2 x x x 2 x � 3 x ZC1

T A B L E 16 . 4 Prediction and context generation for the
sign coding process.

sh sv Context Prediction
1 1 SC4 1
1 0 SC3 1
1 −1 SC2 1
0 1 SC1 1
0 0 SC0 1
0 −1 SC1 −1
−1 1 SC2 −1
−1 0 SC3 −1
−1 −1 SC4 −1

horizontal or v for vertical) according to the following rule:

sx =
⎧⎨
⎩

1 if both neighbors are positive or one is positive and one unknown
−1 if both neighbors are negative or one is negative and one unknown
0 otherwise

These values are then used according to the rule in Table 16.4 to generate both the context
for the arithmetic coder and the prediction for the sign. If the prediction is accurate, the encoder
encodes a 0 in the appropriate sign coding context, otherwise it encodes a 1. Note that in this
pass coefficients that have previously been declared significant are not encoded.

In the magnitude refinement pass, the bits corresponding to coefficients that have been
declared significant in previous passes are encoded using the contexts MR0, MR1, and MR2.
The context MR0 is used when the magnitude refinement pass is applied to a coefficient for
the first time, and there are no horizontal or vertical neighbors that are significant. If there
are significant neighbors and the magnitude refinement pass is being applied to the coefficient
for the first time, the context MR1 is used. Finally, if this is not the first time the magnitude
refinement is being applied to a coefficient, the context MR2 is used.

554 16 W A V E L E T - B A S E D I M A G E C O M P R E S S I O N

The cleanup pass is a catch-all pass in which all bits not encoded in the significance
propagation pass and the magnitude refinement pass are encoded. These bits are encoded in
either the run-length mode or one of the nine zero-coding modes. The run-length mode is
used if four consecutive samples are insignificant, the neighbors of all these coefficients are
insignificant, the samples all reside in the same subblock, and the horizontal index of the first
symbol is even. If all these conditions are satisfied, the encoder switches to the run-length
mode and emits a 0 in the run-length context. Once in the run-length mode, if a significant
coefficient is encountered, the encoder generates a 1 that is encoded in the run-length context.
This is followed by the position of the coefficient encoded in the equiprobable context followed
by the encoding of the sign as described previously. Once the encoder is out of the run-length
mode, it encodes the bits in the zero-coding mode until the conditions again allow a transition
into the run-length coding mode. At the beginning of the encoding of the highest bitplane in a
subblock, none of the coefficients will have been declared significant. Therefore, even though
for the other bitplanes the significance coding pass is the first pass, the very first bitplane is
encoded using the cleanup pass.

We work through a toy example to see how these passes are used to encode a stripe
in a code-block. (Another, more detailed example, by Xavier Delaunay, can be found at
http://d.xav.free.fr/ebcot/.)

Example 16 .5 .2 : JPEG 2000 Tier I Coding

The codeblock in JPEG 2000 is divided into stripes, where a stripe consists of four rows, except
possibly the last stripe. We will work through the encoding of a stripe using the example shown
in Figure 16.16. We will assume the rows above and below the stripe have coefficients that are
not significant. The encoder first determines the highest significant bitplane in the stripe. In
this particular example, the largest coefficient magnitude is 12, which means that the encoder
will encode a total of four bitplanes. The bits from the most significant bitplane are shown in
Figure 16.17.

Nominally, the first pass should be the significance propagation pass. However, the signifi-
cance propagation pass relies on the existence of coefficients that have been declared significant
in previous bitplanes. As this is the first pass through this particular stripe, none of the coeffi-
cients have been declared significant. Therefore, for the first bitplane, we use a cleanup pass.
The first four bits in the bitplane are all zero. Furthermore, none of them are neighbors of any
coefficients that have been declared significant. Therefore, we encode the first column as a 0
using the run-length context. The second column is also encoded with a zero in the run-length
context. The second coefficient in the third row is significant. Therefore, we send a 1 in the
run-length context to indicate that we are no longer in the run-length mode. We then encode
the position of the coefficient (01) using the equiprobable context. As this is the first time this
coefficient has been declared significant, the next step is to encode the sign of the coefficient.
As none of the neighbors have a declared sign, the value of both sh and sv is 0. Looking up
the corresponding row in Table 16.4, we find the predicted value of the sign to be positive and
the context to be SC0. As the predicted sign is correct, a 0 is encoded in the context SC0.

We are no longer in the run-length mode; therefore, the next bit is encoded in the zero-
coding mode. For the next coefficient, the only significant neighbor is the coefficient above it,
so σh = 0, σv = 1 and σd = 0. In order to find the zero-coding context we need to know the

http://d.xav.free.fr/ebcot/

16.5 JPEG 2000 555

4

2

4

1

4 2

1

1

6

1

2

−3

1

0

3

1

0

3 1

3−2 10 −1

0 9 −12 6 0 0

010

6 −1 −1 1 2

F I GUR E 16 . 16 An example stripe of coefficients from a codeblock.

subband from which this stripe was obtained. Let’s assume the subband was the LH subband.
Looking up the corresponding row and column in Table 16.3, we see that the zero-coding
context is ZC3. The coefficient being encoded is not significant at this bitplane so we encode
a 0 in the ZC3 context. The next bit is encoded as a 0 in the ZC0 context as, for that bit,
σv = 0, σh = 0 and σd = 0.

Continuing on to the next column, σh = 0, σv = 0, and σd = 1 and the zero-coding context
is ZC1. The coefficient is significant so we encode a 1 in the ZC1 context. For this coefficient,
the sign of the vertical and horizontal neighbors is unknown; therefore, sh = 0 and sv = 0 and
the predicted sign is positive. This prediction is correct, so we encode a 0 in the context SC0.
For the second coefficient in this row, σh = 1, σv = 1, and σd = 0. Thus, the zero-coding
context from Table 16.3 is ZC1. The coefficient is significant, therefore, we encode a 1 in the
ZC1 context. To encode the sign, we compute the values of sh and sv which are both 1. The
prediction for these values is that the sign is positive. As this is not the case, we encode a 1 in
the SC4 context. For the next coefficient, σh = 0, σv = 1, and σd = 1. From Table 16.3, we
can see that this corresponds to the context ZC3. As this coefficient is significant we encode a
1 in the ZC3 context. The values of sh and sv are 0 and −1 respectively. From Table 16.4 this
results in a prediction of a negative sign and a sign context of SC1. The prediction is incorrect
so we encode a 1 in the SC1 context. To encode the last coefficient in the column, we note
that σh = 0, σv = 1, and σd = 0 which, from Table 16.3, gives us a context of ZC3. The
coefficient is insignificant; therefore, we encode a 0 in the ZC3 context.

The coefficients in the next column have neighbors which are significant, so we remain in
the zero-coding mode. For the first coefficient in the next row, σh = 1, σv = 0, and σd = 1,
which results in a zero-coding context of ZC6. As the coefficient is insignificant, we encode it

556 16 W A V E L E T - B A S E D I M A G E C O M P R E S S I O N

0

0

0 0 1 1 0

0

0 0

0

0 0 1

0

0

0

0

0

0

0

0

0 0 0

0 0

00

01

0 0 0 0 0

F I GUR E 16 . 17 The most significant bitplane of the example stripe of coefficients
in Figure 16.16.

as a 0 in this context. For the next coefficient, σh = 1, σv = 0, and σd = 2, which again results
in a zero-coding context of ZC6. The coefficient is insignificant so we encode it as a zero in
the ZC6 context. For the next coefficient σh = 1, σv = 0, and σd = 1. As this coefficient
is also insignificant, we encode a 0 in the ZC6 context. The next column does not have any
neighbors that are known to be significant; therefore, we switch to the run-length mode. As
all coefficients in the column are insignificant, we encode a 0 in the run-length context. The
same is true for the following three columns which brings us to the end of the stripe.

We now begin encoding the next bitplane. This is shown in Figure 16.18.
The coefficients that have been declared significant in the previous pass are marked with

darker boxes. As we have some significant coefficients to work off of, we will go through each
of the three passes. In the first pass, the significance propagation pass, we only examine those
coefficients that have neighbors already declared to be significant. The first such coefficient
is the first coefficient in the second column. This coefficient has a diagonal neighbor, which
is significant. In order to encode this bit, we first determine the zero-coding context as all
bits in the significance propagation pass are encoded in the zero-coding mode. For this bit
σh = 0, σv = 0, and σd = 1. Using Table 16.3, we obtain the context as ZC1. As the bit is not
significant, we encode a 0 in the ZC1 context. For the next bit, σh = 1, σv = 0, and σd = 0.
This corresponds to a zero-coding context of ZC5. We encode a 0 in the ZC5 context. The
next bit is also insignificant with σh = 0, σv = 0, and σd = 1; therefore, we encode a 0 in the
ZC1 context. The last bit in the column does not have any known significant neighbors so we
skip over it.

16.5 JPEG 2000 557

1

0

1

0

1 0

0

0

1

0

0

0

0

0

0

0

0

0 0

00 0 0

0 0 1 1 0 0

0 0

1 0 0 0 0

F I GUR E 16 . 18 The second most significant bitplane of the example stripe of
coefficients in Figure 16.16.

From Figure 16.18, we can see that the first bit in the third column has a known significant
neighbor. For this bit, σh = 1, σv = 1, and σd = 1. The bit itself is 0 so we encode a
0 in the ZC1 context. The second coefficient in this column was declared significant while
encoding the previous bitplane, so we defer its encoding to the magnitude refinement pass.
The third coefficient in this column has known significant vertical and diagonal neighbors,
σh = 0, σv = 1, and σd = 1. This corresponds to the ZC3 context. This coefficient is
significant at this bitplane; therefore, we encode a 1 in the ZC3 context. We then compute sh

and sv in order to determine the prediction for the sign and the sign context. As one of the
vertical neighbors is positive and the other unknown, sv = 1. Similarly, sh = 1. From Table
16.4, the predicted sign is positive and the context is SC4. As the prediction is correct, we
encode a 0 in the SC4 context. The last coefficient has a diagonal neighbor that is significant
from the previous bitplane; therefore, it will be encoded in this pass. It also has a vertical
neighbor that has been declared significant; therefore, σh = 0, σv = 1, and σd = 1. The
coefficient is encoded in this bitplane with a 0 in the context ZC3.

The first three coefficients in the fourth column were declared significant in previous
passes, so we skip those and encode the last bit in this column (in this stripe). For this bit,
σh = 0, σv = 1, and σd = 0. The coefficient becomes significant at this bitplane, so we
encode a 1 in the context ZC3. We compute the sign indicators as sh = 0 and sv = 1. This
results in a predicted positive sign and a sign context SC1. As the prediction is correct, we
encode this with a 0 in the SC1 context.

The coefficients in the fifth column all have neighbors that have been declared significant.
The first coefficient is insignificant in this bitplane with σh = 1, σv = 0, and σd = 1 and is

558 16 W A V E L E T - B A S E D I M A G E C O M P R E S S I O N

00

1

0

1 0 0

0 1

0

0

0

0

0

0

0

0

0 0

00 0 0

0 0 1 1 0 0

00

1 0 0 01

F I GUR E 16 . 19 The second most significant bitplane of the example stripe of
coefficients in Figure 15.16 after the significance propagation
pass. The encoded bits are shown in bold in shaded boxes.

encoded as a 0 in the ZC6 context. The second coefficient becomes significant in this bitplane
with σh = 1, σv = 0, and σd = 2. We encode a 1 in the ZC6 context and compute sh = −1 and
sv = 0, which implies a sign context of SC3. The predicted sign is negative, which is incorrect,
so we encode a 1 in the SC3 context. The next bit in this column is 0 with σh = 1, σv = 1, and
σd = 1, so we encode a 0 in the ZC1 context. The final coefficient to be encoded in this pass
is the fourth coefficient in this column. This coefficient becomes significant in this bitplane
with σh = 1, σv = 0, and σd = 1. We encode a 1 in context ZC6. For this coefficient, sh = 1
and sv = 0. The predicted sign according to Table 16.4 is positive, so we encode a 0 in sign
context SC3. There are no other coefficients in this bitplane that have significant neighbors so
this concludes the significance propagation pass.

The bitplane at this point can be represented by Figure 16.19 where the bits that have been
encoded are shown in bold in shaded boxes. The bits in the darker boxes belong to coefficients
that were declared significant in the previous pass. These are the bits that are encoded in the
magnitude refinement pass. For each of these coefficients, the magnitude refinement pass is
being used for the first time; each of these coefficients have one or more significant neighbors,
so we encode each bit using the MR1 context. We encode a 0 in the MR1 context, a 0 in the
MR1 context, a 1 in the MR1 context, and a 1 in the MR1 context.

Finally, we use the cleanup pass to encode the remaining bits. The bits in the first column
all have significant neighbors, so they are encoded using the zero-coding contexts. The same
is true for the last bit in the second column and all of the bits in the sixth column. The bits
in the seventh column are all 0; they do not have any significant neighbors, so we encode this
column with a 0 in the run-length context. The eighth and ninth columns are also encoded
using a 0 in the run-length context. This brings to an end the coding of this bitplane.

16.5 JPEG 2000 559

0

1

0 0 0 0 1

0

0 1

0

0

1

0

1

1

0

0

1 1

0

0

1 1 1 0

0 0

001

1 0 0 0 1

F I GUR E 16 . 20 The third most significant bitplane of the example stripe of
coefficients in Figure 16.16. The coefficients declared significant
are in bold boxes.

As we begin encoding the next bitplane the significance status of the various coefficients is
as shown in Figure 16.20. As we can see, the number of significant coefficients has increased.
This means that this bitplane will be encoded in the zero-coding mode with no opportunity to
use the more parsimonious run-length coding mode. This is in line with other algorithms that
generate an embedded bitstream. Much of the coding resources are devoted to the last bits of
precision. �

The example also illustrates another feature of JPEG 2000, namely the existence of a large
number of truncation points. The end of each pass in the encoding presents the opportunity
for truncating the bitstream at that point. This permits the natural construction of fractional
bitplanes. This is done as part of the Tier II coding procedures.

16.5.6 Tier II Coding

Tier II coding in JPEG 2000 is focused on the rich scalability options characteristic of this
standard. We defer much of the discussion of the organization of the data to Section 16.5.7. In
this section we look at how the JPEG 2000 standard takes advantage of the truncation points
described in the previous section. The PCRD algorithm makes use of this particular feature in
building the quality levels that provide JPEG 2000 with its SNR scalability.

560 16 W A V E L E T - B A S E D I M A G E C O M P R E S S I O N

(2)

empty

empty empty empty

empty

B B B B B B B B B B0 1 2 3 4 5 6 7 8 9

emptyemptyempty

layer 0

layer 1

layer 2

n 0

n n

n
n

n

n

n n

n
n

n

n

n

n
n

n n n
n

n
n

n

nn

1

2

2

2

3

3

3

4

4

4

5

5

5

6

8 9

n7

n
n

n
0

0

1

1

6

6

7

7

8

8

9

9

(0)

(1)

(2)

(0)

(0)

(0)

(0)

(0)

(0)
(0)

(0) (0)

(1)

(1)

(1) (1)
(1)

(1)

(1)

(1)

(1)

(2)

(2) (2) (2)

(2)

(2)
n

(2)

(2)

F I GUR E 16 . 21 An example of the collection of bits from subblocks Bk into quality
levels.

Rate Control

The embedded coding scheme in JPEG 2000 is similar in philosophy to the EZW and SPIHT
algorithms; however, the data structures used are different. The EZW and SPIHT algorithms
use trees of coefficients from the same spatial location across different bands. In the case
of the EBCOT algorithm, each block resides entirely within a subband, and each block is
coded independently of other blocks. This allows JPEG 2000 to organize bits from different
embedded bitstreams from subblocks into what Taubman and Marcellin call a pack-stream.
As the construction of the pack-stream occurs after the compression has been performed, the
process has been called a post-compression process. In order to perform the post-compression
process in an optimum manner, the EBCOT algorithm uses the PCRD-opt algorithm.

Let the truncation points for code-block i be denoted by {t (k)i }. A reasonable set of truncation
points are the ends of the various coding passes described above. The EBCOT algorithm
collects bits from different code-blocks into quality layers. The number of bits collected from
various code-blocks are selected from the truncation points that lie on the convex hull of the
operational rate-distortion curve. A conceptual view of the construction of quality layers is
shown in Figure 16.21. The number of bits from subblock Bk in quality level Ql is given
by n(l)k where the number of bits contributed by the kth code-block depends on the truncation

points {t (j)
k }:

n(l)k = t (j)
k −

l−1∑
i=0

n(i)k

16.5 JPEG 2000 561

for some j such that

t (j)
k �

l−1∑
i=0

n(i)k

As shown in Chapter 13, the operational rate distortion function can be obtained by min-
imizing the Lagrangian functional D(λ) + λR(λ). We assume the existence of an additive
distortion metric such that for each quality level Ql the corresponding distortion Dl is given
by

Dl =
∑

Dni
i

where i ranges over the code-blocks and ni is based on the available truncation points. Given
a rate constraint for each of the quality levels Rl

max we can set up the problem of finding the
number of bits contributed by each code-block in a quality level as the problem of finding the
set of ni that minimize ∑

i

(
Dni ,λ

i + λRi,λ

)

If for some λ we can find the truncation points that satisfy the rate constraint, then this set of
truncation points will provide the minimum distortion for the given rate. From the discussion
on operational rate distortion functions in Chapter 13 we know that

1. λ is the negative of the slope of the distortion rate function.

2. The slope is identical for each coefficient for an optimum bit allocation.

Therefore, for a given λ we can restrict our attention to individual code-blocks and for each
code-block find the truncation point that minimizes the quantity Dni ,λ

i + λRi,λ. Taubman
and Marcellin [220] propose the following simple algorithm for finding an optimum set of
truncation points for a given value of λ:

1. Initialize nopt
i = 0.

2. For t = 1, 2, . . . Ti

(a) Compute �R = R(t)i − R
nopt

i
i and �D = −(D(t)

i − D
nopt

i
i).

(b) If �D/�R > λ set nopt
i = t .

Note that at the end of the Tier I coding pass the set of valid truncation points are known for
each of the code-blocks. This procedure is then a simple enumerative procedure for a given
value of λ. The particular values of λ itself can be obtained using the bisection procedure
described in Chapter 13.

16.5.7 JPEG 2000 bitstream

One of the major contributions of the JPEG 2000 standard is its flexibility [220]. We have
seen that with EBCOT each subband of each component is partitioned into code-blocks. The
bitplanes corresponding to the subband coefficients are encoded using a three-pass procedure

562 16 W A V E L E T - B A S E D I M A G E C O M P R E S S I O N

...SOC
0xFF4F

Main
Tile 1
markers

SOD Tile
Part 1

EOC
OxFFD9

Tile
Part n0xFF93 0xFF900xFF90

SOT SOT

F I GUR E 16 . 22 Organization of codestream [219].

that generates an embedded bitstream. Each packet contains the binary codestream for each
code-block within a precinct, thus enabling a very high level of spatial random access. The
context of the packet is provided in the packet header and the packet is indexed by layer,
resolution, precinct, and component. The packets are combined into a layer that contains
contributions from all code-blocks in a tile.

The bitstream is organized using two-byte markers with the first byte being 0xFF. There
are six kinds of markers: delimiting markers, fixed information markers, functional markers,
pointer markers, in bitstream markers, and informational markers. Some of the markers are
followed by segments that contain the parameters corresponding to the marker.

Delimiting Markers The codestream is bracketed by the start of codestream (SOC) marker,
which is the first marker in the main header and the end of codestream (EOC) marker, which
terminates the codestream. The codestream can contain several tiles with each tile header
bracketed by the start of tile-part (SOT) marker followed by the SOT marker segment, and
the start of data (SOD) marker. The SOD marker separates the header from the data. This
organization is shown in Figure 16.22.

Fixed Information Marker The fixed information marker provides required information
about the image. There is only one such marker, is the image and tile size marker (SIZ).
The segment following this marker contains information about the uncompressed image. The
information contained in this segment and its organization is as follows:

Parameter Size (bytes) Description

SIZ 2 Marker (0xFF51)
Lsiz 2 Length of segment in bytes
Rsiz 2
Xsiz 4 Width of reference grid
Ysiz 4 Height of reference grid

XOsiz 4 Horizontal offset from grid origin to left of image area
YOsiz 4 Vertical offset from grid origin to top of image area
XTsiz 4 Width of one reference tile with respect to grid
YTsiz 4 Height of one reference tile with respect to grid

XTOsiz 4 Horizontal offset from grid origin to left side of first tile
YTOsiz 4 Vertical offset from grid origin to top side of first tile

Csiz 2 Number of components in the image
Ssizi 1 Precision in bits and sign of the i th component

XRSizi 1 Horizontal separation of i th component with respect to grid
YRSizi 1 Vertical separation of i th component with respect to grid

16.5 JPEG 2000 563

Y
O

si
z

(XOsiz,YOsiz)

XOsiz

Xsiz

(0,0)

Image Area

Y
si

z

F I GUR E 16 . 23 Some of the parameters in the SIZ marker with respect to a
reference grid [219].

The parameters contained in the SIZ marker segment are shown with respect to a reference
grid in Figure 16.23.

Functional Markers There are six functional marker segments. The same markers can
be used in reference to the whole image or the tile depending on their location. If found in
the main header they describe the functions used to code the entire image. If found in the tile
header they describe the functions used to code the tile. The functional markers include the
coding style (COD) marker, the coding style component (COC) marker, the region of interest
(RGN) marker, the quantization default (QCD) marker, the quantization component (QCC)
marker, and the progression order change default (POD) marker.

The coding style (COD) marker is followed by a segment that describes the type of en-
tropy coding used, the number of decomposition levels (with zero implying no transform),
the progression order, the number of layers, the code-block dimensions, the wavelet transform
used, and the multiple component transform used. The information about the decomposi-
tion level, code-block dimensions, transform, and packet partition size contained in the COD
marker can be overridden for a particular component by the coding style component (COC)
marker.

564 16 W A V E L E T - B A S E D I M A G E C O M P R E S S I O N

The region of interest (RGN) marker allows for selectively targeting particular regions of
interest to the user. Currently, the only available method is to scale up the value of coefficients
of interest forcing the significant bits into higher bitplanes. This allows these coefficients to
enter the bitstream earlier and allows for more refinement of the coefficients in the region of
interest.

The quantization default (QCD) marker specifies the quantization style for all components
and the quantizer stepsize values for all subbands. The QCD marker can be overridden for a
particular component or set of components by the quantization component (QCC) marker.

The progression order change (POD) marker overrides the progression field of the COD
marker segment. JPEG 2000 allows for five different orders of progression including by
increasing resolution or increasing quality.

Pointer Markers There are three pointer markers that encode the lengths in the tile-parts.
The TLM marker and the associated segment optionally occurs in the main header and has the
following structure:

Parameter Size (bytes) Description

TLM 2 Marker (0xFF55)
Ltlm 2 Length of segment in bytes
Ztlm 1 Index relative to other TLM marker segments in the header
Stlm 1 Size of Ttlm and Ptlm parameters
Ttlmi 0, 1, or 2 Tile number of the i th tile-part
Ptlmi 2 or 4 Length in bytes from beginning of SOT marker to end of data

for the i th tile-part

The packet length (PLM) marker is an optional marker that can appear in the main header.
The PLM segment provides a list of packet lengths in the tile parts.

Parameter Size (bytes) Description

PLM 2 Marker (0xFF57)
Lplm 2 Length of segment in bytes
Zplm 1 Index relative to other PLM marker segments in the header
Nplmi 1 Number of bytes of Iplm information for i th tile-part.

One value for each tile-part.
Iplmi, j variable Length of j th packet in the i th tile-part

The PLT marker also indicates the list of packet lengths but appears in the tile-part header
rather than the main header. The PLT and PLM markers are both optional and can be used
together or separately.

16.5 JPEG 2000 565

Parameter Size (bytes) Description

PLT 2 Marker (0xFF58)
Lplt 2 Length of segment in bytes
Zplt 1 Index relative to other PLT marker segments in the header
Iplti variable Length of i th packet

0xFF64

SOC

0xFF4F
Main

Tile 1
markers

SOD Tile
Part 1

EOC

OxFFD9

Tile

Part n0xFF93 0xFF900xFF90
SOT SOT ...

SOC SIZ COD COC

0xFF4F 0xFF51 0xFF52 0xFF53 0xFF5C

QCD

0xFF5E

QCC RGN

0xFF5E

POD

0xFF5F

PPM TLM
0xFF60 0xFF55

PLM

0xFF57

CME

F I GUR E 16 . 24 Organization of markers in the main header. Optional markers
are shown in dashed boxes [219].

The packet headers can be organized in one of three ways. In the first approach, all the
packet headers can be placed together using a PPM marker so that multiple reads are not
required to decode the different headers. This organization can occur only in the main header
and is as follows:

Parameter Size (bytes) Description

PPM 2 Marker (0xFF60)
Lppm 2 Length of segment in bytes
Zppm 1 Index relative to other PPM

marker segments in the header
Nppmi 4 Number of bytes of Ippm infor-

mation for i th tile-part.
One value for each tile-part.

Ippmi, j variable Packet header for every packet in
order in the tile-part. The com-
ponent number, layer, and resolu-
tion are determined from method
of progression or POD. One value
for each packet in the tile-part.

The second approach is to place packed packet headers in the tile-part header using the marker
PPT. The structure of the segment is the same as that of the PPM except only the headers of
the packets in the tile-part are included.

566 16 W A V E L E T - B A S E D I M A G E C O M P R E S S I O N

Parameter Size (bytes) Description

PPT 2 Marker (0xFF61)
Lppt 2 Length of segment in bytes
Zppt 1 Index relative to other PPT marker

segments in the header
Ippti variable Packet header for every packet in

order in the tile-part. The com-
ponent number, layer, and resolu-
tion are determined from method
of progression or POD. One value
for each packet in the tile-part.

The third approach is to distribute the packet headers in the bitstream.
The organization of various markers in the main header is shown in Figure 16.24. The

optional markers are shown in dashed boxes while the required markers are shown in solid
boxes.

In Bitstream Markers There are two marker segments that are found in the bitstream
rather than in the headers. They are the start of packet (SOP) marker segment and the end of
packet (EPH) marker. The SOP segment is organized as follows:

Parameter Size (bytes) Description

SOP 2 Marker (0xFF91)
Lsop 2 Length of segment in bytes
Nsop 2 Packet sequence number starting from 0.

The numbering is modulo 65,536.

The EPH marker has a value of 0xFF92.
Informational Marker The informational marker, “Comment and Extension” (CME), can

be used as many times as desired in the main or tile-part header. The marker is followed by the
length of the segment in two bytes, two bytes of registration value and an undefined number
of bytes of unstructured data.

For storing application specific metadata with the JPEG 2000 codestream the standard
suggests the use of the JP2 file format. The JP2 file format is a binary container for the JPEG
2000 codestream and uses the concept of boxes to organize the information. A schematic
representation of this organization is shown in Figure 16.25.

16.5 JPEG 2000 567

Data Entry URL box

Capture Resolution box

Default Display Resolution box

Resolution box

Channel Definition box

Component Mapping box

Pallete box

Color Specification box (n−1)

Color Specification box 0

Image Header box

Bits per component box

JP2 Header box

File Type box

JPEG 2000 Signature box

JP2 File

Contiguous Codestream box

Contiguous Codestream box (m−1)

IPR box

XML boxes

UUID boxes

UUID Info boxes

UUID List box

F I GUR E 16 . 25 Schematic representation of a JP2 file [219].

568 16 W A V E L E T - B A S E D I M A G E C O M P R E S S I O N

16.6 Summary

In this chapter we have described several image compression techniques based on wavelet
decomposition. In particular we have spent some time describing the JPEG 2000 algorithm.
This algorithm is fast becoming the standard of choice in a number of applications. In particular
the JPEG 2000 algorithm has been very effective in the compression of large high-resolution
images.

Further Reading

1. The most comprehensive resource for the JPEG 2000 standard is JPEG 2000: Image
Compression Fundamentals, Standards and Practice, by D. Taubman and M. Marcellin
[220].

2. The SPIHT algorithm as well as the principles behind it are presented in a very accessible
manner in a two-part monograph by W. Pearlman and A. Said: Set Partition Coding:
Part I of Set Partition Coding and Image Wavelet Coding Systems and Image Wavelet
Coding Systems: Part II of Set Partition Coding and Image Wavelet Coding Systems.
[280, 281].

16.7 Projects and Problems

1. Consider the following seven-level decomposition:

21 6 15 12
− 6 3 6 3
3 − 3 0 − 3
3 0 0 0

(a) Find the bitstream generated by the EZW coder.
(b) Decode the bitstream generated in the previous step. Verify that you get the original

coefficient values.

2. Consider the coefficients from the seven-level decomposition in the previous problem:

(a) Find the bitstream generated by the SPIHT coder.
(b) Decode the bitstream generated in the previous step. Verify that you get the original

coefficient values.

17
Audio Coding

17.1 Overview

L
ossy compression schemes can be based on a source model, as in the case of
speech compression, or a user or sink model, as is somewhat the case in image
compression. In this chapter we look at audio compression approaches that are
explicitly based on the model of the user. We will look at audio compression
approaches in the context of audio compression standards. Principally, we will

examine the different MPEG standards for audio compression. These include MPEG Layer I,
Layer II, and Layer III (or MP3), and the Advanced Audio Coding Standard. As with other
standards described in this book, the goal here is not to provide all the details required for
implementation. Rather the goal is to provide the reader with enough familiarity so that they
can then find it much easier to understand these standards.

17.2 Introduction

The various speech coding algorithms we studied earlier rely heavily on the speech pro-
duction model to identify structures in the speech signal that can be used for compression.
Audio compression systems have taken, in some sense, the opposite tack. Unlike speech
signals, audio signals can be generated using a large number of different mechanisms. Lack-
ing a unique model for audio production, the audio compression methods have focused on
the unique model for audio perception, a psychoacoustic model for hearing. At the heart
of the techniques described in this chapter is a psychoacoustic model of human perception.

Introduction to Data Compression. DOI: http://dx.doi.org/10.1016/B978-0-12-415796-5.00017-X
© 2012 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-415796-5.00017-X

570 17 A U D I O C O D I N G

By identifying what can and, more important, what cannot be heard, the schemes described
in this chapter obtain much of their compression by discarding information that cannot be
perceived. The motivation for the development of many of these perceptual coders was their
potential application in broadcast multimedia. However, their major impact has been in the
distribution of audio over the Internet.

We live in an environment rich in auditory stimuli. Even an environment described as
quiet is filled with all kinds of natural and artificial sounds. The sounds are always present and
come to us from all directions. Living in this stimulus-rich environment, it is essential that we
have mechanisms for ignoring some of the stimuli and focusing on others. Over the course of
our evolutionary history we have developed limitations on what we can hear. Some of these
limitations are physiological, based on the machinery of hearing. Others are psychological,
based on how our brain processes auditory stimuli. The insight of researchers in audio coding
has been the understanding that these limitations can be useful in selecting information that
needs to be encoded and information that can be discarded. The limitations of human perception
are incorporated into the compression process through the use of psychoacoustic models. We
briefly describe the auditory model used by the most popular audio compression approaches.
Our description is necessarily superficial and we refer readers interested in more detail to
[108,200].

The machinery of hearing is frequency dependent. The variation of what is perceived as
equally loud at different frequencies was first measured by Fletcher and Munson at Bell Labs
in the mid-1930s [107]. These measurements of perceptual equivalence were later refined by
Robinson and Dadson. This dependence is usually displayed as a set of equal loudness curves,
where the sound pressure level (SPL) is plotted as a function of frequency for tones perceived to
be equally loud. Clearly, what two people think of as equally loud will be different. Therefore,
these curves are actually averages and serve as a guide to human auditory perception. The
particular curve that is of special interest to us is the threshold-of-hearing curve. This is the SPL
curve that delineates the boundary of audible and inaudible sounds at different frequencies.
In Figure 17.1 we show a plot of this audibility threshold in quiet. Sounds that lie below the
threshold are not perceived by humans. Thus, we can see that a low amplitude sound at a
frequency of 3 kHz may be perceptible while the same level of sound at 100 Hz would not be
perceived.

17.2.1 Spectral Masking

Lossy compression schemes require the use of quantization at some stage. Quantization can be
modeled as an additive noise process in which the output of the quantizer is the input plus the
quantization noise. To hide quantization noise, we can make use of the fact that signals below
a particular amplitude at a particular frequency are not audible. If we select the quantizer step
size such that the quantization noise lies below the audibility threshold, the noise will not be
perceived. Furthermore, the threshold of audibility is not absolutely fixed and typically rises
when multiple sounds impinge on the human ear. This phenomenon gives rise to spectral
masking. A tone at a certain frequency will raise the threshold in a critical band around that
frequency. These critical bands have a constant Q, which is the ratio of frequency to bandwidth.
Thus, at low frequencies the critical band can have a bandwidth as low as 100 Hz, while at

17.2 Introduction 571

Threshold
of audibility

Audible
region

Inaudible
region

SP
L

 (
dB

)

0

20

40

60

80

Frequency (Hz)
5020 100 200 500 1000 2000 5000 10,000 20,000

F I GUR E 17 . 1 A typical plot of the audibility threshold.

Inaudible
region

Frequency (Hz)

SP
L

 (
dB

)

0

20

40

60

80
Original
threshold

of audibility
Audible
region

Raised
threshold

of audibility

5020 100 200 500 1000 2000 5000 10,000 20,000

F I GUR E 17 . 2 Change in the audibility threshold.

higher frequencies the bandwidth can be as large as 4 kHz. This increase of the threshold
has major implications for compression. Consider the situation in Figure 17.2. Here a tone
at 1 kHz has raised the threshold of audibility so that the adjacent tone above it in frequency
is no longer audible. At the same time, while the tone at 500 Hz is audible, because of the
increase in the threshold the tone can be quantized more crudely. This is because increase of
the threshold will allow us to introduce more quantization noise at that frequency. The degree
to which the threshold is increased depends on a variety of factors, including whether the signal
is sinusoidal or atonal.

17.2.2 Temporal Masking

Along with spectral masking, the psychoacoustic coders also make use of the phenomenon of
temporal masking. The temporal masking effect is the masking that occurs when a sound raises

572 17 A U D I O C O D I N G

SP
L

 (
dB

)
20

40

60

80

0 100 200 300 400

Masking
sound

Pos
tm

as
kin

g

Prem
as

kin
g

–100
Time (msec)

F I GUR E 17 . 3 Change in the audibility threshold in time.

the audibility threshold for a brief interval preceding and following the sound. In Figure 17.3
we show the threshold of audibility close to a masking sound. Sounds that occur in an interval
around the masking sound (both after and before the masking tone) can be masked. The fact
that sounds that occur before the masking tone can get masked can be seen as evidence for the
inferential nature of human perception. If the masked sound occurs prior to the masking tone,
this is called premasking or backward masking, and if the sound being masked occurs after the
masking tone, this effect is called postmasking or forward masking. Forward masking remains
in effect for a much longer time interval than backward masking.

17.2.3 Psychoacoustic Model

These attributes of the ear are used by all algorithms that use a psychoacoustic model. There are
two models used in the MPEG audio coding algorithms. Although they differ in some details,
the general approach used in both cases is the same. The first step in the psychoacoustic model
is to obtain a spectral profile of the signal being encoded. The audio input is windowed and
transformed into the frequency domain using a filter bank or a frequency domain transform.
The sound pressure level (SPL) is calculated for each spectral band. If the algorithm uses a
subband approach, then the SPL for the band is computed from the SPL for each frequency
coefficient Xk . Because tonal and nontonal components have different effects on the masking
level, the next step is to determine the presence and location of these components. The
presence of any tonal components is determined by first looking for local maxima where a
local maximum is declared at location k if |Xk |2 > |Xk−1|2 and |Xk |2 � |Xk+1|2. A local
maximum is determined to be a tonal component if

20 log10
|Xk |

|Xk+ j | � 7

where the values j depend on the frequency. The identified tonal maskers are removed from
each critical band and the power of the remaining spectral lines in the band is summed to
obtain the nontonal masking level. Once all the maskers are identified, those with SPL below
the audibility threshold are removed. Furthermore, of those maskers that are very close to
each other in frequency, the lower-amplitude masker is removed. The effects of the remaining

17.3 MPEG Audio Coding 573

maskers are obtained using a spreading function that models spectral masking. Finally, the
masking due to the audibility level and the maskers is combined to give the final masking
thresholds. These thresholds are then used in the coding process.

In the following sections we describe the various audio coding algorithms used in the
MPEG standards. Although these algorithms provide audio that is perceptually noiseless, it is
important to remember that even if we cannot perceive it, there is quantization noise distorting
the original signal. This becomes especially important if the reconstructed audio signal goes
through any postprocessing. Postprocessing may change some of the audio components,
making the previously masked quantization noise audible. Therefore, if there is any kind of
processing to be done, including mixing or equalization, the audio should be compressed only
after the processing has taken place. This “hidden noise” problem also prevents multiple stages
of encoding and decoding or tandem coding.

17.3 MPEG Audio Coding

We begin with the three separate, stand-alone audio compression strategies that are used in
MPEG-1 and MPEG-2 and known as Layer I, Layer II, and Layer III. The Layer III audio
compression algorithm is also referred to as mp3. Most standards have normative sections
and informative sections. The normative actions are those that are required for compliance to
the standard. Most current standards, including the MPEG standards, define the bitstream that
should be presented to the decoder, leaving the design of the encoder to individual vendors. That
is, the bitstream definition is normative, while most guidance about encoding is informative.
Thus, two MPEG-compliant bitstreams that encode the same audio material at the same rate but
on different encoders may sound very different. On the other hand, a given MPEG bitstream
decoded on different decoders will result in essentially the same output.

A simplified block diagram representing the basic strategy used in all three layers is shown
in Figure 17.4. The input, consisting of 16-bit PCM words, is first transformed to the frequency
domain. The frequency coefficients are quantized, coded, and packed into an MPEG bitstream.
Although the overall approach is the same for all layers, the details can vary significantly.
Each layer is progressively more complicated than the previous layer and also provides higher
compression. The three layers are backward compatible. That is, a decoder for Layer III should
be able to decode Layer I- and Layer II-encoded audio. A decoder for Layer II should be able
to decode Layer I-encoded audio. Notice the existence of a block labeled Psychoacoustic
model in Figure 17.4

17.3.1 Layer I Coding

The Layer I coding scheme provides 4:1 compression. In Layer I coding the time frequency
mapping is accomplished using a bank of 32 subband filters. The output of the subband filters
is critically sampled. That is, the output of each filter is downsampled by 32. The samples
are divided into groups of 12 samples each. Twelve samples from each of the 32 subband
filters, or a total of 384 samples, make up one frame of the Layer I coder. Once the frequency
components are obtained the algorithm examines each group of 12 samples to determine a

574 17 A U D I O C O D I N G

Time
frequency
mapping

Quantization
and

coding
Framing

Psycho-
acoustic
model

Input
MPEG

bitstream

F I GUR E 17 . 4 The MPEG audio coding algorithms.

scalefactor. The scalefactor is used to make sure that the coefficients make use of the entire
range of the quantizer. The subband output is divided by the scalefactor before being linearly
quantized. There are a total of 63 scalefactors specified in the MPEG standard. Specification
of each scalefactor requires 6 bits.

To determine the number of bits to be used for quantization, the coder makes use of the
psychoacoustic model. The inputs to the model include the fast Fourier transform (FFT) of
the audio data as well as the signal itself. The model calculates the masking thresholds in each
subband, which in turn determine the amount of quantization noise that can be tolerated and
hence the quantization step size. As the quantizers all cover the same range, selection of the
quantization step size is the same as selection of the number of bits to be used for quantizing the
output of each subband. In Layer I the encoder has a choice of 14 different quantizers for each
band (plus the option of assigning 0 bits). The quantizers are all midtread quantizers ranging
from 3 levels to 65,535 levels. Each subband gets assigned a variable number of bits. However,
the total number of bits available to represent all the subband samples is fixed. Therefore, the
bit allocation can be an iterative process. The objective is to keep the noise-to-mask ratio more
or less constant across the subbands.

The output of the quantization and bit allocation steps are combined into a frame as shown
in Figure 17.5. Because MPEG audio is a streaming format, each frame carries a header, rather
than having a single header for the entire audio sequence. The header is made up of 32 bits.
The first 12 bits comprise a sync pattern consisting of all 1s. This is followed by a 1-bit version
ID, a 2-bit layer indicator, and 1 bit to indicate CRC protection. The CRC protection bit is set
to 0 if there is no CRC protection and is set to a 1 if there is CRC protection. If the layer and
protection information is known, all 16 bits can be used for providing frame synchronization.
The next 4 bits make up the bit rate index, which specifies the bit rate in kbits/sec. There are
14 specified bit rates to choose from. This is followed by 2 bits that indicate the sampling
frequency. The sampling frequencies for MPEG-1 and MPEG-2 are different (one of the few
differences between the audio coding standards for MPEG-1 and MPEG-2) and are shown in
Table 17.1. These bits are followed by a single padding bit. If the bit is “1,” the frame needs
an additional bit to adjust the bit rate to the sampling frequency. The next two bits indicate the
mode. The possible modes are “stereo,” “joint stereo,” “dual channel,” and “single channel.”
The stereo mode consists of two channels that are encoded separately but intended to be played

17.3 MPEG Audio Coding 575

Header CRC
Bit

allocation
Scale

factors
Subband

data

Frame 2 Frame 3Frame 1

F I GUR E 17 . 5 Frame structure for Layer 1.

T A B L E 17 . 1 Allowable sampling
frequencies in MPEG-1 and
MPEG-2.

Index MPEG-1 MPEG-2

00 44.1 kHz 22.05 kHz
01 48 kHz 24 kHz
10 32 kHz 16 kHz
11 Reserved

together. The joint stereo mode consists of two channels that are encoded together. The left
and right channels are combined to form a mid and a side signal as follows:

M = L + R

2

S = L − R

2

The dual channel mode consists of two channels that are encoded separately and are not
intended to be played together, such as a translation channel. These are followed by two mode
extension bits that are used in the joint stereo mode. The next bit is a copyright bit (“1” if the
material is copyrighted, “0” if it is not). The next bit is set to “1” for original media and “0”
for copy. The final two bits indicate the type of de-emphasis to be used.

If the CRC bit is set, the header is followed by a 16-bit CRC. This is followed by the bit
allocations used by each subband and is in turn followed by the set of 6-bit scalefactors. The
scalefactor data is followed by the 384 quantized samples.

17.3.2 Layer II Coding

The Layer II coder provides a higher compression rate by making some relatively minor
modifications to the Layer I coding scheme. These modifications include how the samples are

576 17 A U D I O C O D I N G

Frame 2 Frame 3Frame 1

Header CRC
Bit

allocation

Scalefactor
selection

index

Scale Subband
datafactors

F I GUR E 17 . 6 Frame structure for Layer 2.

grouped together, the representation of the scalefactors, and the quantization strategy. Where
the Layer I coder puts 12 samples from each subband into a frame, the Layer II coder groups
three sets of 12 samples from each subband into a frame. The total number of samples per
frame increases from 384 samples to 1152 samples. This reduces the amount of overhead per
sample. In Layer I coding a separate scalefactor is selected for each block of 12 samples.
In Layer II coding the encoder tries to share a scalefactor among two or all three groups of
samples from each subband filter. The only time separate scalefactors are used for each group
of 12 samples is when not doing so would result in a significant increase in distortion. The
particular choice used in a frame is signaled through the scalefactor selection information field
in the bitstream.

The major difference between the Layer I and Layer II coding schemes is in the quantization
step. In the Layer I coding scheme the output of each subband is quantized using one of 14
possibilities; the same 14 possibilities are available for each of the subbands. In Layer II
coding the quantizers used for each of the subbands can be selected from a different set of
quantizers depending on the sampling rate and the bit rates. For some sampling rate and bit
rate combinations, many of the higher subbands are assigned 0 bits. That is, the information
from those subbands is simply discarded. Where the quantizer selected has 3, 5, or 9 levels,
the Layer II coding scheme uses one more enhancement. Notice that in the case of 3 levels
we have to use 2 bits per sample, which would have allowed us to represent 4 levels. The
situation is even worse in the case of 5 levels, where we are forced to use 3 bits, wasting three
codewords, and in the case of 9 levels, where we have to use 4 bits, thus wasting 7 levels. To
avoid this situation, the Layer II coder groups 3 samples into a granule. If each sample can take
on 3 levels, a granule can take on 27 levels. This can be accommodated using 5 bits. If each
sample had been encoded separately we would have needed 6 bits. Similarly, if each sample
can take on 9 values, a granule can take on 729 values. We can represent 729 values using 10
bits. If each sample in the granule had been encoded separately, we would have needed 12
bits. Using all these savings, the compression ratio in Layer II coding can be increased from
4:1 to 8:1 or 6:1.

The frame structure for the Layer II coder can be seen in Figure 17.6. The only real
difference between this frame structure and that of the Layer I coder is the scalefactor selection
information field.

17.3 MPEG Audio Coding 577

17.3.3 Layer III Coding—mp3

Layer III coding, which has become widely popular under the name mp3, is considerably more
complex than the Layer I and Layer II coding schemes. One of the problems with the Layer I
and II coding schemes was that with 32-band decomposition, the bandwidth of the subbands at
lower frequencies is significantly larger than the critical bands. This makes it difficult to make
an accurate judgement of the mask-to-signal ratio. If we get a high amplitude tone within a
subband and if the subband is narrow enough, we can assume that it masked other tones in
the band. However, if the bandwidth of the subband is significantly higher than the critical
bandwidth at that frequency, it becomes more difficult to determine whether other tones in the
subband will be masked.

A simple way to increase the spectral resolution would be to decompose the signal directly
into a higher number of bands. However, one of the requirements on the Layer III algorithm
is that it be backward compatible with Layer I and Layer II coders. To satisfy this backward
compatibility requirement, the spectral decomposition in the Layer III algorithm is performed
in two stages. First the 32-band subband decomposition used in Layer I and Layer II is
employed. The output of each subband is then transformed using a modified discrete cosine
transform (MDCT) with a 50% overlap. The Layer III algorithm specifies two sizes for the
MDCT, 6 or 18. This means that the output of each subband can be decomposed into 18
frequency coefficients or 6 frequency coefficients.

The reason for having two sizes for the MDCT is that when we transform a sequence into
the frequency domain, we lose time resolution even as we gain frequency resolution. The
larger the block size the more we lose in terms of time resolution. The problem with this
is that any quantization noise introduced into the frequency coefficients will get spread over
the entire block size of the transform. Backward temporal masking occurs for only a short
duration prior to the masking sound (approximately 20 msec). Therefore, quantization noise
will appear as a pre-echo. Consider the signal shown in Figure 17.7. The sequence consists of
128 samples, the first 118 of which are 0, followed by a sharp increase in value. The 128-point
DCT of this sequence is shown in Figure 17.8. Notice that many of these coefficients are quite
large. If we were to send all these coefficients, we would have data expansion instead of data
compression. If we keep only the 10 largest coefficients, the reconstructed signal is shown
in Figure 17.9. Notice that not only are the nonzero signal values not well represented, there
is also error in the samples prior to the change in value of the signal. If this were an audio
signal and the large values had occurred at the beginning of the sequence, the forward masking
effect would have reduced the perceptibility of the quantization error. In the situation shown in
Figure 17.9, backward masking will mask some of the quantization error. However, backward
masking occurs for only a short duration prior to the masking sound. Therefore, if the length
of the block in question is longer than the masking interval, the distortion will be evident to
the listener.

If we get a sharp sound that is very limited in time (such as the sound of castanets) we
would like to keep the block size small enough that it can contain this sharp sound. Then,
when we incur quantization noise it will not get spread out of the interval in which the actual
sound occurred and will therefore get masked. The Layer III algorithm monitors the input
and where necessary substitutes three short transforms for one long transform. What actually
happens is that the subband output is multiplied by a window function of length 36 during

578 17 A U D I O C O D I N G

2

0

4

6

8

10

12

14

16

0 20 40 60
Sample number

Amplitude

80 100 120 140

F I GUR E 17 . 7 Source output sequence.

−10

−5

0

5

10

Transform
coefficient

0 20 40 60
Coefficient number

80 100 120 140

F I GUR E 17 . 8 Transformed sequence.

the stationary periods (that is a block size of 18 plus 50% overlap from neighboring blocks).
This window is called the long window. If a sharp attack is detected, the algorithm shifts to
a sequence of three short windows of length 12 after a transition window of length 30. This
initial transition window is called the start window. If the input returns to a more stationary
mode, the short windows are followed by another transition window called the stop window
of length 30 and then the standard sequence of long windows. The process of transitioning
between windows is shown in Figure 17.10. A possible set of window transitions is shown
in Figure 17.11. For the long windows we end up with 18 frequencies per subband, resulting
in a total of 576 frequencies. For the short windows we get 6 coefficients per subband for a
total of 192 frequencies. The standard allows for a mixed block mode in which the two lowest
subbands use long windows while the remaining subbands use short windows. Notice that
while the number of frequencies may change depending on whether we are using long or short

17.3 MPEG Audio Coding 579

−1

0

1

2

3

4

5

6

7

8

9

0 20 40 60
Sample number

80 100 120 140

Amplitude

F I GUR E 17 . 9 Reconstructed sequence from 10 DCT coefficients.

Long Start

ShortStop

Attack

No attack

No attack

No attack
Attack

Attack

F I GUR E 17 . 10 State diagram for the window switching process.

Long Start Stop LongShort

F I GUR E 17 . 11 Sequence of windows.

windows, the number of samples in a frame stays at 1152. That is 36 samples, or 3 groups of
12, from each of the 32 subband filters.

580 17 A U D I O C O D I N G

The coding and quantization of the output of the MDCT is conducted in an iterative fashion
using two nested loops. There is an outer loop called the distortion control loop whose purpose
is to ensure that the introduced quantization noise lies below the audibility threshold. The
scalefactors are used to control the level of quantization noise. In Layer III scalefactors are
assigned to groups or “bands” of coefficients in which the bands are approximately the size
of critical bands. There are 21 scalefactor bands for long blocks and 12 scalefactor bands for
short blocks.

The inner loop is called the rate control loop. The goal of this loop is to make sure that
a target bit rate is not exceeded. This is done by iterating between different quantizers and
Huffman codes. The quantizers used in MP3 are companded nonuniform quantizers. The
scaled MDCT coefficients are first quantized and organized into regions. Coefficients at the
higher end of the frequency scale are likely to be quantized to zero. These consecutive zero
outputs are treated as a single region and the run length is Huffman encoded. For frequency
coefficients in the region below this region of zero coefficients, the encoder identifies the set
of coefficients that are quantized to 0 or ±1. These coefficients are grouped into groups of
four. This set of quadruplets is the second region of coefficients. Each quadruplet is encoded
using a single Huffman codeword. The remaining coefficients are divided into two or three
subregions. Each subregion is assigned a Huffman code based on its statistical characteristics.
If the result of using this variable-length coding exceeds the bit budget, the quantizer is adjusted
to increase the quantization stepsize. The process is repeated until the target rate is satisfied.

Once the target rate is satisfied, control passes back to the outer, distortion control loop.
The psychoacoustic model is used to check whether the quantization noise in any band exceeds
the allowed distortion. If it does, the scalefactor is adjusted to reduce the quantization noise.
Once all scalefactors have been adjusted, control returns to the rate control loop. The iterations
terminate either when the distortion and rate conditions are satisfied or the scalefactors cannot
be adjusted any further.

There will be frames in which the number of bits used by the Huffman coder is less than
the amount allocated. These bits are saved in a conceptual bit reservoir. In practice what this
means is that the start of a block of data does not necessarily coincide with the header of the
frame. Consider the three frames shown in Figure 17.12. In this example, the main data for
the first frame (which includes scalefactor information and the Huffman coded data) does not
occupy the entire frame. Therefore, the main data for the second frame starts before the second
frame actually begins. The same is true for the remaining data. The main data can begin in
the previous frame. However, the main data for a particular frame cannot spill over into the
following frame.

All this complexity allows for a very efficient encoding of audio inputs. The typical MP3
audio file has a compression ratio of about 10:1. In spite of this high level of compression,
most people cannot tell the difference between the original and the compressed representation.
We say most because trained professionals can at times tell the difference between the original
and compressed versions. People who can identify very minute differences between coded
and original signals have played an important role in the development of audio coders. By
identifying where distortion may be audible they have helped focus the efforts to improve the
coding process. This development process has made MP3 the format of choice for compressed
music.

17.4 MPEG Advanced Audio Coding 581

Header

Frame 2Frame 1 Frame 3

Begin data 1 Begin data 2 Begin data 3 Begin data 4

Side
Information

Main
data 1

Main
data 2

Main
data 3

Main
data 4

F I GUR E 17 . 12 Sequence of windows.

17.4 MPEG Advanced Audio Coding

The MPEG Layer III algorithm has been highly successful. However, it has some built-in
drawbacks because of the constraints under which it was designed. The principal constraint
was the requirement that it be backward compatible. This requirement for backward compati-
bility forced the rather awkward decomposition structure involving a subband decomposition
followed by an MDCT decomposition. The period immediately following the release of the
MPEG specifications also saw major developments in hardware capability. The Advanced
Audio Coding (AAC) standard was approved as a higher quality multichannel alternative to
the backward compatible MPEG Layer III in 1997.

The AAC standard takes a modular approach based on a set of self-contained tools or
modules. Some of these tools are taken from the earlier MPEG audio standard while others
are new. As with previous standards, the AAC standard actually specifies the decoder. The
decoder tools specified in the AAC standard are listed in Table 17.2. As shown in the table,
some of these tools are required for all profiles while others are only required for some profiles.

