

Learning Network Programming
with Java

Harness the hidden power of Java to build
network-enabled applications with lower network
traffic and faster processes

Richard M Reese

BIRMINGHAM - MUMBAI

Learning Network Programming with Java

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2015

Production reference: 1141215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.
ISBN 978-1-78588-547-1

www.packtpub.com

www.packtpub.com

Credits

Author
Richard M Reese

Reviewer
Daniel MÜHLBACHLER

Commissioning Editor
Veena Pagare

Acquisition Editors
Vivek Anantharaman

Rahul Nair

Content Development Editor
Arshiya Ayaz Umer

Technical Editor
Humera Shaikh

Copy Editor
Priyanka Ravi

Project Coordinator
Shipra Chawhan

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Production Coordinator
Nilesh Mohite

Cover Work
Nilesh Mohite

About the Author

Richard M Reese has worked in both industry and academia. For 17 years, he
worked in the telephone and aerospace industries, serving in several capacities,
including research and development, software development, supervision, and
training. He currently teaches at Tarleton State University, where he has the
opportunity to apply his years of industry experience to enhance his teaching.

Richard has written several Java books and a C Pointer book. He uses a concise and
easy-to-follow approach to topics at hand. His Java books have addressed EJB 3.1,
updates to Java 7 and 8, certification, functional programming, jMonkeyEngine, and
natural language processing.

I would like to thank my daughter, Jennifer, for her numerous
reviews and contributions; my wife, Karla, for her continued support;
and to the staff of Packt for their work in making this a better book.

About the Reviewer

Daniel MÜHLBACHLER got interested in computer science shortly after
entering high school, where he later developed web applications as part of a
scholarship system for outstanding pupils.

He has a profound knowledge of web development (PHP, HTML, CSS/LESS, and
AngularJS), and has worked with a variety of other programming languages and
systems, such as Java/Groovy, Grails, Objective-C and Swift, Matlab, C (with Cilk),
Node.js, and Linux servers.

Furthermore, he works with some database management systems based on SQL, and
also some NoSQL systems, such as MongoDB, and SOLR. This is also reflected in
several projects that he is currently involved in at Catalysts GmbH.

After studying abroad as an exchange student in the United Kingdom, he completed
his bachelor's degree at Johannes Kepler University in Linz, Austria, with a thesis
on aerosol satellite data processing for mobile visualization. This is where he also
became familiar with processing large amounts of data.

Daniel enjoys solving challenging problems and is always keen on working with new
technologies, especially related to the fields of big data, functional programming,
optimization, and NoSQL databases.

More detailed information about his experience, as well as his contact details, can be
found at www.muehlbachler.org and www.linkedin.com/in/danielmuehlbachler.

www.muehlbachler.org
www.linkedin.com/in/danielmuehlbachler

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface vii
Chapter 1: Getting Started with Network Programming 1

Network addressing using the InetAddress class 3
NIO support 5

Using the URLConnection class 5
Using the URLConnection class with buffers and channels 6

The client/server architecture 7
Creating a simple echo server 8

Creating a simple echo client 10
Using Java 8 to support the echo server and client 12

UDP and multicasting 14
Creating a multicast server 14
Creating the multicast client 15

Scalability 17
Creating a threaded server 17
Using the threaded server 19

Security 21
Creating a SSL server 21
Creating an SSL client 22
Generating secure keys 23

Summary 25
Chapter 2: Network Addressing 27

Networking basics 27
Understanding network basics 29

Network architectures and protocols 30
Using the NetworkInterface class 32

Getting a MAC address 35
Getting a specific MAC address 35

Table of Contents

[ii]

Getting multiple MAC addresses 36
Network addressing concepts 37

URL/URI/URN 37
Using the URI class 39

Creating URI instances 39
Splitting apart a URI 40

Using the URL class 41
Creating URL instances 42
Splitting apart a URL 42

IP addresses and the InetAddress class 45
Obtaining information about an address 45
Address scoping issues 47
Testing reachability 48

Introducing the Inet4Address 49
Private addresses in IPv4 50
IPv4 address types 50
The Inet4Address class 51
Special IPv4 addresses 51

Introducing the Inet6Address class 52
Private addresses in IPv6 52
The Inet6Address class 53
Special IPv6 addresses 53

Testing for the IP address type 53
Using IPv4-compatible IPv6 addresses 54

Controlling network properties 56
Summary 56

Chapter 3: NIO Support for Networking 57
Java NIO 57
Introduction to buffers 59
Using channels with a time server 60

Creating a time server 61
Creating a time client 62

The chat server/client applications 63
The chat server 64
The chat client 66
Server/client interaction 67
The HelperMethods class 68

Handling variable length messages 69
Running the chat server/client application 71

Handling multiple clients 72
The parts server 72
The parts client handler 74
The parts client 75

Table of Contents

[iii]

Running the parts client/server 76
Asynchronous socket channels 78

Creating the asynchronous server socket channel server 79
Creating the asynchronous socket channel client 81

Other buffer operations 83
Bulk data transfer 83
Using a view 85
Using read-only buffers 86

Controlling socket options 86
Summary 87

Chapter 4: Client/Server Development 89
The HTTP protocol structure 89
The nature of HTTP messages 91

Initial request line format 92
Header lines 94
Message body 94
Client/Server interaction example 95

Java socket support for HTTP client/server applications 95
Building a simple HTTP server 96
Building a simple HTTP client 100

Client/server development using standard Java classes 102
Using the HttpURLConnection class 102

URL encoding 105
Using the HTTPServer class 106

Implementing a simple HTTPServer class 108
Managing response headers 112

Open source Java HTTP servers 113
Server configuration 115
Handling cookies 116
Summary 117

Chapter 5: Peer-to-Peer Networks 119
P2P functions/characteristics 120
Applications-based P2P networks 122
Java support for P2P applications 123
Distributed hash tables 123

DHT components 124
DHT implementations 126
Using JDHT 126

Using FreePastry 128
The FreePastry demonstration 129

Understanding the FreePastryExample class 129

Table of Contents

[iv]

Understanding the FreePastryApplication class 131
Sending a message to a specific node 135

Summary 137
Chapter 6: UDP and Multicasting 139

Java support for UDP 140
TCP versus UDP 142
UDP client/server 142

The UDP server application 143
The UDP client application 145
The UDP client/server in action 146

Channel support for UDP 148
The UDP echo server application 148
The UDP echo client application 150
The UDP echo client/server in action 152

UDP multicasting 153
The UDP multicast server 153
The UDP multicast client 154
The UDP multicast client/server in action 156

UDP multicasting with channels 156
The UDP channel multicast server 159
The UDP channel multicast client 160
The UDP channel multicast client/server in action 162

UDP streaming 162
The UDP audio server implementation 163
The UDP audio client implementation 165

Summary 168
Chapter 7: Network Scalability 169

Multithreaded server overview 170
The thread-per-request approach 172

The thread-per-request server 173
The thread-per-request client 175
The thread-per-request applications in action 175

Thread-per-connection approach 178
The thread-per-connection server 178
The thread-per-connection client 179
The thread-per-connection applications in action 179

Thread pools 180
The ThreadPoolExecutor class characteristics 181
Simple thread pool server 182
Simple thread pool client 184

Table of Contents

[v]

The thread pool client/server in action 185
Thread pool with Callable 186

Using a Callable 186
Using a Future 188

Using the HttpServer executor 189
Using a selector 190

Creating the selector 191
Registering a channel 191
Using the selector to support a time client/server 193

The channel time server 193
The date and time client application 197
The date and time server/client in action 197

Handling network timeouts 199
Summary 199

Chapter 8: Network Security 201
Security 201

Secure communication terminology 202
Encryption basics 203

Symmetric encryption techniques 204
Generating a key 204
Encrypting text using a symmetric key 205
Decrypting text 206

Asymmetric encryption techniques 206
Generating and saving asymmetric keys 208
Encrypting/decrypting text using an asymmetric key 209
Saving asymmetric keys to a file 210

Creating a keystore 213
Creating and maintaining a keystore with keytool 213
Keytool command-line arguments 216
Creating and maintaining a keystore with Java 219

Symmetric encryption client/server 221
Symmetric server application 222
Symmetric client application 224
Symmetric client/server in action 226

Asymmetric encryption client/server 227
Asymmetric server application 227
Asymmetric client application 228
Asymmetric client/server in action 230

TLS/SSL 230
SSL server 231
SSL client 233
SSL client/server in action 234

Table of Contents

[vi]

Secure hash functions 235
Summary 237

Chapter 9: Network Interoperability 239
Byte order in Java 240
Interfacing with other languages 242

Interfacing with JVM based languages 242
Interfacing with non-JVM languages 243

Communication through simple sockets 244
The Java server 244
The C# client 245
The client/server in action 247

Interoperability through middleware 248
Creating a RESTful service 249
Testing the RESTful service 253
Creating a RESTful client 256

Summary 260
Index 261

[vii]

Preface
The world is becoming interconnected on an unprecedented scale with more services
being provided on the Internet. Applications ranging from business transactions
to embedded applications, such as those found in refrigerators, are connecting to
the Internet. With isolated applications no longer being the norm, it is becoming
increasingly important for applications to be network enabled.

The goal of this book is to provide the reader with the necessary skills to develop
Java applications that connect and work with other applications and services across
a network. You will be introduced to a wide range of networking options that
are available using Java, which will enable you to develop applications using the
appropriate technology for the task at hand.

What this book covers
Chapter 1, Getting Started with Network Programming, introduces the essential network
terminology and concepts. The networking support that Java provides is illustrated
with brief examples. A simple client/server application is presented along with a
threaded version of the server.

Chapter 2, Network Addressing, explains how nodes on a network use addresses. How
Java represents these addresses is introduced along with support for IPv4 and IPv6.
This chapter also covers how Java can configure various network properties.

Chapter 3, NIO Support for Networking, explains how the NIO package provides
support for communication using buffers and channels. These techniques are
illustrated with a client/server application. The support that NIO provides for
asynchronous communication is also demonstrated.

Preface

[viii]

Chapter 4, Client/Server Development, covers how HTTP is an important and
widely-used protocol. Java provides support for this protocol in a variety of ways.
These techniques are illustrated along with a demonstration of how cookies are
handled in Java.

Chapter 5, Peer-to-Peer Networks, discusses how peer-to-peer networks provide a flexible
alternative to the traditional client/server architecture. The basic peer-to-peer concepts
are introduced along with demonstrations of how Java supports this architecture.
FreePastry is used to illustrate one open source peer-to-peer solution framework.

Chapter 6, UDP and Multicasting, explains how UDP is an alternative to TCP. It
provides a less reliable but more efficient way for applications to communicate
across the Internet. Java's extensive support for this protocol is demonstrated,
including NIO support, and how UDP can support streaming media.

Chapter 7, Network Scalability, explains how, as more demands are placed on a server,
systems need to scale to address these demands. Several threading techniques
supporting this need are demonstrated, including thread pools, futures, and the
NIO's selector.

Chapter 8, Network Security, discusses how applications need to protect against a
variety of threats. This is supported in Java using encryption and secure hashing
techniques. Symmetric and asymmetric encryption techniques are illustrated. In
addition, the use of TLS/SSL is demonstrated.

Chapter 9, Network Interoperability, covers how Java applications may need to
exchange information with other applications that are written in different languages.
The issues that impact an application's interoperability are examined, including byte
order. Communication between different implementations is demonstrated using
sockets and middleware.

What you need for this book
Java SDK 1.8 is needed for the network programming examples that are encountered
in the book. An IDE, such as NetBeans or Eclipse, is recommended. NetBeans IDE
8.0.2 EE edition is used to illustrate the development of a web service.

Preface

[ix]

Who this book is for
This book is for developers who are already proficient in Java and want to learn
how to develop network-enabled Java applications. Familiarity with basic Java and
object-oriented programming concepts is all that is needed. You will learn the basics
of network programming and how to use a multitude of different sockets to create
secure and scalable applications.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The SSLSocketFactory class' getDefault returns an SSLSocketFactory instance
whose createSocket creates a socket that is connected to the secure echo server."

A block of code is set as follows:

public class ThreadedEchoServer implements Runnable {
 private static Socket clientSocket;

 public ThreadedEchoServer(Socket clientSocket) {
 this.clientSocket = clientSocket;
 }
 ...
}

Any command-line input or output is written as follows:

Enter keystore password:

Re-enter new password:

What is your first and last name?

 [Unknown]: First Last

What is the name of your organizational unit?

 [Unknown]: packt

What is the name of your organization?

 [Unknown]: publishing

What is the name of your City or Locality?

 [Unknown]: home

Preface

[x]

What is the name of your State or Province?

 [Unknown]: calm

What is the two-letter country code for this unit?

 [Unknown]: me

Is CN=First Last, OU=packt, O=publishing, L=home, ST=calm, C=me correct?

 [no]: y

Enter key password for <mykey>

 (RETURN if same as keystore password):

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Once
NetBeans has been installed, start it and then create a new project from the File |
New Project… menu item."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[xi]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from: https://www.packtpub.
com/sites/default/files/downloads/LearningNetworkProgrammingwithJava_
Graphics.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/LearningNetworkProgrammingwithJava_Graphics.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningNetworkProgrammingwithJava_Graphics.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningNetworkProgrammingwithJava_Graphics.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xii]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring
you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Getting Started with
Network Programming

Access to networks (the Internet in particular) is becoming an important and often
necessary feature of applications. Applications frequently need to access and
provide services. As the Internet of Things (IoT) connects more and more devices,
understanding how to access networks becomes crucial.

The important factors that have been the driving forces for more network
applications include the availability of faster networks with greater bandwidth.
This has made it possible to transmit wider ranges of data, such as video streams.
In recent years, we have seen an increase in connectivity, whether it has been for
new services, more extensive social interactions, or games. Knowing how to develop
network applications is an important development skill.

In this chapter, we will cover the basics of Network programming:

• Why networking is important
• The support that Java provides
• Simple programs to address basic network operations
• Basic networking terminology
• A simple server/client application
• Using a thread to support a server

Throughout this book, you will be exposed to many network concepts, ideas, patterns,
and implementation strategies using both older and newer Java technologies.
Network connections occur at a low level using sockets, and at a much higher level
using a multitude of protocols. Communications can be synchronous requiring
careful coordination of requests and responses, or they can be asynchronous where
other activities are performed until the response has been submitted.

Getting Started with Network Programming

[2]

These and other concepts are addressed through a series of chapters, each focusing
on a specific topic. The chapters complement each other by elaborating on concepts
that were previously introduced, whenever possible. Numerous code examples are
used whenever possible to further your understanding of the topic.

Central to accessing a service is knowing or discovering its address. This address
may be human readable, such as www.packtpub.com, or in the form of an IP address
such as 83.166.169.231. Internet Protocol (IP) is a low-level addressing scheme
that is used to access information on the Internet. Addressing has long used IPv4
to access resources. However, these addresses are all but gone. The newer IPv6 is
available to provide a larger range of addresses. The basics of network addressing
and how they can be managed in Java is the focus of Chapter 2, Network Addressing.

The intent of network communication is to transfer information to and from other
applications. This is facilitated using buffers and channels. Buffers hold information
temporarily until it can be processed by an application. Channels are an abstraction
that simplifies communications between applications. The NIO and NIO.2 packages
provide much of the support for buffers and channels. We will explore these
techniques along with other techniques, such as blocking and non-blocking IO, in
Chapter 3, NIO Support for Networking.

Services are provided by servers. An example of this is the simple echo server, which
retransmits what it was sent. More sophisticated servers, such as HTTP servers, can
support extensive services to meet a wide range of needs. The client/server model
and its Java support are covered in Chapter 3, NIO Support for Networking.

Another service model is the peer-to-peer (P2P) model. In this architecture, there is
no central server, but rather a network of applications that communicate to provide
a service. This model is represented by applications, such as BitTorrent, Skype, and
BBC's iPlayer. While much of the support that is required for the development of
these types of applications is beyond the scope of this book, Chapter 4, Client/Server
Development, explores P2P issues and the support provided by Java and JXTA.

IP is used at a low level to send and receive packets of information across a
network. We will also demonstrate the use of User Datagram Protocol (UDP) and
Transmission Control Protocol (TCP) communication protocols. These protocols
are layered on top of IP. UDP is used to broadcast short packets or messages with no
guarantee of reliable delivery. TCP is used more commonly and provides a higher
level of service than that of UDP. We will cover the use of these related technologies
in Chapter 5, Peer-to-Peer Networks.

www.packtpub.com

Chapter 1

[3]

A service will often be faced with varying levels of demand placed on it due to a
number of factors. Its load may vary by the time of the day. As it becomes more
popular, its overall demand will also increase. The server will need to scale to meet
increases and decreases in its load. Threads and thread pools have been used to support
this effort. These and other technologies are the focus of Chapter 6, UDP and Multicasting.

Increasingly, applications need to be secure against attacks by hackers. When it is
connected to a network, this threat increases. In Chapter 7, Network Scalability, we will
explore many of the techniques available to support secure Java applications. Among
these is the Secure Socket Level (SSL), and how Java supports it.

Applications rarely work in isolation. Hence, they need to use networks to access
other applications. However, not all applications are written in Java. Networking
with these applications can pose special problems ranging from how the bytes of a
data type are organized to the interface supported by the application. It is common
to work with specialized protocols, such as HTTP, and WSDL. The last chapter of
this book examines these issues from a Java perspective.

We will demonstrate both older and newer Java technologies. Understanding the
older technologies may be necessary in order to maintain older code, and it can
provide insight into why the newer technologies were developed. We will also
complement our examples using many of the Java 8 functional programming
techniques. Using Java 8 examples along with pre-Java 8 implementations, we can
learn how to use Java 8 and be better informed as to when it can and should be used.

It is not the intent to fully explain the newer Java 8 technologies, such as lambda
expressions, and streams. However, the use of Java 8 examples will provide an
insight into how they can be used to support networked applications.

The remainder of this chapter touches on many of the network technologies that are
explored in this book. You will be introduced to the basics of these techniques, and you
should find them easy to understand. However, there are a few places where time does
not permit us to fully explore and explain these concepts. These issues will be addressed
in subsequent chapters. So, let's begin our exploration with network addressing.

Network addressing using the
InetAddress class
An IP address is represented by the InetAddress class. Addresses can be either
unicast where it identifies a specific address, or it can be multicast, where a message
is sent to more than one address.

Getting Started with Network Programming

[4]

The InetAddress class has no public constructors. To get an instance, use one of
the several static get type methods. For example, the getByName method takes a
string representing the address as shown next. The string in this case is a Uniform
Resource Locator (URL):

 InetAddress address =
 InetAddress.getByName("www.packtpub.com");
 System.out.println(address);

Downloading the example code
You can download the example code files for all
Packt books you have purchased from your account
at http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the
files e-mailed directly to you.

This will display the following results:

www.packtpub.com/83.166.169.231

The number attached to the end of the name is the IP address. This address uniquely
identifies an entity on the Internet.

If we need other information about the address, we can use one of several methods,
as illustrated here:

 System.out.println("CanonicalHostName: "
 + address.getCanonicalHostName());
 System.out.println("HostAddress: " +
 address.getHostAddress());
 System.out.println("HostName: " + address.getHostName());

This produces the following output when executed:

CanonicalHostName: 83.166.169.231

HostAddress: 83.166.169.231

HostName: www.packtpub.com

To test to see whether this address is reachable, use the isReachable method as
shown next. Its argument specifies how long to wait before deciding that the address
cannot be reached. The argument is the number of milliseconds to wait:

 address.isReachable(10000);

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 1

[5]

There are also the Inet4Address and Inet6Address classes that support
IPv4 and IPv6 addresses, respectively. We will explain their use in Chapter 2,
Network Addressing.

Once we have obtained an address, we can use it to support network access, such as
with servers. Before we demonstrate its use in this context, let's examine how we can
obtain and process data from a connection.

NIO support
The java.io, java.nio, and java.nio subpackages provide most of the Java
support for IO processing. We will examine the support that these packages provide
for network access in Chapter 3, NIO Support for Networking. Here, we will focus on
the basic aspects of the java.nio package.

There are three key concepts used in the NIO package:

• Channel: This represents a stream of data between applications
• Buffer: This works with a channel to process data
• Selector: This is a technology that allows a single thread to handle multiple

channels

A channel and a buffer are typically associated with each other. Data may be transferred
from a channel to a buffer or from a buffer to a channel. The buffer, as its name
implies, is a temporary repository for information. The selector is useful in supporting
application scalability, and this will be discussed in Chapter 7, Network Scalability.

There are four primary channels:

• FileChannel: This works with a file
• DatagramChannel: This supports UDP communications
• SocketChannel: This is used with a TCP client
• ServerSocketChannel: This is used with a TCP server

There are several buffer classes that support primitive data types, such as character,
integer, and float.

Using the URLConnection class
A simple way of accessing a server is to use the URLConnection class. This class
represents a connection between an application and a URL instance. A URL instance
represents a resource on the Internet.

Getting Started with Network Programming

[6]

In the next example, a URL instance is created for the Google website. Using
the URL class' openConnection method, a URLConnection instance is created.
A BufferedReader instance is used to read lines from the connection that is
then displayed:

 try {
 URL url = new URL("http://www.google.com");
 URLConnection urlConnection = url.openConnection();
 BufferedReader br = new BufferedReader(
 new InputStreamReader(
 urlConnection.getInputStream()));
 String line;
 while ((line = br.readLine()) != null) {
 System.out.println(line);
 }
 br.close();
 } catch (IOException ex) {
 // Handle exceptions
 }

The output is rather lengthy, so only part of the first line is shown here:

<!doctype html><html itemscope="" itemtype="http://schema.org/WebPage" ...

The URLConnection class hides some of the complexity of accessing HTTP servers.

Using the URLConnection class with buffers
and channels
We can rework the previous example to illustrate the use of channels and buffers. The
URLConnection instance is created as before. We will create a ReadableByteChannel
instance and then a ByteBuffer instance, as illustrated in the next example. The
ReadableByteChannel instance allows us to read from the site using its read method.
A ByteBuffer instance receives data from the channel and is used as the argument of
the read method. The buffer created holds 64 bytes at a time.

The read method returns the number of bytes read. The ByteBuffer class' array
method returns an array of bytes, which is used as the argument of the String class'
constructor. This is used to display the data read. The clear method is used to reset
the buffer so that it can be used again:

 try {
 URL url = new URL("http://www.google.com");
 URLConnection urlConnection = url.openConnection();

Chapter 1

[7]

 InputStream inputStream = urlConnection.getInputStream();
 ReadableByteChannel channel =
 Channels.newChannel(inputStream);
 ByteBuffer buffer = ByteBuffer.allocate(64);
 String line = null;
 while (channel.read(buffer) > 0) {
 System.out.println(new String(buffer.array()));
 buffer.clear();
 }
 channel.close();
 } catch (IOException ex) {
 // Handle exceptions
 }

The first line of output is shown next. This produces the same output as before, but it
is restricted to displaying 64 bytes at a time:

<!doctype html><html itemscope="" itemtype="http://schema.org/We

The Channel class and its derived classes provide an improved technique to access
data found on a network than data provided by older technologies. We will be seeing
more of this class.

The client/server architecture
There are several ways of creating servers using Java. We will illustrate a couple
of simple approaches and postpone a detailed discussion of these techniques until
Chapter 4, Client/Server Development. Both a client and a server will be created.

A server is installed on a machine with an IP address. It is possible for more than
one server to be running on a machine at any given time. When the operating system
receives a request for a service on a machine, it will also receive a port number. The
port number will identify the server to where the request should be forwarded.
A server is, thus, identified by its combination of IP address and port number.

Typically, a client will issue a request to a server. The server will receive the request
and send back a response. The nature of the request/response and the protocol used
for communication is dependent on the client/server. Sometimes a well-documented
protocol, such as the Hypertext Transfer Protocol (HTTP), is used. For simpler
architectures, a series of text messages are sent back and forth.

Getting Started with Network Programming

[8]

For the server to communicate with an application making a request, specialized
software is used to send and receive messages. This software is called a socket. One
socket is found on the client side, and the other socket is located on the server side.
When they connect, communication is possible. There are several different types of
sockets. These include datagram sockets; stream sockets, which frequently use TCP;
and raw sockets, which normally work at the IP level. We will focus on TCP sockets
for our client/server application.

Specifically, we will create a simple echo server. This server will receive a text
message from a client and will immediately send it back to that client. The simplicity
of this server allows us to focus on the client-server basics.

Creating a simple echo server
We will start with the definition of the SimpleEchoServer class as shown next. In
the main method, an initial server message will be displayed:

public class SimpleEchoServer {
 public static void main(String[] args) {
 System.out.println("Simple Echo Server");
 ...
 }
}

The remainder of the method's body consists of a series of try blocks to handle
exceptions. In the first try block, a ServerSocket instance is created using 6000 as
its parameter. The ServerSocket class is a specialized socket that is used by a server
to listen for client requests. Its argument is its port number. The IP of the machine on
which the server is located is not necessarily of interest to the server, but the client
will ultimately need to know this IP address.

In the next code sequence, an instance of the ServerSocket class is created and
its accept method is called. The ServerSocket will block this call until it receives
a request from a client. Blocking means that the program is suspended until the
method returns. When a request is received, the accept method will return a Socket
class instance, which represents the connection between that client and the server.
They can now send and receive messages:

 try (ServerSocket serverSocket = new ServerSocket(6000)){
 System.out.println("Waiting for connection.....");
 Socket clientSocket = serverSocket.accept();
 System.out.println("Connected to client");
 ...

Chapter 1

[9]

 } catch (IOException ex) {
 // Handle exceptions
 }

After this client socket has been created, we can process the message sent to the
server. As we are dealing with text, we will use a BufferedReader instance to read
the message from the client. This is created using the client socket's getInputStream
method. We will use a PrintWriter instance to reply to the client. This is created
using the client socket's getOutputStream method, shown as follows:

 try (BufferedReader br = new BufferedReader(
 new InputStreamReader(
 clientSocket.getInputStream()));
 PrintWriter out = new PrintWriter(
 clientSocket.getOutputStream(), true)) {
 ...
 }
 }

The second argument to the PrintWriter constructor is set to true. This means that
text sent using the out object will automatically be flushed after each use.

When text is written to a socket, it will sit in a buffer until either the buffer is full
or a flush method is called. Performing automatic flushing saves us from having to
remember to flush the buffer, but it can result in excessive flushing, whereas a single
flush issued after the last write is performed, will also do.

The next code segment completes the server. The readLine method reads a line at a
time from the client. This text is displayed and then sent back to the client using the
out object:

 String inputLine;
 while ((inputLine = br.readLine()) != null) {
 System.out.println("Server: " + inputLine);
 out.println(inputLine);
 }

Before we demonstrate the server in action, we need to create a client application to
use with it.

Getting Started with Network Programming

[10]

Creating a simple echo client
We start with the declaration of a SimpleEchoClient class where in the main method,
a message is displayed indicating the application's start that is shown as follows:

public class SimpleEchoClient {
 public static void main(String args[]) {
 System.out.println("Simple Echo Client");
 ...
 }
}

A Socket instance needs to be created to connect to the server. In the following
example, it is assumed that the server and the client are running on the same
machine. The InetAddress class' static getLocalHost method returns this address,
which is then used in the Socket class's constructor along with port 6000. If they are
located on different machines, then the server's address needs to be used instead.
As with the server, an instance of the PrintWriter and BufferedReader classes are
created to allow text to be sent to and from the server:

 try {
 System.out.println("Waiting for connection.....");
 InetAddress localAddress = InetAddress.getLocalHost();

 try (Socket clientSocket = new Socket(localAddress, 6000);
 PrintWriter out = new PrintWriter(
 clientSocket.getOutputStream(), true);
 BufferedReader br = new BufferedReader(
 new InputStreamReader(
 clientSocket.getInputStream()))) {
 ...
 }
 } catch (IOException ex) {
 // Handle exceptions
 }

Localhost refers to the current machine. This has a specific
IP address: 127.0.0.1. While a machine may be associated
with an additional IP address, every machine can reach itself
using this localhost address.

Chapter 1

[11]

The user is then prompted to enter text. If the text is the quit command, then the
infinite loop is terminated, and the application shuts down. Otherwise, the text is
sent to the server using the out object. When the reply is returned, it is displayed
as shown next:

 System.out.println("Connected to server");
 Scanner scanner = new Scanner(System.in);
 while (true) {
 System.out.print("Enter text: ");
 String inputLine = scanner.nextLine();
 if ("quit".equalsIgnoreCase(inputLine)) {
 break;
 }
 out.println(inputLine);
 String response = br.readLine();
 System.out.println("Server response: " + response);
 }

These programs can be implemented as two separate projects or within a single
project. Either way, start the server first and then start the client. When the server
starts, you will see the following displayed:

Simple Echo Server

Waiting for connection.....

When the client starts, you will see the following:

Simple Echo Client

Waiting for connection.....

Connected to server

Enter text:

Enter a message, and watch how the client and the server interact. The following is
one possible series of input from the client's perspective:

Enter text: Hello server

Server response: Hello server

Enter text: Echo this!

Server response: Echo this!

Enter text: quit

Getting Started with Network Programming

[12]

The server's output is shown here after the client has entered the quit command:

Simple Echo Server

Waiting for connection.....

Connected to client

Client request: Hello server

Client request: Echo this!

This is one approach to implement the client and server. We will enhance this
implementation in later chapters.

Using Java 8 to support the echo server
and client
We will be providing examples of using many of the newer Java 8 features
throughout this book. Here, we will show you alternative implementations of the
previous echo server and client applications.

The server uses a while loop to process a client's request as duplicated here:

 String inputLine;
 while ((inputLine = br.readLine()) != null) {
 System.out.println("Client request: " + inputLine);
 out.println(inputLine);
 }

We can use the Supplier interface in conjunction with a Stream object to perform
the same operation. The next statement uses a lambda expression to return a string
from the client:

 Supplier<String> socketInput = () -> {
 try {
 return br.readLine();
 } catch (IOException ex) {
 return null;
 }
 };

Chapter 1

[13]

An infinite stream is generated from the Supplier instance. The following map
method gets input from the user and then sends it to the server. When quit is
entered, the stream will terminate. The allMatch method is a short-circuit method,
and when its argument evaluates to false, the stream is terminated:

 Stream<String> stream = Stream.generate(socketInput);
 stream
 .map(s -> {
 System.out.println("Client request: " + s);
 out.println(s);
 return s;
 })
 .allMatch(s -> s != null);

While this implementation is lengthier than the traditional implementation, it can
provide more succinct and simple solutions to more complex problems.

On the client side, we can replace the while loop as duplicated here with a functional
implementation:

 while (true) {
 System.out.print("Enter text: ");
 String inputLine = scanner.nextLine();
 if ("quit".equalsIgnoreCase(inputLine)) {
 break;
 }
 out.println(inputLine);

 String response = br.readLine();
 System.out.println("Server response: " + response);
 }

The functional solution also uses a Supplier instance to capture console input as
shown here:

 Supplier<String> scannerInput = () -> scanner.next();

An infinite stream is generated, as shown next, with a map method providing the
equivalent functionality:

 System.out.print("Enter text: ");
 Stream.generate(scannerInput)
 .map(s -> {
 out.println(s);
 System.out.println("Server response: " + s);
 System.out.print("Enter text: ");

Getting Started with Network Programming

[14]

 return s;
 })
 .allMatch(s -> !"quit".equalsIgnoreCase(s));

A functional approach is often a better solution to many problems.

Note that an additional prompt, Enter text:, was displayed on the client side after the
quit command was entered. This is easily corrected by not displaying the prompt if
the quit command was entered. This correction is left as an exercise for the reader.

UDP and multicasting
Multicasting is a useful technique to use if you need to send messages to a group on
a periodic basis. It uses a UDP server and one or more UDP clients. To illustrate this
capability, we will create a simple time server. The server will send a date and time
string to clients every second.

Multicasting will send an identical message to every member of a group. A group
is identified by a multicast address. A multicast address must use the following
IP address range: 224.0.0.0 through 239.255.255.255. The server will send a
message mark with this address. Clients must join the group before they can receive
any multicast messages.

Creating a multicast server
A MulticastServer class is declared next, where a DatagramSocket instance is
created. The try-catch blocks will handle exceptions as they occur:

public class MulticastServer {
 public static void main(String args[]) {
 System.out.println("Multicast Time Server");
 DatagramSocket serverSocket = null;
 try {
 serverSocket = new DatagramSocket();
 ...
 }
 } catch (SocketException ex) {
 // Handle exception
 } catch (IOException ex) {
 // Handle exception
 }
 }
}

Chapter 1

[15]

The body of the try block uses an infinite loop to create an array of bytes to hold the
current date and time. Next, an InetAddress instance representing the multicast
group is created. Using the array and the group address, a DatagramPacket is
instantiated and used as an argument to the DatagramSocket class' send method.
The data and time sent is then displayed. The server then pauses for one second:

 while (true) {
 String dateText = new Date().toString();
 byte[] buffer = new byte[256];
 buffer = dateText.getBytes();

 InetAddress group = InetAddress.getByName("224.0.0.0");
 DatagramPacket packet;
 packet = new DatagramPacket(buffer, buffer.length,
 group, 8888);
 serverSocket.send(packet);
 System.out.println("Time sent: " + dateText);

 try {
 Thread.sleep(1000);
 } catch (InterruptedException ex) {
 // Handle exception
 }
 }

This server only broadcasts messages. It never receives messages from a client.

Creating the multicast client
The client is created using the following MulticastClient class. In order to receive
a message, the client must use the same group address and port number. Before it
can receive messages, it must join the group using the joinGroup method. In this
implementation, it receives 5 date and time messages, displays them, and then
terminates. The trim method removes leading and trailing white space, from a
string. Otherwise, all 256 bytes of the message will be displayed:

public class MulticastClient {
 public static void main(String args[]) {
 System.out.println("Multicast Time Client");
 try (MulticastSocket socket = new MulticastSocket(8888)) {
 InetAddress group =
 InetAddress.getByName("224.0.0.0");
 socket.joinGroup(group);
 System.out.println("Multicast Group Joined");

Getting Started with Network Programming

[16]

 byte[] buffer = new byte[256];
 DatagramPacket packet =
 new DatagramPacket(buffer, buffer.length);

 for (int i = 0; i < 5; i++) {
 socket.receive(packet);
 String received = new String(packet.getData());
 System.out.println(received.trim());
 }

 socket.leaveGroup(group);
 } catch (IOException ex) {
 // Handle exception
 }
 System.out.println("Multicast Time Client Terminated");
 }
}

When the server is started, the messages sent are displayed as shown here:

Multicast Time Server

Time sent: Thu Jul 09 13:19:49 CDT 2015

Time sent: Thu Jul 09 13:19:50 CDT 2015

Time sent: Thu Jul 09 13:19:51 CDT 2015

Time sent: Thu Jul 09 13:19:52 CDT 2015

Time sent: Thu Jul 09 13:19:53 CDT 2015

Time sent: Thu Jul 09 13:19:54 CDT 2015

Time sent: Thu Jul 09 13:19:55 CDT 2015

...

The client output will look similar to the following:

Multicast Time Client

Multicast Group Joined

Thu Jul 09 13:19:50 CDT 2015

Thu Jul 09 13:19:51 CDT 2015

Chapter 1

[17]

Thu Jul 09 13:19:52 CDT 2015

Thu Jul 09 13:19:53 CDT 2015

Thu Jul 09 13:19:54 CDT 2015

Multicast Time Client Terminated

If the example is executed on a Mac, you may receive an
exception indicating that it cannot assign the requested
address. This can be fixed by using the JVM option -Djava.
net.preferIPv4Stack=true.

There are numerous other multicast capabilities, which will be explored in Chapter 6,
UDP and Multicasting.

Scalability
When the demand on a server increases and decreases, it is desirable to change
the resources dedicated to the server. The options available range from the use of
manual threads to allow concurrent behavior to those embedded in specialized
classes to handle thread pools and NIO channels.

Creating a threaded server
In this section, we will use threads to augment our simple echo server. The definition
of the ThreadedEchoServer class is as follows. It implements the Runnable interface
to create a new thread for each connection. The private Socket variable will hold the
client socket for a specific thread:

public class ThreadedEchoServer implements Runnable {
 private static Socket clientSocket;

 public ThreadedEchoServer(Socket clientSocket) {
 this.clientSocket = clientSocket;
 }
 ...
}

Getting Started with Network Programming

[18]

A thread is a block of code that executes concurrently with other
blocks of code in an application. The Thread class supports threads
in Java. While there are several ways of creating threads, one way
is to pass an object that implements the Runnable interface to its
constructor. When the Thread class' start method is invoked,
the thread is created and the Runnable interface's run method
executes. When the run method terminates, so does the thread.
Another way of adding the thread is to use a separate
class for the thread. This can be declared separate from the
ThreadedEchoServer class or as an inner class of the
ThreadedEchoServer class. Using a separate class, better splits
the functionality of the application.

The main method creates the server socket as before, but when a client socket is
created, the client socket is used to create a thread, as shown here:

 public static void main(String[] args) {
 System.out.println("Threaded Echo Server");
 try (ServerSocket serverSocket = new ServerSocket(6000)) {
 while (true) {
 System.out.println("Waiting for connection.....");
 clientSocket = serverSocket.accept();
 ThreadedEchoServer tes =
 new ThreadedEchoServer(clientSocket);
 new Thread(tes).start();
 }

 } catch (IOException ex) {
 // Handle exceptions
 }
 System.out.println("Threaded Echo Server Terminating");
 }

The actual work is performed in the run method as shown next. It is essentially the
same implementation as the original echo server, except that the current thread is
displayed to clarify which threads are being used:

 @Override
 public void run() {
 System.out.println("Connected to client using ["
 + Thread.currentThread() + "]");
 try (BufferedReader br = new BufferedReader(
 new InputStreamReader(

Chapter 1

[19]

 clientSocket.getInputStream()));
 PrintWriter out = new PrintWriter(
 clientSocket.getOutputStream(), true)) {
 String inputLine;
 while ((inputLine = br.readLine()) != null) {
 System.out.println("Client request ["
 + Thread.currentThread() + "]: " + inputLine);
 out.println(inputLine);
 }
 System.out.println("Client [" + Thread.currentThread()
 + " connection terminated");
 } catch (IOException ex) {
 // Handle exceptions
 }
 }

Using the threaded server
The following output shows the interaction between the server and two clients.
The original echo client was started twice. As you can see, each client interaction is
performed with a different thread:

Threaded Echo Server

Waiting for connection.....

Waiting for connection.....

Connected to client using [Thread[Thread-0,5,main]]

Client request [Thread[Thread-0,5,main]]: Hello from client 1

Client request [Thread[Thread-0,5,main]]: Its good on this side

Waiting for connection.....

Connected to client using [Thread[Thread-1,5,main]]

Client request [Thread[Thread-1,5,main]]: Hello from client 2

Client request [Thread[Thread-1,5,main]]: Good day!

Client request [Thread[Thread-1,5,main]]: quit

Client [Thread[Thread-1,5,main] connection terminated

Client request [Thread[Thread-0,5,main]]: So long

Getting Started with Network Programming

[20]

Client request [Thread[Thread-0,5,main]]: quit

The following interaction is from the first client's perspective:

Simple Echo Client

Waiting for connection.....

Connected to server

Enter text: Hello from client 1

Server response: Hello from client 1

Enter text: Its good on this side

Server response: Its good on this side

Enter text: So long

Server response: So long

Enter text: quit

Server response: quit

The following interaction is from the second client's perspective:

Simple Echo Client

Waiting for connection.....

Connected to server

Enter text: Hello from client 2

Server response: Hello from client 2

Enter text: Good day!

Server response: Good day!

Enter text: quit

Server response: quit

This implementation permits multiple clients to be handled at a time. Clients are not
blocked because another client is using the server. However, it also allows a large
number of threads to be created. If there are too many threads in existence, then server
performance can degrade. We will address these issues in Chapter 7, Network Scalability.

Chapter 1

[21]

Security
Security is a complex topic. In this section, we will demonstrate a few simple aspects
of this topic, as it relates to networks. Specifically, we will create a secure echo server.
Creating a secure echo server is not that much different from the non-secure echo
server that we developed earlier. However, there is a lot going on behind the scenes
to make it work. We can ignore many of these details for now, but we will delve
more deeply into it in Chapter 8, Network Security.

We will be using the SSLServerSocketFactory class to instantiate secure server
sockets. In addition, it is necessary to create keys that the underlying SSL mechanism
can use to encrypt the communications.

Creating a SSL server
An SSLServerSocket class is declared in the following example to serve as the
echo server. As it is similar to the previous echo server, we will not explain its
implementation, except for its relation to the use of the SSLServerSocketFactory
class. Its static getDefault method returns an instance of ServerSocketFactory. Its
createServerSocket method returns an instance of a ServerSocket bound to port
8000 that is capable of supporting secure communications. Otherwise, it is organized
and functions similarly to the previous echo server:

public class SSLServerSocket {

 public static void main(String[] args) {
 try {
 SSLServerSocketFactory ssf = (SSLServerSocketFactory)
 SSLServerSocketFactory.getDefault();
 ServerSocket serverSocket =
 ssf.createServerSocket(8000);
 System.out.println("SSLServerSocket Started");
 try (Socket socket = serverSocket.accept();
 PrintWriter out = new PrintWriter(
 socket.getOutputStream(), true);
 BufferedReader br = new BufferedReader(
 new InputStreamReader(
 socket.getInputStream()))) {
 System.out.println("Client socket created");
 String line = null;
 while (((line = br.readLine()) != null)) {
 System.out.println(line);
 out.println(line);
 }

Getting Started with Network Programming

[22]

 br.close();
 System.out.println("SSLServerSocket Terminated");
 } catch (IOException ex) {
 // Handle exceptions
 }
 } catch (IOException ex) {
 // Handle exceptions
 }
 }
}

Creating an SSL client
The secure echo client is also similar to the previous non-secure echo client. The
SSLSocketFactory class' getDefault returns an SSLSocketFactory instance whose
createSocket creates a socket that is connected to the secure echo server. The
application is as follows:

public class SSLClientSocket {

 public static void main(String[] args) throws Exception {
 System.out.println("SSLClientSocket Started");
 SSLSocketFactory sf =
 (SSLSocketFactory) SSLSocketFactory.getDefault();
 try (Socket socket = sf.createSocket("localhost", 8000);
 PrintWriter out = new PrintWriter(
 socket.getOutputStream(), true);
 BufferedReader br = new BufferedReader(
 new InputStreamReader(
 socket.getInputStream()))) {
 Scanner scanner = new Scanner(System.in);
 while (true) {
 System.out.print("Enter text: ");
 String inputLine = scanner.nextLine();
 if ("quit".equalsIgnoreCase(inputLine)) {
 break;
 }
 out.println(inputLine);
 System.out.println("Server response: " +
 br.readLine());
 }
 System.out.println("SSLServerSocket Terminated");
 }
 }
}

Chapter 1

[23]

If we executed this server followed by the client, they will abort with a connection
error. This is because we have not provided a set of keys that the applications can
share and use to protect the data passed between them.

Generating secure keys
To provide the necessary keys, we need to create a keystore to hold the keys. When
the applications execute, the keystore must be available to the applications. First,
we will demonstrate how to create a keystore, and then we will show you which
runtime parameters must be supplied.

Within the Java SE SDK's bin directory is a program titled keytool. This is a
command-level program that will generate the necessary keys and store them in a
key file. In Windows, you will need to bring up a command window and navigate
to the root directory of your source files. This directory will contain the directory
holding your application's package.

On a Mac, you may have problems generating a key pair.
More information about using this tool on a Mac is found
at https://developer.apple.com/library/mac/
documentation/Darwin/Reference/ManPages/man1/
keytool.1.html.

You will also need to set the path to the bin directory using a command that is
similar to the following one. This command is needed to find and execute the
keytool application:

 set path= C:\Program Files\Java\jdk1.8.0_25\bin;%path%

Next, enter the keytool command. You will be prompted for a password and other
information that is used to create the keys. This process is shown here, where a
password of 123456 is used although it is not displayed as it is entered:

Enter keystore password:

Re-enter new password:

What is your first and last name?

 [Unknown]: First Last

What is the name of your organizational unit?

 [Unknown]: packt

What is the name of your organization?

 [Unknown]: publishing

What is the name of your City or Locality?

https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man1/keytool.1.html
https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man1/keytool.1.html
https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man1/keytool.1.html

Getting Started with Network Programming

[24]

 [Unknown]: home

What is the name of your State or Province?

 [Unknown]: calm

What is the two-letter country code for this unit?

 [Unknown]: me

Is CN=First Last, OU=packt, O=publishing, L=home, ST=calm, C=me correct?

 [no]: y

Enter key password for <mykey>

 (RETURN if same as keystore password):

With the keystore created, you can run the server and client applications. How
these applications are started depends on how your projects have been created.
You may be able to execute it from an IDE, or you may need to start them from a
command window.

Next are the commands that can be used from a command window. The two
arguments to the java command are the location of the keystore and a password.
They need to be executed from the root directory of your package's directory:

java -Djavax.net.ssl.keyStore=keystore.jks -
 Djavax.net.ssl.keyStorePassword=123456 packt.SSLServerSocket
java -Djavax.net.ssl.trustStore=keystore.jks -
 Djavax.net.ssl.trustStorePassword=123456 packt.SSLClientSocket

If you want to use an IDE, then use the equivalent settings for your runtime
command arguments. The following one illustrates one possible interchange
between the client and the server. The output of the server window is shown first,
followed by that of the client:

SSLServerSocket Started

Client socket created

Hello echo server

Safe and secure

SSLServerSocket Terminated

SSLClientSocket Started

Enter text: Hello echo server

Server response: Hello echo server

Chapter 1

[25]

Enter text: Safe and secure

Server response: Safe and secure

Enter text: quit

SSLServerSocket Terminated

There is more to learn about SSL than what is shown here. However, this provides an
overview of the process with more details presented in Chapter 8, Network Security.

Summary
Network enabled applications fulfill an increasingly important role in our society
today. With more and more devices being connected to the Internet, it is important to
understand how to build applications that can communicate with other applications.

We briefly identified and explained several of the technologies that Java uses to
connect to a network. We illustrated how the InetAddress class can represent
an IP address, and we used this class for several examples. The basic elements
of the client/server architecture were demonstrated using UDP, TCP, and SSL
technologies. They provide different types of support. UDP is fast but not as reliable
or as capable as TCP. TCP is a reliable and convenient way of communicating, but is
not secure unless used with SSL.

The NIO support for buffers and channels was illustrated. These techniques can
result in more efficient communications. The scalability of an application is critical
for many applications, specifically the client/server model. We also saw how threads
can support scalability.

Each of these topics will be addressed in more detail in later chapters. This includes
the support NIO provides for scalability, how P2P applications work, and the myriad
of interoperability technologies that are available for use with Java.

We'll start with a detailed examination of networks, and network addressing, in
particular, in the next chapter.

[27]

Network Addressing
For a program to communicate with another program, it must have an address. In
this chapter, the use of addresses, including Internet addresses, will be examined.
We will introduce many of the basic concepts in the first part of this chapter. This
includes the architecture of networks and the protocols that are used to communicate
between the nodes.

We will address several topics, including:

• Network basics: This is where essential concepts and terms are introduced
• Using the NetworkInterface class: This provides access to system devices
• URL/UII/URN: We will discuss how these terms relate to each other
• The Inet4Address and Inet6Address classes: We will discuss how these

are used
• Network properties: We will consider the properties that are configurable

in Java

This will provide you with the foundation to pursue networking in more depth.

Networking basics
Networking is a broad and complex topic. In particular, a subtopic, such as
addressing, is quite involved. We will introduce the terms and concepts that are
commonly encountered and useful from a Java perspective.

Most of this discussion will focus on Java support for the Internet. A Uniform
Resource Locator (URL) is recognized by most Internet users. However, the terms
Uniform Resource Identifier (URI) and Uniform Resource Name (URN) are not
recognized or understood as well as URL. We will differentiate between these terms
and examine the Java supporting classes.

Network Addressing

[28]

A browser user would normally enter a URL for the site that they would like to visit.
This URL needs to be mapped to an IP address. The IP address is a unique number
identifying the site. The URL is mapped to an IP address using a Domain Name
System (DNS) server. This avoids a user having to remember a number for each site.
Java uses the InetAddress class to access IP addresses and resources.

UDP and TCP are used by many applications. IP supports both of these protocols.
The IP protocol transfers packets of information between nodes on a network. Java
supports both the IPv4 and IPv6 protocol versions.

Both UDP and TCP are layered on top of IP. Several other protocols are layered on
top of TCP, such as HTTP. These relationships are shown in this following figure:

When communications occur between different networks using different machines
and operating systems, problems can occur due to differences at the hardware or
software level. One of these issues is the characters used in URLs. The URLEncoder
and URLDecoder classes can help address this problem, and they are discussed in
Chapter 9, Network Interoperability.

The IP address assigned to a device may be either static or dynamic. If it is static,
it will not change each time the device is rebooted. With dynamic addresses, the
address may change each time the device is rebooted or when a network connection
is reset.

Static addresses are normally manually assigned by an administrator. Dynamic
addresses are frequently assigned using the Dynamic Host Configuration Protocol
(DHCP) running from a DHCP server. With IPv6, DHCP is not as useful due to the
large IPv6 address space. However, DHCP is useful for tasks, such as supporting the
generation of random addresses, which introduce more privacy within a network
when viewed from outside of the network.

The Internet Assigned Numbers Authority (IANA) is responsible for the allocation
of IP address space allocations. Five Regional Internet Registries (RIRs) allocate IP
address blocks to local Internet entities that are commonly referred to as Internet
Service Providers (ISP).

Chapter 2

[29]

There are several publications that detail the IP protocol:

• RFC 790—assigned numbers: This specification addresses the format of
network numbers. For example, the IPv4 A, B, and C classes are defined in
this specification (https://tools.ietf.org/html/rfc790).

• RFC 1918—address allocation for private internets: This specification is
concerned with how private addresses are assigned. This allows multiple
private addresses to be associated with a single public address (https://
tools.ietf.org/html/rfc1918).

• RFC 2365—administratively scoped IP multicast: This specification defines
the multicast address space and how it can be implemented. The mapping
between IPv4 and IPv6 multicast address spaces is defined (https://tools.
ietf.org/html/rfc2365).

• RFC 2373—IPv6 addressing architecture: This specification examines the
IPv6 protocol, its format, and the various address types that are supported by
IPv6 (http://www.ietf.org/rfc/rfc2373.txt).

Many of the concepts introduced here will be illustrated with Java code whenever
possible. So let's start with understanding networks.

Understanding network basics
A network consists of nodes and links that are combined to create network
architecture. A device connected to the Internet is called a node. A computer node is
called a host. Communication between nodes is conducted along these links using
protocols, such as HTTP, or UDP.

Links can either be wired, such as coaxial cable, twisted pairs, and fiber optics, or
wireless, such as microwave, cellular, Wi-Fi, or satellite communications. These
various links support different bandwidth and throughput to address particular
communication needs.

Nodes include devices, such as Network Interface Controllers (NIC), bridges,
switches, hubs, and routers. They are all involved with transmitting various forms of
data between computers.

The NIC has an IP address and is part of a computer. Bridges connect two network
segments allowing a larger network to be broken down into smaller ones. Repeaters
and hubs are used primarily to retransmit a signal boosting its strength.

https://tools.ietf.org/html/rfc790
https://tools.ietf.org/html/rfc1918
https://tools.ietf.org/html/rfc1918
https://tools.ietf.org/html/rfc2365
https://tools.ietf.org/html/rfc2365
http://www.ietf.org/rfc/rfc2373.txt

Network Addressing

[30]

Hubs, switches, and routers are similar to each other but differ in their complexity.
A hub handles multiple ports and simply forwards the data to all connected
ports. A switch will learn where to send data based on its traffic. A router can be
programmed to manipulate and route messages. Routers are more useful in many
networks, and most home networks use a router.

When a message is sent across the Internet from a home computer, there are several
things going on. The computer's address is not globally unique. This requires that
any messages sent to and from the computer be handled by a Network Address
Translation (NAT) device that changes the address to one that can be used on the
Internet. It allows a single IP address to be used for multiple devices on a network,
such as a home LAN.

The computer may also use a proxy server, which acts as a gateway to other
networks. Java provides support for proxies using the Proxy and ProxySelector
classes. We will examine their use in Chapter 9, Network Interoperability.

Messages are often routed through a firewall. The firewall protects the computer
from malicious intent.

Network architectures and protocols
Common network architectures include bus, star, and tree-type networks. These
physical networks are often used to support an overlay network, which is a virtual
network. Such a network abstracts the underlying network to create a network
architecture supporting applications, such as peer-to-peer applications.

When two computers communicate, they use a protocol. There are many different
protocols used at various layers of a network. We will mainly focus on HTTP, TCP,
UDP, and IP.

There are several models depicting how networks can be layered to support different
tasks and protocols. One common model is the Open Systems Interconnection
(OSI) model, which defines seven layers. Each layer of a network model can support
one or more protocols. The relationships of various protocols are depicted in the
following table:

Layer Example protocols Purpose
Application HTTP, FTP, SNMP High-level protocols supporting specialized

operations
Presentation Transport layer security Support delivery and processing of data for

the application layer
Session Network file system Managing sessions

Chapter 2

[31]

Layer Example protocols Purpose
Transport TCP, UDP Manages packets of data
Network IP Transfer packets
Data link Ethernet, frame relay Transfers data between network segments
Physical DSL, Bluetooth Handles raw data

A more complete list of protocols for the OSI layers can be found at https://
en.wikipedia.org/wiki/List_of_network_protocols_(OSI_model). We are not
able address all of these protocols and will focus on the more important ones that are
supported by the Java SDK.

Consider the transfer of a web page from a server to a client. As it is sent to a client,
the data will be encapsulated in an HTTP message, which is further encapsulated in
TCP, IP, and link-level protocol messages, each frequently containing a header and
footer. This encapsulated set of headers is sent across the Internet to the destination
client, where the data is extracted for each encapsulating header until the original
HTML file is displayed.

Fortunately, we do not need to be familiar with the details of this process. Many of
the classes hide how this occurs, allowing us to focus on the data.

The protocols of the transport layer that we are interested in are TCP and UDP. TCP
provides a more reliable communication protocol than UDP. However, UDP is better
suited for short messages when delivery does not need to be robust. Streaming data
often uses UDP.

The differences between UDP and TCP are outlined in the following table:

Characteristic TCP UDP
Connection Connection-oriented Connectionless
Reliability Higher Lower
Order of packets Order restored Order potentially lost
Data boundaries Packets are merged Packets are distinct
Transmission time Slower than UDP Faster than TCP
Error checking Yes Yes, but no recovery options
Acknowledgement Yes No
Weight Heavy weight requiring

more support
Light weight requiring less support

https://en.wikipedia.org/wiki/List_of_network_protocols_(OSI_model)
https://en.wikipedia.org/wiki/List_of_network_protocols_(OSI_model)

Network Addressing

[32]

TCP is used for a number of protocols, such as HTTP, Simple Mail Transfer
Protocol (SMTP), and File Transfer Protocol (FTP). UDP is used by DNS to stream
media, such as movies, and for Voice Over IP (VOIP).

Using the NetworkInterface class
The NetworkInterface class provides a means of accessing the devices that act
as nodes on a network. This class also provides a means to get low-level device
addresses. Many systems are connected to multiple networks at the same time.
These may be wired, such as a network card, or wireless, such as for a wireless
LAN or Bluetooth connection.

The NetworkInterface class represents an IP address and provides information
about this IP address. A network interface is the point of connection between a
computer and a network. This frequently uses an NIC of some type. It does not have
to have a physical manifestation, but it can be performed in software as done with
the loopback connection (127.0.0.1 for IPv4 and ::1 for IPv6).

The NetworkInterface class does not have any public constructors. Three static
methods are provided to return an instance of the NetworkInterface class:

• getByInetAddress: This is used if the IP address is known
• getByName: This is used if the interface name is known
• getNetworkInterfaces: This provides an enumeration of available

interfaces

The following code illustrates how to use the getNetworkInterfaces method to
obtain and display an enumeration of the network interfaces for the current computer:

 try {
 Enumeration<NetworkInterface> interfaceEnum =
 NetworkInterface.getNetworkInterfaces();
 System.out.printf("Name Display name\n");
 for(NetworkInterface element :
 Collections.list(interfaceEnum)) {
 System.out.printf("%-8s %-32s\n",
 element.getName(), element.getDisplayName());
 } catch (SocketException ex) {
 // Handle exceptions
 }

Chapter 2

[33]

One possible output is as follows, but it has been truncated to save space:

Name Display name

lo Software Loopback Interface 1

eth0 Microsoft Kernel Debug Network Adapter

eth1 Realtek PCIe FE Family Controller

wlan0 Realtek RTL8188EE 802.11 b/g/n Wi-Fi Adapter

wlan1 Microsoft Wi-Fi Direct Virtual Adapter

net0 Microsoft 6to4 Adapter

net1 Teredo Tunneling Pseudo-Interface

...

A getSubInterfaces method will return an enumeration of subinterfaces if any
exist, as shown next. A subinterface occurs when a single physical network interface
is divided into logical interfaces for routing purposes:

 Enumeration<NetworkInterface> interfaceEnumeration =
 element.getSubInterfaces();

Each network interface will have one or more IP addresses associated with it. The
getInetAddresses method will return an Enumeration of these addresses. As
shown next, the initial list of network interfaces has been augmented to display the
IP addresses associated with them:

 Enumeration<NetworkInterface> interfaceEnum =
 NetworkInterface.getNetworkInterfaces();
 System.out.printf("Name Display name\n");
 for (NetworkInterface element :
 Collections.list(interfaceEnum)) {
 System.out.printf("%-8s %-32s\n",
 element.getName(), element.getDisplayName());
 Enumeration<InetAddress> addresses =
 element.getInetAddresses();
 for (InetAddress inetAddress :
 Collections.list(addresses)) {
 System.out.printf(" InetAddress: %s\n",
 inetAddress);
 }

Network Addressing

[34]

One possible output is as follows:

Name Display name

lo Software Loopback Interface 1

 InetAddress: /127.0.0.1

 InetAddress: /0:0:0:0:0:0:0:1

eth0 Microsoft Kernel Debug Network Adapter

eth1 Realtek PCIe FE Family Controller

 InetAddress: /fe80:0:0:0:91d0:8e19:31f1:cb2d%eth1

wlan0 Realtek RTL8188EE 802.11 b/g/n Wi-Fi Adapter

 InetAddress: /192.168.1.5

 InetAddress: /2002:6028:2252:0:0:0:0:1000

 InetAddress: /fe80:0:0:0:9cdb:371f:d3e9:4e2e%wlan0

wlan1 Microsoft Wi-Fi Direct Virtual Adapter

 InetAddress: /fe80:0:0:0:f8f6:9c75:d86d:8a22%wlan1

net0 Microsoft 6to4 Adapter

net1 Teredo Tunneling Pseudo-Interface

 InetAddress: /2001:0:9d38:6abd:6a:37:3f57:fefa

 ...

We can also use the following Java 8 technique. A stream and a lambda expression
are used to display the IP addresses to generate the same output:

 addresses = element.getInetAddresses();
 Collections
 .list(addresses)
 .stream()
 .forEach((inetAddress) -> {
 System.out.printf(" InetAddress: %s\n",
 inetAddress);
 });

There are numerous InetworkAddress methods, which reveal more details about
the network connection. They will be discussed as we encounter them.

Chapter 2

[35]

Getting a MAC address
A Media Access Control (MAC) address is used to identify an NIC. MAC addresses
are usually assigned by the manufacturer of an NIC and are a part of its hardware.
Each NIC on a node must have a unique MAC address. Theoretically, all NICs,
regardless of their location, will have a unique MAC address. A MAC address
consists of 48 bits that are usually written in groups of six pairs of hexadecimal
digits. These groups are separated by either a dash or a colon.

Getting a specific MAC address
Normally, MAC addresses are not needed by the average Java programmer.
However, they can be retrieved whenever needed. The following method returns
a string containing the IP address and its MAC address for a NetworkInterface
instance. The getHardwareAddress method returns an array of bytes holding the
number. This array is then displayed as a MAC address. Most of this code-segment
logic is devoted to formatting the output, where the tertiary operator determines
whether a dash should be displayed:

 public String getMACIdentifier(NetworkInterface network) {
 StringBuilder identifier = new StringBuilder();
 try {
 byte[] macBuffer = network.getHardwareAddress();
 if (macBuffer != null) {
 for (int i = 0; i < macBuffer.length; i++) {
 identifier.append(
 String.format("%02X%s",macBuffer[i],
 (i < macBuffer.length - 1) ? "-" : ""));
 }
 } else {
 return "---";
 }
 } catch (SocketException ex) {
 ex.printStackTrace();
 }
 return identifier.toString();
 }

The method is demonstrated in the following example where we use the localhost:

 InetAddress address = InetAddress.getLocalHost();
 System.out.println("IP address: " + address.getHostAddress());
 NetworkInterface network =
 NetworkInterface.getByInetAddress(address);
 System.out.println("MAC address: " +
 getMACIdentifier(network));

Network Addressing

[36]

The output will vary depending on the computer used. One possible output is
as follows:

IP address: 192.168.1.5

MAC address: EC-0E-C4-37-BB-72

The getHardwareAddress method will only allow you to
access a localhost MAC address. You cannot use it to access a
remote MAC address.

Getting multiple MAC addresses
Not all network interfaces will have MAC addresses. This is demonstrated here,
where an enumeration is created using the getNetworkInterfaces method, and
then each network interface is displayed:

 Enumeration<NetworkInterface> interfaceEnum =
 NetworkInterface.getNetworkInterfaces();
 System.out.println("Name MAC Address");
 for (NetworkInterface element :
 Collections.list(interfaceEnum)) {
 System.out.printf("%-6s %s\n",
 element.getName(), getMACIdentifier(element));

One possible output is as follows. The output is truncated to save space:

Name MAC Address

lo ---

eth0 ---

eth1 8C-DC-D4-86-B1-05

wlan0 EC-0E-C4-37-BB-72

wlan1 EC-0E-C4-37-BB-72

net0 ---

net1 00-00-00-00-00-00-00-E0

net2 00-00-00-00-00-00-00-E0

...

Chapter 2

[37]

Alternatively, we can use the following Java implementation. It converts the
enumeration into a stream and then processes each element in the stream:

 interfaceEnum = NetworkInterface.getNetworkInterfaces();
 Collections
 .list(interfaceEnum)
 .stream()
 .forEach((inetAddress) -> {
 System.out.printf("%-6s %s\n",
 inetAddress.getName(),
 getMACIdentifier(inetAddress));
 });

The power of streams comes when we need to perform additional processing, such as
filtering out certain interfaces, or converting the interface into a different data type.

Network addressing concepts
There are different types of network addresses. An address serves to identify a node
in a network. For example, the Internetwork Packet Exchange (IPX) protocol was an
earlier protocol that was used to access nodes on a network. The X.25 is a protocol
suite for Wide Area Network (WAN) packet switching. A MAC address provides a
unique identifier for network interfaces at the physical network level. However, our
primary interests are IP addresses.

URL/URI/URN
These terms are used to refer to the name and location of an Internet resource. A URI
identifies the name of a resource, such as a website, or a file on the Internet. It may
contain the name of a resource and its location.

A URL specifies where a resource is located, and how to retrieve it. A protocol forms the
first part of the URL, and specifies how data is retrieved. URLs always contain protocol,
such as HTTP, or FTP. For example, the following two URLs use different protocols.
The first one uses the HTTPS protocol, and the second one uses the FTP protocol:

https://www.packtpub.com/

ftp://speedtest.tele2.net/

Java provides classes to support URIs and URLs. The discussion of these classes
begins in the next section. Here, we will discuss URNs in more depth.

Network Addressing

[38]

A URN identifies the resource but not its location. A URN is like a city's name, while
a URL is similar to a city's latitude and longitude. When a resource, such as web
page, or file, is moved, the URL for the resource is no longer correct. The URL will
need to be updated wherever it is used. A URN specifies the name of a resource
but not its location. Some other entity, when supplied with a URN, will return its
location. URNs are not used that extensively.

The syntax of a URN is shown next. The <NID> element is a namespace identifier and
<NSS> is a namespace-specific string:

<URN> ::= "urn:" <NID> ":" <NSS>

For example, the following is a URN specifying as part of a SOAP message to qualify
its namespace:

<?xml version='1.0'?>
<SOAP:Envelope
 xmlns:SOAP='urn:schemas-xmlsoap-org:soap.v1'>
 <SOAP:Body>
 ...
 xmlns:i='urn:gargantuan-com:IShop'>
 ...
 </SOAP:Body>
</SOAP:Envelope>

It is used in other places, such as to identify books using their ISBN. Entering the
following URL in a browser will bring up a reference to an EJB book:

https://books.google.com/books?isbn=9781849682381

Chapter 2

[39]

The syntax of a URN depends on the namespace. The IANA is responsible for the
allocation of many Internet resources, including URN namespaces. URNs are still an
active area of research. URLs and URNs are both URIs.

Using the URI class
The general syntax of a URI consists of a scheme and a scheme-specific-part:

[scheme:] scheme-specific-part

There are many schemes that are used with a URI, including:

• file: This is used for files systems
• FTP: This is File Transfer Protocol
• HTTP: This is commonly used for websites
• mailto: This is used as part of a mail service
• urn: This is used to identify a resource by name

The scheme-specific-part varies by the scheme that is used. URIs can be categorized
as absolute or relative, or as opaque or hierarchical. These distinctions are not of
immediate interest to us here, though Java provides methods to determine whether a
URI falls into one of these categories.

Creating URI instances
A URI can be created for different schemes using several constructor variations.
The simplest way of creating a URI is to use a string argument specifying the URI,
as shown here:

 URI uri = new
 URI("https://www.packtpub.com/books/content/support");

The next URI uses a fragment to access a subsection of the Wikipedia article dealing
with the normalization of a URL:

 uri = new URI("https://en.wikipedia.org/wiki/"
 + "URL_normalization#Normalization_process");

We can also use the following version of the constructor to specify the scheme, host,
path, and fragment of the URI:

 uri = new
 URI("https","en.wikipedia.org","/wiki/URL_normalization",
 "Normalization_process");

These latter two URIs are identical.

Network Addressing

[40]

Splitting apart a URI
Java uses the URI class to represent a URI, and it possesses several methods to extract
parts of a URI. The more useful methods are listed in the following table:

Method Purpose
getAuthority This is the entity responsible for resolving the URI
getScheme The scheme used
getSchemeSpecificPart The scheme specific part of the URI
getHost The host
getPath The URI path
getQuery The query, if any
getFragment The sub-element being accessed, if used
getUserInfo User information, if available
normalize Removes unnecessary "." and ".." from the path

There are also several "raw" methods, such as getRawPath, or getRawFragment, which
return versions of a path or fragment, respectively. This includes special characters,
such as the question mark, or character sequences beginning with an asterisk. There
are several character categories defining these characters and their use, as documented
at http://docs.oracle.com/javase/8/docs/api/java/net/URI.html.

We have developed the following helper method that is used to display URI
characteristics:

 private static void displayURI(URI uri) {
 System.out.println("getAuthority: " + uri.getAuthority());
 System.out.println("getScheme: " + uri.getScheme());
 System.out.println("getSchemeSpecificPart: "
 + uri.getSchemeSpecificPart());
 System.out.println("getHost: " + uri.getHost());
 System.out.println("getPath: " + uri.getPath());
 System.out.println("getQuery: " + uri.getQuery());
 System.out.println("getFragment: " + uri.getFragment());
 System.out.println("getUserInfo: " + uri.getUserInfo());
 System.out.println("normalize: " + uri.normalize());
 }

http://docs.oracle.com/javase/8/docs/api/java/net/URI.html

Chapter 2

[41]

The next code sequence creates a URI instance for the Packtpub website and then
calls the displayURI method:

 try {
 URI uri = new
 URI("https://www.packtpub.com/books/content/support");
 displayURI(uri);
 } catch (URISyntaxException ex) {
 // Handle exceptions
 }

The output of this sequence is as follows:

getAuthority: www.packtpub.com

getScheme: https

getSchemeSpecificPart: //www.packtpub.com/books/content/support

getHost: www.packtpub.com

getPath: /books/content/support

getQuery: null

getFragment: null

getUserInfo: null

normalize: https://www.packtpub.com/books/content/support

http://www.packtpub.com

More often, these methods are used to extract relevant information for
additional processing.

Using the URL class
One of the easiest ways to connect to a site and retrieve data is through the URL class.
All that you need to provide is the URL for the site and the details of the protocol. An
instance of the InetAddress class will hold an IP address and possibly the hostname
for the address.

The URLConnection class was introduced in Chapter 1, Getting Started with Network
Programming. It can also be used to provide access to an Internet resource represented
by a URL. We will discuss this class and its use in Chapter 4, Client/Server Development.

Network Addressing

[42]

Creating URL instances
There are several ways of creating a URL instance. The easiest is to simply provide
the URL of the site as the argument of the class' constructor. This is illustrated here
where a URL instance for the Packtpub website is created:

 URL url = new URL("http://www.packtpub.com");

A URL requires a protocol to be specified. For example, the following attempt
to create a URL will result in a java.net.MalformedURLException: no protocol:
www.packtpub.com error message:

 url = new URL("www.packtpub.com");

There are several constructor variations. The following two variations will create
the same URL. The second one uses parameters for the protocol, host, port number,
and file:

 url = new URL("http://pluto.jhuapl.edu/");
 url = new URL("http", "pluto.jhuapl.edu", 80,
 "News-Center/index.php");

Splitting apart a URL
It can be useful to know more about a URL. We may not even know what URL we are
using if the user entered one that we need to process. There are several methods that
support splitting a URL into its components, as summarized in the following table:

Method Purpose
getProtocol This is the name of the protocol.
getHost This is the host name.
getPort This is the port number.
getDefaultPort This is the default port number for the protocol.
getFile This returns the result of getPath concatenated with the results

of getQuery.
getPath This retrieves the path, if any, for the URL.
getRef This is the return name of the URL's reference.
getQuery This returns the query part of the URL if present.
getUserInfo This returns any user information associated with the URL.
getAuthority The authority usually consists of the server host name or IP

address. It may include the port number.

Chapter 2

[43]

We will use the following method to illustrate the methods in the preceding table:

 private static void displayURL(URL url) {
 System.out.println("URL: " + url);
 System.out.printf(" Protocol: %-32s Host: %-32s\n",
 url.getProtocol(),url.getHost());
 System.out.printf(" Port: %-32d Path: %-32s\n",
 url.getPort(),url.getPath());
 System.out.printf(" Reference: %-32s File: %-32s\n",
 url.getRef(),url.getFile());
 System.out.printf(" Authority: %-32s Query: %-32s\n",
 url.getAuthority(),url.getQuery());
 System.out.println(" User Info: " + url.getUserInfo());
 }

The following output demonstrates the output when several URL are used as
arguments to this method.

URL: http://www.packtpub.com

 Protocol: http Host: www.packtpub.com

 Port: -1 Path:

 Reference: null File:

 Authority: www.packtpub.com Query: null

 User Info: null

URL: http://pluto.jhuapl.edu/

 Protocol: http Host: pluto.jhuapl.edu

 Port: -1 Path: /

 Reference: null File: /

 Authority: pluto.jhuapl.edu Query: null

 User Info: null

URL: http://pluto.jhuapl.edu:80News-Center/index.php

 Protocol: http Host: pluto.jhuapl.edu

Network Addressing

[44]

 Port: 80 Path: News-Center/
index.php

 Reference: null File: News-Center/
index.php

 Authority: pluto.jhuapl.edu:80 Query: null

 User Info: null

URL: https://en.wikipedia.org/wiki/Uniform_resource_
locator#Syntax

 Protocol: https Host: en.wikipedia.org

 Port: -1 Path: /wiki/Uniform_
resource_locator

 Reference: Syntax File: /wiki/Uniform_
resource_locator

 Authority: en.wikipedia.org Query: null

 User Info: null

URL: https://www.google.com/webhp?sourceid=chrome-
instant&ion=1&espv=2&ie=UTF-8#q=url+syntax

 Protocol: https Host: www.google.com

 Port: -1 Path: /webhp

 Reference: q=url+syntax File: /
webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8

 Authority: www.google.com Query: sourceid=chrome-
instant&ion=1&espv=2&ie=UTF-8

 User Info: null

URL: https://www.packtpub.com/books/content/support

 Protocol: https Host: www.packtpub.com

 Port: -1 Path: /books/content/
support

 Reference: null File: /books/content/
support

 Authority: www.packtpub.com Query: null

 User Info: null

Chapter 2

[45]

The URL class also supports opening connections and IO streams. We demonstrated
the openConnection method in Chapter 1, Getting Started with Network Programming.
The getContent method returns the data referenced by the URL. For example, the
following applies the method against the Packtpub URL:

 url = new URL("http://www.packtpub.com");
 System.out.println("getContent: " + url.getContent());

The output is as follows:

sun.net.www.protocol.http.HttpURLConnection$HttpInputStream@5c647e05

This suggests that we need to use an input stream to process the resource. The type
of data depends on the URL. This topic is explored with the URLConnection class
that is discussed in Chapter 4, Client/Server Development.

IP addresses and the InetAddress class
An IP address is a numerical value that is used to identify a node, such as a
computer, printer, scanner, or a similar device. It is used for network interface
addressing, and location addressing. The address, unique in its context, identifies the
device. At the same time it constitutes a location in the network. A name designates
an entity, such as www.packtpub.com. Its address, 83.166.169.231, tells us where
it is located. If we want to send or receive a message from a site, the message is
unusually routed though one or more nodes.

Obtaining information about an address
The InetAddress class represents an IP address. The IP protocol is a low-level
protocol used by the UDP and TCP protocols. An IP address is either a 32-bit or a
128-bit unsigned number that is assigned to a device.

IP addresses have a long history and use two major versions: IPv4 and IPv6. The
number 5 was assigned to the Internet Stream Protocol. This was an experimental
protocol, but it was never actually referred to as version IPv5 and was not intended
for general use.

The InetAddress class' getAllByName method will return the IP address for a given
URL. In the following example, the addresses associated with www.google.com
are displayed:

 InetAddress names[] =
 InetAddress.getAllByName("www.google.com");
 for(InetAddress element : names) {
 System.out.println(element);
 }

www.packtpub.com
www.google.com

Network Addressing

[46]

One possible output is as follows. The output will vary depending on the location
and time because many web sites have multiple IP addresses assigned to them. In
this case, it uses both IPv4 and IPv6 addresses:

www.google.com/74.125.21.105

www.google.com/74.125.21.103

www.google.com/74.125.21.147

www.google.com/74.125.21.104

www.google.com/74.125.21.99

www.google.com/74.125.21.106

www.google.com/2607:f8b0:4002:c06:0:0:0:69

The InetAddress class possesses several methods to provide access to an IP address.
We will introduce them as they become relevant. We start with methods to return
its canonical hostname, hostname, and host address. They are used in the following
helper method:

 private static void displayInetAddressInformation(
 InetAddress address) {
 System.out.println(address);
 System.out.println("CanonicalHostName: " +
 address.getCanonicalHostName());
 System.out.println("HostName: " + address.getHostName());
 System.out.println("HostAddress: " +
 address.getHostAddress());
 }

The canonical hostname is a Fully Qualified Domain Name (FQDN). As the term
implies, it is the full name of the host, including the top-level domain. The values
returned by these methods depend on several factors, including the DNS server. The
system provides information regarding entities on the network.

The following sequence uses the display method for the Packtpub website:

 InetAddress address =
 InetAddress.getByName("www.packtpub.com");
 displayInetAddressInformation(address);

Chapter 2

[47]

You will get an output that is similar to the following one:

www.packtpub.com/83.166.169.231

CanonicalHostName: 83.166.169.231

HostAddress: 83.166.169.231

HostName: www.packtpub.com

The InetAddress class' toString method returned the hostname, followed by the
forward slash and then the host address. The getCanonicalHostName method, in this
case, returned the host address, which is not the FQDN. The method will do its best to
return the name but may not be able to depending on the machine's configuration.

Address scoping issues
The scope of an IP address refers to the uniqueness of an IP address. Within a local
network, such as those used in many homes and offices, the address may be local to
that network. There are three types of scopes:

• Link-local: This is used within a single local subnet that is not connected
to the Internet. No routers are present. Allocation of link-local addresses is
done automatically when the computer does not have a static IP-address and
cannot find a DHCP server.

• Site-local: This is used when the address does not require a global prefix and
is unique within a site. It cannot be reached directly from the Internet and
requires a mapping service such as NAT.

• Global: As its name implies, the address is unique throughout the Internet.