T A B L E 17 . 2 AAC decoder tools. [221]

Tool Name

Bitstream Formatter Required
Huffman Decoding Required
Inverse Quantization Required
Rescaling Required
M/S Optional
Interblock Prediction Optional
Intensity Optional
Dependently Switched Coupling Optional
TNS Optional
Block Switching / MDCT Required
Gain Control Optional
Independently Switched Coupling Optional

582 17 A U D I O C O D I N G

By using some or all of these tools, the standard describes three profiles. These are the
main profile, the low complexity profile, and the sampling-rate-scalable profile. The AAC
approach used in MPEG-2 was later enhanced and modified to provide an audio coding option in
MPEG-4. In the following section we first describe the MPEG-2 AAC algorithm, followed by
the MPEG-4 AAC algorithm.

17.4.1 MPEG-2 AAC

A block diagram of an MPEG-2 AAC encoder is shown in Figure 17.13. Each block represents
a tool. The psychoacoustic model used in the AAC encoder is the same as the model used in
the MPEG Layer III encoder. As in the Layer III algorithm, the psychoacoustic model is used

Gain control

Block switch
MDCT

TNS

Intensity
coupling

Interblock
prediction

M/S

Scaling

Quantization

Huffman
coding

Threshold
calculation

Window length
decision

Sp
ec

tr
al

 p
ro

ce
ss

in
g

Q
ua

nt
iz

at
io

n
an

d
co

di
ng

Psychoacoustic
model

Data

Control

Audio signal

B
its

tr
ea

m
 f

or
m

at
te

r

AAC

bitstream

F I GUR E 17 . 13 An MPEG-2 AAC encoder [221].

17.4 MPEG Advanced Audio Coding 583

to trigger switching in the block length of the MDCT transform and to produce the threshold
values used to determine scalefactors and quantization thresholds. The audio data is fed in
parallel to both the acoustic model and to the modified discrete cosine transform.

Block Switching and MDCT

Because the AAC algorithm is not backward compatible it does away with the requirement of
the 32-band filter bank. Instead, the frequency decomposition is accomplished by a modified
discrete cosine transform (MDCT). The MDCT is described in Chapter 13. The AAC algorithm
allows switching between a window length of 2048 samples and 256 samples. These window
lengths include a 50% overlap with neighboring blocks. So 2048 time samples are used to
generate 1024 spectral coefficients, and 256 time samples are used to generate 128 frequency
coefficients. The kth spectral coefficient of block i , Xi,k , is given by

Xi,k = 2
N−1∑
n=0

zi,n cos

(
2π(n + no)

N

(
k + 1

2

))

where zi,n is the nth time sample of the i th block, N is the window length, and

no = N/2 + 1

2

The longer block length allows the algorithm to take advantage of stationary portions of the
input to get significant improvements in compression. The short block length allows the
algorithm to handle sharp attacks without incurring substantial distortion and rate penalties.
Short blocks occur in groups of eight in order to avoid framing issues. As in the case of MPEG
Layer III, there are four kinds of windows: long, short, start, and stop. The decision about
whether to use a group of short blocks is made by the psychoacoustic model. The coefficients
are divided into scalefactor bands in which the number of coefficients in the bands reflects the
critical bandwidth. Each scalefactor band is assigned a single scalefactor. The exact division
of the coefficients into scalefactor bands for the different windows and different sampling rates
is specified in the standard [221].

Spectral Processing

In MPEG Layer III coding the compression gain is mainly achieved through the unequal
distribution of energy in the different frequency bands, the use of the psychoacoustic model,
and Huffman coding. The unequal distribution of energy allows use of fewer bits for spectral
bands with less energy. The psychoacoustic model is used to adjust the quantization step size
in a way that masks the quantization noise. Huffman coding allows further reductions in the
bit rate. All these approaches are also used in the AAC algorithm. In addition, the algorithm
makes use of prediction to reduce the dynamic range of the coefficients and thus allow further
reduction in the bit rate.

Recall that prediction is generally useful only in stationary conditions. By their very nature,
transients are almost impossible to predict. Therefore, generally speaking, predictive coding

584 17 A U D I O C O D I N G

would not be considered for signals containing significant amounts of transients. However,
music signals have exactly this characteristic. Although they may contain long periods of
stationary signals, they also generally contain a significant amount of transient signals. The
AAC algorithm makes clever use of the time frequency duality to handle this situation. The
standard contains two kinds of predictors: an intrablock predictor, referred to as Temporal
Noise Shaping (TNS), and an interblock predictor. The interblock predictor is used during
stationary periods. During these periods it is reasonable to assume that the coefficients at a
certain frequency do not change their value significantly from block to block. Making use
of this characteristic, the AAC standard implements a set of parallel DPCM systems. There
is one predictor for each coefficient up to a maximum number of coefficients. The maxi-
mum is different for different sampling frequencies. Each predictor is a backward adaptive
two-tap predictor. This predictor is really useful only in stationary periods. Therefore, the
psychoacoustic model monitors the input and determines when the output of the predictor is
to be used. The decision is made on a scalefactor band by scalefactor band basis. Because
notification of the decision that the predictors are being used has to be sent to the decoder, this
would increase the rate by one bit for each scalefactor band. Therefore, once the preliminary
decision to use the predicted value has been made, further calculations are made to check if
the savings will be sufficient to offset this increase in rate. If the savings are determined to
be sufficient, a predictor_data_present bit is set to 1 and one bit for each scalefactor band
(called the prediction_used bit) is set to 1 or 0 depending on whether prediction was deemed
effective for that scalefactor band. If not, the predictor_data_present bit is set to 0 and the
prediction_used bits are not sent. Even when a predictor is disabled, the adaptive algorithm
is continued so that the predictor coefficients can track the changing coefficients. However,
because this is a streaming audio format it is necessary from time to time to reset the co-
efficients. Resetting is done periodically in a staged manner and also when a short frame
is used.

When the audio input contains transients, the AAC algorithm uses the intraband predictor.
Recall that narrow pulses in time correspond to wide bandwidths. The narrower a signal in time,
the broader its Fourier transform will be. This means that when transients occur in the audio
signal, the resulting MDCT output will contain a large number of correlated coefficients. Thus,
unpredictability in time translates to a high level of predictability in terms of the frequency
components. The AAC uses neighboring coefficients to perform prediction. A target set of
coefficients is selected in the block. The standard suggests a range of 1.5 kHz to the uppermost
scalefactor band as specified for different profiles and sampling rates. A set of linear predictive
coefficients is obtained using any of the standard approaches, such as the Levinson-Durbin
algorithm described in Chapter 18. The maximum order of the filter ranges from 12 to 20
depending on the profile. The process of obtaining the filter coefficients also provides the
expected prediction gain gp. This expected prediction gain is compared against a threshold to
determine if intrablock prediction is going to be used. The standard suggests a value of 1.4 for
the threshold. The order of the filter is determined by the first partial correlation (PARCOR)
coefficient with a magnitude smaller than a threshold (suggested to be 0.1). The PARCOR
coefficients corresponding to the predictor are quantized and coded for transfer to the decoder.
The reconstructed LPC coefficients are then used for prediction. In the time domain predictive
coders, one effect of linear prediction is the spectral shaping of the quantization noise. The
effect of prediction in the frequency domain is the temporal shaping of the quantization noise,

17.4 MPEG Advanced Audio Coding 585

hence the name Temporal Noise Shaping. The shaping of the noise means that the noise will
be higher during time periods when the signal amplitude is high and lower when the signal
amplitude is low. This is especially useful in audio signals because of the masking properties
of human hearing.

Quantization and Coding

The quantization and coding strategy used in AAC is similar to what is used in MPEG Layer
III. Scalefactors are used to control the quantization noise as part of an outer distortion control
loop. The quantization step size is adjusted to accommodate a target bit rate in an inner rate
control loop. The quantized coefficients are grouped into sections. The section boundaries
have to coincide with scalefactor band boundaries. The quantized coefficients in each section
are coded using the same Huffman codebook. The partitioning of the coefficients into sections
is a dynamic process based on a greedy merge procedure. The procedure starts with the
maximum number of sections. Sections are merged if the overall bit rate can be reduced by
merging. Merging those sections will result in the maximum reduction in bit rate. This iterative
procedure is continued until there is no further reduction in the bit rate.

Stereo Coding

The AAC scheme uses multiple approaches to stereo coding. Apart from independently coding
the audio channels, the standard allows mid/side (M/S) coding and intensity stereo coding.
Both stereo coding techniques can be used at the same time for different frequency ranges.
Intensity coding makes use of the fact that at higher frequencies two channels can be represented
by a single channel plus some directional information. The AAC standard suggests using
this technique for scalefactor bands above 6 kHZ. The M/S approach is used to reduce noise
imaging. As described previously in the joint stereo approach, the two channels (L and R) are
combined to generate sum and difference channels.

Profiles

The main profile of MPEG-2 AAC uses all the tools except for the gain control tool of Figure
17.13. In the low complexity profile in addition to the gain control tool the interblock prediction
tool is also dropped. In addition the maximum prediction order for intraband prediction (TNS)
for long windows is 12 for the low complexity profile as opposed to 20 for the main profile.

The Scalable Sampling Rate profile does not use the coupling and interband prediction
tools. However this profile does use the gain control tool. In the scalable-sampling profile the
MDCT block is preceded by a bank of four equal width 96-tap filters. The filter coefficients are
provided in the standard. The use of this filter bank allows for a reduction in rate and decoder
complexity. By ignoring one or more of the filter bank outputs the output bandwidth can be
reduced. This reduction in bandwidth and sample rate also leads to a reduction in the decoder
complexity. The gain control allows for the attenuation and amplification of different bands
in order to reduce perceptual distortion.

586 17 A U D I O C O D I N G

17.4.2 MPEG-4 AAC

MPEG-4 AAC adds a perceptual noise substitution (PNS) tool and substitutes a long term
prediction (LTP) tool for the interband prediction tool in the spectral coding block. In the quan-
tization and coding section MPEG-4 AAC adds the options of Transform-Domain Weighted
Interleave Vector Quantization (TwinVQ) and Bit Sliced Arithmetic Coding (BSAC).

Perceptual Noise Substitution (PNS)

There are portions of music that sound like noise. Although this may sound like a harsh (or
realistic) subjective evaluation, that is not what is meant here. What is meant by noise here
is a portion of audio where the MDCT coefficients are stationary without containing tonal
components [222]. This kind of noiselike signal is the hardest to compress. However, at the
same time it is very difficult to distinguish one noiselike signal from another. MPEG-4 AAC
makes use of this fact by not transmitting such noiselike scalefactor bands. Instead the decoder
is alerted to this fact and the power of the noiselike coefficients in this band is sent. The decoder
generates a noiselike sequence with the appropriate power and inserts it in place of the unsent
coefficients.

Long Term Prediction

The interband prediction in MPEG-2 AAC is one of the more computationally expensive parts
of the algorithm. MPEG-4 AAC replaces that with a cheaper long term prediction (LTP)
module.

TwinVQ

The Transform-Domain Weighted Interleave Vector Quantization (TwinVQ) [282] option is
suggested in the MPEG-4 AAC scheme for low bit rates. Developed at NTT in the early 1990s,
the algorithm uses a two-stage process for flattening the MDCT coefficients. In the first stage,
a linear predictive coding algorithm is used to obtain the LPC coefficients for the audio data
corresponding to the MDCT coefficients. These coefficients are used to obtain the spectral
envelope for the audio data. Dividing the MDCT coefficients with this spectral envelope
results in some degree of “flattening” of the coefficients. The spectral envelope computed
from the LPC coefficients reflects the gross features of the envelope of the MDCT coefficients.
However, it does not reflect any of the fine structure. This fine structure is predicted from
the previous frame and provides further flattening of the MDCT coefficients. The flattened
coefficients are interleaved and grouped into subvectors and quantized. The flattening process
reduces the dynamic range of the coefficients, allowing them to be quantized using a smaller
VQ codebook than would otherwise have been possible. The flattening process is reversed in
the decoder as the LPC coefficients are transmitted to the decoder.

17.5 Dolby AC-3 (Dolby Digital) 587

Bit Sliced Arithmetic Coding (BSAC)

In addition to the Huffman coding approach used in the MPEG-2 AAC scheme, the MPEG-4
AAC scheme also provides the option of using binary arithmetic coding. The binary arithmetic
coding is performed on the bitplanes of the magnitudes of the quantized MDCT coefficients.
By bitplane we mean the corresponding bit of each coefficient. Consider the sequence of 4-bit
coefficients xn : 5, 11, 8, 10, 3, 1. The most significant bitplane would consist of the MSBs
of these numbers, 011100. The next bitplane would be 100000. The next bitplane is 010110.
The least significant bitplane is 110011.

The coefficients are divided into coding bands of 32 coefficients each. One probability table
is used to encode each coding band. Because we are dealing with binary data, the probability
table is simply the number of zeros. If a coding band contains only zeros, this is indicated
to the decoder by selecting the probability table 0. The sign bits associated with the nonzero
coefficients are sent after the arithmetic code when the coefficient has a 1 for the first time.

Arithmetic coding is also used on the scalefactor information. The maximum scalefactor is
coded as an 8-bit integer. The differences between scalefactors are encoded using an arithmetic
code. The first scalefactor is encoded using the difference between it and the maximum
scalefactor.

17.5 Dolby AC- 3 (Dolby Digital)

Unlike the MPEG algorithms described in the previous section, the Dolby AC-3 method became
a de facto standard. It was developed in response to the standardization activities of the Grand
Alliance, which was developing a standard for HDTV in the United States. However, even
before it was accepted as the recommendation for HDTV audio, Dolby AC-3 had already made
its debut in the movie industry. It was first released in a few theaters during the showing of
Star Trek IV in 1991 and was formally released with the movie Batman Returns in 1992. It
was accepted by the Grand Alliance in October of 1993 and became an Advanced Television
Systems Committee (ATSC) standard in 1995. Dolby AC-3 had the multichannel capability
required by the movie industry along with the ability to downmix the channels to accommodate
the varying capabilities of different applications. The 5.1 channels include right, center, left,
left rear, and right rear, and a narrowband low-frequency effects channel (the 0.1 channel). The
scheme supports downmixing the 5.1 channels to 4, 3, 2, or 1 channel. It is now the standard
used for DVDs as well as for Direct Broadcast Satellites (DBS) and other applications.

A block diagram of the Dolby AC-3 algorithm is shown in Figure 17.14. Much of the
Dolby AC-3 scheme is similar to what we have already described for the MPEG algorithms.
As in the MPEG schemes, the Dolby AC-3 algorithm uses the modified DCT (MDCT) with
50% overlap for frequency decomposition. As in the case of MPEG, there are two different
sizes of windows used. For the stationary portions of the audio a window of size 512 is used to
get 256 coefficients. A surge in the power of the high-frequency coefficients is used to indicate
the presence of a transient and the 512 window is replaced by two windows of size 256. The
one place where the Dolby AC-3 algorithm differs significantly from the algorithm described
for MPEG is in the bit allocation.

588 17 A U D I O C O D I N G

MDCT
Spectral
envelope
coding

Bit
allocation

Mantissa
coding

Framing

F I GUR E 17 . 14 The Dolby AC-3 algorithm.

17.5.1 Bit Allocation

The Dolby AC-3 scheme has a very interesting method for bit allocation. Like the MPEG
schemes, it uses a psychoacoustic model that incorporates the hearing thresholds and the
presence of noise and tone maskers. However, the input to the model is different. In the
MPEG schemes the audio sequence being encoded is provided to the bit allocation procedure
and the bit allocation is sent to the decoder as side information. In the Dolby AC-3 scheme
the signal itself is not provided to the bit allocation procedure. Instead a crude representation
of the spectral envelope is provided to both the decoder and the bit allocation procedure. As
the decoder then possesses the information used by the encoder to generate the bit allocation,
the allocation itself is not included in the transmitted bitstream.

The representation of the spectral envelope is obtained by representing the MDCT coeffi-
cients in binary exponential notation. The binary exponential notation of a number 110.101 is
0.110101 × 23, where 110101 is called the mantissa and 3 is the exponent. Given a sequence
of numbers, the exponents of the binary exponential representation provide an estimate of the
relative magnitude of the numbers. The Dolby AC-3 algorithm uses the exponents of the bi-
nary exponential representation of the MDCT coefficients as the representation of the spectral
envelope. This encoding is sent to the bit allocation algorithm, which uses this information in
conjunction with a psychoacoustic model to generate the number of bits to be used to quantize
the mantissa of the binary exponential representation of the MDCT coefficients. To reduce
the amount of information that needs to be sent to the decoder, the spectral envelope coding is
not performed for every audio block. Depending on how stationary the audio is, the algorithm
uses one of three strategies [200].

The D15 Method

When the audio is relatively stationary, the spectral envelope is coded once for every six
audio blocks. Because a frame in Dolby AC-3 consists of six blocks, during each block we

17.7 Summary 589

get a new spectral envelope and hence a new bit allocation. The spectral envelope is coded
differentially. The first exponent is sent as is. The difference between exponents is encoded
using one of five values {0,±1,±2}. Three differences are encoded using a 7-bit word. Note
that three differences can take on 125 different combinations. Therefore, using 7 bits, which
can represent 128 different values, is highly efficient.

The D25 and D45 Methods

If the audio is not stationary, the spectral envelope is sent more often. To keep the bit rate
down, the Dolby AC-3 algorithm uses one of two strategies. In the D25 strategy, which is used
for moderate spectral activity, every other coefficient is encoded. In the D45 strategy, used
during transients, every fourth coefficient is encoded. These strategies make use of the fact
that during a transient the fine structure of the spectral envelope is not that important, allowing
for a more crude representation.

17.6 Other Standards

We have described a number of audio compression approaches that make use of the limitations
of human audio perception. These are by no means the only ones. Competitors to Dolby Digital
include Digital Theater Systems (DTS) and Sony Dynamic Digital Sound (SDDS). Both of
these proprietary schemes use psychoacoustic modeling. The Adaptive TRansform Acoustic
Coding (ATRAC) algorithm [223] was developed for the MiniDisc by Sony in the early 1990s,
followed by enhancements in ATRAC3 and ATRAC3plus. As with the other schemes described
in this chapter, the ATRAC approach uses MDCT for frequency decomposition, though the
audio signal is first decomposed into three bands using a two-stage decomposition. As in the
case of the other schemes, the ATRAC algorithm recommends the use of the limitations of
human audio perception in order to discard information that is not perceptible.

Another algorithm that also uses MDCT and a psychoacoustic model is the open source
encoder Vorbis. The Vorbis algorithm also uses vector quantization and Huffman coding to
reduce the bit rate.

17.7 Summary

The audio coding algorithms described in this chapter take, in some sense, the opposite tack
from the speech coding algorithms described previously. Instead of focusing on the source
of information, as is the case with a speech coding algorithm, the focus in an audio coding
algorithm is on the sink, or user, of the information. By identifying the components of the
source signal that are not perceptible, the algorithms reduce the amount of data that needs to
be transmitted.

590 17 A U D I O C O D I N G

Further Reading

1. The book Introduction to Digital Audio Coding and Standards, by M. Bosi and R.E.
Goldberg [200], provides a detailed accounting of the standards described here as well
as a comprehensive look at the process of constructing a psychoacoustic model.

2. The MPEG Handbook, by J. Watkinson [222], is an accessible source of information
about aspects of audio coding as well as the MPEG algorithms.

3. An excellent tutorial on the MPEG algorithms is the appropriately named A Tutorial on
MPEG/Audio Compression, by D. Pan [224].

4. A thorough review of audio coding can be found in Perceptual Coding of Digital Audio,
by T. Painter and A. Spanias [225].

5. The website http://www.tnt.uni-hannover.de/project/mpeg/audio/faq/ contains informa-
tion about all the audio coding schemes described here as well as an overview of MPEG-7
audio.

http://www.tnt.uni-hannover.de/project/mpeg/audio/faq/

18
Analysis/Synthesis and Analysis by
Synthesis Schemes

18.1 Overview

A
nalysis/synthesis schemes rely on the availability of a parametric model of the
source output generation. When such a model exists, the transmitter analyzes
the source output and extracts the model parameters, which are transmitted to
the receiver. The receiver uses the model along with the transmitted parameters
to synthesize an approximation to the source output. The difference between

this approach and the techniques we have looked at in previous chapters is that what is trans-
mitted is not a direct representation of the samples of the source output; instead, the transmitter
informs the receiver how to go about regenerating those outputs. For this approach to work,
a good model for the source has to be available. Since good models for speech production
exist, this approach has been widely used for the low-rate coding of speech. We describe
several different analysis/synthesis techniques for speech compression. In recent years the
fractal approach to image compression has been gaining in popularity. Because this approach
is also one in which the receiver regenerates the source output using “instructions” from the
transmitter, we describe it in this chapter.

18.2 Introduction

In previous chapters we presented a number of lossy compression schemes that provide an
estimate of each source output value to the receiver. Historically, an earlier approach towards

Introduction to Data Compression. DOI: http://dx.doi.org/10.1016/B978-0-12-415796-5.00018-1
© 2012 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-415796-5.00018-1

592 18 A N A L Y S I S / S Y N T H E S I S A N D A N A L Y S I S

lossy compression is to model the source output and send the model parameters to the source
instead of the estimates of the source output. The receiver tries to synthesize the source output
based on the received model parameters.

Consider an image transmission system that works as follows. At the transmitter, we have
a person who examines the image to be transmitted and comes up with a description of the
image. At the receiver, we have another person who then proceeds to create that image. For
example, suppose the image we wish to transmit is a picture of a field of sunflowers. Instead
of trying to send the picture, we simply send the words “field of sunflowers.” The person at
the receiver paints a picture of a field of sunflowers on a piece of paper and gives it to the
user. Thus, an image of an object is transmitted from the transmitter to the receiver in a highly
compressed form. This approach towards compression should be familiar to listeners of sports
broadcasts on radio. It requires that both transmitter and receiver work with the same model.
In terms of sports broadcasting, this means that the viewer has a mental picture of the sports
arena, and both the broadcaster and listener attach the same meaning to the same terminology.

This approach works for sports broadcasting because the source being modeled functions
under very restrictive rules. In a basketball game, when the referee calls a dribbling foul, listen-
ers generally don’t picture a drooling chicken. If the source violates the rules, the reconstruction
would suffer. If the basketball players suddenly decided to put on a ballet performance, the
transmitter (sportscaster) would be hard pressed to represent the scene accurately to the re-
ceiver. Therefore, it seems that this approach to compression can only be used for artificial
activities that function according to man-made rules. Of the sources that we are interested in,
only text fits this description, and the rules that govern the generation of text are complex and
differ widely from language to language.

Fortunately, while natural sources may not follow man-made rules, they are subject to the
laws of physics, which can prove to be quite restrictive. This is particularly true of speech. No
matter what language is being spoken, the speech is generated using machinery that is not very
different from person to person. Moreover, this machinery has to obey certain physical laws
that substantially limit the behavior of outputs. Therefore, speech can be analyzed in terms
of a model, and the model parameters can be extracted and transmitted to the receiver. At
the receiver the speech can be synthesized using the model. This analysis/synthesis approach
was first employed by Homer Dudley at Bell Laboratories, who developed what is known as
the channel vocoder (described in the next section). Actually, the synthesis portion had been
attempted even earlier by Kempelen Farkas Lovag (1734–1804). He developed a “speaking
machine” in which the vocal tract was modeled by a flexible tube whose shape could be modified
by an operator. Sound was produced by forcing air through this tube using bellows [226].

Unlike speech, images are generated in a variety of different ways; therefore, the analy-
sis/synthesis approach does not seem very useful for image or video compression. However,
if we restrict the class of images to “talking heads” of the type we would encounter in a video-
conferencing situation, we might be able to satisfy the conditions required for this approach.
When we talk, our facial gestures are restricted by the way our faces are constructed and by
the physics of motion. This realization has led to the new field of model-based video coding
(see Chapter 19).

A totally different approach to image compression based on the properties of self-similarity
is the fractal coding approach. While this approach does not explicitly depend on some physical

18.3 Speech Compression 593

Excitation
source

Vocal tract
filter

Speech

F I GUR E 18 . 1 A model for speech synthesis.

limitations, it fits in with the techniques described in this chapter; that is, what is stored or
transmitted is not the samples of the source output, but a method for synthesizing the output.
We will study this approach in Section 18.6.

18.3 Speech Compression

A very simplified model of speech synthesis is shown in Figure 18.1. As we described in
Chapter 7, speech is produced by forcing air first through an elastic opening, the vocal cords,
and then through the laryngeal, oral, nasal, and pharynx passages, and finally through the
mouth and the nasal cavity. Everything past the vocal cords is generally referred to as the
vocal tract. The first action generates the sound, which is then modulated into speech as it
traverses through the vocal tract.

In Figure 18.1, the excitation source corresponds to the sound generation, and the vocal tract
filter models the vocal tract. As we mentioned in Chapter 7, there are several different sound
inputs that can be generated by different conformations of the vocal cords and the associated
cartilages.

Therefore, in order to generate a specific fragment of speech, we have to generate a sequence
of sound inputs or excitation signals and the corresponding sequence of appropriate vocal tract
approximations.

At the transmitter, the speech is divided into segments. Each segment is analyzed to
determine an excitation signal and the parameters of the vocal tract filter. In some of the
schemes, a model for the excitation signal is transmitted to the receiver. The excitation signal
is then synthesized at the receiver and used to drive the vocal tract filter. In other schemes,
the excitation signal itself is obtained using an analysis-by-synthesis approach. This signal is
then used by the vocal tract filter to generate the speech signal.

Over the years many different analysis/synthesis speech compression schemes have been
developed, and substantial research into the development of new approaches and the improve-
ment of existing schemes continues. Given the large amount of information, we can only
sample some of the more popular approaches in this chapter. See [283,284] for more detailed
coverage and pointers to the vast literature on the subject.

The approaches we will describe in this chapter include channel vocoders, which are of
special historical interest; the linear predictive coder, which is the U.S. Government standard at
the rate of 2.4 kbps; code-excited linear prediction (CELP) based schemes; sinusoidal coders,
which provide excellent performance at rates of 4.8 kbps and higher and are also a part of
several national and international standards; and mixed excitation linear prediction, which is
the new 2.4 kbps federal standard speech coder. In our description of these approaches, we
will use the various national and international standards as examples.

594 18 A N A L Y S I S / S Y N T H E S I S A N D A N A L Y S I S

−3

−2

−1

0

1

2

3

800 900 1000 1100 1200 1300 1400 1500 1600

F I GUR E 18 . 2 The sound /e/ in test.

18.3.1 The Channel Vocoder

In the channel vocoder [227], each segment of input speech is analyzed using a bank of band-
pass filters called the analysis filters. The energy at the output of each filter is estimated at
fixed intervals and transmitted to the receiver. In a digital implementation, the energy estimate
may be the average squared value of the filter output. In analog implementations, this is the
sampled output of an envelope detector. Generally, an estimate is generated 50 times every
second. Along with the estimate of the filter output, a decision is made as to whether the
speech in that segment is voiced, as in the case of the sounds /a/ /e/ /o/, or unvoiced, as in the
case for the sounds /s/ /f/. Voiced sounds tend to have a pseudoperiodic structure, as seen in
Figure 18.2, which is a plot of the /e/ part of a male voice saying the word test. The period of
the fundamental harmonic is called the pitch period. The transmitter also forms an estimate of
the pitch period, which is transmitted to the receiver.

Unvoiced sounds tend to have a noiselike structure, as seen in Figure 18.3, which is the /s/
sound in the word test.

At the receiver, the vocal tract filter is implemented by a bank of band-pass filters. The
bank of filters at the receiver, known as the synthesis filters, is identical to the bank of analysis
filters. Based on whether the speech segment is deemed to be voiced or unvoiced, either a
pseudonoise source or a periodic pulse generator is used as the input to the synthesis filter bank.
The period of the pulse input is determined by the pitch estimate obtained for the segment being
synthesized at the transmitter. The input is scaled by the energy estimate at the output of the
analysis filters. A block diagram of the synthesis portion of the channel vocoder is shown in
Figure 18.4.

Since the introduction of the channel vocoder, a number of variations have been developed.
The channel vocoder matches the frequency profile of the input speech. There is no attempt
to reproduce the speech samples per se. However, not all frequency components of speech are
equally important. In fact, as the vocal tract is a tube of nonuniform cross section, it resonates
at a number of different frequencies. These frequencies are known as formants [119]. The
formant values change with different sounds; however, we can identify ranges in which they

18.3 Speech Compression 595

−3

−2

−1

0

1

2

3

2400 2500 2600 2700 2800 2900 3000 3100 3200

F I GUR E 18 . 3 The sound /s/ in test.

Synthesis
filter 1

From analysis filter 1

Synthesis
filter 2

From analysis filter 2

Pitch period

Voiced/unvoiced decision

From analysis filter n

Synthesis
filter n

Noise
source

.

.

.

.

.

.Pulse
source

F I GUR E 18 . 4 The channel vocoder receiver.

occur. For example, the first formant occurs in the range 200–800 Hz for a male speaker, and in
the range 250–1000 Hz for a female speaker. The importance of these formants has led to the
development of formant vocoders, which transmit an estimate of the formant values (usually
four formants are considered sufficient) and an estimate of the bandwidth of each formant. At
the receiver the excitation signal is passed through tunable filters that are tuned to the formant
frequency and bandwidth.

An important development in the history of the vocoders was an understanding of the
importance of the excitation signal. Schemes that require the synthesis of the excitation signal

596 18 A N A L Y S I S / S Y N T H E S I S A N D A N A L Y S I S

at the receiver spend a considerable amount of computational resources to obtain accurate
voicing information and accurate pitch periods. This expense can be avoided through the use
of voice excitation. In the voice-excited channel vocoder, the voice is first filtered using a
narrowband low-pass filter. The output of the low-pass filter is sampled and transmitted to
the receiver. At the receiver, this low-pass signal is passed through a nonlinearity to generate
higher-order harmonics that, together with the low-pass signal, are used as the excitation signal.
Voice excitation removes the problem of pitch extraction. It also removes the necessity for
declaring every segment either voiced or unvoiced. As there are usually quite a few segments
that are neither totally voiced or unvoiced, this can result in a substantial increase in quality.
Unfortunately, the increase in quality is reflected in the high cost of transmitting the low-pass
filtered speech signal.

The channel vocoder, although historically the first approach to analysis/synthesis—indeed
the first approach to speech compression—is not as popular as some of the other schemes
described here. However, all the different schemes can be viewed as descendants of the
channel vocoder.

18.3.2 The Linear Predictive Coder (Government Stan-
dard LPC- 10)

Of the many descendants of the channel vocoder, the most well-known is the linear predictive
coder (LPC). Instead of the vocal tract being modeled by a bank of filters, in the linear predictive
coder the vocal tract is modeled as a single linear filter whose output yn is related to the input
εn by

yn =
M∑

i=1

bi yn−i + Gεn (1)

where G is called the gain of the filter. As in the case of the channel vocoder, the input to the
vocal tract filter is either the output of a random noise generator or a periodic pulse generator.
A block diagram of the LPC receiver is shown in Figure 18.5.

Vocal tract
filter

Noise
source

V/UV
switch

Pulse
source

(Voiced)

Pitch

(Unvoiced)

Speech

F I GUR E 18 . 5 A model for speech synthesis.

18.3 Speech Compression 597

At the transmitter, a segment of speech is analyzed. The parameters obtained include a
decision as to whether the segment of speech is voiced or unvoiced, the pitch period if the
segment is declared voiced, and the parameters of the vocal tract filter. In this section, we will
take a somewhat detailed look at the various components that make up the linear predictive
coder. As an example, we will use the specifications for the 2.4-kbit U.S. Government standard
LPC-10.

The input speech is generally sampled at 8000 samples per second. In the LPC-10 standard,
the speech is broken into 180 sample segments, corresponding to 22.5 milliseconds of speech
per segment.

The Voiced/Unvoiced Decision

If we compare Figures 18.2 and 18.3, we can see there are two major differences. Notice
that the samples of the voiced speech have larger amplitude; that is, there is more energy in
the voiced speech. Also, the unvoiced speech contains higher frequencies. As both speech
segments have average values close to zero, this means that the unvoiced speech waveform
crosses the x = 0 line more often than the voiced speech sample. Therefore, we can get a
fairly good idea about whether the speech is voiced or unvoiced based on the energy in the
segment relative to background noise and the number of zero crossings within a specified
window. In the LPC-10 algorithm, the speech segment is first low-pass filtered using a filter
with a bandwidth of 1 kHz. The energy at the output relative to the background noise is used to
obtain a tentative decision about whether the signal in the segment should be declared voiced
or unvoiced. The estimate of the background noise is basically the energy in the unvoiced
speech segments. This tentative decision is further refined by counting the number of zero
crossings and checking the magnitude of the coefficients of the vocal tract filter. We will talk
more about this latter point later in this section. Finally, it can be perceptually annoying to
have a single voiced frame sandwiched between unvoiced frames. The voicing decision of the
neighboring frames is considered in order to prevent this from happening.

Estimating the Pitch Period

Estimating the pitch period is one of the most computationally intensive steps of the analysis
process. Over the years a number of different algorithms for pitch extraction have been
developed. In Figure 18.2, it would appear that obtaining a good estimate of the pitch should
be relatively easy. However, we should keep in mind that the segment shown in Figure 18.2
consists of 800 samples, which is considerably more than the samples available to the analysis
algorithm. Furthermore, the segment shown here is noise-free and consists entirely of a voiced
input. It can be a difficult undertaking for a machine to extract the pitch from a short noisy
segment that may contain both voiced and unvoiced samples.

Several algorithms make use of the fact that the autocorrelation of a periodic function
Rxx (k)will have a maximum when k is equal to the pitch period. Coupled with the fact that the
estimation of the autocorrelation function generally leads to a smoothing out of the noise, this
makes the autocorrelation function a useful tool for obtaining the pitch period. Unfortunately,
there are also some problems with the use of the autocorrelation. Voiced speech is not exactly
periodic, which makes the maximum lower than we would expect from a periodic signal.

598 18 A N A L Y S I S / S Y N T H E S I S A N D A N A L Y S I S

Generally, a maximum is detected by checking the autocorrelation value against a threshold;
if the value is greater than the threshold, a maximum is declared to have occurred. When there
is uncertainty about the magnitude of the maximum value, it is difficult to select a value for
the threshold. Another problem occurs because of the interference due to other resonances in
the vocal tract. There are a number of algorithms that resolve these problems in different ways
(see [116,119] for details).

In this section, we will describe a closely related technique, employed in the LPC-10
algorithm, that uses the average magnitude difference function (AMDF). The AMDF is defined
as

AMDF(P) = 1

N

k0+N∑
i=k0+1

|yi − yi−P | (2)

If a sequence {yn} is periodic with period P0, samples that are P0 apart in the {yn} sequence
will have values close to each other, and therefore the AMDF will have a minimum at P0. If we
evaluate this function using the /e/ and /s/ sequences, we get the results shown in Figures 18.6
and 18.7. Notice that not only do we have a minimum when P equals the pitch period, but
any spurious minimums we may obtain in the unvoiced segments are very shallow; that is, the
difference between the minimum and average values is quite small. Therefore, the AMDF can
serve a dual purpose: it can be used to identify the pitch period as well as the voicing condition.

The job of pitch extraction is simplified by the fact that the pitch period in humans tends
to fall in a limited range. Thus, we do not have to evaluate the AMDF for all possible values
of P . For example, the LPC-10 algorithm assumes that the pitch period is between 2.5 and
19.5 milliseconds. Assuming a sampling rate of 8000 samples a second, this means that P is
between 20 and 160.

0.2

0.4

0.6

0.8

1.0

1.2AMDF (P)

1.4

1.6

1.8

2.0

2.2

20 40 60 80
Pitch period (P)

100 120 140 160

F I GUR E 18 . 6 AMDF function for the sound /e/ in test.

18.3 Speech Compression 599

0

0.05

0.10

0.15

0.20AMDF (P)

0.25

0.30

0.35

0.40

20 40 60 80
Pitch period (P)

100 120 140 160

F I GUR E 18 . 7 AMDF function for the sound /s/ in test.

Obtaining the Vocal Tract Filter

In linear predictive coding, the vocal tract is modeled by a linear filter with the input-output
relationship shown in Equation (1). At the transmitter, during the analysis phase we obtain the
filter coefficients that best match the segment being analyzed in a mean squared error sense.
That is, if {yn} are the speech samples in that particular segment, then we want to choose {ai }
to minimize the average value of e2

n where

e2
n =

(
yn −

M∑
i=1

ai yn−i − Gεn

)2

(3)

If we take the derivative of the expected value of e2
n with respect to the coefficients {a j }, we

get a set of M equations:

∂

∂a j
E

⎡
⎣(yn −

M∑
i=1

ai yn−i − Gεn

)2⎤⎦ = 0 (4)

⇒ −2E

[(
yn −

M∑
i=1

ai yn−i − Gεn

)
yn− j

]
= 0 (5)

⇒
M∑

i=1

ai E
[
yn−i yn− j

] = E
[
yn yn− j

]
(6)

where in the last step we have made use of the fact that E[εn yn− j] is zero for j �= 0. In
order to solve (6) for the filter coefficients, we need to be able to estimate E[yn−i yn− j]. There
are two different approaches for estimating these values, called the autocorrelation approach
and the autocovariance approach, each leading to a different algorithm. In the autocorrelation
approach, we assume that the {yn} sequence is stationary and therefore

E
[
yn−i yn− j

] = Ryy(|i − j |) (7)

600 18 A N A L Y S I S / S Y N T H E S I S A N D A N A L Y S I S

Furthermore, we assume that the {yn} sequence is zero outside the segment for which we are
calculating the filter parameters. Therefore, the autocorrelation function is estimated as

Ryy(k) =
n0+N∑

n=n0+1+k

yn yn−k (8)

and the M equations of the form of (6) can be written in matrix form as

RA = P (9)

where

R =

⎡
⎢⎢⎢⎢⎢⎣

Ry y(0) Ryy(1) Ryy(2) · · · Ryy(M − 1)
Ryy(1) Ryy(0) Ryy(1) · · · Ryy(M − 2)
Ryy(2) Ryy(1) Ryy(0) · · · Ryy(M − 3)
...

...
...

...

Ryy(M − 1) Ryy(M − 2) Ryy(M − 3) · · · Ryy(0)

⎤
⎥⎥⎥⎥⎥⎦ (10)

A =

⎡
⎢⎢⎢⎢⎢⎣

a1
a2
a3
...

aM

⎤
⎥⎥⎥⎥⎥⎦ (11)

and

P =

⎡
⎢⎢⎢⎢⎢⎣

Ryy(1)
Ryy(2)
Ryy(3)
...

Ryy(M)

⎤
⎥⎥⎥⎥⎥⎦ (12)

This matrix equation can be solved directly to find the filter coefficients:

A = R−1 P (13)

However, the special form of the matrix R obviates the need for computing R−1. Note that not
only is R symmetric, but also each diagonal of R consists of the same element. For example,
the main diagonal contains only the element Ryy(0), while the diagonals above and below
the main diagonal contain only the element Ryy(1). This special type of matrix is called a
Toeplitz matrix, and there are a number of efficient algorithms available for the inversion of
Toeplitz matrices [228]. Because R is Toeplitz, we can obtain a recursive solution to (9) that is
computationally very efficient and that has an added attractive feature from the point of view
of compression. This algorithm is known as the Levinson-Durbin algorithm [229,230]. We
describe the algorithm without derivation. For details of the derivation, see [231,119].

In order to compute the filter coefficients of an M th-order filter, the Levinson-Durbin
algorithm requires the computation of all filters of order less than M . Furthermore, during
the computation of the filter coefficients, the algorithm generates a set of constants ki known

18.3 Speech Compression 601

as the reflection coefficients, or partial correlation (PARCOR) coefficients. In the algorithm
description below, we denote the order of the filter using superscripts. Thus, the coefficients of
the fifth-order filter would be denoted by {a(5)i }. The algorithm also requires the computation
of the estimate of the average error E[e2

n]. We will denote the average error using an mth-order
filter by Em . The algorithm proceeds as follows:

1. Set E0 = Ryy(0), i = 0.
2. Increment i by one.

3. Calculate ki =
(∑i−1

j=1 a(i−1)
j Ryy(i − j + 1)− Ryy(i)

)
/Ei−1.

4. Set a(i)i = ki .

5. Calculate a(i)j = a(i−1)
j + ki a

(i−1)
i− j for j = 1, 2, . . . , i − 1.

6. Calculate Ei =
(
1− k2

i

)
Ei−1.

7. If i < M , go to step 2.

In order to get an effective reconstruction of the voiced segment, the order of the vocal tract
filter needs to be sufficiently high. Generally, the order of the filter is 10 or more. Because
the filter is an IIR filter, error in the coefficients can lead to instability, especially for the high
orders necessary in linear predictive coding. As the filter coefficients are to be transmitted to
the receiver, they need to be quantized. This means that quantization error is introduced into
the value of the coefficients, and that can lead to instability.

This problem can be avoided by noticing that if we know the PARCOR coefficients, we can
obtain the filter coefficients from them. Furthermore, PARCOR coefficients have the property
that as long as the magnitudes of the coefficients are less than one, the filter obtained from
them is guaranteed to be stable. Therefore, instead of quantizing the coefficients {ai } and
transmitting them, the transmitter quantizes and transmits the coefficients {ki }. As long as we
make sure that all the reconstruction values for the quantizer have magnitudes less than one, it
is possible to use relatively high-order filters in the analysis/synthesis schemes.

The assumption of stationarity that was used to obtain (7) is not really valid for speech
signals. If we discard this assumption, the equations to obtain the filter coefficients change.
The term E[yn−i yn− j] is now a function of both i and j . Defining

ci j = E[yn−i yn− j] (14)

we get the equation

CA = S (15)

where

C =

⎡
⎢⎢⎢⎣

c11 c12 c13 · · · c1M

c21 c22 c23 · · · c2M
...

...
...

...

cM1 cM2 cM3 · · · cM M

⎤
⎥⎥⎥⎦ (16)

602 18 A N A L Y S I S / S Y N T H E S I S A N D A N A L Y S I S

and

S =

⎡
⎢⎢⎢⎢⎢⎣

c10
c20
c30
...

cM0

⎤
⎥⎥⎥⎥⎥⎦ (17)

The elements ci j are estimated as

ci j =
n0+N∑

n=n0+1

yn−i yn− j (18)

Notice that we no longer assume that the values of yn outside of the segment under consider-
ation are zero. This means that in calculating the C matrix for a particular segment, we use
samples from previous segments. This method of computing the filter coefficients is called the
covariance method.

The C matrix is symmetric but no longer Toeplitz, so we can’t use the Levinson-Durbin
recursion to solve for the filter coefficients. The equations are generally solved using a tech-
nique called the Cholesky decomposition. We will not describe the solution technique here.
(You can find it in most texts on numerical techniques; an especially good source is [182].) For
an in-depth study of the relationship between the Cholesky decomposition and the reflection
coefficients, see [232].

The LPC-10 algorithm uses the covariance method to obtain the reflection coefficients.
It also uses the PARCOR coefficients to update the voicing decision. In general, for voiced
signals the first two PARCOR coefficients have values close to one. Therefore, if both the first
two PARCOR coefficients have very small values, the algorithm sets the voicing decision to
unvoiced.

Transmitting the Parameters

Once the various parameters have been obtained, they need to be coded and transmitted to
the receiver. There are a variety of ways this can be done. Let us look at how the LPC-10
algorithm handles this task.

The parameters that need to be transmitted include the voicing decision, the pitch period,
and the vocal tract filter parameters. One bit suffices to transmit the voicing information. The
pitch is quantized to 1 of 60 different values using a log-companded quantizer. The LPC-10
algorithm uses a 10th-order filter for voiced speech and a 4th-order filter for unvoiced speech.
Thus, we have to send 11 values (10 reflection coefficients and the gain) for voiced speech and
5 for unvoiced speech.

The vocal tract filter is especially sensitive to errors in reflection coefficients that have
magnitudes close to one. As the first few coefficients are most likely to have values close to
one, the LPC-10 algorithm specifies the use of nonuniform quantization for k1 and k2. The
nonuniform quantization is implemented by first generating the coefficients

gi = 1+ ki

1− ki
(19)

18.3 Speech Compression 603

which are then quantized using a 5-bit uniform quantizer. The coefficients k3 and k4 are both
quantized using a 5-bit uniform quantizer. In the voiced segments, coefficients k5 through k8
are quantized using a 4-bit uniform quantizer, k9 is quantized using a 3-bit uniform quantizer,
and k10 is quantized using a 2-bit uniform quantizer. In the unvoiced segments, the 21 bits
used to quantize k5 through k10 in the voiced segments are used for error protection.

The gain G is obtained by finding the root mean squared (rms) value of the segment and
quantized using 5-bit log-companded quantization. Including an additional bit for synchro-
nization, we end up with a total of 54 bits per frame. Multiplying this by the total number of
frames per second gives us the target rate of 2400 bits per second.

Synthesis

At the receiver, the voiced frames are generated by exciting the received vocal tract filter by
a locally stored waveform. This waveform is 40 samples long. It is truncated or padded with
zeros depending on the pitch period. If the frame is unvoiced, the vocal tract is excited by a
pseudorandom number generator.

The LPC-10 coder provides intelligible reproduction at 2.4 kbits. The use of only two kinds
of excitation signals gives an artificial quality to the voice. This approach also suffers when
used in noisy environments. The encoder can be fooled into declaring segments of speech
unvoiced because of background noise. When this happens, the speech information gets lost.

18.3.3 Code- Excited Linear Predicton (CELP)

As we mentioned earlier, one of the most important factors in generating natural-sounding
speech is the excitation signal. As the human ear is especially sensitive to pitch errors, a great
deal of effort has been devoted to the development of accurate pitch detection algorithms.
However, no matter how accurate the pitch is in a system using the LPC vocal tract filter,
the use of a periodic pulse excitation that consists of a single pulse per pitch period leads to
a “buzzy twang” [233]. In 1982, Atal and Remde [234] introduced the idea of multipulse
linear predictive coding (MP-LPC), in which several pulses were used during each segment.
The spacing of these pulses is determined by evaluating a number of different patterns from a
codebook of patterns.

A codebook of excitation patterns is constructed. Each entry in this codebook is an excita-
tion sequence that consists of a few nonzero values separated by zeros. Given a segment from
the speech sequence to be encoded, the encoder obtains the vocal tract filter using the LPC
analysis described previously. The encoder then excites the vocal tract filter with the entries of
the codebook. The difference between the original speech segment and the synthesized speech
is fed to a perceptual weighting filter, which weights the error using a perceptual weighting
criterion. The codebook entry that generates the minimum average weighted error is declared
to be the best match. The index of the best-match entry is sent to the receiver along with the
parameters for the vocal tract filter.

This approach was improved upon by Atal and Schroeder in 1984 with the introduction
of the system that is commonly known as code-excited linear prediction (CELP). In CELP,
instead of having a codebook of pulse patterns, we allow a variety of excitation signals. For

604 18 A N A L Y S I S / S Y N T H E S I S A N D A N A L Y S I S

each segment the encoder finds the excitation vector that generates synthesized speech that
best matches the speech segment being encoded. This approach is closer in a strict sense to a
waveform coding technique such as DPCM than to the analysis/synthesis schemes. However,
as the ideas behind CELP are similar to those behind LPC, we included CELP in this chapter.
The main components of the CELP coder include the LPC analysis, the excitation codebook,
and the perceptual weighting filter. Each component of the CELP coder has been investigated
in great detail by a large number of researchers. For a survey of some of the results, see [235].
In the rest of the section, we give two examples of very different kinds of CELP coders. The
first algorithm is Federal Standard (FS) 1016 in the United States, a 4.8 kbps coder; the other
is the CCITT (now ITU-T) G.728 standard, a low-delay 16 kbps coder.

Besides CELP, the MP-LPC algorithm had another descendant that has become a standard.
In 1986, Kroon, Deprettere, and Sluyter [236] developed a modification of the MP-LPC al-
gorithm. Instead of using excitation vectors in which the nonzero values are separated by an
arbitrary number of zero values, they forced the nonzero values to occur at regularly spaced
intervals. Furthermore, they allowed the nonzero values to take on a number of different
values. They called this scheme regular pulse excitation (RPE) coding. A variation of RPE,
called regular pulse excitation with long-term prediction (RPE-LTP) [237], was adopted as a
standard for digital cellular telephony by the Group Speciale Mobile (GSM) subcommittee of
the European Telecommunications Standards Institute at the rate of 13 kbps.

Federal Standard 1016

The vocal tract filter used by the CELP coder in FS 1016 is given by

yn =
10∑

i=1

bi yn−i + βyn−P + Gεn (20)

where P is the pitch period and the term βyn−P is the contribution due to the pitch periodicity.
The input speech is sampled at 8000 samples per second and divided into 30-millisecond
frames containing 240 samples. Each frame is divided into four subframes of length 7.5
milliseconds [238]. The coefficients {bi } for the 10th-order short-term filter are obtained using
the autocorrelation method.

The pitch period P is calculated once every subframe. In order to reduce the computational
load, the pitch value is assumed to lie between between 20 and 147 every odd subframe. In
every even subframe, the pitch value is assumed to lie within 32 samples of the pitch value in
the previous frame.

The FS 1016 algorithm uses two codebooks [239], a stochastic codebook and an adaptive
codebook. An excitation sequence is generated for each subframe by adding one scaled
element from the stochastic codebook and one scaled element from the adaptive codebook.
The scale factors and indices are selected to minimize the perceptual error between the input
and synthesized speech.

The stochastic codebook contains 512 entries. These entries are generated using a Gaussian
random number generator, the output of which is quantized to −1, 0, or 1. If the input is less
than −1.2, it is quantized to −1; if it is greater than 1.2, it is quantized to 1; and if it lies
between −1.2 and 1.2, it is quantized to 0. The codebook entries are adjusted so that each

18.3 Speech Compression 605

entry differs from the preceding entry in only two places. This structure helps reduce the
search complexity.

The adaptive codebook consists of the excitation vectors from the previous frame. Each
time a new excitation vector is obtained, it is added to the codebook. In this manner, the
codebook adapts to local statistics.

The FS 1016 coder has been shown to provide excellent reproductions in both quiet and
noisy environments at rates of 4.8 kbps and above [239]. Because of the richness of the
excitation signals, the reproduction does not suffer from the problem of sounding artificial.
The lack of a voicing decision makes it more robust to background noise. The quality of the
reproduction of this coder at 4.8 kbps has been shown to be equivalent to a delta modulator
operating at 32 kbps [239]. The price for this quality is much higher complexity and a much
longer coding delay. We will address this last point in the next section.

CCITT G.728 Speech Standard

By their nature, the schemes described in this chapter have some coding delay built into them.
By “coding delay,” we mean the time between when a speech sample is encoded to when
it is decoded if the encoder and decoder were connected back-to-back (i.e., there were no
transmission delays). In the schemes we have studied, a segment of speech is first stored in a
buffer. We do not start extracting the various parameters until a complete segment of speech
is available to us. Once the segment is completely available, it is processed. If the processing
is real time, this means another segment’s worth of delay. Finally, once the parameters have
been obtained, coded, and transmitted, the receiver has to wait until at least a significant part
of the information is available before it can start decoding the first sample. Therefore, if a
segment contains 20 milliseconds’ worth of data, the coding delay would be approximately
somewhere between 40 to 60 milliseconds. This kind of delay may be acceptable for some
applications; however, there are other applications where such long delays are not acceptable.
For example, in some situations there are several intermediate tandem connections between the
initial transmitter and the final receiver. In such situations, the total delay would be a multiple
of the coding delay of a single connection. The size of the delay would depend on the number
of tandem connections and could rapidly become quite large.

For such applications, CCITT approved recommendation G.728, a CELP coder with a
coder delay of 2 milliseconds operating at 16 kbps. As the input speech is sampled at 8000
samples per second, this rate corresponds to an average rate of 2 bits per sample.

In order to lower the coding delay, the size of each segment has to be reduced significantly
because the coding delay will be some multiple of the size of the segment. The G.728 rec-
ommendation uses a segment size of five samples. With five samples and a rate of 2 bits per
sample, we only have 10 bits available to us. Using only 10 bits, it would be impossible to
encode the parameters of the vocal tract filter as well as the excitation vector. Therefore, the
algorithm obtains the vocal tract filter parameters in a backward adaptive manner; that is, the
vocal tract filter coefficients used to synthesize the current segment are obtained by analyzing
the previous decoded segments. The CCITT requirements for G.728 included the requirement
that the algorithm operate under noisy channel conditions. It would be extremely difficult
to extract the pitch period from speech corrupted by channel errors. Therefore, the G.728
algorithm does away with the pitch filter. Instead, the algorithm uses a 50th-order vocal tract

606 18 A N A L Y S I S / S Y N T H E S I S A N D A N A L Y S I S

filter. The order of the filter is large enough to model the pitch of most female speakers. Not
being able to use pitch information for male speakers does not cause much degradation [240].
The vocal tract filter is updated every fourth frame, which is once every 20 samples or 2.5
milliseconds. The autocorrelation method is used to obtain the vocal tract parameters.

As the vocal tract filter is completely determined in a backward adaptive manner, we have
all 10 bits available to encode the excitation sequence. Ten bits would be able to index 1024 ex-
citation sequences. However, to examine 1024 excitation sequences every 0.625 milliseconds
is a rather large computational load. In order to reduce this load, the G.728 algorithm uses a
product codebook where each excitation sequence is represented by a normalized sequence and
a gain term. The final excitation sequence is a product of the normalized excitation sequence
and the gain. Of the 10 bits, 3 bits are used to encode the gain using a predictive encoding
scheme, while the remaining 7 bits form the index to a codebook containing 127 sequences.

Block diagrams of the encoder and decoder for the CCITT G.728 coder are shown in
Figure 18.8. The low-delay CCITT G.728 CELP coder operating at 16 kbps provides recon-
structed speech quality superior to the 32 kbps CCITT G.726 ADPCM algorithm described
in Chapter 10. Various efforts are under way to reduce the bit rate for this algorithm without
compromising too much on quality and delay.

18.3.4 Sinusoidal Coders

A competing approach to CELP in the low-rate region is a relatively new form of coder called
the sinusoidal coder [235]. Recall that the main problem with the LPC coder was the paucity
of excitation signals. The CELP coder resolved this problem by using a codebook of excitation
signals. The sinusoidal coders solve this problem by using an excitation signal that is the sum
of sine waves of arbitrary amplitudes, frequencies, and phases. Thus, the excitation signal is
of the form

en =
L∑

l=1

al cos(nωl + ψl) (21)

where the number of sinusoids L required for each frame depends on the contents of the frame.
If the input to a linear system is a sinusoid with frequency ωl , the output will also be a sinusoid
with frequency ωl , albeit with different amplitude and phase. The vocal tract filter is a linear
system. Therefore, if the excitation signal is of the form of (21), the synthesized speech {sn}
will be of the form

sn =
L∑

i=1

Al cos(nωl + φl). (22)

Thus, each frame is characterized by a set of spectral amplitudes Al , frequencies ωl , and phase
terms φl . The number of parameters required to represent the excitation sequence is the same
as the number of parameters required to represent the synthesized speech. Therefore, rather
than estimate and transmit the parameters of both the excitation signal and vocal tract filter and
then synthesize the speech at the receiver by passing the excitation signal through the vocal
tract filter, the sinusoidal coders directly estimate the parameters required to synthesize the
speech at the receiver.

18.3 Speech Compression 607

Excitation
codebook

Variable
gain

Synthesized speech
+

−

Input speech

Codebook index to channel

Buffer

Backward
gain

adaptation

Backward
LPC

analysis

50th-order
FIR filter

Perceptual
weighting

filter

Encoder

Decoder

Excitation
codebook

Codebook
index from
channel

Output
speech

Variable
gain

Decoded speech

Backward
gain

adaptation

Backward
LPC

analysis

50th-order
FIR filter

Adaptive
postfilter

F I GUR E 18 . 8 Encoder and decoder for the CCITT G.728 16kbps speech coder.

Just like the coders discussed previously, the sinusoidal coders divide the input speech into
frames and obtain the parameters of the speech separately for each frame. If we synthesized
the speech segment in each frame independent of the other frames, we would get synthetic
speech that is discontinuous at the frame boundaries. These discontinuities severely degrade
the quality of the synthetic speech. Therefore, the sinusoidal coders use different interpolation
algorithms to smooth the transition from one frame to another.

Transmitting all the separate frequencies ωl would require significant transmission re-
sources, so the sinusoidal coders obtain a fundamental frequency w0 for which the approxi-
mation

ŷn =
K (ω0)∑
k=1

Â(kω0) cos(nkω0 + φk) (23)

608 18 A N A L Y S I S / S Y N T H E S I S A N D A N A L Y S I S

is close to the speech sequence yn . Because this is a harmonic approximation, the approximate
sequence {ŷn} will be most different from the speech sequence {yn} when the segment of
speech being encoded is unvoiced. Therefore, this difference can be used to decide whether
the frame or some subset of it is unvoiced.

The two most popular sinusoidal coding techniques today are represented by the sinusoidal
transform coder (STC) [241] and the multiband excitation coder (MBE) [242]. While the STC
and MBE are similar in many respects, they differ in how they handle unvoiced speech. In the
MBE coder, the frequency range is divided into bands, each consisting of several harmonics
of the fundamental frequency ω0. Each band is checked to see if it is unvoiced or voiced. The
voiced bands are synthesized using a sum of sinusoids, while the unvoiced bands are obtained
using a random number generator. The voiced and unvoiced bands are synthesized separately
and then added together.

In the STC, the proportion of the frame that contains a voiced signal is measured using
a “voicing probability” Pv . The voicing probability is a function of how well the harmonic
model matches the speech segment. Where the harmonic model is close to the speech signal,
the voicing probability is taken to be unity. The sine wave frequencies are then generated by

wk =
{

kw0 for kw0 � wc Pv
k∗w0 + (k − k∗)wu for kw0 > wc Pv

(24)

wherewc corresponds to the cutoff frequency (4 kHz), wu is the unvoiced pitch corresponding
to 100 Hz, and k∗ is the largest value of k for which k∗w0 � wc Pv . The speech is then
synthesized as

ŷn =
K∑

k=1

Â(wk) cos(nwk + φk) (25)

Both the STC and the MBE coders have been shown to perform well at low rates. A version of
the MBE coder known as the improved MBE (IMBE) coder was approved by the Association
of Police Communications Officers (APCO) as the standard for law enforcement.

18.3.5 Mixed Excitation Linear Prediction (MELP)

The mixed excitation linear prediction (MELP) coder was selected to be the federal standard for
speech coding at 2.4 kbps by the Defense Department Voice Processing Consortium (DDVPC).
The MELP algorithm uses the same LPC filter to model the vocal tract. However, it uses a
much more complex approach to the generation of the excitation signal.

A block diagram of the decoder for the MELP system is shown in Figure 18.9. As evident
from the figure, the excitation signal for the synthesis filter is no longer simply noise or a
periodic pulse but a multiband mixed excitation. The mixed excitation contains both a filtered
signal from a noise generator as well as a contribution that depends directly on the input signal.

The first step in constructing the excitation signal is pitch extraction. The MELP algorithm
obtains the pitch period using a multistep approach. In the first step an integer pitch value P1
is obtained in the following manner:

18.3 Speech Compression 609

Adaptive
spectral

enhancement

Pulse
dispersion

filter

Synthesized speech

LPC
synthesis

filter

Gain

Pulse
generation

Shaping
filter

Noise
generator

Shaping
filter

Aperiodic
flag

Fourier
magnitudes

Pitch

F I GUR E 18 . 9 Block diagram of MELP decoder.

1. The input is first filtered using a low-pass filter with a cutoff of 1 kHz.
2. The normalized autocorrelation is then computed for lags between 40 and 160 samples.

The normalized autocorrelation r(τ) is defined as

r(τ) = cτ (0, τ)√
cτ (0, 0)cτ (τ, τ)

where

cτ (m, n) =
−�τ/2�+79∑
−�τ/2�−80

yk+m yk+n

The first estimate of the pitch P1 is obtained as the value of τ that maximizes the normalized
autocorrelation function. This value is refined by looking at the signal filtered using a filter
with a passband in the 0–500 Hz range. This stage uses two values of P1, one from the current
frame and one from the previous frame, as candidates. The normalized autocorrelation values
are obtained for lags from five samples less to five samples more than the candidate P1 values.
The lags that provide the maximum normalized autocorrelation value for each candidate are
used for fractional pitch refinement. The idea behind fractional pitch refinement is that if the
maximum value of r(τ) is found for some τ = T , then the maximum could be in the interval
(T − 1, T] or [T, T + 1). The fractional offset is computed using

	 = cT (0, T + 1)cT (T, T)− cT (0, T)cT (T, T + 1)

cT (0, T + 1)[cT (T, T)− cT (T, T + 1)] + cT (0, T)[cT (T + 1, T + 1)− cT (T, T + 1)] (26)

610 18 A N A L Y S I S / S Y N T H E S I S A N D A N A L Y S I S

The normalized autocorrelation at the fractional pitch values is given by

r(T +) = (1−)cT (0, T)+	cT (0, T + 1)√
cT (0, 0)[(1−)2cT (T, T)+ 2	(1−)cT (T, T + 1)+	2cT (T + 1, T + 1)]

(27)
The fractional estimate that gives the higher autocorrelation is selected as the refined pitch
value P2.

The final refinements of the pitch value are obtained using the linear prediction residuals.
The residual sequence is generated by filtering the input speech signal with the filter obtained
using LPC analysis. For the purposes of pitch refinement the residual signal is filtered using
a low-pass filter with a cutoff of 1 kHz. The normalized autocorrelation function is computed
for this filtered residual signal for lags from five samples less to five samples more than the
candidate P2 value, and a candidate value of P3 is obtained. If r(P3) � 0.6, we check to make
sure that P3 is not a multiple of the actual pitch. If r(P3) < 0.6, we do another fractional pitch
refinement around P3 using the input speech signal. If in the end r(P3) < 0.55, we replace P3
with a long-term average value of the pitch. The final pitch value is quantized on a logarithmic
scale using a 99-level uniform quantizer.

The input is also subjected to a multiband voicing analysis using five filters with passbands
0–500, 500–1000, 1000–2000, 2000–3000, and 3000–4000 Hz. The goal of the analysis is to
obtain the voicing strengths V bpi for each band used in the shaping filters. Noting that P2
was obtained using the output of the lowest band filter, r(P2) is assigned as the lowest band
voicing strength V bp1. For the other bands, V bpi is the larger of r(P2) for that band and
the correlation of the envelope of the band-pass signal. If the value of V bp1 is small, this
indicates a lack of low-frequency structure, which in turn indicates an unvoiced or transition
input. Thus, if V bp1 < 0.5, the pulse component of the excitation signal is selected to be
aperiodic, and this decision is communicated to the decoder by setting the aperiodic flag to 1.
When V bp1 > 0.6, the values of the other voicing strengths are quantized to 1 if their value is
greater than 0.6, and to 0 otherwise. In this way signal energy in the different bands is turned
on or off depending on the voicing strength. There are several exceptions to this quantization
rule. If V bp2, V bp3, and V bp4 all have magnitudes less than 0.6 and V bp5 has a value greater
than 0.6, they are all (including V bp5) quantized to 0. Also, if the residual signal dn means
d sub n in math mode contains a few large values, indicating sudden transitions in the input
signal, the voicing strengths are adjusted. In particular, the peakiness is defined as

peakiness =
√

1
160

∑160
n=1 d2

n

1
160

∑160
n=1 |dn|

(28)

If this value exceeds 1.34, V bp1 is forced to 1. If the peakiness value exceeds 1.6, V bp1,
V bp2, and V bp3 are all set to 1.

In order to generate the pulse input, the algorithm measures the magnitude of the discrete
Fourier transform coefficients corresponding to the first 10 harmonics of the pitch. The predic-
tion residual is generated using the quantized predictor coefficients. The algorithm searches
in a window of width �512/P̂3� samples around the initial estimates of the pitch harmonics
for the actual harmonics where P̂3 is the quantized value of P3. The magnitudes of the har-
monics are quantized using a vector quantizer with a codebook size of 256. The codebook is

18.4 Wideband Speech Compression__ITU-T G.722.2 611

searched using a weighted Euclidean distance that emphasizes lower frequencies over higher
frequencies.

At the decoder, using the magnitudes of the harmonics and information about the periodicity
of the pulse train, the algorithm generates one excitation signal. Another signal is generated
using a random number generator. Both are shaped by the multiband shaping filter before being
combined. This mixture signal is then processed through an adaptive spectral enhancement
filter, which is based on the LPC coefficients, to form the final excitation signal. Note that
in order to preserve continuity from frame to frame, the parameters used for generating the
excitation signal are adjusted based on their corresponding values in neighboring frames.

18.4 Wideband Speech Compression__ITU- T
G.722.2

One of the earliest forms of (remote) speech communication was over the telephone. This
experience set the expectations for quality rather low. When technology advanced, people still
did not demand higher quality in their voice communications. However, the multimedia revo-
lution is changing that. With ever-increasing quality in video and audio there is an increasing
demand for higher quality in speech communication. Telephone-quality speech is limited to
the band between 200 Hz and 3400 Hz. This range of frequency contains enough information
to make speech intelligible and provide some degree of speaker identification. To improve
the quality of speech, it is necessary to increase the bandwidth of speech. Wideband speech
is bandlimited to 50–7000 Hz. The higher frequencies give more clarity to the voice signal
while the lower frequencies contribute timbre and naturalness. The ITU-T G.722.2 standard,
approved in January of 2002, provides a multirate coder for wideband speech coding.

Wideband speech is sampled at 16,000 samples per second. The signal is split into two
bands, a lower band from 50–6400 Hz and a narrow upper band from 6400–7000 Hz. The
coding resources are devoted to the lower band. The upper band is reconstructed at the receiver
based on information from the lower band and using random excitation. The lower band is
downsampled to 12.8 kHz.

The coding method is a code-excited linear prediction method that uses an algebraic
codebook as the fixed codebook (the algebraic structure of the codebook is described in
Section 18.5). The adaptive codebook contains low-pass interpolated past excitation vec-
tors. The basic idea is the same as in CELP. A synthesis filter is derived from the input speech.
An excitation vector consisting of a weighted sum of the fixed and adaptive codebooks is used
to excite the synthesis filter. The perceptual closeness of the output of the filter to the input
speech is used to select the combination of excitation vectors. The selection, along with the
parameters of the synthesis filter, is communicated to the receiver, which then synthesizes the
speech. A voice activity detector is used to reduce the rate during silence intervals. Let us
examine the various components in slightly more detail.

The speech is processed in 20-ms frames. Each frame is composed of four 5-ms subframes.
The LP analysis is conducted once per frame using an overlapping 30-ms window. Autocor-
relation values are obtained for the windowed speech and the Levinson-Durbin algorithm is
used to obtain the LP coefficients. These coefficients are transformed to Immittance Spectral

612 18 A N A L Y S I S / S Y N T H E S I S A N D A N A L Y S I S

Pairs (ISP) (described below), which are quantized using a vector quantizer. The reason be-
hind the transformation is that we will need to quantize whatever representation we have of
the synthesis filters introducing quantization error. The elements of the ISP representation are
uncorrelated if the underlying process is stationary, which means that error in one coefficient
will not cause the entire spectrum to get distorted.

Given a set of sixteen LP coefficients {ai }, define two polynomials

f ′1(z) = A(z)+ z−16 A(z−1) (29)

f ′2(z) = A(z)− z−16 A(z−1) (30)

where
A(z) =

∑
i

ai z
−i

Clearly, if we know the polynomials their sum will give us A(z). Instead of sending the
polynomials, we can send the roots of these polynomials. These roots are known to all lie on
the unit circle, and the roots of the two polynomials alternate. The polynomial f ′2(z) has two
roots at z = 1 and z = −1. These are removed and we get the two polynomials

f1(z) = f ′1(z) (31)

f2(z) = f ′2(z)
1− z−2 (32)

These polynomials can now be factored as follows

f1(z) = (1+ a16)
∏

i=0,2,...,14

(
1− 2qi z

−i + z−2
)

(33)

f2(z) = (1+ a16)
∏

i=1,3,...,13

(
1− 2qi z

−i + z−2
)

(34)

where qi = cos(ωi) and ωi are the immittance spectral frequencies. The ISP coefficients are
quantized using a combination of differential encoding and vector quantization. The vector
of sixteen frequencies is split into subvectors and these vectors are quantized in two stages.
The quantized ISPs are transformed to LP coefficients, which are then used in the fourth
subframe for synthesis. The ISP coefficients used in the other three subframes are obtained by
interpolating the coefficients in the neighboring subframes.

For each 5-ms subframe we need to generate an excitation vector. As in CELP, the excitation
is a sum of vectors from two codebooks, a fixed codebook and an adaptive codebook. One of
the problems with vector codebooks has always been the storage requirements. The codebook
should be large enough to provide for a rich set of excitations. However, with a dimension of
64 samples (for 5 ms), the number of possible combinations can get enormous. The G.722.2
algorithm solves this problem by imposing an algebraic structure on the fixed codebook. The
64 positions are divided into four tracks. The first track consists of positions 0, 4, 8,…, 60.
The second track consists of the positions 1, 5, 9,…, 61. The third track consists of positions
2, 6, 10,…, 62 and the final track consists of the remaining positions. We can place a single
signed pulse in each track by using 4 bits to denote the position and a fifth bit for the sign.

18.5 Coding of Speech for Internet Applications 613

Packetize
filter

LPC
residuals

High-
pass

Compute

coeff. residual
Generate Identify

start
state

Quantize
Start

residuals

Encode
remaining

F I GUR E 18 . 10 Steps in the encoding of speech for the Internet Low Bandwidth
Coder.

This effectively gives us a 20-bit fixed codebook. This corresponds to a codebook size of 220.
However, we do not need to store the codebook. By assigning more or fewer pulses per track
we can dramatically change the “size” of the codebook and get different coding rates. The
standard details a rapid search procedure to obtain the excitation vectors.

The voice activity detector allows the encoder to significantly reduce the rate during pe-
riods of speech pauses. During these periods the background noise is coded at a low rate by
transmitting parameters describing the noise. This comfort noise is synthesized at the decoder.

18.5 Coding of Speech for Internet Applications

The Internet presents a very different set of problems and opportunities for speech compression.
Data transmitted over the Internet has to be packetized. This can mean that the information
used to encode speech contained in a packet has to come from within the packet. This in turn
results in much higher bit rates than we have considered in previous sections. Consecutive
packets can make their way along different routes from the encoder to the decoder. If the
delay between packets is sufficiently long the delayed packet has to be considered lost and the
decoder has to come up with strategies to ameliorate the effects of this loss. On the positive
side the processing power available for the encoding and decoding can be significantly higher
if the codec is implemented on computers rather than telephones (though the distinction may
sometimes be academic).

In this section we will look at three different speech coding standards developed specifically
for the Internet environment, the Internet Low Bitrate Codec (iLBC), the ITU-T G.729 standard,
and SILK, the coder used by Skype.

18.5.1 iLBC

The iLBC was first proposed by Global IP Sound (later Global IP Solutions, which was bought
by Google in 2011), and is used in a number of Voice over Internet Protocol (VoIP) applications
including Google Talk, Skype, and Yahoo Messenger. The coder was standardized by the
Internet Engineering Task Force in RFC 3951 [243] and RFC 3952 [244]. The iLBC allows
speech coding of 8000 samples per second speech at two fixed rates, 15.2 kbits per second and
13.33 kbits per second, where the input is quantized using a 16-bit uniform quantizer. A block
diagram of the encoding process is shown in Figure 18.10.

After an optional high-pass filter with a cutoff frequency of 90 Hz to remove low-frequency
noise, such as a 60-cycle hum or a DC bias, the data are divided into blocks that are encoded
independent of each other. This independence helps ameliorate the effects of packet loss.
For the higher rate option the data are blocked into 20 millisecond blocks corresponding to

614 18 A N A L Y S I S / S Y N T H E S I S A N D A N A L Y S I S

160 samples, while for the lower rate option the data are divided into 30 millisecond blocks
containing 240 samples each. For the higher bit rate each block is encoded using 304 bits per
block while for the lower bit rate each block is encoded using 400 bits. Each block is divided
into subblocks of 40 samples each.

For the computation of the autocorrelation coefficients we use a portion of the samples
from the previous block along with the samples from the current block. For the 15.2 kbit
encoding we use 80 samples from the previous block, while for the 13.33 kbit encoding we use
60 samples from the previous block. The use of samples from the previous blocks helps in the
continuity of the reconstruction. Because the computed LPC coefficients are transmitted to the
decoder the use of the previous block in generating the LPC coefficients does not detract from
the independent block coding feature of the iLBC algorithm. The samples from the current
block along with the samples from the previous block are windowed before the autocorrelation
coefficients are computed. For the high-rate case a single set of LPC coefficients are computed
while in the low-rate case two sets of LPC coefficients are computed. For the high-rate case
a single window of length 240 samples centered on the third subblock is used, while for the
low-rate case two windows centered on the second and fifth subblocks are used.

To reduce problems with numerical precision the autocorrelation coefficients are smoothed
using a window given by

wac[k] =
{

1.0001 k = 0

e
− 1

2

(
120πk

fs

)2

k = 1, 2, . . . , 10
(35)

The multiplication of wac[0] by 1.0001 corresponds to the addition of a white noise floor
40 dB below the signal power.

In each case the encoder computes LPC coefficients using the Durbin-Levinson algorithm
that are then represented using the line spectral frequency (LSF) representation, described
below. Let Ak(z) be the tenth-order linear predictive filter

Ak(z) = 1+
10∑

i=1

ak(i)z
−i

Define the two functions f ′1(z) and f ′2(z) as

f ′1(z) = Ak(z)+ z−11 Ak(z
−1)

f ′2(z) = Ak(z)− z−11 Ak(z
−1)

These polynomials have roots only on the unit circle. Clearly, the polynomial f ′1(z) has a root
at z = −1 while the polynomial f ′2(z) has a root at z = 1. Removing these roots we obtain
the polynomials

f1(z) = f ′1(z)
1+ z−1

f2(z) = f ′2(z)
1− z−1

18.5 Coding of Speech for Internet Applications 615

These polynomials have five complex conjugate roots each on the unit circle. The polynomials
can be written as products of five second-order polynomials of the form (1 − 2qi z−1 + z−2)

where qi = cos(ωi) and ωi are known as the line spectral frequencies (LSFs). Notice the
similarity between this and the immittance spectral frequency described in Section 18.4. Each
vector of ten LSF values is split into three vectors of dimensions 3, 3, and 4. The first three LSF
coefficients are quantized using a three-dimensional vector quantizer with 64 output levels, the
next three coefficients are quantized using a different three-dimensional vector quantizer with
a codebook of size 128, while the last four coefficients are quantized using a four-dimensional
vector quantizer with codebook size 128. Thus a total of 20 bits are used to encode each set
of LSF coefficients; 6 bits for the first three coefficients, and 7 bits each for the next three and
four coefficients.

For a stable reconstruction filter the LSF coefficients should be in increasing order. How-
ever, because we split the LSF vector prior to quantization it is possible that some of the
coefficients might be out of place. RFC 3951 [243] specifies a procedure for correcting any
discrepancies. In the low rate case we have two sets of quantized and unquantized LSF co-
efficients, one obtained by centering a window on the second subblock and one obtained by
centering a window on the fifth subblock. These coefficients are used to generate specific LSF
coefficients for each subblock. For subblocks 2 and 5 we use the generated LSF coefficients.
The LSF coefficients used for blocks 3 and 4 are obtained using a linear interpolation of the
computed LSF coefficients. The LSF coefficients for subblock 1 are computed using an in-
terpolation between the LSF coefficients of subblock 2 and a predefined set of coefficients
that are assumed to belong to the previous block. For subblock 6 we use the computed LSF
coefficients for subblock 5. In each case we compute a set of coefficients from the unquantized
LSF coefficients and another set from the quantized LSF coefficients. For the high-rate case
LSF coefficients for the subblocks are obtained by linearly interpolating the LSF coefficients
(quantized and unquantized) with the LSF coefficients of the previous block. After the LSF co-
efficients for each subblock have been generated, they are used to generate the LPC coefficients
for each subblock. Thus, for each subblock k we get two analysis filters,

Ak(z) = 1+
∑

i

ak(i)z
−i

from the unquantized coefficients, and

Ãk(z) = 1+
∑

i

ãk(i)z
−i

from the quantized coefficients. The analysis filters { Ãk(z)} are used to generate the resid-
ual signal for each subblock, with each analysis filter used for the corresponding subblock.
The transition between subblocks is managed by letting the filter memory carry over to the
consecutive subblock.

The goal of the iLBC procedure is to encode the blocks independently. This means that
the algorithm cannot use an adaptive codebook that relies on the past of the signal. As there
is a significant probability of packet loss such an approach would lead to the development of
different codebooks in the encoder and decoder. Therefore, the algorithm employs a scheme
that uses the past decoded residuals from a block to generate the codebook. Because of this

616 18 A N A L Y S I S / S Y N T H E S I S A N D A N A L Y S I S

the order in which the various parts of the residual sequence are encoded becomes important.
From a perceptual perspective it is important that the encoder be able to relatively accurately
encode any voiced segments present in the block. In order to do this the algorithm uses the
notion of a start state. The power in the residual signal for each block is computed (with
optional weighting) and the two consecutive blocks with the highest residual signal power are
identified as containing the start state segment. Which set of two subblocks contains the start
state is encoded using 2 bits for the high-rate case and 3 bits for the low-rate case. Of the 80
samples contained in these two blocks 57 samples for the high-rate case and 58 samples for
the low-rate case are selected as the start state segment by discarding either the first 23 or 22
samples from the first of these two subblocks or the last 23 or 22 samples from the second of
the two subblocks based on which portion has lower residual power. This decision is encoded
using one bit.

The start state segment is filtered using a set of all-pass filters {Pk(z)} where

Pk(z) = Ãrk(z)

Ãk(z)

where
Ãrk(z) = z−11 +

∑
i

ãk(i + 1)zi−10

and k corresponds to the subblocks containing the start state segment.
The maximum element of the all-pass sequence is identified and the base-10 logarithm of

this value is quantized using a quantization table specified in RFC 3951. The quantized value
qmax is used to generate a scaling factor α given by

α = 4.5

10qmax

The all-pass filtered residual samples are multiplied by α to generate a normalized sequence,
which is filtered using a perceptual weighting filter Wk(z) given by

Wk(z) = 1

Ak(
z

0.4222)

This filtered sequence is encoded using a DPCM system with a 3-bit quantizer and a predictor
ρk(z), where

ρk(z) = 1− 1

Wk(z)

In order to recover the residual sequence, first the effect of scaling is undone by dividing each
sample by α. Then the effect of the all-pass filtering is undone by time-reversing the unscaled
sequence, filtering it using the all-pass filter and circular convolution, and then undoing the
time reversal.

The residual sequence from the start state segment is used to form a codebook that is
used to encode the 23 or 22 samples discarded from the two subblocks when obtaining the
start state. After this codebooks are generated for the encoding of each of the 40 samples in
the remaining subblocks. First the subblocks following the start state are encoded, then the
subblocks preceding the subblocks are encoded.

18.5 Coding of Speech for Internet Applications 617

The codebook is generated using the residual sequences from the sequences already en-
coded. The residual sequence is stored in a codebook memory that is of size 85 samples for
generating the codebook for encoding the 23 or 22 sample segment and is of size 147 samples
for generating the codebook for encoding the complete subblocks. A base codebook is created
by sliding a window the length of the target sequence over the perceptually weighted codebook
memory resulting in 64 code vectors for the shorter sequence and 128 code vectors for the
subblock length. The number of code vectors is doubled by filtering the code vectors in the
base codebook using an FIR filter of length 8. The codebook is further augmented with 20
code vectors used to encode the subblocks using interpolations of the codebook memory.

Each target vector is encoded using a three-stage gain-shape vector quantization approach.
Let xi be the target vector to be quantized and let {cn} be the set of vectors in the codebook.
In the first stage the normalized inner product

σn = (xT
i cn)

2

|cn|2
is computed and the vector cm which gives the maximum value for σn over all elements of the
codebook and also satisfies the constraints |gi | < 1.3 and xT

i cm > 0 is obtained, where

gi = (xT
i cm)

|cm |2
If none of the code vectors satisfy the two constraints the first code vector in the codebook is
selected. The gain value gi is quantized using a 5-bit quantizer specified by RFC 3951. The
reconstruction vector cm weighted by a scaled quantized value of the gain is then removed
from the target vector to generate a new target vector for the second stage. The same process
is followed to get the reconstruction vector for the third stage. The gain values in the second
and third stages are quantized using 4 and 3 bits respectively. At the end of this process we
have three quantized gain values and three indices into the codebook.

Notice that we have encoded the start state samples using a 3-bit DPCM while the re-
maining residuals are encoded using a three stage gain-shape vector quantizer. To smooth out
discrepancies introduced due to the different treatment of samples within a block the encoder
readjusts the gains. This completes the encoding process. The decoding process is a simple
inverse of the encoding process. However, this presupposes the fact that the packet containing
the encoder output will reach the decoder. In the Internet environment it is quite possible that
the packet will not reach its destination in a timely manner. The iLBC algorithm contains a
Packet Loss Concealment (PLC) strategy to deal with the inevitable loss of packets.

When a packet is lost the decoder needs to substitute a block of samples to replace the
number of samples in the packet. This substitution is based on a pitch-synchronous repetition
of the excitation signal used by the last reconstruction filter in the previous block. The autocor-
relation values for the previous block are used to determine the level of voiced and unvoiced
signal and the pitch periodicity. This information is used to generate an excitation signal using
a periodic signal and a random signal. If several blocks in a row are lost the excitation signal
is dampened to allow a graceful degradation in the decoded signal. After a block or several
blocks have been lost the first correctly received block cannot be directly decoded. This is to
prevent perceptible discontinuities in the decoded speech. A correlation analysis is performed

618 18 A N A L Y S I S / S Y N T H E S I S A N D A N A L Y S I S

to find the best phase match between the concealed packet and the received packet and the
excitation signal of the received packet is modified using an overlap-add procedure.

18.5.2 G.729

The ITU-T G.729 standard was not developed specifically for the Internet. It provides relatively
good quality at 8 kbits per second [245], however, its relative complexity has made it a less
attractive option for standard telephone applications. In the Internet world this complexity is
not as severe a drawback as the encoding and decoding is performed on relatively powerful
computers, while the increase in quality afforded by the complexity is a definite plus. A block
diagram of the encoder is shown in Figure 18.11. As in the previous techniques the encoder
needs to determine the synthesis filter coefficients and the excitation vector, which are then
used by the decoder to reconstruct the speech.

The various operations shown in the block diagram are performed either once per frame,
or once per subframe. A frame corresponds to 10 milliseconds of speech, which at a sampling
rate of 8000 samples per second corresponds to 80 samples. A subframe is a half frame made
up of 40 samples corresponding to 5 milliseconds of speech.

The preprocessing step involves downscaling the input by two to reduce the possibility of
overflow and high-pass filtering to remove low-frequency interference including DC bias and
interference from the power source. The filter has two poles and two zeros with a cutoff of
140 Hz.

The computation of the synthesis filter is relatively straightforward; the identification of
the excitation signal is somewhat more involved. The filtered signal is analyzed to obtain the
short-term analysis and synthesis filters. Once per frame the signal is windowed using a 30
millisecond window given by

wlp(k) =
{

0.54− 0.46 cos
(2πk

399

)
k = 0, 1, . . . , 199

cos
(

2π(k−200)
159

)
k = 200, 201, . . . , 239

The autocorrelation coefficients are obtained from the windowed signal and scaled to re-
duce arithmetic problems using the same scaling as the iLBC encoder (Equation (35)). The
Levinson-Durbin algorithm is then used to obtain the linear predictive coefficients, which are
then used to obtain the line spectral frequencies. A fourth order moving average predictor is
used to predict the LSF coefficients in the current frame. The prediction residual is quantized
using a two-stage vector quantizer. The first stage is a 10-dimensional VQ with a codebook of
size 128. The quantized error is then further quantized using the second stage, which consists
of two five-dimensional vector quantizers, one for the first five coefficients and one for the
second five coefficients. Each five-dimensional vector quantizer has a codebook size of 32.
Once the LSF coefficients are quantized they are adjusted in order to make sure that the order
of the frequencies is preserved and also to prevent two frequencies from being too close to
each other. The latter situation would lead to unwanted resonances in the synthesis filter. In
order to preserve continuity between frames the computed and quantized LSF values are used
for the second subframe. For the first subframe the standard requires using an interpolated set
of LSF values. The interpolation is performed on the LSP values qi . The LSP values of the

18.5 Coding of Speech for Internet Applications 619

P

Fixed

Pitch
analysis

Synthesis
filter

processing
Pre−

codebook

Adaptive
codebook

LP Analysis

Interpolation
Quantization

weighting
Perceptual

Fixed
codebook
search

quantization
Gain Parameter

Encoding

G

G

C

F I GUR E 18 . 11 Steps in the encoding of speech for the ITU-T G.729 encoder.

first subframe are taken to be the average of the LSP values computed for this frame and the
LSP values computed for the previous frame.

620 18 A N A L Y S I S / S Y N T H E S I S A N D A N A L Y S I S

The identification of the excitation signal involves the selection of vectors from the adaptive
codebook and the fixed codebook and the computation of the gains associated with each of
them. In order to select the adaptive codebook entry we also need to identify the pitch and the
target signal. The target signal x(n) can be obtained in several ways. The approach suggested
in ITU-T Rec G.729 is to filter the LP residual signal through the combination of the synthesis
filter Â(z) and the weighting filter W (z) given by

W (z) = A(z/γ1)

A(z/γ2)

where γ1 and γ2 are computed for each frame using the first two reflection coefficients. Â(z)
is the filter constructed using the quantized linear predictive coefficients.

This weighting filter is also used to generate a weighted signal, which is used to estimate
the pitch delay in the frame. The pitch is estimated in two steps; first a crude estimate is
obtained and this is then refined. The crude estimate is obtained by finding the maxima of the
autocorrelation function of the weighted signal in three ranges of the delay. A selection process
that advantages smaller values of the delay over larger values is then used to select among the
three estimates. The logic behind advantaging the smaller values is to avoid choosing pitch
multiples. This crude estimate of the pitch is then refined using a closed loop analysis. The
search maximizes

R(k) =
∑39

n=0 x(n)yk(n)√∑39
n=0 yk(n)yk(n)

where x(n) is the target signal and yk(n) is the past filtered excitation at delay k. The filter in
this case is the weighted synthesis filter W (z)/ Â(z). Once the integer delay k and the fractional
delay t have been determined the adaptive codebook vector is obtained as

v(n) =
9∑

i=0

u(n − k + i)b30(t + 3i)+
9∑

i=0

u(n − k + 1+ i)b30(3− t + 3i)

where u(n) is the past excitation signal and b30(n) is based on a Hamming windowed sinc
function truncated at ±29 and padded with zeros at ±30. This filter has a 3 dB cutoff at
3600 Hz. The adaptive codebook delay G P is computed as

G P =
∑39

n=0 x(n)y(n)√∑39
n=0 y(n)y(n)

where y(n) is the filtered adaptive codebook vector.
Once the adaptive codebook vector has been determined the vector multiplied by the gain is

removed from the target vector to generate the target for the fixed codebook search. The fixed
codebook is based on an algebraic structure in which each vector has four nonzero pulses with
amplitude either +1 or −1. The positions available to these pulses are shown in Table 18.1.
The codebook vectors c(n) are constructed as

c(n) = s0δ(n − m0)+ s1δ(n − m1)+ s2δ(n − m2)+ s3δ(n − m3) n = 0, 1, . . . , 39

18.5 Coding of Speech for Internet Applications 621

T A B L E 18 . 1 Pulses used to construct the
fixed codebook.

Pulse Sign Positions

i0 s0 = ±1 m0 : 0, 5, 10, 15, 20, 25, 30, 35
i1 s1 = ±1 m1 : 1, 6, 11, 16, 21, 26, 31, 36
i2 s2 = ±1 m2 : 2, 7, 12, 17, 22, 27, 32, 37
i3 s3 = ±1 m3 : 3, 8, 13, 18, 23, 28, 33, 38

4, 9, 14, 19, 24, 29, 34, 39

T A B L E 18 . 2 Bit allocation per frame for
the G.729 coder.

Description Bits

Predictor of LSP quantizer 1
First stage vector quantizer for LSP 7
Second stage for lower five coefficients 5
Second stage for upper five coefficients 5
Pitch delay for first subframe 8
Parity bit for pitch delay 1
Fixed codebook first subframe 13
Signs of fixed codebook pulses for first subframe 4
Gain codebook first subframe 7
Pitch delay for second subframe 5
Fixed codebook second subframe 13
Signs of fixed codebook pulses for first subframe 4
Gain codebook second subframe 7

The selected code vector is filtered to enhance harmonic components in order to improve the
quality of the reconstructed speech.

The number of bits used to encode the pitch information, index of the fixed code vector,
and the respective gains are given in Table 18.2. These total to 80 bits per frame resulting in a
coding rate of 8 kbits/sec. While this is substantially less than the rate of the G.722.2 coder,
the quality is about the same [245] though with higher complexity.

18.5.3 SILK

The SILK coder developed by Skype is another example of how a speech coder designed for
the Internet can leverage the greater amount of processing power available to the encoder and
decoder when communicating between computers rather than between cellular phones. It uses
variable length encoding and includes the ability to adaptively respond to changing network
conditions. A block diagram of the various processes carried out in the SILK encoder is shown
in Figure 18.12. We will use this figure to give a brief overview of some aspects of the SILK
encoder.

622 18 A N A L Y S I S / S Y N T H E S I S A N D A N A L Y S I S

detector

Voice
activity

High-
pass
filter

Noise
shaping
analysis

analysis
Pitch

LTP
scaling
control

proc.
Gains

Quant.
LSF

Prediction
analysis

Prefilter
Noise

shaping
quantizer

R
ange coder

F I GUR E 18 . 12 Steps in the encoding of speech for the SILK coder.

The SILK encoder can operate in one of four modes, a narrowband mode that accepts
inputs sampled at 8 kHZ, a medium-band mode that supports inputs at 8 kHz and 12 kHz, a
wideband mode that also supports inputs sampled at 16 kHz, and a super wideband mode that
can support inputs sampled at 8kHz, 12 kHz, 16kHz, and 24 kHz. The encoder can accept
inputs at all sampling rates and if necessary resample the input to a lower sampling rate. This
ability to dynamically change the sampling rate of the input allows the encoder to adapt to
changing channel conditions. The input is divided into 20 millisecond frames and the encoder
can package one to five frames into a single packet. Including more frames in a packet lowers
the overhead at the cost of increasing the latency. This is one of the many ways the SILK coder
responds to network conditions.

The voice activity detector decomposes the input into four equal bandwidth subbands with
additional differentiation in the lowest subband to estimate the level of speech activity. The
coder has the option of drastically reducing transmission during silence intervals and increased
background noise.

The signal is also filtered using a high-pass filter with a 70 Hz cutoff to get rid of any DC
biases and 50- or 60-cycle hum. The filter signal is then provided to the pitch analysis block,
which generates pitch lags every five milliseconds. The pitch analysis block performs an LPC
analysis of the input and uses the coefficients in a whitening filter. The number of coefficients
in the whitening filter can be 16, 12, or 8 depending on the complexity setting. Correlation of
downsampled versions of the whitened sequence are used to estimate the speech type and the
pitch.

Noise shaping analysis is used to generate the coefficients for the prefilter. The idea behind
noise shaping is to shape the quantization noise spectrum in such a way that the highest amount

18.6 Image Compression 623

Stage S

1,1
c2,2
c2,3

c2,1

c2,M2

cS,2
cS,3

cS,1

cS,MS

c1,2
c1,3

c1,M1

residual
residual

1 S−1
residualresidual2LSF

Stage 1 Stage 2
c

F I GUR E 18 . 13 Multistage vector quantizer for the quantization of LSF coefficients
in the SILK encoder.

of noise power occupies the same region as the highest amount of signal power. Thus even if
the total noise power is not reduced the perceptual effect of the noise can be greatly reduced.

The LSF coefficients are obtained in a manner similar to the other methods discussed
earlier. However, the quantization process is significantly more complex. The vector of LSF
coefficients is quantized using a multistage quantizer as shown in Figure 18.13. Each stage
of the quantizer operates on the residual of the previous stage. Thus the input of the second
stage is the difference between the LSF coefficients and the code vectors of the first M1 level
vector quantizer. A greedy approach to multistage vector quantization is to simply take the best
representative at each stage. However, this reduces the efficacy of the quantization process.
Ideally, we would like to keep the residual from each stage until the final stage at which time we
could make a selection among all possible combinations. However, this would mean keeping
track of an exponentially growing number of quantized representations. The total number of
possible combinations in the SILK algorithm for sampling rates above 8 kHz is 236! The SILK
algorithm allows this to be a dynamic process where at each stage the most representative
code vectors, called the survivors, are allowed to proceed to the next stage. At each stage the
weighted sum of the accumulated bit rate and accumulated distortion for each code vector is
evaluated to determine the survivors for the next stage. The number of survivors is adjusted
based on available resources.

The SILK encoder uses a variable-rate entropy coder to encode the various coding param-
eters. The range coder is an analog of the arithmetic coder that uses a nonbinary alphabet.
This helps improve the rate distortion performance of the coder while significantly increasing
the complexity of the coder.

18.6 Image Compression

Although there have been a number of attempts to mimic the linear predictive coding approach
for image compression, they have not been overly successful. A major reason for this is that
while speech can be modeled as the output of a linear filter, most images cannot. However,
a totally different analysis/synthesis approach, conceived in the mid-1980s, has found some
degree of success—fractal compression.

624 18 A N A L Y S I S / S Y N T H E S I S A N D A N A L Y S I S

Fractal Compression

There are several different ways to approach the topic of fractal compression. Our approach
is to use the idea of fixed-point transformation. A function f (·) is said to have a fixed point x0
if f (x0) = x0. Suppose we restrict the function f (·) to be of the form ax + b. Then, except
for when a = 1, this equation always has a fixed point:

ax0 + b = xo

⇒ x0 = b

1− a
(36)

This means that if we want to transmit the value of x0, we can instead transmit the values of
a and b and obtain x0 at the receiver using (36). We do not have to solve this equation to
obtain x0. Instead, we can take a guess at what x0 should be and then refine the guess using
the recursion

x (n+1)
0 = ax (n)0 + b (37)

Example 18 .6 .1 :

Suppose that instead of sending the value x0 = 2, we send the values of a and b as 0.5 and
1.0. The receiver starts out with a guess for x0 as x (0)0 = 1. Then

x (1)0 = ax (0)0 + b = 1.5

x (2)0 = ax (1)0 + b = 1.75

x (3)0 = ax (2)0 + b = 1.875

x (4)0 = ax (3)0 + b = 1.9375

x (5)0 = ax (4)0 + b = 1.96875

x (6)0 = ax (5)0 + b = 1.984375 (38)

and so on. As we can see, with each iteration we come closer and closer to the actual x0
value of 2. This would be true no matter what our initial guess was, at least for this type of
function. �

Thus, the value of x0 is accurately identified by specifying the fixed-point equation. The
receiver can retrieve the value either by the solution of (36) or via the recursion (37).

Let us generalize this idea. Suppose that for a given image I (treated as an array of
integers), there exists a function f (·) such that f (I) = I. If it is cheaper in terms of bits
to represent f (·) than it is to represent I, we can treat f (·) as the compressed representation
of I.

This idea was first proposed by Michael Barnsley and Alan Sloan [246] based on the idea of
self-similarity. Barnsley and Sloan noted that certain natural-looking objects can be obtained
as the fixed point of a certain type of function. If an image can be obtained as a fixed point of

18.6 Image Compression 625

Range blocks

Domain blocks

F I GUR E 18 . 14 Range blocks and examples of domain blocks.

some function, can we then solve the inverse problem? That is, given an image, can we find
the function for which the image is the fixed point? The first practical public answer to this
came from Arnaud Jacquin in his Ph.D. dissertation [247] in 1989. The technique we describe
in this section is from Jacquin’s 1992 paper [248].

Instead of generating a single function directly for which the given image is a fixed point,
we partition the image into blocks Rk , called range blocks, and obtain a transformation fk

for each block. The transformations fk are not fixed-point transformations since they do not
satisfy the equation

fk(Rk) = Rk (39)

Instead, they are a mapping from a block of pixels Dk from some other part of the image.
While each individual mapping fk is not a fixed-point mapping, we will see later that we can
combine all these mappings to generate a fixed-point mapping. The image blocks Dk are
called domain blocks, and they are chosen to be larger than the range blocks. In [248], the
domain blocks are obtained by sliding a K × K window over the image in steps of K/2 or
K/4 pixels. As long as the window remains within the boundaries of the image, each K × K
block thus encountered is entered into the domain pool. The set of all domain blocks does
not have to partition the image. In Figure 18.14 we show the range blocks and two possible
domain blocks.

The transformations fk are composed of a geometric transformation gk and a massic
transformation mk . The geometric transformation consists of moving the domain block to the
location of the range block and adjusting the size of the domain block to match the size of the
range block. The massic transformation adjusts the intensity and orientation of the pixels in
the domain block after it has been operated on by the geometric transform. Thus,

R̂k = fk(Dk) = mk(gk(Dk)) (40)

626 18 A N A L Y S I S / S Y N T H E S I S A N D A N A L Y S I S

We have used R̂k instead of Rk on the left-hand side of (40) because it is generally not possible
to find an exact functional relationship between domain and range blocks. Therefore, we have
to settle for some degree of loss of information. Generally, this loss is measured in terms of
mean squared error.

The effect of all these functions together can be represented as the transformation f (·).
Mathematically, this transformation can be viewed as a union of the transformations fk :

f =
⋃

k

fk (41)

Notice that while each transformation fk maps a block of different size and location to the
location of Rk , looking at it from the point of view of the entire image, it is a mapping from
the image to the image. As the union of Rk is the image itself, we could represent all the
transformations as

Î = f (Î) (42)

where we have used Î instead of I to account for the fact that the reconstructed image is an
approximation to the original.

We can now pose the encoding problem as that of obtaining Dk , gk , and mk such that the
difference d(Rk, R̂k) is minimized, where d(Rk, R̂k) can be the mean squared error between
the blocks Rk and R̂k .

Let us first look at how we would obtain gk and mk assuming that we already know which
domain block Dk we are going to use. We will then return to the question of selecting Dk .

Knowing which domain block we are using for a given range block automatically specifies
the amount of displacement required. If the range blocks Rk are of size M × M , then the
domain blocks are usually taken to be of size 2M × 2M . In order to adjust the size of Dk to be
the same as that of Rk , we generally replace each 2×2 block of pixels with their average value.
Once the range block has been selected, the geometric transformation is easily obtained.

Let’s define Tk = gk(Dk), and ti j as the i j th pixel in Tk , i, j = 0, 1, . . . ,M − 1. The
massic transformation mk is then given by

mk(ti j) = i(αk ti j +	k) (43)

where i(·) denotes a shuffling or rearrangement of the pixels with the block. Possible rear-
rangements (or isometries) include the following:

1. Rotation by 90 degrees, i(ti j) = t j (M−1−i)

2. Rotation by 180 degrees, i(ti j) = t(M−1−i)(M−1− j)

3. Rotation by −90 degrees, i(ti j) = t(M−1−i) j

4. Reflection about midvertical axis, i(ti j) = ti(M−1− j)

5. Reflection about midhorizontal axis, i(ti j) = t(M−1−i) j

6. Reflection about diagonal, i(ti j) = t j i

7. Reflection about cross diagonal, i(ti j) = t(M−1− j)(M−1−i)

8. Identity mapping, i(ti j) = ti j

Therefore, for each massic transformation mk , we need to find values of αk,	k , and
an isometry. For a given range block Rk , in order to find the mapping that gives us the

18.6 Image Compression 627

closest approximation R̂k , we can try all possible combinations of transformations and domain
blocks—a massive computation. In order to reduce the computations, we can restrict the
number of domain blocks to search. However, in order to get the best possible approximation,
we would like the pool of domain blocks to be as large as possible. Jacquin [248] resolves this
situation in the following manner. First, he generates a relatively large pool of domain blocks
by the method described earlier. The elements of the domain pool are then divided into shade
blocks, edge blocks, and midrange blocks. The shade blocks are those in which the variance
of pixel values within the block is small. The edge block, as the name implies, contains those
blocks that have a sharp change of intensity values. The midrange blocks are those that fit
into neither category—not too smooth but with no well-defined edges. The shade blocks are
then removed from the domain pool. The reason is that, given the transformations we have
described, a shade domain block can only generate a shade range block. If the range block
is a shade block, it is much more cost effective simply to send the average value of the block
rather than attempt any more complicated transformations.

The encoding procedure proceeds as follows. A range block is first classified into one of
the three categories described above. If it is a shade block, we simply send the average value
of the block. If it is a midrange block, the massic transformation is of the form αk ti j + 	k .
The isometry is assumed to be the identity isometry. First αk is selected from a small set of
values—Jacquin [248] uses the values (0.7, 0.8, 0.9, 1.0)—such that d(Rk, αk Tk) is minimized.
Thus, we have to search over the possible values of α and the midrange domain blocks in the
domain pool in order to find the (αk, Dk) pair that will minimize d(Rk, αk Tk). The value of
	k is then selected as the difference of the average values of Rk and αk Tk .

If the range block Rk is classified as an edge block, selection of the massic transformation
is a somewhat more complicated process. The block is first divided into a bright and a dark
region. The dynamic range of the block rd(Rk) is then computed as the difference of the
average values of the light and dark regions. For a given domain block, this is then used to
compute the value of αk by

αk = min
J

{
rd(Rk)

rd(Tj)
, αmax

}
(44)

where αmax is an upper bound on the scaling factor. The value of αk obtained in this manner
is then quantized to one of a small set of values. Once the value of αk has been obtained, 	k

is obtained as the difference of either the average values of the bright regions or the average
values of the dark regions, depending on whether we have more pixels in the dark regions or
the light regions. Finally, each of the isometries is tried out to find the one that gives the closest
match between the transformed domain block and the range block.

Once the transformations have been obtained, they are communicated to the receiver in
terms of the following parameters: the location of the selected domain block and a single bit
denoting whether the block is a shade block or not. If it is a shade block, the average intensity
value is transmitted; if it is not, the quantized scale factor and offset are transmitted along with
the label of the isometry used.

The receiver starts out with some arbitrary initial image I0. The transformations are then
applied for each of the range blocks to obtain the first approximation. Then the transformations
are applied to the first approximation to get the second approximation, and so on. Let us see
an example of the decoding process.

628 18 A N A L Y S I S / S Y N T H E S I S A N D A N A L Y S I S

F I GUR E 18 . 15 Original Elif image.

Example 18 .6 .2 :

The image Elif, shown in Figure 18.15, was encoded using the fractal approach. The original
image was of size 256×256, and each pixel was coded using 8 bits. Therefore, the storage space
required was 65,536 bytes. The compressed image consisted of the transformations described
above. The transformations required a total of 4580 bytes, which translates to an average rate
of 0.56 bits per pixel. The decoding process started with the transformations being applied to
an all-zero image. The first six iterations of the decoding process are shown in Figure 18.16.
The process converged in nine iterations. The final image is shown in Figure 18.17. Notice
the difference in this reconstructed image and the low-rate reconstructed image obtained using
the DCT. The blocking artifacts are for the most part gone. However, this does not mean that
the reconstruction is free of distortions and artifacts. They are especially visible in the chin
and neck region. �

In our discussion (and illustration) we have assumed that the size of the range blocks is
constant. If so, how large should we pick the range block? If we pick the size of the range
block to be large, we will have to send fewer transformations, thus improving the compression.
However, if the size of the range block is large, it becomes more difficult to find a domain
block that, after appropriate transformation, will be close to the range block, which in turn will
increase the distortion in the reconstructed image. One compromise between picking a large
or small value for the size of the range block is to start out with a large size and, if a good
enough match is not found, to progressively reduce the size of the range block until we have
either found a good match or reached a minimum size. We could also compute a weighted
sum of the rate and distortion

J = D + βR

18.6 Image Compression 629

F I GUR E 18 . 16 The first six iterations of the fractal decoding process.

630 18 A N A L Y S I S / S Y N T H E S I S A N D A N A L Y S I S

F I GUR E 18 . 17 Final reconstructed Elif image.

where D is a measure of the distortion, and R represents the number of bits required to represent
the block. We could then either subdivide or not depending on the value of J .

We can also start out with range blocks that have the minimum size (also called the atomic
blocks) and obtain larger blocks via merging smaller blocks.

There are a number of ways in which we can perform the subdivision. The most commonly
known approach is quadtree partitioning, initially introduced by Samet [249]. In quadtree
partitioning we start by dividing up the image into the maximum-size range blocks. If a
particular block does not have a satisfactory reconstruction, we can divide it up into four
blocks. These blocks in turn can also, if needed, be divided into four blocks. An example
of quadtree partitioning can be seen in Figure 18.18. In this particular case there are three
possible sizes for the range blocks. Generally, we would like to keep the minimum size of the
range block small if fine detail in the image is of greater importance [250]. Since we have
multiple sizes for the range blocks, we also need multiple sizes for the domain blocks.

Quadtree partitioning is not the only method of partitioning available. Another popular
method of partitioning is the HV method. In this method we allow the use of rectangular
regions. Instead of dividing a square region into four more square regions, rectangular regions
are divided either vertically or horizontally in order to generate more homogeneous regions.
In particular, if there are vertical or horizontal edges in a block, it is partitioned along these
edges. One way to obtain the locations of partitions for a given M × N range block is to
calculate the biased vertical and horizontal differences:

vi = min(i, N − i − 1)

N − 1

⎛
⎝∑

j

Ii, j −
∑

j

Ii+1, j

⎞
⎠

h j = min(j,M − j − 1)

M − 1

⎛
⎝∑

j

Ii, j −
∑

j

Ii, j+1

⎞
⎠

18.7 Summary 631

F I GUR E 18 . 18 An example of quadtree partitioning.

The values of i and j for which |vi | and
∣∣h j
∣∣ are the largest indicate the row and column for

which there is maximum difference between two halves of the block. Depending on whether
|vi | or

∣∣h j
∣∣ is larger, we can divide the rectangle either vertically or horizontally.

Finally, partitioning does not have to be rectangular, or even regular. People have experi-
mented with triangle partitions as well as irregular-shaped partitions [251].

The fractal approach is a novel way of looking at image compression. At present the
quality of the reconstructions using the fractal approach is about the same as the quality of the
reconstruction using the DCT approach employed in JPEG. However, the fractal technique is
relatively new, and further research may bring significant improvements. The fractal approach
has one significant advantage: decoding is simple and fast. This makes it especially useful
in applications where compression is performed once and decompression is performed many
times.

18.7 Summary

We have looked at two very different ways of using the analysis/synthesis approach. In speech
coding the approach works because of the availability of a mathematical model for the speech
generation process. We have seen how this model can be used in a number of different
ways, depending on the constraints of the problem. Where the primary objective is to achieve
intelligible communication at the lowest rate possible, the LPC algorithm provides a very
nice solution. If we also want the quality of the speech to be high, CELP and the different
sinusoidal techniques provide higher quality at the cost of more complexity and processing
delay. If delay also needs to be kept below a threshold, one particular solution is the low-delay
CELP algorithm in the G.728 recommendation. With the arrival of the internet the constraints

632 18 A N A L Y S I S / S Y N T H E S I S A N D A N A L Y S I S

on speech coding have changed. We have looked at several algorithms that have been designed
to operate in this changed environment. For images, fractal coding provides a very different
way to look at the problem. Instead of using the physical structure of the system to generate
the source output, it uses a more abstract view to obtain an analysis/synthesis technique.