There are also private addresses that are discussed in the Private addresses in IPv4 and
Private addresses in IPv6 sections. The InetAddress class supports several methods to
identify the type of address being used. Most of these methods are self-explanatory, as
found in the following table where MC is an abbreviation for multicast:

Method Scope Description
isAnyLocalAddress Any This is an address that matches any local

address. It is a wildcard address.
isLoopbackAddress Loopback This is a loopback address. For IPv4,

it is 127.0.0.1, and for IPv6, it is
0:0:0:0:0:0:0:1.

isLinkLocalAddress Link-local This is a link-local address.

Network Addressing

[48]

Method Scope Description
isSiteLocalAddress Site-local This is local to a site. They can be reached by

other nodes on different networks but within
the same site.

isMulticastAddress MC This is a multicast address.
isMCLinkLocal MC link-local This is a link-local multicast address.
isMCNodeLocal MC node local This is a node-local multicast address.
isMCSiteLocal MC site-local This is a site-local multicast address.
isMCOrgLocal MC org local This is an organization-local multicast

address.
isMCGlobal MC global This is a global multicast address.

The addresses types and ranges used are summarized in the following table for IPv4
and IPv6:

Address type IPv4 IPv6
Multicast 224.0.0.0 to 239.255.255.25 Begins with byte FF
MC global 224.0.1.0 to 238.255.255.255 FF0E or FF1E
Org MC 239.192.0.0/14 FF08 or FF18
MC site-local N/A FF05 or FF15
MC link-local 224.0.0.0 FF02 or FF12
MC node local 127.0.0.0 FF01 or FF11
Private 10.0.0.0 to 10.255.255.255

172.16.0.0 to 172.31.255.255
192.168.0.0 to 192.168.255.255

fd00::/8

Testing reachability
The InetAddress class' isReachable method will attempt to determine whether
an address can be found. If it can, the method returns true. The following example
demonstrates this method. The getAllByName method returns an array of an
InetAddress instance available for the URL. The isReachable method uses an
integer argument to specify how long to wait in milliseconds at a maximum before
deciding that the address is not reachable:

 String URLAddress = "www. packtpub.com";
 InetAddress[] addresses =
 InetAddress.getAllByName(URLAddress);
 for (InetAddress inetAddress : addresses) {

Chapter 2

[49]

 try {
 if (inetAddress.isReachable(10000)) {
 System.out.println(inetAddress + " is reachable");
 } else {
 System.out.println(inetAddress +
 " is not reachable");
 }
 } catch (IOException ex) {
 // Handle exceptions
 }
 }

The URL www.packtpub.com was reachable, as shown here:

www.packtpub.com/83.166.169.231 is reachable

However, www.google.com was not:

www.google.com/173.194.121.52 is not reachable

www.google.com/173.194.121.51 is not reachable

www.google.com/2607:f8b0:4004:809:0:0:0:1014 is not reachable

Your results may vary. The isReachable method will do its best to determine
whether an address is reachable or not. However, its success depends on more than
simply whether the address exists. Reasons for failure can include: the server may be
down, network response time was too long, or a firewall may be blocking a site. The
operating system and JVM settings can also impact how well the method works.

An alternative to this method is to use the RunTime class' exec method to execute a
ping command against the URL. However, this is not portable and may still suffer
from some of the same factors that impact the success of the isReachable method.

Introducing the Inet4Address
This address consists of 32 bits, permitting up to 4,294,967,296 (232) addresses.
The human readable form of the address consists of four decimal numbers (8 bits),
each ranging from 0 to 255. Some of the addresses have been reserved for private
networks and multicast addresses.

www.packtpub.com
www.google.com

Network Addressing

[50]

Early on in the use of IPv4, the first octet (8 bit unit) represented a network
number (also called the network prefix or network block), and the remaining bits
represented a rest field (host identifier). Later, three classes were used to partition the
addresses: A, B, and C. These system have largely fallen into disuse and have been
replaced by the Classless Inter-Domain Routing (CIDR). This routing approach
allocates addresses on bit boundaries, providing more flexibility. This scheme is
called classless in contrast to the earlier class-full systems. In IPv6, 64-bit network
identifiers are used.

Private addresses in IPv4
Private networks do not necessarily need global access to the Internet. This results in
a series of addresses being allocated for these private networks.

Range Number of bits Number of addresses
10.0.0.0 to 10.255.255.255 24-bit 16,777,216
172.16.0.0 to
172.31.255.255

20-bit 1,048,576

192.168.0.0 to
192.168.255.255

16-bit 65,536

You may recognize that the last set of addresses is used by the home network. A
private network often interfaces with the Internet using NAT. This technique maps a
local IP address to one accessible on the Internet. It was originally introduced to ease
the IPv4 address shortage.

IPv4 address types
There are three address types that are supported in IPv4:

• Unicast: This address is used to identify a single node in a network
• Multicast: This address corresponds to a group of network interfaces.

Members will join a group and a message is sent to all members of the group
• Broadcast: This will send a message to all network interfaces on a subnet

The Inet4Address class supports the IPv4 protocol. We will examine this class in
more depth next.

Chapter 2

[51]

The Inet4Address class
The Inet4Address class is derived from the InetAddress class. As a derived class,
it does not override many of the InetAddress class' methods. For example, to
obtain an InetAddress instance, we can use the getByName method of either class,
as shown here:

 Inet4Address address;
 address = (Inet4Address)
 InetAddress.getByName("www.google.com");
 address = (Inet4Address)
 Inet4Address.getByName("www.google.com");

In either case, the address needs to be cast because the base class method is used
in either case. The Inet4Address class does not add any new methods above and
beyond that of the InetAddress class.

Special IPv4 addresses
There are several special IPv4 addresses, including these two:

• 0.0.0.0: This is called an unspecified IPv4 address (wildcard address) and is
normally used when a network interface does not have a IP address and is
attempting to obtain one using DHCP.

• 127.0.0.1: This is known as the loopback address. It provides a convenient
way to send oneself a message, often for testing purposes.

The isAnyLocalAddress method will return true if the address is a wildcard
address. This method is demonstrated here, where it returns true:

 address = (Inet4Address) Inet4Address.getByName("0.0.0.0");
 System.out.println(address.isAnyLocalAddress());

The isLoopbackAddress method is shown next and will return true:

 address = (Inet4Address) Inet4Address.getByName("127.0.0.1");
 System.out.println(address.isLoopbackAddress());

We will use this frequently to test servers in subsequent chapters.

In addition to these, other special addresses include those used for protocol
assignments, IPv6 to IPv4 relay, and testing purposes. More details about these
and other special addresses can be found at https://en.wikipedia.org/wiki/
IPv4#Special-use_addresses.

https://en.wikipedia.org/wiki/IPv4#Special-use_addresses
https://en.wikipedia.org/wiki/IPv4#Special-use_addresses

Network Addressing

[52]

Introducing the Inet6Address class
IPv6 addresses use 128 bits (16 octets). This permits up to 2128 addresses. An IPv6
address is written as a series of eight groups, with 4 hexadecimal numbers each,
separated by colons. The digits are case insensitive. For example, the IPv6 address
for www.google.com is as follows:

2607:f8b0:4002:0c08:0000:0000:0000:0067

An IPv6 address can be simplified in several ways. Leading zeroes in a group can be
removed. The previous example can be rewritten as:

2607:f8b0:4002:c08:0:0:0:67

Consecutive groups of zeroes can be replaced with ::, as shown here:

2607:f8b0:4002:c08::67

IPv6 supports three addressing types:

• Unicast: This specifies a single network interface.
• Anycast: This type of address is assigned to a group of interfaces. When

a packet is sent to this group, only one member of the group receives the
packet, often the one that is closest.

• Multicast: This sends a packet to all members of a group.

This protocol does not support broadcast addressing. There is much more to IPv6
than an increase in network size. It includes several improvements, such as easier
administration, more efficient routing capabilities, simple header formats, and the
elimination of the need for NAT.

Private addresses in IPv6
Private address space is available in IPv6. Originally, it used site-local addresses
using a block with a prefix of fec0::/10. However, this has been dropped due to
problems with its definition, and it was replaced with Unique Local (UL) addresses
using the address block fc00::/7.

These addresses can be generated by anyone and do not need to be coordinated.
However, they are not necessarily globally unique. Other private networks can use
the same addresses. They cannot be assigned using a global DNS server and are only
routable in the local address space.

www.google.com

Chapter 2

[53]

The Inet6Address class
In general, using the Inet6Address class is not necessary unless you are developing
an IPv6-only application. Most networking operations are handled transparently.
The Inet6Address class is derived from the InetAddress class. The Inet6Address
class's getByName method uses its base class, the InetAddrress class's getAllByName
method, to return the first address that it finds, as shown next. This might not be an
IPv6 address:

 public static InetAddress getByName(String host)
 throws UnknownHostException {
 return InetAddress.getAllByName(host)[0];
 }

For some of these examples to work correctly, your router may
need to be configured to support an IPv6 Internet connection.

The Inet6Address class added only one method above and beyond that of the
InetAddress class. This is the isIPv4CompatibleAddress method that is discussed
in the Using IPv4-compatible IPv6 addresses section.

Special IPv6 addresses
There is a block of addresses consisting of 64 network prefixes: 2001:0000::/29
through 2001:01f8::/29. These are used for special needs. Three have been
assigned by IANA:

• 2001::/32: This is the teredo tunneling, which is a transition technology
from IPv4

• 2001:2::/48: This is used for benchmarking purposes
• 2001:20::/28: This is used for cryptographic hash identifiers

Most developers will not need to work with these addresses.

Testing for the IP address type
Normally, we are not concerned with whether the IP address is IPv4 or IPv6. The
differences between the two are hidden beneath the various protocol levels. When
you do need to know the difference, then you can use either of the two approaches.
The getAddress method returns a byte array. You check the size of the byte array
to determine if it is IPv4 or IPv6. Or you can use the instanceOf method. These two
approaches are shown here:

 byte buffer[] = address.getAddress();

Network Addressing

[54]

 if(buffer.length <= 4) {
 System.out.println("IPv4 Address");
 } else {
 System.out.println("IPv6 Address");
 }
 if(address instanceof Inet4Address) {
 System.out.println("IPv4 Address");
 } else {
 System.out.println("IPv6 Address");
 }

Using IPv4-compatible IPv6 addresses
The dotted quad notation is a way of expressing an IPv4 address using IPv6.
The ::ffff: prefix is placed in front of either the IPv4 address or its equivalent
in hexadecimal. For example, the hexadecimal equivalent of the IPv4 address
74.125.21.105 is 4a7d1569. Both represent a 32 bit quantity. Thus, any of the
following three addresses represent the same website:

 address = InetAddress.getByName("74.125.21.105");
 address = InetAddress.getByName("::ffff:74.125.21.105");
 address = InetAddress.getByName("::ffff:4a7d:1569");

If we used these addresses with the displayInetAddressInformation method, the
output will be identical, as shown here:

/74.125.21.105

CanonicalHostName: yv-in-f105.1e100.net

HostName: yv-in-f105.1e100.net

HostAddress: 74.125.21.105

CanonicalHostName: 83.166.169.231

These are referred to as IPv4-compatible IPv6 addresses.

The Inet6Address class possesses an isIPv4CompatibleAddress method. The
method returns true if the address is merely an IPv4 address that is placed inside of
an IPv6 address. When this happens, all but the last four bytes are zero.

The following example illustrates how this method can be used. Each address
associated with www.google.com is tested to determine whether it is an IPv4 or IPv6
address. If it is an IPv6 address, then the method is applied to it:

 try {
 InetAddress names[] =

www.google.com

Chapter 2

[55]

 InetAddress.getAllByName("www.google.com");
 for (InetAddress address : names) {
 if ((address instanceof Inet6Address) &&
 ((Inet6Address) address)
 .isIPv4CompatibleAddress()) {
 System.out.println(address
 + " is IPv4 Compatible Address");
 } else {
 System.out.println(address
 + " is not a IPv4 Compatible Address");
 }
 }
 } catch (UnknownHostException ex) {
 // Handle exceptions
 }

The output depends on the servers available. The following is one possible output:

www.google.com/173.194.46.48 is not a IPv4 Compatible Address

www.google.com/173.194.46.51 is not a IPv4 Compatible Address

www.google.com/173.194.46.49 is not a IPv4 Compatible Address

www.google.com/173.194.46.52 is not a IPv4 Compatible Address

www.google.com/173.194.46.50 is not a IPv4 Compatible Address

www.google.com/2607:f8b0:4009:80b:0:0:0:2004 is not a IPv4 Compatible Address

An alternative Java 8 solution is as follows:

 names = InetAddress.getAllByName("www.google.com");
 Arrays.stream(names)
 .map(address -> {
 if ((address instanceof Inet6Address) &&
 ((Inet6Address) address)
 .isIPv4CompatibleAddress()) {
 return address +
 " is IPv4 Compatible Address";
 } else {
 return address +
 " is not IPv4 Compatible Address";
 }
 })
 .forEach(result -> System.out.println(result));

Network Addressing

[56]

Controlling network properties
On many operating systems, the default behavior is to use IPv4 instead of IPv6. The
following JVM options can be used when executing a Java application to control this
behavior. The first setting is as follows:

-Djava.net.preferIPv4Stack=false

This is the default setting. If IPv6 is available, then the application can use either IPv4
or IPv6 hosts. If set to true, it will use IPv4 hosts. IPv6 hosts will not be used.

The second setting deals with the type of addresses used:

-Djava.net.preferIPv6Addresses=false

This is the default setting. If IPv6 is available, it will prefer IPv4 addresses over
IPv6 addresses. This is preferred because it allows backward compatibility for IPv4
services. If set to true, it will use IPv6 addresses whenever possible.

Summary
This chapter provided an overview of the basic network terms and concepts.
Networking is a large and complicated subject. In this chapter, we focused on those
concepts that are relevant to networking in Java.

The NetworkInterface class was introduced. This class provides low-level access to
the devices connected to a computer that support networking. We also learned how
to obtain the MAC address for a device.

We focused on the support that Java provides to access the Internet. The foundation
IP protocol was detailed. This protocol is supported by the InetAddress class.
Java uses the Inet4Address and Inet6Address classes to support IPv4 and IPv6
addresses, respectively.

We also illustrated the use of the URI and URL classes. These classes possess several
methods that allow us to obtain more information about specific instances. We can
use these methods to split the URI or URL into parts for further processing.

We also discussed how to control some network connection properties. We will
cover this topic in more detail in later chapters.

With this foundation in place, we can now move forward and address the use of
the NIO packages to support networking. NIO is buffer oriented and supports
nonblocking IO. In addition, it provides better performance for many IO operations.

[57]

NIO Support for Networking
In this chapter, we will focus on the Java New IO (NIO) package's Buffer and
Channels classes. NIO is an alternative for the earlier Java IO API and parts of
the network API. While NIO is a broad and complex topic, our interest is how it
provides support for network applications.

We will explore several topics, including the following:

• The nature and relationship between buffers, channels, and selectors
• The use of NIO techniques to build a client/server
• The process of handling multiple clients
• Support for asynchronous socket channels
• Basic buffer operations

The NIO package provides extensive support to build efficient network applications.

Java NIO
Java NIO uses three core classes:

• Buffer: This holds information that is read or written to a channel
• Channel: This is a stream-like technique that supports asynchronous

read/write operations to a data source/sink
• Selector: This is a mechanism to handle multiple channels in a single thread

NIO Support for Networking

[58]

Conceptually, buffers and channels work together to process data. As shown in the
next figure, data can be moved in either direction between a buffer and a channel:

The channel is connected to some external data source, while the buffer is used
internally to process the data. There are several types of channels and buffers. A few
of these are listed in the following tables.

The table for channels is as follows:

Channel class Purpose
FileChannel This connects to a file
DatagramChannel This supports datagram sockets
SocketChannel This supports streaming sockets
ServerSocketChannel This listens for socket requests
NetworkChannel This supports a network socket
AsynchronousSocketChannel This supports asynchronous streaming sockets

The table for buffers is as follows:

Buffer class Data type supported
ByteBuffer byte

CharBuffer char

DoubleBuffer double

FloatBuffer float

IntBuffer int

LongBuffer long

ShortBuffer short

The Selector class is useful when an application uses many low-traffic connections
that can be handled using a single thread. This is more efficient than creating a thread
for each connection. This is also a technique that is used to make an application more
scalable, something that we will discuss in Chapter 7, Network Scalability.

Chapter 3

[59]

In this chapter, we will create client/server applications to illustrate the interaction
between channels and buffers. This includes a simple time server, a chat server to
demonstrate variable length messages, a parts server to illustrate one technique
to handle multiple clients, and an asynchronous server. We will also examine
specialized buffer techniques, including bulk transfers and views.

We will begin our discussion with an overview of buffers, and how they work
with channels.

Introduction to buffers
Buffers hold data temporarily because it is being moved to and from channels. When
a buffer is created, it is created with a fixed size or capacity. Part or all of a buffer's
memory can be used with several Buffer class fields available to manage the data
in a buffer.

The Buffer class is abstract. However, it possesses the basic methods used to
manipulate a buffer, including:

• capacity: This returns the number of elements in the buffer
• limit: This returns the first index of the buffer that should not be accessed
• position: This returns the index of the next element to be read or written

The element depends on the buffer type.

The mark and reset methods also control the position within a buffer. The mark
method will set the buffer's mark to its position. The reset method restores the
mark position to the previously marked position. The following code shows the
relationships between various buffer terms:

0 <= mark <= position <= limit <= capacity

A buffer can be either direct or non-direct. A direct buffer will attempt to use the
native IO methods whenever possible. The creation of a direct buffer tends to be
more expensive but will perform more efficiently for larger buffers, which reside in
the memory longer. The allocateDirect method is used to create a direct buffer
and accepts an integer specifying the size of the buffer. The allocate method also
accepts an integer size argument but creates a non-direct buffer.

A non-direct buffer will not be as efficient as a direct buffer for most operations.
However, memory used by the non-direct buffer will be reclaimed by the JVM garbage
collector, whereas direct memory buffers may be outside the control of the JVM. This
makes the management of memory more predictable with non-direct buffers.

NIO Support for Networking

[60]

There are several methods that are used to transfer data between a channel and a
buffer. These can be classified as either of the following:

• Absolute or relative
• Bulk transfers
• Using primitive data types
• Supporting a view
• Compacting, duplicating, and slicing a byte buffer

Many Buffer class's methods support invocation chaining. A put type method
will transfer data to a buffer, while a get type method retrieves information from a
buffer. We will be using the get and put methods extensively in our examples. These
methods will transfer a single byte at a time.

These get and put methods are relative to the current location of the position within
a buffer. There are also several absolute methods that use an index in the buffer to
isolate a specific buffer element.

Bulk data transfers contiguous blocks of data. These get and put methods use an
array of bytes as one of their arguments to hold the data. These are discussed in the
Bulk data transfer section.

When all of the data in a Buffer class is of the same type, a view can be created
permitting convenient access to the data using a specific data type such as Float. We
will demonstrate this buffer in the Using a view section.

Compacting, duplicating, and slicing type operations are supported. The compacting
operation will shift the contents of a buffer to eliminate data that has already been
processed. Duplication will make a copy of a buffer, while slicing creates a new
buffer that is based on the all or part of the original buffer. Changes to either buffer
will be reflected in the other. However, the position, limit, and mark values of each
buffer are independent.

Let's see a buffer in action starting with the creation of a buffer.

Using channels with a time server
The time server and client that were introduced in Chapter 1, Getting Started with
Network Programming, will be implemented here to demonstrate the use of buffers
and channels. These applications are simple, but they illustrate how buffers and
channels can be used together. We will start by creating a server and then create a
client that uses the server.

Chapter 3

[61]

Creating a time server
The following code is the initial declaration of the ServerSocketChannelTimeServer
class, which will be our time server. The ServerSocketChannel class's open
method creates a ServerSocketChannel instance. The socket method retrieves the
ServerSocket instance for the channel. The bind method then associates this server
socket with port 5000. While the ServerSocketChannel class has a close method, it is
easier to use the try-with-resources block:

public class ServerSocketChannelTimeServer {
 public static void main(String[] args) {
 System.out.println("Time Server started");
 try {
 ServerSocketChannel serverSocketChannel =
 ServerSocketChannel.open();
 serverSocketChannel.socket().bind(
 new InetSocketAddress(5000));
 ...
 }
 } catch (IOException ex) {
 // Handle exceptions
 }
 }
}

The server will enter an infinite loop where the accept methods blocks until a
request is received from a client. When this happens, a SocketChannel instance
is returned:

 while (true) {
 System.out.println("Waiting for request ...");
 SocketChannel socketChannel =
 serverSocketChannel.accept();

Assuming this instance is not null, a string containing the current date and time
is created:

 if (socketChannel != null) {
 String dateAndTimeMessage = "Date: "
 + new Date(System.currentTimeMillis());
 ...

 }

NIO Support for Networking

[62]

A ByteBuffer instance is created with a size of 64 bytes. This is more than enough
for most messages. The put method moves the data into the buffer. This is a bulk data
transfer operation. If the buffer not large enough, then a BufferOverflowException
exception is thrown:

 ByteBuffer buf = ByteBuffer.allocate(64);
 buf.put(dateAndTimeMessage.getBytes());

We need to invoke the flip method so that we can use it with the channel's write
operation. This has the effect of setting; the limit is set to the current position and the
position to zero. A while loop is used to write out each byte and is terminated when
there are no more bytes to write as determined by the hasRemaining method. The
last action is to display the message that is sent to the client:

 buf.flip();
 while (buf.hasRemaining()) {
 socketChannel.write(buf);
 }
 System.out.println("Sent: " + dateAndTimeMessage);

When the server is started, it will produce an output that is similar to the
following one:

Time Server started

Waiting for request ...

We are now ready to create our client.

Creating a time client
The client is implemented in the SocketChannelTimeClient class, as defined next.
To simplify the example, the client is assumed to be on the same machine as the
server. A SocketAddress instance is created using the IP address 127.0.0.1 and
is associated with port 5000. The SocketChannel class's open method returns a
SocketChannel instance, which will be used to handle the response from the server
within the try-with-resources block:

public class SocketChannelTimeClient {
 public static void main(String[] args) {
 SocketAddress address = new InetSocketAddress(
 "127.0.0.1", 5000);
 try (SocketChannel socketChannel =
 SocketChannel.open(address)) {
 ...

Chapter 3

[63]

 } catch (IOException ex) {
 ex.printStackTrace();
 }
 }
}

In the body of the try block, a ByteBuffer instance of size 64 is created. Using a size
smaller than the actual message will complicate this example. In the Handling variable
length messages section, we will re-examine buffer sizes. The message is read from the
channel and placed into the ByteBuffer instance using the read method. This buffer
is then flipped to prepare it for processing. Each byte is read
and then displayed:

 ByteBuffer byteBuffer = ByteBuffer.allocate(64);
 int bytesRead = socketChannel.read(byteBuffer);
 while (bytesRead > 0) {
 byteBuffer.flip();
 while (byteBuffer.hasRemaining()) {
 System.out.print((char) byteBuffer.get());
 }
 System.out.println();
 bytesRead = socketChannel.read(byteBuffer);
 }

When client is started, its output will be similar to the following:

Date: Tue Aug 18 21:36:25 CDT 2015

The server's output will now appear similar to this one:

Time Server started

Waiting for request ...

Sent: Date: Tue Aug 18 21:36:25 CDT 2015

Waiting for request ...

We are now ready to examine the details of channel and buffer interaction.

The chat server/client applications
The intent of this section is to demonstrate how buffers and channels work together
in more depth. We will use client and server applications that pass messages back
and forth. Specifically, we will create a simple version of a chat server.

NIO Support for Networking

[64]

We will perform the following actions:

• Create a server and a client that send messages back and forth
• Demonstrate how to handle variable length messages

First, we will demonstrate using a fixed size message using the
sendFixedLengthMessage and receiveFixedLengthMessage methods. Then we
will use the sendMessage and receiveMessage methods to handle variable length
messages. Fixed length messages are easier to handle but will not work if the length of
a message exceeds the size of the buffer. Variable length messages require more careful
handling than what we have seen in previous examples. These methods have been
placed in a class called HelperMethods to enable their use in multiple applications.

The chat server
Let's start with the server. The server is defined in the ChatServer class as defined
next. A ServerSocketChannel instance is created and bound to port 5000. It will be
used in the body of the while loop. The running variable controls the lifetime of the
server. Exceptions are caught as needed. As in the previous server, the server will
block at the accept method until a client connects to the server:

public class ChatServer {

 public ChatServer() {
 System.out.println("Chat Server started");
 try {
 ServerSocketChannel serverSocketChannel =
 ServerSocketChannel.open();
 serverSocketChannel.socket().bind(
 new InetSocketAddress(5000));

 boolean running = true;
 while (running) {
 System.out.println("Waiting for request ...");
 SocketChannel socketChannel
 = serverSocketChannel.accept();
 ...
 }
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 }

Chapter 3

[65]

 public static void main(String[] args) {
 new ChatServer();
 }
}

In this chat/server application, communication is restricted. Once a connection
is made, the server will prompt the user for a message to send to the client. The
client will wait until this message is received, and then it will prompt its user for a
reply. The reply is sent back to the server. This sequence is limited to simplify the
interaction to focus on the channel/buffer interaction.

When a connection is made, the server displays a message to that effect and
then enters a loop as shown next. The user is prompted for a message. The
sendFixedLengthMessage method is invoked. If the user entered quit,
then a terminating message is sent to the server, and the server terminates.
Otherwise, the message is sent to the server and then the server blocks at the
receiveFixedLengthMessage method waiting for the client to respond:

 System.out.println("Connected to Client");
 String message;
 Scanner scanner = new Scanner(System.in);
 while (true) {
 System.out.print("> ");
 message = scanner.nextLine();
 if (message.equalsIgnoreCase("quit")) {
 HelperMethods.sendFixedLengthMessage(
 socketChannel, "Server terminating");
 running = false;
 break;
 } else {
 HelperMethods.sendFixedLengthMessage(
 socketChannel, message);
 System.out.println(
 "Waiting for message from client ...");
 System.out.println("Message: " + HelperMethods
 .receiveFixedLengthMessage(socketChannel));
 }
 }

When the server starts, its output will appear as follows:

Chat Server started

Waiting for request ...

With the server created, let's examine the client application.

NIO Support for Networking

[66]

The chat client
The client application uses the ChatClient class, as defined next. Its structure is
similar to the previous client application. The localhost (127.0.0.1) is used with a
port of 5000. Once a connection has been established, the program enters an infinite
loop and waits for the server to send it a message:

public class ChatClient {

 public ChatClient() {
 SocketAddress address =
 new InetSocketAddress("127.0.0.1", 5000);
 try (SocketChannel socketChannel =
 SocketChannel.open(address)) {
 System.out.println("Connected to Chat Server");
 String message;
 Scanner scanner = new Scanner(System.in);
 while (true) {
 System.out.println(
 "Waiting for message from the server ...");
 ...
 }
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 }

 public static void main(String[] args) {
 new ChatClient();
 }
}

Within the loop, the program blocks at the receiveFixedLengthMessage method
until the server sends it a message. The message is then displayed, and the user
is prompted for a message to send back to the server. If the message is quit, then
a terminating message is sent to the server using the sendFixedLengthMessage
method, and the application terminates. Otherwise the message is sent to the server,
and the program waits for another message:

 System.out.println("Waiting for message from the server ...");
 System.out.println("Message: "
 + HelperMethods.receiveFixedLengthMessage(
 socketChannel));
 System.out.print("> ");
 message = scanner.nextLine();

Chapter 3

[67]

 if (message.equalsIgnoreCase("quit")) {
 HelperMethods.sendFixedLengthMessage(
 socketChannel, "Client terminating");
 break;
 }
 HelperMethods.sendFixedLengthMessage(socketChannel, message);

With the client and server created, let's take a look at how they interact.

Server/client interaction
With the server started, start the client application. The client's output will appear
as follows:

Connected to Chat Server

Waiting for message from the server ...

The server output will reflect this connection:

Chat Server started

Waiting for request ...

Connected to Client

>

Enter the message Hello. You will then get the following output:

> Hello

Sent: Hello

Waiting for message from client ...

The client side will now appear as:

Message: Hello

>

Enter a reply of Hi! The client output will appear as shown here:

> Hi!

Sent: Hi!

Waiting for message from the server ...

NIO Support for Networking

[68]

The server will appear as:

Message: Hi!

>

We can continue this process until either side enters the quit command.
However, entering a message that exceeds the 64 byte buffer limit will result
in a BufferOverflowException exception being thrown. Replacing the
sendFixedLengthMessage method with the sendMessage method and the
receiveFixedLengthMessage method with the receiveMessage method will
avoid this problem.

Let's examine how these send and receive methods work.

The HelperMethods class
The HelperMethods class is defined next. It possesses the send and receive methods
that were used previously. These methods are declared as static to allow them to be
accessed easily:

public class HelperMethods {
 ...
}

The fixed length message methods are shown next. They perform essentially the same
way as the approach that was used in the Using channels with a time server section:

 public static void sendFixedLengthMessage(
 SocketChannel socketChannel, String message) {
 try {
 ByteBuffer buffer = ByteBuffer.allocate(64);
 buffer.put(message.getBytes());
 buffer.flip();
 while (buffer.hasRemaining()) {
 socketChannel.write(buffer);
 }
 System.out.println("Sent: " + message);
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 }

 public static String receiveFixedLengthMessage
 (SocketChannel socketChannel) {
 String message = "";
 try {

Chapter 3

[69]

 ByteBuffer byteBuffer = ByteBuffer.allocate(64);
 socketChannel.read(byteBuffer);
 byteBuffer.flip();
 while (byteBuffer.hasRemaining()) {
 message += (char) byteBuffer.get();
 }
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 return message;
 }

Handling variable length messages
The technique to handle variable length messages is discussed in this section. The
problem with variable length messages is that we do not know their length. We
cannot assume that when a buffer is not completely filled that the end of the message
has been reached. While this may be true with most messages, if the message length
is the same size as the message buffer, then we may miss the end of a message.

Another approach to determining when we have reached the end of a message is
to either send the length of a message prefixed to the message or append a special
termination character to the end of the message. We choose the latter approach.

This example works for ASCII characters. If Unicode characters
are used instead, then a BufferOverflowException exception
will be generated. The CharBuffer class is used for character
data and provides similar capabilities as the ByteBuffer class.
The CharBuffer class is detailed at http://docs.oracle.
com/javase/8/docs/api/java/nio/CharBuffer.html.

The value of 0x00 was used to mark the end of a message. We choose this value
because it is not easily entered accidently by the user because it is not printable and
happens to correspond to how strings are often terminated internally in languages,
such as C.

In the sendMessage method that follows, the put method adds this termination byte
to the end of the message before it is sent. The buffer size is the length of the message
plus one. Otherwise, the code is similar to that used to send a fixed length message:

 public static void sendMessage(
 SocketChannel socketChannel, String message) {
 try {
 ByteBuffer buffer =
 ByteBuffer.allocate(message.length() + 1);

http://docs.oracle.com/javase/8/docs/api/java/nio/CharBuffer.html
http://docs.oracle.com/javase/8/docs/api/java/nio/CharBuffer.html

NIO Support for Networking

[70]

 buffer.put(message.getBytes());
 buffer.put((byte) 0x00);
 buffer.flip();
 while (buffer.hasRemaining()) {
 socketChannel.write(buffer);
 }
 System.out.println("Sent: " + message);
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 }

In the receiveMessage method, each byte received is checked to see if it is the
termination byte. If it is, then the message is returned. The clear method is applied
to the byteBuffer variable after we have extracted part of the message. This method
is required; otherwise, the read method will return 0. The method will set the buffer's
position back to 0 and the limit to capacity:

 public static String receiveMessage(SocketChannel
 socketChannel) {
 try {
 ByteBuffer byteBuffer = ByteBuffer.allocate(16);
 String message = "";
 while (socketChannel.read(byteBuffer) > 0) {
 char byteRead = 0x00;
 byteBuffer.flip();
 while (byteBuffer.hasRemaining()) {
 byteRead = (char) byteBuffer.get();
 if (byteRead == 0x00) {
 break;
 }
 message += byteRead;
 }
 if (byteRead == 0x00) {
 break;
 }
 byteBuffer.clear();
 }
 return message;
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 return "";
 }

We are now ready to demonstrate the application.

Chapter 3

[71]

Running the chat server/client application
Start the server first. The output will appear as follows:

Chat Server started

Waiting for request ...

Next, start the client, which will result in the following output:

Connected to Chat Server

Waiting for message from the server ...

These users interchange between the server and the client is limited with the current
implementation. When both applications have been started, the client will be waiting
for a message from the server. This is reflected by a server window, as shown here:

Chat Server started

Waiting for request ...

Connected to Client

>

When a message is entered, it is sent to the client. Enter the message Hello. The client
window will now display the message, as shown here:

Connected to Chat Server

Waiting for message from the server ...

Message: Hello

>

On the server side, the following output will appear:

Sent: Hello

Waiting for message from client ...

We can now send a message from the client to the server. Messages can be
interchanged in this manner until the quit message is sent from either application.

NIO Support for Networking

[72]

Handling multiple clients
Handling multiple clients can be achieved using threads. In this section, we will
develop a simple parts server and client applications. The server will use a separate
thread to handle each client. This technique is simple to implement, but it will not
always be suitable for more demanding applications. We will introduce alternate
techniques to multitask in Chapter 7, Network Scalability.

The parts server is implemented in the PartsServer class, and the client is
implemented in the PartsClient class. A new instance of a ClientHandler class
will be created for each client. This handler will accept requests for the price of a
part. The client will send the name of the part to the handler. The handler will look
up the price of the part using the getPrice method of PartsServer. It will then
return the price to the client.

The parts server
The parts server uses a HashMap variable to hold information about parts. The
name of the part is used as a key, and the value is stored as a Float object. The
PartsServer class is declared here:

public class PartsServer {
 private static final HashMap<String,Float> parts =
 new HashMap<>();

 public PartsServer() {
 System.out.println("Part Server Started");
 ...
 }

 public static void main(String[] args) {
 new PartsServer();
 }
}

Once the server has started, the initializeParts method is called:

 initializeParts();

This method follows:
 private void initializeParts() {
 parts.put("Hammer", 12.55f);
 parts.put("Nail", 1.35f);
 parts.put("Pliers", 4.65f);
 parts.put("Saw", 8.45f);
 }

Chapter 3

[73]

The handler will use the getPrice method to retrieve the price of a part, as
shown next:

 public static Float getPrice(String partName) {
 return parts.get(partName);
 }

After the initializeParts method has been called, a try block is used to open a
connection to a client as shown here:

 try {
 ServerSocketChannel serverSocketChannel =
 ServerSocketChannel.open();
 serverSocketChannel.socket().bind(
 new InetSocketAddress(5000));
 ...
 } catch (IOException ex) {
 ex.printStackTrace();
 }

Next, an infinite loop will create a new handler for each client. While there are
several ways of creating a thread in Java, the approach that is used next creates a
new instance of the ClientHandler class, passing the client's socket to the class's
constructor. This approach does not limit the number of threads created by the
application, which makes it susceptible to a denial of service attack. In Chapter 7,
Network Scalability, we will examine several alternate threading approaches.

The ClientHandler instance is used as the argument of the Thread class. The class
will create a new thread that will execute the ClientHandler class's run method.
However, the run method should not be called directly, but instead the start method
is invoked. This method will create the program stack that is needed for the thread:

 while (true) {
 System.out.println("Waiting for client ...");
 SocketChannel socketChannel
 = serverSocketChannel.accept();
 new Thread(
 new ClientHandler(socketChannel)).start();
 }

When the server is started, it will display the following output:

Part Server Started

Waiting for client ...

Let's examine how the handler works.

NIO Support for Networking

[74]

The parts client handler
The ClientHandler class is defined in the following code. The socketChannel
instance variable is used to connect to the client. In the run method, a message
indicating the start of the handler will be displayed. It is not required, but it will help
us look at how the server, client, and handler interact.

An infinite loop is entered where the receiveMessage method, developed in the
The HelperMethods class section, is used to get the name of the part. A quit message
will terminate the handler. Otherwise, the getPrice method is called, which is
returned back to the client using the sendMessage method:

public class ClientHandler implements Runnable{
 private final SocketChannel socketChannel;

 public ClientHandler(SocketChannel socketChannel) {
 this.socketChannel = socketChannel;
 }

 public void run() {
 System.out.println("ClientHandler Started for "
 + this.socketChannel);
 String partName;
 while (true) {
 partName =
 HelperMethods.receiveMessage(socketChannel);
 if (partName.equalsIgnoreCase("quit")) {
 break;
 } else {
 Float price = PartsServer.getPrice(partName);
 HelperMethods.sendMessage(socketChannel, "" +
 price);
 }
 }
 System.out.println("ClientHandler Terminated for "
 + this.socketChannel);
 }
}

We will observe the output of the run method when we demonstrate the client.

Chapter 3

[75]

The parts client
The PartsClient class is defined in the next code sequence. A connection to the
server is established. Messages are displayed indicating when the client starts, and
the server connection is made. The Scanner class is used in the while loop to get
input from the user:

public class PartsClient {

 public PartsClient() {
 System.out.println("PartsClient Started");
 SocketAddress address =
 new InetSocketAddress("127.0.0.1", 5000);
 try (SocketChannel socketChannel =
 SocketChannel.open(address)) {
 System.out.println("Connected to Parts Server");
 Scanner scanner = new Scanner(System.in);
 while (true) {
 ...
 }
 System.out.println("PartsClient Terminated");
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 }

 public static void main(String[] args) {
 new PartsClient();
 }
}

The body of the loop will prompt the user for a part name. If the name is quit, then
the client will terminate. Otherwise, the sendMessage method will send the name
to the handler for processing. The client will block at the receiveMessage method
invocation until the server responds. The price of this part will then be displayed:

 System.out.print("Enter part name: ");
 String partName = scanner.nextLine();
 if (partName.equalsIgnoreCase("quit")) {
 HelperMethods.sendMessage(socketChannel, "quit");
 break;
 } else {
 HelperMethods.sendMessage(socketChannel, partName);
 System.out.println("The price is "
 + HelperMethods.receiveMessage(socketChannel));
 }

Now, let's see how they all work together.

NIO Support for Networking

[76]

Running the parts client/server
Start the server first. The server will produce the following output when it is started:

Part Server started

Waiting for client ...

Now, start the client application. You will get this output:

PartsClient Started

Connected to Parts Server

Enter part name:

Enter a part name, such as Hammer. The client output will now appear as shown
next. The Sent: Hammer output is an artifact of the sendMessage method and can be
removed by modifying the sendMessage method if desired:

PartsClient Started

Connected to Parts Server

Enter part name: Hammer

Sent: Hammer

The price is 12.55

Enter part name:

On the server side, you will get an output similar to the following one. A message
displaying information about the handler is seen whenever a new client is started:

Part Server Started

Waiting for client ...