Further Reading

1. For information about various aspects of speech processing, Voice and Speech Processing,
by T. Parsons [119], is a very readable source.

2. The classic tutorial on linear prediction is “Linear Prediction,” by J. Makhoul [252],
which appeared in the April 1975 issue of the Proceedings of the IEEE.

3. For a thorough review of recent activity in speech compression, see “Speech Coding
Methods, Standards, and Applications,” by J.D. Gibson [245], which appeared in IEEE
Circuits and Systems Magazine.

4. An excellent source for information about speech coders is Digital Speech: Coding for
Low Bit Rate Communication Systems, by A. Kondoz [285].

5. An excellent description of the G.728 algorithm can be found in “A Low Delay CELP
Coder for the CCITT 16 kb/s Speech Coding Standard,” by J.-H. Chen, R.V. Cox, Y.-C.
Lin, N. Jayant, and M.J. Melchner [240], in the June 1992 issue of the IEEE Journal on
Selected Areas in Communications.

6. A good introduction to fractal image compression is Fractal Image Compression: Theory
and Application, Y. Fisher (ed.) [250].

7. The October 1993 issue of the Proceedings of the IEEE contains a special section on
fractals with a tutorial on fractal image compression by A. Jacquin.

18.8 Projects and Problems

1. Write a program for the detection of voiced and unvoiced segments using the AMDF
function. Test your algorithm on the test.snd sound file.

2. The testf.raw file is a female voice saying the word test. Isolate 10 voiced and
unvoiced segments from the testm.raw file and the testf.snd file. (Try to pick the
same segments in the two files.) Compute the number of zero crossings in each segment
and compare your results for the two files.

3.

(a) Select a voiced segment from the testf.raw file. Find the fourth-, sixth-, and
tenth-order LPC filters for this segment using the Levinson-Durbin algorithm.

(b) Pick the corresponding segment from the testf.snd file. Find the fourth-, sixth-,
and tenth-order LPC filters for this segment using the Levinson-Durbin algorithm.

(c) Compare the results of (a) and (b).

4. Select a voiced segment from the test.raw file. Find the fourth-, sixth-, and tenth-
order LPC filters for this segment using the Levinson-Durbin algorithm. For each of the
filters, find the multipulse sequence that results in the closest approximation to the voiced
signal.

19
Video Compression

19.1 Overview

V
ideo compression can be viewed as image compression with a temporal com-
ponent since video consists of a time sequence of images. From this point of
view, the only “new” technique introduced in this chapter is a strategy to take
advantage of this temporal correlation. However, there are different situations
in which video compression becomes necessary, each requiring a solution spe-

cific to its peculiar conditions. In this chapter we briefly look at video compression algorithms
and standards developed for different video communications applications.

19.2 Introduction

Of all the different sources of data, perhaps the one that produces the largest amount of data is
video. Consider a video sequence generated using the CCIR 601 format (Section 19.4). Each
image frame is made up of more than a quarter million pixels. At the rate of 30 frames per
second and 16 bits per pixel, this corresponds to a data rate of about 21 Mbytes or 168 Mbits
per second. This is certainly a change from the data rates of 2.4, 4.8, and 16 kbits per second
that are the targets for speech coding systems discussed in Chapter 18.

Video compression can be viewed as the compression of a sequence of images; in other
words, image compression with a temporal component. This is essentially the approach we will
take in this chapter. However, there are limitations to this approach. We do not perceive motion
video in the same manner as we perceive still images. Motion video may mask coding artifacts

Introduction to Data Compression. DOI: http://dx.doi.org/10.1016/B978-0-12-415796-5.00019-3
© 2012 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-415796-5.00019-3

634 19 V I D E O C O M P R E S S I O N

that would be visible in still images. On the other hand, artifacts that may not be visible in
reconstructed still images can be very annoying in reconstructed motion video sequences. For
example, consider a compression scheme that introduces a modest random amount of change
in the average intensity of the pixels in the image. Unless a reconstructed still image was being
compared side by side with the original image, this artifact may go totally unnoticed. However,
in a motion video sequence, especially one with low activity, random intensity changes can
be quite annoying. As another example, poor reproduction of edges can be a serious problem
in the compression of still images. However, if there is some temporal activity in the video
sequence, errors in the reconstruction of edges may go unnoticed.

Although a more holistic approach might lead to better compression schemes, it is more
convenient to view video as a sequence of correlated images. Most of the video compres-
sion algorithms make use of the temporal correlation to remove redundancy. The previous
reconstructed frame is used to generate a prediction for the current frame. The difference
between the prediction and the current frame, the prediction error or residual, is encoded and
transmitted to the receiver. The previous reconstructed frame is also available at the receiver.
Therefore, if the receiver knows the manner in which the prediction was performed, it can
use this information to generate the prediction values and add them to the prediction error to
generate the reconstruction. The prediction operation in video coding has to take into account
motion of the objects in the frame, which is known as motion compensation (described in the
next section).

We will also describe a number of different video compression algorithms. For the most
part, we restrict ourselves to discussions of techniques that have found their way into interna-
tional standards. Because there are a significant number of products that use proprietary video
compression algorithms, it is difficult to find or include descriptions of them.

We can classify the algorithms based on the application area. While attempts have been
made to develop standards that are “generic,” the application requirements can play a large part
in determining the features to be used and the values of parameters. When the compression
algorithm is being designed for two-way communication, it is necessary for the coding delay to
be minimal. Furthermore, compression and decompression should have about the same level
of complexity. The complexity can be unbalanced in a broadcast application, where there is
one transmitter and many receivers, and the communication is essentially one-way. In this
case, the encoder can be much more complex than the receiver. There is also more tolerance
for encoding delays. In applications where the video is to be decoded on workstations and
personal computers, the decoding complexity has to be extremely low in order for the decoder
to decode a sufficient number of images to give the illusion of motion. However, as the
encoding is generally not done in real time, the encoder can be quite complex. When the
video is to be transmitted over packet networks, the effects of packet loss have to be taken into
account when designing the compression algorithm. Thus, each application will present its
own unique requirements and demand a solution that fits those requirements.

We will assume that you are familiar with the particular image compression technique
being used. For example, when discussing transform-based video compression techniques, we
assume that you have reviewed Chapter 13 and are familiar with the descriptions of transforms
and the JPEG algorithm contained in that chapter.

19.3 Motion Compensation 635

19.3 Motion Compensation

In most video sequences there is little change in the contents of the image from one frame to
the next. Even in sequences that depict a great deal of activity, there are significant portions
of the image that do not change from one frame to the next. Most video compression schemes
take advantage of this redundancy by using the previous frame to generate a prediction for
the current frame. We have used prediction previously when we studied differential encoding
schemes. If we try to apply those techniques blindly to video compression by predicting the
value of each pixel by the value of the pixel at the same location in the previous frame, we
will run into trouble because we would not be taking into account the fact that objects tend to
move between frames. Thus, the object in one frame that was providing the pixel at a certain
location (i0, j0)with its intensity value might be providing the same intensity value in the next
frame to a pixel at location (i1, j1). If we don’t take this into account, we can actually increase
the amount of information that needs to be transmitted.

Example 19 .3 .1 :

Consider the two frames of a motion video sequence shown in Figure 19.1. The only differences
between the two frames are that the devious looking individual has moved slightly downward
and to the right of the frame, while the triangular object has moved to the left. The differences
between the two frames are so slight, you would think that if the first frame was available to
both the transmitter and receiver, not much information would need to be transmitted to the
receiver in order to reconstruct the second frame. However, if we simply take the difference
between the two frames, as shown in Figure 19.2, the displacement of the objects in the frame
results in an image that contains more detail than the original image. In other words, instead
of the differencing operation reducing the information, there is actually more information that
needs to be transmitted. �

F I GUR E 19 . 1 Two frames of a video sequence.

636 19 V I D E O C O M P R E S S I O N

F I GUR E 19 . 2 Difference between the two frames.

In order to use a previous frame to predict the pixel values in the frame being encoded,
we have to take the motion of objects in the image into account. Although a number of
approaches have been investigated, the method that has worked best in practice is a simple
approach called block-based motion compensation. In this approach, the frame being encoded
is divided into blocks of size M × M . For each block, we search the previous reconstructed
frame for the block of size M × M that most closely matches the block being encoded. We
can measure the closeness of a match, or distance, between two blocks by the sum of absolute
differences between corresponding pixels in the two blocks. We would obtain the same results
if we used the sum of squared differences between the corresponding pixels as a measure
of distance. Generally, if the distance from the block being encoded to the closest block
in the previous reconstructed frame is greater than some prespecified threshold, the block is
declared uncompensable and is encoded without the benefit of prediction. This decision is
also transmitted to the receiver. If the distance is below the threshold, then a motion vector is
transmitted to the receiver. The motion vector is the relative location of the block to be used for
prediction obtained by subtracting the coordinates of the upper-left corner pixel of the block
being encoded from the coordinates of the upper-left corner pixel of the block being used for
prediction.

Suppose the block being encoded is an 8 × 8 block between pixel locations (24, 40) and
(31, 47); that is, the upper-left corner pixel of the 8 × 8 block is at location (24, 40). If the
block that best matches it in the previous frame is located between pixels at location (21, 43)
and (28, 50), then the motion vector would be (−3, 3). The motion vector was obtained by
subtracting the location of the upper-left corner of the block being encoded from the location
of the upper-left corner of the best matching block. Note that the blocks are numbered starting
from the top-left corner. Therefore, a positive x component means that the best matching block
in the previous frame is to the right of the location of the block being encoded. Similarly, a
positive y component means that the best matching block is at a location below that of the
location of the block being encoded.

19.3 Motion Compensation 637

Example 19 .3 .2 :

Let us again try to predict the second frame of Example 10.3.1 using motion compensation.
We divide the image into blocks and then predict the second frame from the first in the manner
described above. Figure 19.3 shows the blocks in the previous frame that were used to predict
some of the blocks in the current frame.

F I GUR E 19 . 3 Motion-compensated prediction.

Notice that in this case all that needs to be transmitted to the receiver are the motion vectors.
The current frame is completely predicted by the previous frame. �

We have been describing motion compensation where the displacement between the block
being encoded and the best matching block is an integer number of pixels in the horizontal
and vertical directions. There are algorithms in which the displacement is measured in half
pixels. In order to do this, pixels of the coded frame being searched are interpolated to obtain
twice as many pixels as in the original frame. This “doubled” image is then searched for the
best matching block.

The doubled image is obtained as follows: Consider Table 19.1. In this image A, B,C ,
and D are the pixels of the original frame. The pixels h1, h2, v1, and v2 are obtained by
interpolating between the two neighboring pixels:

T A B L E 19 . 1 “Doubled” image.

A h1 B
v1 c v2
C h2 D

638 19 V I D E O C O M P R E S S I O N

h1 =
⌊

A + B

2
+ 0.5

⌋

h2 =
⌊

C + D

2
+ 0.5

⌋

v1 =
⌊

A + C

2
+ 0.5

⌋

v2 =
⌊

B + D

2
+ 0.5

⌋
(1)

The pixel c is obtained as the average of the four neighboring pixels from the coded original:

c =
⌊

A + B + C + D

4
+ 0.5

⌋

We have described motion compensation in very general terms in this section. The various
schemes in this chapter use specific motion compensation schemes that differ from each other.
The differences generally involve the region of search for the matching block and the search
procedure. We will look at the details with the study of the compression schemes. But
before we begin our study of compression schemes, we briefly discuss how video signals are
represented in the next section.

19.4 Video Signal Representation

The development of different representations of video signals has depended a great deal on
past history. We will also take a historical view, starting with black-and-white television
and proceeding up to digital video formats. The history of the development of analog video
signal formats is different for the United States than for Europe. Although we will show the
development using the formats used in the United States, the basic ideas are the same for all
formats.

A black-and-white analog television picture is generated by exciting the phosphor on the
television screen using an electron beam whose intensity is modulated to generate the image
we see. The path that the modulated electron beam traces is shown in Figure 19.4. The line
created by the horizontal traversal of the electron beam is called a line of the image. In order
to trace a second line, the electron beam has to be deflected back to the left of the screen.
During this period, the gun is turned off in order to prevent the retrace from becoming visible.
The image generated by the traversal of the electron gun has to be updated rapidly enough for
persistence of vision to make the image appear stable. However, higher rates of information
transfer require higher bandwidths, which translate to higher costs.

In order to keep the cost of bandwidth low it was decided to send 525 lines 30 times a
second. These 525 lines are said to constitute a frame. However, a thirtieth of a second between
frames is long enough for the image to appear to flicker. To avoid the flicker, it was decided
to divide the image into two interlaced fields. A field is sent once every sixtieth of a second.

19.4 Video Signal Representation 639

Trace

Retrace with
electron gun off

F I GUR E 19 . 4 The path traversed by the electron beam in a television.

Odd field
Even field

F I GUR E 19 . 5 A frame and its constituent fields.

First, one field consisting of 262.5 lines is traced by the electron beam. Then, the second
field consisting of the remaining 262.5 lines is traced between the lines of the first field. The
situation is shown schematically in Figure 19.5. The first field is shown with solid lines while
the second field is shown with dashed lines. The first field begins on a full line and ends on a
half line while the second field begins on a half line and ends on a full line. Not all 525 lines
are displayed on the screen. Some are lost due to the time required for the electron gun to
position the beam from the bottom to the top of the screen. We actually see about 486 lines
per frame.

In an analog color television, instead of a single electron gun, we have three electron guns
that act in unison. These guns excite red, green, and blue phosphor dots embedded in the screen.
The beam from each gun strikes only one kind of phosphor, and the gun is named according to
the color of the phosphor it excites. Thus, the red gun strikes only the red phosphor, the blue
gun strikes only the blue phosphor, and the green gun strikes only the green phosphor. (Each
gun is prevented from hitting a different type of phosphor by an aperture mask.)

In order to control the three guns we need three signals: a red signal, a blue signal, and
a green signal. If we transmitted each of these separately, we would need three times the
bandwidth. With the advent of color television, there was also the problem of backward com-
patibility. Most people had black-and-white television sets, and television stations did not want

640 19 V I D E O C O M P R E S S I O N

to broadcast using a format that most of the viewing audience could not see on their existing
sets. Both issues were resolved with the creation of a composite color signal. In the United
States, the specifications for the composite signal were created by the National Television Sys-
tems Committee, and this signal is often called an NTSC signal. The corresponding signals in
Europe are PAL (Phase Alternating Lines), developed in Germany, and SECAM (Séquential
Couleur avec Mémoire), developed in France. There is some (hopefully) good-natured rivalry
between proponents of the different systems. Some problems with color reproduction in the
NTSC signal have led to the name Never Twice the Same Color, while the idiosyncracies of the
SECAM system have led to the name Système Essentiellement Contre les Américains (system
essentially against the Americans).

The composite color signal consists of a luminance component, corresponding to the black-
and-white television signal, and two chrominance components. The luminance component is
denoted by Y :

Y = 0.299R + 0.587G + 0.114B (2)

where R is the red component, G is the green component, and B is the blue component.
The weighting of the three components was obtained through extensive testing with human
observers. The two chrominance signals are obtained as

Cb = B − Y (3)
Cr = R − Y (4)

These three signals can be used by the color television set to generate the red, blue, and green
signals needed to control the electron guns. The luminance signal can be used directly by the
black-and-white televisions.

Because the eye is much less sensitive to changes of the chrominance in an image, the
chrominance signal does not need to have higher frequency components. Thus, lower band-
width of the chrominance signals along with a clever use of modulation techniques permits all
three signals to be encoded without need of any bandwidth expansion. (A simple and readable
explanation of television systems can be found in [253].)

The early efforts toward digitization of the video signal were devoted to sampling the com-
posite signal, and in the United States the Society of Motion Picture and Television Engineers
developed a standard that required sampling the NTSC signal at a little more than 14 million
times a second. In Europe, the efforts at standardization of video were centered around the
characteristics of the PAL signal. Because of the differences between NTSC and PAL, this
would have resulted in different “standards.” In the late 1970s, this approach was dropped
in favor of sampling the components and the development of a worldwide standard. This
standard was developed under the auspices of the International Consultative Committee on
Radio (CCIR) and was called CCIR recommendation 601-2. CCIR is now known as ITU-R,
and the recommendation is officially known as ITU-R recommendation BT.601-2. However,
the standard is generally referred to as recommendation 601 or CCIR 601.

The standard proposes a family of sampling rates based on the sampling frequency of
3.725 MHz (3.725 million samples per second). Multiples of this sampling frequency permit
samples on each line to line up vertically, thus generating the rectangular array of pixels
necessary for digital processing. Each component can be sampled at an integer multiple of
3.725 MHz, up to a maximum of four times this frequency. The sampling rate is represented

19.4 Video Signal Representation 641

Y
U
V

F I GUR E 19 . 6 Recommendation 601 4:2:2 sampling format.

as a triple of integers, with the first integer corresponding to the sampling of the luminance
component and the remaining two corresponding to the chrominance components. Thus, 4:4:4
sampling means that all components were sampled at 13.5 MHz. The most popular sampling
format is the 4:2:2 format, in which the luminance signal is sampled at 13.5 MHz, while the
lower-bandwidth chrominance signals are sampled at 6.75 MHz. If we ignore the samples of
the portion of the signal that do not correspond to active video, the sampling rate translates to
720 samples per line for the luminance signal and 360 samples per line for the chrominance
signal. The sampling format is shown in Figure 19.6. The luminance component of the digital
video signal is also denoted by Y , while the chrominance components are denoted by U and
V . The sampled analog values are converted to digital values as follows. The sampled values
of Y CbCr are normalized so that the sampled Y values, Ys , take on values between 0 and 1,
and the sampled chrominance values, Crs and Cbs , take on values between −1

2 and 1
2 . These

normalized values are converted to 8-bit numbers according to the transformations

Y = 219Ys + 16 (5)
U = 224Cbs + 128 (6)
V = 224Crs + 128 (7)

Thus, the Y component takes on values between 16 and 235, and the U and V components
take on values between 16 and 240.

An example of the Y component of a CCIR 601 frame is shown in Figure 19.7. In the
top image we show the fields separately, while in the bottom image the fields have been
interlaced. Notice that in the interlaced image the smaller figure looks blurred. This is because
the individual moved in the sixtieth of a second between the two fields. (This is also proof—if
any was needed—that a three-year-old cannot remain still, even for a sixtieth of a second!)

The YU V data can also be arranged in other formats. In the Common Interchange Format
(CIF), which is used for videoconferencing, the luminance of the image is represented by an
array of 288 × 352 pixels, and the two chrominance signals are represented by two arrays
consisting of 144 × 176 pixels. In the QCIF (Quarter CIF) format, we have half the number
of pixels in both the rows and columns.

The MPEG-1 algorithm, which was developed for encoding video at rates up to 1.5 Mbits
per second, uses a different subsampling of the CCIR 601 format to obtain the MPEG-SIF
format, where SIF stands for Source Input Format. Starting from a 4:2:2, 480-line CCIR 601

642 19 V I D E O C O M P R E S S I O N

F I GUR E 19 . 7 Top: Fields of a CCIR 601 frame. Bottom: An interlaced CCIR 601
frame.

format, the vertical resolution is first reduced by taking only the odd field for both the luminance
and the chrominance components. The horizontal resolution is then reduced by filtering (to
prevent aliasing) and then subsampling by a factor of two in the horizontal direction. This
results in 360 × 240 samples of Y and 180 × 240 samples each of U and V . The vertical
resolution of the chrominance samples is further reduced by filtering and subsampling in the
vertical direction by a factor of two to obtain 180× 120 samples for each of the chrominance
signals. The process is shown in Figure 19.8, and the resulting format is shown in Figure 19.9.

19.4 Video Signal Representation 643

CCIR 601
Y SIF

Select odd
field

Horizontal filter
and subsample

720 × 480
720 × 240 360 × 240

CCIR 601
U, V

Select odd
field

Horizontal filter
and subsample

Vertical filter
and subsample

360 × 480 360 × 240 180 × 240

SIF

180 × 120

F I GUR E 19 . 8 Generation of an SIF frame.

Y
U
V

4:2:2 CCIR-601 MPEG-SIF

F I GUR E 19 . 9 CCIR 601 to MPEG-SIF.

In the following we describe several of the video coding standards in existence today. Our
order of description follows the historical development of the standards. As each standard
has built upon features of previous standards this seems like a logical plan of attack. As in
the case of image compression, most of the standards for video compression are based on
the discrete cosine transform (DCT). The standard for teleconferencing applications, ITU-T
recommendation H.261, is no exception. Most systems currently in use for videoconferencing
use proprietary compression algorithms. However, in order for the equipment from different
manufacturers to communicate with each other, these systems also offer the option of using
H.261. We will describe the compression algorithm used in the H.261 standard in the next
section. We will follow that with a description of the MPEG algorithms used in Video CDs,
DVDs, and HDTV, and a discussion of the latest joint offering from ITU and MPEG.

We will also describe a new approach towards compression of video for videophone appli-
cations called three-dimensional model-based coding. This approach is far from maturity, and

644 19 V I D E O C O M P R E S S I O N

our description will be rather cursory. The reason for including it here is the great promise it
holds for the future.

19.5 ITU- T Recommendation H.261

The earliest DCT-based video coding standard is the ITU-T H.261 standard. This algorithm
assumes one of two formats, CIF and QCIF. A block diagram of the H.261 video coder is
shown in Figure 19.10. The basic idea is simple. An input image is divided into blocks of
8× 8 pixels. For a given 8× 8 block, we subtract the prediction generated using the previous
frame. (If there is no previous frame or the previous frame is very different from the current
frame, the prediction might be zero.) The difference between the block being encoded and
the prediction is transformed using a DCT. The transform coefficients are quantized and the
quantization label encoded using a variable-length code. In the following discussion, we will
take a more detailed look at the various components of the compression algorithm.

19.5.1 Motion Compensation

Motion compensation requires a large amount of computation. Consider finding a matching
block for an 8× 8 block. Each comparison requires taking 64 differences and then computing
the sum of the absolute value of the differences. If we assume that the closest block in the
previous frame is located within 20 pixels in either the horizontal or vertical direction of the
block to be encoded, we need to perform 1681 comparisons. There are several ways we can
reduce the total number of computations.

+
+

Motion-
compensated

prediction

+

+

−
+

Inverse
transform

Loop filter status

Motion vector

Inverse
quantization

Discrete
cosine

transform
Quantizer

Loop
filter

F I GUR E 19 . 10 Block diagram of the ITU-T H.261 encoder.

19.5 ITU-T Recommendation H.261 645

F I GUR E 19 . 11 Effect of block size on motion compensation.

One way is to increase the size of the block. Increasing the size of the block means more
computations per comparison. However, it also means that we will have fewer blocks per
frame, so the number of times we have to perform the motion compensation will decrease.
However, different objects in a frame may be moving in different directions. The drawback to
increasing the size of the block is that the probability that a block will contain objects moving
in different directions increases with size. Consider the two images in Figure 19.11. If we use
blocks that are made up of 2 × 2 squares, we can find a block that exactly matches the 2× 2
block that contains the circle. However, if we increase the size of the block to 4× 4 squares,
the block that contains the circle also contains the upper part of the octagon. We cannot find
a similar 4× 4 block in the previous frame. Thus, there is a trade-off involved. Larger blocks
reduce the amount of computation; however, they can also result in poor prediction, which in
turn can lead to poor compression performance.

Another way we can reduce the number of computations is by reducing the search space.
If we reduce the size of the region in which we search for a match, the number of computations
will be reduced. However, reducing the search region also increases the probability of missing
a match. Again, we have a trade-off between computation and the amount of compression.

The H.261 standard has balanced the trade-offs in the following manner. The 8 × 8
blocks of luminance and chrominance pixels are organized into macroblocks, which consist
of four luminance blocks, and one each of the two types of chrominance blocks. The motion-
compensated prediction (or motion compensation) operation is performed on the macroblock
level. For each macroblock, we search the previous reconstructed frame for the macroblock
that most closely matches the macroblock being encoded. In order to further reduce the
amount of computations, only the luminance blocks are considered in this matching operation.
The motion vector for the prediction of the chrominance blocks is obtained by halving the
component values of the motion vector for the luminance macroblock. Therefore, if the motion
vector for the luminance blocks is (−3, 10), then the motion vector for the chrominance blocks
would be (−1, 5).

The search area is restricted to±15 pixels of the macroblock being encoded in the horizontal
and vertical directions. That is, if the upper-left corner pixel of the block being encoded is

646 19 V I D E O C O M P R E S S I O N

(xc, yc), and the upper-left corner of the best matching macroblock is (x p, yp), then (xc, yc)

and (x p, yp) have to satisfy the constraints
∣∣xc − x p

∣∣ < 15 and
∣∣yc − yp

∣∣ < 15.

19.5.2 The Loop Filter

Sometimes sharp edges in the block used for prediction can result in the generation of sharp
changes in the prediction error. This in turn can cause high values for the high-frequency
coefficients in the transforms, which can increase the transmission rate. To avoid this, prior
to taking the difference, the prediction block can be smoothed by using a two-dimensional
spatial filter. The filter is separable; it can be implemented as a one-dimensional filter that
first operates on the rows, then on the columns. The filter coefficients are 1

4 ,
1
2 ,

1
4 , except at

block boundaries where one of the filter taps would fall outside the block. To prevent this from
happening, the block boundaries remain unchanged by the filtering operation.

Example 19 .5 .3 :

Let’s filter the 4× 4 block of pixel values shown in Table 19.2 using the filter specified for the
H.261 algorithm. From the pixel values we can see that this is a gray square with a white L in
it. (Recall that small pixel values correspond to darker pixels and large pixel values correspond
to lighter pixels, with 0 corresponding to black and 255 corresponding to white.)

T A B L E 19 . 2 Original block of pixels.

110 218 116 112
108 210 110 114
110 218 210 112
112 108 110 116

Let’s filter the first row. We leave the first pixel value the same. The second value becomes

1

4
× 110+ 1

2
× 218+ 1

4
× 116 = 165

where we have assumed integer division. The third filtered value becomes

1

4
× 218+ 1

2
× 116+ 1

4
× 112 = 140

The final element in the first row of the filtered block remains unchanged. Continuing in this
fashion with all four rows, we get the 4× 4 block shown in Table 19.3.

Now repeat the filtering operation along the columns. The final 4 × 4 block is shown in
Table 19.4. Notice how much more homogeneous this last block is compared to the original
block. This means that it will most likely not introduce any sharp variations in the difference
block, and the high-frequency coefficients in the transform will be closer to zero, leading to
compression. �

19.5 ITU-T Recommendation H.261 647

T A B L E 19 . 3 After filtering the rows.

110 165 140 112
108 159 135 114
110 188 187 112
112 109 111 116

This filter is either switched on or off for each macroblock. The conditions for turning the
filter on or off are not specified by the recommendations.

19.5.3 The Transform

The transform operation is performed with a DCT on an 8×8 block of pixels or pixel differences.
If the motion compensation operation does not provide a close match, then the transform
operation is performed on an 8 × 8 block of pixels. If the transform operation is performed
on a block level, either a block or the difference between the block and its predicted value
is quantized and transmitted to the receiver. The receiver performs the inverse operations to
reconstruct the image. The receiver operation is also simulated at the transmitter, where the
reconstructed images are obtained and stored in a frame store. The encoder is said to be in
intra mode if it operates directly on the input image without the use of motion compensation.
Otherwise, it is said to be in inter mode.

19.5.4 Quantization and Coding

Depending on how good or poor the prediction is, we can get a wide variation in the char-
acteristics of the coefficients that are to be quantized. In the case of an intra block, the DC
coefficients will take on much larger values than the other coefficients. Where there is little
motion from frame to frame, the difference between the block being encoded and the prediction
will be small, leading to small values for the coefficients.

In order to deal with this wide variation, we need a quantization strategy that can be
rapidly adapted to the current situation. The H.261 algorithm does this by switching between
32 different quantizers, possibly from one macroblock to the next. One quantizer is reserved for
the intra DC coefficient, while the remaining 31 quantizers are used for the other coefficients.

T A B L E 19 . 4 Final block.

110 165 140 112
108 167 148 113
110 161 154 113
112 109 111 116

648 19 V I D E O C O M P R E S S I O N

Macroblock

F I GUR E 19 . 12 A GOB consisting of 33 macroblocks.

The intra DC quantizer is a uniform midrise quantizer with a step size of 8. The other quantizers
are midtread quantizers with a step size of an even value between 2 and 62. Given a particular
block of coefficients, if we use a quantizer with a smaller step size, we are likely to get a larger
number of nonzero coefficients. Because of the manner in which the labels are encoded, the
number of bits that will need to be transmitted will increase. Therefore, the availability of
transmission resources will have a major impact on the quantizer selection. We will discuss
this aspect further when we talk about the transmission buffer. Once a quantizer is selected,
the receiver has to be informed about the selection. In H.261, this is done in one of two
ways. Each macroblock is preceded by a header. The quantizer being used can be identified
as part of this header. When the amount of activity or motion in the sequence is relatively
constant, it is reasonable to expect that the same quantizer will be used for a large number
of macroblocks. In this case, it would be wasteful to identify the quantizer being used with
each macroblock. The macroblocks are organized into groups of blocks (GOBs), each of
which consists of three rows of 11 macroblocks. This hierarchical arrangement is shown in
Figure 19.12. Only the luminance blocks are shown. The header preceding each GOB contains
a 5-bit field for identifying the quantizer. Once a quantizer has been identified in the GOB
header, the receiver assumes that quantizer is being used, unless this choice is overridden using
the macroblock header.

The quantization labels are encoded in a manner similar to, but not exactly the same as,
JPEG. The labels are scanned in a zigzag fashion like JPEG. The nonzero labels are coded
along with the number, or run, of coefficients quantized to zero. The 20 most commonly
occurring combinations of (run, label) are coded with a single variable-length codeword. All
other combinations of (run, label) are coded with a 20-bit word, made up of a 6-bit escape
sequence, a 6-bit code denoting the run, and an 8-bit code for the label.

In order to avoid transmitting blocks that have no nonzero quantized coefficient, the header
preceding each macroblock can contain a variable-length code called the coded block pattern
(CBP) that indicates which of the six blocks contain nonzero labels. The CBP can take on one
of 64 different pattern numbers, which is then encoded by a variable-length code. The pattern
number is given by

CBP = 32P1 + 16P2 + 8P3 + 4P4 + 2P5 + P6

19.6 Model-Based Coding 649

where P1 through P6 correspond to the six different blocks in the macroblock, and is one if
the corresponding block has a nonzero quantized coefficient and zero otherwise.

19.5.5 Rate Control

The binary codewords generated by the transform coder form the input to a transmission buffer.
The function of the transmission buffer is to keep the output rate of the encoder fixed. If the
buffer starts filling up faster than the transmission rate, it sends a message back to the transform
coder to reduce the output from the quantization. If the buffer is in danger of becoming emptied
because the transform coder is providing bits at a rate lower than the transmission rate, the
transmission buffer can request a higher rate from the transform coder. This operation is called
rate control.

The change in rate can be accomplished in two different ways. First, the quantizer being
used will affect the rate. If a quantizer with a large step size is used, a larger number of
coefficients will be quantized to zero. Also, there is a higher probability that those not quantized
to zero will be one of the values that have a shorter variable-length codeword. Therefore, if
a higher rate is required, the transform coder selects a quantizer with a smaller step size, and
if a lower rate is required, the transform coder selects a quantizer with a larger step size. The
quantizer step size is set at the beginning of each GOB, but can be changed at the beginning of
any macroblock. If the rate cannot be lowered enough and there is a danger of buffer overflow,
the more drastic option of dropping frames from transmission is used.

The ITU-T H.261 algorithm was primarily designed for videophone and videoconferencing
applications. Therefore, the algorithm had to operate with minimal coding delay (less than
150 milliseconds). Furthermore, for videophone applications, the algorithm had to operate at
very low bit rates. In fact, the title for the recommendation is “Video Codec for Audiovisual
Services at p×64 kbit/s,” where p takes on values from 1 to 30. A p value of 2 corresponds to
a total transmission rate of 128 kbps, which is the same as two voice-band telephone channels.
These are very low rates for video, and the ITU-T H.261 recommendations perform relatively
well at these rates.

19.6 Model- Based Coding

In speech coding, a major decrease in rate is realized when we go from coding waveforms to
an analysis/synthesis approach. An attempt at doing the same for video coding is described
in the next section. A technique that has not yet reached maturity but shows great promise
for use in videophone applications is an analysis/synthesis technique. The analysis/synthesis
approach requires that the transmitter and receiver agree on a model for the information to be
transmitted. The transmitter then analyzes the information to be transmitted and extracts the
model parameters, which are transmitted to the receiver. The receiver uses these parameters to
synthesize the source information. While this approach has been successfully used for speech
compression for a long time (see Chapter 18), the same has not been true for images. In a
delightful book, Signals, Systems, and Noise—The Nature and Process of Communications,
published in 1961, J.R. Pierce [11] described his “dream” of an analysis/synthesis scheme for

650 19 V I D E O C O M P R E S S I O N

what we would now call a videoconferencing system:

Imagine that we had at the receiver a sort of rubbery model of the human face. Or we
might have a description of such a model stored in the memory of a huge electronic
computer. . .. Then, as the person before the transmitter talked, the transmitter
would have to follow the movements of his eyes, lips, and jaws, and other muscular
movements and transmit these so that the model at the receiver could do likewise.

Pierce’s dream is a reasonably accurate description of a three-dimensional model-based
approach to the compression of facial image sequences. In this approach, a generic wireframe
model, such as the one shown in Figure 19.13, is constructed using triangles. When encoding
the movements of a specific human face, the model is adjusted to the face by matching features
and the outer contour of the face. The image textures are then mapped onto this wireframe
model to synthesize the face. Once this model is available to both transmitter and receiver, only
changes in the face are transmitted to the receiver. These changes can be classified as global
motion or local motion [254]. Global motion involves movement of the head, while local
motion involves changes in the features—in other words, changes in facial expressions. The
global motion can be modeled in terms of movements of rigid bodies. The facial expressions can
be represented in terms of relative movements of the vertices of the triangles in the wireframe
model. In practice, separating a movement into global and local components can be difficult
because most points on the face will be affected by both the changing position of the head and
the movement due to changes in facial expression. Different approaches have been proposed
to separate these effects [255, 254, 256].

The global movements can be described in terms of rotations and translations. The local
motions, or facial expressions, can be described as a sum of action units (AU), which are a
set of 44 descriptions of basic facial expressions [257]. For example, AU1 corresponds to the
raising of the inner brow and AU2 corresponds to the raising of the outer brow; therefore, AU1
+ AU2 would mean raising the brow.

Although the synthesis portion of this algorithm is relatively straightforward, the analysis
portion is far from simple. Detecting changes in features, which tend to be rather subtle, is a
very difficult task. There is a substantial amount of research in this area, and if this problem is
resolved, this approach promises rates comparable to the rates of the analysis/synthesis voice
coding schemes. A good starting point for exploring this fascinating area is [258].

19.7 Asymmetric Applications

There are a number of applications in which it is cost effective to shift more of the computational
burden to the encoder. For example, in multimedia applications where a video sequence is
stored on a CD-ROM, the decompression will be performed many times and has to be performed
in real time. However, the compression is performed only once, and there is no need for it
to be in real time. Thus, the encoding algorithms can be significantly more complex. A
similar situation arises in broadcast applications, where for each transmitter there might be
thousands of receivers. In the following sections we will look at the standards developed for
such asymmetric applications.

19.7 Asymmetric Applications 651

F I GUR E 19 . 13 Generic wireframe model.

These standards have been developed by a joint committee of the International Standards
Organization (ISO) and the International Electrotechnical Society (IEC), which is best known
as MPEG (Moving Picture Experts Group). MPEG was initially set up in 1988 to develop a
set of standard algorithms, at different rates, for applications that required storage of video and
audio on digital storage media. Originally, the committee had three work items, nicknamed
MPEG-1, MPEG-2, and MPEG-3, targeted at rates of 1.5, 10, and 40 Mbits per second, respec-
tively. Later, it became clear that the algorithms developed for MPEG-2 would accommodate
the MPEG-3 rates, and the third work item was dropped [259]. The MPEG-1 work item re-
sulted in a set of standards, ISO/IEC IS 11172, “Information Technology—Coding of Moving
Pictures and Associated Audio for Digital Storage Media Up to about 1.5 Mbit/s” [260]. Dur-
ing the development of the standard, the committee felt that the restriction to digital storage
media was not necessary, and the set of standards developed under the second work item,
ISO/IEC 13818 or MPEG-2, was issued under the title “Information Technology—Generic
Coding of Moving Pictures and Associated Audio Information” [261]. In July 1993 the MPEG
committee began working on MPEG-4, the third and most ambitious of its standards. The goal

652 19 V I D E O C O M P R E S S I O N

of MPEG-4 was to provide an object-oriented framework for the encoding of multimedia. It
took two years for the committee to arrive at a satisfactory definition of the scope of MPEG-
4, and the call for proposals was finally issued in 1996. The standard ISO/IEC 14496 was
finalized in 1998 and approved as an international standard in 1999. We examined the audio
standard in Chapter 18. In the following sections we look at the video standards.

19.8 The MPEG-1 Video Standard

The basic structure of the compression algorithm proposed by MPEG is very similar to that of
ITU-T H.261. Blocks (8 × 8 in size) of either an original frame or the difference between a
frame and the motion-compensated prediction are transformed using the DCT. The blocks are
organized in macroblocks, which are defined in the same manner as in the H.261 algorithm,
and the motion compensation is performed at the macroblock level. The transform coefficients
are quantized and transmitted to the receiver. A buffer is used to smooth delivery of bits from
the encoder and also for rate control.

The basic structure of the MPEG-1 compression scheme may be viewed as very similar to
that of the ITU-T H.261 video compression scheme; however, there are significant differences
in the details of this structure. The H.261 standard has videophone and videoconferencing as
the main application areas; the MPEG standard at least initially had applications that require
digital storage and retrieval as a major focus. This does not mean that use of either algorithm
is precluded in applications outside its focus, but simply that the features of the algorithm may
be better understood if we keep in mind the target application areas. In videoconferencing
a call is set up, conducted, and then terminated. This set of events always occurs together
and in sequence. When accessing video from a storage medium, we do not always want to
access the video sequence starting from the first frame. We want the ability to view the video
sequence starting at, or close to, some arbitrary point in the sequence. A similar situation
exists in broadcast situations. Viewers do not necessarily tune into a program at the beginning.
They may do so at any random point in time. In H.261 each frame, after the first frame, may
contain blocks that are coded using predictions from the previous frame. Therefore, to decode
a particular frame in the sequence, it is possible that we may have to decode the sequence
starting at the first frame. One of the major contributions of MPEG-1 was the provision of
a random access capability. This capability is provided rather simply by requiring that there
be frames periodically that are coded without any reference to past frames. These frames are
referred to as I frames.

In order to avoid a long delay between the time a viewer switches on the TV to the time a
reasonable picture appears on the screen, or between the frame that a user is looking for and the
frame at which decoding starts, the I frames should occur quite frequently. However, because
the I frames do not use temporal correlation, the compression rate is quite low compared to
the frames that make use of the temporal correlations for prediction. Thus, the number of
frames between two consecutive I frames is a trade-off between compression efficiency and
convenience.

In order to improve compression efficiency, the MPEG-1 algorithm contains two other
kinds of frames, the predictive coded (P) frames and the bidirectionally predictive coded (B)

19.8 The MPEG-1 Video Standard 653

Bidirectional prediction

Forward prediction

P frameI frame B frame

F I GUR E 19 . 14 A possible arrangement for a group of pictures.

frames. The P frames are coded using motion-compensated prediction from the last I or P
frame, whichever happens to be closest. Generally, the compression efficiency of P frames is
substantially higher than I frames. The I and P frames are sometimes called anchor frames,
for reasons that will become obvious.

To compensate for the reduction in the amount of compression due to the frequent use
of I frames, the MPEG standard introduced B frames. The B frames achieve a high level of
compression by using motion-compensated prediction from the most recent anchor frame and
the closest future anchor frame. By using both past and future frames for prediction, generally
we can get better compression than if we only used prediction based on the past. For example,
consider a video sequence in which there is a sudden change between one frame and the next.
This is a common occurrence in TV advertisements. In this situation, prediction based on
the past frames may be useless. However, predictions based on future frames would have a
high probability of being accurate. Note that a B frame can only be generated after the future
anchor frame has been generated. Furthermore, the B frame is not used for predicting any
other frame. This means that B frames can tolerate more error because this error will not be
propagated by the prediction process.

The different frames are organized together in a group of pictures (GOP). A GOP is the
smallest random access unit in the video sequence. The GOP structure is set up as a trade-off
between the high compression efficiency of motion-compensated coding and the fast picture
acquisition capability of periodic intra-only processing. As might be expected, a GOP has to
contain at least one I frame. Furthermore, the first I frame in a GOP is either the first frame of
the GOP, or is preceded by B frames that use motion-compensated prediction only from this I
frame. A possible GOP is shown in Figure 19.14.

Because of the reliance of the B frame on future anchor frames, there are two different
sequence orders. The display order is the sequence in which the video sequence is displayed
to the user. A typical display order is shown in Table 19.5. Let us see how this sequence was
generated. The first frame is an I frame, which is compressed without reference to any previous
frame. The next frame to be compressed is the fourth frame. This frame is compressed using

654 19 V I D E O C O M P R E S S I O N

T A B L E 19 . 5 A typical sequence of frames in
display order.

I B B P B B P B B P B B I
1 2 3 4 5 6 7 8 9 10 11 12 13

motion-compensated prediction from the first frame. Then we compress frame 2, which is
compressed using motion-compensated prediction from frame 1 and frame 4. The third frame
is also compressed using motion-compensated prediction from the first and fourth frames.
The next frame to be compressed is frame 7, which uses motion-compensated prediction from
frame 4. This is followed by frames 5 and 6, which are compressed using motion-compensated
predictions from frames 4 and 7. Thus, there is a processing order that is quite different from
the display order. The MPEG document calls this the bitstream order. The bitstream order for
the sequence shown in Table 19.5 is given in Table 19.6. In terms of the bitstream order, the
first frame in a GOP is always the I frame.

As we can see, unlike the ITU-T H.261 algorithm, the frame being predicted and the
frame upon which the prediction is based are not necessarily adjacent. In fact, the number of
frames between the frame being encoded and the frame upon which the prediction is based
is variable. When searching for the best matching block in a neighboring frame, the region
of search depends on assumptions about the amount of motion. More motion will lead to
larger search areas than a small amount of motion. When the frame being predicted is always
adjacent to the frame upon which the prediction is based, we can fix the search area based on
our assumption about the amount of motion. When the number of frames between the frame
being encoded and the prediction frame is variable, we make the search area a function of the
distance between the two frames. While the MPEG standard does not specify the method used
for motion compensation, it does recommend using a search area that grows with the distance
between the frame being coded and the frame being used for prediction.

Once motion compensation has been performed, the block of prediction errors is trans-
formed using the DCT and quantized, and the quantization labels are encoded. This procedure
is the same as that recommended in the JPEG standard and is described in Chapter 13. The
quantization tables used for the different frames are different and can be changed during the
encoding process.

Rate control in the MPEG standard can be performed at the sequence level or at the level
of individual frames. At the sequence level, any reduction in bit rate first occurs with the B
frames because they are not essential for the encoding of other frames. At the level of the
individual frames, rate control takes place in two steps. First, as in the case of the H.261

T A B L E 19 . 6 A typical sequence of frames in
bitstream order.

I P B B P B B P B B I B B
1 4 2 3 7 5 6 10 8 9 13 11 12

19.9 The MPEG-2 Video Standard__H.262 655

algorithm, the quantizer step sizes are increased. If this is not sufficient, then the higher-order
frequency coefficients are dropped until the need for rate reduction is past.

The format for MPEG is very flexible. However, the MPEG committee has provided some
suggested values for the various parameters. For MPEG-1 these suggested values are called
the constrained parameter bitstream (CPB). The horizontal picture size is constrained to be
less than or equal to 768 pixels, and the vertical size is constrained to be less than or equal to
576 pixels. More importantly, the pixel rate is constrained to be less than 396 macroblocks per
frame if the frame rate is 25 frames per second or less, and 330 macroblocks per frame if the
frame rate is 30 frames per second or less. The definition of a macroblock is the same as in
the ITU-T H.261 recommendations. Therefore, this corresponds to a frame size of 352× 288
pixels at the 25-frames-per-second rate, or a frame size of 352× 240 pixels at the 30-frames-
per-second rate. Keeping the frame at this size allows the algorithm to achieve bit rates of
between 1 and 1.5 Mbits per second. When referring to MPEG-1 parameters, most people are
actually referring to the CPB.

The MPEG-1 algorithm provides reconstructed images of VHS quality for moderate- to
low-motion video sequences, and worse than VHS quality for high-motion sequences at rates
of around 1.2 Mbits per second. As the algorithm was targeted to applications such as CD-
ROM, there is no consideration of interlaced video. In order to expand the applicability of the
basic MPEG algorithm to interlaced video, the MPEG committee provided some additional
recommendations, the MPEG-2 recommendations.

19.9 The MPEG-2 Video Standard__H.262

While MPEG-1 was specifically proposed for digital storage media, the idea behind MPEG-2
was to provide a generic, application-independent standard. To this end, MPEG-2 takes a “tool
kit” approach, providing a number of subsets, each containing different options from the set of
all possible options contained in the standard. For a particular application, the user can select
from a set of profiles and levels. The profiles define the algorithms to be used, while the levels
define the constraints on the parameters. There are five profiles: simple, main, snr-scalable
(where snr stands for signal-to-noise ratio), spatially scalable, and high. There is an ordering
of the profiles; each higher profile is capable of decoding video encoded using all profiles up
to and including that profile. For example, a decoder designed for profile snr-scalable could
decode video that was encoded using profiles simple, main, and snr-scalable. The simple
profile eschews the use of B frames. Recall that the B frames require the most computation
to generate (forward and backward prediction), require memory to store the coded frames
needed for prediction, and increase the coding delay because of the need to wait for “future”
frames for both generation and reconstruction. Therefore, removal of the B frames makes
the requirements simpler. The main profile is very much the algorithm we have discussed in
the previous section. The snr-scalable, spatially scalable, and high profiles may use more
than one bitstream to encode the video. The base bitstream is a lower-rate encoding of the
video sequence. This bitstream could be decoded by itself to provide a reconstruction of the
video sequence. The other bitstream is used to enhance the quality of the reconstruction. This
layered approach is useful when transmitting video over a network, where some connections

656 19 V I D E O C O M P R E S S I O N

may only permit a lower rate. The base bitstream can be provided to these connections while
providing the base and enhancement layers for a higher-quality reproduction over the links
that can accommodate the higher bit rate. To understand the concept of layers, consider the
following example.

Example 19 .9 .1 :

Suppose after the transform we obtain a set of coefficients θi j , the first eight of which are

29.75 6.1 −6.03 1.93 −2.01 1.23 −0.95 2.11

Let us suppose we quantize this set of coefficients using a step size of 4. For simplicity we
will use the same step size for all coefficients. Recall that the quantizer label is given by

li j =
⌊
θi j

Qt
i j
+ 0.5

⌋
(8)

and the reconstructed value is given by

θ̂i j = li j × Qt
i j (9)

Using these equations and the fact that Qt
i j = 4, the reconstructed values of the coefficients

are
28 8 −8 0 −4 0 −0 4

The error in the reconstruction is

1.75 −1.9 1.97 1.93 1.99 1.23 −0.95 −1.89

Now suppose we have some additional bandwidth made available to us. We can quantize
the difference and send that to enhance the reconstruction. Suppose we used a step size of 2
to quantize the difference. The reconstructed values for this enhancement sequence would be

2 −2 2 2 2 2 0 −2

Adding this to the previous base-level reconstruction, we get an enhanced reconstruction of

30 6 −6 2 −2 2 0 2

which results in an error of

−0.25 0.1 −0.03 −0.07 −0.01 −0.77 −0.95 0.11

The layered approach allows us to increase the accuracy of the reconstruction when band-
width is available, while at the same time permitting a lower-quality reconstruction when there
is not sufficient bandwidth for the enhancement. In other words, the quality is scalable. In
this particular case, the error between the original and reconstruction decreases because of
the enhancement. Because the signal-to-noise ratio is a measure of error, this can be called
snr-scalable. If the enhancement layer contains a coded bitstream corresponding to frames
that occur between frames of the base layer, the system can be called temporally scalable. If
the enhancement allows an upsampling of the base layer, the system is spatially scalable. �

19.9 The MPEG-2 Video Standard__H.262 657

T A B L E 19 . 7 Allowable profile-level combinations in MPEG-2.

Simple
Profile

Main
Profile

SNR-
Scalable
Profile

Spatially
Scalable
Profile

High
Profile

High Level Allowed Allowed
High 1440 Allowed Allowed Allowed
Main Level Allowed Allowed Allowed Allowed
Low Level Allowed Allowed

The levels are low, main, high 1440, and high. The low level corresponds to a frame size
of 352 × 240, the main level corresponds to a frame size of 720 × 480, the high 1440 level
corresponds to a frame size of 1440 × 1152, and the high level corresponds to a frame size
of 1920 × 1080. All levels are defined for a frame rate of 30 frames per second. There are
many possible combinations of profiles and levels, not all of which are allowed in the MPEG-
2 standard. Table 19.7 shows the allowable combinations [259]. A particular profile-level
combination is denoted by XX@YY where XX is the two-letter abbreviation for the profile and
YY is the two-letter abbreviation for the level. There are a large number of issues, such as
bounds on parameters and decodability between different profile-level combinations, that we
have not addressed here because they do not pertain to our main focus, compression (see the
international standard [261] for these details).

Because MPEG-2 has been designed to handle interlaced video, there are field-based
alternatives to the I, P, and B frames. The P and B frames can be replaced by two P fields
or two B fields. The I frame can be replaced by two I fields or an I field and a P field where
the P field is obtained by predicting the bottom field by the top field. Because an 8 × 8 field
block actually covers twice the spatial distance in the vertical direction as an 8 frame block,
the zigzag scanning is adjusted to adapt to this imbalance. The scanning pattern for an 8× 8
field block is shown in Figure 19.15.

The most important addition from the point of view of compression in MPEG-2 is the
addition of several new motion-compensated prediction modes: the field prediction and the
dual prime prediction modes. MPEG-1 did not allow interlaced video. Therefore, there was
no need for motion-compensation algorithms based on fields. In the P frames, field predictions
are obtained using one of the two most recently decoded fields. When the first field in a frame
is being encoded, the prediction is based on the two fields from the previous frame. However,
when the second field is being encoded, the prediction is based on the second field from the
previous frame and the first field from the current frame. Information about which field is to
be used for prediction is transmitted to the receiver. The field predictions are performed in a
manner analogous to the motion-compensated prediction described earlier.

In addition to the regular frame and field prediction, MPEG-2 also contains two additional
modes of prediction. One is 16 × 8 motion compensation. In this mode, two predictions are
generated for each macroblock, one for the top half and one for the bottom half. The other is
called dual prime motion compensation. In this technique, two predictions are formed for each
field from the two recent fields. These predictions are averaged to obtain the final prediction.

658 19 V I D E O C O M P R E S S I O N

F I GUR E 19 . 15 Scanning pattern for the DCT coefficients of a field block.

When the Federal Communications Commission (FCC) requested proposals for the HDTV
standard, they received four proposals for digital HDTV from four consortia. After the evalu-
ation phase, the FCC declined to pick a winner among the four, and instead suggested that all
these consortia join forces and produce a single proposal. The resulting partnership had the
exalted title of the “Grand Alliance.” The Grand Alliance system used the main profile of the
MPEG-2 standard implemented at the high level.

19.10 ITU- T Recommendation H.263

The H.263 standard was developed to update the H.261 video conferencing standard with
the experience acquired in the development of the MPEG and H.262 algorithms. The initial
algorithm provided incremental improvement over H.261. After the development of the core
algorithm, several optional updates were proposed that significantly improved compression
performance. The standard with these optional components is sometimes referred to as H.263+
(or H.263++).

In the following sections we first describe the core algorithm and then describe some of the
options. The standard focuses on noninterlaced video. The different picture formats addressed

19.10 ITU-T Recommendation H.263 659

T A B L E 19 . 8 The standardized H.263 formats.

Picture format Number of lu-
minance pixels
(columns)

Number of lu-
minance lines
(rows)

Number of
chrominance
pixels (columns)

Number of
chrominance
lines (rows)

sub-QCIF 128 96 64 48
QCIF 176 144 88 72
CIF 352 288 176 144
4CIF 704 576 352 288
16CIF 1408 1152 704 576

by the standard are shown in Table 19.8. The picture is divided into groups of blocks (GOBs)
or slices. A group of blocks is a strip of pixels across the picture with a height that is a multiple
of 16 lines. The number of multiples depends on the size of the picture, and the bottommost
GOB may have less than 16 lines. Each GOB is divided into macroblocks, which are defined
as in the H.261 recommendation.

A block diagram of the baseline video coder is shown in Figure 19.16. It is very similar
to Figure 19.10, the block diagram for the H.261 encoder. The only major difference is the
ability to work with both predicted or P frames and intra or I frames. As in the case of
H.261, the motion-compensated prediction is performed on a macroblock basis. The vertical
and horizontal components of the motion vector are restricted to the range [−16, 15.5]. The
transform used for representing the prediction errors in the case of the P frame and the pixels
in the case of the I frames is the discrete cosine transform. The transform coefficients are
quantized using uniform midtread quantizers. The DC coefficient of the intra block is quantized
using a uniform quantizer with a step size of 8. There are 31 quantizers available for the
quantization of all other coefficients with step sizes ranging from 2 to 62. Apart from the DC
coefficient of the intra block, all coefficients in a macroblock are quantized using the same
quantizer.

The motion vectors are differentially encoded. The prediction is the median of the motion
vectors in the neighboring blocks. The H.263 recommendation allows half pixel motion
compensation as opposed to only integer pixel compensation (which is all that is allowed in
H.261). Notice that the sign of the component is encoded in the last bit of the variable length
code, a “0” for positive values and a “1” for negative values. Two values that differ only in
their sign differ only in the least significant bit.

The code for the quantized transform coefficients is indexed by three indicators. The first
indicates whether the coefficient being encoded is the last nonzero coefficient in the zigzag
scan. The second indicator is the number of zero coefficients preceding the coefficient being
encoded, and the last indicates the absolute value of the quantized coefficient level. The sign
bit is appended as the last bit of the variable-length code.

Here we describe some of the optional modes of the H.263 recommendation. The first four
options were part of the initial H.263 specification. The remaining options were added later
and the resulting standard is sometimes referred to as the H.263+ standard.

660 19 V I D E O C O M P R E S S I O N

Coding control

Inverse
quantization

Inverse
transform

Motion-
compensated

prediction Motion
vector

Quantizer
Discrete
cosine

transform

F I GUR E 19 . 16 A block diagram of the H.263 video compression algorithm.

19.10.1 Unrestricted Motion Vector Mode

In this mode the motion vector range is extended to [−31.5, 31.5], which is particularly useful
in improving the compression performance of the algorithm for larger picture sizes. The mode
also allows motion vectors to point outside the picture. This is done by repeating the edge
pixels to create the picture beyond its boundary.

19.10.2 Syntax- Based Arithmetic Coding Mode

In this mode the variable-length codes are replaced with an arithmetic coder. The word length
for the upper and lower limits is 16. The option specifies several different Cum_Count tables
that can be used for arithmetic coding. There are separate Cum_Count tables for encoding
motion vectors, intra DC components, and intra and inter coefficients.

19.10 ITU-T Recommendation H.263 661

19.10.3 Advanced Prediction Mode

In the baseline mode a single motion vector is sent for each macroblock. Recall that a mac-
roblock consists of four 8×8 luminance blocks and two chrominance blocks. In the advanced
prediction mode the encoder can send four motion vectors, one for each luminance block. The
chrominance motion vectors are obtained by adding the four luminance motion vectors and
dividing by 8. The resulting values are adjusted to the nearest half pixel position. This mode
also allows for Overlapped Block Motion Compensation (OBMC). In this mode the motion
vector is obtained by taking a weighted sum of the motion vector of the current block and two
of the four vertical and horizontal neighboring blocks.

19.10.4 PB- Frames and Improved PB- Frames Mode

The PB frame consists of a P picture and a B picture in the same frame. The blocks for the
P frame and the B frame are interleaved so that a macroblock consists of six blocks of a P
picture followed by six blocks of a B picture. The motion vector for the B picture is derived
from the motion vector for the P picture by taking into account the time difference between
the P picture and the B picture. If the motion cannot be properly derived, a delta correction
is included. The improved PB-frame mode updates the PB-frame mode to include forward,
backward, and bidirectional prediction.

19.10.5 Advanced Intra Coding Mode

The coefficients for the I frames are obtained directly by transforming the pixels of the picture.
As a result, there can be significant correlation between some of the coefficients of neighboring
blocks. For example, the DC coefficient represents the average value of a block. It is very
likely that the average value will not change significantly between blocks. The same may
be true, albeit to a lesser degree, for the low-frequency horizontal and vertical coefficients.
The advanced intra coding mode allows the use of this correlation by using coefficients from
neighboring blocks for predicting the coefficients of the block being encoded. The prediction
errors are then quantized and coded.

When this mode is used, the quantization approach and variable-length codes have to be
adjusted to adapt to the different statistical properties of the prediction errors. Furthermore, it
might also become necessary to change the scan order. The recommendation provides alternate
scanning patterns as well as alternate variable length codes and quantization strategies.

19.10.6 Deblocking Filter Mode

This mode is used to remove blocking effects from the 8× 8 block edges. This smoothing of
block boundaries allows for better prediction. This mode also permits the use of four motion
vectors per macroblock and motion vectors that point beyond the edge of the picture.

662 19 V I D E O C O M P R E S S I O N

19.10.7 Reference Picture Selection Mode

This mode is used to prevent error propagation by allowing the algorithm to use a picture other
than the previous picture to perform prediction. The mode permits the use of a back-channel
that the decoder uses to inform the encoder about the correct decoding of parts of the picture. If
a part of the picture is not correctly decoded, it is not used for prediction. Instead, an alternate
frame is selected as the reference frame. The information about which frame was selected as
the reference frame is transmitted to the decoder. The number of possible reference frames is
limited by the amount of frame memory available.

19.10.8 Temporal, SNR, and Spatial Scalability Mode

This is very similar to the scalability structures defined earlier for the MPEG-2 algorithm.
Temporal scalability is achieved by using separate B frames, as opposed to the PB frames. SNR
scalability is achieved using the kind of layered coding described earlier. Spatial scalability is
achieved using upsampling.

19.10.9 Reference Picture Resampling

Reference picture resampling allows a reference picture to be “warped” in order to permit the
generation of better prediction. It can be used to adaptively alter the resolution of pictures
during encoding.

19.10.10 Reduced- Resolution Update Mode

This mode is used for encoding highly active scenes. The macroblock in this mode is assumed
to cover an area twice the height and width of the regular macroblock. The motion vector is
assumed to correspond to this larger area. Using this motion vector a predicted macroblock
is created. The transform coefficients are decoded and then upsampled to create the expanded
texture block. The predicted and texture blocks are then added to obtain the reconstruction.

19.10.11 Alternative Inter VLC Mode

The variable-length codes for inter and intra frames are designed with different assumptions.
In the case of the inter frames it is assumed that the values of the coefficients will be small
and there can be large numbers of zero values between nonzero coefficients. This is a result
of prediction that, if successfully employed, reduces the magnitude of the differences, and
hence the coefficients, and also leads to large numbers of zero-valued coefficients. Therefore,
coefficients indexed with large runs and small coefficient values are assigned shorter codes.
In the case of the intra frames, the opposite is generally true. There is no prediction, therefore
there is a much smaller probability of runs of zero-valued coefficients. Also, large-valued
coefficients are quite possible. Therefore, coefficients indexed by small run values and larger
coefficient values are assigned shorter codes. During periods of increased temporal activity,

19.10 ITU-T Recommendation H.263 663

prediction is generally not as good and therefore the assumptions under which the variable-
length codes for the inter frames were created are violated. In these situations it is likely that
the variable-length codes designed for the intra frames are a better match. The alternative
inter VLC mode allows for the use of the intra codes in these sitations, improving compression
performance. Note that the codewords used in intra and inter frame coding are the same.
What is different is the interpretation. To detect the proper interpretation, the decoder first
decodes the block assuming an inter frame codebook. If the decoding results in more than 64
coefficients it switches its interpretation.

19.10.12 Modified Quantization Mode

In this mode, along with changes in the signalling of changes in quantization parameters, the
quantization process is improved in several ways. In the baseline mode, both the luminance and
chrominance components in a block are quantized using the same quantizer. In the modified
quantization mode, the quantizer used for the luminance coefficients is different from the
quantizer used for the chrominance component. This allows the quantizers to be more closely
matched to the statistics of the input. The modified quantization mode also allows for the
quantization of a wider range of coefficient values, preventing significant overload. If the
coefficient exceeds the range of the baseline quantizer, the encoder sends an escape symbol
followed by an 11-bit representation of the coefficient. This relaxation of the structured
representation of the quantizer outputs makes it more likely that bit errors will be accepted
as valid quantizer outputs. To reduce the chances of this happening, the mode prohibits
“unreasonable” coefficient values.

19.10.13 Enhanced Reference Picture Selection Mode

Motion-compensated prediction is accomplished by searching the previous picture for a block
similar to the block being encoded. The enhanced reference picture selection mode allows
the encoder to search more than one picture to find the best match and then use the best-
suited picture to perform motion-compensated prediction. Reference picture selection can
be accomplished on a macroblock level. The selection of the pictures to be used for motion
compensation can be performed in one of two ways. A sliding window of M pictures can
be used and the last M decoded, with reconstructed pictures stored in a multipicture buffer.
A more complex adaptive memory (not specified by the standard) can also be used in place
of the simple sliding window. This mode significantly enhances the prediction, resulting in a
reduction in the rate for equivalent quality. However, it also increases the computational and
memory requirements on the encoder. This memory burden can be mitigated to some extent
by assigning an unused label to pictures or portions of pictures. These pictures, or portions of
pictures, then do not need to be stored in the buffer. This unused label can also be used as part
of the adaptive memory control to manage the pictures that are stored in the buffer.

664 19 V I D E O C O M P R E S S I O N

19.11 ITU- T Recommendation H.264, MPEG-4
Part 10, Advanced Video Coding

As described in the previous section, the H.263 recommendation started out as an incremental
improvement over H.261 and ended up with a slew of optional features, which in fact make
the improvement over H.261 more than incremental. In H.264 we have a standard that started
out with a goal of significant improvement over the MPEG-1/2 standards and achieved those
goals. The standard, while initiated by ITU-T’s Video Coding Experts Group (VCEG), ended
up being a collaboration of the VCEG and ISO/IEC’s MPEG committees, which joined to form
the Joint Video Team (JVT) in December 2001 [262]. The collaboration of various groups
in the development of this standard has also resulted in the richness of names. It is variously
known as ITU-T H.264, MPEG-4 Part 10, MPEG-4 Advanced Video Coding (AVC), as well
as the name under which it started its life, H.26L. We will just refer to it as H.264.

The basic block diagram looks very similar to the previous schemes. There are intra and
inter pictures. The inter pictures are obtained by subtracting a motion-compensated prediction
from the original picture. The residuals are transformed into the frequency domain. The
transform coefficients are scanned, quantized, and encoded using variable-length codes. A
local decoder reconstructs the picture for use in future predictions. The intra picture is coded
without reference to past pictures.

While the basic block diagram is very similar to the previous standards the details are quite
different. We will look at these details in the following sections. We begin by looking at the
basic structural elements, then look at the decorrelation of the inter frames. The decorrelation
process includes motion-compensated prediction and transformation of the prediction error.
We then look at the decorrelation of the intra frames. This includes intra prediction modes and
transforms used in this mode. We finally look at the different binary coding options.

The macroblock structure is the same as used in the other standards. Each macroblock
consists of four 8 × 8 luminance blocks and two chrominance blocks. An integer number
of sequential macroblocks can be put together to form a slice. In the previous standards the
smallest subdivision of the macroblock was into its 8 × 8 component blocks. The H.264
standard allows 8×8 macroblock partitions to be further divided into sub-macroblocks of size
8× 4, 4× 8, and 4× 4. These smaller blocks can be used for motion-compensated prediction,
allowing for tracking of much finer details than is possible with the other standards. Along
with the 8 × 8 partition, the macroblock can also be partitioned into two 8 × 16 or 16 × 8
blocks. In field mode the H.264 standard groups 16 × 8 blocks from each field to form a
16× 16 macroblock.

19.11.1 Motion- Compensated Prediction

The H.264 standard uses its macroblock partitions to develop a tree-structured motion com-
pensation algorithm. One of the problems with motion-compensated prediction has always
been the selection of the size and shape of the block used for prediction. Different parts of a
video scene will move at different rates in different directions or stay put. A smaller-size block
allows tracking of diverse movement in the video frame, leading to better prediction and hence
lower bit rates. However, more motion vectors need to be encoded and transmitted, using up

19.11 ITU-T Recommendation H.264, MPEG-4 Part 10, Advanced Video Coding 665

valuable bit resources. In fact, in some video sequences the bits used to encode the motion
vectors may make up most of the bits used. If we use small blocks, the number of motion
vectors goes up, as does the bit rate. Because of the variety of sizes and shapes available to
it, the H.264 algorithm provides a high level of accuracy and efficiency in its prediction. It
uses small block sizes in regions of activity and larger block sizes in stationary regions. The
availability of rectangular shapes allows the algorithm to focus more precisely on regions of
activity.

The motion compensation is accomplished using quarter-pixel accuracy. To do this the
reference picture is “expanded” by interpolating twice between neighboring pixels. This results
in a much smoother residual. The prediction process is also enhanced by the use of filters on
the four block edges. The standard allows for searching of up to 32 pictures to find the best
matching block. The selection of the reference picture is done on the macroblock partion level,
so all sub-macroblock partitions use the same reference picture.

As in H.263, the motion vectors are differentially encoded. The basic scheme is the same.
The median values of the three neighboring motion vectors are used to predict the current
motion vector. This basic strategy is modified if the block used for motion compensation is a
16× 16, 16× 8, or 8× 16 block.

For B pictures, as in the case of the previous standards, two motion vectors are allowed for
each macroblock or sub-macroblock partition. The prediction for each pixel is the weighted
average of the two prediction pixels.

Finally, a Pskip type macroblock is defined for which 16×16 motion compensation is used
and the prediction error is not transmitted. This type of macroblock is useful for regions of
little change as well as for slow pans.

19.11.2 The Transform

Unlike the previous video coding schemes, the transform used is not an 8× 8 DCT. For most
blocks the transform used is a 4 × 4 integer DCT-like matrix. The transform matrix is given
by

H =

⎡
⎢⎢⎣

1 1 1 1
2 1 −1 2
1 −1 −1 1
1 −2 2 −1

⎤
⎥⎥⎦

The inverse transform matrix is given by

H I =

⎡
⎢⎢⎣

1 1 1 1
2

1 1
2 −1 −1

1 − 1
2 −1 1

1 −1 1 − 1
2

⎤
⎥⎥⎦

The transform operations can be implemented using addition and shifts. Multiplication by 2 is
a single-bit left shift and division by 2 is a single-bit right shift. However, there is a price for the
simplicity. Notice that the norm of the rows is not the same and the product of the forward and
inverse transforms does not result in the identity matrix. This discrepancy is compensated for
by the use of scale factors during quantization. There are several advantages to using a smaller

666 19 V I D E O C O M P R E S S I O N

integer transform. The integer nature makes the implementation simple and also avoids error
accumulation in the transform process. The smaller size allows better representation of small
stationary regions of the image. The smaller blocks are less likely to contain a wide range of
values. Where there are sharp transitions in the blocks, any ringing effect is contained within
a small number of pixels.

19.11.3 Intra Prediction

In the previous standards the I pictures were transform coded without any decorrelation. This
meant that the number of bits required for the I frames was substantially higher than for
the other pictures. When asked why he robbed banks, the notorious robber Willie Sutton is
supposed to have said simply, “because that’s where the money is.” Because most of the bits
in video coding are expended in encoding the I frame, it made a lot of sense for the JVT to
look at improving the compression of the I frame in order to substantially reduce the bitrate.

The H.264 standard contains a number of spatial prediction modes. For 4× 4 blocks there
are nine prediction modes. Eight of these are summarized in Figure 19.17. The 16 pixels in the
block a − p are predicted using the 13 pixels on the boundary (and extending from it).1 The
arrows corresponding to the mode numbers show the direction of prediction. For example,
mode 0 corresponds to the downward pointing arrow. In this case pixel A is used to predict
pixels a, e, i,m, pixel B is used to predict pixels b, f, j, n, pixel C is used to predict pixels
c, g, k, o, and pixel D is used to predict pixels d, h, l, p. In mode 3, also called the diagonal
down/left mode pixel, B is used to predict pixel a, pixel C is used to predict pixels b, e, pixel
D is used to predict pixels c, f, i , pixel E is used to predict pixels d, g, j,m, pixel F is used to
predict pixels h, k, n, pixel G is used to predict pixels l, o, and pixel H is used to predict pixel p.
If pixels E, F,G, and H are not available, pixel D is repeated four times. Notice that no
direction is available for mode 2. This is called the DC mode, in which the average of the left
and top boundary pixels is used as a prediction for all 16 pixels in the 4 × 4 block. In most
cases the prediction modes used for all the 4×4 blocks in a macroblock are heavily correlated.
The standard uses this correlation to efficiently encode the mode information.

In smooth regions of the picture it is more convenient to use prediction on a macroblock
basis. In the case of a full macroblock there are four prediction modes. Three of them
correspond to modes 0, 1, and 2 (vertical, horizontal, and DC). The fourth prediction mode is
called the planar prediction mode. In this mode a three-parameter plane is fitted to the pixel
values of the macroblock.

19.11.4 Quantization

The H.264 standard uses a uniform scalar quantizer for quantizing the coefficients θi, j . There
are 52 scalar quantizers indexed by Qstep. The step size doubles for every sixth Qstep. The
quantization incorporates scaling necessitated by the approximations used to make the trans-
form simple. If αi, j (Qstep) are the weights for the (i, j)th coefficient then the quantization

1 The jump from pixel L to Q is a historical artifact. In an earlier version of the standard, pixels below L were
also used in some prediction modes.

19.11 ITU-T Recommendation H.264, MPEG-4 Part 10, Advanced Video Coding 667

8

1

6

4

5
0

7

3

a b c d

e f g h

i j k l

n o pm

I

J

K

L

Q A B C D E F G H

F I GUR E 19 . 17 Prediction modes for 4×4 intra prediction.

label is given by

li, j = sign(θi, j)

⌊ |θi, j |αi, j (Qstep)

Qstep

⌋
In order to broaden the quantization interval around the origin we add a small value in the
numerator:

li, j = sign(θi, j)

⌊ |θi, j |αi, j (Qstep)+ f (Qstep)

Qstep

⌋
In actual implementation we do away with divisions and the quantization is implemented as
[262]

li, j = sign(θi, j)[|θi, j |M(QM , r)+ f 217+QE] >> 17+ QE

where

QM = Qstep(mod 6)

QE =
⌊

Qstep

6

⌋

r =

⎧⎪⎪⎨
⎪⎪⎩

0 i, j even

1 i, j odd

2 otherwise

>> denotes a binary right-shift, and M is given in Table 19.9.
The inverse quantization is given by

θ̂i, j = li, j S(QM , r)� QE

where << denotes a left-shift, and S is given in Table 19.10
Prior to quantization, the transforms of the 16 × 16 luminance residuals and the 8 × 8

chrominance residuals of the macroblock-based intra prediction are processed to further remove
redundancy. Recall that macroblock-based prediction is used in smooth regions of the I
picture. Therefore, it is very likely that the DC coefficients of the 4× 4 transforms are heavily
correlated. To remove this redundancy, a discrete Walsh-Hadamard transform is used on the

668 19 V I D E O C O M P R E S S I O N

T A B L E 19 . 9 M(QM,r) values in H.264.

QM r = 0 r = 1 r = 2

0 13107 5243 8066
1 11916 4660 7490
2 10082 4194 6554
3 9362 3647 5825
4 8192 3355 5243
5 7282 2893 4559

T A B L E 19 . 10 S(QM,r) values in H.264.

QM r = 0 r = 1 r = 2

0 10 16 13
1 11 18 14
2 13 20 16
3 14 23 18
4 16 25 20
5 18 29 23

DC coefficients in the macroblock. In the case of the luminance block, this is a 4×4 transform
for the 16 DC coefficients. The smaller chrominance block contains four DC coefficients, so
we use a 2× 2 discrete Walsh-Hadamard transform.

19.11.5 Coding

The H.264 standard contains two options for binary coding. The first uses exponential Golomb
codes to encode the parameters and a context-adaptive variable-length code (CAVLC) to encode
the quantizer labels [262]. The second binarizes all the values and then uses a context-adaptive
binary arithmetic code (CABAC) [44].

An exponential Golomb code for a positive number x can be obtained as the unary code
for M = �log2(x + 1)� concatenated with the M-bit natural binary code for x + 1. The unary
code for a number x is given as x zeros followed by a 1. The exponential Golomb code for
zero is 1.

The quantizer labels are first scanned in a zigzag fashion. In many cases the last nonzero
labels in the zigzag scan have a magnitude of 1. The number N of nonzero labels and the
number T of trailing 1s are used as an index into a codebook that is selected based on the values
of N and T for the neighboring blocks. The maximum allowed value of T is 3. If the number
of trailing labels with a magnitude of 1 is greater than 3, the remaining are encoded in the
same manner as the other nonzero labels. The nonzero labels are then coded in reverse order.
That is, the quantizer labels corresponding to the higher-frequency coefficients are encoded
first. First the signs of the trailing 1s are encoded with 0s signifying positive values and 1s

19.12 MPEG-4 Part 2 669

signifying negative values. Then the remaining quantizer labels are encoded in reverse scan
order. After this, the total number of 0s in the scan between the beginning of the scan and the
last nonzero label is encoded. This will be a number between 0 and 16− N . Then the run of
zeros before each label starting with the last nonzero label is encoded until we run out of zeros
or coefficients. The number of bits used to code each zero run will depend on the number of
zeros remaining to be assigned.

In the second technique, which provides higher compression, all values are first converted
to binary strings. This binarization is performed, depending on the data type, using unary
codes, truncated unary codes, exponential Golomb codes, and fixed-length codes, plus five
specific binary trees for encoding macroblock and sub-macroblock types. The binary string is
encoded in one of two ways. Redundant strings are encoded using a context-adaptive binary
arithmetic code. Binary strings that are random, such as the suffixes of the exponential Golomb
codes, bypass the arithmetic coder. The arithmetic coder has 399 contexts available to it, with
325 of these contexts used for encoding the quantizer labels. These numbers include contexts
for both frame and field slices. In a pure frame or field slice only 277 of the 399 context
models are used. These context models are simply Cum_Count tables for use with a binary
arithmetic coder. The H.264 standard recommends a multiplication-free implementation of
binary arithmetic coding.

The H.264 standard is substantially more flexible than previous standards, with a much
broader range of applications. In terms of performance, it claims a 50% reduction in bit rate
over previous standards for equivalent perceptual quality [262].

19.12 MPEG-4 Part 2

The MPEG-4 standard provides a more abstract approach to the coding of multimedia. The
standard views a multimedia “scene” as a collection of objects. These objects can be visual,
such as a still background or a talking head, or aural, such as speech, music, background noise,
and so on. Each of these objects can be coded independently using different techniques to
generate separate elementary bitstreams. These bitstreams are multiplexed along with a scene
description. A language called the Binary Format for Scenes (BIFS) based on the Virtual
Reality Modeling Language (VRML) has been developed by MPEG for scene descriptions.
The decoder can use the scene description and additional input from the user to combine or
compose the objects to reconstruct the original scene or create a variation on it. The protocol for
managing the elementary streams and their multiplexed version, called the Delivery Multimedia
Integration Framework (DMIF), is an important part of MPEG-4. However, as our focus in
this book is on compression, we will not discuss the protocol (for details, see the standard
[221]).

A block diagram for the basic video coding algorithm is shown in Figure 19.18. Although
shape coding occupies a very small portion of the diagram, it is a major part of the algorithm.
The different objects that make up the scene are coded and sent to the multiplexer. The informa-
tion about the presence of these objects is also provided to the motion-compensated predictor,
which can use object-based motion-compensation algorithms to improve the compression ef-
ficiency. What is left after the prediction can be transmitted using a DCT-based coder. The

670 19 V I D E O C O M P R E S S I O N

Predictor 1

Predictor 2

Predictor 3

Motion
texture
coding

+

–

DCT Q

Q–1

Video
multiplex

Inverse
DCT

Frame
store

Shape
coding

Motion
estimation

Sw
itc

h

+

F I GUR E 19 . 18 A block diagram for video coding.

video coding algorithm can also use a background “sprite”—generally a large panoramic still
image that forms the background for the video sequence. The sprite is transmitted once, and
the moving foreground video objects are placed in front of different portions of the sprite based
on the information about the background provided by the encoder.

The MPEG-4 standard also envisions the use of model-based coding, where a triangu-
lar mesh representing the moving object is transmitted followed by texture information for
covering the mesh. Information about movement of the mesh nodes can then be transmitted
to animate the video object. The texture coding technique suggested by the standard is the
embedded zerotree wavelet (EZW) algorithm. In particular, the standard envisions the use of
a facial animation object to render an animated face. The shape, texture, and expressions of
the face are controlled using facial definition parameters (FDPs) and facial action parameters
(FAPs). BIFS provides features to support custom models and specialized interpretation of
FAPs.

The MPEG-2 standard allows for SNR and spatial scalability. The MPEG-4 standard also
allows for object scalability, in which certain objects may not be sent in order to reduce the
bandwidth requirement.

19.13 Packet Video

The increasing popularity of communication over networks has led to increased interest in the
development of compression schemes for use over networks. In this section we look at some
of the issues involved in developing video compression schemes for use over networks.

19.13 Packet Video 671

19.13.1 ATM Networks

With the explosion of information, we have also seen the development of new ways of trans-
mitting the information. One of the most efficient ways of transferring information among a
large number of users is the use of asynchronous transfer mode (ATM) technology. In the past,
communication has usually taken place over dedicated channels; that is, in order to commu-
nicate between two points, a channel was dedicated only to transferring information between
those two points. Even if there was no information transfer going on during a particular period,
the channel could not be used by anyone else. Because of the inefficiency of this approach,
there is an increasing movement away from it. In an ATM network, the users divide their
information into packets, which are transmitted over channels that can be used by more than
one user.

We can draw an analogy between the movement of packets over a communication network
and the movement of automobiles over a road network. If we break up a message into packets,
then the movement of the message over the network is like the movement of a number of cars
on a highway system going from one point to the other. Although two cars may not occupy the
same position at the same time, they can occupy the same road at the same time. Thus, more
than one group of cars can use the road at any given time. Furthermore, not all the cars in the
group have to take the same route. Depending on the amount of traffic on the various roads
that run between the origin of the traffic and the destination, different cars can take different
routes. This is a more efficient utilization of the road than if the entire road was blocked off
until the first group of cars completed its traversal of the road.

Using this analogy, we can see that the availability of transmission capacity, that is, the
number of bits per second that we can transmit, is affected by factors that are outside our
control. If at a given time there is very little traffic on the network, the available capacity will
be high. On the other hand, if there is congestion on the network, the available capacity will
be low. Furthermore, the ability to take alternate routes through the network also means that
some of the packets may encounter congestion, leading to a variable amount of delay through
the network. In order to prevent congestion from impeding the flow of vital traffic, networks
will prioritize the traffic, with higher-priority traffic being permitted to move ahead of lower-
priority traffic. Users can negotiate with the network for a fixed amount of guaranteed traffic.
Of course, such guarantees tend to be expensive, so it is important that the user have some idea
about how much high-priority traffic they will be transmitting over the network.

19.13.2 Compression Issues in ATM Networks

In video coding, this situation provides both opportunities and challenges. In the video com-
pression algorithms discussed previously, there is a buffer that smooths the output of the
compression algorithm. Thus, if we encounter a high-activity region of the video and generate
more than the average number of bits per second, in order to prevent the buffer from over-
flowing, this period has to be followed by a period in which we generate fewer bits per second
than the average. Sometimes this may happen naturally, with periods of low activity following
periods of high activity. However, it is quite likely that this would not happen, in which case
we have to reduce the quality by increasing the step size or dropping coefficients, or maybe
even entire frames.

672 19 V I D E O C O M P R E S S I O N

The ATM network, if it is not congested, will accommodate the variable rate generated
by the compression algorithm. But if the network is congested, the compression algorithm
will have to operate at a reduced rate. If the network is well designed, the latter situation
will not happen too often, and the video coder can function in a manner that provides uniform
quality. However, when the network is congested, it may remain so for a relatively long period.
Therefore, the compression scheme should have the ability to operate for significant periods
of time at a reduced rate. Furthermore, congestion might cause such long delays that some
packets arrive after they can be of any use; that is, the frame they were supposed to be a part
of might have already been reconstructed.

In order to deal with these problems, it is useful if the video compression algorithm pro-
vides information in a layered fashion, with a low-rate high-priority layer that can be used
to reconstruct the video, even though the reconstruction may be poor, and low-priority en-
hancement layers that enhance the quality of the reconstruction. This is similar to the idea
of progressive transmission, in which we first send a crude but low-rate representation of the
image, followed by higher-rate enhancements. It is also useful if the bit rate required for the
high-priority layer does not vary too much.

19.13.3 Compression Algorithms for Packet Video

Almost any compression algorithm can be modified to perform in the ATM environment, but
some approaches seem more suited to this environment. We briefly present two approaches
(see the original papers for more details).

One compression scheme that functions in an inherently layered manner is subband coding.
In subband coding, the lower-frequency bands can be used to provide the basic reconstruction,
with the higher-frequency bands providing the enhancement. As an example, consider the
compression scheme proposed for packet video by Karlsson and Vetterli [263]. In their scheme,
the video is divided into 11 bands. First, the video signal is divided into two temporal bands.
Each band is then split into four spatial bands. The low-low band of the temporal low-frequency
band is then split into four spatial bands. A graphical representation of this splitting is shown
in Figure 19.19. The subband denoted 1 in the figure contains the basic information about the
video sequence. Therefore, it is transmitted with the highest priority. If the data in all the other
subbands are lost, it will still be possible to reconstruct the video using only the information
in this subband. We can also prioritize the output of the other bands, and if the network starts
getting congested and we are required to reduce our rate, we can do so by not transmitting the
information in the lower-priority subbands. Subband 1 also generates the least variable data
rate. This is very helpful when negotiating with the network for the amount of priority traffic.

Given the similarity of the ideas behind progressive transmission and subband coding, it
should be possible to use progressive transmission algorithms as a starting point in the design
of layered compression schemes for packet video. Chen, Sayood, and Nelson [264] use a
DCT-based progressive transmission scheme [265] to develop a compression algorithm for
packet video. In their scheme, they first encode the difference between the current frame and
the prediction for the current frame using a 16×16 DCT. They only transmit the DC coefficient
and the three lowest-order AC coefficients to the receiver. The coded coefficients make up the
highest-priority layer.

19.14 Summary 673

Subband 4

Subband 3

Subband 2

Subband 1

HPF
HPF

HPF: High-pass filter
LPF: Low-pass filter

LPF

HPF

Spatial filtersTemporal filters

LPF

HPF

LPF

LPF

HPF

LPF

HPF

LPF

HPF

LPF HPF

LPF

HPF

LPF

Subband 11

Subband 10

Subband 9

Subband 8

Subband 7

Subband 6

Subband 5

F I GUR E 19 . 19 Analysis filter bank.

The reconstructed frame is then subtracted from the original. The sum of squared errors
is calculated for each 16 × 16 block. Blocks with squared error greater than a prescribed
threshold are subdivided into four 8 × 8 blocks, and the coding process is repeated using an
8 × 8 DCT. The coded coefficients make up the next layer. Because only blocks that fail
to meet the threshold test are subdivided, information about which blocks are subdivided is
transmitted to the receiver as side information.

The process is repeated with 4×4 blocks, which make up the third layer, and 2×2 blocks,
which make up the fourth layer. Although this algorithm is a variable-rate coding scheme,
the rate for the first layer is constant. Therefore, the user can negotiate with the network for
a fixed amount of high-priority traffic. In order to remove the effect of delayed packets from
the prediction, only the reconstruction from the higher-priority layers is used for prediction.

This idea can be used with many different progressive transmission algorithms to make
them suitable for use over ATM networks.

19.14 Summary

In this chapter we described a number of different video compression algorithms. The only new
information in terms of compression algorithms was the description of motion-compensated
prediction. While the compression algorithms themselves have already been studied in pre-
vious chapters, we looked at how these algorithms are used under different requirements.
The three scenarios that we looked at are teleconferencing, asymmetric applications such as

674 19 V I D E O C O M P R E S S I O N

broadcast video, and video over packet networks. Each application has slightly different re-
quirements, leading to different ways of using the compression algorithms. We have by no
means attempted to cover the entire area of video compression. However, by now you should
have sufficient background to explore the subject further using the following list as a starting
point.

Further Reading

1. An excellent source for information about the technical issues involved with digital video
is the book The Art of Digital Video, by J. Watkinson [266].

2. The MPEG-1 standards document [260], “Information Technology—Coding of Moving
Pictures and Associated Audio for Digital Storage Media Up to about 1.5 Mbit/s,” has
an excellent description of the video compression algorithm.

3. Detailed information about the MPEG-1 and MPEG-2 video standards can also be found
in MPEG Video Compression Standard, by J.L. Mitchell, W.B. Pennebaker, C.E. Fogg,
and D.J. LeGall [267].

4. To find more on model-based coding, see “Model Based Image Coding: Advanced Video
Coding Techniques for Very Low Bit-Rate Applications,” by K. Aizawa and T.S. Huang
[258], in the February 1995 issue of the Proceedings of the IEEE.

5. A good place to begin exploring the various areas of research in packet video is the June
1989 issue of the IEEE Journal on Selected Areas of Communication.

6. The MPEG 1/2 and MPEG 4 standards are covered in an accesible manner in The MPEG
Handbook, by J. Watkinson [266]. Focal Press 2001.

7. A good source for information about H.264 and MPEG-4 is H.264 and MPEG-4 Video
Compression, by I.E.G. Richardson. Wiley, 2003 [286].

19.15 Projects and Problems

1. (a) Take the DCT of the Sinan image and plot the average squared value of each
coefficient.

(b) Circularly shift each line of the image by eight pixels. That is, new_image[i, j] =
old_image[i, j + 8 (mod 256)]. Take the DCT of the difference and plot the
average squared value of each coefficient.

(c) Compare the results in parts (a) and (b) above. Comment on the differences.

A
Probability and Random Processes

I
n this appendix we will look at some of the concepts relating to probability and
random processes that are important in the study of systems. Our coverage will
be highly selective and somewhat superficial, but enough to use probability and
random processes as a tool in understanding data compression systems.

A.1 Probability

There are several different ways of defining and thinking about probability. Each approach
has some merit; perhaps the best approach is the one that provides the most insight into the
problem being studied.

A.1.1 Frequency of Occurrence

The most common way that most people think about probability is in terms of outcomes, or
sets of outcomes, of an experiment. Let us suppose we conduct an experiment E that has N
possible outcomes. We conduct the experiment nT times. If the outcome ωi occurs ni times,
we say that the frequency of occurrence of the outcome ωi is ni

nT
. We can then define the

probability of occurrence of the outcome ωi as

P(ωi) = lim
nT→∞

ni

nT

In practice we do not have the ability to repeat an experiment an infinite number of times,
so we often use the frequency of occurrence as an approximation to the probability. To make
this more concrete consider a specific experiment. Suppose we turn on a television 1,000,000
times. Of these times, 800,000 times we turn the television on during a commercial and 200,000
times we turn it on and don’t get a commercial. We could say the frequency of occurrence, or

Introduction to Data Compression. DOI: http://dx.doi.org/10.1016/B978-0-12-415796-5.00020-X
© 2012 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-415796-5.00020-X

676 A P R O B A B I L I T Y A N D R A N D O M P R O C E S S E S

the estimate of the probability, of turning on a television set in the middle of a commercial is
0.8. Our experiment E here is turning on a television set, and the outcomes are commercial and
no commercial. We could have been more careful with noting what was on when we turned
on the television set and noticed whether the program was a news program (2000 times), a
newslike program (20,000 times), a comedy program (40,000 times), an adventure program
(18,000 times), a variety show (20,000 times), a talk show (90,000 times), or a movie (10,000
times), and whether the commercial was for products or services. In this case the outcomes
would be product commercial, service commercial, comedy, adventure, news, pseudonews,
variety, talk show, and movie. We could then define an event as a set of outcomes. The event
commercial would consist of the outcomes product commercial, and service commercial; the
event no commercial would consist of the outcomes comedy, adventure, news, pseudonews,
variety, talk show, and movie. We could also define other events such as programs that may
contain news. This set would contain the outcomes news, pseudonews, and talk shows, and
the frequency of occurrence of this set is 0.112.

Formally, when we define an experiment E , we also define a sample space S associated
with the experiment that consists of the outcomes {ωi }. We can then combine these outcomes
into sets that are called events, and assign probabilities to these events. The largest subset
of S (event) is S itself, and the probability of the event S is simply the probability that the
experiment will have an outcome. The way we have defined things, this probability is one;
that is, P(S) = 1.

A.1.2 A Measure of Belief

Sometimes the idea that the probability of an event is obtained through the repetitions of an
experiment runs into trouble. What, for example, is the probability of your getting from Logan
Airport to a specific address in Boston in a specified period of time? The answer depends on a
lot of different factors, including your knowledge of the area, the time of day, the condition of
your transport, and so on. You cannot conduct an experiment and get your answer because the
moment you conduct the experiment, the conditions have changed, and the answer will now be
different. We deal with this situation by defining a priori and a posteriori probabilities. The a
priori probability is what you think or believe the probability to be before certain information
is received or certain events take place; the a posteriori probability is the probability after
you have received further information. Probability is no longer as rigidly defined as in the
frequency of occurrence approach but is a somewhat more fluid quantity, the value of which
changes with changing experience. For this approach to be useful we have to have a way
of describing how the probability evolves with changing information. This is done through
the use of Bayes’ rule, named after the person who first described it. If P(A) is the a priori
probability of the event A and P(A|B) is the a posteriori probability of the event A given that
the event B has occurred, then

P(A|B) = P(A, B)

P(B)
(A.1)

A.1 Probability 677

where P(A, B) is the probability of the event A and the event B occurring. Similarly,

P(B|A) = P(A, B)

P(A)
(A.2)

Combining (1) and (2) we get

P(A|B) = P(B|A)P(A)
P(B)

(A.3)

If the events A and B do not provide any information about each other, it would be
reasonable to assume that

P(A|B) = P(A)

and therefore from (1),
P(A, B) = P(A)P(B) (A.4)

Whenever (4) is satisfied, the events A and B are said to be statistically independent, or simply
independent.

Example A .1 .1 :

A very common channel model used in digital communication is the binary symmetric channel.
In this model the input is a random experiment with outcomes 0 and 1. The output of the
channel is another random event with two outcomes 0 and 1. Obviously, the two outcomes are
connected in some way. To see how, let us first define some events:

A: Input is 0
B: Input is 1
C : Output is 0
D: Output is 1

Let’s suppose the input is equally likely to be a 1 or a 0. So P(A) = P(B) = 0.5. If the
channel is perfect, that is, you get out of the channel what you put in, then we have

P(C |A) = P(D|B) = 1

and
P(C |B) = P(D|A) = 0

With most real channels this system is seldom encountered, and generally there is a small
probability ε that the transmitted bit will be received in error. In this case, our probabilities are

P(C |A) = P(D|B) = 1− ε
P(C |B) = P(D|A) = ε

How do we interpret P(C) and P(D)? These are simply the probability that at any given
time the output is a 0 or a 1. How would we go about computing these probabilities given
the available information? Using (A.1) we can obtain P(A,C) and P(B,C) from P(C |A),

678 A P R O B A B I L I T Y A N D R A N D O M P R O C E S S E S

P(C |B), P(A), and P(B). These are the probabilities that the input is 0 and the output is 1,
and the input is 1 and the output is 1. The event C—that is, the output is 1—will occur only
when one of the two joint events occurs, therefore,

P(C) = P(A,C)+ P(B,C)

Similarly,
P(D) = P(A, D)+ P(B, D)

Numerically, this comes out to be

P(C) = P(D) = 0.5

�

A.1.3 The Axiomatic Approach

Finally, there is an approach that simply defines probability as a measure, without much regard
for physical interpretation. We are very familiar with measures in our daily lives. We talk
about getting a 9-foot cable or a pound of cheese. Just as length and width measure the extent
of certain physical quantities, probability measures the extent of an abstract quantity, a set. The
thing that probability measures is the “size” of the event set. The probability measure follows
similar rules to those followed by other measures. Just as the length of a physical object is
always greater than or equal to zero, the probability of an event is always greater than or equal
to zero. If we measure the length of two objects that have no overlap, then the combined length
of the two objects is simply the sum of the lengths of the individual objects. In a similar manner
the probability of the union of two events that do not have any outcomes in common is simply
the sum of the probability of the individual events. So as to keep this definition of probability
in line with the other definitions, we normalize this quantity by assigning the largest set, which
is the sample space S, the size of 1. Thus, the probability of an event always lies between 0
and 1. Formally, we can write these rules down as the three axioms of probability.

Given a sample space S:

� Axiom 1: If A is an event in S, then P(A) � 0.

� Axiom 2: The probability of the sample space is 1; that is, P(S) = 1.

� Axiom 3: If A and B are two events in S and A∩B = φ, then P(A∪B) = P(A)+P(B).

Given these three axioms we can come up with all the other rules we need. For example,
suppose Ac is the complement of A. What is the probability of Ac? We can get the answer by
using Axiom 2 and Axiom 3. We know that

Ac ∪ A = S

and Axiom 2 tells us that P(S) = 1, therefore,

P(Ac ∪ A) = 1 (A.5)

A.1 Probability 679

We also know that Ac ∩ A = φ, therefore, from Axiom 3

P(Ac ∪ A) = P(Ac)+ P(A) (A.6)

Combining Equations (A.5) and (A.6), we get

P(Ac) = 1− P(A) (A.7)

Similarly, we can use the three axioms to obtain the probability of A ∪ B when A ∩ B �= φ as

P(A ∪ B) = P(A)+ P(B)− P(A ∩ B) (A.8)

In all of the above we have been using two events A and B. We can easily extend these
rules to more events.

Example A .1 .2 :

Find P(A ∪ B ∪ C) when A ∩ B = A ∩ C = φ, and B ∪ C �= φ.
Let

D = B ∪ C

Then
A ∩ C = φ, A ∩ B = φ ⇒ A ∩ D = φ

Therefore, from Axiom 3,
P(A ∪ D) = P(A)+ P(D)

and using (A.8)
P(D) = P(B)+ P(C)− P(B ∩ C)

Combining everything, we get

P(A∪B∪C) = P(A)+P(B)+P(C)−P(B∩C) �

The axiomatic approach is especially useful when an experiment does not have discrete
outcomes. For example, if we are looking at the voltage on a telephone line, the probability of
any specific value of the voltage is zero because there are an uncountably infinite number of
different values that the voltage can take, and we can assign nonzero values to only a countably
infinite number. Using the axiomatic approach, we can view the sample space as the range of
voltages, and events as subsets of this range.

We have given three different interpretations of probability, and in the process described
some rules by which probabilities can be manipulated. The rules described here (such as Bayes’
rule, the three axioms, and the other rules we came up with) work the same way regardless
of which interpretation you hold dear. The purpose of providing you with three different
interpretations is to provide you with a variety of perspectives with which to view a given
situation. For example, if someone says that the probability of a head when you flip a coin is
0.5, you might interpret that number in terms of repeated experiments (if I flipped the coin 1000
times, I would expect to get 500 heads). However, if someone tells you that the probability

680 A P R O B A B I L I T Y A N D R A N D O M P R O C E S S E S

of your getting killed while crossing a particular street is 0.1, you might wish to interpret this
information in a more subjective manner. The idea is to use the interpretation that gives you
the most insight into a particular problem, while remembering that your interpretation will not
change the mathematics of the situation.

Now that we have expended a lot of verbiage to say what probability is, let’s spend a
few lines saying what it is not. Probability does not imply certainty. When we say that the
probability of an event is one, this does not mean that event will happen. On the other hand,
when we say that the probability of an event is zero, that does not mean that event won’t happen.
Remember, mathematics only models reality, it is not reality.

A.2 Random Variables

When we are trying to mathematically describe an experiment and its outcomes, it is much
more convenient if the outcomes are numbers. A simple way to do this is to define a mapping or
function that assigns a number to each outcome. This mapping or function is called a random
variable. To put that more formally: Let S be a sample space with outcomes {ωi }. Then the
random variable X is a mapping

X : S→ R (A.9)

where R denotes the real number line. Another way of saying the same thing is

X (ω) = x ω ∈ S, x ∈ R (A.10)

The random variable is generally represented by an uppercase letter, and this is the con-
vention we will follow. The value that the random variable takes on is called the realization
of the random variable and is represented by a lowercase letter.

Example A .2 .1 :

Let’s take our television example and rewrite it in terms of a random variable X :

X (productcommercial) = 0

X (servicecommercial) = 1

X (news) = 2

X (pseudonews) = 3

X (talkshow) = 4

X (variety) = 5

X (comedy) = 6

X (adventure) = 7

X (movie) = 8

Now, instead of talking about the probability of certain programs, we can talk about
the probability of the random variable X taking on certain values or ranges of values. For

A.3 Distribution Functions 681

example, P(X (ω) � 1) is the probability of seeing a commercial when the television is
turned on (generally, we drop the argument and simply write this as P(X � 1)). Similarly,
P(programsthatmaycontainnews) can be written as P(1 < X � 4), which is substantially
less cumbersome. �

A.3 Distribution Functions

Defining the random variable in the way that we did allows us to define a special probability
P(X � x). This probability is called the cumulative distribution function (cdf) and is denoted
by FX (x), where the random variable is the subscript and the realization is the argument. One
of the primary uses of probability is the modeling of physical processes, and we will find the
cumulative distribution function very useful when we try to describe or model different random
processes. We will see more on this later.

For now, let us look at some of the properties of the cdf:

Property 1: 0 � FX (x) � 1. This follows from the definition of the cdf.
Property 2: The cdf is a monotonically nondecreasing function. That is,

x1 � x2 ⇒ FX (x1) � FX (x2)

To show this simply write the cdf as the sum of two probabilities:

FX (x1) = P(X � x1) = P(X � x2)+ P(x2 < X � x1)

= FX (x2)+ P(x1 < X � x2) � FX (x2)

Property 3:

lim
n→∞ FX (x) = 1

Property 4:

lim
n→−∞ FX (x) = 0

Property 5: If we define

FX (x
−) = P(X < x)

then

P(X = x) = FX (x)− FX (x
−)

682 A P R O B A B I L I T Y A N D R A N D O M P R O C E S S E S

Example A .3 .1 :

Assuming that the frequency of occurrence was an accurate estimate of the probabilities, let
us obtain the cdf for our television example:

FX (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x < 0
0.4 0 � x < 1
0.8 1 � x < 2

0.802 2 � x < 3
0.822 3 � x < 4
0.912 4 � x < 5
0.932 5 � x < 6
0.972 6 � x < 7
0.99 7 � x < 8
1.00 8 � x

�

Notice a few things about this cdf. First, the cdf consists of step functions. This is
characteristic of discrete random variables. Second, the function is continuous from the right.
This is due to the way the cdf is defined.

The cdf is somewhat different when the random variable is a continuous random variable.
For example, if we sample a speech signal and then take the differences of the samples, the
resulting random process would have a cdf that looks something like this:

FX (x) =
{ 1

2 e2x x � 0
1− 1

2 e−2x x > 0

The thing to notice in this case is that because FX (x) is continuous

P(X = x) = FX (x)− FX (x
−) = 0

We can also have processes that have distributions that are continuous over some ranges and
discrete over others.

Along with the cumulative distribution function, another function that also comes in very
handy is the probability density function (pdf). The pdf corresponding to the cdf FX (x) is written
as fX (x). For continuous cdfs, the pdf is simply the derivative of the cdf. For discrete random
variables, taking the derivative of the cdf introduces delta functions, which have problems of
their own. So in the discrete case, we obtain the pdf through differencing. It is somewhat
awkward to have different procedures for obtaining the same function for different types of
random variables. It is possible to define a rigorous unified procedure for getting the pdf from
the cdf for all kinds of random variables. However, in order to do so, we need some familiarity
with measure theory, which is beyond the scope of this appendix. Let us look at some examples
of pdfs.

A.4 Expectation 683

Example A .3 .2 :

For our television scenario,

fX (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.4 ifX = 0
0.4 ifX = 1
0.002 ifX = 2
0.02 ifX = 3
0.09 ifX = 4
0.02 ifX = 5
0.04 ifX = 6
0.018 ifX = 7
0.01 ifX = 8
0 otherwise

�

Example A .3 .3 :

For our speech example, the pdf is given by

fX (x) = 1

2
e−2|x |

�

A.4 Expectation

When dealing with random processes, we often deal with average quantities, like the signal
power and noise power in communication systems, and the mean time between failures in
various design problems. To obtain these average quantities, we use something called an
expectation operator. Formally, the expectation operator E[] is defined as follows: The
expected value of a random variable X is given by

E[X] =
∑

i
xi P(X = xi) (A.11)

when X is a discrete random variable with realizations {xi } and by

E[X] =
∫ ∞
−∞

x fX (x)dx (A.12)

where fX (x) is the pdf of X .
The expected value is very much like the average value and, if the frequency of occurrence

is an accurate estimate of the probability, is identical to the average value. Consider the
following example:

684 A P R O B A B I L I T Y A N D R A N D O M P R O C E S S E S

Example A .4 .1 :

Suppose in a class of 10 students the grades on the first test were

10, 9, 8, 8, 7, 7, 7, 6, 6, 2

The average value is 70
10 , or 7. Now let’s use the frequency of occurrence approach to estimate

the probabilities of the various grades. (Notice in this case the random variable is an identity
mapping, i.e., X (ω) = ω.) The probability estimate of the various values the random variable
can take on is

P(10) = P(9) = P(2) = 0.1, P(8) = P(6) = 0.2, P(7) = 0.3,

P(6) = P(5) = P(4) = P(3) = P(1) = P(0) = 0

The expected value is therefore given by

E[X] = (0)(0)+ (0)(1)+ (0.1)(2)+ (0)(3)+ (0)(4)+ (0)(5)+ (0.2)(6)
+(0.3)(7)+ (0.2)(8)+ (0.1)(9)+ (0.1)(10) = 7 �

It seems that the expected value and the average value are exactly the same! But we have
made a rather major assumption about the accuracy of our probability estimate. In general the
relative frequency is not exactly the same as the probability, and the average expected values
are different. To emphasize this difference and similarity, the expected value is sometimes
referred to as the statistical average, while our everyday average value is referred to as the
sample average.

We said at the beginning of this section that we are often interested in things such as signal
power. The average signal power is often defined as the average of the signal squared. If
we say that the random variable is the signal value, then this means that we have to find the
expected value of the square of the random variable. There are two ways of doing this. We
could define a new random variable Y = X2, then find fY (y) and use (A.12) to find E[Y]. An
easier approach is to use the fundamental theorem of expectation, which is

E[g(X)] =
∑

i

g(xi)P(X = xi) (A.13)

for the discrete case, and

E[g(X)] =
∫ ∞
−∞

g(x) fX (x)dx (A.14)

for the continuous case.
The expected value, because of the way it is defined, is a linear operator. That is,

E[αX + βY] = αE[X] + βE[Y], α and β are constants

You are invited to verify this for yourself.
There are several functions g() whose expectations are used so often that they have been

given special names.

A.5 Types of Distribution 685

A.4.1 Mean

The simplest and most obvious function is the identity mapping g(X) = X . The expected
value E(X) is referred to as the mean and is symbolically referred to as μX . If we take a
random variable X and add a constant value to it, the mean of the new random process is
simply the old mean plus the constant. Let

Y = X + a

where a is a constant value. Then

μY = E[Y] = E[X + a] = E[X] + E[a] = μX + a

A.4.2 Second Moment

If the random variable X is an electrical signal, the total power in this signal is given by E[X2],
which is why we are often interested in it. This value is called the second moment of the random
variable.

A.4.3 Variance

If X is a random variable with meanμX , then the quantity E[(X−μX)
2] is called the variance

and is denoted by σ 2
X . The square root of this value is called the standard deviation and is

denoted by σ . The variance and the standard deviation can be viewed as a measure of the
“spread” of the random variable. We can show that

σ 2
X = E[X2] − μ2

X

If E[X2] is the total power in a signal, then the variance is also referred to as the total AC
power.

A.5 Types of Distribution

There are several specific distributions that are very useful when describing or modeling various
processes.

A.5.1 Uniform Distribution

This is the distribution of ignorance. If we want to model data about which we know nothing
except its range, this is the distribution of choice. This is not to say that there are not times
when the uniform distribution is a good match for the data. The pdf of the uniform distribution
is given by

fX (x) =
{ 1

b−a for a � X � b
0 otherwise

(A.15)

686 A P R O B A B I L I T Y A N D R A N D O M P R O C E S S E S

The mean of the uniform distribution can be obtained as

μX =
∫ b

a
x

1

b − a
dx = b + a

2

Similarly, the variance of the uniform distribution can be obtained as

σ 2
X =

(b − a)2

12

Details are left as an exercise.

A.5.2 Gaussian Distribution

This is the distribution of choice in terms of mathematical tractability. Because of its form, it
is especially useful with the squared error distortion measure. The probability density function
for a random variable with a Gaussian distribution is

fX (x) = 1√
2πσ 2

exp− (x − μ)
2

2σ 2 (A.16)

where the mean of the distribution is μ and the variance is σ 2.

A.5.3 Laplacian Distribution

Many sources that we will deal with will have probability density functions that are quite
peaked at zero. For example, speech consists mainly of silence; therefore, samples of speech
will be zero or close to zero with high probability. Image pixels themselves do not have
any attraction to small values. However, there is a high degree of correlation among pixels.
Therefore, a large number of the pixel-to-pixel differences will have values close to zero. In
these situations, a Gaussian distribution is not a very close match to the data. A closer match
is the Laplacian distribution, which has a pdf that is peaked at zero. The density function for
a zero mean random variable with Laplacian distribution and variance σ 2 is

fX (x) = 1√
2σ 2

exp
−√2 |x |
σ

(A.17)

A.5.4 Gamma Distribution

A distribution with a pdf that is even more peaked, though considerably less tractable than the
Laplacian distribution, is the gamma distribution. The density function for a gamma-distributed
random variable with zero mean and variance σ 2 is given by

fX (x) =
4
√

3√
8πσ |x | exp

−√3 |x |
2σ

(A.18)

A.6 Stochastic Process 687

A.6 Stochastic Process

We are often interested in experiments whose outcomes are a function of time. For example, we
might be interested in designing a system that encodes speech. The outcomes are particular
patterns of speech that will be encountered by the speech coder. We can mathematically
describe this situation by extending our definition of a random variable. Instead of the random
variable mapping an outcome of an experiment to a number, we map it to a function of time.
Let S be a sample space with outcomes {ωi }. Then the random or stochastic process X is a
mapping

X : S→ F (A.19)

where F denotes the set of functions on the real number line. In other words,

X (ω) = x(t) ω ∈ S, x ∈ F , −∞ < t <∞ (A.20)

The functions x(t) are called the realizations of the random process, and the collection of
functions {xω(t)} indexed by the outcomes ω is called the ensemble of the stochastic process.
We can define the mean and variance of the ensemble as

μ(t) = E[X (t)] (A.21)
σ 2(t) = E[(X (t)− μ(t))2] (A.22)

If we sample the ensemble at some time t0, we get a set of numbers {xω(t0)} indexed by the
outcomes ω, which by definition is a random variable. By sampling the ensemble at different
times ti , we get different random variables {xω(ti)}. For simplicity we often drop the ω and t
and simply refer to these random variables as {xi }.