ClientHandler Started for java.nio.channels.SocketChannel[connected
local=/127.0.0.1:5000 remote=/127.0.0.1:51132]

Waiting for client ...

Sent: 12.55

Chapter 3

[77]

From the client side, we can continue checking prices until we enter the quit
command. This command will terminate the client. One possible sequence of
requests is as follows:

PartsClient Started

Connected to Parts Server

Enter part name: Hammer

Sent: Hammer

The price is 12.55

Enter part name: Pliers

Sent: Pliers

The price is 4.65

Enter part name: saw

Sent: saw

The price is null

Enter part name: Saw

Sent: Saw

The price is 8.45

Enter part name: quit

Sent: quit

PartsClient Terminated

The server will continue running as there may be other clients seeking price
information. Output similar to the following one will be displayed by the server
when a client handler terminates:

ClientHandler Terminated for java.nio.channels.SocketChannel[connected
local=/127.0.0.1:5000 remote=/127.0.0.1: 51132]

Start up two or more clients, and watch how they interact with the server. We
will investigate more sophisticated ways of scaling an application in Chapter 7,
Network Scalability.

NIO Support for Networking

[78]

Asynchronous socket channels
Asynchronous communication involves making a request, and then proceeding with
some other operation without having to wait for the request to be completed. This is
referred to as non-blocking.

There are three classes used to support asynchronous channel operations:

• AsynchronousSocketChannel: This is a simple asynchronous channel to
a socket

• AsynchronousServerSocketChannel: This is an asynchronous channel to
a server socket

• AsynchronousDatagramChannel: This is a channel for a datagram-oriented
socket

The read/write methods of the AsynchronousSocketChannel class are
asynchronous. The AsynchronousServerSocketChannel class possesses an accept
method, which returns an AsynchronousSocketChannel instance. This method is
also asynchronous. We will discuss the AsynchronousDatagramChannel class in
Chapter 6, UDP and Multicasting.

There are two ways of handling asynchronous I/O operations:

• Using the Future interface found in the java.util.concurrent package
• Using a CompletionHandler interface

The Future interface represents a pending result. This supports asynchronous
operations by allowing the application to continue executing and not block. Using
this object, you can use one of the following methods:

• The isDone method
• The get method, which blocks until completion

The get method is overloaded with one version supporting a timeout. The
CompletionHandler instance is invoked when the operation has completed.
This is essentially a callback. We will not illustrate this approach here.

We will develop an asynchronous server and client called
AsynchronousServerSocketChannelServer and
AsynchronousSocketChannelClient, respectively. The client/server
application is limited and only allows messages to be sent from the client to the
server. This will allow us to focus on the asynchronous aspects of the application.

Chapter 3

[79]

Creating the asynchronous server socket
channel server
The AsynchronousServerSocketChannelServer class is defined in the
next code sequence. A message indicating that the server has started is
displayed, and a try-with-resources block is entered where an instance of the
AsynchronousServerSocketChannel class is created and the actual work occurs:

public class AsynchronousServerSocketChannelServer {

 public AsynchronousServerSocketChannelServer() {
 System.out.println("Asynchronous Server Started");
 try (AsynchronousServerSocketChannel serverChannel
 = AsynchronousServerSocketChannel.open()) {
 ...
 } catch (IOException | InterruptedException
 | ExecutionException ex) {
 ex.printStackTrace();
 }

 }

 public static void main(String[] args) {
 new AsynchronousServerSocketChannelServer();
 }

}

The bind method is used to associate the serverChannel variable, representing the
AsynchronousServerSocketChannel instance, with the localhost and port 5000:

 InetSocketAddress hostAddress
 = new InetSocketAddress("localhost", 5000);
 serverChannel.bind(hostAddress);

The server then waits for a client to connect. The Future instance is reference by the
acceptResult variable:

 System.out.println("Waiting for client to connect... ");
 Future acceptResult = serverChannel.accept();

NIO Support for Networking

[80]

Another try block is used to handle client requests. It creates an instance of the
AsynchronousSocketChannel class, which connects to the client. The get method
will block until the channel is created:

 try (AsynchronousSocketChannel clientChannel
 = (AsynchronousSocketChannel) acceptResult.get()) {
 ...
 }

The body of the try block will allocate a buffer and then read from the channel to
populate the buffer. When the buffer has been populated, the flip method is applied
to the buffer and the message is processed and displayed:

 System.out.println("Messages from client: ");
 while ((clientChannel != null) && (clientChannel.isOpen())) {
 ByteBuffer buffer = ByteBuffer.allocate(32);
 Future result = clientChannel.read(buffer);
 // Wait until buffer is ready using
 // one of three techniques to be discussed
 buffer.flip();
 String message = new String(buffer.array()).trim();
 System.out.println(message);
 if (message.equals("quit")) {
 break;
 }
 }

There are three ways of determining whether the buffer is ready. The first technique
polls the Future object, represented by the result variable, using the isDone method
until the buffer is ready, as shown here:

 while (!result.isDone()) {
 // do nothing
 }

The second technique uses the get method, which blocks until the buffer is ready:

 result.get();

The third technique also uses the get method but uses a timeout to determine how
long to wait. In this example, it waits 10 seconds before timing out:

 result.get(10, TimeUnit.SECONDS);

Chapter 3

[81]

When this version of the get method is used, a catch block needs to be added to the
enclosing try block to handle a TimeoutException exception.

When the server is started, we get the following output:

Asynchronous Server Started

Waiting for client to connect...

Now, let's examine the client.

Creating the asynchronous socket
channel client
The client is implemented using the AsynchronousSocketChannelClient class in
the next code snippet. A message indicating that the client has started is displayed,
followed by a try block that creates a AsynchronousSocketChannel instance:

public class AsynchronousSocketChannelClient {

 public static void main(String[] args) {
 System.out.println("Asynchronous Client Started");
 try (AsynchronousSocketChannel client =
 AsynchronousSocketChannel.open()) {
 ...
 } catch (IOException | InterruptedException
 | ExecutionException ex) {
 // Handle exception
 }
 }

}

An InetSocketAddress instance is created specifying the address and port number
used by the server. A Future object representing the connection is then created. The
get method will block until the connection is made:

 InetSocketAddress hostAddress =
 new InetSocketAddress("localhost", 5000);
 Future future = client.connect(hostAddress);
 future.get();

NIO Support for Networking

[82]

Once the connection is made, a message is displayed. An infinite loop is entered
where the user is prompted for a message. The wrap method will populate the
buffer with the message. The write method will start writing the message to the
AsynchronousSocketChannel instance and will return a Future object. The isDone
method is used to wait for the write to complete. If the message is quit, the client
application will terminate:

 System.out.println("Client is started: " + client.isOpen());
 System.out.println("Sending messages to server: ");

 Scanner scanner = new Scanner(System.in);
 String message;
 while (true) {
 System.out.print("> ");
 message = scanner.nextLine();
 ByteBuffer buffer = ByteBuffer.wrap(message.getBytes());
 Future result = client.write(buffer);
 while (!result.isDone()) {
 // Wait
 }
 if (message.equalsIgnoreCase("quit")) {
 break;
 }
 }

Let's take a look at the asynchronous client/server in action.

With the server running, start the client application. This will produce the
following output:

Asynchronous Client Started

Client is started: true

Sending messages to server:

>

The output for the server now appears as follows:

Asynchronous Server Started

Waiting for client to connect...

Messages from client:

Chapter 3

[83]

Using the client, we can enter the following messages:

> Hello

> This message is from the asynchronous client and is sent to the server

> quit

These will be sent to the server one at a time. From the server, we will get the
following response:

Hello

This message is from the asynchr

onous client and is sent to the

server

quit

Note that the longer message has been split across multiple lines. This is the result
of using a server buffer size of only 32 bytes. A larger buffer would have avoided
this issue. However, unless we know the size of the largest message that will be sent,
we need to develop a way of handling long messages. This is left as an exercise for
the reader.

Other buffer operations
We will wrap up by examining several other buffer operations that can be useful.
These include bulk data transfers between a buffer and an array using a view, and
read-only buffers.

Bulk data transfer
Bulk transfer is a way of transferring data between a buffer and an array. There are
several get and put type methods that support bulk data transfers. They usually have
two versions. The first version uses a single argument, which is the transfer array.
The second version also uses an array, but it has two additional arguments: the
starting index in the array, and the number of elements to transfer.

NIO Support for Networking

[84]

To demonstrate these techniques, we will use an IntBuffer buffer. We will use the
following displayBuffer method to help us understand how data transfers work:

 public void displayBuffer(IntBuffer buffer) {
 for (int i = 0; i < buffer.position(); i++) {
 System.out.print(buffer.get(i) + " ");
 }
 System.out.println();
 }

We will start by declaring an array and transferring its contents to a buffer. The array
is declared and initialized in the following statement:

 int[] arr = {12, 51, 79, 54};

A buffer is allocated, which is larger than the array, as shown next. The difference
between the array size and the data available in the buffer is important. If not
handled properly, exceptions will be thrown:

 IntBuffer buffer = IntBuffer.allocate(6);

Next, we will use the bulk put method to transfer the contents of the array to
the buffer:

 buffer.put(arr);

The buffer is then displayed using the following statements:

 System.out.println(buffer);
 displayBuffer(buffer);

The output is as follows. The entire array has been transferred, and the position is set
to the next available index:

java.nio.HeapIntBuffer[pos=4 lim=6 cap=6]

12 51 79 54

As there is still room in the buffer, we can transfer more data into it. However, we
have to be careful not to try to transfer too much, otherwise an exception will be
thrown. The first step is to determine how much space is left in the buffer. As shown
next, the remaining method does this. The bulk put statement then transfers the first
two elements of the array to the last two positions of the buffer, as shown here:

 int length = buffer.remaining();
 buffer.put(arr, 0, length);

Chapter 3

[85]

If we display the buffer and its contents again, we get the following output:

java.nio.HeapIntBuffer[pos=6 lim=6 cap=6]

12 51 79 54 12 51

The get method is overloaded to support bulk data transfer. We can modify the
displayBuffer method to illustrate how this works, as shown next. An integer array
is created that is the same size as the contents of the buffer. The rewind method will
move the position of the buffer back to zero. The bulk get method then performs the
transfer followed by a for-each loop to actually display its contents:

 public void displayBuffer(IntBuffer buffer) {
 int arr[] = new int[buffer.position()];
 buffer.rewind();
 buffer.get(arr);
 for(int element : arr) {
 System.out.print(element + " ");
 }
 }

Using a view
A view mirrors the data in another buffer. Modification to either buffer will affect the
other buffer. However, the position and limit are independent. A view can be created
with several methods, including the duplicate method. In the following example, a
view is made of a buffer using the bulk getBytes method against a string. The view
is then created:

 String contents = "Book";
 ByteBuffer buffer = ByteBuffer.allocate(32);
 buffer.put(contents.getBytes());
 ByteBuffer duplicateBuffer = buffer.duplicate();

To demonstrate that the modification of one buffer will affect the other buffer, the
first character of the duplicate is changed to the letter 'L'. The first byte of each buffer
is then displayed to confirm the change:

 duplicateBuffer.put(0,(byte)0x4c); // 'L'
 System.out.println("buffer: " + buffer.get(0));
 System.out.println("duplicateBuffer: " +
 duplicateBuffer.get(0));

The output will show that the letter has been changed in both buffers. The slice
method will also create a view, but it uses only a portion of the original buffer.

NIO Support for Networking

[86]

Using read-only buffers
A buffer, by default, is read-write. However, it can be read-only or read-write. To
create a read-only buffer, use the buffer class's asReadOnlyBuffer method. In the
next sequence, a read-only buffer is created:

 ByteBuffer buffer = ByteBuffer.allocate(32);
 ByteBuffer readOnlyBuffer = buffer.asReadOnlyBuffer();

The isReadOnly method will determine if a buffer is read-only as demonstrated here:

 System.out.println("Read-only: " +
 readOnlyBuffer.isReadOnly());

The read-only buffer is a different view of the original buffer. Any modifications to a
buffer is reflected in the other buffer.

Controlling socket options
The underlying socket implementation for the socket classes can be configured.
The options available are dependent on the socket type. Frequently, the actual
mechanism used to support an option is OS-specific. Also, sometimes the option is
just a hint to the underlying implementation.

The options available for each socket class shown next is adapted from the Java API
documentation:

Class Option name Description
SocketChannel SO_SNDBUF This is the size of the socket

send buffer
SO_RCVBUF This is the size of the socket

receive buffer
SO_KEEPALIVE This keeps the connection alive
SO_REUSEADDR This re-uses the address
SO_LINGER This lingers on close if data is

present (when configured in
blocking mode only)

TCP_NODELAY This will disable the Nagle
algorithm

ServerSocketChannel SO_RCVBUF This is the size of the socket
receive buffer

SO_REUSEADDR This re-uses address

Chapter 3

[87]

Class Option name Description
AsynchronousSocketChannel SO_SNDBUF This is the size of the socket

send buffer
SO_RCVBUF This is the size of the socket

receive buffer
SO_KEEPALIVE This keeps the connection alive
SO_REUSEADDR This re-uses address
TCP_NODELAY This will disable the Nagle

algorithm

Socket options are configured using the setOption method. The following code
illustrates this method using a server socket channel used in The parts server section:

 serverSocketChannel.setOption(SO_RCVBUF, 64);

The first argument is an instance of the SocketOption<T> interface. This interface
defines the name and type methods for an option. The StandardSocketOptions
class defines a series of options, which implement this interface. For example, the
SO_RCVBUF instance is defined as follows:

 public static final SocketOption<Integer> SO_RCVBUF;

There may be additional, implementation-specific options available.

Summary
In this chapter, we examined the use of the NIO's channel and buffer classes. A
channel connects to an external source and transfers data to and from a buffer. We
illustrated channel sockets, which connect to another socket across the network.

Buffers are temporary repositories for data. Using a buffer allows data to be accessed
either sequentially or randomly. There are many buffer operations, which makes this
a good choice for many applications.

We examined several types of channel sockets, including the SocketChannel,
ServerSocketChannel, and AsynchronousSocketChannel classes. The
ServerSocketChannel class supports a server and uses an accept method to
block until a client requests a connection. The method will return a SocketChannel
instance, which will be connected to the client's SocketChannel. The
AsynchronousSocketChannel and AsynchronousSocketChannel classes support
asynchronous communication enabling non-blocking communication between two
applications. The DatagramChannel is also supported, which we will investigate in
Chapter 6, UDP and Multicasting.

NIO Support for Networking

[88]

We explained how the buffer and channel classes work together and illustrated their
use in several client/server applications. We also examined a simple approach to
handle multiple clients using threads.

We demonstrated how bulk data transfers are performed between an array and a
buffer. Views and the use of read-only buffers were also examined. We ended with
an introduction to how the underlying OS socket support can be configured.

In the next chapter, we will use many of these classes and techniques to support
other client/server applications.

[89]

Client/Server Development
In this chapter, we will explore the process of developing a client/server application
that is primarily oriented around HTTP. This is an important protocol, and it serves
as the primary communication medium for a multitude of applications. We will
examine the protocol, the requirements placed on a client, and the requirements
placed on a server for various versions of the protocol.

Specifically, we will:

• Examine the nature of the HTTP protocol
• Demonstrate how low-level sockets can support the protocol
• Use the HttpURLConnect and HTTPServer classes to create an HTTP server
• Examine various open source Java HTTP servers
• Investigate various configuration issues and how cookies are handled

HTTP servers are used extensively, so a good understanding of how Java supports
them is important.

The HTTP protocol structure
HTTP is a network protocol that is used to deliver resources across the World Wide
Web (WWW). Resources are usually HyperText Markup Language (HTML) files,
but they also include a number of other file types, such as images, audio, and video.
Users often enter a URL into a browser to obtain a resource. The term URL stands for
Uniform Resource Locator with the emphasis here on resource.

Client/Server Development

[90]

Most people use a browser to communicate across WWW. The browser represents a
client application, while the web server responds to client requests. The default port
used by these servers is port 80.

HTTP has evolved over the years. HTTP/1.0 originated in the 1980s and 1990s with
the first documentation released in 1991. The latest definition of HTTP/1.1 was
released as a six-part specification in June 2014. A Request For Comments (RFC) for
HTTP 2.0 was released in May 2015. HTTP is an evolving standard.

The following links may prove useful for the interested reader:

Version Reference
HTTP 1.0 http://www.w3.org/Protocols/HTTP/1.0/spec.html

HTTP/1.1 http://tools.ietf.org/html/rfc2616

HTTP/2 https://en.wikipedia.org/wiki/HTTP/2

HTTP servers are used in a variety of situations. The most common use is within
organizations to support the dissemination of information to users. Often this is
supported by production-quality servers, such as those provided by the Apache
Software Foundation (http://www.apache.org/foundation/), or Gemini
(http://www.eclipse.org/gemini/).

However, not all servers need to support the level of service typified by production
servers. They can be quite small and even embedded in remote devices where they
may affect a change in a device instead of only supplying information.

This chapter will examine the various network technologies that are supported by
Java to address these types of concerns. These include the following:

• An overview of HTTP protocol syntax
• Low-level socket support for clients/servers

http://www.w3.org/Protocols/HTTP/1.0/spec.html
http://tools.ietf.org/html/rfc2616
https://en.wikipedia.org/wiki/HTTP/2
http://www.apache.org/foundation/
http://www.eclipse.org/gemini/

Chapter 4

[91]

• Using the URLConnection class
• Using the HTTPServer class
• An overview of open source Java servers

HTTP is a complex topic, and we are only able to skim its surface.

Robots, often called spiders, are applications that automatically
follow links, frequently to collect web pages for use by search
engines. If you desire to develop such an application, research
their use and how they are built (http://www.robotstxt.
org/). These types of applications can be disruptive if not
designed carefully.

The nature of HTTP messages
Let's examine the format of an HTTP message. Messages are either a request message
sent from a client to a server, or a response message sent from a server to a client.
Based on an understanding of the format, we will show you how Java supports
these messages. HTTP messages are, for the most part, readable by humans. Both the
request and response messages use this structure:

• A line indicating the type of message
• Zero or more header lines
• A blank line
• An optional message body containing data

The following is an example of an HTTP request:

GET /index HTTP/1.0

User-Agent: Mozilla/5.0

A client request message consists of an initial request line and zero or more header
lines. A response message consists of an initial response line (called the status line),
zero or more header lines, and an optional message body.

Let's examine these elements in more detail.

http://www.robotstxt.org/
http://www.robotstxt.org/

Client/Server Development

[92]

Initial request line format
The formats of the request and response initial lines differ. The request line consists
of three parts separated by spaces:

• Request method name
• Local path of the resource
• The HTTP version

The method names refer to the action requested by the client. The most common
method used is the GET method, which simply requests that a specific resource be
returned. The POST command is also common and is used to insert and update data.
A list of HTTP/1.0 methods names is found at http://www.w3.org/Protocols/
HTTP/1.0/spec.html#Methods. HTTP/1.1 method names can be found at http://
www.w3.org/Protocols/rfc2616/rfc2616-sec9.html. Method names are always
written in uppercase.

The local path typically references the resource desired. It follows the hostname in
the URL request. For example, in the following URL, the local path is /books/info/
packt/faq/index.html:

www.packtpub.com/books/info/packt/faq/index.html

The HTTP version is always in uppercase and consists of the acronym, HTTP,
followed by a forward slash, and then the version number:

HTTP/x.x

The following is an example of a request initial line:

GET /index HTTP/1.0

The response initial line consists of three parts separated by spaces, as follows:

• The HTTP version
• A response status code
• A response phrase describing the code

The following line is an example of a response initial line. The response code reflects
the status of the result and is easily interpreted by a computer. The reason phrase is
meant to be human readable.

HTTP/1.0 404 Not Found

The HTTP version uses the same format that is used for the request line.

http://www.w3.org/Protocols/HTTP/1.0/spec.html#Methods
http://www.w3.org/Protocols/HTTP/1.0/spec.html#Methods
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

Chapter 4

[93]

The following table contains a list of more commonly used codes. A complete list can
be found at https://en.wikipedia.org/wiki/List_of_HTTP_status_codes:

Status code Standard text Meaning
200 OK This indicates that the request was a success
301 Moved Permanently This indicates that the URL has been moved

permanently and the link should be updated
302 Found This indicates that the resource is temporarily

located somewhere else, but the URL should still
be used

307 Temporary Redirect This is similar to 302, but the method used should
not be changed, which may happen with 302

308 Permanent Redirect This is similar to 301, but the method used should
not be changed, which may happen with 301

400 Bad Request This indicates that request access was incorrect
401 Unauthorized This indicates that the resource is restricted often

because the login attempt failed
403 Forbidden This indicates that access to the requested resource

is forbidden
404 Not Found This indicates that the resource is no longer

available
500 Internal server error This reflects some sort of error with the server
502 Bad Gateway This indicates that the gateway server received an

invalid response from another server
503 Service Unavailable This indicates that the server is not available
504 Gateway Timeout This indicates that the gateway server did not

receive a response from another server in a timely
manner

The status code is a three-digit number. The first digit of this number reflects the
category of the code:

• 1xx: This represents an informational message
• 2xx: This represents a success
• 3xx: This redirects the client to another URL
• 4xx: This represents a client error
• 5xx: This represents a server error

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Client/Server Development

[94]

Header lines
Headers lines provide information regarding the request or response, such as the
e-mail address of the sender, and an application identifier. The header consists of
a single line. The format of this line starts with the header identifier, followed by
a colon, spaces, and then the value assigned to the header. The following header
illustrates the User-Agent header that is used by Firefox 36.0. This header identifies
the application as the Firefox browser running on a Windows platform:

User-Agent: Mozilla/5.0 (Windows NT 6.3; rv:36.0) Gecko/20100101 Firefox/36.0

A list of header fields and descriptions is found at https://en.wikipedia.org/
wiki/List_of_HTTP_header_fields. A list of agent strings can be found at
http://useragentstring.com/pages/useragentstring.php.

HTTP 1.0 defines 16 headers (http://www.w3.org/Protocols/HTTP/1.0/spec.
html#HeaderFields), while HTTP 1.1 has 47 headers (http://tools.ietf.org/
html/rfc2616#section-14). Its Host header is required.

Headers are useful in helping troubleshoot problems when they occur. It is a good
idea to include the From and User-Agent headers for requests so that the server can
be in a better position to respond to the request.

Message body
This is the data constituting the message. While normally a message body is
included, it is optional and is not needed for some messages. When a body is
included, the Content-Type and Content-Length headers are included to provide
more information about the body.

For example, the following headers can be used for a message body:

Content-type: text/html

Content-length: 105

The message body may appear as follows:

<html><h1>HTTPServer Home Page.... </h1>
Welcome to the new and
improved web server!
</html>

https://en.wikipedia.org/wiki/List_of_HTTP_header_fields
https://en.wikipedia.org/wiki/List_of_HTTP_header_fields
http://useragentstring.com/pages/useragentstring.php
http://www.w3.org/Protocols/HTTP/1.0/spec.html#HeaderFields
http://www.w3.org/Protocols/HTTP/1.0/spec.html#HeaderFields
http://tools.ietf.org/html/rfc2616#section-14
http://tools.ietf.org/html/rfc2616#section-14

Chapter 4

[95]

Client/Server interaction example
The following interaction is a simple demonstration of a client sending a request and
the server responding. The client request message uses the GET method against a
path of \index:

GET /index HTTP/1.0

User-Agent: Mozilla/5.0

The server will respond with the following message, assuming that it was able to
process the request. The Server, Content-Type, and Content-Length headers are
used. A blank line separates the headers and the HTML message body:

HTTP/1.0 200 OK

Server: WebServer

Content-Type: text/html

Content-Length: 86

<html><h1>WebServer Home Page.... </h1>
Welcome to my web server!</
b>
</html>

Other headers lines can be included.

Java socket support for HTTP client/
server applications
An HTTP client will make a connection to an HTTP server. The client will send
a request message to the server. The server will send back a response message,
frequently, as an HTML document. In the early HTTP version, once the response
was sent, the server would terminate the connection. This is sometimes referred to
as a stateless protocol because the connection is not maintained.

With HTTP/1.1, persistent connections can be maintained. This improves the
performance by eliminating the need to open and close connections when multiple
pieces of data need to be transferred between the server and a client.

We will focus on creating an HTTP server and an HTTP client. While browsers
typically serve as HTTP clients, other applications can also access web servers. In
addition, it helps illustrate the nature of HTTP requests. Our server will support a
subset of the HTTP/1.0 specification.

Client/Server Development

[96]

Building a simple HTTP server
We will use a class called WebServer to support the HTTP/1.0 protocol. The server
will use a ClientHandler class to handle a client. The server will be limited to
handling only GET requests. However, this will be adequate to illustrate the basic
server elements needed. Support of other methods can be easily added.

The WebServer definition is shown next. The ServerSocket class is the foundation
of the server. Its accept method will block until a request is made. When this
happens, a new thread based on the ClientHandler class will be started:

public class WebServer {

 public WebServer() {
 System.out.println("Webserver Started");
 try (ServerSocket serverSocket = new ServerSocket(80)) {
 while (true) {
 System.out.println("Waiting for client request");
 Socket remote = serverSocket.accept();
 System.out.println("Connection made");
 new Thread(new ClientHandler(remote)).start();
 }
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 }

 public static void main(String args[]) {
 new WebServer();
 }
}

Mac users may encounter an error when using port 80. Use port 3000 or 8080 instead.
Threads are concurrently executing sequences of code within a process. In Java, a
thread is created using the Thread class. The constructor's argument is an object that
implements the Runnable interface. This interface consists of a single method: run.
When the thread is started using the start method, a separate program stack is created
for the new thread, and the run method executes on this stack. When the run method
terminates, the thread terminates. The ClientHandler class, shown next, implements
the Runnable interface. Its constructor is passed to the socket representing the client.
When the thread starts, the run method executes. The method displays, starting and
terminating messages. The actual work is performed in the handleRequest method:

public class ClientHandler implements Runnable {

 private final Socket socket;

Chapter 4

[97]

 public ClientHandler(Socket socket) {
 this.socket = socket;
 }

 @Override
 public void run() {
 System.out.println("\nClientHandler Started for " +
 this.socket);
 handleRequest(this.socket);
 System.out.println("ClientHandler Terminated for "
 + this.socket + "\n");
 }

}

The handleRequest method uses the input and output streams to communicate with
the server. In addition, it determines what request was made and then processes that
request.

In the code that follows, the input and output streams are created and the first line
of the request is read. The StringTokenizer class is used to token this line. When
the nextToken method is invoked, it returns the first word of the line, which should
correspond to an HTTP method:

 public void handleRequest(Socket socket) {
 try (BufferedReader in = new BufferedReader(
 new InputStreamReader(socket.getInputStream()));) {
 String headerLine = in.readLine();
 StringTokenizer tokenizer =
 new StringTokenizer(headerLine);
 String httpMethod = tokenizer.nextToken();
 ...
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

A tokenizer is a process that splits text into a series of tokens. Frequently, these
tokens are simple words. The StringTokenizer class's constructor is passed the text
to be tokenized. The nextToken method will return the next available token.

Client/Server Development

[98]

The next code sequence handles the GET method. A message is displayed on the
server side to indicate that a GET method is being processed. This server will return
a simple HTML page. The page is built using the StringBuilder class where
the append methods are used in a fluent style. The sendResponse method is then
invoked to actually send the response. If some other method was requested, then a
405 status code is returned:

 if (httpMethod.equals("GET")) {
 System.out.println("Get method processed");
 String httpQueryString = tokenizer.nextToken();
 StringBuilder responseBuffer = new StringBuilder();
 responseBuffer
 .append("<html><h1>WebServer Home Page.... </h1>
")
 .append("Welcome to my web server!
")
 .append("</html>");
 sendResponse(socket, 200, responseBuffer.toString());
 } else {
 System.out.println("The HTTP method is not recognized");
 sendResponse(socket, 405, "Method Not Allowed");
 }

If we wanted to handle other methods, then a series of else-if clauses can be added.
To further process the GET method, we will need to parse the remainder of the initial
request line. The following statement will give us a string that we can process:

 String httpQueryString = tokenizer.nextToken();

The previous statement is not needed for this example and should not be included in
the code. It simply offers one possible way of further processing HTTP queries.

Once we have created a response, we will use the sendResponse method to send it
to the client as shown next. This method is passed the socket, a status code, and the
response string. An output stream is then created:

 public void sendResponse(Socket socket,
 int statusCode, String responseString) {
 String statusLine;
 String serverHeader = "Server: WebServer\r\n";
 String contentTypeHeader = "Content-Type: text/html\r\n";

 try (DataOutputStream out =
 new DataOutputStream(socket.getOutputStream());) {
 ...
 out.close();
 } catch (IOException ex) {

Chapter 4

[99]

 // Handle exception
 }
 }

If the status code is 200, then a simple HTML page is returned. If the status code is
405, then a single status code line is returned. Otherwise, a 404 response is sent. As
we used the DataOutputStream class to write, we use its writeBytes method to
handle strings:

 if (statusCode == 200) {
 statusLine = "HTTP/1.0 200 OK" + "\r\n";
 String contentLengthHeader = "Content-Length: "
 + responseString.length() + "\r\n";

 out.writeBytes(statusLine);
 out.writeBytes(serverHeader);
 out.writeBytes(contentTypeHeader);
 out.writeBytes(contentLengthHeader);
 out.writeBytes("\r\n");
 out.writeBytes(responseString);
 } else if (statusCode == 405) {
 statusLine = "HTTP/1.0 405 Method Not Allowed" + "\r\n";
 out.writeBytes(statusLine);
 out.writeBytes("\r\n");
 } else {
 statusLine = "HTTP/1.0 404 Not Found" + "\r\n";
 out.writeBytes(statusLine);
 out.writeBytes("\r\n");
 }

When the server starts, it will display the following:

Connection made

Waiting for client request

When a client makes a GET request, output similar to the following one will be
displayed:

ClientHandler Started for Socket[addr=/127.0.0.1,port=50573,localport=80]

Get method processed

ClientHandler Terminated for Socket[addr=/127.0.0.1,port=50573,localport=80]

With a simple server in place, let's take a look at how we can build an HTTP client
application.

Client/Server Development

[100]

Building a simple HTTP client
We will use the following HTTPClient class to access our HTTP server. In its
constructor, a socket connecting to the server is created. The Socket class's
getInputStream and getOutputStream return input and output streams for the
socket, respectively. The sendGet method is called, which sends a request to the
server. The getResponse method returns the response, which is then displayed:

public class HTTPClient {

 public HTTPClient() {
 System.out.println("HTTP Client Started");
 try {
 InetAddress serverInetAddress =
 InetAddress.getByName("127.0.0.1");
 Socket connection = new Socket(serverInetAddress, 80);

 try (OutputStream out = connection.getOutputStream();
 BufferedReader in =
 new BufferedReader(new
 InputStreamReader(
 connection.getInputStream()))) {
 sendGet(out);
 System.out.println(getResponse(in));
 }
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 }

 ...

 public static void main(String[] args) {
 new HTTPClient();
 }
}

The sendGet method follows this, which sends a GET method request using a
simple path. This is followed by a User-Agent header. We used an instance of the
OutputStream class with the write method. The write method requires an array of
bytes. The String class's getBytes method returns this array of bytes:

 private void sendGet(OutputStream out) {
 try {
 out.write("GET /default\r\n".getBytes());

Chapter 4

[101]

 out.write("User-Agent: Mozilla/5.0\r\n".getBytes());
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 }

The getResponse method is as follows and is passed a BufferedReader instance to
get the response from the server. It returns a string created using the StringBuilder
class:

 private String getResponse(BufferedReader in) {
 try {
 String inputLine;
 StringBuilder response = new StringBuilder();
 while ((inputLine = in.readLine()) != null) {
 response.append(inputLine).append("\n");
 }
 return response.toString();
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 return "";
 }

When the client application executes, we get the following output reflecting the
server's response:

HTTP Client Started

HTTP/1.0 200 OK

Server: WebServer

Content-Type: text/html

Content-Length: 86

<html><h1>WebServer Home Page.... </h1>
Welcome to my web server!</
b>
</html>

Client/Server Development

[102]

If we use the same request from a browser, we will get the following:

These client and server applications can be further enhanced. However, we can use
the HttpURLConnection class to achieve similar results.

Client/server development using
standard Java classes
Specifically, we will use the HttpURLConnection and HTTPServer classes to
implement a client and server application. These classes support much of the
functionality required for clients and servers. Using these classes will avoid writing
low-level code to implement HTTP functionality. Low-level code refers to the non-
specialized classes, such as the Socket class. Higher-level and more specialized
classes, such as the HttpURLConnection and HTTPServer classes, supplement and
provide additional support for specialized operations.

The HttpURLConnection class is derived from the HttpConnection class. This base
class has a number of methods that not are directly concerned with the HTTP protocol.

Using the HttpURLConnection class
The HttpURLConnection class provides a convenient technique to access a web
server. With this class, we can connect to a site, make a request, and access the
respond headers and the response message.

We will use the HttpURLConnectionExample class that is defined as follows. A
sendGet method supports transmitting the GET method request to the server. The
HttpURLConnectionExample class supports other HTTP methods. For this example,
we are only using the GET method:

public class HttpURLConnectionExample {

 public static void main(String[] args) throws Exception {

Chapter 4

[103]

 HttpURLConnectionExample http =
 new HttpURLConnectionExample();
 http.sendGet();
 }

}

The sendGet method implementation is shown next. A Google query (http://
www.google.com/search?q=java+sdk&ie=utf-8&oe=utf-8) is used to illustrate
the process where we search for "java sdk". The latter part of the query, &ie=utf-
8&oe=utf-8, is additional information attached to the query by the Google search
engine. The openConnection method will connect to the Google server:

 private void sendGet() throws Exception {
 String query =
 "http://www.google.com/search?q=java+sdk&ie=utf-8&oe=utf-8";
 URL url = new URL(query);
 HttpURLConnection connection =
 (HttpURLConnection) url.openConnection();
 ...
 }

Using this connection, the setRequestMethod and setRequestProperty methods
set the request method and user agent, respectively:

 connection.setRequestMethod("GET");
 connection.setRequestProperty("User-Agent",
 "Mozilla/5.0");

The response code is retrieved, and if we are successful, the getResponse method
will retrieve the response and then display it as follows:

 int responseCode = connection.getResponseCode();
 System.out.println("Response Code: " + responseCode);
 if (responseCode == 200) {
 String response = getResponse(connection);
 System.out.println("response: " +
 response.toString());
 } else {
 System.out.println("Bad Response Code: " +
 responseCode);
 }

http://www.google.com/search?q=java+sdk&ie=utf-8&oe=utf-8
http://www.google.com/search?q=java+sdk&ie=utf-8&oe=utf-8

Client/Server Development

[104]

The getResponse method is shown next. The HttpURLConnection class's
getInputStream method returns an input stream, which is used to create an instance
of the BufferedReader class. A StringBuilder instance is used along with this
reader to create and return a string:

 private String getResponse(HttpURLConnection connection) {
 try (BufferedReader br = new BufferedReader(
 new InputStreamReader(
 connection.getInputStream()));) {
 String inputLine;
 StringBuilder response = new StringBuilder();
 while ((inputLine = br.readLine()) != null) {
 response.append(inputLine);
 }
 br.close();
 return response.toString();
 } catch (IOException ex) {
 // Handle exceptions
 }
 return "";
 }

When this program executes, you will get output as follows. Due to the length of the
output, it has been truncated:

Sent Http GET request

Response Code: 200

response: <!doctype html><html itemscope="" ...

Chapter 4

[105]

If we used this query in a browser, we will get output similar to the following:

A very interesting discussion of how to use the URLConnection class to deal with
HTTP requests can be found at http://stackoverflow.com/questions/2793150/
using-java-net-urlconnection-to-fire-and-handle-http-requests.

URL encoding
When a URL is formed, a specific URL format needs to be used. Some of the
characters of this format are reserved and others are unreserved. Reserved characters
have special meaning, such as the forward slash, which is used to separate parts of a
URL. Unreserved characters do not have any special meaning.

http://stackoverflow.com/questions/2793150/using-java-net-urlconnection-to-fire-and-handle-http-requests
http://stackoverflow.com/questions/2793150/using-java-net-urlconnection-to-fire-and-handle-http-requests

Client/Server Development

[106]

When a reserved character needs to be used in a non-reserved context, URL
encoding, also known as percent-encoding, is used to represent these characters
using special character sequences. More information about this process can be found
at https://en.wikipedia.org/wiki/Percent-encoding.

In Java, we can perform URL encoding using the URLEncoder class. Specifically, the
URLEncoder class has an encode method to convert a string that complies with the
application/x-www-form-url encoded MIME format.

This method is overloaded. The single argument method has been deprecated. The
two-argument method accepts a string to be converted and a string that specifies the
character encoding scheme. For HTTP messages, use the UTF-8 format.

Previously, we used the following string to create a new URL instance:

 String query =
 "http://www.google.com/search?q=java+sdk&ie=utf-8&oe=utf-8";

This string was actually formatted by the browser. Instead of using the browser, the
following code illustrates how to use the encode method to achieve similar results:

 String urlQuery = "http://www.google.com/search?q=";
 String userQuery = "java sdk";
 String urlEncoded = urlQuery + URLEncoder.encode(
 userQuery, "UTF-8");

This will produce the string: http://www.google.com/search?q=java+sd. You can
see how the blanks have been converted to + symbols for this URL. The latter part of
the original query, &ie=utf-8&oe=utf-8, is not included in our URL encoded string.

The URLDecoder class is available to decode URL encoded strings if necessary.
For a comprehensive discussion of URL encoding, see: http://blog.lunatech.
com/2009/02/03/what-every-web-developer-must-know-about-url-encoding.

Using the HTTPServer class
The HTTPServer class is found in the com.sun.net.httpserver package. It provides
a powerful set of features to support a simple HTTP server. Many of the tasks that
we had to perform manually with our previous servers are simplified with this
server. The interaction between a client and server is referred to as an exchange.