We will have a distribution function associated with each of these random variables.
We can also define a joint distribution function for two or more of these random variables.
Given a set of random variables {x1, x2, . . . , xN }, the joint cumulative distribution function is
defined as

FX1 X2···X N (x1, x2, . . . , xN) = P(X1 < x1, X2 < x2, . . . , X N < xN) (A.23)

Unless it is clear from the context what we are talking about, we will refer to the cdf of the
individual random variables Xi as the marginal cdf of Xi .

We can also define the joint probability density function for these random variables
fX1 X2···X N (x1, x2, . . . , xN) in the same manner as we defined the pdf in the case of the sin-
gle random variable. We can classify the relationships between these random variables in a
number of different ways. In the following we define some relationships between two random
variables. The concepts are easily extended to more than two random variables.

Two random variables X1 and X2 are said to be independent if their joint distribution
function can be written as the product of the marginal distribution functions of each random
variable; that is,

FX1 X2(x1, x2) = FX1(x1)FX2(x2) (A.24)

This also implies that
fX1 X2(x1, x2) = fX1(x1) fX2(x2) (A.25)

688 A P R O B A B I L I T Y A N D R A N D O M P R O C E S S E S

If all the random variables X1, X2, . . . are independent and they have the same distribution,
they are said to be independent, identically distributed (iid).

Two random variables X1 and X2 are said to be orthogonal if

E[X1 X2] = 0 (A.26)

Two random variables X1 and X2 are said to be uncorrelated if

E[(X1 − μ1)(X2 − μ2)] = 0 (A.27)

where μ1 = E[X1] and μ2 = E[X2].
The autocorrelation function of a random process is defined as

Rxx (ti , t2) = E[X1 X2] (A.28)

For a given value of N , suppose we sample the stochastic process at N times {ti } to get the
N random variables {Xi } with cdf FX1 X2...X N (x1, x2, . . . , xN), and another N times {ti + T }
to get the random variables {X ′i } with cdf FX ′1 X ′2...X ′N (x

′
1, x ′2, . . . , x ′N). If

FX1 X2...X N (x1, x2, . . . , xN) = FX ′1 X ′2...X ′N (x
′
1, x ′2, . . . , x ′N) (A.29)

for all N and T , the process is said to be stationary.
The assumption of stationarity is a rather important assumption because it is a statement that

the statistical characteristics of the process under investigation do not change with time. Thus,
if we design a system for an input based on the statistical characteristics of the input today, the
system will still be useful tomorrow because the input will not change its characteristics. The
assumption of stationarity is also a very strong assumption, and we can usually make do quite
well with a weaker condition, wide sense or weak sense stationarity.

A stochastic process is said to be wide sense or weak sense stationary if it satisfies the
following conditions:

1. The mean is constant; that is, μ(t) = μ for all t .
2. The variance is finite.
3. The autocorrelation function Rxx (t1, t2) is a function only of the difference between t1

and t2, and not of the individual values of t1 and t2; that is,

Rxx (t1, t2) = Rxx (t1 − t2) = Rxx (t2 − t1). (A.30)

Further Reading

1. The classic books on probability are the two-volume set An Introduction to Probability
Theory and Its Applications, by W. Feller [287,288].

2. A commonly used text for an introductory course on probability and random processes
is Probability, Random Variables, and Stochastic Processes, by A. Papoulis [289].

A.7 Projects and Problems 689

A.7 Projects and Problems

1. If A ∩ B �= φ, show that

P(A ∪ B) = P(A)+ P(B)− P(A ∩ B)

2. Show that expectation is a linear operator in both the discrete and the continuous case.
3. If a is a constant, show that E[a] = a.
4. Show that for a random variable X ,

σ 2
X = E[X2] − μ2

X

5. Show that the variance of the uniform distribution is given by

σ 2
X =

(b − a)2

12

B
A Brief Review of Matrix Concepts

I
n this appendix we will look at some of the basic concepts of matrix algebra.
Our intent is simply to familiarize you with some basic matrix operations that we
will need in our study of compression. Matrices are very useful for representing
linear systems of equations, and matrix theory is a powerful tool for the study of
linear operators. In our study of compression techniques we will use matrices

both in the solution of systems of equations and in our study of linear transforms.

B.1 A Matrix

A collection of real or complex elements arranged in M rows and N columns is called a matrix
of order M × N :

A =

⎡
⎢⎢⎢⎣

a00 a01 · · · a0N−1
a10 a11 · · · a1N−1
...

...
...

a(M−1)0 a(M−1)1 · · · aM−1N−1

⎤
⎥⎥⎥⎦ (B.1)

where the first subscript denotes the row that an element belongs to and the second subscript
denotes the column. For example, the element a02 belongs in row 0 and column 2, and the
element a32 belongs in row 3 and column 2. The generic i j th element of a matrix A is
sometimes represented as [A]i j . If the number of rows is equal to the number of columns
(N = M), then the matrix is called a square matrix. A special square matrix that we will be
using is the identity matrix I, in which the elements on the diagonal of the matrix are 1 and all
other elements are 0:

[I]i j =
{

1 i = j
0 i �= j

(B.2)

Introduction to Data Compression. DOI: http://dx.doi.org/10.1016/B978-0-12-415796-5.00021-1
© 2012 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-415796-5.00021-1

692 B A B R I E F R E V I E W O F M A T R I X C O N C E P T S

If a matrix consists of a single column (N = 1), it is called a column matrix or vector of
dimension M . If it consists of a single row (M = 1), it is called a row matrix or vector of
dimension N .

The transpose AT of a matrix A is the N × M matrix obtained by writing the rows of the
matrix as columns and the columns as rows:

AT =

⎡
⎢⎢⎢⎣

a00 a10 · · · a(M−1)0
a01 a11 · · · a(M−1)1
...

...
...

a0(N−1) a1(N−1) · · · aM−1N−1

⎤
⎥⎥⎥⎦ (B.3)

The transpose of a column matrix is a row matrix and vice versa.
Two matrices A and B are said to be equal if they are of the same order and their corre-

sponding elements are equal; that is,

A = B ⇔ ai j = bi j , i = 0, 1, . . .M − 1; j = 0, 1, . . . N − 1 (B.4)

B.2 Matrix Operations

You can add, subtract, and multiply matrices, but since matrices come in all shapes and sizes,
there are some restrictions as to what operations you can perform with what kind of matrices.
In order to add or subtract two matrices, their dimensions have to be identical—same number
of rows and same number of columns. In order to multiply two matrices, the order in which
they are multiplied is important. In general A×B is not equal to B×A. Multiplication is only
defined for the case where the number of columns of the first matrix is equal to the number of
rows of the second matrix. The reasons for these restrictions will become apparent when we
look at how the operations are defined.

When we add two matrices, the resultant matrix consists of elements that are the sum of
the corresponding entries in the matrices being added. Let us add two matrices A and B where

A =
[

a00 a01 a02
a10 a11 a12

]

and

B =
[

b00 b01 b02
b10 b11 b12

]

The sum of the two matrices, C, is given by

C =
[

c00 c12 c13
c21 c22 c23

]
=
[

a00 + b00 a01 + b01 a02 + b02
a10 + b10 a11 + b11 a12 + b12

]
(B.5)

Notice that each element of the resulting matrix C is the sum of corresponding elements of the
matrices A and B. In order for the two matrices to have corresponding elements, the dimension
of the two matrices has to be the same. Therefore, addition is only defined for matrices with

B.2 Matrix Operations 693

identical dimensions (i.e., same number of rows and same number of columns). Subtraction is
defined in a similar manner. The elements of the difference matrix are made up of term-by-term
subtraction of the matrices being subtracted.

We could have generalized matrix addition and matrix subtraction from our knowledge
of addition and subtraction of numbers. Multiplication of matrices is another kettle of fish
entirely. It is easiest to describe matrix multiplication with an example. Suppose we have two
different matrices A and B where

A =
[

a00 a01 a02
a10 a11 a12

]

and

B =
⎡
⎣b00 b01

b10 b11
b20 b21

⎤
⎦ (B.6)

The product is given by

C = AB =
[

c00 c01
c10 c11

]
=
[

a00b00 + a01b10 + a02b20 a00b01 + a01b11 + a02b21
a10b00 + a11b10 + a12b20 a10b01 + a11b11 + a12b21

]

You can see that the i, j element of the product is obtained by adding term by term the product
of elements in the i th row of the first matrix with those of the j th column of the second matrix.
Thus, the element c10 in the matrix C is obtained by summing the term-by-term products of
row 1 of the first matrix A with column 0 of the matrix B. We can also see that the resulting
matrix will have as many rows as the matrix to the left and as many columns as the matrix to
the right.

What happens if we reverse the order of the multiplication? By the rules above we will
end up with a matrix with three rows and three columns.⎡

⎣b00a00 + b01a10 b00a01 ++b01a11 b00a02 + b01a12
b10a00 + b11a10 b10a01 ++b11a11 b10a02 + b11a12
b20a00 + b21a10 b20a01 ++b21a11 b20a02 + b21a12

⎤
⎦

The elements of the two product matrices are different, as are the dimensions.
As we can see, multiplication between matrices follows some rather different rules than

multiplication between real numbers. The sizes have to match up—the number of columns of
the first matrix has to be equal to the number of rows of the second matrix, and the order of
multiplication is important. Because of the latter fact we often talk about premultiplying or
postmultiplying. Premultiplying B by A results in the product AB, while postmultiplying B
by A results in the product BA.

We have three of the four elementary operations. What about the fourth elementary op-
eration, division? The easiest way to present division in matrices is to look at the formal
definition of division when we are talking about real numbers. In the real number system, for
every number a different from zero, there exists an inverse, denoted by 1/a or a−1, such that
the product of a with its inverse is one. When we talk about a number b divided by a number
a, this is the same as the multiplication of b with the inverse of a. Therefore, we could define
division by a matrix as the multiplication with the inverse of the matrix. A/B would be given

694 B A B R I E F R E V I E W O F M A T R I X C O N C E P T S

by AB−1. Once we have the definition of an inverse of a matrix, the rules of multiplication
apply.

So how do we define the inverse of a matrix? Following the definition for real numbers,
in order to define the inverse of a matrix we need to have the matrix counterpart of 1. In
matrices this counterpart is called the identity matrix. The identity matrix is a square matrix
with diagonal elements being 1 and off-diagonal elements being 0. For example, a 3 × 3
identity matrix is given by

I =
⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ (B.7)

The identity matrix behaves like the number in the matrix world. If we multiply any matrix with
the identity matrix (of appropriate dimension), we get the original matrix back. Given a square
matrix A, we define its inverse, A−1, as the matrix that when premultiplied or postmultiplied
by A results in the identity matrix. For example, consider the matrix

A =
[

3 4
1 2

]
(B.8)

The inverse matrix is given by

A−1 =
[

1 −2
−0.5 1.5

]
(B.9)

To check that this is indeed the inverse matrix, let us multiply them:[
3 4
1 2

] [
1 −2
−0.5 1.5

]
=
[

1 0
0 1

]
(B.10)

and [
1 −2
−0.5 1.5

] [
3 4
1 2

]
=
[

1 0
0 1

]
(B.11)

If A is a vector of dimension M , we can define two specific kinds of products. If A is a
column matrix, then the inner product or dot product is defined as

AT A =
M−1∑
i=0

a2
i0 (B.12)

and the outer product or cross product is defined as

AAT =

⎡
⎢⎢⎢⎣

a00a00 a00a10 · · · a00a(M−1)0
a10a00 a10a10 · · · a10a(M−1)0
...

...
...

a(M−1)0a00 a{(M−1)1}a10 · · · a(M−1)0a(M−1)0

⎤
⎥⎥⎥⎦ (B.13)

Notice that the inner product results in a scalar, while the outer product results in a matrix.

B.2 Matrix Operations 695

In order to find the inverse of a matrix, we need the concepts of determinant and cofactor.
Associated with each square matrix is a scalar value called the determinant of the matrix. The
determinant of a matrix A is denoted as |A|. To see how to obtain the determinant of an N ×N
matrix, we start with a 2× 2 matrix. The determinant of a 2× 2 matrix is given as

|A| =
∣∣∣∣a00 a01
a10 a11

∣∣∣∣ = a00a11 − a01a10 (B.14)

Finding the determinant of a 2 × 2 matrix is easy. To explain how to get the determinants of
larger matrices, we need to define some terms.

The minor of an element ai j of an N × N matrix is defined to be the determinant of the
N − 1× N − 1 matrix obtained by deleting the row and column containing ai j . For example,
if A is a 4× 4 matrix

A =

⎡
⎢⎢⎣

a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33

⎤
⎥⎥⎦ (B.15)

then the minor of the element a12, denoted by M12, is the determinant

M12 =
∣∣∣∣∣∣
a00 a01 a03
a20 a21 a23
a30 a31 a33

∣∣∣∣∣∣ (B.16)

The cofactor of ai j , denoted by Ai j , is given by

Ai j = (−1)i+ j Mi j (B.17)

Armed with these definitions we can write an expression for the determinant of an N × N
matrix as

|A| =
N−1∑
i=0

ai j Ai j (B.18)

or

|A| =
N−1∑
j=0

ai j Ai j (B.19)

where the ai j is taken from a single row or a single column. If the matrix has a particular row
or column that has a large number of zeros in it, we would need fewer computations if we
picked that particular row or column.

Equations (B.18) and (B.19) express the determinant of an N × N matrix in terms of
determinants of N − 1 × N − 1 matrices. We can express each of the N − 1 × N − 1
determinants in terms of N −2× N −2 determinants, continuing in this fashion until we have
everything expressed in terms of 2× 2 determinants, which can be evaluated using (B.14).

Now that we know how to compute a determinant, we need one more definition before
we can define the inverse of a matrix. The adjoint of a matrix A, denoted by (A), is a matrix

696 B A B R I E F R E V I E W O F M A T R I X C O N C E P T S

whose i j th element is the cofactor A j i . The inverse of a matrix A, denoted by A−1, is given
by

A−1 = 1

|A| (A) (B.20)

Notice that for the inverse to exist the determinant has to be nonzero. If the determinant for
a matrix is zero, the matrix is said to be singular. The method we have described here works
well with small matrices; however, it is highly inefficient if N becomes greater than 4. There
are a number of efficient methods for inverting matrices; see the books in the Further Reading
section for details.

Corresponding to a square matrix A of size N×N are N scalar values called the eigenvalues
of A. The eigenvalues are the N solutions of the equation |λI− A| = 0. This equation is called
the characteristic equation.

Example B .2 .1 : Let us find the eigenvalues of the matrix

[
4 5
2 1

]
|λI− A| = 0∣∣∣∣

[
λ 0
0 λ

]
−
[

4 5
2 1

]∣∣∣∣ = 0

(λ− 4)(λ− 1)− 10 = 0

λ1 = −1 λ2 = 6 (B.21)

�

The eigenvectors Vk of an N × N matrix are the N vectors of dimension N that satisfy the
equation

AVk = λk Vk (B.22)

Further Reading

1. The subject of matrices is covered at an introductory level in a number of textbooks. A
good one is Advanced Engineering Mathematics, by E. Kreyszig [290].

2. Numerical methods for manipulating matrices (and a good deal more) are presented
in Numerical Recipes in C, by W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P.
Flannery [182].

C
The Root Lattices

D
efine eL

i to be a vector in L dimensions whose i th component is 1 and all other
components are 0. Some of the root systems that are used in lattice vector
quantization are given as follows:

DL ±eL
i ± eL

j , i �= j, i, j = 1, 2, . . . , L

AL ±(eL+1
i − eL+1

j), i �= j, i, j = 1, 2, . . . , L

EL ±eL
i ±eL

j , i �= j, i, j = 1, 2, . . . , L−1,

1
2 (±e1 ± e2 · · · ± eL−1 ±

√
2− (L−1)

4 eL) L = 6, 7, 8

Let us look at each of these definitions a bit closer and see how they can be used to generate
lattices.

DL Let us start with the DL lattice. For L = 2, the four roots of the D2 algebra are e2
1 + e2

2,
e2

1 − e2
2, −e2

1 + e2
2, and −e2

1 − e2
2, or (1, 1), (1,−1), (−1, 1), and (−1,−1). We can pick

any two independent vectors from among these four to form the basis set for the D2 lattice.
Suppose we picked (1, 1) and (1,−1). Then any integral combination of these vectors is a
lattice point. The resulting lattice is shown in Figure 10.24 in Chapter 10. Notice that the
sums of the coordinates are all even numbers. This makes finding the closest lattice point to
an input a relatively simple exercise.

AL The roots of the AL lattices are described using L+1-dimensional vectors. However, if we
select any L independent vectors from this set, we will find that the points that are generated
all lie in an L-dimensional slice of the L + 1-dimensional space. This can be seen from
Figure C.1

We can obtain an L-dimensional basis set from this using a simple algorithm described

in [151]. In two dimensions, this results in the generation of the vectors (1,0) and (− 1
2 ,
√

3
2).

The resulting lattice is shown in Figure 10.25 in Chapter 10. To find the closest point to the
AL lattice, we use the fact that in the embedding of the lattice in L + 1 dimensions, the sum

Introduction to Data Compression. DOI: http://dx.doi.org/10.1016/B978-0-12-415796-5.00022-3
© 2012 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-415796-5.00022-3

698 C T H E R O O T L A T T I C E S

− e1 e3

− e2 e3

− e1 e2

e2 e3

e1 e3

e1 e2

F I GUR E C . 1 The A2 roots embedded in three dimensions.

of the coordinates is always zero. The exact procedure can be found in [153,152]. EL As
we can see from the definition, the EL lattices go up to a maximum dimension of 8. Each of
these lattices can be written as unions of the AL and DL lattices and their translated version.
For example, the E8 lattice is the union of the D8 lattice and the D8 lattice translated by the
vector (1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2). Therefore, to find the closest E8 point to an input x, we find

the closest point of D8 to x, and the closest point of D8 to x − (1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2), and
pick the one that is closest to x.

There are several advantages to using lattices as vector quantizers. There is no need to
store the codebook, and finding the closest lattice point to a given input is a rather simple
operation. However, the quantizer codebook is only a subset of the lattice. How do we know
when we have wandered out of this subset, and what do we do about it? Furthermore, how do
we generate a binary codeword for each of the lattice points that lie within the boundary? The
first problem is easy to solve. Earlier we discussed the selection of a boundary to reduce the
effect of the overload error. We can check the location of the lattice point to see if it is within
this boundary. If not, we are outside the subset. The other questions are more difficult to
resolve. Conway and Sloane [154] have developed a technique that functions by first defining
the boundary as one of the quantization regions (expanded many times) of the root lattices.
The technique is not very complicated, but it takes some time to set up, so we will not describe
it here (see [154] for details).

We have given a sketchy description of lattice quantizers. For a more detailed tutorial
review, see [152].

Bibliography

[1] T. C. Bell, J. G. Cleary, and I. H. Witten. Text Compression. Advanced Reference Series.
Prentice Hall, Englewood Cliffs, New Jersey, 1990.

[2] B.L. van der Waerden. A History of Algebra. Springer-Verlag, 1985.

[3] C.E. Shannon. A mathematical theory of communication. Bell System Technical Journal,
27:379–423, 623–656, 1948.

[4] C.E. Shannon. Prediction and entropy of printed English. Bell System Technical Journal,
30:50–64, January 1951.

[5] R.W. Hamming. Coding and Information Theory. Prentice-Hall, 2nd edition, 1986.

[6] W.B. Pennebaker and J.L. Mitchell. JPEG Still Image Data Compression Standard. Van
Nostrand Reinhold, 1993.

[7] R.G. Gallagher. Information Theory and Reliable Communication. Wiley, 1968.

[8] A.A. Sardinas and G.W. Patterson. A necessary and sufficient condition for the unique
decomposition of coded messages. In IRE Convention Records, pages 104–108. IRE,
1953.

[9] R.J. McEliece. The Theory of Information and Coding, volume 3 of Encyclopedia of
Mathematics and its Application. Addison-Wesley, 1977.

[10] J. Rissanen. Modeling by the shortest data description. Automatica, 14:465–471, 1978.

[11] J.R. Pierce. Symbols, Signals, and Noise - The Nature and Process of Communications.
Harper, 1961.

[12] M.Li and P.Vitanyi. An Introduction to Kolmogorov Complexity and its Applications.
Springer, 1997

[13] S. Tate. Complexity Measures. In K. Sayood, editor, Lossless Compression Handbook,
pages 35–54. Academic Press, 2003.

[14] P. Grunwald. Minimum Description Length Tutorial. In P. Grunwald, I.J. Myung, and
M.A. Pitt, editors, Advances in Minimum Description Length, pages 23–80. MIT Press,
2005.

700 B I B L I O G R A P H Y

[15] P. Grunwald, I.J. Myung, and M.A. Pitt. Advances in Minimum Description Length.
MIT Press, 2005.

[16] D.A. Huffman. A method for the construction of minimum redundancy codes. Proc.
IRE, 40:1098–1101, 1951.

[17] P. Deutsch. RFC 1951 - DEFLATE Compressed Data Format Specification Version 1.3,
1996. <http://www.faqs.org/rfcs/rfc1951.htm>.

[18] Lawrence L. Larmore and Daniel S. Hirschberg. A fast algorithm for optimal length-
limited Huffman codes. J. ACM, 37:464–473, July 1990.

[19] A. Turpin and A. Moffat. Practical length-limited coding for large alphabets. The Com-
puter Journal, 38(5):339–347, 1995.

[20] R.M. Fano. Transmission of Information. MIT Press, Cambridge, MA, 1961.

[21] R.G. Gallager. Variations on a theme by Huffman. IEEE Transactions on Information
Theory, IT-24(6):668–674, November 1978.

[22] J.-L. Gailly and M. Adler. <http://www.gzip.org/algorithm.txt>.

[23] N. Faller. An adaptive system for data compression. In Record of the 7th Asilomar
Conference on Circuits, Systems, and Computers, pages 593–597. IEEE, 1973.

[24] D.E. Knuth. Dynamic Huffman coding. Journal of Algorithms, 6:163–180, 1985.

[25] J.S. Vitter. Design and analysis of dynamic Huffman codes. Journal of ACM, 34(4):825–
845, October 1987.

[26] P. Elias. Universal codeword sets and representations of the integers. IEEE Transactions
on Information Theory, 21(2):194–203, 1975.

[27] S.W. Golomb. Run-length encodings. IEEE Transactions on Information Theory, IT-
12:399–401, July 1966.

[28] R.F. Rice. Some Practical Universal Noiseless Coding Techniques. Technical Report,
JPL Publication 79-22, JPL, March 1979.

[29] R.F. Rice, P.S. Yeh, and W. Miller. Algorithms for a very high speed universal noiseless
coding module. Technical Report 91-1, Jet Propulsion Laboratory, California Institute
of Technology, Pasadena, California, February 1991.

[30] P.S. Yeh, R.F. Rice, and W.Miller. On the optimality of code options for a universal
noiseless coder. Technical Report 91-2, Jet Propulsion Laboratory, California Institute
of Technology, Pasadena, California, February 1991.

[31] B.P. Tunstall. Synthesis of Noiseless Compression Codes. PhD thesis, Georgia Institute
of Technology, September 1967.

[32] T. Robinson. SHORTEN: Simple Lossless and Near-Lossless Waveform Compression,
1994. Cambridge Univ. Eng. Dept., Cambridge, UK. Technical Report 156.

[33] T. Liebchen and Y.A. Reznik. MPEG-4 ALS: An emerging standard for lossless audio
coding. In Proceedings of the Data Compression Conference, DCC ’04. IEEE, 2004.

http://www.faqs.org/rfcs/rfc1951.htm
http://www.gzip.org/algorithm.txt

B I B L I O G R A P H Y 701

[34] M. Hans and R.W. Schafer. AudioPak—An integer arithmetic lossless audio code. In
Proceedings of the Data Compression Conference, DCC ’98. IEEE, 1998.

[35] S. Pigeon. Huffman Coding. In K. Sayood, editor, Lossless Compression Handbook,
pages
79–100. Academic Press, 2003.

[36] D.A. Lelewer and D.S. Hirchberg. Data Compression. ACM Computing Surveys,
September 1987.

[37] J.A. Storer. Data Compression—Methods and Theory. Computer Science Press, 1988.

[38] T.M. Cover and J.A. Thomas. Elements of Information Theory. Wiley Series in Telecom-
munications. John Wiley and Sons Inc., 1991.

[39] N. Abramson. Information Theory and Coding. McGraw-Hill, 1963.

[40] F. Jelinek. Probabilistic Information Theory. McGraw-Hill, 1968.

[41] R. Pasco. Source Coding Algorithms for Fast Data Compression. PhD thesis, Stanford
University, 1976.

[42] J.J. Rissanen. Generalized Kraft inequality and arithmetic coding. IBM Journal of Re-
search and Development, 20:198–203, May 1976.

[43] J.J. Rissanen and G.G. Langdon. Arithmetic coding. IBM Journal of Research and
Development, 23(2):149–162, March 1979.

[44] D. Marpe, H. Schwarz, and T. Wiegand. Context based adaptive binary arithmetic coding
in the H.264/AVC video coding standard. IEEE Transaction on Circuits and Systems
for Video Technology, 13:620–636, 2003.

[45] J. Rissanen and K.M. Mohiuddin. A multiplication-free multialphabet arithmetic code.
IEEE Transactions on Communications, 37:93–98, February 1989.

[46] I.H. Witten, R. Neal, and J.G. Cleary. Arithmetic coding for data compression. Commu-
nications of the Association for Computing Machinery, 30:520–540, June 1987.

[47] A. Said. Arithmetic Coding. In K. Sayood, editor, Lossless Compression Handbook,
pages 101–152. Academic Press, 2003.

[48] G.G. Langdon Jr. An introduction to arithmetic coding. IBM Journal of Research and
Development, 28:135–149, March 1984.

[49] J.J. Rissanen and G.G. Langdon. Universal modeling and coding. IEEE Transactions
on Information Theory, IT-27(1):12–22, 1981.

[50] G.G. Langdon and J.J. Rissanen. Compression of black-white images with arithmetic
coding. IEEE Transactions on Communications, 29(6):858–867, 1981.

[51] T. Bell, I.H. Witten, and J.G. Cleary. Modeling for text compression. ACM Computing
Surveys, 21:557–591, December 1989.

[52] J. Ziv and A. Lempel. A universal algorithm for data compression. IEEE Transactions
on Information Theory, IT-23(3):337–343, May 977.

702 B I B L I O G R A P H Y

[53] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding.
IEEE Transactions on Information Theory, IT-24(5):530–536, September 1978.

[54] J.A. Storer and T.G. Syzmanski. Data compression via textual substitution. Journal of
the ACM, 29:928–951, 1982.

[55] T.C. Bell. Better OPM/L text compression. IEEE Transactions on Communications,
COM-34:1176–1182, December 1986.

[56] T.A. Welch. A technique for high-performance data compression. IEEE Computer, pages
8–19, June 1984.

[57] A. Lempel and J. Ziv. On the complexity of finite sequences. IEEE Transactions on
Information Theory, IT-22:75–81, 1976.

[58] D. Benedetto, E. Cagliotti, and V. Loreto. Language trees and zipping. Physical Review
Letters, 88, January 2002.

[59] Ming Li, Jonathan H. Badger, Xin Chen, Sam Kwong, Paul Kearney, and Haoyong
Zhang. An information-based sequence distance and its application to whole mitochon-
drial genome phylogeny. Bioinformatics, 17(2):149–154, 2001.

[60] H.H. Otu and K. Sayood. A new sequence distance measure for phylogenetic tree con-
struction. Bioinformatics, 19(16):2122, 2003.

[61] Xuan Xiao, Shi-Huang Shao, Zheng-De Huang, and Kuo-Chen Chou. Using pseudo
amino acid composition to predict protein structural classes: Approached with com-
plexity measure factor. Journal of Computational Chemistry, 27(4):478–482, 2006.

[62] D.J. Russell, H.H. Otu, and K. Sayood. Grammar-based distance in progressive multiple
sequence alignment. BMC Bioinformatics, 9, 2008.

[63] A. Albayrak, H. Otu, and U. Sezerman. Clustering of protein families into functional
subtypes using relative complexity measure with reduced amino acid alphabets. BMC
Bioinformatics, 11(1):428, 2010.

[64] M. Aboy, R. Hornero, D. Abasolo, and D. Alvarez. Interpretation of the Lempel-Ziv
complexity measure in the context of biomedical signal analysis. IEEE Transactions on
Biomedical Engineering, 53(11):2282–2288, Nov. 2006.

[65] N. Radhakrishnan and B.N. Gangadhar. Estimating regularity in epileptic seizure time-
series data. IEEE Engineering in Medicine and Biology Magazine, 17:89–94, 1998.

[66] X.-S. Zhang, R.J. Roy, and E.W. Jensen. EEG complexity as a measure of depth of
anesthesia for patients. IEEE Transactions on Biomedical Engineering, 48(12):1424–
1433, Dec. 2001.

[67] Daniel Abasolo, Roberto Hornero, Carlos Gomez, Maria Garcia, and Miguel Lopez.
Analysis of EEG background activity in Alzheimer’s disease patients with Lempel-Ziv
complexity and central tendency measure. Medical Engineering Physics, 28(4):315–
322, 2006.

B I B L I O G R A P H Y 703

[68] H. Zhang, Y. Zhu, and Z. Wang. Complexity measure and complexity rate informa-
tion based detection of ventricular tachycardia and fibrillation. Medical and Biological
Engineering and Computing, 38:553–557, 2000.

[69] M. Nelson and J.-L. Gailly. The Data Compression Book. M&T Books, California, 1996.

[70] G. Held and T.R. Marshall. Data Compression. Wiley, third edition, 1991.

[71] G. Roelofs. PNG Lossless Compression. In K. Sayood, editor, Lossless Compression
Handbook, pages 371–390. Academic Press, 2003.

[72] S.C. Sahinalp and N.M. Rajpoot. Dictionary-Based Data Compression: An Algorithmic
Perspective. In K. Sayood, editor, Lossless Compression Handbook, pages 153–168.
Academic Press, 2003.

[73] N. Chomsky. The Minimalist Program. MIT Press, 1995.

[74] J.G. Cleary and I.H. Witten. Data compression using adaptive coding and partial string
matching. IEEE Transactions on Communications, 32(4):396–402, 1984.

[75] A. Moffat. Implementing the PPM data compression scheme. IEEE Transactions on
Communications, Vol COM-38:1917–1921, November 1990.

[76] J.G. Cleary and W.J. Teahan. Unbounded length contexts for PPM. The Computer Jour-
nal, Vol 40:x30–74, February 1997.

[77] M. Burrows and D.J. Wheeler. A Block Sorting Data Compression Algorithm. Technical
Report SRC 124, Digital Systems Research Center, 1994.

[78] P. Fenwick. Burrows-Wheeler Compression. In K. Sayood, editor, Lossless Compression
Handbook, pages 169–194. Academic Press, 2003.

[79] S.L. Salzberg, A.J. Salzberg, A.R. Kerlavage, and J.F. Tomb. Skewed oligomers and
origins of replication. Gene, 217:57–67, 1998.

[80] G.V. Cormack and R.N.S. Horspool. Data compression using dynamic Markov mod-
elling. The Computer Journal, Vol 30:541–337, June 1987.

[81] P. Fenwick. Symbol-Ranking and ACB Compression. In K. Sayood, editor, Lossless
Compression Handbook, pages 195–204. Academic Press, 2003.

[82] G.K. Wallace. The JPEG still picture compression standard. Communications of the
ACM, 34:31–44, April 1991.

[83] X. Wu, N.D. Memon, and K. Sayood. A Context Based Adaptive Lossless/Nearly-
Lossless Coding Scheme for Continuous Tone Images. ISO Working Document ISO/IEC
SC29/WG1/N256, 1995.

[84] X. Wu and N.D. Memon. CALIC—A Context Based Adaptive Lossless Image Coding
Scheme. IEEE Transactions on Communications, May 1996.

[85] K. Sayood and S. Na. Recursively indexed quantization of memoryless sources. IEEE
Transactions on Information Theory, IT-38:1602–1609, November 1992.

704 B I B L I O G R A P H Y

[86] S. Na and K. Sayood. Recursive Indexing Preserves the Entropy of a Memoryless Geo-
metric Source, 1996.

[87] M. Weinberger, G. Seroussi, and G. Sapiro. The LOCO-I Lossless Compression Al-
gorithm: Principles and Standardization into JPEG-LS. Technical Report HPL-98-193,
Hewlett-Packard Laboratory, November 1998.

[88] S.A. Martucci. Reversible compression of HDTV images using median adaptive predic-
tion and arithmetic coding. In IEEE International Symposium on Circuits and Systems,
pages 1310–1313. IEEE Press, 1990.

[89] S.D. Babacan and K. Sayood. Predictive image compression using conditional averages.
In Proceedings of the Data Compression Conference, DCC ’04. IEEE, 2004.

[90] Q. Wang, G.M. Garrity, J.M. Tiedje, and J.R. Cole. Naive Bayesian classifier for rapid
assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environ-
mental Microbiology, 73:5261–5267, 2007.

[91] M. Rabbani and P.W Jones. Digital Image Compression Techniques, volume TT7 of
Tutorial Texts Series. SPIE Optical Engineering Press, 1991.

[92] I.H. Witten, A. Moffat, and T.C. Bell. Managing Gigabytes: Compressing and Indexing
Documents and Images. Van Nostrand Reinhold, New York, 1994.

[93] S.L. Tanimoto. Image transmission with gross information first. Computer Graphics
and Image Processing, 9:72–76, January 1979.

[94] K.R. Sloan Jr. and S.L. Tanimoto. Progressive refinement of raster images. IEEE Trans-
actions on Computers, C-28:871–874, November 1979.

[95] P.J. Burt and E.H. Adelson. The Laplacian pyramid as a compact image code. IEEE
Transactions on Communications, COM-31:532–540, April 1983.

[96] K. Knowlton. Progressive transmission of grey-scale and binary pictures by simple,
efficient, and lossless encoding schemes. Proceedings of the IEEE, 68:885–896, July
1980.

[97] H. Dreizen. Content-driven progressive transmission of grey-scale images. IEEE Trans-
actions on Communications, COM-35:289–296, March 1987.

[98] J. Capon. A probabilistic model for run-length coding of pictures. IRE Transactions on
Information Theory, pages 157–163, 1959.

[99] Y. Yasuda. Overview of digital facsimile coding techniques in Japan. IEEE Proceedings,
68:830–845, July 1980.

[100] R. Hunter and A.H. Robinson. International digital facsimile coding standards. IEEE
Proceedings, 68:854–867, July 1980.

[101] ISO/IEC 11544:1993 Information technology-coded representation of picture and audio
information-progressive bi-level image compression. 1994.

[102] G.G. Langdon Jr. and J.J. Rissanen. A simple general binary source code. IEEE Trans-
actions on Information Theory, IT-28:800–803, September 1982.

B I B L I O G R A P H Y 705

[103] R.B. Arps and T.K. Truong. Comparison of international standards for lossless still
image compression. Proceedings of the IEEE, 82:889–899, June 1994.

[104] W.K. Pratt. Digital Image Processing. Wiley-Interscience, 1978.

[105] F.W. Campbell. The human eye as an optical filter. Proceedings of the IEEE, 56:1009–
1014, June 1968.

[106] J.L. Mannos and D.J. Sakrison. The effect of a visual fidelity criterion on the encoding
of images. IEEE Transactions on Information Theory, IT-20:525–536, July 1974.

[107] H. Fletcher and W.A. Munson. Loudness, its measurement, definition, and calculation.
Journal of the Acoustical Society of America, 5:82–108, 1933.

[108] B.C.J. Moore. An Introduction to the Psychology of Hearing. Academic Press, third
edition, 1989.

[109] S.S. Stevens and H. Davis. Hearing—Its Psychology and Physiology. American Inst. of
Physics, 1938.

[110] M. Mansuripur. Introduction to Information Theory. Prentice-Hall, 1987.

[111] C.E. Shannon. Coding Theorems for a Discrete Source with a Fidelity Criterion. In IRE
International Convention Records, volume 7, pages 142–163. IRE, 1959.

[112] T. Berger. Rate Distortion Theory: A Mathematical Basis for Data Compression.
Prentice-Hall, Englewood Cliffs, NJ, 1971.

[113] S. Arimoto. An algorithm for computing the capacity of arbitrary discrete memoryless
channels. IEEE Transactions on Information Theory, IT-18:14–20, January 1972.

[114] R.E. Blahut. Computation of channel capacity and rate distortion functions. IEEE Trans-
action on Information Theory, IT-18:460–473, July 1972.

[115] A.M. Law and W.D. Kelton. Simulation Modeling and Analysis. McGraw Hill, 1982.

[116] L.R. Rabiner and R.W. Schafer. Digital Processing of Speech Signals. Signal Processing.
Prentice-Hall, 1978.

[117] R.B. Ash. Information Theory. Dover, 1990. (Originally published by Interscience Pub-
lishers in 1965.)

[118] R.M. Gray. Entropy and Information Theory. Springer-Verlag, 1990.

[119] Thomas Parsons. Voice and Speech Processing. McGraw Hill, 1987.

[120] E.F. Abaya and G.L. Wise. On the existence of optimal quantizers. IEEE Transactions
on Information Theory, IT-28:937–940, November 1982.

[121] N. Jayant and L. Rabiner. The application of dither to the quantization of speech signals.
Bell System Technical Journal, 51:1293–1304, June 1972.

[122] J. Max. Quantizing for minimum distortion. IRE Transactions on Information Theory,
IT-6:7–12, January 1960.

706 B I B L I O G R A P H Y

[123] W.C. Adams Jr. and C.E. Geisler. Quantizing characteristics for signals having Laplacian
amplitude probability density function. IEEE Transactions on Communications, COM-
26:1295–1297, August 1978.

[124] N.S. Jayant. Adaptive qunatization with one word memory. Bell System Technical Jour-
nal, pages 1119–1144, September 1973.

[125] D. Mitra. Mathematical analysis of an adaptive quantizer. Bell Systems Technical Jour-
nal, pages 867–898, May-June 1974.

[126] A. Gersho and D.J. Goodman. A training mode adaptive quantizer. IEEE Transactions
on Information Theory, IT-20:746–749, November 1974.

[127] A. Gersho. Quantization. IEEE Communications Magazine, September 1977.

[128] J. Lukaszewicz and H. Steinhaus. On measuring by comparison. Zastos. Mat., pages
225–231, 1955. (in Polish).

[129] S.P. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information The-
ory, IT-28:127–135, March 1982.

[130] W.R. Bennett. Spectra of quantized signals. Bell System Technical Journal, 27:446–472,
July 1948.

[131] T. Berger, F. Jelinek, and J. Wolf. Permutation codes for sources. IEEE Transactions on
Information Theory, IT-18:166–169, January 1972.

[132] N. Farvardin and J.W. Modestino. Optimum quantizer performance for a class of non-
gaussian memoryless sources. IEEE Transactions on Information Theory, pages 485–
497, May 1984.

[133] H. Gish and J.N. Pierce. Asymptotically efficient quantization. IEEE Transactions on
Information Theory, IT-14:676–683, September 1968.

[134] N.S. Jayant and P. Noll. Digital Coding of Waveforms. Prentice-Hall, 1984.

[135] W. Mauersberger. Experimental results on the performance of mismatched quantizers.
IEEE Transactions on Information Theory, pages 381–386, July 1979.

[136] A. Gersho and R.M. Gray. Vector Quantization and Signal Compression. Kluwer Aca-
demic Publishers, 1991.

[137] Y. Linde, A. Buzo, and R.M. Gray. An algorithm for vector quantization design. IEEE
Transactions on Communications, COM-28:84–95, Jan. 1980.

[138] E.E. Hilbert. Cluster Compression Algorithm—A Joint Clustering Data Compression
Concept. Technical Report JPL Publication 77-43, NASA, 1977.

[139] W.H. Equitz. A New vector quantization clustering algorithm. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 37:1568–1575, October 1989.

[140] P.A. Chou, T. Lookabaugh, and R.M. Gray. Optimal pruning with applications to tree-
structured source coding and modeling. IEEE Transactions on Information Theory,
35:31–42, January 1989.

B I B L I O G R A P H Y 707

[141] L. Breiman, J.H. Freidman, R.A. Olshen, and C.J. Stone. Classification and Regression
Trees. Wadsworth, California, 1984.

[142] E.A. Riskin. Pruned tree structured vector quantization in image coding. In Proceedings
International Conference on Acoustics Speech and Signal Processing, pages 1735–1737.
IEEE, 1989.

[143] D.J. Sakrison. A geometric treatment of the source encoding of a Gaussian random
variable. IEEE Transactions on Information Theory, IT-14:481–486, May 1968.

[144] T.R. Fischer. A pyramid vector quantizer. IEEE Transactions on Information Theory,
IT-32:568–583, July 1986.

[145] M.J. Sabin and R.M. Gray. Product code vector quantizers for waveform and voice
coding. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-32:474–
488, June 1984.

[146] W.A. Pearlman. Polar quantization of a complex Gaussian random variable. IEEE Trans-
actions on Communications, COM-27:892–899, June 1979.

[147] S.G. Wilson. Magnitude phase quantization of independent Gaussian variates. IEEE
Transactions on Communications, COM-28:1924–1929, November 1980.

[148] P.F. Swaszek and J.B. Thomas. Multidimensional spherical coordinates quantization.
IEEE Transactions on Information Theory, IT-29:570–575, July 1983.

[149] D.J. Newman. The hexagon theorem. IEEE Transactions on Information Theory, IT-
28:137–139, March 1982.

[150] J.H. Conway and N.J.A. Sloane. Voronoi regions of lattices, second moments of poly-
topes, and quantization. IEEE Transactions on Information Theory, IT-28:211–226,
March 1982.

[151] K. Sayood, J.D. Gibson, and M.C. Rost. An algorithm for uniform vector quantizer
design. IEEE Transactions on Information Theory, IT-30:805–814, November 1984.

[152] J.D. Gibson and K. Sayood. Lattice Quantization. In P.W. Hawkes, editor, Advances in
Electronics and Electron Physics, pages 259–328. Academic Press, 1990.

[153] J.H. Conway and N.J.A. Sloane. Fast quantizing and decoding algorithms for lattice
quantizers and codes. IEEE Transactions on Information Theory, IT-28:227–232, March
1982.

[154] J.H. Conway and N.J.A. Sloane. A fast encoding method for lattice codes and quantizers.
IEEE Transactions on Information Theory, IT-29:820–824, November 1983.

[155] H. Abut, editor. Vector Quantization. IEEE Press, 1990.

[156] A. Buzo, A.H. Gray, R.M. Gray, and J.D. Markel. Speech coding based upon vector
quantization. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-
28:562–574, October 1980.

[157] B. Ramamurthi and A. Gersho. Classified vector quantization of images. IEEE Trans-
actions on Communications, COM-34:1105–1115, November 1986.

708 B I B L I O G R A P H Y

[158] V. Ramamoorthy and K. Sayood. A hybrid LBG/lattice vector quantizer for high quality
image coding. In E. Arikan, editor, Proc. 1990 Bilkent International Conference on New
Trends in Communication, Control and Signal Processing. Elsevier, 1990.

[159] B.H. Juang and A.H. Gray. Multiple stage vector quantization for speech coding. In Pro-
ceedings IEEE International Conference on Acoustics, Speech, and Signal Processing,
pages 597–600. IEEE, April 1982.

[160] C.F. Barnes and R.L. Frost. Residual vector quantizers with jointly optimized code
books. In Advances in Electronics and Electron Physics, pages 1–59. Elsevier, 1992.

[161] C.F. Barnes and R.L. Frost. Vector quantizers with direct sum codebooks. IEEE Trans-
actions on Information Theory, 39:565–580, March 1993.

[162] A. Gersho and V. Cuperman. A pattern matching technique for speech coding. IEEE
Communications Magazine, pages 15–21, December 1983.

[163] A.G. Al-Araj and K. Sayood. Vector quantization of nonstationary sources. In Pro-
ceedings International Conference on Telecommunications - 1994, pages 92–95. IEEE,
1994.

[164] A.G. Al-Araj. Recursively Indexed Vector Quantization. PhD thesis, University of
Nebraska—Lincoln, 1994.

[165] S. Panchanathan and M. Goldberg. Adaptive algorithm for image coding using vector
quantization. Signal Processing: Image Communication, 4:81–92, 1991.

[166] A.J. Viterbi and J.K. Omura. Principles of Digital Communications and Coding. Mc-
Graw Hill, 1979.

[167] J. Makhoul, S. Roucos, and H. Gish. Vector quantization in speech coding. Proceedings
of the IEEE, 73:1551–1588, 1985.

[168] N.M. Nasrabadi and R.A. King. Image coding using vector quantization. IEEE Trans-
actions on Communications, August 1988.

[169] C.C. Cutler. Differential Quantization for Television Signals. U.S. Patent 2 605 361,
July 29, 1952.

[170] N.L. Gerr and S. Cambanis. Analysis of adaptive differential PCM of a stationary Gauss-
Markov input. IEEE Transactions on Information Theory, IT-33:350–359, May 1987.

[171] H. Stark and J.W. Woods. Probability, Random Processes, and Estimation Theory for
Engineers. Prentice-Hall, second edition, 1994.

[172] J.D. Gibson. Adaptive prediction in speech differential encoding systems. Proceedings
of the IEEE, pages 488–525, April 1980.

[173] P.A. Maragos, R.W. Schafer, and R.M. Mersereau. Two dimensional linear prediction
and its application to adaptive predictive coding of images. IEEE Transactions on Acous-
tics, Speech, and Signal Processing, ASSP-32:1213–1229, December 1984.

B I B L I O G R A P H Y 709

[174] J.D. Gibson, S.K. Jones, and J.L. Melsa. Sequentially adaptive prediction and coding of
speech signals. IEEE Transactions on Communications, COM-22:1789–1797, Novem-
ber 1974.

[175] B. Widrow, J.M. McCool, M.G. Larimore, and C.R. Johnson Jr. Stationary and non-
stationary learning characteristics of the LMS adaptive filter. Proceedings of the IEEE,
pages 1151–1162, August 1976.

[176] N.S. Jayant. Adaptive delta modulation with one-bit memory. Bell System Technical
Journal, pages 321–342, March 1970.

[177] R. Steele. Delta Modulation Systems. Halstead Press, 1975.

[178] R.L. Auger, M.W. Glancy, M.M. Goutmann, and A.L. Kirsch. The Space Shuttle Ground
Terminal Delta Modulation System. IEEE Transactions on Communications, COM-
26:1660–1670, November 1978. Part I of two parts.

[179] M.J. Shalkhauser and W.A. Whyte Jr. Digital CODEC for Real Time Signal Processing
at 1.8 bpp. In Global Telecommunication Conference, 1989.

[180] D.G. Luenberger. Optimization by Vector Space Methods. Series in Decision and Control.
John Wiley & Sons Inc., 1969.

[181] B.B. Hubbard. The World According to Wavelets. Series in Decision and Control. A K
Peters, 1996.

[182] W.H. Press, S.A. Teukolsky, W.T. Vettering, and B.P. Flannery. Numerical Recipes in
C. Cambridge University Press, 2nd edition, 1992.

[183] H. Hotelling. Analysis of a complex of statistical variables into principal components.
Journal of Educational Psychology, 24, 1933.

[184] H. Karhunen.Über Lineare Methoden in der Wahrscheinlich-Keitsrechunung. Annales
Academiae Fennicae, Series A, 1947.

[185] M. Loéve. Fonctions Aléatoires de Seconde Ordre. In P. Lévy, editor, Processus Stochas-
tiques et Mouvement Brownien. Hermann, 1948.

[186] H.P. Kramer and M.V. Mathews. A linear encoding for transmitting a set of correlated
signals. IRE Transactions on Information Theory, IT-2:41–46, September 1956.

[187] J.-Y. Huang and P.M. Schultheiss. Block quantization of correlated Gaussian random
variables. IEEE Transactions on Communication Systems, CS-11:289–296, September
1963.

[188] K. Sayood and J.D. Gibson. Explicit additive noise models for uniform and nonuniform
MMSE quantization. Signal Processing, 7:407–414, 1984.

[189] N. Ahmed and K.R. Rao. Orthogonal Transforms for Digital Signal Processing.
Springer-Verlag, 1975.

[190] J.A. Saghri, A.J. Tescher, and J.T. Reagan. Terrain adaptive transform coding of mul-
tispectral data. In Proceedings International Conference on Geosciences and Remote
Sensing (IGARSS ’94), pages 313–316. IEEE, 1994.

710 B I B L I O G R A P H Y

[191] P.M. Farrelle and A.K. Jain. Recursive block coding—a new approach to transform
coding. IEEE Transactions on Communications, COM-34:161–179, February 1986.

[192] M. Bosi and G. Davidson. High quality, low rate audio transform coding for transmission
and multimedia application. In Preprint 3365, Audio Engineering Society. AES, October
1992.

[193] F.J. MacWilliams and N.J.A. Sloane. The Theory of Error Correcting Codes. North-
Holland, 1977.

[194] M.M. Denn. Optimization by Variational Methods. McGraw-Hill, 1969.

[195] P.A. Wintz. Transform picture coding. Proceedings of the IEEE, 60:809–820, July 1972.

[196] W.-H. Chen and W.K. Pratt. Scene adaptive coder. IEEE Transactions on Communica-
tions, COM-32:225–232, March 1984.

[197] Y. Shoham and A. Gersho. Efficient bit allocation for an arbitrary set of quantizers.
IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-36:1445–1453,
September 1988.

[198] H.S. Malvar. Signal Processing with Lapped Transforms. Artech House, Norwood, MA,
1992.

[199] J.P. Princen and A.P. Bradley. Analysis/synthesis filter design based on time domain
aliasing cancellation. IEEE Transactions on Acoustics Speech and Signal Processing,
ASSP-34:1153–1161, October 1986.

[200] M. Bosi and R.E. Goldberg. Introduction to Digital Audio Coding and Standards. Kluwer
Academic Press, 2003.

[201] D.F. Elliot and K.R. Rao. Fast Transforms—Algorithms, Analysis, Applications. Aca-
demic Press, 1982.

[202] A.K. Jain. Fundamentals of Digital Image Processing. Prentice Hall, 1989.

[203] A. Crosier, D. Esteban, and C. Galand. Perfect channel splitting by use of interpola-
tion/decimation techniques. In Proc. International Conference on Information Science
and Systems, Patras, Greece, 1976. IEEE.

[204] J.D. Johnston. A filter family designed for use in quadrature mirror filter banks. In
Proceedings ICASSP, pages 291–294. IEEE, April 1980.

[205] M.J.T. Smith and T.P. Barnwell III. A procedure for designing exact reconstruction filter
banks for tree structured subband coders. In Proceedings IEEE International Conference
on Acoustics Speech and Signal Processing. IEEE, 1984.

[206] P.P. Vaidyanathan. Multirate Systems and Filter Banks. Prentice Hall, 1993.

[207] H. Caglar. A Generalized Parametric PR-QMF/Wavelet Transform Design Approach for
Multiresolution Signal Decomposition. PhD thesis, New Jersey Institute of Technology,
May 1992.

[208] A.K. Jain and R.E. Crochiere. Quadrature mirror filter design in the time domain. IEEE
Transactions on Acoustics, Speech, and Signal Processing, 32:353–361, April 1984.

B I B L I O G R A P H Y 711

[209] F. Mintzer. Filters for distortion-free two-band multirate filter banks. IEEE Transactions
on Acoustics, Speech, and Signal Processing, ASSP-33:626–630, June 1985.

[210] J.W. Woods and T. Naveen. A filter based bit allocation scheme for subband compression
of HDTV. IEEE Transactions on Image Processing, IP-1:436–440, July 1992.

[211] M. Vetterli. Multirate Filterbanks for Subband Coding. In J.W. Woods, editor, Subband
Image Coding, pages 43–100. Kluwer Academic Publishers, 1991.

[212] C.S. Burrus, R.A. Gopinath, and H. Guo. Introduction to Wavelets and Wavelet Trans-
forms. Prentice Hall, 1998.

[213] W. Sweldens. Lifting scheme: a new philosophy in biorthogonal wavelet construction.
In Wavelet Applications in Signal and Image Processing, pages 68–79.

[214] I. Daubechies and W. Sweldens. Factoring wavelet transforms into lifting steps. Journal
of Fourier Analysis and Applications, 4(3), 1996.

[215] J.M. Shapiro. Embedded image coding using zerotrees of wavelet coefficients. IEEE
Transactions on Signal Processing, SP-41:3445–3462, December 1993.

[216] A. Said and W.A. Pearlman. A new fast and efficient coder based on set partitioning in
hierarchical trees. IEEE Transactions on Circuits and Systems for Video Technologies,
pages 243–250, June 1996.

[217] D. Taubman. Directionality and Scalability in Image and Video Compression. PhD thesis,
University of California at Berkeley, May 1994.

[218] D. Taubman and A. Zakhor. Multirate 3-D subband coding with motion compensation.
IEEE Transactions on Image Processing, IP-3:572–588, September 1994.

[219] ISO/IEC JTC1/SC29 WG1. JPEG 2000 Image coding system: Core coding system,
March 2004.

[220] D. Taubman and M. Marcellin. JPEG2000: Image Compression Fundamentals, Stan-
dards and Practice. Kluwer Academic Press, 2001.

[221] ISO/IEC IS 14496. Coding of Moving Pictures and Audio.

[222] J. Watkinson. The MPEG Handbook. Focal Press, 2001.

[223] K. Tsutsui, H. Suzuki, O. Shimoyoshi, M. Sonohara, K. Agagiri, and R.M. Heddle.
ATRAC: Adaptive Transform Acoustic Coding for MiniDisc. In Conference Records
Audio Engineering Society Convention. AES, October 1992.

[224] D. Pan. A tutorial on MPEG/audio compression. IEEE Multimedia, 2:60–74, 1995.

[225] T. Painter and A. Spanias. Perceptual coding of digital audio. Proceedings of the IEEE,
88:451–513, 2000.

[226] H. Dudley and T.H. Tarnoczy. Speaking machine of Wolfgang Von Kempelen. Journal
of the Acoustical Society of America, 22:151–166, March 1950.

[227] H. Dudley. Remaking speech. Journal of the Acoustical Society of America, 11:169–177,
1939.

712 B I B L I O G R A P H Y

[228] D.C. Farden. Solution of a Toeplitz set of linear equations. IEEE Transactions on An-
tennas and Propogation, 1977.

[229] N. Levinson. The Weiner RMS error criterion in filter design and prediction. Journal of
Mathematical Physics, 25:261–278, 1947.

[230] J. Durbin. The fitting of time series models. Review of the Institute Inter. Statist., 28:233–
243, 1960.

[231] P.E. Papamichalis. Practical Approaches to Speech Coding. Prentice-Hall, 1987.

[232] J.D. Gibson. On reflection coefficients and the Cholesky decomposition. IEEE Trans-
actions on Acoustics, Speech, and Signal Processing, ASSP-25:93–96, February 1977.

[233] M.R. Schroeder. Linear predictive coding of speech: review and current directions. IEEE
Communications Magazine, 23:54–61, August 1985.

[234] B.S. Atal and J.R. Remde. A new model of LPC excitation for producing natural sounding
speech at low bit rates. In Proceedings IEEE International Conference on Acoustics,
Speech, and Signal Processing, pages 614–617. IEEE, 1982.

[235] A. Gersho. Advances in speech and audio compression. Proceedings of the IEEE,
82:900–918, 1994.

[236] P. Kroon, E.F. Deprettere, and R.J. Sluyter. Regular-pulse excitation—a novel approach
to effective and efficient multipulse coding of speech. IEEE Transactions on Acoustics,
Speech, and Signal Processing, ASSP-34:1054–1063, October 1986.

[237] K. Hellwig, P. Vary, D. Massaloux, and J.P. Petit. Speech codec for European Mobile
Radio System. In Conference Record, IEEE Global Telecommunication Conference,
pages 1065–1069. IEEE, 1989.

[238] J.P. Campbell, V.C. Welch, and T.E. Tremain. An expandable error protected 4800 bps
CELP coder (US Federal Standard 4800 bps voice coder). In Proceedings International
Conference on Acoustics, Speech and Signal Processing, pages 735–738. IEEE, 1989.

[239] J.P.Campbell Jr., T.E. Tremain, and V.C. Welch. The DOD 4.8 KBPS Standard (Proposed
Federal Standard 1016). In B.S. Atal, V. Cuperman, and A. Gersho, editors, Advances
in Speech Coding, pages 121–133. Kluwer, 1991.

[240] J.-H. Chen, R.V. Cox, Y.-C. Lin, N. Jayant, and M. Melchner. A low-delay CELP coder
16 kb/s speech coding standard. IEEE Journal on Selected Areas in Communications,
10:830–849, 1992.

[241] R.J. McAulay and T.F. Quatieri. Low-Rate Speech Coding Based on the Sinusoidal
Model. In S. Furui and M.M. Sondhi, editors, Advances in Speech Signal Processing,
chapter 6, pages 165–208. Marcel-Dekker, 1992.

[242] D.W. Griffin and J.S. Lim. Multi-band excitation vocoder. IEEE Transactions on Acous-
tics, Speech and Signal Processing, 36:1223–1235, August 1988.

[243] S. Anderson, A. Duric, H. Astrom, R. Hagen, W. Kleijn, J. Linden, M. Murthi, F.
Galshiodt, J. Spittka, and J. Skoglund. RFE 3951–Internet Low Bit Rate Coded (iLBC),
December 2004.

B I B L I O G R A P H Y 713

[244] A. Duric and S. Anderson. RFC 3952–Real Time Transport Protocol (RTP) Payload
Format for Internet Low Bit Rate Codec (iLBC) Speech, 2004.

[245] J.D. Gibson. Speech coding methods, standards, and applications. IEEE Circuits and
Systems Magazine, pages 30–49, 2005.

[246] D. Barry and JA Hartigan. Asynchronous distance between homologous dna sequences.
Biometrics, pages 261–276, 1987.

[247] A.E. Jacquin. A Fractal Theory of Iterated Markov Operators with Applications to
Digital Image Coding. PhD thesis, Georgia Institute of Technology, August 1989.

[248] A.E. Jacquin. Image coding based on a fractal theory of iterated contractive image
transformations. IEEE Transactions on Image Processing, 1:18–30, January 1992.

[249] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, Read-
ing, MA, 1990.

[250] Y.Fisher ed. Fractal Image Compression. Springer-Verlag, 1995.

[251] D. Saupe, M. Ruhl, R. Hamzaoui, L. Grandi, and D. Marini. Optimal hierarchical parti-
tions for fractal image compression. In Proc. IEEE International Conference on Image
Processing. IEEE, 1998.

[252] J. Makhoul. Linear prediction: a tutorial review. Proceedings of the IEEE, 63:561–580,
April 1975.

[253] T. Adamson. Electronic Communications. Delmar, 1988.

[254] C.S. Choi, K. Aizawa, H. Harashima, and T. Takebe. Analysis and synthesis of facial
image sequences in model-based image coding. IEEE Transactions on Circuits and
Systems for Video Technology, 4:257–275, June 1994.

[255] H. Li and R. Forchheimer. Two-view facial movement estimation. IEEE Transactions
on Circuits and Systems for Video Technology, 4:276–287, June 1994.

[256] G. Bozdaǧi, A.M. Tekalp, and L. Onural. 3-D motion estimation and wireframe adap-
tation including photometric effects for model-based coding of facial image sequences.
IEEE Transactions on Circuits and Systems for Video Technology, 4:246–256, June
1994.

[257] P. Ekman and W.V. Friesen. Facial Action Coding System. Consulting Psychologists
Press, 1977.

[258] K. Aizawa and T.S. Huang. Model-based image coding: advanced video coding tech-
niques for very low bit-rate applications. Proceedings of the IEEE, 83:259–271, February
1995.

[259] L. Chiariglione. The development of an integrated audiovisual coding standard: MPEG.
Proceedings of the IEEE, 83:151–157, February 1995.

[260] ISO/IEC IS 11172. Information technology—coding of moving pictures and associated
audio for digital storage media up to about 1.5 Mbits/s.

714 B I B L I O G R A P H Y

[261] ISO/IEC IS 13818. Information technology—generic coding of moving pictures and
associated audio information.

[262] T. Wiegand, G.J. Sullivan, G. Bjontegaard, and A. Luthra. Overview of the H.264/AVC
video coding standard. IEEE Transaction on Circuits and Systems for Video Technology,
13:560–576, 2003.

[263] G. Karlsson and M. Vetterli. Packet video and its integration into the network architec-
ture. IEEE Journal on Selected Areas in Communications, 7:739–751, June 1989.

[264] Y-C. Chen, K. Sayood, and D.J. Nelson. A robust coding scheme for packet video. IEEE
Transactions on Communications, 40:1491–1501, September 1992.

[265] M.C. Rost and K. Sayood. A progressive data compression scheme based on adaptive
transform coding. In Proceedings 31st Midwest Symposium on Circuits and Systems,
pages 912–915. Elsevier, 1988.

[266] J. Watkinson. The Art of Digital Video. Focal Press, 1990.

[267] J.L. Mitchell, W.B. Pennebaker, C.E. Fogg, and D.J. LeGall. MPEG Video Compression
Standard. Chapman and Hall, 1997.

[268] K.P. Subbalakshmi. Lossless Image Compression. In K. Sayood, editor, Lossless Com-
pression Handbook, pages 207–226. Academic Press, 2003.

[269] M.W. Hoffman. JPEG-LS Lossless and Near Lossless Image Compression. In K. Sayood,
editor, Lossless Compression Handbook, Academic Press, 2003.

[270] J.A. Bucklew and N.C. Gallagher Jr. A Note on Optimal Quantization. IEEE Transac-
tions on Information Theory, IT-25:365–366, May 1979.

[271] J.A. Bucklew and N.C. Gallagher Jr. Some Properties of Uniform Step Size Quantizers.
IEEE Transactions on Information Theory, IT-26:610–613, September 1980.

[272] K. Sayood and J.D. Gibson. Explicit Additive Noise Models for Uniform and Nonuni-
form MMSE Quantization. Signal Processing, 7:407–414, 1984.

[273] R.M. Gray. Vector Quantization. IEEE Acoustics, Speech, and Signal Processing Mag-
azine, 1:4–29, April 1984.

[274] P. Swaszek. Vector Quantization. In I.F. Blake and V. Poor, editor, Communications and
Networks: A survey of Recent Advances, pages 362–389. Springer-Verlag, 1986.

[275] B.P. Lathi. Signal Processing and Linear Systems. Berkeley Cambridge Press, 1998.

[276] S.K. Mitra and J.F. Kaiser. Handbook for Digital Signal Processing. Wiley-Interscience,
1993.

[277] K. Brandenburg and G. Stoll. ISO-MPEG-1 Audio: A Generic Standard for Coding
High-Quality Digital Audio. Journal of the Audio Engineering Society, 42:780–792,
October 1994.

[278] A. Ortega and K. Ramachandran. Rate Distortion Methods for Image and Video Com-
pression. Signal Processing Magazine, 15:23–50, November 1998.

[279] I. Daubechies. Ten lectures on wavelets. SIAM, 1992.

B I B L I O G R A P H Y 715

[280] William A. Pearlman and Amir Said. Set Partition Coding: Part I of Set Partition Coding
and Image Wavelet Coding Systems. Foundations and trends in signal processing. Now,
2008.

[281] William A. Pearlman and Amir Said. Image Wavelet Coding Systems: Part II of Set
Partition Coding and Image Wavelet Coding Systems. Foundations and trends in signal
processing. Now, 2008.

[282] N. Iwakami, T. Moriya, and S. Miki. High Quality Audio-Coding at Less than 64 kbit/s
by Using Transform Domain weighted Interleave Vector Quantization TwinVQ. Pro-
ceedings ICASSP ’95, IEEE, 5:3095–3098, 1985.

[283] B.S. Atal, V. Cuperman, and A. Gersho. Speech and Audio Coding for Wireless and
Network Applications. Kluwer Academic Publishers, 1993.

[284] S. Furui and M.M. Sondhi. Advances in Speech Signal Processing. Marcel Dekker Inc.,
1991.

[285] A.M. Kondoz. Digital Speech: Coding for Low Bit Rate Communication Systems. Wiley,
2004.

[286] I.E. Richardson. H.264 and MPEG 4 Video Compression. Wiley, 2003.

[287] W. Feller. An Introduction to Probability Theory and Its Applications, Vol. 1. Wiley, 3rd
Edition, 1968.

[288] W. Feller. An Introduction to Probability Theory and Its Applications, Vol. 2. Wiley, 3rd
Edition, 1971.

[289] A. Papoulis. Probability, Random Variables, and Stochastic Process. McGraw-Hill,
1984.

[290] E. Kreyszig. Advanced Engineering Mathematics. Wiley, 10th edition, 2011.

Index

A
AAC. See Advanced Audio Coding

ACB. See Associative coder of Buyanovsky
Action units (AU), 650

Adaptive arithmetic coding, 119, 130

cumulative count table, 119

static arithmetic code, 120

Adaptive codebook, 605, 612–613

Adaptive dictionary, 139

LZ77 approach, 139

example, 140

implementation of, 150–151

theme variations, 143

LZ78 approach, 143

example, 144

LZW algorithm, 145, 147

theme variations, 145

Adaptive differential PCM (ADPCM), 484

Adaptive Huffman coding, 67–68

characteristics, 67–68

decoding procedure, 73–74

encoding procedure, 71–72

example, 72

flowchart, 72

update procedure, 66, 70

adaptive Huffman coding algorithm, 69

adaptive Huffman tree, 71

example, 70

external node, 69–70

NYT node, 70

Adaptive model, 19

Adaptive prediction

in DPCM, 358

backward adaptive prediction (DPCM-APB), 360–361

forward adaptive prediction (DPCM-APF), 359

Adaptive quantization, 268

approaches, 268–269

backward adaptive quantization, 271

Jayant quantizer, 273, 275

in DPCM, 358

example, 358

forward adaptive quantization, 269

Adaptive spectral enhancement filter, 611

Adaptive vector quantization, 335–336

distortion, 336–337

large codebook, 336

recursively indexed vector quantizer, 336

A/D converter. See Analog-to-digital converter
Adjoint, of matrix, 679–680

ADPCM. See Adaptive differential PCM
ADSL. See Asymmetric Digital Subscriber Lines

Advanced Audio Coding (AAC), 581. See also MPRG AAC

decoder tools, 581

standard profiles, 581–582

Advanced intra coding mode, 661

Advanced prediction mode, 661

Advanced Television Systems Committee (ATSC), 587

Advanced video coding (AVC), 663

Admissibility condition, 503

AEP. See Asymptotic equipartition property

Algorithmic information theory, 37

Kolmogorov complexity, 37–38

Aliasing, 394

All pole filter, 243

Alphabet, 16–17, 29

Alternative inter VLC mode, 662–663

AMDF. See Average magnitude difference function

Analog-to-digital converter (A/D converter), 252

Analog color television, 639

Analysis/synthesis scheme, 592

Analysis and synthesis filters, 462

Anchor frames, 652–653

APCO. See Association of Police Communications Officers

AR(N) model. See Nth-order autoregressive model

Arithmetic coding, 43–44, 205

adaptive arithmetic coding. See Adaptive arithmetic

coding

advantages, 78

application, 77

binary arithmetic coding. See Binary arithmetic coding

binary code generating. See Binary code generation

coding sequence, 93

tag generation, 94–100

tag deciphering, 101

example, 44–48

and Huffman coding, comparison, 127–128

low-resolution layer, 205–207

neighborhoods symbols, 207

parameters for, 51

QM coder, 207

using contexts, 207–208

Arithmetic coding application

advantage of, 78

using adaptive coding, 52, 63, 77

ARJ, 143

ARMA model. See Autoregressive moving average model

ASCII code, 29, 137

Association of Police Communications Officers (APCO), 608

Associative coder of Buyanovsky (ACB), 178

Asymmetric applications, 650

generic wireframe model, 651

MPEG, 651–652

Asymmetric Digital Subscriber Lines (ADSL), 2

Asymptotic equipartition property (AEP), 326–327

Asynchronous transfer mode (ATM), 671

ATM. See Asynchronous transfer mode

ATM networks, 671

compression issues in, 671–672

transmission capacity availability, 671

ATSC. See Advanced Television Systems Committee

AU. See Action units

Audio coding

application, 485

audibility threshold, 570–571

Dolby AC-3, 587

algorithm, 587–588

bit allocation, 588–589

MPEG advanced audio coding

AAC, 581

MPEG-2 AAC, 582–583

MPEG-4 AAC, 586

MPEG audio coding

algorithms, 574

informative sections, 573

normative sections, 573

psychoacoustic model

nontonal components, 572–573

postprocessing, 573

tonal components, 572–573

spectral masking, 570–571

audibility threshold changes, 571

critical band, 570–571

temporal masking, 571–572

audibility threshold changes in time, 572

Audio compression, 85

application, 85–86

audio material, 85

FLAC, 86

MDCT, 439

source output sequence, 441

Audiophile, 220–221

Auditory perception

ear, 224

masking, 224

role, 224

Autocovariance approach, 599–600

Autoregressive moving average model (ARMA model), 243

AVC. See Advanced video coding

Average information derivation, 20

example, 20

formula, 23–24

monotonically increasing function, 23

occurrence identification, 21–22

properties, 20

rational probabilities, 23–24

Average magnitude difference function (AMDF), 598

for sound /e/in test, 598

for sound /s/in test, 599

Average mutual information, 228–229

Axiomatic approach, 678

example, 679

B
B frames. See Bidirectionally predictive coded frames

Backward adaptive quantization, 271

example, 273

Jayant quantizer. See Jayant quantizer
Band-pass filters, 224, 389–390, 452

high-pass filter, 389–390

low-pass filter, 389–390

Basic algorithm, 165–166, 348, 351

encoder and decoder generation, 349

example, 166–171, 350

lossless compression schemes, 348

quantization and reconstruction process, 349–350

Basis vectors, for subset, 374–375, 377–378

Bayes’ rule, 679

Bennett integral, 286–287, 290–291

Bidirectionally predictive coded frames (B frames),

652–653

BIFS. See Binary Format for Scenes

Binary arithmetic coding, 120–124

example, 120

M coder, 124, 126–127

LPS probability, 127

MQ coder, 125–126

QM coder, 124–125

JBIG algorithm, 125

LPS probability, 125

scaling and rescaling process, 125

Binary code generation, 102–103

algorithm implementation, 106

interval possibilities, 106

tag generation with scaling, 107, 109

decoder implementation, 117

algorithm, 117–118

encoder implementation, 111–112

active interval, 112–113

example, 114–115

Total Count, 112
Total_Count, 114
using pseudocode, 113–114

for four-letter alphabet, 103

integer implementation, 111

decoder implementation, 117

encoder implementation, 111–112

uniqueness and efficiency, 103

Binary entropy function, 237

Binary Format for Scenes (BIFS), 669

718 I N D E X

Binary source function, 120

rate distortion function for, 236

Biorthogonal wavelets, 516–517

input sequence periodic extension

periodic, 521

symmetric, 521–523

Bit allocation, 482, 588

map, 426–427

operational rate distortion, 428, 483–484

per frame, for G.729 coder, 621

procedure, 461–462

rate and distortion, 482

scheme, 462

two rate distortion functions, 482–483

Bit Sliced Arithmetic Coding (BSAC), 586–587

Bitstream markers, 566

Black-and-white analog television picture, 638

Block-based motion compensation, 636

Boundary gain, 325–326, 328

Braille coding, 2–3

BSAC. See Bit Sliced Arithmetic Coding

Burrows-Wheeler transform algorithm (BWT algorithm),

174

decoding process, 177

example, 175–176

lexicographic ordering, 176

move to front (mtf) coding, 177–178

permutations, 175

using mtf approach, 174–175

BWT algorithm. See Burrows-Wheeler transform algorithm

C
CABAC. See Context adaptive binary arithmetic coder;

Context-adaptive binary arithmetic code

CALIC scheme. See Context Adaptive Lossless Image

Compression scheme

Canadian Space Agency (CSA), 2

Canonical Huffman code, 50

binary tree of depth four, 50–51

codewords, 50–51

conditions, 51

generating code, 50–51

procedure, 51–52

tree structure, 52

two Huffman trees, 49

cap. See Conditional average prediction
CAT scans. See Computerized axial tomography scans

CAVLC. See Context-adaptive variable-length code

CBP. See Coded block pattern

CCIR. See International Consultative Committee on Radio

CCIR recommendation 601–602, 640

CCIR 601, 640

CCITT. See Comité Consultatif International Télephoniqué

et Télégraphique

CCITT G.728 Speech Standard, 605–606

CCITT approved recommendation G.728, 605

encoder and decoder, 606–607

CCITT group 3 and 4, recommendations, 200

group 4 encoding algorithm, 203

horizontal mode, 202

MH, 200

one-dimensional coding scheme, 200

pass mode, 202

relative element address designate, 201

for T.4 and T.6, 200, 202–203

two-dimensional coding definitions, 201–202

two-dimensional scheme, 201

vertical mode, 202

CCSDS. See Consultative Committee on Space Data

Standards

cdf. See Cumulative distribution function

CELP. See Code-excited linear prediction

CFDM. See Constant factor adaptive delta modulation

Chaitin, G., 37

Channel, 219

Channel vocoder, 592–594

excitation signal, 595–596

formants, 594

receiver, 595

sound /e/in test, 594

sound /s/in test, 594–595

synthesis filters, 594

Cholesky decomposition, 602

Chrominance components, 548, 640

Classified vector quantization, 333

three-stage vector quantizer, 334

variation, 333

Cluster compression algorithm, 306

CME. See Comment and Extension

COC marker. See Coding style component marker

Code-excited linear prediction (CELP), 593, 603–604. See
also Mixed excitation linear prediction (MELP)

CCITT G.728 Speech Standard, 605–606

CCITT approved recommendation G.728, 605

encoder and decoder, 606–607

coder, 603–604

Federal Standard 1016, 604–605

MP-LPC algorithm, 604

RPE coding, 604

Code-vectors, 296–297

Codebook, 296, 304

Coded block pattern (CBP), 648–649

Codewords, 29

for eight-level quantizer, 256

Coding, 29, 668–669

for four-letter alphabet, 30

Kraft-McMillan inequality, 34–35, 37

full binary tree of depth four, 36

theorems, 34–35

prefix codes, 33

binary trees for different codes, 33

internal nodes, 33–34

root node, 33–34

uniquely decodable codes, 30

examples, 32–33

test for unique decodability, 32

Coding of transform coefficients

quantization and, 424

operational rate-distortion bit allocation, 428

I N D E X 719

zonal sampling, 426–427

Coding sequence, 93

cdf usage, 93–94

examples, 95–100

tag deciphering, 101

tag generation, 94–95

using mapping concept, 94

Coding style component marker (COC marker), 564

Coding style marker (COD marker), 564

COD marker. See Coding style marker

Color component transform

forward reversible transform, 548

ICT, 548

forward ICT, 548

inverse ICT, 549

RCT, 548

Column matrix, 682

Comfort noise, 613

Comité Consultatif International Télephoniqué et

Télégraphique (CCITT), 198–199

facsimile transmission, apparatus classification, 199

Comment and extension (CME), 566

Communication system, 219

Companded quantization, 282–283

compressor characteristics, 282

compressor function, 285

compressor mapping, 283

expander mapping, 283

nonuniform companded quantizer, 284

log-companded quantization, 282

Composite source model, 29

Compression algorithms, for packet video, 672

analysis filter bank, 673

progressive transmission algorithms, 672–673

reconstructed frame, 673

splitting, 672

Compression packages, 143

Compression ratio, 5–6

Compression techniques, 3

compression and reconstruction, 4

lossless compression techniques, 4

compression requirements, 5

pData, 5

radiological image, 4

reconstructed data, 5

text compression, 4

lossy compression techniques, 5

applications, 5

reconstruction, 5

modeling and coding, 6

code with codewords, 9

data value sequence, 7–8

examples, 7–9

reconstruction requirements, 6

performance measures, 5

compression ratio, 5–6

distortion, 6

fidelity and quality, 6

rate, 6

using lossy compression, 6

Compressor function, 282–283, 285

Computerized axial tomography scans (CAT scans), 193–194

Conditional average prediction (cap), 192–193

pixels, 192–193

ppm approach, 192

prediction error entropies, 193

Conditional entropy, 225

example, 225

Cones, 223

Constant factor adaptive delta modulation (CFDM),

363–364

granular condition, 363–364

speech encoding, 364

Constrained parameter bitstream (CPB), 655

Consultative Committee on Space Data Standards (CCSDS)

recommendations, 77

fundamental sequence, 78

mapping, 77

preprocessor functions, 77

second extension option, 78

split sample option, 78

zero block option, 78

Context-adaptive binary arithmetic code (CABAC), 668–669

Context-adaptive variable-length code (CAVLC), 668

Context-based compression, 163

ACB, 178–179

BWT algorithm, 174

example, 175–176

move-to-front coding, 177–178

DMC, 179

cloning process, 181

cloning state, 179–180

encoding process, 180–181

implement algorithm issues, 180

three-state model obtained by cloning. 180

two-state model for, 179

experiments, 163–164

ppm algorithm, 165

basic algorithm, 165–166

context length, 172

escape symbol, 170

exclusion principle, 173

Context adaptive binary arithmetic coder (CABAC), 120

Context Adaptive Lossless Image Compression scheme

(CALIC scheme), 186

alphabet representation, 189–190

CALIC algorithm, 190

grayscale images, 186

labeling neighbors, 186–187

pseudocode, 187

recursive indexing, 189

using pixel, 186–188

using prediction, 188–189

Continuously variable slope delta modulation (CVSD

modulation), 364

adaptation logic, 365

autocorrelation function, 365

syllabically companded, 364

Continuous wavelet transform (CWT), 503–504

Contours of constant probability, 299, 325

720 I N D E X

for Gaussian distribution, 327–328

Convolution theorem, 385

for Fourier transform

of impulse response, 387–388

of simple function, 392–393

Covariance method, 601–602

CPB. See Constrained parameter bitstream

Critical band, 224

in spectral masking, 570–571

Critically (maximally) decimated filter bank, 477

Cross product, 683

CSA. See Canadian Space Agency

Csiz, 562

Cum–Count array, 112, 114, 120
Cumulative distribution function (cdf), 93–94, 681

Cutoff frequency, 452

CVSD modulation. See Continuously variable slope delta

modulation

CWT. See Continuous wavelet transform

D
D/A converter. See Digital-to-analog converter

Data compression, 1–2

algorithms, 1–2

compression techniques, 3

lossless compression schemes, 4

lossy compression schemes, 4

measures of performance, 5

modeling and coding, 7–9

Morse code, 2–3

and reconstruction, 4

space agencies, 2

statistical structure, 3

without using compression, 2

voice coder, 3

DCT. See Discrete cosine transform

DDVPC. See Defense Department Voice Processing

Consortium

Deblocking filter mode, 661

Decimation, 459–460, 462

Decision boundaries, 255

Decoder algorithm, 117–118

Decoder implementation, 117

Decoding procedure, 73–74, 493

example, 73

flowchart, 74

generic procedure. See Generic decoding procedures

Defense Department Voice Processing Consortium

(DDVPC), 608

Deflate algorithm, 50–51

LZ77 algorithm, 150–151

Delimiting markers, 562

Delivery Multimedia Integration Framework (DMIF), 669

Delta modulation (DM), 361–362. See also Differential pulse

code modulation system (DPCM system)

adaptive, 363

CFDM, 363–364

granular condition, 363–364

speech encoding, 364

CVSD modulation, 364

adaptation logic, 365

autocorrelation function, 365

syllabically companded, 364

linear, 362

signal sampling, 361–362

source output sampling and coding, 363

Determinant, of matrix, 678–679

Deterministic prediction, 204–205

DFS. See Discrete Fourier series

DFT. See Discrete Fourier transform

Dictionary compression scheme, 9

Dictionary order. See Lexicographic ordering
Dictionary techniques, 135–136

adaptive dictionary, 139

LZ77 approach, 139–140, 143

LZ78 Approach, 143–145, 147

applications, 150–151

GIF, 151

PNG, 152

UNIX compress, 151

V.42 bis, 153

Lempel-Ziv complexity, 156–158

DNA sequence, 158

usage, 158

static dictionary, 136–137

digram coding, 137

Difference distortion measures, 221

average of absolute difference, 222

Differential encoding, 351. See also Delta modulator (DM)

adaptive DPCM, 357

adaptive predictions in, 358

adaptive quantization in, 358

basic algorithm, 348, 351

encoder and decoder generation, 349

lossless compression schemes, 348

quantization and reconstruction process, 349–350

delta modulation. See Delta modulation (DM)

DPCM, prediction in, 352

example, 354

fine quantization assumption, 352

image coding. See Image coding

Sinan image, 346–347

pixel-to-pixel differences, 347

sinusoid, 346

quantization process, 350

quantizer designing, 345–346

and reconstructions, 350–351

sample-to-sample differences, 346

speech coding. See Speech coding

techniques, 346

Differential entropy, 229

discrete random variable, 229–230

of Gaussian pdf, 231

of random variable, 230

self-information, 229

Differential pulse code modulation system (DPCM system),

351. See also Differential encoding

adaptive prediction, 358

adaptive quantization, 357–358

I N D E X 721

fine quantization assumption, 352

forward adaptation, 357

performance, 356

prediction, 352–353

predictors, 355

reconstructed sequence, 356–357, 359

residual sequence, 355

sequence variance, 352

SNR and SPER, 355–356

speech sequence, 354, 356–357

using uniform quantizer, 355–356

Digital-to-analog converter (D/A converter), 253–254

Digram coding, 137

encoder, 137

example, 137

pairs, 138–139

sample dictionary, 137

Dilation, 501

Dirac delta function, 387–388,

Discrete convolution, 404, 405

Discrete cosine transform (DCT), 420, 422, 529, 642–643

basis matrices for, 421

Discrete delta function, 402

impulse response of, 404

Discrete Fourier series (DFS), impulse response of, 395, 404

Discrete Fourier transform (DFT), 304, 420. See also
Fourier transform; Z-transform

basis matrices, 421

DCT of sequence, 422

DFS representation, DCT of sequence, 395, 422

FFT, 395

Fourier series coefficients, FFT, 395

of sequence, 422

Discrete sine transform (DST), 423

Discrete time Fourier transform, 396

Discrete time Markov chain, 26

Discrete time wavelet transform (DTWT), 504

Discrete Walsh-Hadamard transform (DWHT), 423,

667–668

Distortion, 6

Distortion criteria, 220

absolute difference, 222

applications, 222

auditory perception. See Auditory perception

design feedback, 221

difference distortion measures, 221

human visual system. See Human visual system (HVS)

mean squared error, 221–222

PSNR, 222

Distribution

gamma, 686

Gaussian, 686

Laplacian, 686

uniform, 685

Distribution functions, 681

examples, 682–683

DM. See Delta modulator

DMC. See Dynamic Markov compression

DMIF. See Delivery Multimedia Integration Framework

Dolby Digital. See Dolby AC-3

Dot product, 375, 683

Downsampling, 459–460, 462, 463

low-pass filter output, 466

DPCM-APB. See DPCM with Backward Adaptive

Prediction

DPCM-APF. See DPCM with Forward Adaptive Prediction

DPCM system. See Differential pulse code modulation

system

DPCM with Backward Adaptive Prediction (DPCM-APB),

360. See also Differential encoding

LMS algorithm, 361

optimum predictor coefficients, 360

residual value, 360

squared prediction error, 361

DPCM with Forward Adaptive Prediction (DPCM-APF),

359. See also Differential encoding

autocorrelation function, 359

parcor coefficients, 359

residual squared versus predictor coefficient, 360

DST. See Discrete sine transform

DTWT. See Discrete time wavelet transform

Dual prime motion compensation, 657–658

DWHT. See Discrete Walsh-Hadamard transform

Dynamic Markov compression (DMC), 179

cloning process, 181

cloning state, 179–180

encoding process, 180–181

implement algorithm issues, 180

three-state model obtained by cloning. 180

two-state model for, 179

E
Ear, 224

Eardrum. See Tympanic membrane

EBCOT. See Embedded Block Coding with Optimized

Truncation

Eigenvalues, 677, 680

18-tap Coiflet low-pass filter coefficients, 519

Embedded Block Coding with Optimized Truncation

(EBCOT), 547, 552

rate control, 560–561

Embedded coding, 539–540

in JPEG2000, 560

of quantization values, 551

Embedded zerotree wavelet coder (EZW coder), 532. See
also Set Partitioning in Hierarchical Trees (SPIHT)

algorithm, 670

data structure in, 532, 534

embedded coding, 539–540

isolated zero, 534

multiple-pass algorithm, 534–535

seven-level decomposition, 536–539

significance map coding, 534–535

ten-band decomposition, 532–533

3-bit quantizer, 533–534

three-level midtread quantizer, 535–536

wavelet coefficient scanning, 536

722 I N D E X

Empty cell problem, 315

Encoder implementation, 111– 112

active interval, 112–113

encoding algorithm using pseudocode, 113–114

example, 114–115

Total Count, 112
Total_Count, 114

Encoding procedure, 71–72

example, 72

flowchart, 72

End of codestream marker (EOC marker), 562

End of packet marker (EPH marker), 566

Enhanced reference picture selection mode, 661

Entropy-coded quantization, 247

entropy-constrained quantization, 289

nonlinear equations, 289

high-rate optimum quantization, 289–290

example, 291

inverse mapping, 291–292

optimum quantizer, 290–291

recursive indexing, 291

using Bennett integral, 290

using boundary conditions, 290

Lloyd-Max quantizer outputs, 288

output entropies of, 288–289

Entropy-constrained quantization, 249

nonlinear equations, 289

Entropy, 15–16

conditional entropy, 225

example, 225

differential entropy, 229

example, 230

EOC marker. See End of codestream marker

EPH marker. See End of packet marker

ESA. See European Space Agency

Escape symbol, 170–171

method C, 172

methods A and B, 170–172

European Space Agency (ESA), 2

Expander function, 282–283, 287

Expectation, 683–684

Expectation operator, 683

Extended Huffman codes, 58–59

examples, 59, 61

extended alphabet, 59–61

Huffman code, 61

External nodes, 33–34

Eye, 223

EZW coder. See Embedded zerotree wavelet coder

F
Facial action parameter (FAP), 670

Facial definition parameter (FDP), 670

Facsimile coding algorithms

MMR, 208

modified Huffman, 208

MR, 208

Facsimile encoding, 198

CCITT group 3 and 4, 200

group 4 encoding algorithm, 203

horizontal mode, 202

MH, 200

one-dimensional coding scheme, 200

pass mode, 202

recommendations T.4 and T.6, 200, 202–203

relative element address designate, 201

two-dimensional coding definitions, 201–202

two-dimensional scheme, 201

vertical mode, 202

group 1 apparatus, 199

group 2 apparatus, 199

group 3 apparatus, 199

group 4 apparatus, 199

JBIG, 203

arithmetic coding, 205

MH and MR, and MMR and JBIG comparison, 208

redundancy removal, 204, 205

resolution reduction, 203–204

JBIG2-T.88, 209

generic decoding procedures, 209–210

halftone region decoding, 211

symbol region decoding, 211

run-length coding, 199–200

Capon model for, 200

Fano, Robert, 43

FAP. See Facial action parameter

Fast Fourier transform (FFT), 395, 574

FDP. See Facial definition parameter

Federal Standard (FS) 1016, 603–605

FFT. See Fast Fourier transform
Filter, 248, 388–389, 452

aliasing, 453

band-pass, 389–390

characteristics, 453

eight-band filter bank, 457

eight-tap Johnston low-pass filter coefficients,457

eight-tap Smith-Barnwell low-pass filter coefficients, 458

FIR filters, 454

high-pass, 389–390

IIR filters, 454

low-pass, 388–389

magnitude transfer function, 452

magnitudes, 389–390

QMF, 456

ripple, 452

16-tap Johnston low-pass filter coefficients, 458

16-tap Smith-Barnwell low-pass filter coefficients, 459

32-tap Johnston low-pass filter coefficients, 458

Filter banks design

downsampling, 462–464

decomposition into two bands, 464

spectrum of downsampled low-pass filter output, 466

spectrum of outputs of ideal filters, 464

spectrum of source output, 464

input sequence decomposition, 463

input sequence reconstruction, 463

upsampling, 462, 465

I N D E X 723

analysis filters, 465–467

antialiasing filters, 465–467

imaging, 465

interpolation filters, 465–467

synthesis filters, 465–467

upsampled signal spectrum, 467

Fine quantization assumption, 352

Finite context model, 27

Finite impulse response (FIR), 454

FIR. See Finite impulse response

First-order Markov model, 27–28

Fixed-length code, 29

Fixed codebook, 612–613

Fixed information marker, 562

FLAC. See Free Lossless Audio Codec

Fletcher-Munson curves, 224

Forward adaptive quantization, 269

examples, 269

compressed 3-bit speech sequences, 270

Sena image, 271

16-bit speech sequence, 270

variance estimation procedure, 269

Forward transform, 414

Four-tap Daubechies filter, 530–532

4-tap Daubechies low-pass filter coefficients, 517

4 loading, 265–266

Fourier series, 380

coefficient, 382

expansion, 390

exponential form, 381

inner product definition, 381–382

representation, 382

trigonometric, 380

Fourier transform, 362. See also Discrete Fourier transform

(DFT); Z-transform

convolution theorem, 385

expansion, 382–383

function, 391

inverse, 384

modulation property, 384

Parseval’s theorem, 384

periodic extension, 382–383

time function, 383

Fovea, 223

Fractal coding approach, 592–593

Fractal compression, 624

decoding process, 627

domain blocks, 625

domain pool elements, 626–627

encoding procedure, 626–627

final reconstructed Elif image, 630

massic transformation, 625–626

original Elif image, 628

range blocks, 625

self-similarity, 624–625

six iterations, 629

union of transformations, 626

Free Lossless Audio Codec (FLAC), 86

Frequency of occurrence, 675, 676

FS. See Federal Standard
Fundamental sequence, unary code, 78

Functional markers, 563–564

G
G.722, 484

ADPCM system, 484

QMF coefficient values, 484–485

quantizer adaptation, 485

G.726 recommendation, 366

predictor

adaptive algorithms, 368–369

backward adaptive, 368

quantizer, 367

adaptation algorithm, 367

backward adaptive, 367

fixed, 367

locked scale factor, 367–368

unlocked scale factor, 367–368

Gabor transform, 498–499

Gain-shape vector quantization, 332

Gain-shape vector quantizers, 327

Gamma distribution, 241–242, 686

Gaussian distribution, 241–242, 686

Gaussian source function, 238

for Gaussian random variable, 240

Generalized BFOS algorithm, 324

Generalized Lloyd algorithm (GLA), 306

Generic compression scheme, 220

Generic decoding procedures, 209–210

generic refinement decoding procedure, 210

generic region decoding, 209–210

using adaptive arithmetic coding, 210

using contexts, 210

Generic regions, 209

GIF. See Graphics Interchange Format

GLA. See Generalized Lloyd algorithm

GOB. See Groups of block

Golomb codes, 75– 76

example, 76

Golomb-Rice codes, 75

GOP. See Group of pictures

Government Standard LPC-10. See Linear predictive coder
(LPC)

Grade 1 Braille, 2–3

Grade 2 Braille, 2–3

Grand Alliance HDTV Proposal, 658

Granular error, 263–264

Granular noise. See Granular error

Granular regions, 362

Graphics Interchange Format (GIF), 151

comparison of, 152

PNG, 152

Group of pictures (GOP), 653

Groups of block (GOB), 647–648, 658–659

Group Speciale Mobile (GSM), 604

GSM. See Group Speciale Mobile

gzip, 62, 143

724 I N D E X

H
H.262. See MPEG-2 video standard

H.264, 663. See also ITU-T recommendation H.263;

MPEG-1 video standard; MPEG-2 video standard;

Video compression

block diagram, 663

coding, 668–669

discrete Walsh-Hadamard transform, 667–668

intra prediction, 666

inverse transform matrix, 665–666

macroblock structure, 663

motion-compensated prediction, 663–665

prediction modes, 667

quantization, 666–668

transform matrix, 665–666

Halftone region, 209

decoding, 211

Hartleys, 14

Hewlett-Packard (HP), 190

HH image, 529–530

Hierarchical INTerpolation (HINT), 193

High-pass filters, 389–390

High-rate optimum quantization, 289–290

example, 291

inverse mapping, 291–292

optimum quantizer, 290–291

recursive indexing, 291

using Bennett integral, 290

using boundary conditions, 290

HINT. See Hierarchical INTerpolation

HL image, 529–530

Homogeneity, 385

Horizontal mode, 202

Hotelling transform, 418–419. See also Karhunen-Loéve

transform

HP. See Hewlett-Packard

Huffman, David, 43

Huffman and arithmetic coding comparison, 127

arithmetic code for two-symbol sequences, 128

average length, 127–128

example, 128

Huffman code design, 44

alternative way, 47

average length for code, 46–47

codewords, 44, 45

assignment, 46

Huffman code for original five-letter alphabet, 46

Huffman encoding procedure, 47

initial five-letter alphabet, 44

reduced four-letter alphabet, 45

reduced three-letter alphabet, 45

reduced two-letter alphabet, 46

Huffman code implementation, 61–62

decoding process states, 62–64

nine-letter alphabet, 62

state machine description, 63

Huffman code length, 56, 58

example, 56

using Jensen’s inequality, 57

using Kraft-McMillan inequality, 56–57

Huffman code optimality, 55

necessary conditions, 55–56

Huffman codes, 43

Huffman coding

adaptive Huffman coding, 67

decoding procedure, 73–74

encoding procedure, 71–72

update procedure, 66, 70

algorithm, 43

optimum prefix codes observations, 43–44

requirement, 44

second observation holds, 44

alternative way, 47

average length for code, 46–47

canonical Huffman codes, 50

binary tree, 50–51

codewords, 50–51

conditions, 51

generating code, 50–51

procedure, 51–52

tree structure, 52

two Huffman trees, 49

codewords, 44–46

extended Huffman codes, 58–59

examples, 59, 61

extended alphabet, 59–61

Huffman code, 61

for five-letter alphabet, 44, 46

Golomb codes, 75–76

Huffman code length. See Huffman code length

Huffman code optimality. See Huffman code optimality

Huffman encoding procedure, 47

implementation. See Huffman code implementation

length-limited Huffman codes, 54 –55

example, 54

minimum variance Huffman codes, 47

binary Huffman tree building, 48

binary tree of depth four, 50

buffer, purpose of, 48–49

Huffman encoding procedure, 48

minimum variance Huffman code, 49

reduced four-letter alphabet, 48

reduced three-letter alphabet, 49

reduced two-letter alphabet, 49

two Huffman trees, 48–49

variable-length code, 48–49

nonbinary Huffman codes, 65–66

code tree, 67

example, 65

reduced five-letter alphabet, 66

reduced three-letter alphabet, 67

sorted six-letter alphabet, 66

ternary code for six-letter alphabet, 67

reduced four-letter alphabet, 45

reduced three-letter alphabet, 45

reduced two-letter alphabet, 46

Rice codes, 76–77

CCSDS recommendation, 77

I N D E X 725

Tunstall codes, 79–80

Huffman coding application, 81. See also Huffman coding

audio compression, 85

application, 85–86

audio material, 85

FLAC, 86

lossless image compression, 81–82

adaptive Huffman codes, 83

Huffman codes on pixel difference values, 83

Huffman codes on pixel values, 82–83

test images, 82–83

text compression, 83–84

using Huffman codes, 84

Huffman encoding procedure, 47

minimum variance, 48

Huffman table marker, 439

Human visual system (HVS), 222–223

description, 224

disheartening prospects, 223

eye, 223

eye intensity, 223–224

monochromatic vision model, 224

weber ratio, 223

HVS. See Human visual system

I
I frames, 652

ICT. See Irreversible component transform

Identity matrix, 675, 678

IEC. See International Electrotechnical Commission

Ignorance model, 25

iid. See Independent, identically distributed

IIR. See Infinite impulse response

iLBC coder, 613

all-pass filters, 616

autocorrelation coefficient computation, 614

codebook generation, 617

goal, 615–616

LSF representation, 614–615

packet loss effects, 613–614

perceptual weighting filter, 616

PLC, 617–618

residual sequence, 616

using DPCM system, 616

Image and tile size marker (SIZ marker), 562

Image coding, 369. See also Speech coding

differential encoding scheme, 369

predicted value, 369–370

reconstructed images, 370

signal-to-noise ratio, 369–370

Image compression, 623. See also Speech compression; Video

compression

atomic blocks, 630

comparison of, 152, 155

fractal compression, 624

decoding process, 627

domain blocks, 625

domain pool elements, 626–627

encoding procedure, 626–627

final reconstructed Elif image, 630

massic transformation, 625–626

original Elif image, 628

range blocks, 625

self-similarity, 624–625

six iterations, 629

union of transformations, 626

GIF, 151

Huffman codes for, 155

PNG, 152–153

quadtree partitioning, 630–631

representations codes, 154

using Huffman code, 153

using pixel values, 153

Image compression application, 486

alternate four subimages, 488

filtered and decimated output, 486–487

four subimages, 486–487

image decomposition

eight-tap Johnston filter decomposition, 488–489

eight-tap Smith-Barnwell filter decomposition,

489–490

16-tap Johnston filter decomposition, 488–489

JPEG, 432

coding, 434

JPEG File Interchange Format, 437–438

quantization, 433–434

transform, 432

sample image, 486–487

subband coding, 490

DPCM and scalar quantization, 492

eight-tap John-Ston filter, 490, 491

eight-tap Smith-Barnwell filter, 491

Image transmission system, 592

IMBE. See Improved MBE

Immittance Spectral Pairs (ISP), 611–612

Improved MBE (IMBE), 608

Improved PB-frames mode, 661

Impulse function, 387–388

Impulse response

Dirac delta function, 387–388

impulse function, 387–388

sifting property, 388

time function, 388

Independent, identically distributed (iid), 687

Inflate algorithm, 62

Infinite impulse response (IIR), 454

Informational marker, 566

Information theory, 13–15, 225

average information derivation, 20

classic paper, 21

example, 20

formula, 23–24

identifying occurrence, 21–22

monotonically increasing function, 23

properties, 20

rational probabilities, 23–24

average mutual information, 228–229

example, 229

mutual information, 228

726 I N D E X

conditional entropy, 225–226

differential entropy, 229

discrete random variable, 229–230

of Gaussian pdf, 231

of random variable, 230

self-information, 229

lengths, sequences of, 16–17

lossy compression approach, 225

mathematical definition, 14

using logarithm, 15

wealth of nations, 18

Inner product, 379, 683

Instantaneous code, 31

Integer implementation, 111

decoder implementation, 117

encoder implementation, 111–112

Integer pixel compensation, 659

Internal nodes, 33–34

International Consultative Committee on Radio (CCIR),

640

International Electrotechnical Commission (IEC), 130,

651–652

International Standards Organization (ISO), 130, 184,

651–652

International Telecommunication Union (ITU), 130, 184

Intra prediction, 666

Inverse Fourier transform, 384

Inverse transform matrix, 665–666

Irreversible component transform (ICT), 548

ISO. See International Standards Organization
Isolated zero, 534

ISP. See Immittance Spectral Pairs

ITU-R recommendation BT.601–602, 640

ITU-T G.722.2. See Wideband speech compression

ITU-T G.729 standard, 618

autocorrelation coefficients, 618–619

bit allocation per frame, 621

codebook vectors, 620–621

encoding of speech for, 619

excitation signal identification, 620

pulses, 621

weighting filter, 620

ITU-T H.264. See H. 264

ITU-T recommendation H. 261, 644. See also Video

compression

ITU-T H.261 encoder, 644

motion compensation, 644

block size effect on, 645

CBP, 648–649

GOB macroblocks, 647–648

ITU-TH. 261 algorithm, 649

loop filter, 646

macroblock pixel encoding, 645–646

quantization and coding, 647

rate control, 649

trade-off balancing, 645

transform, 647

ITU-T recommendation H.263, 658. See also Video

compression

advanced intra coding mode, 661

advanced prediction mode, 661

alternative inter VLC mode, 662–663

deblocking filter mode, 661

enhanced reference picture selection mode, 663

GOB, 658–659

I frames, 659

improved PB-frames mode, 661

last nonzero coefficient, 659

median, of motion vectors, 659

modified quantization mode, 663

P frames, 659

PB-frames mode, 661

reduced-resolution update mode, 662

reference picture

resampling, 662

selection mode, 662

SNR scalability mode, 662

spatial scalability mode, 662

standardized H.263 formats, 659

syntax-based arithmetic coding mode, 660

temporal scalability mode, 662

unrestricted motion vector mode, 660

video compression algorithm, 660

ITU. See International Telecommunication Union

J
Japan Aerospace Exploration Agency (JAXA), 2

JAXA. See Japan Aerospace Exploration Agency

Jayant quantizer, 271–273, 276

multiplier, 272

multiplier functions for 2-bit quantizer, 275

operation of, 273

output levels for, 272–273

performance of, 276

JBIG2-T.88, 209

decoder requirements, 209

encoder types, 209

generic decoding procedures, 209–210

refinement decoding procedure, 210

region decoding, 209–210

using adaptive arithmetic coding, 210

using contexts, 210

halftone region decoding, 211

symbol region decoding, 211

JBIG algorithm. See Joint Bi-level Image Experts Group

algorithm

JFIF. See JPEG File Interchange Format

jnd. See Just noticeable difference
Joint Bi-level Image Experts Group algorithm (JBIG

algorithm), 125, 203

arithmetic coding, 205

low-resolution layer, 205–207

neighborhoods symbols, 207

QM coder, 207

using contexts, 207–208

image coding schemes comparison, 208–209

JBIG comparison, 208–209

I N D E X 727

MH comparison, 208–209

MMR comparison, 208–209

MR comparison, 208–209

redundancy removal, 204

deterministic prediction, 205

typical prediction, 204

resolution reduction, 203–204

expression, 204

JBIG specification, 204

using pixels, 204

Joint cumulative distribution function, 687

Joint Photographic Experts Group (JPEG), 184, 428

coding, 434

JPEG File Interchange Format, 437–438

quantization, 433–434

transform, 432

Journal of Educational Psychology, 413
JP2 file format, 566–567

JPEG-LS, 190–191

coding procedures, 190

comparison, 191–192

prediction algorithm, 190

prediction error, 191

SIGN variable, 191

JPEG. See Joint Photographic Experts Group

JPEG 2000 bitstream, 561–562. See also JPEG 2000

standard

bitstream markers, 566

codestream organization, 562

delimiting markers, 562

fixed information marker, 562

functional markers, 563–564

informational marker, 566

JP2 file format, 566–567

organization of markers, 565

PLT and PLM markers, 564–565

pointer markers, 564

PPM marker, 565–566

SIZ marker parameter, 563

JPEG 2000 standard, 547. See also Wavelet-based image

compression

algorithm, 547

color component transform

forward ICT, 548

forward reversible transform, 548

ICT, 548

inverse ICT, 549

RCT, 548

EBCOT, 547

PCRD optimization, 547–548

quantization, 551

discarding bitplanes, 551

embedded coding, 551

tiling, 549

wavelet transform

wavelet filter types, 550

reversible, 549–550

irreversible, 550

9/7 transform, 549–550

JPEG File Interchange Format (JFIF), 437–438

syntax of, 438

JPEG predictor, 185

JPEG standard, 184

comparison of, 185–186

compressed file size, 185

predictor, 185

predictive schemes, 184–185

Just noticeable difference (jnd), 223

K
Karhunen-Loéve transform, 418

example, 419

kbits per second (kbps), 194–195

kbps. See kbits per second
KLT. See Karhunen-Loéve transform

Kolmogorov, A.N., 37

Kolmogorov complexity, 37

Kraft-McMillan inequality, 34–35, 37

full binary tree of depth four, 36

theorems, 34–35

Kraft-McMillan sum, 53–54

L
Laplacian distribution, 241–242, 686

Lapped orthogonal transform (LOT), 448

LaTeX, character pairs in, 138

Lattice vector quantizer, 328–329

A2 lattice, 330

average squared error, 328

D2 lattice, 330–331

dimensions, 329

example, 331

hexagonal lattice, 329

possible quantization regions, 328

problems, 331

square and circular quantization regions, 328–329

using lattices, 329

Lattices, 329

LBG algorithm. See Linde-Buzo-Gray algorithm

Least mean squared algorithm (LMS algorithm), 361

Leaves. See External nodes
Lempel-Ziv complexity (LZ complexity), 156–158

DNA sequence, 158

usage, 158

Length-limited Huffman codes, 52–54

example, 54

Huffman code, 54

length-limited Huffman code, 55

Less Probable Symbol (LPS), 120–124

Letters, 15–16, 29

Levinson-Durbin algorithm, 600–601

Lexicographic ordering, 97, 176

LH image, 529–530

LHarc, 143

Lifting, 523

high-frequency difference sequence generation, 524

728 I N D E X

implementation coefficients, 526–527

odd- and even-indexed component decomposition,

524–525

Linde-Buzo-Gray algorithm (LBG algorithm), 297, 306, 309

cluster compression algorithm, 306

codebook

design of, 304

progression of, 311

compression measures, 317–318

empty cell problem, 315

examples, 303, 311, 316

final codebook, 310

final state, 310

for image compression, 315–316

initial codebook effects, 313

initial output points, 314

initialization, 309

k-means algorithm, 304, 306

Lloyd algorithm functions, 304–305

Sinan image, 316, 319

splitting approach, 309–312

two-level vector quantizer using splitting approach, 312

using PNN algorithm, 314

vector quantizer, 306

after one iteration, 308

alternate initial set of, 309

final state of, 309

initial set of output points, 307

initial state of, 308

training set for, 307

Linear predictive coder (LPC), 596312597. See also Speech

compression

AMDF, 598, 599

parameter transmission, 602–603

pitch period estimation, 597–598

speech synthesis model, 596

synthesis, 603

vocal tract filter, 599

autocovariance approach, 599–600

Cholesky decomposition, 602

covariance method, 601–602

filter coefficient change, 601–602

Levinson-Durbin algorithm, 600–601

PARCOR coefficients, 600–601

Toeplitz matrix, 600

voiced/unvoiced decision, 597

Linear system models, 243

AR process, 244

AR source, 244

autocorrelation function of, 245

sample function, 245–247

digital signal-processing terminology, 243

equations, 243

filters, 388–389

band-pass, 389–390

high-pass, 389–390

low-pass, 388–389

magnitudes, 389–390

homogeneity, 385

impulse response

Dirac delta function, 387–388

impulse function, 387–388

sifting property, 388

time function, 388

sample-to-sample correlation, 243–244

scaling, 386

superposition, 386

time invariance, 386

transfer function, 386–387

using ARMA model, 243

Line spectral frequency (LSF), 614–615

LIP. See List of insignificant pixels
LIS. See List of insignificant sets
List of insignificant pixels (LIP), 542