This and other supporting classes and interfaces are members of the com.sun.
net.httpserver package. They are normally included with most IDEs. The API
documentation can be found at http://docs.oracle.com/javase/8/docs/jre/
api/net/httpserver/spec/index.html?com/sun/net/httpserver/package-
summary.html.

https://en.wikipedia.org/wiki/Percent-encoding
http://blog.lunatech.com/2009/02/03/what-every-web-developer-must-know-about-url-encoding
http://blog.lunatech.com/2009/02/03/what-every-web-developer-must-know-about-url-encoding
http://docs.oracle.com/javase/8/docs/jre/api/net/httpserver/spec/index.html?com/sun/net/httpserver/package-summary.html
http://docs.oracle.com/javase/8/docs/jre/api/net/httpserver/spec/index.html?com/sun/net/httpserver/package-summary.html
http://docs.oracle.com/javase/8/docs/jre/api/net/httpserver/spec/index.html?com/sun/net/httpserver/package-summary.html

Chapter 4

[107]

This package consists of a number of classes. The primary classes that we will
use include:

Class/interface Purpose
HttpServer This class supports the basic functionality of an HTTP server
HttpExchange This class encapsulates the request and response associated with a

client/server exchange
HttpHandler This class defines a handle method used to process specific exchanges
HttpContext This class maps a URI path to an HttpHandler instance
Filter This class supports the preprocessing and post-processing of requests

The server uses an HttpHandler derived class to process client requests. For
example, one handler can process requests for basic web pages, while another
handler may process service related requests.

The HttpExchange class supports the life-cycle activities of an exchange between a
client and a server. It possesses a number of methods providing access to request and
response information. These methods are listed in the following table in the order
that they are normally used. Not all methods need to be used for all requests:

Method Purpose
getRequestMethod This method returns the HTTP method requested
getRequestHeaders This method returns the request headers
getRequestBody This method returns an InputStream instance for the

request body
getResponseHeaders This method returns the response headers except for

content-length
sendResponseHeaders This method sends the response headers
getResponseBody This method returns an OutputStream instance used to

send the response

An exchange is closed when the input and output streams are closed. The
sendResponseHeaders method must be used before the getResponseBody
method is invoked.

The performance of the initial version of this class was not very
good. However, newer versions have better performance. In
addition, the filter facility can assist in processing exchanges.

Client/Server Development

[108]

Using the com.sun.* classes can be used without concerns. Problems can occur if
the sun.* classes are used with different JREs. The HTTPServer class fully supports
HTTP/1.0, but it only provides partial support for HTTP/1.1.

Implementing a simple HTTPServer class
The class that follows implements a simple server using the HTTPServer class. An
instance of the HttpServer class is created using the localhost and port 80 (3000 or
8080 on a Mac). The createContext method associates the /index path with an
instance of the IndexHandler class. This handler will process the request. The start
method starts the server. The server will continue running, processing multiple
requests until it is manually stopped:

public class MyHTTPServer {

 public static void main(String[] args) throws Exception {
 System.out.println("MyHTTPServer Started");
 HttpServer server = HttpServer.create(
 new InetSocketAddress(80), 0);
 server.createContext("/index", new IndexHandler());
 server.start();
 }

}

When the createContext method matches the path expressed as a string to a
handler, it uses a specific matching process. The details of this process are explained
in the Mapping request URIs to HttpContext paths section of the HTTPServer class
documentation found at http://docs.oracle.com/javase/8/docs/jre/api/net/
httpserver/spec/com/sun/net/httpserver/HttpServer.html.

The IndexHandler class is declared next. It implements the HttpHandler interface
by overriding the handle method. The handle method is passed an HttpExchange
instance, which we can use to process the request.

In this method, we perform the following actions:

• Display the address of the client
• Send back a request with a status code of 200
• Send the response to the client

http://docs.oracle.com/javase/8/docs/jre/api/net/httpserver/spec/com/sun/net/httpserver/HttpServer.html
http://docs.oracle.com/javase/8/docs/jre/api/net/httpserver/spec/com/sun/net/httpserver/HttpServer.html

Chapter 4

[109]

The sendResponseHeaders method will send an initial response line for status code
200 and a header for the content length. The getResponseBody method returns an
output stream used to send the message body. The stream is then closed terminating
the exchange:

 static class IndexHandler implements HttpHandler {

 @Override
 public void handle(HttpExchange exchange)
 throws IOException {
 System.out.println(exchange.getRemoteAddress());
 String response = getResponse();
 exchange.sendResponseHeaders(200, response.length());
 OutputStream out = exchange.getResponseBody();
 out.write(response.toString().getBytes());
 out.close();
 }
 }

The sendResponseHeaders method uses two parameters. The first is the response
code, and the second controls the transmission of the message body, as detailed in
the next table:

Value Meaning
Greater than zero This is the length of the message. The server must send this

number of bytes.
Zero This is used for chunked transfer where an arbitrary number

of bytes is sent.
-1 This is when no response body is sent.

The getResponse method uses the StringBuilder class to construct a string:

 public String getResponse() {
 StringBuilder responseBuffer = new StringBuilder();
 responseBuffer
 .append(
 "<html><h1>HTTPServer Home Page.... </h1>
")
 .append("Welcome to the new and improved web "
 + "server!
")
 .append("</html>");
 return responseBuffer.toString();
 }

Client/Server Development

[110]

When the server is started, the following output is displayed:

MyHTTPServer Started

If we enter the URL http://127.0.0.1/index in a browser, the browser will
display the page similar to the one in the image in the section Building a simple
HTTP client.

The server will display the following for each request:

/127.0.0.1:50273

This class is instrumental in processing client requests. Here, we will illustrate
several of this class's methods using a different handler called DetailHandler,
as declared next:

 static class DetailHandler implements HttpHandler {

 @Override
 public void handle(HttpExchange exchange)
 throws IOException {
 ...
 }
 }

To use this handler, replace the createContext method, and call in the
MyHTTPServer with this statement:

 server.createContext("/index", new DetailHandler());

Let's start by examining the use of the getRequestHeaders method, which returns
an instance of the Headers class. This will permit us to display each request header
sent by the client and perform additional processing based on the headers if needed.

Add the following code to the handle method. The keyset method returns a Set of
key/values pairs for each header. In the for-each statement, the Set interface's get
method returns a list of values for each header. This list is used to display the headers:

 Headers requestHeaders = exchange.getRequestHeaders();
 Set<String> keySet = requestHeaders.keySet();
 for (String key : keySet) {
 List values = requestHeaders.get(key);
 String header = key + " = " + values.toString() + "\n";
 System.out.print(header);
 }

Chapter 4

[111]

Using the previous URL (http://127.0.0.1/index) from the Firefox browser, we
get the following output:

Accept-encoding = [gzip, deflate]

Accept = [text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8]

Connection = [keep-alive]

Host = [127.0.0.1]

User-agent = [Mozilla/5.0 (Windows NT 10.0; WOW64; rv:40.0) Gecko/20100101
Firefox/40.0]

Accept-language = [en-US,en;q=0.5]

Cache-control = [max-age=0]

Using a different browser may return a different set of request headers. The
getRequestMethod method returns the name of the request method, as shown here:

 String requestMethod = exchange.getRequestMethod();

We can use this to differentiate between client requests.

Some request methods will pass a message body along with the request. The
getRequestBody method will return an InputStream instance to access this body.

The following code illustrates how we can obtain and display the message body:

 InputStream in = exchange.getRequestBody();
 if (in != null) {
 try (BufferedReader br = new BufferedReader(
 new InputStreamReader(in));) {
 String inputLine;
 StringBuilder response = new StringBuilder();
 while ((inputLine = br.readLine()) != null) {
 response.append(inputLine);
 }
 br.close();
 System.out.println(inputLine);
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 } else {
 System.out.println("Request body is empty");
 }

As our request did not have a body, nothing is displayed.

Client/Server Development

[112]

Managing response headers
The server can send back response headers using the sendResponseHeaders
method. However, these headers need to be created using a combination of the
getResponseHeaders method and the set methods.

In the next code sequence, the getResponseHeaders method will return an instance
of the Header class:

 Headers responseHeaders = exchange.getResponseHeaders();

We use the getResponse method to get our response. We will need this to compute
the content length. The set method is then used to create Content-Type and Server
headers:

 String responseMessage = HTTPServerHelper.getResponse();
 responseHeaders.set("Content-Type", "text/html");
 responseHeaders.set("Server", "MyHTTPServer/1.0");

The headers are sent using the sendResponseHeaders method described earlier,
shown as follows:

 exchange.sendResponseHeaders(200,
 responseMessage.getBytes().length);

These response headers can be displayed using the following code sequence. This
performs the same functionality as the for-each statement that we used to display the
request headers. However, this implementation uses a Java 8 Stream class and two
lambda expressions instead:

 Set<String> responseHeadersKeySet = responseHeaders.keySet();
 responseHeadersKeySet
 .stream()
 .map((key) -> {
 List values = responseHeaders.get(key);
 String header = key + " = " +
 values.toString() + "\n";
 return header;
 })
 .forEach((header) -> {
 System.out.print(header);
 });

This implementation uses a stream. The stream method returns the keys found
in the set. The map method processes each key using it to look up a list of values
associated with the key. The list is converted into a string. The forEach method will
then display each of these strings.

Chapter 4

[113]

The HTTPServer, and its accompanying classes provide a simple, but convenient
to use technique to implement an HTTP server. Support is also provided for secure
communications using the HttpsServer class, which is discussed in Chapter 8,
Network Security.

Open source Java HTTP servers
While we can develop a web server using any of the technologies discussed in this
chapter, another option is to use any of a number of open source Java-based HTTP
servers. Such servers frequently provide a number of features, including:

• Full compliancy with HTTP standards
• Support for logging and monitoring
• Handling of virtual hosts
• Performance tuning capability
• Scalable
• Chunked data transfer
• Configurability
• Support for NIO (Grizzly)

Leveraging these systems can save you a lot of time and effort that would otherwise
be devoted to building a custom server. A partial list of a few Java-based servers
include the following:

• Jakarta Tomcat (http://tomcat.apache.org/)
• Jetty (http://www.eclipse.org/jetty/)
• JLHTTP (http://www.freeutils.net/source/jlhttp/)
• GlassFish (https://glassfish.java.net/)
• Grizzly (https://grizzly.java.net/)
• Simple (http://www.simpleframework.org/)

One list of open source Java servers is found at http://java-source.net/open-
source/web-servers.

At a higher level, Java EE is frequently used to support Web Servers. While this
edition has evolved over the years, servlets form the basis to handle web requests.
A servlet is a Java application that hides much of the detail surrounding the low-
level processing of requests and responses. This permits the developer to focus on
processing requests.

http://tomcat.apache.org/
http://www.eclipse.org/jetty/
http://www.freeutils.net/source/jlhttp/
https://glassfish.java.net/
https://grizzly.java.net/
http://www.simpleframework.org/
http://java-source.net/open-source/web-servers
http://java-source.net/open-source/web-servers

Client/Server Development

[114]

Servlets are held in containers that provide support for tasks, such as database
access, managing performance, and providing security. A simple servlet is shown
next to give you a feel as to how they are structured.

The doGet and doPost methods handle GET and POST type messages, respectively.
However, as the differences between these two HTTP messages are hidden, only
one is needed. The HttpServletRequest class represents an HTTP request and the
HttpServletResponse class represents the response. These classes provide access
to the messages. For example, the getWriter method returns a PrintWriter class
instance, which allows us to write the HTML response in a clearer fashion:

public class ServletExample extends HttpServlet {

 @Override
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<h1>" + "Message to be sent" + "</h1>");
 }

 @Override
 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {
 doGet(request, response);
 }

}

Servlets are normally developed using the Java EE SDK. The previous example will
not compile correctly unless developed using this API.

Many technologies have evolved and have hidden servlets. Over the years, this has
included JavaServer Pages (JSP) and JavaServer Faces (JSF), which have largely
eliminated the need to write servlets directly.

There are a number of web servers for Java. A comparison of some of these is
found at https://en.wikipedia.org/wiki/Comparison_of_application_
servers#Java.

https://en.wikipedia.org/wiki/Comparison_of_application_servers#Java
https://en.wikipedia.org/wiki/Comparison_of_application_servers#Java

Chapter 4

[115]

Server configuration
The configuration of a server depends on the technology that was used to build it.
Here, we will focus on the configuration of the URLConnection class. This class has a
number of protected fields that control how the connection behaves. These fields are
accessed using corresponding get and set methods.

One field deals with user interactions. When set to true, it allows users to engage in
interactions, such as responding to an authentication dialog box. A connection can
be used for input and/or output. The connection can be configured to disallow input
or output.

When data is transferred between a client and a server, it may be cached. The
UseCaches variable determines whether caches are ignored or not. If set to true,
then caches are used as appropriate. If false, caching is not performed.

The ifModifiedSince variable controls whether the retrieval of an object occurs. It
is a long value that represents time as the number of milliseconds since the epoch
(January 1, 1970, GMT). If the object has been modified more recently than that time,
then it is fetched.

The following table summarizes the methods that are used to configure a connection
established using the URLConnection class. Each of these methods have a
corresponding GET method:

Method Default Purpose
setAllowUserInteraction NA This method controls user interaction
setDoInput true If its argument is set to true, then input is

allowed
setDoInput true If its argument is set to true, then output is

allowed
setIfModifiedSince NA This sets the ifModifiedSince variable
setUseCaches true This sets the UseCaches variable

More sophisticated servers, such as Tomcat, have many more options to control how
it is configured.

Client/Server Development

[116]

When an application is deployed, there are numerous configuration options
found in the deployment.properties file. Many of these options are low level,
and JRE related. A description of the options is found at https://docs.oracle.
com/javase/8/docs/technotes/guides/deploy/properties.html. The 21.2.4
Networking section discusses the network options, while the 21.2.5 Cache and Optional
Package Repository section is concerned with the configuration of caches.

An HTTP proxy is a server that acts as an intermediary between a client and a server.
A proxy is frequently used to manage the network, monitor traffic, and improve
network performance.

Generally, we are not concerned with the use or configuration of a proxy. However,
if a proxy needs to be configured, we can control it either using the JVM command
line or within the code using the System class's getProperties method. We can
control the proxy used and specify the user and password to access it if needed. A
short discussion of these capabilities is found at http://viralpatel.net/blogs/
http-proxy-setting-java-setting-proxy-java/.

Handling cookies
A cookie is a string containing a key/value pair representing information of interest
to the server such as user preferences. It is sent from a server to a browser. The
browser should save the cookie to a file so that it can be used later.

A cookie is a string that consists of a name followed by an equal sign and then a
value. The following is one possible cookie:

userID=Cookie Monster

A cookie can have multiple values. These values will be separated by a semicolon
and white space.

We will use the HTTPServer class and the HttpURLConnection classes to
demonstrate the handling of cookies. In the MyHTTPServer class server's handler
class's handle method, add the following code after the other headers:

 responseHeaders.set("Set-cookie", "userID=Cookie Monster");

When the server responds, it will send that cookie.

https://docs.oracle.com/javase/8/docs/technotes/guides/deploy/properties.html
https://docs.oracle.com/javase/8/docs/technotes/guides/deploy/properties.html
http://viralpatel.net/blogs/http-proxy-setting-java-setting-proxy-java/
http://viralpatel.net/blogs/http-proxy-setting-java-setting-proxy-java/

Chapter 4

[117]

In the HttpURLConnectionExample class's getResponse method, add the following
code at the beginning of its try block. A string is built containing the cookie text.
Multiple substring and indexOf methods are used to extract the cookie's name and
then its value:

 Map<String, List<String>> requestHeaders =
 connection.getHeaderFields();
 Set<String> keySet = requestHeaders.keySet();
 for (String key : keySet) {
 if ("Set-cookie".equals(key)) {
 List values = requestHeaders.get(key);
 String cookie = key + " = " +
 values.toString() + "\n";
 String cookieName =
 cookie.substring(0, cookie.indexOf("="));
 String cookieValue = cookie.substring(
 cookie.indexOf("=")+ 1, cookie.length());
 System.out.println(cookieName + ":" + cookieValue);
 }
 }

When the server sends a response, it will include the cookie. The client will then
receive the cookie. In the server and the client, you should see the following output
displaying the cookie:

Set-cookie : [userID=Cookie Monster]

The previous example handles simple single-value cookies. The code to handle
multiple values is left as an exercise for the reader.

Summary
In this chapter, we examined the various Java approaches that can be used to
develop HTTP client/server applications. Communication using HTTP is a common
practice. Understanding how Java supports this process is a valuable skill to possess.

We started with an overview of HTTP messages. We examined the format of the
initial request and response lines. Headers lines were also examined, which are used
to convey information about the message. An optional message body may appear in
an HTTP message. This is more common in a response where the body is often an
HTML document.

Client/Server Development

[118]

We demonstrated how a client/server can be developed using simple socket.
While possible, this approach requires a lot of work to develop a fully functional
HTTP server. This discussion was followed by the use of the HTTPServer and
HttpURLConnection classes to support a server and client, respectively. The use of
these classes made the development process much easier.

There are a number of open source Java-based HTTP servers available. These may be
viable candidates for some environments. The more complex web servers, typified
by Apache Tomcat, were also discussed. They work with servlets and hide much of
the low-level HTTP details from the developer.

We wrapped the chapter up with a brief discussion of server configuration issues
and how cookies are created and consumed by servers and clients.

While the client/server architecture is very common, the peer-to-peer architecture is
an alternative to share information across a network. We will delve into this topic in
the next chapter.

[119]

Peer-to-Peer Networks
A peer-to-peer (P2P) computer network refers to an architecture whose nodes
frequently serve as both a server and as a client. The primary objective of P2P
systems is to eliminate the need for separate servers to manage the system. The
configuration of the P2P network will change dynamically with nodes joining and
leaving the network in an unpredictable manner. The nodes may differ in terms of
factors, such as processing speed, bandwidth support, and storage capabilities. The
term peer implies a level of equality between the nodes.

There are various definitions and interpretations of a P2P network. They can
be characterized as a decentralized, constantly changing, and self-regulated
architecture. Servers tend to provide services, while clients request them. A P2P node
usually does both. A pure P2P network will not have nodes designated as a client
or server. In reality, these networks are rare. Most P2P networks rely on a central
facility, such as a DNS server, for support.

Certain networks may be a hybrid between the client/server architecture and a more
pure P2P architecture where there is never a specific node acting as a "master" server.
For example, a file sharing P2P may use the nodes of the network to download the
files, while a server may provide additional supporting information.

P2P can be classified in several ways. We will use a couple of common classification
categories that are useful in understanding the nature of P2P networks. One
classification is based on how indexing, the process of finding a node, is performed:

• Centralized: This is when a central server keeps track of where the data is
located among peers

• Local: This is when each peer keeps track of its own data
• Distributed: This is when the data references are maintained by

multiple peers

Peer-to-Peer Networks

[120]

Hybrid P2P networks use a centralized indexing scheme. Pure P2P networks use
local or distributed indexes.

Algorithms are used to determine the location of information in a system. The
system is decentralized with no overriding server executing the algorithm. The
algorithm supports a self-organizing system that dynamically reconfigures itself as
nodes are added and removed. In addition, these systems will ideally balance the
load and resources as the network membership changes.

In this chapter, we will cover:

• The P2P concepts and terminology
• Java support for P2P networks
• The nature of distributed hash tables
• How FreePastry supports P2P applications

P2P applications provide a flexible alternative to the
traditional client/server architecture.

P2P functions/characteristics
One way of understanding a P2P network is to examine its characteristics. These
include the following:

• Nodes that contribute resources to the system, including:
 ° Data storage
 ° Computational resources

• They provide support for a set of services
• They are very scalable and fault tolerant
• They support load balancing of resources
• They may support limited anonymity

The nature of P2P systems is that a user may not be able to access a specific node
to use a service or resources. As nodes join and leave a system randomly, a specific
node may not be available. The algorithm will determine how the system responds
to requests.

Chapter 5

[121]

The basics functions of a P2P system include:

• Enrollment of peers in a network
• Peer discovery—the process of determining which peer has the information

of interest
• Sending messages between peers

Not all peers perform all of these functions.

The resources of a P2P system are identified using a Globally Unique Identifier
(GUID) that is usually generated using a secure hashing function, which we will
examine in DHT components. The GUID is not intended to be human readable. It is a
randomly generated value providing little opportunity for conflicts.

The nodes of a P2P are organized using routing overlays. It is a type of middleware
that routes requests to the appropriate node. The overlay refers to a network that is
on top of the physical network as identified by resources using IP addresses. We can
envision a network as composed on a series of IP-based nodes. However, an overlay
is a subset of these nodes usually focusing on a single task.

The routing overlay will take into consideration factors, such as the number of nodes
between a user and a resource, and the bandwidth of the connection, to determine
which node should fulfill a request. Frequently, a resource may be duplicated or
even split across multiple nodes. A routing overlay will attempt to provide the
optimal path to a resource.

As nodes join and leave a system, the routing overlay needs to account for
these changes. When a node joins a system, it may be asked to take on some
responsibilities. When a node leaves, other parts of the system may need to pick up
some of the departing nodes responsibilities.

In this chapter, we will explain various concepts, which are often embedded as
part of a system. We will briefly overview different P2P application, which will be
followed by a discussion of Java support for this architecture. The use of distributed
hash tables is demonstrated, and an in-depth examination of FreePastry is presented,
which will provide insight into how many of the P2P frameworks work.

When applicable, we will illustrate how some of these concepts can be implemented
manually. While these implementations are not needed to use the system, they will
provide a more in-depth understanding of these underlying concepts.

Peer-to-Peer Networks

[122]

Applications-based P2P networks
There are many applications that are based on a P2P network. They can be used for
the following:

• Content distribution: This is file sharing (files, music, videos, images)
• Distributed computing: This is when a problem is divided into smaller tasks

and executed in a parallel fashion
• Collaboration: This is when users work together to solve a common problem
• Platforms: These are systems on which P2P applications are built, such as

JXTA, and Pastry

Distributed computing leverages the power of larger numbers of smaller computers
to perform a task. The problems amenable to this approach require that they
be broken down into smaller units and then executed concurrently on multiple
machines. The results of these smaller tasks then need to be combined to produce
a final result.

P2P networks support a number of applications, such as the following ones:

• Skype: This is a video-conferencing application
• Freecast: This is peer-to-peer streaming audio program
• BitTorrent: This is a popular peer-to-peer file sharing system
• Tor: This program shields users' identities
• Haihaisoft: This is used for distribution of prerecorded TV programs
• WoW: This uses a P2P for game updates
• YaCy: This is a search engine and web crawler
• Octoshape: This supports live TV

A good overview of P2P applications is found at http://p2peducation.pbworks.
com/w/page/8897427/FrontPage.

http://p2peducation.pbworks.com/w/page/8897427/FrontPage
http://p2peducation.pbworks.com/w/page/8897427/FrontPage

Chapter 5

[123]

Java support for P2P applications
Java support beyond the low-level socket support that was detailed in earlier
chapters consists of various frameworks. These range from well-known frameworks,
such as JXTA, to small limited-capability protocols. These frameworks provide the
basis for more specialized applications.

The following table lists several of these frameworks:

P2P framework URL
TomP2P http://tomp2p.net/

JXTA https://jxta.kenai.com/

Hive2Hive https://github.com/Hive2Hive/Hive2Hive

jnmp2p https://code.google.com/p/jnmp2p/

FlexGP http://flexgp.github.io/flexgp/javalibrary.html

JMaay http://sourceforge.net/projects/jmaay/

P2P-MPI http://grid.u-strasbg.fr/p2pmpi/

Pastry http://www.freepastry.org/

These frameworks use an algorithm to route messages between peers. Hash tables
frequently form the basis of these frameworks, as discussed next.

Distributed hash tables
A Distributed Hash Table (DHT) uses a key/value pair to locate resources in a
network. This mapping function is spread across peers making it distributed. This
architecture allows P2P networks to scale easily to a large number of nodes and to
handle peers joining and leaving a network randomly. A DHT is the basis to support
core P2P services. Many applications use DHT, including BitTorrent, Freenet, and YaCy.

The following figure illustrates mapping a key to a value. The key is frequently a
string containing the identity of a resource, such as the name of a book; and the value
is a number generated to represent the resource. The number can be used to locate
the resource in a network and can correspond to the identifier of a node.

http://tomp2p.net/
https://jxta.kenai.com/
https://github.com/Hive2Hive/Hive2Hive
https://code.google.com/p/jnmp2p/
http://flexgp.github.io/flexgp/javalibrary.html
http://sourceforge.net/projects/jmaay/
http://grid.u-strasbg.fr/p2pmpi/
http://www.freepastry.org/

Peer-to-Peer Networks

[124]

P2P networks have been in use for a while. The evolution of these networks is
reflected in how resources are mapped as typified by Napster, Gnutella, and Freenet:

• Napster (https://en.wikipedia.org/wiki/Napster) was the first large-
scale P2P content delivery system. It uses a server to keep track of the nodes
in the network. The nodes held the actual data. When a client needs this data,
the server will look up the current set of nodes that holds the data, and this
node's location will be sent back to the client. The client will then contact the
node holding the data. This made it easy for attacks to be launched against it
and, eventually, led to its demise through lawsuits.

• Gnutella (https://web.archive.org/web/20080525005017, http://www.
gnutella.com/) does not use a central server but broadcasts to every node
in a network. This resulted in the network being flooded with messages, and
the approach was modified in later versions.

• Freenet (https://freenetproject.org/) uses a heuristic key-based
routing scheme and focuses on censorship and anonymity issues.
However, DHS uses a more structured key-based routing approach
resulting in the following:

 ° Decentralization
 ° Fault tolerance
 ° Scalability
 ° Efficiency

However, DHT does not support exact-match search. If this type of search is needed,
then it has to be added.

DHT components
A keyspace is a set of 160-bit strings (keys) that is used to identify an element.
Keyspace partitioning is the process of splitting the keyspace among the nodes of
the network. An overlay network connects the nodes.

A commonly used hashing algorithm is Secure Hash Algorithm (SHA-1)
(https://en.wikipedia.org/wiki/SHA-1). SHA-1 was designed by the NSA and
generates a 160-bit hash value known as a message digest. Most P2Ps do not require
the developer to explicitly perform the hashing function. However, it is instructive to
see how it is done. The following is an example of using Java to create a digest.

https://en.wikipedia.org/wiki/Napster
https://web.archive.org/web/20080525005017
 http://www.gnutella.com/
 http://www.gnutella.com/
https://freenetproject.org/
https://en.wikipedia.org/wiki/SHA-1

Chapter 5

[125]

The MessageDigest class's getInstance method accepts a string specifying the
algorithm to use and returns a MessageDigest instance. Its update method requires
an array of bytes containing the key to hash. In this example, a string is used. The
digest method returns an array of bytes holding the hash value. The byte array is
then displayed as a hexadecimal number:

 String message = "String to be hashed";
 try {
 MessageDigest messageDigest =
 MessageDigest.getInstance("SHA-1");
 messageDigest.update(message.getBytes());
 byte[] digest = messageDigest.digest();

 StringBuffer buffer = new StringBuffer();
 for (byte element : digest) {
 buffer.append(Integer
 .toString((element & 0xff) + 0x100, 16)
 .substring(1));
 }
 System.out.println("Hex format : " +
 buffer.toString());

 } catch (NoSuchAlgorithmException ex) {
 // Handle exceptions
 }

Executing this sequence will produce the following output:

Hex format : 434d902b6098ac050e4ed79b83ad93155b161d72

To store data, such as a file, we can use the filename to create a key. A put type
function is then used to store the data:

put(key, data)

To retrieve the data corresponding to a key, a get type function is used:

data = get(key)

Every node in an overlay either contains the data that is represented by the key, or
it is a node closer to the node containing the data. The routing algorithm determines
the next node to visit on the way to the node containing the data.

Peer-to-Peer Networks

[126]

DHT implementations
There are several Java implementations of DHTs, as listed in the following table:

Implementation URL
openkad https://code.google.com/p/openkad/

Open Chord http://open-chord.sourceforge.net/

TomP2P http://tomp2p.net/

JDHT http://dks.sics.se/jdht/

We will use the Java Distributed Hash Table (JDHT) to illustrate the use of a DHT.

Using JDHT
In order to use JDHT, you will need the JAR files that are listed in the following
table. The dks.jar file is the main jar file used. However, the other two JAR files are
used by JDHT. Alternate sources for the dks.jar file is listed as follows:

JAR Site
dks.jar • http://dks.sics.se/jdht/

• https://www.ac.upc.edu/projects/cms/
browser/cms/trunk/lib/dks.jar?rev=2

xercesImpl.jar http://www.java2s.com/Code/Jar/x/
DownloadxercesImpljar.htm

Apache log4j 1.2.17 https://logging.apache.org/log4j/1.2/
download.html

The following example has been adapted from the one on the website. First, we
create a JDHT instance. JDHT uses port 4440 as its default. With this instance, we can
then use its put method to add a key/value pair to the table:

 try {
 JDHT DHTExample = new JDHT();
 DHTExample.put("Java SE API",
 "http://docs.oracle.com/javase/8/docs/api/");
 ...
 } catch (IOException ex) {
 // Handle exceptions
 }

https://code.google.com/p/openkad/
http://open-chord.sourceforge.net/
http://tomp2p.net/
http://dks.sics.se/jdht/
http://dks.sics.se/jdht/
https://www.ac.upc.edu/projects/cms/browser/cms/trunk/lib/dks.jar?rev=2
https://www.ac.upc.edu/projects/cms/browser/cms/trunk/lib/dks.jar?rev=2
http://www.java2s.com/Code/Jar/x/DownloadxercesImpljar.htm
http://www.java2s.com/Code/Jar/x/DownloadxercesImpljar.htm
https://logging.apache.org/log4j/1.2/download.html
https://logging.apache.org/log4j/1.2/download.html

Chapter 5

[127]

In order for a client to connect with this instance, we need to get a reference to this
node. This is achieved as shown here:

 System.out.println(((JDHT) DHTExample).getReference());

The following code will keep the program running until the user terminates it. The
close method is then used to close the table:

 Scanner scanner = new Scanner(System.in);
 System.out.println("Press Enter to terminate application: ");
 scanner.next();
 DHTExample.close();

When the program is executed, you will get an output similar to the following:

dksref://192.168.1.9:4440/0/2179157225/0/1952355557247862269

Press Enter to terminate application:

The client application is described as follows. A new JDHT instance is created using
a different port. The second argument is the reference to the first application. You
will need to copy the reference and paste it into the client. A different reference will
be generated each time the first application is executed:

 try {
 JDHT myDHT = new JDHT(5550, "dksref://192.168.1.9:4440"
 + "/0/2179157225/0/1952355557247862269");
 ...
 } catch (IOException | DKSTooManyRestartJoins |
 DKSIdentifierAlreadyTaken | DKSRefNoResponse ex) {
 // Handle exceptions
 }

Next, we use the get method to retrieve the value associated with the key. The value
is then displayed and the application is closed:

 String value = (String) myDHT.get("Java SE API");
 System.out.println(value);
 myDHT.close();

The output is as follows:

http://docs.oracle.com/javase/8/docs/api/

This simple demonstration illustrates the basics of a distributed hash table.

Peer-to-Peer Networks

[128]

Using FreePastry
Pastry (http://www.freepastry.org/) is a P2P routing overlay system. FreePastry
(http://www.freepastry.org/FreePastry/) is an open source implementation
of Pastry and is simple enough for us to use to illustrate many of the features of a
P2P system. Pastry will route messages with a network of n nodes in O(log n) steps.
That is, given a network of nodes, it requires, at most, log base 2 of n steps to reach
the node. This is an efficient routing approach. However, while it may only require
traversing three nodes to get to a resource, it may require a considerable number of
IP hops to get to it.

Pastry uses the concept of leaf sets in the routing process. Each node has a leaf set.
A leaf set is a collection of GUIDS and IP addresses of nodes that are numerically
closest to this node. The nodes are logically arranged in a circle, as shown next.

In the following figure, each dot represents a node with an identifier. The addresses
used here range from 0 to FFFFFF. The real addresses range from 0 to 2128. If a
message representing a request originates at address 9341A2 and needs to be sent to
address E24C12, then based on the numerical address the overlay router may route
the messages through the intermediate nodes, as depicted by the arrows:

http://www.freepastry.org/
http://www.freepastry.org/FreePastry/

Chapter 5

[129]

Other applications have been built on top of FreePastry, including:

• SCRIBE: This is a group communication and event notification system
supporting the publisher/subscriber paradigm

• PAST: This is an archival storage utility system
• SplitStream: This program supports content streaming and distribution
• Pastiche: This is backup system

Each of these applications uses an API to support their use.

The FreePastry demonstration
To demonstrate how FreePastry supports a P2P application, we will create an
application based on the FreePastry tutorials found at https://trac.freepastry.
org/wiki/FreePastryTutorial. In this demonstration, we will create two nodes
and demonstrate how they can send and receive messages. The demonstration uses
three classes:

• FreePastryExample: This is used to bootstrap the network
• FreePastryApplication: This executes the functionality of the node
• PastryMessage: This is the message that is sent between nodes

Let's start with the bootstrap application.

Understanding the FreePastryExample class
There are several components used with FreePastry applications. These include:

• Environment: This class represents the application's environment
• Bind port: This represents the local port that the application will bind to
• Boot port: This is the boot port that is used for the node's InetAddress
• Boot address: This is the IP address of the boot node

The FreePastryExample class is defined next. It contains a main method and a
constructor:

public class FreePastryExample {
 ...
}

https://trac.freepastry.org/wiki/FreePastryTutorial
https://trac.freepastry.org/wiki/FreePastryTutorial

Peer-to-Peer Networks

[130]

We will start with the main method. An instance of the Environment class is created
first. This class holds the parameter settings for the node. Next, the NAT search policy
is set to never, which allows us to use the program in a local LAN without difficulty:

 public static void main(String[] args) throws Exception {
 Environment environment = new Environment();
 environment.getParameters()
 .setString("nat_search_policy", "never");
 ...
 }

The ports and InetSocketAddress instance are initialized. We will set both ports to
the same number at this time. We used the IP address 192.168.1.14 to instantiate
the InetAddress object. You will need to use the address of your machine instead.
This is a local LAN address. Do not use 127.0.0.1 as it will not work properly.
The InetAddress object along with the bootPort value are used to create the
InetSocketAddress instance. All of this is placed in a try block to handle exceptions:

 try {
 int bindPort = 9001;
 int bootPort = 9001;
 InetAddress bootInetAddress =
 InetAddress.getByName("192.168.1.14");
 InetSocketAddress bootAddress =
 new InetSocketAddress(bootInetAddress, bootPort);
 System.out.println("InetAddress: " + bootInetAddress);
 ...
 } catch (Exception e) {
 // Handle exceptions
 }

The last task is to create an instance of the FreePastryExample class by calling
the constructor:

 FreePastryExample freePastryExample =
 new FreePastryExample(bindPort, bootAddress, environment);

The constructor will create and launch the node's application. To accomplish this, we
need to create a PastryNode instance and attach the application to it. To create the
node, we will use a factory.

Chapter 5

[131]

Every node needs a unique ID. The RandomNodeIdFactory class generates an ID
based on the current environment. Using this object with the bind port and the
environment, an instance of the SocketPastryNodeFactory is created. With this
factory the newNode method is invoked to create our PastryNode instance:

 public FreePastryExample(int bindPort,
 InetSocketAddress bootAddress,
 Environment environment) throws Exception {
 NodeIdFactory nidFactory =
 new RandomNodeIdFactory(environment);
 PastryNodeFactory factory =
 new SocketPastryNodeFactory(
 nidFactory, bindPort, environment);
 PastryNode node = factory.newNode();
 ...
 }

Next, an instance of the FreePastryApplication class is created, and the node is
started using the boot method:

 FreePastryApplication application =
 new FreePastryApplication(node);
 node.boot(bootAddress);
 ...

The node's ID is then displayed as shown in the next code sequence. As there will be
multiple nodes in the network, we pause for 10 seconds to allow the other nodes to
start. We used the FreePastry timer to effect this delay. A random node ID is created,
and the application's routeMessage message is called to send a message to that node:

 System.out.println("Node " + node.getId().toString() +
 " created");
 environment.getTimeSource().sleep(10000);
 Id randomId = nidFactory.generateNodeId();
 application.routeMessage (randomId);

Before we execute the program, we need to develop the application class.

Understanding the FreePastryApplication class
The FreePastryApplication class implements the Application interface and
implements the functionality of the node. The constructor creates and registers an
Endpoint instance and initializes a message. The Endpoint instance is used by the
node to send messages. The class and constructor are shown here:

public class FreePastryApplication implements Application {
 protected Endpoint endpoint;

Peer-to-Peer Networks

[132]

 private final String message;
 private final String instance = " Instance ID";

 public FreePastryApplication(Node node) {
 this.endpoint = node.buildEndpoint(this, instance);
 this.message = "Hello there! from Instance: "
 + instance + " Sent at: [" + getCurrentTime()
 + "]";
 this.endpoint.register();
 }

 ...
}

You may get a "Leaking this in constructor" warning when this code is compiled.
This is caused by a reference to the constructor's object being passed as an argument
to the buildEndpoint method using the this keyword. This is a potentially bad
practice because the object may have not been fully constructed when it was passed.
Another thread may try to do something with the object before it is ready. It is not as
much of a problem if it is passed to a package-private method that performs common
initialization. In this situation, it is not likely to cause problems.

The Application interface requires that three methods be implemented:

• deliver: This is called when a message is received
• forward: This is used to forward a message
• update: This informs the application that a node has joined or left a set

of local nodes

We are only interested in the deliver method for this application. In addition, we
will add the getCurrentTime and routeMessage methods to the application. We
will use the getCurrentTime methods to show the time that our messages are sent
and arrive. The routeMessage method will send a message to another node.