List of insignificant sets (LIS), 542

List of significant pixels (LSP), 542

LL image, 529–530

LMS algorithm. See Least mean squared algorithm

LNT Pn, 205
Locked scale factor, 367–368

LOCO. See Low complexity profile

Long division, 403–404

Long term prediction (LTP), 586

Lookahead buffer, 139–140

Lossless compression, 4

algorithmic information theory, 37

Kolmogorov complexity, 37–38

coding, 29

Kraft-McMillan inequality, 34

prefix codes, 33

uniquely decodable codes, 30

composite source model, 29

compression requirements, 5

information theory, 13–14

average information derivation, 20

example, 15

Markov models, 26

mathematical preliminaries for, 13

MDL, 38–39

pData, 5

physical models, 25

probability models, 25

radiological image, 4

reconstructed data, 5

text compression, 4

Lossless image compression, 81–82

adaptive Huffman codes, 83

CALIC scheme, 186

algorithm, 190

alphabet representation, 189–190

grayscale images, 186

labeling neighbors of, 186–187

pseudocode, 187

recursive indexing, 189

using pixel, 186–188

using prediction, 188–189

conditional average prediction, 192–193

pixels, 192–193

ppm approach, 192

prediction error entropies, 193

I N D E X 729

facsimile encoding, 198–199

CCITT Group 3 and 4, 208

JBIG, 199, 203–205, 209–211

JBIG2-T. 88, 209

run-length coding, 200

Huffman codes

on pixel difference values, 83

on pixel values, 82–83

JPEG-LS. See JPEG-LS

JPEG standard, 184

comparison of, 185–186

compressed file size, 185

JPEG predictor, 185

predictive schemes, 184–185

MRC-T.44. See MRC-T.44

multiresolution approaches, 193

progressive image transmission, 193–194

test images, 82–83

Lossy coding, mathematical preliminaries for

distortion criteria, 220–221

auditory perception, 224

human visual system, 223

information theory, 225

average mutual information, 228–229

conditional entropy, 225–226

differential entropy, 229–231

example, 225

models, 240

linear system models, 243–244

physical models, 248

probability models, 240

rate distortion theory, 232

binary source, 236

examples, 233, 235

Gaussian source, 238

Lossy compression techniques, 4–6

applications, 5

reconstruction, 5

LOT. See Lapped orthogonal transform

Low-pass filters, 388–389

Low complexity (LOCO) profile, 190

LPC. See Linear predictive coder
LPS. See Less Probable Symbol

LSF. See Line spectral frequency
Lsiz, 562

LSP. See List of significant pixels
LTP. See Long term prediction

Luminance component, 640

LZ algorithms, 145–146

LZ complexity. See Lempel-Ziv complexity

LZ77 approach, 139–140

Achilles heel of, 143

decoding triple, 142

encoding process, 141

encoding using approach, 140

lookahead buffer, 139–140

LZSS, 143

offset, 139–140

possibilities during coding process, 140

search buffer, 139–140

theme, variations on, 143

LZ78 approach, 144

Achilles’ heel of LZ77, 143

decoding, 147

completion of fifth entry, 150

constructing dictionary while decoding, 149

constructing fifth entry, 149–150

constructing LZW dictionary decoding, 148

final dictionary for, 149

initial dictionary, 148

dictionary, development of, 145

encoding, 145

constructing, LZW dictionary, 146

encoding, LZW dictionary for, 147

initial LZW dictionary, 146

initial dictionary, 144

LZ78 theme-LZW algorithm, variations on, 145–146

using LZ77 approach, 143

LZW algorithm, 145–146

decoding, 147

constructing dictionary while decoding, 149

constructing fifth entry, 149–150

constructing LZW dictionary decoding, 148

fifth entry, completion of, 150

final dictionary for, 149

initial dictionary, 148

encoding, 145

constructing, LZW dictionary, 146

encoding, LZW dictionary for, 147

initial LZW dictionary, 146

LZW applications, 150–151

GIF, 151

comparison of, 152

PNG, 152

PNG, 153

comparison of, 155

Huffman codes for, 152–153

representations codes, 154

using Huffman code, 153

using pixel values, 155

UNIX compress, 151

V.42 bis, 153, 155–156

CCITT recommends, 156

control codewords in, 155

encoder STEPUP, 156

using compression algorithm, 153, 155

M
M coder, 124, 126–127

LPS probability, 127

M-band QMF filter banks

equivalent structures, 475–477

input sequence decomposition, 474–475

spectral characteristics, 475–476

Magnetic resonance images (MRI), 193–194

Magnitude transfer function, 452

Make-up codes, 200

Markov models

discrete time Markov chain, 26

730 I N D E X

example, 27

finite state process, 26

linear filter, 26

in text compression, 27–28

context model, 28

ppm algorithm, 28

using first-order Markov model, 27–28

using second-order model, 28

two-state Markov model for binary images, 27

uses, 26

Masking, 224

Matrix, 675

adjoint, 679–680

characteristic equation, 680

column, 682

determinant, 678–679

eigenvalues, 677, 680

elementary operations, 678

identity, 675, 678

inner product, 683

operations, 675–677

outer product, 683

row, 682

square, 675

transpose, 682–683

MBE. See Multiband excitation coder

MDCT. See Modified discrete cosine transform

MDCT frames, 580

bit reservoir, 580

distortion control loop, 580

following frame, 580

previous frame, 580

rate control loop, 580

MDCT window function, 577–579

long window, 577–579

sequence of windows, 577–579, 588

short windows, 577–579

start window, 577–579

stop window, 577–579

window switching process, 577–579

MDL principle. See Minimum description length principle

Mean-removed vector quantization, 332–333

Sinan image using codebook, 332–333

Mean, 685

Mean squared error (mse), 221–222

Mean squared quantization error (msqe), 254–255

Measure of belief, 676

MELP. See Mixed excitation linear prediction

Method of principal components, 413

MH. See Modified Huffman

MH comparison, 208–209

Midrise quantizer, 257–258

Midtread quantizer, 257–258

Minimum description length principle (MDL principle),

38–39

Minimum variance Huffman codes, 47

binary Huffman tree building, 46

binary tree of depth four, 50

buffer, purpose of, 48–49

Huffman encoding procedure, 48

minimum variance Huffman code, 49

reduced four-letter alphabet, 48

reduced three-letter alphabet, 49

reduced two-letter alphabet, 49

two Huffman trees, 48–49

variable-length code, 48–49

Mirror condition, 471

Mismatch effects, 266

Demonstration, 267

msqe function of, 268

step size, 268

types, 266–267

variance mismatch on, 267

Mixed excitation linear prediction (MELP), 608. See also
Code-excited linear prediction (CELP)

adaptive spectral enhancement filter, 611

decoder, 608–609

fractional offset, 609–610

normalized autocorrelation, 609–610

peakiness, 610

pitch period, 608

prediction residual, 610–611

Mixed excitation linear prediction, 593

Mixed Raster Content (MRC), 211

MMR. See Modified modified READ

Model-based coding, 649

AU, 650

global motion and local motion, 650

three-dimensional, 650

Modified discrete cosine transform (MDCT), 439, 577, 587

frames, 580

reconstructed sequence from 10 DCT coefficients, 579

source output sequence, 578

transformed sequence, 578

window function, 577–579

Modified Huffman (MH), 200

Modified modified READ (MMR), 203

Modified quantization mode, 663

Modified READ (MR), 201

Modulation property, 384

More Probable Symbol (MPS), 120–124

Morse code, 2–3, 29

Most significant bit (MSB), 113

Mother function, 501–502

Mother wavelet, 500–501

Motion-compensated prediction, 657, 663–665

Motion compensation, 634–635, 644

block-based, 636

block size effect on, 645

CBP, 648–649

frames, difference between, 636

doubled image, 637–638

GOB macroblocks, 647–648

ITU-TH. 261 algorithm, 649

loop filter, 646

macroblock pixel encoding, 645–646

motion-compensated prediction, 637

motion vector, 636

quantization and coding, 647

rate control, 649

I N D E X 731

trade-off balancing, 645

transform, 647

video sequence frames, 635

Motion vector, 636

Motion video, 633–634

Move-to-front coding (mtf coding), 174, 177–178

Moving Picture Experts Group (MPEG), 485, 651–652

MP-LPC. See Multipulse linear predictive coding

MPEG-1 algorithm, 641

MPEG-1 video standard, 652. See also MPEG-2 video

standard; Video compression

anchor frames, 652–653

B frames, 652–653

bitstream order, 653–654

CPB, 655

display order, 653–654

GOP, 653

I frames, 652

P frames, 652–653

rate control, 654–655

typical sequence of frames, 654

VHS quality images, 655

MPEG-2 AAC. See also MPEG-4 AAC

block switching and MDCT, 583

encoder, 582

profiles, 585

quantization and coding, 585

spectral processing, 583

prediction_data_present bit, 583–584
prediction_used bit, 583–584

predictor, 583–584

temporal noise shaping, 584–585

TNS, 583–584

stereo coding, 585

MPEG-2 video standard. See also MPEG-1 video standard;

Video compression

base bitstream, 655–656

dual prime motion compensation, 657–658

Grand Alliance HDTV Proposal, 658

layered approach, 656

motion-compensated prediction modes, 657

profile-level combinations, 657

profiles, 655–656

scanning pattern for DCT coefficients, 658

16 · 8 motion compensation, 657–658

MPEG-4 AAC, 586

BSAC, 587

LTP, 586

PNS, 586

TwinVQ, 586

MPEG-4 advanced video coding. See H.264

MPEG-4 Part 10. See H.264

MPEG-4 Part 2, 669. See also H.264; MPEG-1 video

standard; MPEG-2 video standard; Video

compression

EZW algorithm, 670

motion-compensation algorithms, 669–670

video coding algorithm, 669–670

MPEG. See Moving Picture Experts Group

MPEG audio coding

layer I coding

frame structure for, 574–575

MPEG-1 and MPEG-2, frequencies in, 573

scale factor, 573–574

layer II coding

frame structure, 576

layer I and II coding scheme difference, 576

layer III coding

MDCT, 577

window function, 577–579

MPRG AAC, 581–582

decoder tools, 581

MPS. See More Probable Symbol

MR. See Modified READ

MRA. See Multiresolution analysis

MRC. See Mixed Raster Content

MRC-T.44, 211–212

background layer, 212

data types, 213

foreground layer, 213

mask layer, 212

stripes, 212–213

T.44 recommendation, 211–212

MRI. See Magnetic resonance images

MSB. See Most significant bit

mse. See Mean squared error

msqe. See Mean squared quantization error

mtf coding. See Move-to-front coding

Multiband excitation coder (MBE), 608

Multiple-pass algorithm, 534–535

Multipulse linear predictive coding (MP-LPC), 603

Multiresolution analysis (MRA), 507–508

Multiresolution approaches, 193

HINT, 193, 194

progressive image transmission, 193–194

Multistage vector quantization, 334

different vector quantizer, 334–335

quantization rule, 335

RIVQ, 335

three-stage vector quantizer, 334

using LBG vector quantizers, 334–335

Multistage vector quantizer, 623

Mutual information, 228

N
NASA. See National Aeronautics and Space Administration

National Aeronautics and Space Administration (NASA), 2

NFC. See Noise feedback coding

Nine 9/7 transform, 550

Noise feedback coding (NFC), 365–366

Noise shaping analysis, 622–623

Nonbinary Huffman codes, 65–66

code tree, 67

example, 65

reduced five-letter alphabet, 66

reduced three-letter alphabet, 67

sorted six-letter alphabet, 66

732 I N D E X

ternary code for six-letter alphabet, 67

Nonstationary signal, 498

Nonuniform quantization, 277–278

companded quantization, 282–283

nonuniform midrise quantizer, 277

symmetric, 279

nonuniform quantizer, 278

pdf-optimized quantization, 278

decision boundary, 278–280

equation, 279–280

mismatch effects, 281

using Leibniz integral rule, 278

quantizer boundary, 280

reconstruction levels, 280

Nonuniform quantizer, 277–278

Nonuniform sources, 261–262

example, 262

overload and granular regions for, 265

quantization noise for, 264

uniform midrise quantizer, 263

quantization error for, 265

Non-Tunstall code, 80

North pixel, 186

Not yet transmitted (NYT), 66

Nth-order autoregressive model (AR(N) model), 243

Nyquist rule. See Nyquist theorem

Nyquist theorem, 453

NYT. See Not yet transmitted

O
OBMC. See Overlapped Block Motion Compensation

Offline adaptive approach, 268–269

Offset, 139–140

Ondelettes, 501–502. See also Wavelets

One-dimensional coding scheme, 200

One-layer stripe (1LS), 212–213

Online adaptive approach, 268–269

1LS. See One-layer stripe
Operational distortion-rate function, 428

Operational rate-distortion function, 428

Orthogonal basis set, 379–380

Orthonormal basis set, 379–380

Orthonormal transform, 415

Outer product, 683

Overdecimated filter bank, 477

Overlapped Block Motion Compensation (OBMC), 661

Overload error, 263–264

Overload noise. See Overload error

Overload probability, 263–264

P
Packet length marker (PLM), 564–565

Packet Loss Concealment (PLC), 617

Packet video, 670. See also Video compression

ATM networks, 671

compression issues in, 671–672

transmission capacity availability, 671

compression algorithms, 672

analysis filter bank, 673

progressive transmission algorithms, 672–673

reconstructed frame, 673

splitting, 672

Pairwise nearest neighbor algorithm (PNN algorithm),

313–314

PARCOR coefficients. See Partial correlation coefficients

Parcor coefficients, 359

Parkinson’s First Law, 2

Parseval’s theorem, 384

Partial correlation coefficients (PARCOR coefficients),

600–601

Partial fraction expansion, 399–400

Pass mode, 202

PB-frames mode, 661

PCRD. See Post Compression Rate Distortion

Pdf-optimized quantization, 278

decision boundary, 278–280

equation, 279–280

mismatch effects, 281–282

properties, 280, 281

using Leibniz integral rule, 278

pdf. See Probability density function

Peak-signal-to-noise-ratio (PSNR), 222

Perceptual noise substitution (PNS), 586

Perfect reconstruction (PR), 467

applications, 469–470

conditions, 467

output of the low-pass filter, 468

power symmetric FIR filters, 472–474

two-channel PR quadrature mirror filters

characteristics, 472

mirror condition, 471

two-channel subband decimation and interpolation, 468

Periodic extension, 382–383, 390, 391

P frames. See Predictive coded frames

Physical models, 25, 248

data generation, 25

speech production, 248

filter, 248

vocal cords, 248

Pitch period, 365, 597–598

estimation, 580–581

PKZip, 143

PLC. See Packet Loss Concealment

PLM. See Packet length marker

PNG, 143. See also Portable network graphics

PNN algorithm. See Pairwise nearest neighbor algorithm
PNS. See Perceptual noise substitution
POD marker. See Progression order change default marker

Pointer markers, 564

Polar vector quantizers, 327–328

Polyphase decomposition, 477

two-band subband coder

analysis portion, 477, 479

synthesis portion, 479–481

Portable network graphics (PNG), 152

comparison of, 155

Huffman codes for, 155

representations codes, 154

I N D E X 733

using Huffman code, 153

using pixel values, 153

Post Compression Rate Distortion (PCRD), 547

Power symmetric FIR filters, 472–473

ppma algorithm, 170

ppm algorithm. See Prediction with partial match algorithm

PPM marker, 565–566

PR. See Perfect reconstruction
Prediction approach, 190

Prediction modes, 667

Prediction with partial match algorithm (ppm algorithm), 28,

165

basic algorithm, 165–171

context length, 172

using ppm algorithm, 172–173

escape symbol, 170–171

method C, 172

methods A and B, 170–172

exclusion principle

basic principle, 174

encode process, 173, 174

unit interval into subintervals, 173

Predictive coded frames (P frames), 652–653

Predictive coding schemes, 8

Predictor

adaptive algorithms, 368–369

backward adaptive, 368

Prefix codes, 33

binary trees for different codes, 33

internal nodes, 33–34

root node, 33–34

Probability

axiomatic approach, 678–679

Bayes’ rule, 679

binary symmetric channel, 677

distribution functions, 681–683

expectation, 683–684

frequency of occurrence, 675–676

mean, 685

measure of belief, 676

random variables, 680

realization, 680

second moment, 685

statistically independent, 677

variance, 685

Probability density function (pdf), 251, 682

Probability models, 240–243

assumption, 25

candidate distributions, 242

estimate of distribution, 242

gamma distribution, 241–242

Gaussian distribution, 241, 242

ignorance model, 25

Laplacian distribution, 241, 242

probability model, 25

uniform distribution, 241, 242

Product code vector quantizers. See Gain-shape vector

quantizers

Progression order change default marker (POD marker), 564

Progressive compatible sequential mode, 203

Progressive image transmission, 193–195

example, 194

comparison between, 197

Sena image, 195

pyramid structure for, 198

Progressive transmission algorithms, 672–673

Pruned TSVQ, 324

Pruning, 324

Psychoacoustic model, 572

nontonal components, 572–573

postprocessing, 573

tonal components, 572–573

PSNR. See Peak-signal-to-noise-ratio
Pyramid schemes, 196

for progressive transmission, 198

Pyramid vector quantization, 326–327

gain-shape vector quantizers, 327

SNR value, 327

Q
QCC marker. See Quantization component marker

QCD marker. See Quantization default marker

QCIF (Quarter CIF), 641

QM coder, 124, 125

JBIG algorithm, 125

LPS probability, 125

scaling and rescaling process, 125

QMF. See Quadrature mirror filters

Quadrature mirror filters (QMF), 456, 469–470

Quadtree partitioning, 630, 631

Quantization, 251, 252

error, 255

table marker, 439

transform coefficients, 424, 426

Quantization component marker (QCC marker), 564

Quantization default marker (QCD marker), 564

Quantization error, 255

for uniform midrise quantizer, 265

Quantization noise. See Quantization error

Quantization problem, 252, 253

additive noise model of quantizer, 256

codeword assignment, 256

D/A converter, 253–254

digitizing sine wave, 253

encoder mapping for, 252–253

3-bit D/A converter, 253–254

3-bit encoder, 252

quantizer, 252

input-output map, 254

Quantization table, 433, 434

Quantizer, 367

adaptation algorithm, 367

backward adaptive, 367

fixed, 367

locked scale factor, 367, 368

734 I N D E X

unlocked scale factor, 367, 368

Quantizer distortion. See Quantization error

Quarter CIF. See QCIF

R
Random variables, 680

Rate, 6

Rate dimension product, 318

Rate distortion theory, 217, 218, 232

binary entropy function, 237

binary source function, 236

compression scheme for, 234

example, 233, 235

Gaussian source function, 238, 240

height and weight measurements, 233

RCT. See Reversible component transform

READ. See Relative Element Address Designate

readau.c, 356

Reconstruction levels, 255

Recursive bit allocation algorithm, 426

Recursive indexing, 189, 291

Recursively indexed vector quantizer (RIVQ), 335

Reduced-resolution update mode, 662

Redundancy removal, 204

deterministic prediction, 205

typical prediction, 204–205

usage, 205

using pixels, 205

Reference picture resampling, 662

Reference picture selection mode, 662

Region of interest marker (RGN marker), 564

Regular pulse excitation with long-term prediction

(RPE-LTP), 604

Relative Element Address Designate (READ), 201

Residual model, 6–7

Residual sequence, 184

Residual vector quantizers, 334

Resolution reduction, 203–204

expression, 204

JBIG specification, 204

using pixels, 204

Reversible component transform (RCT), 548

RGN marker. See Region of interest marker

Rice, Robert F., 76–77

Rice codes, 76–78

CCSDS recommendation, 77

fundamental sequence, 78

mapping, 77

preprocessor functions, 77

second extension option, 78

split sample option, 78

zero block option, 78

Risannen, Jorma, 38

RIVQ. See Recursively indexed vector quantizer

Rods, 223

Root lattices, 691, 692, 698

Row matrix, 682

RPE-LTP. See Regular pulse excitation with long-term

prediction

RPE. See Scheme regular pulse excitation

Rsiz, 562

Run-length coding, 199–200

Capon model for, 200

Run-length mode, 552

S
Sample average, 684

Sampling theorem, 390

frequency domain view

Fourier series expansion, 390

Fourier transform function, 391

function reconstruction, 391–392

periodic extension, 390, 391

time domain view

aliased reconstruction, 393

aliasing, 394

Fourier transform, 393

sampled function, 392–393

sampling effect, 393

signal samples, 394

Scalar multiplication, 376

Scalar quantization

adaptive quantization, 268

backward adaptive quantization, 271, 273, 275

forward adaptive quantization, 269

entropy-coded quantization, 287–288

entropy coding of Lloyd-Max quantizer outputs, 288

entropy-constrained quantization, 289

high-rate optimum quantization, 289–291

nonuniform quantization, 277–278

companded quantization, 282–283

pdf-optimized quantization, 278, 281

quantization problem, 252, 253

uniform quantizer, 257–258

mismatch effects, 266

nonuniform sources, 261–262

uniformly distributed source, 258–260

Scalar quantization, and advantages, 298

individual height and weight, 298

eight-level, representations of, 301

height-weight vector quantizer, 300

scalar quantizers, 299

two-dimensional vector quantizer, 300

input-output map for, 302

modified two-dimensional vector quantizer, 303

Scalar quantizers, 252

Scaling, 386

Scaling function, 504

approximations of function, 506–507

Haar scaling function, 507

sample function, 506

triangle scaling function, 508

Scheme regular pulse excitation (RPE), 604

Search buffer, 139–140

Second extension option, 78

Second moment, 685

Self-information, 13–14

Separable transform, 415

I N D E X 735

Set Partitioning in Hierarchical Trees (SPIHT), 540. See also
Embedded zerotree wavelet coder (EZW coder)

coordinate sets of coefficients, 540, 541

data structure, 540, 541

LSP and LIP versus LIS, 542, 543

Sinan image reconstruction, 546

Seven-level decomposition, 536–539

Shannon, Claude Elwood, 13–14

Shannon lower bound, 239

Shifting theorem, 405, 406

Short-term Fourier transform (STFT), 498–499

basis functions, 499

nonstationary signal, 498

problems, 499

three wavelet basis functions, 499, 500

Side information, 268–269

Signal-to-noise ratio (SNR), 221–222, 355–356

Signal-to-prediction error ratio (SPER), 355–356

Significance map coding, 534–535

SILK coder, 621

encoding of speech, 622

LSF coefficients, 623

multistage vector quantizer, 623

noise shaping analysis, 622–623

operating modes, 622

signal filtering, 622

variable-rate entropy coder, 623

Single-letter context. See First-order Markov model

Sinusoid, 346

encoding system, 351

quantization process, 350

quantizer designing, 345, 346

and reconstructions, 350, 351

sample-to-sample differences, 346

Sinusoidal coder, 606. See also Speech compression

coding techniques, 608

frequency transmission, 607–608

MBE, 608

STC, 608

Sinusoidal transform coder (STC), 608

6-tap Coiflet low-pass filter coefficients, 518

16 · 8 motion compensation, 657–658

SIZ marker. See Image and tile size marker

Skewed, 163

SLNT Pn, 205
Slope overload regions, 362

SNR. See Signal-to-noise ratio
SNR scalability mode, 662

SOC marker. See Start of codestream marker

SOD marker. See Start of data marker

Solomonoff, R., 37

SOP marker. See Start of packet marker

SOT marker. See Start of tile-part marker

Sound pressure level (SPL), 572–573

Source coder, 219, 220

Spatial scalability mode, 662

Spatial orientation trees, 540

Spectral masking, 571

audibility threshold changes, 571

critical band, 570–571

Spectral processing, 583

prediction_data_present bit, 583–584
prediction_used bit, 583–584

predictor, 583–584

temporal noise shaping (TNS), 583–585

Speech coding. See also Image coding

DPCM structure with pitch predictor, 365, 366

G.726 recommendation, 366

predictor, 368–369

quantizer, 367, 368

NFC, 365–366

pitch period, 365

residual sequence, 365, 366

Speech coding for internet applications, 613. See also Speech

compression

iLBC coder, 613

all-pass filters, 616

autocorrelation coefficients computation, 614

codebook generation, 617

goal, 615–616

LSF representation, 614–615

packet loss effects, 613–614

perceptual weighting filter, 616

PLC, 617–618

residual sequence, 616

using DPCM system, 616

ITU-TG.729 standard, 618

autocorrelation coefficients, 618–619

bit allocation per frame, 621

codebook vectors, 620–621

encoding of speech for, 619

excitation signal identification, 620

pulses, 621

weighting filter, 620

SILK coder, 621

encoding of speech, 622

LSF coefficients, 623

multistage vector quantizer, 623

noise shaping analysis, 622–623

operating modes, 622

signal filtering, 622

variable-rate entropy coder, 623

Speech compression

channel vocoder, 592–594

excitation signal, 595–596

formants, 594

receiver, 595

sound /e/in test, 594

sound /s/in test, 594, 595

synthesis filters, 594

speech synthesis, model for, 593

vocal tract, 593

Speech encoding, 364

Speech production, 248

filter, 248

vocal cords, 248

Speech synthesis model

LPC receiver, 596

speech compression, 593

SPER. See Signal-to-prediction error ratio

736 I N D E X

Spherical vector quantizers, 327–328

SPIHT. See Set Partitioning in Hierarchical Trees

SPL. See Sound pressure level

Split sample option, 78

Splitting technique, 309–311, 672

Square matrix, 675

Ssiz, 562

Start of codestream marker (SOC marker), 562

Start of data marker (SOD marker), 562

Start of packet marker (SOP marker), 566

Start of tile-part marker (SOT marker), 562

Static dictionary, 136–137

digram coding, 137

digram encoder, 137

example, 137

frequently occurring pairs, 138, 139

sample dictionary, 137

Static model, 19

Statistical average, 684

STC. See Sinusoidal transform coder

Stereo coding, 585

STFT. See Short-term Fourier transform

Stochastic process, 687

autocorrelation function, 688

iid, 687

joint cdf, 687

realizations, 687

stationarity, 688

Structured vector quantizers

lattice vector quantizers, 328

A2 lattice, 330

average squared error, 328

D2 lattice, 330, 331

dimensions, 329

example, 331

hexagonal lattice, 329

possible quantization regions, 328

problems, 331

square and circular quantization regions, 328–329

using lattices, 329

polar and spherical vector quantizers, 327–328

pyramid vector quantization, 326–327

gain-shape vector quantizers, 327

SNR value, 327

tree-structured vector quantizer, 324

two-dimensional uniform quantizer, 325

contours of constant probability, 326

using examples, 324–325

Subband coding

algorithm, 458, 462

analysis, 459

block diagram, 460

decimation or downsampling, 459–460

magnitude transfer functions, 460

nonoverlapping overlapping filter banks, 461

overlapping filter banks, 461

bit allocation, 482

coding, 461

difference sequences, 450

filter banks design, 462–464

filters, 452

original set of samples, 449

quantization, 461

synthesis, 461

analysis and synthesis filters, 462

bit allocation scheme, 462

encoding scheme, 462

using filters, 456

Subband decomposition

approaches, 529

first-level decomposition, 530

four-tap Daubechies filter, 530–532

of N·M image, 529–530

subband structures, 531

Subspace, 377

Superposition, 386

Syllabically companded, 364

Symbol region, 209

decoding, 211

Syntax-based arithmetic coding mode, 660

T
Tabular method, 399

Tag deciphering, 101

Tag generating, 94–100

TCM. See Trellis-coded modulation

TCQ. See Trellis-coded quantization

Temporal masking, 571

Temporal noise shaping (TNS), 583–585

Temporal scalability mode, 662

Terminating codes, 200

test.snd, autocorrelation function for, 365

testm.raw, 356

Text compression, 4, 83–84

using Huffman codes, 84

Three-dimensional model-based coding, 643

Three-layer stripes (3LS), 212–213

3LS. See Three-layer stripes
Threshold coding, 427

Tier I coding, 554. See also JPEG 2000 standard

block coding, 552

cleanup pass, 552, 554, 558

context determination, 553

coefficients, example stripe of, 555

magnitude refinement pass, 552, 553

prediction and context generation, 553

significance propagation pass, 552–553

significant bitplanes, 556–559

Tier II coding, 559. See also JPEG 2000 standard

collection of bits, 560

operational rate distortion function, 561

rate control, 560–561

Tiling, 549

Time invariance, 386

TNS. See Temporal noise shaping

Toeplitz matrix, 600

Total Count, 65
Total_Count, 114, 120
Training set, 304

I N D E X 737

Transfer function, 386, 387

Transform, 414

forward, 414

matrix, 665–666

orthonormal, 415

separable, 415

Transform coding

original sequence, 410

reconstructed sequence, 412

source output sequence, 410

transformed sequence, 411, 412

transform process

geometric view, 413

steps, 413

Transform-Domain Weighted Interleave Vector

Quantization (TwinVQ), 586

Transforms of interest, 418

DCT, 420

DST, 423

DWHT, 423, 424

KLT, 418–419

Transpose, 682–683

Tree-structured vector quantizers (TSVQ), 320, 323

decision tree for quantization, 323

design of, 323–324

method breakdown using quadrant approach, 321, 322

output points, division of, 322

pruned, 324

symmetrical vector quantizer, 320, 321

Trellis-coded modulation (TCM), 337

Trellis-coded quantization (TCQ), 337

selection process. 338

state diagram, 339

trellis diagram for, 339, 340

TCM, 337

trellis diagram, 338

2-bit trellis-coded quantizer, 337–338

using vector quantizer, 337

Viterbi algorithm works, 338

Trellis diagram, 338

Trignometric Fourier series representation, 380

TSVQ. See Tree-structured vector quantizers

Tunstall codes, 79

alphabet and probabilities, 80

codebook, 81

examples, 79, 80

3-bit Tunstall code, 81

2-bit non-Tunstall code, 80

2-bit Tunstall code, 79

12-tap Coiflet low-pass filter coefficients, 519

12-tap Daubechies low-pass filter coefficients, 517

20-tap Daubechies low-pass filter coefficients, 518

TwinVQ. See Transform-DomainWeighted Interleave Vector

Quantization

2-bit trellis-coded quantizer, 337–338

Two-dimensional vector quantizer. 300

input-output map for, 302

modified two-dimensional vector quantizer, 303

two representations of, 301

Two-layer stripes (2LS), 212–213

2LS. See Two-layer stripes
Tympanic membrane, 224

Typical prediction, 204–205

usage, 205

using pixels, 205

Typical prediction, 209–210

U
Unary code, 75

Underdecimated filter bank, 477

Uniform distribution, 241, 242, 685

Uniformly distributed source, 258–259

image compression, 260, 261

quantization error for, 259–260

Uniform quantizer, 257–258

midtread quantizer, 258

mismatch effects, 266

demonstration, 267

msqe function of, 268

step size, 268

types, 266–267

variance mismatch on, 267

nonuniform sources, 261–262

example, 262

overload and granular regions for, 265

quantization noise for, 264

uniform midrise quantizer, 263, 265

uniformly distributed source, 258–259

image compression, 260, 261

quantization error for, 259–260

Uniquely decodable codes, 30

average length, 30

code 1, 30

code 2, 30

code 3, 4, 30–31

code 5, 31, 32

code 6, 32, 33

instantaneous code, 31

small and large codes, 31

unique decodability, test for, 32

prefix and dangling suffix, 32

procedures, 32

using codewords, 32–33

UNIX compress, 151

Unlocked scale factor, 367, 368

Unrestricted motion vector mode, 660

Update procedure, 66

adaptive Huffman coding algorithm, 69

adaptive Huffman tree, 71

example, 70

external node, 69–70

NYT node, 70

Upsampling, 462, 465

analysis filters, 465–467

antialiasing filters, 465–467

imaging, 465

interpolation filters, 465–467

synthesis filters, 465–467

upsampled signal spectrum, 467

738 I N D E X

V
V. 42 bis, 153, 155, 156

CCITT recommends, 156

control codewords in, 155

encoder STEPUP, 156

using compression algorithm, 153, 155

Variance, 685

Variations on theme, 332. See also Vector quantization

adaptive vector quantization, 335–336

distortion, 336–337

indexed vector quantizer, 336

large codebook, 336

gain-shape vector quantization, 332

mean-removed vector quantization, 332–333

Sinan image using codebook, 332, 333

multistage vector quantization, 334

different vector quantizer, 334–335

quantization rule, 335

RIVQ, 335

three-stage vector quantizer, 334

using LBG vector quantizers, 334–335

vector quantization, 333

three-stage vector quantizer, 334

variation, 333

Vector, 375

Vector addition, 376

Vector quantization, 296–297

advantages and scalar quantization, 298, 300

LBG algorithm, 297, 304

empty cell problem, 315

example, 306

image compression, uses for, 315–316

initializing, 303, 309, 311, 314

procedure, 296

structured vector quantizers, 324

example, 325

Lattice vector quantizers, 328, 331

polar and spherical vector quantizers, 327–328

pyramid vector quantization, 326–327

tree-structured vector quantizers, 320

design of, 323

example, 320

pruned, 324

trellis-coded quantization, 337, 338

Vector quantizer, 252, 306

alternate initial set of, 309

final state of, 309

initial set of, output points, 307

initial state of, 308

after one iteration, 308

training set for, 307

Vector spaces, 375, 376

basis, 377, 378

basis vectors, 374–375

dimension, 378

dot product, 375

examples, 376–378

inner product, 379

orthogonal basis set, 379–380

orthonormal basis set, 379–380

scalar multiplication, 376

subspace, 377

vector addition, 376

vector in two-dimensional space, 374

Vertical mode, 202

Video compression, 633–634. See also Image compression

algorithms, 634

asymmetric applications, 650

generic wireframe model, 651

MPEG, 651–252

model-based coding, 649

AU, 650

global motion and local motion, 650

three-dimensional, 650

motion compensation, 634, 635

block-based, 636

difference between frames, 636

doubled image, 637–638

motion vector, 636

motion-compensated prediction, 637

video sequence frames, 635

motion video, 633–634

video signal representation, 638

analog color television, 639

black-and-white analog television picture, 638

CCIR 601 frame fields, 643

CCIR 601 to MPEG-SIF, 643

CCIR recommendations, 640–641

chrominance components, 640

composite color signals, 639–640

frame and fields, 638–639

line of image, 638, 639

luminance component, 640

MPEG-1 algorithm, 641

recommendation sampling format, 641

SIF frame generation, 643

three-dimensional model-based coding, 642

video signal digitization, 640

Video signal representation, 638

analog color television, 639

black-and-white analog television picture, 638

CCIR 601 frame fields, 641, 642

CCIR 601 to MPEG-SIF, 643

CCIR recommendations, 640–641

chrominance components, 640

composite color signals, 639–640

frame and fields, 638–639

line of image, 638, 639

luminance component, 640

MPEG-1 algorithm, 641

recommendation sampling format, 641

SIF frame generation, 643

three-dimensional model-based coding, 643

video signal digitization, 640

Virtual Reality Modeling Language (VRML), 669

Viterbi algorithm, 337–338

Vocal cords, 248

Vocal tract, 248, 593

I N D E X 739

Vocal tract filter, 599

autocovariance approach, 599–600

Cholesky decomposition, 602

covariance method, 601–602

filter coefficients change, 601–602

Levinson-Durbin algorithm, 600–601

PARCOR coefficients, 600–601

Toeplitz matrix, 600

Vocoder. See Voice coder
Voice coder, 3

Voiced/unvoiced decision, 597

Voice over Internet Protocol (VoIP), 613

Voicing probability, 608

VoIP. See Voice over Internet Protocol
VRML. See Virtual Reality Modeling Language

W
Wavelet-based image compression, 529

EZW coder, 532

data structure in, 532, 534

embedded coding, 539–540

isolated zero, 534

multiple-pass algorithm, 534–535

seven-level decomposition, 536–539

significance map coding, 534–535

ten-band decomposition, 532, 533

3-bit quantizer, 533, 534

three-level midtread quantizer, 535–536

wavelet coefficient scanning, 536

SPIHT algorithm, 540

coordinate sets of coefficients, 540, 541

data structure, 540, 541

LSP and LIP versus LIS, 542, 543

Sinan image reconstruction, 546

subband decomposition

approaches, 529

first-level decomposition, 530

four-tap Daubechies filter, 530–532

of N · M image, 529–530

subband structures, 531

Wavelet coefficient scanning, 536

Wavelet implementation

scaling and wavelet coefficients, 513–515

three-level wavelet decomposition, 512, 513

using filters, 510–511

wavelets families

18-tap Coiflet low-pass filter coefficients, 519

4-tap Daubechies low-pass filter coefficients, 517

6-tap Coiflet low-pass filter coefficients, 518

20-tap Daubechies low-pass filter coefficients, 518

12-tap Daubechies low-pass filter coefficients, 517

12-tap Coiflet low-pass filter coefficients, 519

Wavelets, 500–501

admissibility condition, 503

biorthogonal wavelets, 516–517

CWT, 503–504

DTWT, 504

families, 516

function, 501, 502

mother wavelet, 500–501

ondelettes or wavelets, 501–502

scaled and translated function, 501, 502

Wavelet transform. See also Discrete Fourier transform

(DFT); Fourier transform; Z-transform

irreversible, 550

filter coefficients for, 550

9/7 transform, 550

reversible, 549–550

filter coefficients for, 550

wavelet filter types, 549–550

Wealth of Nation (Smith), 16–18

Weber fraction. See Weber ratio

Weber ratio, 223

Wideband speech compression, 611. See also Speech

compression

adaptive codebook, 612–613

coding method, 611

comfort noise, 613

encoding of speech, 613

fixed codebook, 612–613

LP coefficients, 612

speech processing, 611–612

X
Xsiz, 562, 563

XOsiz, 562, 563

XTsiz, 549, 562

XTOsiz, 549, 562

XRSizi, 562

Y
Ysiz, 562, 563

YOsiz, 562, 563

YTsiz, 549, 562

YTOsiz, 549, 562

YRSizi, 562

Z
Z-transform, 396. See also Discrete Fourier transform

(DFT); Fourier transform

discrete convolution, 404–405

examples, 397, 398

inverse, 398, 402

long division, 403–404

pairs, 399

partial fraction expansion, 399–400

properties, 404

region of convergence, 396–397

shifting theorem, 405, 406

tabular method, 399

transfer function, 406

Zero block option, 78

Zero frequency problem, 28

Zero-coding mode, 552

Zigzag scanning pattern, 427

Zip, 143

zlib, 62

Zonal sampling, 426–427

740 I N D E X

	Frontmatter
	Series
	Copyright
	Dedication
	Preface
	1 Introduction
	1.1 Compression Techniques
	1.1.1 Lossless Compression
	1.1.2 Lossy Compression
	1.1.3 Measures of Performance

	1.2 Modeling and Coding
	1.3 Summary
	1.4 Projects and Problems

	2 Mathematical Preliminaries for Lossless Compression
	2.1 Overview
	2.2 A Brief Introduction to Information Theory
	2.2.1 Derivation of Average Information

	2.3 Models
	2.3.1 Physical Models
	2.3.2 Probability Models
	2.3.3 Markov Models
	2.3.4 Composite Source Model

	2.4 Coding
	2.4.1 Uniquely Decodable Codes
	2.4.2 Prefix Codes
	2.4.3 The Kraft-McMillan Inequality

	2.5 Algorithmic Information Theory
	2.6 Minimum Description Length Principle
	2.7 Summary
	2.8 Projects and Problems

	3 Huffman Coding
	3.1 Overview
	3.2 The Huffman Coding Algorithm
	3.2.1 Minimum Variance Huffman Codes
	3.2.2 Canonical Huffman Codes
	3.2.3 Length-Limited Huffman Codes
	3.2.4 Optimality of Huffman Codes
	3.2.5 Length of Huffman Codes
	3.2.6 Extended Huffman Codes
	3.2.7 Implementation of Huffman Codes

	3.3 Nonbinary Huffman Codes
	3.4 Adaptive Huffman Coding
	3.4.1 Update Procedure
	3.4.2 Encoding Procedure
	3.4.3 Decoding Procedure

	3.5 Golomb Codes
	3.6 Rice Codes
	3.6.1 CCSDS Recommendation for Lossless Compression

	3.7 Tunstall Codes
	3.8 Applications of Huffman Coding
	3.8.1 Lossless Image Compression
	3.8.2 Text Compression
	3.8.3 Audio Compression

	3.9 Summary
	3.10 Projects and Problems

	4 Arithmetic Coding
	4.1 Overview
	4.2 Introduction
	4.3 Coding a Sequence
	4.3.1 Generating a Tag
	4.3.2 Deciphering the Tag

	4.4 Generating a Binary Code
	4.4.1 Uniqueness and Efficiency of the Arithmetic Code
	4.4.2 Algorithm Implementation
	4.4.3 Integer Implementation

	4.5 Adaptive Arithmetic Coding
	4.6 Binary Arithmetic Coding
	4.6.1 The QM Coder
	4.6.2 The MQ Coder
	4.6.3 The M Coder

	4.7 Comparison of Huffman and Arithmetic Coding
	4.8 Applications
	4.9 Summary
	4.10 Projects and Problems

	5 Dictionary Techniques
	5.1 Overview
	5.2 Introduction
	5.3 Static Dictionary
	5.3.1 Digram Coding

	5.4 Adaptive Dictionary
	5.4.1 The LZ77 Approach
	5.4.2 The LZ78 Approach

	5.5 Applications
	5.5.1 File Compression'227UNIX compress
	5.5.2 Image Compression'227The Graphics Interchange Format (GIF)
	5.5.3 Image Compression'227Portable Network Graphics (PNG)
	5.5.4 Compression over Modems'227V.42 bis

	5.6 Beyond Compression4pt'0137'0137Lempel-Ziv Complexity
	5.7 Summary
	5.8 Projects and Problems

	6 Context-Based Compression
	6.1 Overview
	6.2 Introduction
	6.3 Prediction with Partial Match (ppm)
	6.3.1 The Basic Algorithm
	6.3.2 The Escape Symbol
	6.3.3 Length of Context
	6.3.4 The Exclusion Principle

	6.4 The Burrows-Wheeler Transform
	6.4.1 Move-to-Front Coding

	6.5 Associative Coder of Buyanovsky (ACB)
	6.6 Dynamic Markov Compression
	6.7 Summary
	6.8 Projects and Problems

	7 Lossless Image Compression
	7.1 Overview
	7.2 Introduction
	7.2.1 The Old JPEG Standard

	7.3 CALIC
	7.4 JPEG-LS
	7.5 Prediction Using Conditional Averages
	7.6 Multiresolution Approaches
	7.6.1 Progressive Image Transmission

	7.7 Facsimile Encoding
	7.7.1 Run-Length Coding
	7.7.2 CCITT Group 3 and 4'227Recommendations T.4 and T.6
	7.7.3 JBIG
	7.7.4 Comparison of MH, MR, MMR, and JBIG
	7.7.5 JBIG2'226T.88

	7.8 MRC'226T.44
	7.9 Summary
	7.10 Projects and Problems

	8 Mathematical Preliminaries for Lossy Coding
	8.1 Overview
	8.2 Introduction
	8.3 Distortion Criteria
	8.3.1 The Human Visual System
	8.3.2 Auditory Perception

	8.4 Information Theory Revisited
	8.4.1 Conditional Entropy
	8.4.2 Average Mutual Information
	8.4.3 Differential Entropy

	8.5 Rate Distortion Theory
	8.6 Models
	8.6.1 Probability Models
	8.6.2 Linear System Models
	8.6.3 Physical Models

	8.7 Summary
	8.8 Projects and Problems

	9 Scalar Quantization
	9.1 Overview
	9.2 Introduction
	9.3 The Quantization Problem
	9.4 Uniform Quantizer
	9.5 Adaptive Quantization
	9.5.1 Forward Adaptive Quantization
	9.5.2 Backward Adaptive Quantization

	9.6 Nonuniform Quantization
	9.6.1 pdf-Optimized Quantization
	9.6.2 Companded Quantization

	9.7 Entropy-Coded Quantization
	9.7.1 Entropy Coding of Lloyd-Max Quantizer Outputs
	9.7.2 Entropy-Constrained Quantization
	9.7.3 High-Rate Optimum Quantization

	9.8 Summary
	9.9 Projects and Problems

	10 Vector Quantization
	10.1 Overview
	10.2 Introduction
	10.3 Advantages of Vector Quantization over Scalar Quantization
	10.4 The Linde-Buzo-Gray Algorithm
	10.4.1 Initializing the LBG Algorithm
	10.4.2 The Empty Cell Problem
	10.4.3 Use of LBG for Image Compression

	10.5 Tree-Structured Vector Quantizers
	10.5.1 Design of Tree-Structured Vector Quantizers
	10.5.2 Pruned Tree-Structured Vector Quantizers

	10.6 Structured Vector Quantizers
	10.6.1 Pyramid Vector Quantization
	10.6.2 Polar and Spherical Vector Quantizers
	10.6.3 Lattice Vector Quantizers

	10.7 Variations on the Theme
	10.7.1 Gain-Shape Vector Quantization
	10.7.2 Mean-Removed Vector Quantization
	10.7.3 Classified Vector Quantization
	10.7.4 Multistage Vector Quantization
	10.7.5 Adaptive Vector Quantization

	10.8 Trellis-Coded Quantization
	10.9 Summary
	10.10 Projects and Problems

	11 Differential Encoding
	11.1 Overview
	11.2 Introduction
	11.3 The Basic Algorithm
	11.4 Prediction in DPCM
	11.5 Adaptive DPCM
	11.5.1 Adaptive Quantization in DPCM
	11.5.2 Adaptive Prediction in DPCM

	11.6 Delta Modulation
	11.6.1 Constant Factor Adaptive Delta Modulation (CFDM)
	11.6.2 Continuously Variable Slope Delta Modulation

	11.7 Speech Coding
	11.7.1 G.726

	11.8 Image Coding
	11.9 Summary
	11.10 Projects and Problems

	12 Mathematical Preliminaries for Transforms, Subbands, and Wavelets
	12.1 Overview
	12.2 Introduction
	12.3 Vector Spaces
	12.3.1 Dot or Inner Product
	12.3.2 Vector Space
	12.3.3 Subspace
	12.3.4 Basis
	12.3.5 Inner Product'227Formal Definition
	12.3.6 Orthogonal and Orthonormal Sets

	12.4 Fourier Series
	12.5 Fourier Transform
	12.5.1 Parseval's Theorem
	12.5.2 Modulation Property
	12.5.3 Convolution Theorem

	12.6 Linear Systems
	12.6.1 Time Invariance
	12.6.2 Transfer Function
	12.6.3 Impulse Response
	12.6.4 Filter

	12.7 Sampling
	12.7.1 Ideal Sampling'226Frequency Domain View
	12.7.2 Ideal Sampling'227Time Domain View

	12.8 Discrete Fourier Transform
	12.9 Z-Transform
	12.9.1 Tabular Method
	12.9.2 Partial Fraction Expansion
	12.9.3 Long Division
	12.9.4 Z-Transform Properties
	12.9.5 Discrete Convolution

	12.10 Summary
	12.11 Projects and Problems

	13 Transform Coding
	13.1 Overview
	13.2 Introduction
	13.3 The Transform
	13.4 Transforms of Interest
	13.4.1 Karhunen-Loéve Transform
	13.4.2 Discrete Cosine Transform
	13.4.3 Discrete Sine Transform
	13.4.4 Discrete Walsh-Hadamard Transform

	13.5 Quantization and Coding of Transform Coefficients
	13.5.1 Operational Rate-Distortion Bit Allocation

	13.6 Application to Image Compression4pt'0137'0137JPEG
	13.6.1 The Transform
	13.6.2 Quantization
	13.6.3 Coding
	13.6.4 Format4pt'0137'0137JFIF

	13.7 Application to Audio Compression4pt'0137'0137The MDCT
	13.8 Summary
	13.9 Projects and Problems

	14 Subband Coding
	14.1 Overview
	14.2 Introduction
	14.3 Filters
	14.3.1 Some Filters Used in Subband Coding

	14.4 The Basic Subband Coding Algorithm
	14.4.1 Analysis
	14.4.2 Quantization and Coding
	14.4.3 Synthesis

	14.5 Design of Filter Banks
	14.5.1 Downsampling
	14.5.2 Upsampling

	14.6 Perfect Reconstruction Using Two-Channel Filter Banks
	14.6.1 Two-Channel PR Quadrature Mirror Filters
	14.6.2 Power Symmetric FIR Filters

	14.7 M-Band Quadrature Mirror Filter Banks
	14.8 The Polyphase Decomposition
	14.9 Bit Allocation
	14.10 Application to Speech Coding4pt'0137'0137G.722
	14.11 Application to Audio Coding4pt'0137'0137MPEG Audio
	14.12 Application to Image Compression
	14.12.1 Decomposing an Image
	14.12.2 Coding the Subbands

	14.13 Summary
	14.14 Projects and Problems

	15 Wavelets
	15.1 Overview
	15.2 Introduction
	15.3 Wavelets
	15.4 Multiresolution Analysis and the Scaling Function
	15.5 Implementation Using Filters
	15.5.1 Scaling and Wavelet Coefficients
	15.5.2 Families of Wavelets

	15.6 Biorthogonal Wavelets
	15.7 Lifting
	15.8 Summary
	15.9 Projects and Problems

	16 Wavelet-Based Image Compression
	16.1 Overview
	16.2 Introduction
	16.3 Embedded Zerotree Coder
	16.4 Set Partitioning in Hierarchical Trees
	16.5 JPEG 2000
	16.5.1 Color Component Transform
	16.5.2 Tiling
	16.5.3 Wavelet Transform
	16.5.4 Quantization
	16.5.5 Tier I Coding
	16.5.6 Tier II Coding
	16.5.7 JPEG 2000 bitstream

	16.6 Summary
	16.7 Projects and Problems

	17 Audio Coding
	17.1 Overview
	17.2 Introduction
	17.2.1 Spectral Masking
	17.2.2 Temporal Masking
	17.2.3 Psychoacoustic Model

	17.3 MPEG Audio Coding
	17.3.1 Layer I Coding
	17.3.2 Layer II Coding
	17.3.3 Layer III Coding'227mp3

	17.4 MPEG Advanced Audio Coding
	17.4.1 MPEG-2 AAC
	17.4.2 MPEG-4 AAC

	17.5 Dolby AC-3 (Dolby Digital)
	17.5.1 Bit Allocation

	17.6 Other Standards
	17.7 Summary

	18 Analysis/Synthesis and Analysis by Synthesis Schemes
	18.1 Overview
	18.2 Introduction
	18.3 Speech Compression
	18.3.1 The Channel Vocoder
	18.3.2 The Linear Predictive Coder (Government Standard LPC-10)
	18.3.3 Code-Excited Linear Predicton (CELP)
	18.3.4 Sinusoidal Coders
	18.3.5 Mixed Excitation Linear Prediction (MELP)

	18.4 Wideband Speech Compression4pt'0137'0137ITU-T G.722.2
	18.5 Coding of Speech for Internet Applications
	18.5.1 iLBC
	18.5.2 G.729
	18.5.3 SILK

	18.6 Image Compression
	18.7 Summary
	18.8 Projects and Problems

	19 Video Compression
	19.1 Overview
	19.2 Introduction
	19.3 Motion Compensation
	19.4 Video Signal Representation
	19.5 ITU-T Recommendation H.261
	19.5.1 Motion Compensation
	19.5.2 The Loop Filter
	19.5.3 The Transform
	19.5.4 Quantization and Coding
	19.5.5 Rate Control

	19.6 Model-Based Coding
	19.7 Asymmetric Applications
	19.8 The MPEG-1 Video Standard
	19.9 The MPEG-2 Video Standard4pt'0137'0137H.262
	19.10 ITU-T Recommendation H.263
	19.10.1 Unrestricted Motion Vector Mode
	19.10.2 Syntax-Based Arithmetic Coding Mode
	19.10.3 Advanced Prediction Mode
	19.10.4 PB-Frames and Improved PB-Frames Mode
	19.10.5 Advanced Intra Coding Mode
	19.10.6 Deblocking Filter Mode
	19.10.7 Reference Picture Selection Mode
	19.10.8 Temporal, SNR, and Spatial Scalability Mode
	19.10.9 Reference Picture Resampling
	19.10.10 Reduced-Resolution Update Mode
	19.10.11 Alternative Inter VLC Mode
	19.10.12 Modified Quantization Mode
	19.10.13 Enhanced Reference Picture Selection Mode

	19.11 ITU-T Recommendation H.264, MPEG-4 Part 10, Advanced Video Coding
	19.11.1 Motion-Compensated Prediction
	19.11.2 The Transform
	19.11.3 Intra Prediction
	19.11.4 Quantization
	19.11.5 Coding

	19.12 MPEG-4 Part 2
	19.13 Packet Video
	19.13.1 ATM Networks
	19.13.2 Compression Issues in ATM Networks
	19.13.3 Compression Algorithms for Packet Video

	19.14 Summary
	19.15 Projects and Problems

	A Probability and Random Processes
	A.1 Probability
	A.1.1 Frequency of Occurrence
	A.1.2 A Measure of Belief
	A.1.3 The Axiomatic Approach

	A.2 Random Variables
	A.3 Distribution Functions
	A.4 Expectation
	A.4.1 Mean
	A.4.2 Second Moment
	A.4.3 Variance

	A.5 Types of Distribution
	A.5.1 Uniform Distribution
	A.5.2 Gaussian Distribution
	A.5.3 Laplacian Distribution
	A.5.4 Gamma Distribution

	A.6 Stochastic Process
	A.7 Projects and Problems

	B Brief Review of Matrix Concepts
	B.1 A Matrix
	B.2 Matrix Operations

	C The Root Lattices
	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