The getCurrentTime method is as follows. It uses the EndPoint object to access the
node's environment and then the time:

 private long getCurrentTime() {
 return this.endpoint
 .getEnvironment()
 .getTimeSource()
 .currentTimeMillis();
 }

Chapter 5

[133]

The routeMessage method is passed the identifier of the destination node.
The message text is constructed adding the end point and time information. A
PastryMessage instance is created using the end-point identifier and the message
text. The route method is then called to send this message:

 public void routeMessage(Id id) {
 System.out.println(
 "Message Sent\n\tCurrent Node: " +
 this.endpoint.getId()
 + "\n\tDestination: " + id
 + "\n\tTime: " + getCurrentTime());
 Message msg = new PastryMessage(endpoint.getId(),
 id, message);
 endpoint.route(id, msg, null);
 }

When a message is received by a node, the deliver method is invoked. The
implementation of this method is as follows. The end point identifier, the message,
and the time of arrival are displayed. This will help us understand how messages are
sent and received:

 public void deliver(Id id, Message message) {
 System.out.println("Message Received\n\tCurrent Node: "
 + this.endpoint.getId() + "\n\tMessage: "
 + message + "\n\tTime: " + getCurrentTime());
 }

The PastryMessage class implements the Message interface, as shown next. The
constructor accepts the destination, source, and message:

public class PastryMessage implements Message {
 private final Id from;
 private final Id to;
 private final String messageBody;

 public PastryMessage(Id from, Id to, String messageBody) {
 this.from = from;
 this.to = to;
 this.messageBody = messageBody;
 }

 ...
}

Peer-to-Peer Networks

[134]

The Message interface possesses a single getPriority method that needs to
be overridden. Here, we return a low priority so that it does not interfere with
underlying P2P maintenance traffic:

 public int getPriority() {
 return Message.LOW_PRIORITY;
 }

The toString method is overridden to provide a more detailed description of
the message:

 public String toString() {
 return "From: " + this.from
 + " To: " + this.to
 + " [" + this.messageBody + "]";
 }

Now, we are ready to execute the example. Execute the FreePastryExample
class. The initial output will consist of the following output. The abbreviated node
identifier is displayed, which in this case is <0xB36864..>. The identifier that you get
will be different:

InetAddress: /192.168.1.14 Node <0xB36864..> created

After this, a pause a message is sent and subsequently received by the current node.
This message was created in the FreePastryExample class using the code repeated
here for your convenience:

 Id randomId = nidFactory.generateNodeId();
 application.routeMessage(randomId);

A random identifier was used because we do not have a specific node to send
the message to. When the message is sent, the following output is generated. The
random identifier for this run is <0x83C7CD..>:

Message Sent

 Current Node: <0xB36864..>

 Destination: <0x83C7CD..>

 Time: 1441844742906

Message Received

 Current Node: <0xB36864..>

Chapter 5

[135]

 Message: From: <0xB36864..> To: <0x83C7CD..> [Hello there! from Instance:
Instance ID Sent at: [1441844732905]]

 Time: 1441844742915

The time between the sending and receiving of the message is minimal. If a larger set
of nodes comprised the P2P network, more significant delays would show up.

In the previous output, the node addresses were truncated. We can use the
toStringFull method, as shown here, to get the full address:

 System.out.println("Node " + node.getId().toStringFull()
 + " created");

This will produce output similar to the following:

Node B36864DE0C4F9E9C1572CBCC095D585EA943B1B4 created

We did not provide a specific address for our messages. Instead, we randomly
generated addresses. This application demonstrated the basic elements of a
FreePastry application. Additional layers are used to facilitate communication
between nodes, such as the publisher/provider paradigm support by Scribe.

We can start a second node using the same program, but we will need to use a
different bind port to avoid binding conflicts. The message sent by either node
will not necessarily be received by the other node. This is the result of the routes
generated by FreePastry.

Sending a message to a specific node
To send a message directly to a node, we need its identifier. To get a remote node's
identifier, we need to use a leaf set. This collection is not strictly a set because for
small networks, such as the one we are using, the same node may appear twice.

The LeafSet class represents this collection and has a get method that will return a
NodeHandle instance for each node. We can send messages to nodes if we have this
node handle.

To demonstrate this approach, add the following method to the
FreePastryApplication class. This is similar to the routeMessage method, but it
uses a node handle as an argument of the route method:

 public void routeMessageDirect(NodeHandle nh) {
 System.out.println("Message Sent Direct\n\tCurrent Node: "
 + this.endpoint.getId() + " Destination: " + nh
 + "\n\tTime: " + getCurrentTime());
 Message msg =

Peer-to-Peer Networks

[136]

 new PastryMessage(endpoint.getId(), nh.getId(),
 "DIRECT-" + message);
 endpoint.route(null, msg, nh);
 }

Add the following sequences of code to the end of the FreePastryExample
constructor. Optionally, comment out the previous code that uses the routeMessage
method. First, we pause for 10 seconds to allow other nodes to join the network:

 environment.getTimeSource().sleep(10000);

Next, we create an instance of the LeafSet class. The getUniqueSet method returns
the leaf set, which excludes the current node. A for-each statement will then use the
routeMessageDirect variable to send the message to the nodes of the collection:

 LeafSet leafSet = node.getLeafSet();
 Collection<NodeHandle> collection = leafSet.getUniqueSet();
 for (NodeHandle nodeHandle : collection) {
 application.routeMessageDirect(nodeHandle);
 environment.getTimeSource().sleep(1000);
 }

Start the FreePastryExample class using a bind port of 9001. Then, change the bind
port to 9002 and start the class a second time. After several seconds, you will see an
output similar to the following one. The first set of output corresponds to the first
instance of the application, while the second set corresponds to the second instance.
Each instance will send one message to the other instance. Note the time stamps that
are used when the messages are sent and received:

InetAddress: /192.168.1.9
Node <0xA5BFDA..> created
Message Sent Direct
 Current Node: <0xA5BFDA..> Destination: [SNH:
<0x2C6D18..>//192.168.1.9:9002]
 Time: 1441849240310
Message Received
 Current Node: <0xA5BFDA..>
 Message: From: <0x2C6D18..> To: <0xA5BFDA..> [DIRECT-Hello there!
from Instance: Instance ID Sent at: [1441849224879]]
 Time: 1441849245038

InetAddress: /192.168.1.9
Node <0x2C6D18..> created
Message Received
 Current Node: <0x2C6D18..>
 Message: From: <0xA5BFDA..> To: <0x2C6D18..> [DIRECT-Hello there!
from Instance: Instance ID Sent at: [1441849220308]]

Chapter 5

[137]

 Time: 1441849240349
Message Sent Direct
 Current Node: <0x2C6D18..> Destination: [SNH:
<0xA5BFDA..>//192.168.1.9:9001]
 Time: 1441849245020

There is a lot more to FreePastry than we were able to illustrate here. However, the
examples provide a feel for the nature of P2P application development. Other P2P
frameworks work in a similar manner.

Summary
In this chapter, we explored the nature and use of P2P networks. This architecture
treats all nodes as equals avoiding the use of a central server. Nodes are mapped
using an overlay network, which effectively creates a subnetwork of nodes in an IP
address space. These nodes will vary in their capabilities and will join and leave the
network in a random manner.

We saw how a distributed hash table supports identifying and locating nodes in a
network. A routing algorithm uses this table to fulfill requests by sending messages
between nodes. We demonstrated the Java Distributed Hashing Table to illustrate
the used of DHTs.

There are several open source Java based P2P frameworks available. We used
FreePastry to demonstrate how P2P networks work. Specifically, we showed you
how nodes join a network and how messages are sent between nodes. This provided
a better understanding of how these frameworks function.

In the next chapter, we will examine the nature of the UDP protocol and how it
supports multicasting.

[139]

UDP and Multicasting
User Datagram Protocol (UDP) sits on top of IP and provides an unreliable
counterpart to TCP. UDP sends individual packets between two nodes in a network.
UDP packets do not have knowledge of other packets, and there is no guarantee that
a packet will actually arrive at its intended destination. When multiple packets are
sent, there is no guarantee of the arrival order. UDP messages are simply sent and
then forgotten as there are no acknowledgements sent from a recipient.

UDP is a connectionless protocol. There is no exchange of messages between two
nodes to facilitate the packet transmission. No state information is maintained about
the connection.

UDP is appropriate for services where delivery needs to be efficient, and no guarantee
of delivery is needed. For example, it is used for Domain Name System (DNS)
services, Network Time Protocol (NTP) services, Voice Over IP (VOIP), network
communication coordination by P2P networks, and for video streaming. If a video
frame is lost, then the viewer may never notice it if the loss does not occur frequently.

There are several protocols that use UDP, including:

• Real Time Streaming Protocol (RTSP): This protocol is used to control the
streaming of media

• Routing Information Protocol (RIP): This protocol determines the route that
is used to transmit packets

• Domain Name System (DNS): This protocol looks up an Internet domain
name and returns its IP address

• Network Time Protocol (NTP): This protocol synchronizes clocks across
the Internet

UDP and Multicasting

[140]

A UDP packet consists of an IP address and port number to identify its destination.
The UDP packets have a fixed size and can be as large as 65,353 bytes. However, each
packet uses a minimum of 20 bytes for an IP header and 8 bytes for a UDP header,
limiting the size of a message to 65,507 bytes. If a message is larger than that, then
multiple packets will need to be sent.

UDP packets can also be multicast. This means that a packet is sent to every node
that belongs to a UDP group. This is an efficient way of sending information to
multiple nodes without having to explicitly target each node. Instead, the packet is
sent to a group whose members are responsible for capturing its group's packets.

In this chapter, we will illustrate how the UDP protocol can be used to:

• Support the traditional client/server model
• Use NIO Channels to perform UDP operations
• Multicast packets to group members
• Stream media such as audio or video to a client

We will start with an overview of Java support for UDP and provide more UDP
protocol details.

Java support for UDP
Java uses the DatagramSocket class to form socket connections between nodes. The
DatagramPacket class represents a packet of data. Simple send and receive methods
will transmit the packets across a network.

UDP uses an IP address and a port number to identify nodes. UDP port numbers
range from 0 to 65535. Port numbers are broken down into three types:

• Well-known ports (0 to 1023): These are port numbers that are used for
relatively common services.

• Registered ports (1024 to 49151): These are port numbers that are assigned
by IANA to a process.

• Dynamic/private ports (49152 to 65535): These are dynamically assigned
to clients when a connection is initiated. These are normally temporary and
cannot be assigned by IANA.

Chapter 6

[141]

The following table is a short list of UDP specific port assignments. They illustrate
how UDP is widely used to support many diverse applications and services. A more
complete list of TCP/UDP port numbers is found at https://en.wikipedia.org/
wiki/List_of_TCP_and_UDP_port_numbers:

Well-known ports (0 to 1023) Usage
7 This is the echo protocol
9 This means wake-on-LAN
161 This is the Simple Network Management

Protocol (SNMP)
319 These are Precision Time Protocol (PTP) event

messages
320 These are PTP general messages
513 This indicates who the user is
514 This is the syslog—used for system logging
520 This is the Routing Information Protocol (RIP)
750 This is kerberos-iv, Kerberos version IV
944 This is the network file system service
973 This is the network file system over IPv6 service

The following table gives a list of the registered ports and their usage:

Registered ports
(1024 to 49151)

Usage

1534 This is used for Eclipse Target Communication Framework
(TCF)

1581 This is used for MIL STD 2045-47001 VMF
1589 This is used for Cisco VLAN Query Protocol (VQP) / VMPS
2190 This is used for TiVoConnect Beacon
2302 This is used for Halo: Combat Evolved multiplayer
3000 This is used for BitTorrent sync
4500 This is used for IPSec NAT traversal
5353 This is used for Multicast DNS (mDNS)
9110 This is used for SSMP message protocol
27500 to 27900 This is used for id Software's QuakeWorld
29900 to 29901 This is used for Nintendo Wi-Fi connection
36963 This is used for Unreal Software multiplayer games

https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

UDP and Multicasting

[142]

TCP versus UDP
There are several differences between TCP and UDP. These differences include
the following:

• Reliability: TCP is more reliable than UDP
• Ordering: TCP guarantees the order of packet transmission will be preserved
• Header size: The UDP header is smaller than the TCP header
• Speed: UDP is faster than TCP

When a packet is sent using TCP, the packet is guaranteed to arrive. If it is lost, then
it is re-sent. UDP does not offer this guarantee. If the packet does not arrive, then it is
not re-sent.

TCP preserves the order that packets are sent in, while UDP does not. If the TCP
packets arrive at a destination in a different order than how they were sent, TCP
will reassemble the packets in their original order. With UDP, this ordering is not
preserved.

When a packet is created, header information is attached to assist in the delivery of
the packet. With UDP the header consists of 8 bytes. The usual size of a TCP header
is 32 bytes.

With a smaller header size and lack of the overhead to ensure reliability, UDP is
more efficient than TCP. In addition, less effort is required to create a connection.
This efficiency makes it a better choice to stream media.

Let's begin our UDP examples with how a traditional client/server architecture
is supported.

UDP client/server
The UDP client/server applications are similar in structure to the structure used for
TCP client/server applications. On the server side, a UDP server socket is created,
which waits for client requests. The client will create a corresponding UDP socket
and use it to send a message to the server. The server can then process the request
and send back a response.

A UDP client/server will use the DatagramSocket class for the socket and a
DatagramPacket to hold the message. There is no restriction on the message's
content type. In our examples, we will be using a text message.

Chapter 6

[143]

The UDP server application
Our server is defined next. The constructor will perform the work of the server:

public class UDPServer {
 public UDPServer() {
 System.out.println("UDP Server Started");
 ...
 System.out.println("UDP Server Terminating");
 }

 public static void main(String[] args) {
 new UDPServer();
 }
}

In the constructor's try-with-resources block, we create an instance of the
DatagramSocket class. Several of the methods that we will be using may throw
an IOException exception, which will be caught if necessary:

 try (DatagramSocket serverSocket =
 new DatagramSocket(9003)) {
 ...
 }
 } catch (IOException ex) {
 //Handle exceptions
 }

An alternate way of creating the socket is to use the bind method, as shown next.
The DatagramSocket instance is created using null as the parameter. The port is
then assigned with the bind method:

 DatagramSocket serverSocket = new DatagramSocket(null);
 serverSocket.bind(new InetSocketAddress(9003));

Both approaches will create a DatagramSocket instance using port 9003.

The process of sending a message consists of the following:

• Creating an array of bytes
• Creating a DatagramPacket instance
• Using the DatagramSocket instance to wait for a message to arrive

UDP and Multicasting

[144]

The process is enclosed in a loop, as shown next, to allow multiple requests to be
handled. The message that is received is simply echoed back to the client program.
The DatagramPacket instance is created using the byte array and its length. It is
used as the argument of the DatagramSocket class's receive method. The packet
does not hold any information at this time. This method will block until a request is
made, and the packet will then be populated:

 while (true) {
 byte[] receiveMessage = new byte[1024];
 DatagramPacket receivePacket = new DatagramPacket(
 receiveMessage, receiveMessage.length);
 serverSocket.receive(receivePacket);
 ...
 }

When the method returns, the packet is converted into a string. If some other data
type was sent, then some other conversion will be needed. The message that was sent
is then displayed:

 String message = new String(receivePacket.getData());
 System.out.println("Received from client: [" + message
 + "]\nFrom: " + receivePacket.getAddress());

To send a response, the address and port number of the client are needed. These
are obtained using the getAddress and getPort methods, respectively, against
the packet, which possesses this information. We will see this when we discuss the
client. Also needed is the message that is represented as an array of bytes, which the
getBytes method provides:

 InetAddress inetAddress = receivePacket.getAddress();
 int port = receivePacket.getPort();
 byte[] sendMessage;
 sendMessage = message.getBytes();

A new DatagramPacket instance is created using the message, its length, and the
client's address and port number. The send method sends the packet to the client:

 DatagramPacket sendPacket =
 new DatagramPacket(sendMessage,
 sendMessage.length, inetAddress, port);
 serverSocket.send(sendPacket);

With the server defined, let's examine the client.

Chapter 6

[145]

The UDP client application
The client application will prompt the user for a message to send, and then it will
send the message to the server. It will wait for a response and then display the
response. It is declared here:

class UDPClient {
 public UDPClient() {
 System.out.println("UDP Client Started");
 ...
 }
 System.out.println("UDP Client Terminating ");
 }

 public static void main(String args[]) {
 new UDPClient();
 }
}

The Scanner class supports getting user input. The try-with-resources block creates a
DatagramSocket instance and handles exceptions:

 Scanner scanner = new Scanner(System.in);
 try (DatagramSocket clientSocket = new DatagramSocket()) {
 ...
 }
 clientSocket.close();
 } catch (IOException ex) {
 // Handle exceptions
 }

The client's current address is accessed using the getByName method, and a reference
to an array of bytes is declared. This address will be used to create a packet:

 InetAddress inetAddress =
 InetAddress.getByName("localhost");
 byte[] sendMessage;

An infinite loop is used to prompt the user for messages. When the user enters "quit",
the application will terminate, as shown here:

 while (true) {
 System.out.print("Enter a message: ");
 String message = scanner.nextLine();
 if ("quit".equalsIgnoreCase(message)) {
 break;
 }
 ...
 }

UDP and Multicasting

[146]

To create a DatagramPacket instance holding the message, its constructor needs an
array of bytes representing the message, its length, and the client's address and port
number. In the following code, the server's port is 9003. The send method will send
the packet to the server:

 sendMessage = message.getBytes();
 DatagramPacket sendPacket = new DatagramPacket(
 sendMessage, sendMessage.length,
 inetAddress, 9003);
 clientSocket.send(sendPacket);

To receive a response, a receive packet is created and used with the receive method
in the same way that it was handled in the server. This method will block until the
server responds, and then the message is displayed:

 byte[] receiveMessage = new byte[1024];
 DatagramPacket receivePacket = new DatagramPacket(
 receiveMessage, receiveMessage.length);
 clientSocket.receive(receivePacket);
 String receivedSentence =
 new String(receivePacket.getData());
 System.out.println("Received from server ["
 + receivedSentence + "]\nfrom "
 + receivePacket.getSocketAddress());

Now, let's see these applications at work.

The UDP client/server in action
The server is started first. It will display the following message:

UDP Server Started

Next, start the client application. It will display the following message:

UDP Client Started

Enter a message:

Enter a message, such as the following one:

Enter a message: Top of the morning to you

Chapter 6

[147]

The server will display that it has received the message, as shown next. You will see
several empty lines of output. This is the content of the 1024-byte array that is used
to hold the message. The message is then echoed back to the client:

Received from client: [Top of the morning to you

...

]

From: /127.0.0.1

On the client side, the response is displayed. In this example, the users then enter
"quit" to terminate the application:

Received from server [Top of the morning to you

...

]

from /127.0.0.1:9003

Enter a message: quit

UDP Client Terminating

As we are sending and receiving test messages, we can simplify the display of the
message using the trim method when the message is displayed, as shown next. This
code can be used on both the server and the client side:

 System.out.println("Received from client: ["
 + message.trim()
 + "]\nFrom: " + receivePacket.getAddress());

The output will be easier to read, as shown here:

Received from client: [Top of the morning to you]

From: /127.0.0.1

This client/server application can be enhanced in a number of ways, including
the use of threads, to enable it to work better with multiple clients. This example
illustrates the basics of developing a UDP client/server application in Java. In the
next section, we will see how channels support UDP.

UDP and Multicasting

[148]

Channel support for UDP
The DatagramChannel class provides additional support for UDP. It can support
nonblocking interchanges. The DatagramChannel class is derived from the
SelectableChannel class that makes multithreaded application easier. We will
examine its use in Chapter 7, Network Scalability.

The DatagramSocket class binds a channel to a port. After this class is used, it is no
longer used directly. Using the DatagramChannel class means, we do not have to
use datagram packets directly. Instead, data is transferred using an instance of the
ByteBuffer class. This class provides several convenient methods to access its data.

To demonstrate the use of the DatagramChannel class, we will develop an echo
server and client application. The server will wait for a message from a client, and
then send it back to the client.

The UDP echo server application
The UDP echo server application declaration follows and uses port 9000. In the
main method a try-with-resources block opens the channel and creates a socket. The
DatagramChannel class does not possess public constructors. To create a channel, we
use the open method, which returns an instance of the DatagramChannel class. The
channel's socket method creates a DatagramSocket instance for the channel:

public class UDPEchoServer {

 public static void main(String[] args) {
 int port = 9000;
 System.out.println("UDP Echo Server Started");
 try (DatagramChannel channel = DatagramChannel.open();
 DatagramSocket socket = channel.socket();){
 ...
 }
 }
 catch (IOException ex) {
 // Handle exceptions
 }
 System.out.println("UDP Echo Server Terminated");
 }
}

Chapter 6

[149]

Once created, we need to associate it with a port. This is done first by creating
an instance of the SocketAddress class, which represents a socket address. The
InetSocketAddress class is derived from the SocketAddress class and implements
an IP address. Its use in the following code sequence will associate it with port 9000.
The DatagramSocket class's bind method ties this address to the socket:

 SocketAddress address = new InetSocketAddress(port);
 socket.bind(address);

The ByteBuffer class is central to using a datagram channel. We discussed its creation
in Chapter 3, NIO Support for Networking. In the next statement, an instance of this class
is created with the allocateDirect method. This method will attempt to use native
OS support directly on the buffer. This can be more efficient than using the datagram
packet approach. Here, we created a buffer with the maximum size possible:

 ByteBuffer buffer = ByteBuffer.allocateDirect(65507);

Add the infinite loop that follows, which will receive a message from a client, display
the message, and then send it back:

 while (true) {
 // Get message
 // Display message
 // Return message
 }

The receive method is applied against a channel to get a client's message. It will
block until the message is received. Its single argument is the byte buffer that is used
to hold the incoming data. If the message exceeds the size of the buffer, the extra
bytes are silently thrown away.

The flip method enables the buffer to be processed. It sets the buffer's limit to the
current position in the buffer and then sets the position to 0. Subsequent get type
methods will start at the beginning of the buffer:

 SocketAddress client = channel.receive(buffer);
 buffer.flip();

While not necessary for an echo server, the message that is received is displayed on
the server. This allows us to verify that the message was received and suggests how
messages can be modified to do more than simply echoing the message.

In order to display the message, we need to use the get method to get each byte and
then convert it to the appropriate type. The echo server is intended to echo simple
strings. Thus, the byte needs to be cast to a char before it is displayed.

UDP and Multicasting

[150]

However, the get method modifies the current position in the buffer. We need to
restore the position to its original state before we send the message back to the client.
The buffer's mark and reset method are used for this purpose.

All of this is performed in the following code sequence. The mark method sets the
mark at the current position. A StringBuilder instance is used to recreate the string
that was sent by the client. The buffer's hasRemaining method controls the while
loop. The message is displayed and the reset method restores the position to the
previously marked value:

 buffer.mark();
 System.out.print("Received: [");
 StringBuilder message = new StringBuilder();
 while (buffer.hasRemaining()) {
 message.append((char) buffer.get());
 }
 System.out.println(message + "]");
 buffer.reset();

The last step is to send the byte buffer back to the client. The send method does this.
A message indicating that the message has been sent is displayed, followed by the
clear method. This method is used because we are through with the buffer. It will
set the position to 0, set the limit of the buffer to its capacity, and discard the mark:

 channel.send(buffer, client);
 System.out.println("Sent: [" + message + "]");
 buffer.clear();

When the server is started, we will see a message to this effect, as shown here:

UDP Echo Server Started

We are now ready to see how the client is implemented.

The UDP echo client application
The implementation of the UDP echo client is simple and uses these steps:

• A connection to the echo server is established
• A byte buffer is created to hold the message
• The buffer is sent to the server
• The client blocks until the message is sent back

Chapter 6

[151]

The client's implementation details are similar to the server's. We start with the
declaration of the application, as shown here:

public class UDPEchoClient {

 public static void main(String[] args) {
 System.out.println("UDP Echo Client Started");
 try {
 ...
 }
 catch (IOException ex) {
 // Handle exceptions
 }
 System.out.println("UDP Echo Client Terminated");
 }
}

In the server, the single argument InetSocketAddress constructor associates port
9000 with the current IP address. Within the client, we need to specify the IP address
of the server along with the port. Otherwise, it will be unable to determine where to
send the message. This is accomplished in the following statement using the class's
two-argument constructor. We use the address, 127.0.0.1, assuming that the client
and the server are on the same machine:

 SocketAddress remote =
 new InetSocketAddress("127.0.0.1", 9000);

The channel is then created with the open method and connected to the socket
address with the connect method:

 DatagramChannel channel = DatagramChannel.open();
 channel.connect(remote);

In the next code sequence, the message string is created, and the byte buffer is
allocated. The size of the buffer is set to the length of the string. The put method then
assigns the message to the buffer. As the put method expects an array of bytes, we
use the String class's getBytes method to obtain an array of bytes corresponding to
the message's contents:

 String message = "The message";
 ByteBuffer buffer = ByteBuffer.allocate(message.length());
 buffer.put(message.getBytes());

UDP and Multicasting

[152]

Before we send the buffer to the server, the flip method is called. It will set the limit
to the current position and set the position to 0. Thus, when received by the server it
can be processed:

 buffer.flip();

To send the message to the server, the channel's write method is called, as shown
next. This will send the underlying packet directly to the server. However, this
method only works if the channel's socket is connected, which was achieved earlier:

 channel.write(buffer);
 System.out.println("Sent: [" + message + "]");

Next, the buffer is cleared, allowing us to reuse the buffer. The read method will
receive the buffer, and the buffer will be displayed using the same process that was
used in the server:

 buffer.clear();
 channel.read(buffer);
 buffer.flip();
 System.out.print("Received: [");
 while(buffer.hasRemaining()) {
 System.out.print((char)buffer.get());
 }
 System.out.println("]");

We are now ready to use the client in conjunction with the server.

The UDP echo client/server in action
The server needs to be started first. We will see the initial server message, as
shown here:

UDP Echo Server Started

Next, start the client. The following output will be displayed showing the client
sending the message and then showing the returned message:

UDP Echo Client Started

Sent: [The message]

Received: [The message]

UDP Echo Client Terminated

Chapter 6

[153]

On the server side, we will see the message being received and then being sent back
to the client:

Received: [The message]

Sent: [The message]

Using the DatagramChannel class can make UDP communications faster.

UDP multicasting
Multicasting is the process of sending a message to multiple clients at the same time.
Each client will receive the same message. In order to participate in this process,
clients need to join a multicast group. When a message is sent, its destination address
indicates that it is a multicast message. The multicast groups are dynamic with
clients entering and leaving the group at any time.

Multicast is the old IPv4 CLASS D space and uses addresses 224.0.0.0 through
239.255.255.255. The IPv4 Multicast Address Space Registry lists multicast address
assignments and is found at http://www.iana.org/assignments/multicast-
addresses/multicast-addresses.xml. The Host Extensions for IP Multicasting
document is found at http://tools.ietf.org/html/rfc1112. It defines the
implementation requirements to support multicasting.

The UDP multicast server
The server application is declared next. This server is a time server that will
broadcast the current data and time every second. This is a good use for multicast
messages as there may be several clients interested in the same information, and
reliability is not a concern. The try block will handle exceptions as they occur:

public class UDPMulticastServer {

 public UDPMulticastServer() {
 System.out.println("UDP Multicast Time Server Started");
 try {
 ...
 } catch (IOException | InterruptedException ex) {
 // Handle exceptions
 }
 System.out.println(
 "UDP Multicast Time Server Terminated");
 }

http://www.iana.org/assignments/multicast-addresses/multicast-addresses.xml
http://www.iana.org/assignments/multicast-addresses/multicast-addresses.xml
http://tools.ietf.org/html/rfc1112

UDP and Multicasting

[154]

 public static void main(String args[]) {
 new UDPMulticastServer();
 }
}

An instance of the MulticastSocket class is needed along with an InetAddress
instance holding the multicast IP address. In this example, the address, 228.5.6.7,
represents the multicast group. The joinGroup method is used to join this multicast
group, as shown here:

 MulticastSocket multicastSocket = new MulticastSocket();
 InetAddress inetAddress = InetAddress.getByName("228.5.6.7");
 multicastSocket.joinGroup(inetAddress);

In order to send a message, we need an array of bytes to hold the message and a
packet. These are declared as shown here:

 byte[] data;
 DatagramPacket packet;

The server application will use an infinite loop to broadcast a new date and time
every second. The thread is paused for one second, and then a new date and time
is created using the Data class. The DatagramPacket instance is created using this
information. Port 9877 is assigned for this server and will need to be known by the
client. The send method sends the packet to interested clients:

 while (true) {
 Thread.sleep(1000);
 String message = (new Date()).toString();
 System.out.println("Sending: [" + message + "]");
 data = message.getBytes();
 packet = new DatagramPacket(data, message.length(),
 inetAddress, 9877);
 multicastSocket.send(packet);
 }

The client application is discussed next.

The UDP multicast client
This application will join the multicast group as defined by the address 228.5.6.7.
It will block until a message is received, and then it will display the message. The
application is defined as follows:

public class UDPMulticastClient {

 public UDPMulticastClient() {

Chapter 6

[155]

 System.out.println("UDP Multicast Time Client Started");
 try {
 ...
 } catch (IOException ex) {
 ex.printStackTrace();
 }

 System.out.println(
 "UDP Multicast Time Client Terminated");
 }

 public static void main(String[] args) {
 new UDPMulticastClient();
 }
}

An instance of the MulticastSocket class is created using the port number 9877.
This is needed so that it can connect to the UDP multicast server. An InetAddress
instance is created using the multicast address of 228.5.6.7. The client then joins
the multicast group using the joinGroup method.

 MulticastSocket multicastSocket = new MulticastSocket(9877);
 InetAddress inetAddress = InetAddress.getByName("228.5.6.7");
 multicastSocket.joinGroup(inetAddress);

A DatagramPacket instance is needed to receive messages that were sent to the
client. An array of bytes is created and used to instantiate this packet, as shown here:

 byte[] data = new byte[256];
 DatagramPacket packet = new DatagramPacket(data, data.length);

The client application then enters an infinite loop where it blocks at the receive
method until the server sends a message. Once the message has arrived, the message
is displayed:

 while (true) {
 multicastSocket.receive(packet);
 String message = new String(
 packet.getData(), 0, packet.getLength());
 System.out.println("Message from: " + packet.getAddress()
 + " Message: [" + message + "]");
 }

Next, we will demonstrate how the client and the server interact.

UDP and Multicasting

[156]

The UDP multicast client/server in action
Start the server. The output of the server will be similar to the following one, but the
date and time will be different:

UDP Multicast Time Server Started

Sending: [Sat Sep 19 13:48:42 CDT 2015]

Sending: [Sat Sep 19 13:48:43 CDT 2015]

Sending: [Sat Sep 19 13:48:44 CDT 2015]

Sending: [Sat Sep 19 13:48:45 CDT 2015]

Sending: [Sat Sep 19 13:48:46 CDT 2015]

Sending: [Sat Sep 19 13:48:47 CDT 2015]

...

Next, start the client application. It will start receiving messages similar to the
following:

UDP Multicast Time Client Started

Message from: /192.168.1.7 Message: [Sat Sep 19 13:48:44 CDT 2015]

Message from: /192.168.1.7 Message: [Sat Sep 19 13:48:45 CDT 2015]

Message from: /192.168.1.7 Message: [Sat Sep 19 13:48:46 CDT 2015]

...

If the program is executed on a Mac, it may be through a
socket exception. If this happens, use the -Djava.net.
preferIPv4Stack=true VM option.

If you start subsequent clients, each client will receive the same series of
server messages.

UDP multicasting with channels
We can also multicast with channels. We will use IPv6 to demonstrate this process.
The process is similar to our previous use of the DatagramChannel class, except
that we need to use a multicast group. To do this, we need to know which network
interfaces are available. Before we get into the specifics of using channels to multicast,
we will demonstrate how to obtain a list of network interfaces for a machine.

Chapter 6

[157]

The NetworkInterface class represents a network interface. This class was
discussed in Chapter 2, Network Addressing. The following is a variation of the
approach demonstrated in that chapter. It has been augmented to show whether
a specific interface supports multicasting, as shown next:

 try {
 Enumeration<NetworkInterface> networkInterfaces;
 networkInterfaces =
 NetworkInterface.getNetworkInterfaces();
 for (NetworkInterface networkInterface :
 Collections.list(networkInterfaces)) {
 displayNetworkInterfaceInformation(
 networkInterface);
 }
 } catch (SocketException ex) {
 // Handle exceptions
 }

The displayNetworkInterfaceInformation method is shown next. This
approach has been adapted from https://docs.oracle.com/javase/tutorial/
networking/nifs/listing.html:

 static void displayNetworkInterfaceInformation(
 NetworkInterface networkInterface) {
 try {
 System.out.printf("Display name: %s\n",
 networkInterface.getDisplayName());
 System.out.printf("Name: %s\n",
 networkInterface.getName());
 System.out.printf("Supports Multicast: %s\n",
 networkInterface.supportsMulticast());
 Enumeration<InetAddress> inetAddresses =
 networkInterface.getInetAddresses();
 for (InetAddress inetAddress :
 Collections.list(inetAddresses)) {
 System.out.printf("InetAddress: %s\n",
 inetAddress);
 }
 System.out.println();
 } catch (SocketException ex) {
 // Handle exceptions
 }
 }

https://docs.oracle.com/javase/tutorial/networking/nifs/listing.html
https://docs.oracle.com/javase/tutorial/networking/nifs/listing.html

UDP and Multicasting

[158]

When this example is executed, you will get output similar to the following:

Display name: Software Loopback Interface 1

Name: lo

Supports Multicast: true

InetAddress: /127.0.0.1

InetAddress: /0:0:0:0:0:0:0:1

Display name: Microsoft Kernel Debug Network Adapter

Name: eth0

Supports Multicast: true

Display name: Realtek PCIe FE Family Controller

Name: eth1

Supports Multicast: true

InetAddress: /fe80:0:0:0:91d0:8e19:31f1:cb2d%eth1

Display name: Realtek RTL8188EE 802.11 b/g/n Wi-Fi Adapter

Name: wlan0

Supports Multicast: true

InetAddress: /192.168.1.7

InetAddress: /2002:42be:6659:0:0:0:0:1001

InetAddress: /fe80:0:0:0:9cdb:371f:d3e9:4e2e%wlan0

...

For our client/server, we will use the eth0 interface. You will need to choose the one
most appropriate for you platform. For example, on a Mac this may be en0 or awdl0.

Chapter 6

[159]

The UDP channel multicast server
The UDP channel multicast server will:

• Set up the channel and multicast group
• Create a buffer containing a message
• Use an infinite loop to send and display the group message

The definition of the server is as follows:

public class UDPDatagramMulticastServer {

 public static void main(String[] args) {
 try {
 ...
 }
 } catch (IOException | InterruptedException ex) {
 // Handle exceptions
 }
 }

}

The first task uses the System class's setProperty method to specify that IPv6
be used. A DatagramChannel instance is then created, and the eth0 network
interface is created. The setOption method will associate the channel with the
network interface that was used to identify the group. The group is represented
by an InetSocketAddress instance using an IPv6 node-local scope multicast
address, as shown next. More details about the IPv6 Multicast Address Space Registry
document can be found at http://www.iana.org/assignments/ipv6-multicast-
addresses/ipv6-multicast-addresses.xhtml:

 System.setProperty(
 "java.net.preferIPv6Stack", "true");
 DatagramChannel channel = DatagramChannel.open();
 NetworkInterface networkInterface =
 NetworkInterface.getByName("eth0");
 channel.setOption(StandardSocketOptions.
 IP_MULTICAST_IF,
 networkInterface);
 InetSocketAddress group =
 new InetSocketAddress("FF01:0:0:0:0:0:0:FC",
 9003);

http://www.iana.org/assignments/ipv6-multicast-addresses/ipv6-multicast-addresses.xhtml
http://www.iana.org/assignments/ipv6-multicast-addresses/ipv6-multicast-addresses.xhtml

UDP and Multicasting

[160]

A byte buffer is then created, based on a message string. The buffer's size is set
to the length of the string and is assigned using a combination of the put and
getBytes methods:

 String message = "The message";
 ByteBuffer buffer =
 ByteBuffer.allocate(message.length());
 buffer.put(message.getBytes());

Inside the while loop, the buffer is sent out to group members. To clearly see what was
sent, the contents of the buffer is displayed using the same code that was used in the
The UDP echo server application section. The buffer is reset so that it can be used again.
The application pauses for one second to avoid excessive messages for this example:

 while (true) {
 channel.send(buffer, group);
 System.out.println("Sent the multicast message: "
 + message);
 buffer.clear();

 buffer.mark();
 System.out.print("Sent: [");
 StringBuilder msg = new StringBuilder();
 while (buffer.hasRemaining()) {
 msg.append((char) buffer.get());
 }
 System.out.println(msg + "]");
 buffer.reset();

 Thread.sleep(1000);
 }

We are now ready for the client application.

The UDP channel multicast client
The UDP channel multicast client will join the group, receive a message, display it,
and then terminate. As we will see, the MembershipKey class represents membership
to a multicast group.

The application is declared as follows. First, we specify that IPv6 is to be used. The
network interface is then declared, which is the same one that was used by the server:

public class UDPDatagramMulticastClient {
 public static void main(String[] args) throws Exception {

Chapter 6

[161]

 System.setProperty("java.net.preferIPv6Stack", "true");
 NetworkInterface networkInterface =
 NetworkInterface.getByName("eth0");
 ...
 }
}

The DatagramChannel instance is created next. The channel is bound to port 9003
and is associated with the network interface instance:

 DatagramChannel channel = DatagramChannel.open()
 .bind(new InetSocketAddress(9003))
 .setOption(StandardSocketOptions.IP_MULTICAST_IF,
 networkInterface);

The group is then created based on the same IPv6 address that was used by the
server, and a MembershipKey instance is created using the channel's join method,
as shown next. The key and a waiting message is displayed to illustrate how the
client works:

 InetAddress group =
 InetAddress.getByName("FF01:0:0:0:0:0:0:FC");
 MembershipKey key = channel.join(group, networkInterface);
 System.out.println("Joined Multicast Group: " + key);
 System.out.println("Waiting for a message...");

A byte buffer is created with a size of 1024. This size will be sufficient for this
example, The receive method is then called, which will block until a message
is received:

 ByteBuffer buffer = ByteBuffer.allocate(1024);
 channel.receive(buffer);

To display the contents of the buffer, we need to flip it. The contents are displayed as
we did previously:

 buffer.flip();
 System.out.print("Received: [");
 StringBuilder message = new StringBuilder();
 while (buffer.hasRemaining()) {
 message.append((char) buffer.get());
 }
 System.out.println(message + "]");

UDP and Multicasting

[162]

When we are done with a membership key, we should indicate that we are no longer
interested in receiving group messages using the drop method:

 key.drop();

Messages may still arrive if there are packets waiting to be processed by the socket.

The UDP channel multicast client/server
in action
Start the server first. This server will display a series of messages every second, as
shown here:

Sent the multicast message: The message

Sent: [The message]

Sent the multicast message: The message

Sent: [The message]

Sent the multicast message: The message

Sent: [The message]

...

Next, start the client application. It will display the multicast group, wait for a
message, and then display the message, as shown here:

Joined Multicast Group: <ff01:0:0:0:0:0:0:fc,eth1>

Waiting for a message...

Received: [The message]

The use of a channel can improve the performance of UDP multicast messages.

UDP streaming
Using UDP to stream audio or videos is common. It is efficient and any loss of packets
or out-of-order packets will cause minimal problems. We will illustrate this technique
by steaming live audio. A UDP server will capture the microphone's sound and send it
to a client. The UDP client will receive the audio and play it on the system's speakers.

Chapter 6

[163]

The idea of a UDP streaming server is to break up the stream into a series of packets
that are sent to a UDP client. The client will then receive these packets and use them
to reconstitute a stream.

In order to illustrate streaming audio, we need to know a bit about how Java handles
audio streams. Audio is handled by a series of classes that are found in the javax.
sound.sampled package. The primary classes that are used to capture and play
audio include the following:

• AudioFormat: This class specifies the characteristics of the audio format that
is used. As there are several audio formats available, the system needs to
know which one is being used.

• AudioInputStream: This class represents the audio that is being recorded
or played.

• AudioSystem: This class provides access to the system's audio devices
and resources.

• DataLine: This interface controls operations applied against a stream, such
as starting and stopping a stream.

• SourceDataLine: This represents the destination of the sound, such
as a speaker.

• TargetDataLine: This represents the source of the sound, such as
a microphone.

The terminology that is used for the SourceDataLine and TargetDataLine
interfaces may be a bit confusing. The terms are from the perspective of a line
and a mixer.

The UDP audio server implementation
The declaration of the AudioUDPServer class is as follows. It uses a TargetDataLine
instance for the source of the audio. It is declared as an instance variable because it
is used in multiple methods. The constructor uses a setupAudio method to initialize
the audio and a broadcastAudio method to send this audio to a client:

public class AudioUDPServer {
 private final byte audioBuffer[] = new byte[10000];
 private TargetDataLine targetDataLine;

 public AudioUDPServer() {
 setupAudio();
 broadcastAudio();
 }

UDP and Multicasting

[164]

 ...
 public static void main(String[] args) {
 new AudioUDPServer();
 }
}

The following is the getAudioFormat method, and it is used in both the server and
the client to specify the audio-stream characteristics. The analog audio signal is
sampled 1,600 times a second. Each sample is a signed 16-bit number. The channels
variable is assigned 1, meaning that the audio is mono. The order of the bytes in the
sample is important and is set to big endian:

 private AudioFormat getAudioFormat() {
 float sampleRate = 16000F;
 int sampleSizeInBits = 16;
 int channels = 1;
 boolean signed = true;
 boolean bigEndian = false;
 return new AudioFormat(sampleRate, sampleSizeInBits,
 channels, signed, bigEndian);
 }

Big endian and little endian refers to the order of bytes. Big endian means that the
most-significant byte of a word is stored at the smallest memory address and the
least significant byte at the largest memory address. Little endian reverses this order.
Different computer architectures use different orderings.

The setupAudio method initializes the audio. The DataLine.Info class uses the
audio format information to create a line representing audio. The AudioSystem
class's getLine method returns a data line that corresponds to a microphone. The
line is opened and started:

 private void setupAudio() {
 try {
 AudioFormat audioFormat = getAudioFormat();
 DataLine.Info dataLineInfo =
 new DataLine.Info(TargetDataLine.class,
 audioFormat);
 targetDataLine = (TargetDataLine)
 AudioSystem.getLine(dataLineInfo);
 targetDataLine.open(audioFormat);
 targetDataLine.start();
 } catch (Exception ex) {
 ex.printStackTrace();
 System.exit(0);
 }
 }

Chapter 6

[165]

The broadcastAudio method creates the UDP packets. A socket is created using port
8000 and an InetAddress instance is created for the current machine:

 private void broadcastAudio() {
 try {
 DatagramSocket socket = new DatagramSocket(8000);
 InetAddress inetAddress =
 InetAddress.getByName("127.0.0.1");
 ...
 } catch (Exception ex) {
 // Handle exceptions
 }
 }

An infinite loop is entered where the read method fills the audioBuffer array and
returns the number of bytes read. For counts greater than 0, a new packet is created
using the buffer and is sent to the client listening on port 9786:

 while (true) {
 int count = targetDataLine.read(
 audioBuffer, 0, audioBuffer.length);
 if (count > 0) {
 DatagramPacket packet = new DatagramPacket(
 audioBuffer, audioBuffer.length, inetAddress, 9786);
 socket.send(packet);
 }
 }

When executed, the sound from the microphone is sent to the client as a series
of packets.

The UDP audio client implementation
The AudioUDPClient application is declared next. In the constructor, an
initiateAudio method is called to start the process of receiving packets
from the server:

public class AudioUDPClient {
 AudioInputStream audioInputStream;
 SourceDataLine sourceDataLine;
 ...
 public AudioUDPClient() {
 initiateAudio();
 }

UDP and Multicasting

[166]

 public static void main(String[] args) {
 new AudioUDPClient();
 }
}

The initiateAudio method creates a socket that is bound to port 9786. An array of
bytes is created to hold audio data contained in the UDP packet:

 private void initiateAudio() {
 try {
 DatagramSocket socket = new DatagramSocket(9786);
 byte[] audioBuffer = new byte[10000];
 ...
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

An infinite loop will receive packets from the server, create an AudioInputStream
instance, and then call the playAudio method to play the sound. The packet is
created in the following code and then blocks until a packet is received:

 while (true) {
 DatagramPacket packet
 = new DatagramPacket(audioBuffer, audioBuffer.length);
 socket.receive(packet);
 ...
 }

Next, the audio stream is created. An array of bytes is extracted from the packet. It
is used as the argument of the ByteArrayInputStream constructor, which is used,
along with the audio format information, to create the actual audio stream. This is
associated with the SourceDataLine instance, which is opened and started. The
playAudio method is called to play the sound:

 try {
 byte audioData[] = packet.getData();
 InputStream byteInputStream =
 new ByteArrayInputStream(audioData);
 AudioFormat audioFormat = getAudioFormat();
 audioInputStream = new AudioInputStream(
 byteInputStream,
 audioFormat, audioData.length /
 audioFormat.getFrameSize());
 DataLine.Info dataLineInfo = new DataLine.Info(
 SourceDataLine.class, audioFormat);

Chapter 6

[167]

 sourceDataLine = (SourceDataLine)
 AudioSystem.getLine(dataLineInfo);
 sourceDataLine.open(audioFormat);
 sourceDataLine.start();
 playAudio();
 } catch (Exception e) {
 // Handle exceptions
 }

The getAudioFormat method is used and is the same one that was declared in the
AudioUDPServer application. The playAudio method follows. The read method of
AudioInputStream populates a buffer, which is written to the source data line. This
effectively plays the sound on the system's speakers:

 private void playAudio() {
 byte[] buffer = new byte[10000];
 try {
 int count;
 while ((count = audioInputStream.read(
 buffer, 0, buffer.length)) != -1) {
 if (count > 0) {
 sourceDataLine.write(buffer, 0, count);
 }
 }
 } catch (Exception e) {
 // Handle exceptions
 }
 }

With the server running, starting the client will play the sounds from the server.
The play can be enhanced through the use of threads in the server and client to
handle the recording and playback of the sound. This detail has been left out to
simplify the example.

In this example, the continuous analog sound is digitized and broken into packets.
These packets were then sent to a client where they were converted back into a
sound and played.

There is additional support for UDP streaming found in several other frameworks.
The Java Media Framework (JMF) (http://www.oracle.com/technetwork/
articles/javase/index-jsp-140239.html) supports the processing of audio and
video media. The Real-time Transport Protocol (RTP) (https://en.wikipedia.
org/wiki/Real-time_Transport_Protocol) is used to send audio and video data
across a network.

http://www.oracle.com/technetwork/articles/javase/index-jsp-140239.html
http://www.oracle.com/technetwork/articles/javase/index-jsp-140239.html
https://en.wikipedia.org/wiki/Real-time_Transport_Protocol
https://en.wikipedia.org/wiki/Real-time_Transport_Protocol

UDP and Multicasting

[168]

Summary
In this chapter, we examined the nature of the UDP protocol and how Java supports
it. We contrasted TCP and UDP to provide some guidance in deciding which
protocol was best for a given problem.

We started with a simple UDP client/server to demonstrate how the
DatagramPacket and DatagramSocket classes are used. We saw how the
InetAddress class was used to obtain addresses used by sockets and packets.

The DatagramChannel class supports using NIO techniques in a UDP environment,
which can be more efficient than using the DatagramPacket and DatagramSocket
approach. The approach used a byte buffer to hold messages that were sent between
a server and a client. This example illustrated many of the techniques that were
developed in Chapter 3, NIO Support for Networking.

This was followed by a discussion of how UDP multicasting works. This provides
a simple technique to broadcast a message to members of a group. The use of the
MulticastSocket, DatagramChannel, and MembershipKey classes were illustrated.
The latter class is used to establish a group when the DatagramChannel class is used.

We concluded with an example of how UDP is used to support the streaming of
audio. We detailed the use of several classes in the javax.sound.sampled package,
including the AudioFormat and TargetDataLine classes to gather and play audio.
We used the DatagramSocket and DatagramPacket classes to transmit the audio.

In the next chapter, we will examine the techniques that are available to improve the
scalability of client/server applications.

[169]

Network Scalability
Network scalability is concerned with structuring an application in such a way that
as more demands are placed on the application, it can adjust to handle the stress.
Demands can come in the form of more users, an increased number of requests, more
complicated requests, and changes in network characteristics.

There are several areas of concern listed as follows:

• Server capacity
• Multiple threads
• Network bandwidth and latency
• Execution environment

Scalability can be achieved by adding more servers, using an appropriate number of
threads, improving the performance of the execution environment, and increasing
the network bandwidth to eliminate bottlenecks.

Adding more servers will help by enabling load balancing between servers.
However, if the network bandwidth or latency is the issue, then this will not help
much. There is only so much that can be pushed through a network pipe.

Threads are frequently used to improve the performance of a system. Using an
appropriate number of threads for a system allows some threads to execute while
other threads are blocked. A blocked thread may be waiting for IO to occur or for
a user to respond. Allowing other threads to execute while some are blocked can
increase application throughput.

Network Scalability

[170]

The execution environment includes the underlying hardware, the operating
system, the JVM, and the application itself. Each of these areas is a candidate for
improvement. We will not address the hardware environment as that is beyond
our control. The same is true of the operating system. While some performance
improvements can be achieved, we will not address these areas. JVM parameters
that can affect network performance will be identified.

We will examine code improvement opportunities. Most of our discussion
is concerned with the use of threads because we have more control over this
architectural feature. We will illustrate several approaches to improve the scalability
of an application in this chapter. These include the following:

• Multiple threaded server
• Thread pool
• Futures and callables
• Selector (TCP/UDP)

We will explore the details of using simple threads/pools because you may
encounter them in your work and may not be able to use some of the newer
technologies due to platform limitations. Thread pools offer the advantage of reusing
threads in many situations. Futures and callables are a thread variation where data
can be passed and returned from a thread. Selector allows multiple channels to be
handled by a single thread.

Multithreaded server overview
The chief advantage of a multithreaded server is that long-running client requests
will not block the server from accepting other client requests. If a new thread is not
created, then the current request will be processed. It is only after the request has been
processed that new requests can be accepted. Using a separate thread for a request
means that connections and their associated requests can be processed concurrently.

When using a multithreaded server, there are several of ways of configuring the
threads as follows:

• Thread-per-request
• Thread-per-connection
• Thread-per-object

Chapter 7

[171]

In the thread-per-request model, each request that arrives at the server is assigned
a new thread. While this is a simple approach, it can result in the creation of a large
number of threads. In addition, each request will often mean that a new connection
will be created.

This model works nicely in an environment where the previous client request does
not need to be retained. For example, if the server's sole purpose is to respond to a
request for a specific stock quote, then a thread does not need to be aware of any
previous requests.

This approach is illustrated in the following figure. Each client request sent to the
server is assigned to a new thread.

In the thread-per-connection model, a client connection is maintained for the duration
of the session. A session consists of a series of requests and responses. A session is
terminated either through a specific command or after a time-out period has elapsed.
This approach allows state information to be maintained between requests.

Network Scalability

[172]

This approach is illustrated in the following figure. The dash line indicates that
multiple requests from the same client are handled by the same thread.

The thread-per-object approach queues associated requests with a specific object
that can handle the request. The object and its methods are placed in a thread that
handles requests one at a time. Requests are queued with the thread. While we will
not demonstrate this approach here, it is often used with thread pools.

The process of creating and deleting connections can be expensive. If a client submits
several requests, then opening and closing a connection becomes expensive and
should be avoided.

To manage the problem of too many threads, a pool of threads is frequently used. When
a request needs to be processed, the request is assigned to an existing unused thread
to handle the request. Once the response has been sent, then the thread can be used for
other requests. This assumes that state information does not need to be maintained.

The thread-per-request approach
In Chapter 1, Getting Started with Network Programming, we illustrated a simple
multithreaded echo server. This approach is reintroduced here to provide a
foundation for the use of threads in the remainder of the chapter.

Chapter 7

[173]

The thread-per-request server
In this example, the server will accept requests for prices when given the name of
a part. The implementation will use the ConcurrentHashMap class that supports
concurrent access to the part name and price. In a multithreaded environment,
concurrent data structures, such as the ConcurrentHashMap class, handle operations
without the potential for data corruption. Also, this map is an example of caching,
which can be useful in improving the performance of applications.

We start with the declaration of the server as follows. The map is declared as static
because only one instance is needed for the server. The static initialization block
initializes the map. The main method will use the ServerSocket class to accept
requests from a client. They will be handled in the run method. The clientSocket
variable will hold a reference to the client socket:

public class SimpleMultiTheadedServer implements Runnable {
 private static ConcurrentHashMap<String, Float> map;
 private Socket clientSocket;

 static {
 map = new ConcurrentHashMap<>();
 map.put("Axle", 238.50f);
 map.put("Gear", 45.55f);
 map.put("Wheel", 86.30f);
 map.put("Rotor", 8.50f);
 }

 SimpleMultiTheadedServer(Socket socket) {
 this.clientSocket = socket;
 }

 public static void main(String args[]) {
 ...
 }

 public void run() {
 ...
 }
}

The main method follows where the server socket waits for a client request and then
creates a new thread, passing the client socket to the thread to process it. Messages
are displayed showing the connection being accepted:

 public static void main(String args[]) {
 System.out.println("Multi-Threaded Server Started");
 try {

Network Scalability

[174]

 ServerSocket serverSocket = new ServerSocket(5000);
 while (true) {
 System.out.println(
 "Listening for a client connection");
 Socket socket = serverSocket.accept();
 System.out.println("Connected to a Client");
 new Thread(new
 SimpleMultiTheadedServer(socket)).start();
 }
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 System.out.println("Multi-Threaded Server Terminated");
 }

The run method processes the request, as shown next. An input stream is obtained
from the client socket, and the part name is read. The map's get method uses this
name to retrieve a price. An input stream sends the price back to the client, and the
progress of the operation is displayed:

 public void run() {
 System.out.println("Client Thread Started");
 try (BufferedReader bis = new BufferedReader(
 new InputStreamReader(
 clientSocket.getInputStream()));
 PrintStream out = new PrintStream(
 clientSocket.getOutputStream())) {

 String partName = bis.readLine();
 float price = map.get(partName);
 out.println(price);
 NumberFormat nf = NumberFormat.getCurrencyInstance();
 System.out.println("Request for " + partName
 + " and returned a price of "
 + nf.format(price));

 clientSocket.close();
 System.out.println("Client Connection Terminated");
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 System.out.println("Client Thread Terminated");
 }

Now, let's develop a client for the server.

Chapter 7

[175]

The thread-per-request client
The client application, as shown next, will connect to the server, send a request, wait
for a response, and then display the price. For this example, the client and the server
reside on the same machine:

public class SimpleClient {

 public static void main(String args[]) {
 System.out.println("Client Started");
 try {
 Socket socket = new Socket("127.0.0.1", 5000);
 System.out.println("Connected to a Server");
 PrintStream out =
 new PrintStream(socket.getOutputStream());
 InputStreamReader isr =
 new InputStreamReader(socket.getInputStream());
 BufferedReader br = new BufferedReader(isr);

 String partName = "Axle";
 out.println(partName);
 System.out.println(partName + " request sent");
 System.out.println("Response: " + br.readLine());
 socket.close();
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 System.out.println("Client Terminated");
 }
}

Now, let's see how the client and the server interact.

The thread-per-request applications in action
Start the server first, which will display the following output:

Multi-Threaded Server Started

Listening for a client connection

Next, start the client application. The following output will be displayed:

Client Started

Connected to a Server

Network Scalability

[176]

Axle request sent

Response: 238.5

Client Terminated

The server will then display the following output. You will note that the Client
Thread Started output follows the Listening for a client connection output. This is
because there is a slight delay before the thread starts:

Connected to a Client

Listening for a client connection

Client Thread Started

Request for Axle and returned a price of $238.50

Client Connection Terminated

Client Thread Terminated

The client thread started, processed the request, and then terminated.

Add the following code to the client application just before the close operation to
send a second price request to the server:

 partName = "Wheel";
 out.println(partName);
 System.out.println(partName + " request sent");
 System.out.println("Response: " + br.readLine());

When the client is executed, you will get the following output. The response for the
second string is null. This is because the server's response thread has terminated
after the first request was answered:

Client Started

Connected to a Server

Axle request sent

Response: 238.5

Wheel request sent

Response: null

Client Terminated

Chapter 7

[177]

To handle multiple requests using this approach, you will need to reopen the
connection and send out separate requests. The following code illustrates this
approach. Remove the code segment that sent the second request. Add the following
code to the client after the socket is closed. In this sequence, the socket is reopened,
the IO streams are recreated, and the message is re-sent:

 socket = new Socket("127.0.0.1", 5000);
 System.out.println("Connected to a Server");
 out = new PrintStream(socket.getOutputStream());
 isr = new InputStreamReader(socket.getInputStream());
 br = new BufferedReader(isr);

 partName = "Wheel";
 out.println(partName);
 System.out.println(partName + " request sent");
 System.out.println("Response: " + br.readLine());
 socket.close();

When the client is executed, it will produce the following output, which reflects the
two requests and their response:

Client Started

Connected to a Server

Axle request sent

Response: 238.5

Connected to a Server

Wheel request sent

Response: 86.3

Client Terminated

On the server side, we will get the following output. Two threads were created to
handle the requests:

Multi-Threaded Server Started

Listening for a client connection

Connected to a Client

Listening for a client connection

Network Scalability

[178]

Client Thread Started

Connected to a Client

Listening for a client connection

Client Thread Started

Request for Axle and returned a price of $238.50

Client Connection Terminated

Client Thread Terminated

Request for Wheel and returned a price of $86.30

Client Connection Terminated

Client Thread Terminated

The opening and closing of the connections can be expensive. In the next section, we
will address this type of problem. However, if only single requests are made, then
the thread-per-request will work.

Thread-per-connection approach
In this approach, a single thread is used to handle all of the client's requests. This
approach will require that the client send some sort of notification that it has no
further requests. In lieu of an explicit notification, a timeout may need to be set to
automatically disconnect the client after a sufficient period of time has elapsed.

The thread-per-connection server
Modify the server's run method by commenting out the bulk of the try block where the
request is handled and the response is sent to the client. Replace it with the following
code. In the infinite loop, the command request is read. If the request is quit, then the
loop is exited. Otherwise, the request is handled in the same way as before:

 while(true) {
 String partName = bis.readLine();
 if("quit".equalsIgnoreCase(partName)) {
 break;
 }
 float price = map.get(partName);
 out.println(price);
 NumberFormat nf =

Chapter 7

[179]

 NumberFormat.getCurrencyInstance();
 System.out.println("Request for " + partName
 + " and returned a price of "
 + nf.format(price));
 }

This is all that needs to be modified in the server.

The thread-per-connection client
In the client, replace the code after the buffered reader has been created with the
following code. This will send three requests to the server:

 String partName = "Axle";
 out.println(partName);
 System.out.println(partName + " request sent");
 System.out.println("Response: " + br.readLine());

 partName = "Wheel";
 out.println(partName);
 System.out.println(partName + " request sent");
 System.out.println("Response: " + br.readLine());

 partName = "Quit";
 out.println(partName);
 socket.close();

Only a single connection is opened for all three requests.

The thread-per-connection applications in
action
When the client is executed, you will get the following output:

Client Started

Connected to a Server

Axle request sent

Response: 238.5

Wheel request sent

Response: 86.3

Client Terminated

Network Scalability

[180]

On the server side, the following output is generated. You will note that only one
thread was created to handle the multiple requests:

Multi-Threaded Server Started

Listening for a client connection

Connected to a Client

Listening for a client connection

Client Thread Started

Request for Axle and returned a price of $238.50

Request for Wheel and returned a price of $86.30

Client Connection Terminated

Client Thread Terminated

This is a more efficient architecture for when a client makes multiple requests.

Thread pools
Thread pools are useful when the number of threads that are created need to
be limited. Using a pool not only controls how many threads are created, but it
can also eliminate the need to create and destroy threads repeatedly, an often
expensive operation.

The following figure depicts a thread pool. Requests are assigned to threads in the
pool. Some thread pools will create new threads if there are no unused threads
available. Others will restrict the number of threads available. This may result in
some requests being blocked.

Chapter 7

[181]

We will demonstrate thread pools using the ThreadPoolExecutor class. This class
also provides methods that deliver status information regarding thread execution.

While the ThreadPoolExecutor class possesses several constructors, the Executors
class provides an easy way of creating instances of the ThreadPoolExecutor
class. We will demonstrate two of these methods. First, we will use the
newCachedThreadPool method. The pool created by this method will reuse threads.
New threads will be created when needed. However, this can result in too many
threads being created. The second method, newFixedThreadPool, creates a fixed-
size pool of threads.

The ThreadPoolExecutor class characteristics
When an instance of this class is created, it will accept new tasks, which are passed
to the thread pool. However, the pool will not close down automatically. If idle, it
will wait until new tasks are submitted. To terminate the pool, either the shutdown
or shutdownNow method needs to be called. The latter method shuts down the pool
immediately and will not process pending tasks.

The ThreadPoolExecutor class has a number of methods that provides additional
information. For example, the getPoolSize method returns the current number
of threads in the pool. The getActiveCount method returns the number of active
threads. The getLargestPoolSize method returns the maximum number of threads
that were in the pool at one time. There are several other methods that are available.

Network Scalability

[182]

Simple thread pool server
The server that we will use to demonstrate a thread pool will return a price of a
part when given the name of a part. Each thread will access a ConcurrentHashMap
instance that holds the part information. We use the concurrent version of the hash
map as it may be accessed from multiple threads.

The ThreadPool class is declared next. The main method uses a WorkerThread class
to perform the actual work. In the main method, the newCachedThreadPool method
is called to create a thread pool:

public class ThreadPool {

 public static void main(String[] args) {
 System.out.println("Thread Pool Server Started");
 ThreadPoolExecutor executor = (ThreadPoolExecutor)
 Executors.newCachedThreadPool();
 ...
 executor.shutdown();
 System.out.println("Thread Pool Server Terminated");
 }
}

Next, a try block is used to catch and handle any exceptions that may occur. Within
the try block, a server socket is created and its accept method blocks until a client
connection is requested. When a connection is established, a WorkerThread instance
is created using the client socket, as shown in the following code:

 try {
 ServerSocket serverSocket = new ServerSocket(5000);
 while (true) {
 System.out.println(
 "Listening for a client connection");
 Socket socket = serverSocket.accept();
 System.out.println("Connected to a Client");
 WorkerThread task = new WorkerThread(socket);
 System.out.println("Task created: " + task);
 executor.execute(task);
 }
 } catch (IOException ex) {
 ex.printStackTrace();
 }

Chapter 7

[183]

Now, let's examine the WorkerThread class that is shown next. The
ConcurrentHashMap instance is declared where a string is used as the key and the
object that is stored is a float. The hash map is initialized in a static initializer block:

public class WorkerThread implements Runnable {
 private static final ConcurrentHashMap<String, Float> map;
 private final Socket clientSocket;

 static {
 map = new ConcurrentHashMap<>();
 map.put("Axle", 238.50f);
 map.put("Gear", 45.55f);
 map.put("Wheel", 86.30f);
 map.put("Rotor", 8.50f);
 }
 ...
}

The class's constructor assigns the client socket to the clientSocket instance
variable for later use, as shown here:

 public WorkerThread(Socket clientSocket) {
 this.clientSocket = clientSocket;
 }

The run method processes the request. An input stream is obtained from the client
socket and used to get the part name. This name is used as the argument of the hash
map's get method to obtain the corresponding price. This price is sent back to the
client, and a message is displayed showing the response:

 @Override
 public void run() {
 System.out.println("Worker Thread Started");
 try (BufferedReader bis = new BufferedReader(
 new InputStreamReader(
 clientSocket.getInputStream()));
 PrintStream out = new PrintStream(
 clientSocket.getOutputStream())) {

 String partName = bis.readLine();
 float price = map.get(partName);
 out.println(price);
 NumberFormat nf = NumberFormat.getCurrencyInstance();
 System.out.println("Request for " + partName
 + " and returned a price of "
 + nf.format(price));

Network Scalability

[184]

 clientSocket.close();
 System.out.println("Client Connection Terminated");
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 System.out.println("Worker Thread Terminated");
 }

We are now ready to discuss the client application.

Simple thread pool client
This application uses the Socket class to establish a connection to the server.
Input and output streams are used to send and receive responses. This approach
was discussed in Chapter 1, Getting Started with Network Programming. The client
application follows. A connection is established with the server and a request for a
part's price is sent to the server. The response is obtained and displayed.

public class SimpleClient {

 public static void main(String args[]) {
 System.out.println("Client Started");
 try (Socket socket = new Socket("127.0.0.1", 5000)) {
 System.out.println("Connected to a Server");
 PrintStream out =
 new PrintStream(socket.getOutputStream());
 InputStreamReader isr =
 new InputStreamReader(socket.getInputStream());
 BufferedReader br = new BufferedReader(isr);

 String partName = "Axle";
 out.println(partName);
 System.out.println(partName + " request sent");
 System.out.println("Response: " + br.readLine());
 socket.close();

 } catch (IOException ex) {
 ex.printStackTrace();
 }
 System.out.println("Client Terminated");
 }
}

We are now ready to see how they work together.

Chapter 7

[185]

The thread pool client/server in action
Start the server application first. You will see the following output:

Thread Pool Server Started

Listening for a client connection

Next, start the client. It will produce the following output where a request for an axle
price is sent, and then a response of 238.5 is received:

Client Started

Connected to a Server

Axle request sent

Response: 238.5

Client Terminated

On the server side, you will see output similar to the following one. The thread is
created, and the request and response data is displayed. The thread then terminates.
You will note that the name of the thread is preceded by the string "packt". This is
the name of the package for the application:

Connected to a Client

Task created: packt.WorkerThread@33909752

Listening for a client connection

Worker Thread Started

Request for Axle and returned a price of $238.50

Client Connection Terminated

Worker Thread Terminated

If you start a second client, the server will produce output similar to the following
one. You will note that a new thread is created for each request:

Thread Pool Server Started

Listening for a client connection

Connected to a Client

Task created: packt.WorkerThread@33909752

Network Scalability

[186]

Listening for a client connection

Worker Thread Started

Request for Axle and returned a price of $238.50

Client Connection Terminated

Worker Thread Terminated

Connected to a Client

Task created: packt.WorkerThread@3d4eac69

Listening for a client connection

Worker Thread Started

Request for Axle and returned a price of $238.50

Client Connection Terminated

Worker Thread Terminated

Thread pool with Callable
Using the Callable and Future interfaces provides another approach to support
multiple threads. The Callable interface supports threading where a thread needs to
return a result. The Runnable interface's run method does not return a value. For some
threads, this can be a problem. The Callable interface possesses a single method,
call, which returns a value and can be used instead of the Runnable interface.

The Future interface is used in combination with a Callable object. The idea is that
the call method is invoked and the current thread continues performing some other
task. When the Callable object is complete, then a get method is used to retrieve
the results. This method will block if necessary.

Using a Callable
We will use the Callable interface to supplement the WorkerThread class that we
created earlier. Instead of placing the part name hash map in the WorkerThread
class, we will move it to a class called WorkerCallable where we will override the
call method to return the price. This is actually extra work for this application, but
it illustrates one way of using the Callable interface. It demonstrates how we can
return a value from the Callable object.

Chapter 7

[187]

The WorkerCallable class, that is declared next, uses the same code to create and
initialize the hash map:

public class WorkerCallable implements Callable<Float> {

 private static final ConcurrentHashMap<String, Float> map;
 private String partName;

 static {
 map = new ConcurrentHashMap<>();
 map.put("Axle", 238.50f);
 map.put("Gear", 45.55f);
 map.put("Wheel", 86.30f);
 map.put("Rotor", 8.50f);
 }
 ...
}

The constructor will initialize the part name, as shown here:

 public WorkerCallable(String partName) {
 this.partName = partName;
 }

The call method is shown next. The map obtains the price, which we display and
then return:

 @Override
 public Float call() throws Exception {
 float price = map.get(this.partName);
 System.out.println("WorkerCallable returned " + price);
 return price;
 }

Next, modify the WorkerThread class by removing the following statement:

 float price = map.get(partName);

Replace it with the following code. A new WorkerCallable instance is created
using the part name that was requested by a client. The call method is immediately
invoked and will return the corresponding part's price:

 float price = 0.0f;
 try {
 price = new WorkerCallable(partName).call();
 } catch (Exception ex) {
 ex.printStackTrace();
 }

Network Scalability

[188]

The application will produce the same output as before, except that you will see
messages indicating that the WorkerCallable class's call method was executed.
While another thread is created, we will block until the call method returns.

This example does not fully demonstrate the power of this approach. The Future
interface will improve on this technique.

Using a Future
The Future interface represents the results of a completed call method. With this
interface, we can invoke a Callable object and not wait for it to return. Assume that
the process of computing a part price is more involved than just looking it up in a
table. It is conceivable that multiple steps may be required to calculate a price, each
of which may be involved and may take a bit of time to complete. Also assume that
these separate steps can be performed concurrently.

Replace the previous example with the following code. We create a new
ThreadPoolExecutor instance to which we will assign two Callable objects
representing a two-step price determination process. This is done using the submit
method, which returns a Future instance. The implementation of the call methods
returns 1.0 and 2.0 respectively to keep the example simple:

 float price = 0.0f;
 ThreadPoolExecutor executor = (ThreadPoolExecutor)
 Executors.newCachedThreadPool();
 Future<Float> future1 =
 executor.submit(new Callable<Float>() {
 @Override
 public Float call() {
 // Compute first part
 return 1.0f;
 }
 });
 Future<Float> future2 =
 executor.submit(new Callable<Float>() {
 @Override
 public Float call() {
 // Compute second part
 return 2.0f;
 }
 });

Chapter 7

[189]

Next, add the following try block, which uses the get method to obtain the two parts
of the price. These are used to determine the price for the part. If the corresponding
Callable object has not completed, then the get method will block:

 try {
 Float firstPart = future1.get();
 Float secondPart = future2.get();
 price = firstPart + secondPart;
 } catch (InterruptedException|ExecutionException ex) {
 ex.printStackTrace();
 }

When this code is executed, you will get a price of 3.0 for the parts. The combination
of the Callable and Future interfaces provides an easy to use this technique to
handle threads that return a value.

Using the HttpServer executor
We introduced the HTTPServer class in Chapter 4, Client/Server Development. When
the HTTP Server receives a request, by default, it uses the thread that was created
when the start method is called. However, it is possible to use a different thread.
The setExecutor method specifies how these requests are assigned to threads.

The argument of this method is an Executor object. We can use any of several
implementations for this argument. In the following sequence, a cached thread
pool is used:

 server.setExecutor(Executors.newCachedThreadPool());

To control the number of threads that are used by the server, we can use a fixed
thread pool of size 5, as shown here:

 server.setExecutor(Executors.newFixedThreadPool(5));

This method must be called before the start method of HTTPServer is called. All
requests are then submitted to the executor. The following is duplicated from the
HTTPServer class that was developed in Chapter 4, Client/Server Development, and
shows you the use of the setExecutor method:

public class MyHTTPServer {

 public static void main(String[] args) throws Exception {
 System.out.println("MyHTTPServer Started");
 HttpServer server = HttpServer.create(
 new InetSocketAddress(80), 0);
 server.createContext("/index", new OtherHandler());

Network Scalability

[190]

 server.setExecutor(Executors.newCachedThreadPool());
 server.start();
 }
 ...
}

The server will execute the same way as it did before, but it will use a cached thread
pool instead.

Using a selector
A selector is used in an NIO application and allows one thread to handle multiple
channels. The selector coordinates multiple channels and their events. It identifies
those channels that are ready for processing. If we were to use a thread per channel,
then we will find ourselves switching between threads frequently. This switching
process can be expensive. Using a single thread to handle multiple channels avoids
some of this overhead.

The following figure depicts this architecture. A thread is registered with a selector.
The selector will identify the channels and events that are ready for processing.

A selector is supported by two primary classes:

• Selector: This provides the primary functionality
• SelectionKey: This identifies the types of events that are ready for processing

To use a selector, perform the following actions:

• Create a selector
• Register channels with the selector
• Select a channel for use when it becomes available

Let's examine each of these steps in more detail.

Chapter 7

[191]

Creating the selector
There are no public Selector constructors. To create a Selector object, use the
static open method, as shown here:

 Selector selector = Selector.open();

There is also an isOpen method to determine if a selector is open and a close
method to close it when it is no longer needed.

Registering a channel
The register method registers a channel with a selector. Any channel that
is registered with a selector must be in a nonblocking mode. For example,
a FileChannel object cannot be registered because it cannot be placed in a
nonblocking mode. Use the configureBlocking method with false as its argument
to place the channel in a nonblocking mode, as shown here:

 socketChannel.configureBlocking(false);

The register method is as follows. This is a method of the ServerSocketChannel
and SocketChannel classes. In the following example, it is used with a
SocketChannel instance:

 socketChannel.register(selector, SelectionKey.OP_WRITE, null);

The Channel class's register method possesses three arguments:

• The selector to register
• The event type of interest
• Data to be associated with the channel

The event type specifies the type of channel events that an application is interested in
handling. For example, we may only want to be informed of an event if the channel
has data that is ready to be read.

There are four event types that are available, as listed in the following table:

Type Event type constants Meaning
Connect SelectionKey.OP_CONNECT This indicates that the channel has

successfully connected to a server
Accept SelectionKey.OP_ACCEPT This indicates that a server socket channel

is ready to accept connection requests from
a client

Network Scalability

[192]

Type Event type constants Meaning
Read SelectionKey.OP_READ This indicates that the channel has data

ready to be read
Write SelectionKey.OP_WRITE This indicates that the channel is ready for

write operations

These types are referred to as interest sets. In the following statement, the channel is
associated with the read interest type. The method returns a SelectionKey instance,
which contains a number of useful properties:

 SelectionKey key = channel.register(selector,
 SelectionKey.OP_READ);

If there are multiple events of interest, then we can create a combination of these
using the OR operator as shown here:

 int interestSet = SelectionKey.OP_READ |
 SelectionKey.OP_WRITE;
 SelectionKey key = channel.register(selector, interestSet);

The SelectionKey class possesses several properties that will help in working with
channels. These include the following:

• Interest set: This contains the events of interest.
• Ready set: This is the set of operations that the channel is ready to handle.
• Channel: The channel method returns the channel that is associated with a

selection key.
• Selector: The selector method returns the selector that is associated with

the selection key.
• Attached objects: Further information can be attached using the attach

method. The attachment method is used later to access this object.

The interestOps method returns an integer representing the events of interest,
as shown next:

 int interestSet = selectionKey.interestOps();

We will use this to process the events.

To determine which events are ready, we can use any of the following methods:

• readOps: This returns an integer containing the ready events
• isAcceptable: This indicates that the accept event is ready
• isConnectable: This indicates that the connection event is ready

Chapter 7

[193]

• isReadable: This indicates that the read event is ready
• isWritable: This indicates that the write event is ready

Now, let's see these methods in action.

Using the selector to support a time
client/server
We will develop a time server to illustrate the use of the Selector class and related
classes. This server and the time client are adapted from the time server and client
applications that were in Chapter 3, NIO Support for Networking. The focus here will
be on the use of the selector. The channel and buffer operations will not be discussed
here as they were covered earlier.

The channel time server
The time server will accept connections to client applications and send the current
date and time to the clients every second. A client may not receive all of these
messages as we will discover when we discuss the client.

The time server uses an internal static class, SelectorHandler, to handle the selector
and send messages. This class implements the Runnable interface and will be the
selector's thread.

In the main method, the server socket accepts new channel connections and
registers them with the selector. The Selector object is declared as a static instance
variable, as shown next. This allows it to be accessed from the SelectorHandler
thread and the main application thread. Sharing this object will result in potential
synchronization problems, which we will address:

public class ServerSocketChannelTimeServer {
 private static Selector selector;

 static class SelectorHandler implements Runnable {
 ...
 }

 public static void main(String[] args) {
 ...
 }
}

Network Scalability

[194]

Let's start with the main method. A server socket channel is created that uses port
5000. Exceptions are caught in a try block, as shown here:

 public static void main(String[] args) {
 System.out.println("Time Server started");
 try {
 ServerSocketChannel serverSocketChannel =
 ServerSocketChannel.open();
 serverSocketChannel.socket().bind(
 new InetSocketAddress(5000));
 ...
 }
 } catch (ClosedChannelException ex) {
 ex.printStackTrace();
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 }

The selector is created, and a thread for the SelectorHandler instance is started:

 selector = Selector.open();
 new Thread(new SelectorHandler()).start();

An infinite loop will accept new connections. A message is displayed indicating that
a connection has been made:

 while (true) {
 SocketChannel socketChannel
 = serverSocketChannel.accept();
 System.out.println("Socket channel accepted - "
 + socketChannel);
 ...
 }

With a good channel, the configureBlocking method is called, the selector is
woken up, and the channel is registered with the selector. A thread may be blocked
by the select method. Using the wakeup method will cause the select method to
immediately return, which allows the register method to unblock:

 if (socketChannel != null) {
 socketChannel.configureBlocking(false);
 selector.wakeup();
 socketChannel.register(selector,
 SelectionKey.OP_WRITE, null);
 }

Chapter 7

[195]

Once a channel has been registered with a selector, we can start processing events
that are associated with that channel.

The SelectorHandler class will use the selector object to identify events as they
occur and associate them with specific channels. Its run method does all of the work.
As shown next, an infinite loop uses the select method to identify events as they
occur. The select method uses an argument of 500, which specifies a timeout of 500
milliseconds. It returns an integer specifying how many keys are ready to be processed:

 static class SelectorHandler implements Runnable {

 @Override
 public void run() {
 while (true) {
 try {
 System.out.println("About to select ...");
 int readyChannels = selector.select(500);
 ...
 } catch (IOException | InterruptedException ex) {
 ex.printStackTrace();
 }
 }
 }
 }

If the select method times out, it will return a value of 0. When this happens, we
display a message to that effect, as shown here:

 if (readyChannels == 0) {
 System.out.println("No tasks available");
 } else {
 ...
 }

If there are keys ready, then the selectedKeys method will return this set. An
iterator is then used to process each key one at a time:

 Set<SelectionKey> keys = selector.selectedKeys();
 Iterator<SelectionKey> keyIterator = keys.iterator();
 while (keyIterator.hasNext()) {
 ...
 }

Network Scalability

[196]

Each SelectionKey instance is checked to see which event type has occurred. In the
following implementation, only the writeable events are processed. After processing,
the thread sleeps for one second. This will have the effect of delaying the sending
of a date and time message by at least one second. The remove method is needed to
remove an event for the iterator list:

 SelectionKey key = keyIterator.next();
 if (key.isAcceptable()) {
 // Connection accepted
 } else if (key.isConnectable()) {
 // Connection established
 } else if (key.isReadable()) {
 // Channel ready to read
 } else if (key.isWritable()) {
 ...
 }
 Thread.sleep(1000);
 keyIterator.remove();

If it is a writeable event, then the date and time is sent, as shown next. The channel
method returns the channel for the event, and the message is sent to that client. A
message is displayed showing that the message has been sent:

 String message = "Date: "
 + new Date(System.currentTimeMillis());

 ByteBuffer buffer = ByteBuffer.allocate(64);
 buffer.put(message.getBytes());
 buffer.flip();
 SocketChannel socketChannel = null;
 while (buffer.hasRemaining()) {
 socketChannel = (SocketChannel) key.channel();
 socketChannel.write(buffer);
 }
 System.out.println("Sent: " + message + " to: "
 + socketChannel);

With the server ready, we will develop our client application.

Chapter 7

[197]

The date and time client application
The client application is almost identical to the one that was developed in Chapter 3,
NIO Support for Networking. The main difference is that it will request the data and
time at random intervals. This effect will be seen when we use multiple clients with
our server. The application's implementation is as follows:

public class SocketChannelTimeClient {

 public static void main(String[] args) {
 Random random = new Random();
 SocketAddress address =
 new InetSocketAddress("127.0.0.1", 5000);
 try (SocketChannel socketChannel =
 SocketChannel.open(address)) {
 while (true) {
 ByteBuffer byteBuffer = ByteBuffer.allocate(64);
 int bytesRead = socketChannel.read(byteBuffer);
 while (bytesRead > 0) {
 byteBuffer.flip();
 while (byteBuffer.hasRemaining()) {
 System.out.print((char) byteBuffer.get());
 }
 System.out.println();
 bytesRead = socketChannel.read(byteBuffer);
 }
 Thread.sleep(random.nextInt(1000) + 1000);
 }
 } catch (ClosedChannelException ex) {
 // Handle exceptions
 }catch (IOException | InterruptedException ex) {
 // Handle exceptions
 }
 }
}

We are now ready to see how the server and client work together.

The date and time server/client in action
First, start the server. It will produce the following output:

Time Server started

About to select ...

No tasks available

Network Scalability

[198]

About to select ...

No tasks available

About to select ...

No tasks available

...

This sequence will repeat itself until a client connects to the server.

Next, start up the client. On the client side, you will get output similar to the
following one:

Date: Wed Oct 07 17:55:43 CDT 2015

Date: Wed Oct 07 17:55:45 CDT 2015

Date: Wed Oct 07 17:55:47 CDT 2015

Date: Wed Oct 07 17:55:49 CDT 2015

On the server side, you will see output reflecting the connection and then the requests,
as shown next. You will note that the port number, 58907, identifies this client:

...

Sent: Date: Wed Oct 07 17:55:43 CDT 2015 to: java.nio.channels.
SocketChannel[connected local=/127.0.0.1:5000 remote=/127.0.0.1:58907]

...

Sent: Date: Wed Oct 07 17:55:45 CDT 2015 to: java.nio.channels.
SocketChannel[connected local=/127.0.0.1:5000 remote=/127.0.0.1:58907]

Start up a second client. You will see a similar connection message but with a
different port number. One possible connection message that follows is showing a
client with port number 58908:

Socket channel accepted - java.nio.channels.SocketChannel[connected
local=/127.0.0.1:5000 remote=/127.0.0.1:58908]

You will then see date and time messages being sent to both clients.

Chapter 7

[199]

Handling network timeouts
When an application is deployed in the real world, new network problems can occur
that were not present when this application was developed on a LAN. Problems, such
as network congestion, slow connections, and the loss of a network link can result in
delays or loss of messages. It is important to detect and handle network timeouts.

There are several socket options which provide some control over socket
communications. The SO_TIMEOUT option is used to set a timeout for read operations.
If the specified amount of time elapses, then a SocketTimeoutException exception
is thrown.

In the following statement, the socket will expire after three seconds have elapsed:

 Socket socket = new ...
 socket.setSoTimeout(3000);

The option must be set before a blocking read operation occurs. A timeout of zero
will never time out. Handling timeouts is an important design consideration.

Summary
In this chapter, we examined several approaches to address the scalability of
applications. Scalability refers to the ability of an application to compensate for
increased loads placed on it. While our examples focused on applying these
techniques to servers, they are equally applicable to clients.

We introduced three threading architectures, and we focused on two of them:
thread-per-request and thread-per-connection. The thread-per-request model creates
a new thread for each request that arrives at a server. This is suitable for situations
where a client will make a single or possibly a few requests at a time.

The thread-per-connection model will create a thread to handle multiple requests
from a client. This avoids having to reconnect to the client multiple times and having
to incur the cost of multiple thread creations. This approach is good for clients who
need to maintain a session and possibly state information.

Thread pools support an approach that avoids creating and destroying threads. A
collection of threads is managed by a thread pool. Threads that are not being used
can be repurposed for a different request. The size of thread pools can be controlled
and, thus limited depending on the requirements of the application and the
environment. The Executor class was used to create and manage thread pools.

Network Scalability

[200]

The NIO's Selector class was illustrated. This class makes it easier to work with
threads and NIO channels. Channels and channel-related events are registered with
a selector. When an event, such as a channel becoming available for a read operation,
occurs, the selector provides access to the channel and the event. This allows a single
thread to manage several channels.

We briefly re-examined the HttpServer class that was introduced in Chapter 4,
Client/Server Development. We demonstrated how easy it is to add a thread pool to
improve the server's performance. We also examined the nature of network timeouts
and how to handle them. These can occur when the network fails to support timely
communication between applications.

In the next chapter, we will explore network security threats and how we can
address them.

[201]

Network Security
In this chapter, we will explore the support that Java provides to secure
communications between applications. We will examine several topics,
including the following:

• The basic encryption process
• Using a keystore to store keys and certificates
• Adding encryption to a simple server/client
• Secure client/server communications using TLS\SSL
• Secure hashing

Security
There are many security related terms whose meaning and purpose can be daunting
when they are first encountered. Most of these terms are applicable to network
applications. We will start with a brief overview of many of these terms. In later
sections of this chapter, we will go into more details about the ones that are relevant
to our discussion.

Central to most security related issues is encryption. This is the process of converting
information that needs to be protected to an encrypted form using a key or a set
of keys. The receiver of the encrypted information can use a key or set of keys to
decrypt the information and revert it to its original form. This technique will prevent
unauthorized access to the information.

We will demonstrate the use of both symmetric and asymmetric encryption
techniques. Symmetric encryption uses a single key to encrypt and decrypt
messages. Asymmetric encryption uses a pair of keys. These keys are frequently
stored in a file called a keystore, which we will demonstrate.

Network Security

[202]

Symmetric encryption is usually faster but requires the sender and receiver of the
encrypted data to share their keys in a safe and secure manner. For parties that are
remotely dispersed, this can be a problem. Asymmetric encryption is slower, but
it uses a public and private key pair that, as we will see, simplifies the sharing of
keys. Asymmetric encryption is an enabling technology for digital certificates that
provides a means of verifying the authenticity of documents.

Secure commerce is common and is essential for online transactions that take place
globally every day. The Transport Layer Security (TLS) and Secure Sockets Layer
(SSL) are protocols that allow secure and reliable communication across the Internet.
It is the basis for Hyper Text Transfer Protocol Secure (HTTPS) that is used to
conduct most transactions on the Internet. This protocol supports the following:

• Server and client authentication
• Data encryption
• Data integrity

Secure hashing is a technique that is used to create certificates. A certificate is used
to verify the authenticity of data, and it uses a hash value. Java provides support for
this process, which we will demonstrate.

Let's start with a brief introduction of common network security terms to provide a
high-level perspective of the chapter. Specific terms are explored in more detail in
subsequent sections.

Secure communication terminology
There are several terms that are used when working with secure communications.
These include the following:

• Authentication: This is the process of verifying a user or system
• Authorization: This is the process of allowing access to protected resources
• Encryption: This is the process of encoding and subsequently decoding

information to protect it from unauthorized individuals
• Hashing algorithms: These provide a way of producing a unique value

for a document, and they are used in support of other security techniques
• Digital signatures: These provide a way of digitally authenticating

a document
• Certificates: These are normally used as a chain, and they support the

confirmation of the identity of principals and other actors

Chapter 8

[203]

Authentication and authorization are related. Authentication is the process of
determining whether a person or system is who they claim to be. This is commonly
achieved using an ID and a password. However, there are other authentication
techniques, such as smart cards, and biometric signatures, such as fingerprint,
or iris scans.

Authorization is the process of determining what resources an individual or system
has access to. It is one thing to verify that an individual is who they say they are. It is
another thing to ensure that the user can only access authorized resources.

Encryption has evolved and will continue to improve. Java supports symmetric and
asymmetric encryption techniques. The process starts with the generation of keys,
which are normally stored in a keystore. Applications that need to encrypt or decrypt
data will access a keystore to retrieve the appropriate keys. The keystore itself needs
to be protected so that it cannot be tampered with or otherwise compromised.

Hashing is the process of taking data and returning a number that represents the
data. A hash algorithm performs this operation, and it must be fast. However, it is
extremely difficult, if not impossible, to derive the original data when given only the
hash value. This is called a one-way hash function.

The advantage of this technique is that the data can be sent along with the hash value
to a receiver. The data is not encrypted, but the hash value is encrypted using a set of
asymmetric keys. The receiver can then use the original hash algorithm to compute
a hash value for the received data. If this new hash value matches the hash value
that was sent, then the receiver can be assured that the data has not been modified
or corrupted in the transmission. This provides a more reliable means of transferring
data that does not need to be encrypted, but where some assurance that it has not
been modified can be given.

A certificate is part of the previous process and it uses a hash function and
asymmetric keys. A certificate chain provides a means of verifying that a certificate
is valid, assuming that the root of the chain can be trusted.

Encryption basics
In this section, we will examine how Java supports symmetric and asymmetric
encryption. As we will see, there are various encryption algorithms that are available
for both of these techniques.

Network Security

[204]

Symmetric encryption techniques
Symmetric encryption uses a single key to encrypt and decrypt a message. This
type of encryption is classified as either stream ciphers or block ciphers. More
details about these algorithms can be found at https://en.wikipedia.org/
wiki/Symmetric-key_algorithm. A provider provides an implementation of an
encryption algorithm, and we often choose between them.

Symmetric algorithms that are supported by Java include the following ones where
the key size in bits is enclosed in parentheses:

• AES (128)
• DES (56)
• DESede (168)
• HmacSHA1
• HmacSHA256

Varying lengths of data may be encrypted. Block cipher algorithms are used to
handle large blocks of data. There are several block cipher modes of operations,
as listed next. We will not detail how these modes work here, but additional
information can be found at https://en.wikipedia.org/wiki/Block_cipher_
mode_of_operation:

• ECB
• CBC
• CFB
• OFB
• PCBC

Before we can encrypt or decrypt data, we need a key.

Generating a key
A common way of generating a key is using the KeyGenerator class. There are no
public constructors for the class but an overloaded getInstance method will return
a KeyGenerator instance. The following example uses the AES algorithm with the
default provider. Other versions of this method allow selection of the provider:

 KeyGenerator keyGenerator = KeyGenerator.getInstance("AES");

https://en.wikipedia.org/wiki/Symmetric-key_algorithm
https://en.wikipedia.org/wiki/Symmetric-key_algorithm
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

Chapter 8

[205]

The generateKey method returns an instance of an object that implements the
SecretKey interface that is shown next. This is the key that is used to support
symmetric encryption and decryption:

 SecretKey secretKey = keyGenerator.generateKey();

With a key, we can now encrypt data.

Encrypting text using a symmetric key
We will use the following encrypt method in later sections. This method is passed
the text to encrypt and a secret key. The term plain text is frequently used to refer to
the unencrypted data.

The Cipher class provides the framework for the encryption process. The
getInstance method returns an instance of the class where the AES algorithm is
used. The Cipher instance is initialized for encryption using Cipher.ENCRYPT_MODE
as the first argument, and the secret key as the second argument. The doFinal
method encrypts the plain text byte array and returns an encrypted byte array. The
Base64 class's getEncoder returns an encoder that encodes the encrypted bytes:

 public static String encrypt(
 String plainText, SecretKey secretKey) {
 try {
 Cipher cipher = Cipher.getInstance("AES");
 byte[] plainTextBytes = plainText.getBytes();
 cipher.init(Cipher.ENCRYPT_MODE, secretKey);
 byte[] encryptedBytes =
 cipher.doFinal(plainTextBytes);
 Base64.Encoder encoder = Base64.getEncoder();
 String encryptedText =
 encoder.encodeToString(encryptedBytes);
 return encryptedText;
 } catch (NoSuchAlgorithmException|NoSuchPaddingException |
 InvalidKeyException | IllegalBlockSizeException |
 BadPaddingException ex) {
 // Handle exceptions
 }
 return null;
 }

Encoding an encrypted byte array is used to convert it to a string so that we can
use it later. Encoding strings can be a useful security technique, as explained in
http://javarevisited.blogspot.sg/2012/03/why-character-array-is-
better-than.html.

http://javarevisited.blogspot.sg/2012/03/why-character-array-is-better-than.html
http://javarevisited.blogspot.sg/2012/03/why-character-array-is-better-than.html

Network Security

[206]

Decrypting text
The process of decrypting text is illustrated in the decrypt method that is shown
next. It uses a reverse process where the encrypted bytes are decoded and the Cipher
class's init method is initialized to decrypt the bytes using a secret key:

 public static String decrypt(String encryptedText,
 SecretKey secretKey) {
 try {
 Cipher cipher = Cipher.getInstance("AES");
 Base64.Decoder decoder = Base64.getDecoder();
 byte[] encryptedBytes = decoder.decode(encryptedText);
 cipher.init(Cipher.DECRYPT_MODE, secretKey);
 byte[] decryptedBytes =
 cipher.doFinal(encryptedBytes);
 String decryptedText = new String(decryptedBytes);
 return decryptedText;
 } catch (NoSuchAlgorithmException|NoSuchPaddingException |
 InvalidKeyException | IllegalBlockSizeException |
 BadPaddingException ex) {
 // Handle exceptions
 }
 return null;
 }

We will use these methods in the echo client/server applications illustrated in the
Symmetric encryption client/server section.

Asymmetric encryption techniques
Asymmetric encryption uses a public and private key. The private key is held by one
entity. The public key is made available to everyone. Data can be encrypted using
either key:

• If the data is encrypted using the private key, then it can be decrypted using
the public key

• If the data is encrypted using the public key, then it can be decrypted using
the private key

If the owner of the private key sends out a message that is encrypted with the
private key, then recipients of this message can decrypt it with the public key. They
can all read the message, but they know that only the private key owner could have
sent this message.

Chapter 8

[207]

If someone else encrypts a message with the public key, then only the private key
owner can read that message. However, the owner cannot be sure who actually sent
the message. It could be an impostor.

However, if both the parties have their own set of public/private keys, we can
guarantee that only the sender and the recipient can see its content. We can also
guarantee that the sender is who they say they are.

Let's assume that Sue wants to send a message to Bob. Sue will encrypt the message,
M, using her private key. Let's call this message M1. She will then encrypt M1 using
Bob's public key giving us M2. The message, M2, is then sent to Bob. Now, only Bob
can decrypt this message using his private key. This will return M1. Bob can now use
Sue's public key to decrypt M1 to get the original message, M. He knows that this is
from Sue because only Sue's public key will work.

This process to send messages requires that both participants possess their own
public/private keys. In addition to this, it is not as efficient as using a symmetric
key. Another approach is to use asymmetric keys to transfer a secret key to the
participants. The secret key can then be used for the actual message transfer. This is
the technique that is used with SSL.

There are several asymmetric algorithms. Java supports the following encryption
algorithms:

• RSA
• Diffie-Hellman
• DSA

We will demonstrate asymmetric encryption/decryption using a utility class called
AsymmetricKeyUtility that is declared next. This class encapsulates methods to create,
save, load, and retrieve public and private keys. We will explain how these methods
work here and use them later with the asymmetric echo client/server application:

public class AsymmetricKeyUtility {

 public static void savePrivateKey(PrivateKey privateKey) {
 ...
 }

 public static PrivateKey getPrivateKey() {
 ...
 }

 public static void savePublicKey(PublicKey publicKey) {
 ...

Network Security

[208]

 }

 public static PublicKey getPublicKey() {
 ...
 }

 public static byte[] encrypt(PublicKey publicKey,
 String message) {
 ...
 }

 public static String decrypt(PrivateKey privateKey,
 byte[] encodedData) {
 ...
 }

 public static void main(String[] args) {
 ...
 }
}

Generating and saving asymmetric keys
The main method will create the keys, save them, and then test them to see whether
they work correctly. The KeyPairGenerator method will generate the keys. To use
asymmetric encryption, we get an instance of the class using the RSA algorithm. The
initialize method specifies that the key uses 1,024 bits. The generateKeyPair
method generates the keys, and the getPrivate and getPublic methods return the
private and public keys, respectively:

 public static void main(String[] args) {
 try {
 KeyPairGenerator keyPairGenerator =
 KeyPairGenerator.getInstance("RSA");
 keyPairGenerator.initialize(1024);
 KeyPair keyPair = keyPairGenerator.generateKeyPair();
 PrivateKey privateKey = keyPair.getPrivate();
 PublicKey publicKey = keyPair.getPublic();
 ...
 } catch (NoSuchAlgorithmException ex) {
 // Handle exceptions
 }

Chapter 8

[209]

We will use a set of methods to save and retrieve these keys to separate files. This
approach is not the most secure, but it will simplify the use of the echo client/server.
The next statements invoke the save methods:

 savePrivateKey(privateKey);
 savePublicKey(publicKey);

The methods that are used to retrieve the keys are invoked here:

 privateKey = getPrivateKey();
 publicKey = getPublicKey();

The next code sequence tests the encryption/decryption process. A message is
created and passed to the encrypt method using the public key. The decrypt
method is invoked to decrypt the message. The encodedData variable references
the encrypted data:

 String message = "The message";
 System.out.println("Message: " + message);
 byte[] encodedData = encrypt(publicKey,message);
 System.out.println("Decrypted Message: " +
 decrypt(privateKey,encodedData));

The output of this example is as follows:

Message: The message

Decrypted Message: The message

Instead, we can use the private key for encryption and the public key for decryption
to achieve the same results.

Encrypting/decrypting text using an asymmetric
key
Now, let's examine the specifics of the encrypt and decrypt methods. The encrypt
method uses getInstance to get an instance of the RSA algorithm. The init method
specifies that the Cipher object will encrypt a message using a public key. The
doFinal method performs the actual encryption and returns a byte array containing
the encrypted message:

 public static byte[] encrypt(PublicKey publicKey,
 String message) {
 byte[] encodedData = null;
 try {
 Cipher cipher = Cipher.getInstance("RSA ");
 cipher.init(Cipher.ENCRYPT_MODE, publicKey);

Network Security

[210]

 byte[] encryptedBytes =
 cipher.doFinal(message.getBytes());
 encodedData = Base64.getEncoder().withoutPadding()
 .encode(encryptedBytes);
 } catch (NoSuchAlgorithmException|NoSuchPaddingException |
 InvalidKeyException | IllegalBlockSizeException |
 BadPaddingException ex) {
 // Handle exceptions
 }
 return encodedData;
 }

The decrypt method is described next. It specifies that the Cipher instance will
decrypt a message using the private key. The encrypted message that is passed to it
must be decoded before the doFinal method can decrypt it. The decrypted string is
then returned:

 public static String decrypt(PrivateKey privateKey,
 byte[] encodedData) {
 String message = null;
 try {
 Cipher cipher = Cipher.getInstance("RSA ");
 cipher.init(Cipher.DECRYPT_MODE, privateKey);
 byte[] decodedData =
 Base64.getDecoder().decode(encodedData);
 byte[] decryptedBytes = cipher.doFinal(decodedData);
 message = new String(decryptedBytes);
 } catch (NoSuchAlgorithmException|NoSuchPaddingException |
 InvalidKeyException | IllegalBlockSizeException |
 BadPaddingException ex) {
 // Handle exceptions
 }
 return message;
 }

Both of these methods catch a number of exceptions that can occur in the
encryption/decryption process. We will not address these exceptions here.

Saving asymmetric keys to a file
The next two methods illustrate one technique to save and retrieve a private key. The
PKCS8EncodedKeySpec class supports the encoding of a private key. The encoded
key is saved to the private.key file:

 public static void savePrivateKey(PrivateKey privateKey) {
 try {
 PKCS8EncodedKeySpec pkcs8EncodedKeySpec =

Chapter 8

[211]

 new PKCS8EncodedKeySpec(privateKey.getEncoded());
 FileOutputStream fos =
 new FileOutputStream("private.key");
 fos.write(pkcs8EncodedKeySpec.getEncoded());
 fos.close();
 } catch (FileNotFoundException ex) {
 // Handle exceptions
 } catch (IOException ex) {
 // Handle exceptions
 }
 }

The getPrivateKey method, that is described next, returns a private key from the
file. The KeyFactory class's generatePrivate method creates the key based on the
PKCS8EncodedKeySpec specification:

 public static PrivateKey getPrivateKey() {
 try {
 File privateKeyFile = new File("private.key");
 FileInputStream fis =
 new FileInputStream("private.key");
 byte[] encodedPrivateKey =
 new byte[(int) privateKeyFile.length()];
 fis.read(encodedPrivateKey);
 fis.close();
 PKCS8EncodedKeySpec privateKeySpec =
 new PKCS8EncodedKeySpec(encodedPrivateKey);
 KeyFactory keyFactory = KeyFactory.getInstance("RSA");
 PrivateKey privateKey =
 keyFactory.generatePrivate(privateKeySpec);
 return privateKey;
 } catch (FileNotFoundException ex) {
 // Handle exceptions
 } catch (IOException | NoSuchAlgorithmException |
 InvalidKeySpecException ex) {
 // Handle exceptions
 }
 return null;
 }

Network Security

[212]

The public key's save and get methods are described next. They differ in the file
that they use, and the use of the X509EncodedKeySpec class. This class represents
public keys:

 public static void savePublicKey(PublicKey publicKey) {
 try {
 X509EncodedKeySpec x509EncodedKeySpec =
 new X509EncodedKeySpec(publicKey.getEncoded());
 FileOutputStream fos =
 new FileOutputStream("public.key");
 fos.write(x509EncodedKeySpec.getEncoded());
 fos.close();
 } catch (FileNotFoundException ex) {
 // Handle exceptions
 } catch (IOException ex) {
 // Handle exceptions
 }
 }

 public static PublicKey getPublicKey() {
 try {
 File publicKeyFile = new File("public.key");
 FileInputStream fis =
 new FileInputStream("public.key");
 byte[] encodedPublicKey =
 new byte[(int) publicKeyFile.length()];
 fis.read(encodedPublicKey);
 fis.close();
 X509EncodedKeySpec publicKeySpec =
 new X509EncodedKeySpec(encodedPublicKey);
 KeyFactory keyFactory = KeyFactory.getInstance("RSA");
 PublicKey publicKey =
 keyFactory.generatePublic(publicKeySpec);
 return publicKey;
 } catch (FileNotFoundException ex) {
 // Handle exceptions
 } catch (IOException | NoSuchAlgorithmException |
 InvalidKeySpecException ex) {
 // Handle exceptions
 }
 return null;
 }

The standard cryptographic algorithm names are found at https://docs.oracle.
com/javase/8/docs/technotes/guides/security/StandardNames.html. A
performance comparison of symmetric algorithms is available at http://www.
javamex.com/tutorials/cryptography/ciphers.shtml.

https://docs.oracle.com/javase/8/docs/technotes/guides/security/StandardNames.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/StandardNames.html
http://www.javamex.com/tutorials/cryptography/ciphers.shtml
http://www.javamex.com/tutorials/cryptography/ciphers.shtml

Chapter 8

[213]

Creating a keystore
A keystore stores cryptographic keys and certificates and is frequently used in
conjunction with servers and clients. A keystore is usually a file, but it can be a
hardware device. Java supports the following types of keystore entries:

• PrivateKey: This is used in asymmetric cryptography
• Certificate: This contains a public key
• SecretKey: This is used in symmetric cryptography

There are five different types of keystores that are supported by Java 8: JKS, JCEKS,
PKCS12, PKCS11, and DKS:

• JKS: This is the Java KeyStore (JKS) that usually has an extension of jks.
• JCEKS: This is the Java Cryptography Extension KeyStore (JCE). It can store

all three keystore entity types, provides stronger protection for keys, and
uses a jceks extension.

• PKCS12: In contrast to JKS and JCEKS, this keystore can be used with other
languages. It can store all three keystore entity types, and it uses an extension
of p12 or pfx.

• PKCS11: This is a hardware keystore type.
• DKS: This is the Domain KeyStore (DKS) that holds a collection of

other keystores.

The default keystore type in Java is JKS. Keystores can be created and maintained
using the keytool command line tool or with Java code. We will demonstrate
keytool first.

Creating and maintaining a keystore with
keytool
The keytool is a command line program that is used to create keystores. The full
documentation of its use is found at https://docs.oracle.com/javase/8/docs/
technotes/tools/unix/keytool.html. There are several GUI tools that are used
to maintain keystores that are easier to use than keytool. One of these is IKEYMAN
found at http://www-01.ibm.com/software/webservers/httpservers/doc/
v1312/ibm/9atikeyu.htm.

https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html
http://www-01.ibm.com/software/webservers/httpservers/doc/v1312/ibm/9atikeyu.htm
http://www-01.ibm.com/software/webservers/httpservers/doc/v1312/ibm/9atikeyu.htm

Network Security

[214]

To use the keytool with Windows at the command prompt, you will need to
configure the PATH environmental variable to locate its containing directory.
Use a command similar to the following:

 C:\Some Directory>set path=C:\Program Files\Java\jdk1.8.0_25\
 bin;%path%

Let's use the keytool to create a keystore. At the command prompt, enter the
following command. This will start the process of creating a keystore in a file named
keystore.jks. The alias is another name that you can use to reference the keystore:

 C:\Some Directory>keytool -genkey -alias mykeystore -keystore
 keystore.jks

You will then be prompted for several pieces of information as follows. Respond to
the prompts as appropriate. The passwords that you enter will not be displayed. For
the examples in this chapter, we used a password of password:

Enter keystore password:

Re-enter new password:

What is your first and last name?

 [Unknown]: some name

What is the name of your organizational unit?

 [Unknown]: development

What is the name of your organization?

 [Unknown]: mycom.com

What is the name of your City or Locality?

 [Unknown]: some city

What is the name of your State or Province?

 [Unknown]: some state

What is the two-letter country code for this unit?

 [Unknown]: jv

You will then be prompted to confirm the input as follows. Respond with yes if the
values are correct:

Is CN=some name, OU=development, O=mycom.com, L=some city, ST=some state,
C=jv correct?

 [no]: yes

You can assign a separate password for the key, as shown next:

Enter key password for <mykeystore>

 (RETURN if same as keystore password):

Chapter 8

[215]

The keystore is then created. The contents of a keystore can be displayed using
the –list argument, as shown next. The –v option produces verbose output:

keytool -list -v -keystore keystore.jks -alias mykeystore

This will display the following output. The keystore password needs to be entered
along with the alias name:

Enter keystore password:

Alias name: mykeystore

Creation date: Oct 22, 2015

Entry type: PrivateKeyEntry

Certificate chain length: 1

Certificate[1]:

Owner: CN=some name, OU=development, O=mycom.com, L=some city, ST=some
state, C=jv

Issuer: CN=some name, OU=development, O=mycom.com, L=some city, ST=some
state, C=jv

Serial number: 39f2e11e

Valid from: Thu Oct 22 18:11:21 CDT 2015 until: Wed Jan 20 17:11:21 CST
2016

Certificate fingerprints:

 MD5: 64:44:64:27:85:99:01:22:49:FC:41:DA:F7:A8:4C:35

 SHA1: 48:57:3A:DB:1B:16:92:E6:CC:90:8B:D3:A7:A3:89:B3:9C:9B:7C:
BB

 SHA256: B6:B2:22:A0:64:61:DB:53:33:04:78:77:38:AF:D2:A0:60:37:A6
:CB:3F:

3C:47:CC:30:5F:02:86:8F:68:84:7D

 Signature algorithm name: SHA1withDSA

 Version: 3

Extensions:

#1: ObjectId: 2.5.29.14 Criticality=false

SubjectKeyIdentifier [

KeyIdentifier [

0000: 07 D9 51 BE A7 48 23 34 5F 8E C6 F9 88 C0 36 CA ..Q..H#4_.....6.

0010: 27 8E 04 22 '.."

]

]

Network Security

[216]

Keytool command-line arguments
Entering the information for a keystore can be tedious. One way of simplifying this
process is to use command line arguments. The following command will create the
previous keystore:

keytool -genkeypair -alias mykeystore -keystore keystore.jks -keypass
password -storepass password -dname "cn=some name, ou=development,
o=mycom.com, l=some city, st=some state c=jv

You will note that there is not a matching double quote at the end of the command
line. It is not needed. The command-line arguments are documented at the keytool
website that was listed earlier.

This tool can create both symmetric and asymmetric keys along with certificates. The
following series of commands demonstrate several of these types of operations. We
will create a keystore for a pair of asymmetric keys. A pair of certificates will then be
exported that can be used with a server and client application.

This command will create the serverkeystore.jck keystore file using the RSA
algorithm with a key size of 1,024 bits and an expiration date of 365 days:

keytool -genkeypair -alias server -keyalg RSA -keysize 1024 -storetype
jceks -validity 365 -keypass password -keystore serverkeystore.jck
-storepass password -dname "cn=localhost, ou=Department, o=MyComp Inc,
l=Some City, st=JV c=US

This command generates a clientkeystore.jck keystore to be used by the
client application:

keytool -genkeypair -alias client -keyalg RSA -keysize 1024 -storetype
jceks -validity 365 -keypass password -keystore clientkeystore.jck
-storepass password -dname "cn=localhost, ou=Department, o=MyComp Inc,
l=Some City, st=JV c=US

A certificate file for the client is created next and is placed in the client.crt file:

keytool -export -alias client -storetype jceks -keystore clientkeystore.
jck -storepass password -file client.crt

The server's certificate is exported here:

keytool -export -alias server -storetype jceks -keystore serverkeystore.
jck -storepass password -file server.crt

A trust store is a file that is used to verify credentials, while a keystore will produce
credentials. Credentials usually take the form of a certificate. Trust stores typically
hold certificates from a trusted third party to form a certificate chain.

Chapter 8

[217]

The following command creates the clienttruststore.jck file, which is the trust
store for the client:

keytool -importcert -alias server -file server.crt -keystore
clienttruststore.jck -keypass password -storepass storepassword

This command generates the following output:

Owner: CN=localhost, OU=Department, O=MyComp Inc, L=Some City, ST="JV
c=US"

Issuer: CN=localhost, OU=Department, O=MyComp Inc, L=Some City, ST="JV
c=US"

Serial number: 2d924315

Valid from: Tue Oct 20 19:26:00 CDT 2015 until: Wed Oct 19 19:26:00 CDT
2016

Certificate fingerprints:

 MD5: 9E:3D:0E:D7:02:7A:F5:23:95:1E:24:B0:55:A9:F7:95

 SHA1: 69:87:CE:EE:11:59:8F:40:A8:14:DA:D3:92:D0:3F:B6:A9:5A:
7B:53

 SHA256: BF:C1:7B:6D:D0:39:67:2D:1C:68:27:79:31:AA:B8:70:2B:FD:
1C:85:18:

EC:5B:D7:4A:48:03:FA:F1:B8:CD:4E

 Signature algorithm name: SHA256withRSA

 Version: 3

Extensions:

#1: ObjectId: 2.5.29.14 Criticality=false

SubjectKeyIdentifier [

KeyIdentifier [

0000: D3 63 C9 60 6D 04 49 75 FB E8 F7 90 30 1D C6 C1 .c.`m.Iu....0...

0010: 10 DF 00 CF

]

]

Trust this certificate? [no]: yes

Certificate was added to keystore

Network Security

[218]

The trust store for the server is created with this command:

keytool -importcert -alias client -file client.crt -keystore
servertruststore.jck -keypass password -storepass password

Its output is as follows:

Owner: CN=localhost, OU=Department, O=MyComp Inc, L=Some City, ST="JV
c=US"

Issuer: CN=localhost, OU=Department, O=MyComp Inc, L=Some City, ST="JV
c=US"

Serial number: 5d5f3c40

Valid from: Tue Oct 20 19:27:31 CDT 2015 until: Wed Oct 19 19:27:31 CDT
2016

Certificate fingerprints:

 MD5: 0E:FE:B3:EB:1B:D2:AD:32:9C:BC:FB:43:40:85:C1:A7

 SHA1: 90:14:1E:17:DF:51:79:0B:1E:A3:EC:38:6B:BA:A6:F4:6F:BF:B6
:D2

 SHA256: 7B:3E:D8:2C:04:ED:E5:52:AE:B4:00:A8:63:A1:13:A7:E1:8E:59
:63:E8:

86:38:D8:09:55:EA:3A:7C:F7:EC:4B

 Signature algorithm name: SHA256withRSA

 Version: 3

Extensions:

#1: ObjectId: 2.5.29.14 Criticality=false

SubjectKeyIdentifier [

KeyIdentifier [

0000: D9 53 34 3B C0 11 F8 75 0F 18 4E 18 23 A2 47 FE .S4;...u..N.#.G.

0010: E6 F5 C1 AF

]

]

Trust this certificate? [no]: yes

Certificate was added to keystore

We will now demonstrate how we can perform similar operations in Java.

Chapter 8

[219]

Creating and maintaining a keystore with Java
Keystores, their keys, and certificates can be created directly with Java code. In this
section, we will demonstrate how to create a keystore that contains a secret key. We
will use this class in the Symmetric encryption client/server section.

The SymmetricKeyStoreCreation class is declared as follows. The
SymmetricKeyStoreCreation method creates a keystore, while the main
method generates and stores the secret key:

public class SymmetricKeyStoreCreation {

 private static KeyStore createKeyStore(String fileName,
 String pw) {
 ...
 }

 public static void main(String[] args) {
 ...
 }
}

The createKeyStore method is described next. It is passed the keystore's file name
and a password. A KeyStore instance is created, which specifies a JCEKS keystore. If
the keystore already exists, it will return that keystore:

 private static KeyStore createKeyStore(String fileName,
 String password) {
 try {
 File file = new File(fileName);

 final KeyStore keyStore =
 KeyStore.getInstance("JCEKS");
 if (file.exists()) {
 keyStore.load(new FileInputStream(file),
 password.toCharArray());
 } else {
 keyStore.load(null, null);
 keyStore.store(new FileOutputStream(fileName),
 password.toCharArray());
 }
 return keyStore;
 } catch (KeyStoreException | IOException |
 NoSuchAlgorithmException |
 CertificateException ex) {

Network Security

[220]

 // Handle exceptions
 }
 return null;
 }

In the main method, a KeyGenerator instance is created using the AES algorithm.
The generateKey method will create the SecretKey instance, as shown here:

 public static void main(String[] args) {
 try {
 final String keyStoreFile = "secretkeystore.jks";
 KeyStore keyStore = createKeyStore(keyStoreFile,
 "keystorepassword");
 KeyGenerator keyGenerator =
 KeyGenerator.getInstance("AES");
 SecretKey secretKey = keyGenerator.generateKey();
 ...
 } catch (Exception ex) {
 // Handle exceptions
 }
 }

The KeyStore.SecretKeyEntry class represents an entry in a keystore. We need this
and an instance of the KeyStore.PasswordProtection class, which represents the
password, to store the secret key:

 KeyStore.SecretKeyEntry keyStoreEntry
 = new KeyStore.SecretKeyEntry(secretKey);
 KeyStore.PasswordProtection keyPassword =
 new KeyStore.PasswordProtection(
 "keypassword".toCharArray());

The setEntry method uses a string alias, the keystore entry object, and the password
to store the entry, as shown here:

 keyStore.setEntry("secretKey", keyStoreEntry,
 keyPassword);

This entry is then written to the keystore:

 keyStore.store(new FileOutputStream(keyStoreFile),
 "keystorepassword".toCharArray());

Other keystore operations are possible using Java.

Chapter 8

[221]

Symmetric encryption client/server
This section demonstrates how to use symmetric encryption/decryption in a client/
server application. The following example implements a simple echo client/server
allowing us to focus on the basic process without digressing into specific client/
server issues. The server is implemented with the SymmetricEchoServer class and
client using the SymmetricEchoClient class.

The client will encrypt a message and send it to the server. The server will then decrypt
the message and send it back in plain text. The response can easily be encrypted if
needed. This one-way encryption is sufficient to illustrate the basic process.

When running the applications that are discussed in this chapter in Windows, you
may encounter the following dialog box. Select the Allow access button to allow the
applications to run:

We will also use the SymmetricKeyStoreCreation class that was developed in
symmetric encryption techniques.

Network Security

[222]

Symmetric server application
The symmetric server is declared next. It possesses a main, decrypt, and
getSecretKey methods. The decrypt method takes the encrypted message from
the client and decrypts it. The getSecretKey method will extract the secret key from
the keystore that was created in symmetric encryption techniques. The main method
contains the basic socket and streams that are used to communicate with the client:

public class SymmetricEchoServer {
 private static Cipher cipher;

 public static String decrypt(String encryptedText,
 SecretKey secretKey) {
 ...
 }

 private static SecretKey getSecretKey() {
 ...
 }

 public static void main(String[] args) {
 ...
 }
}

The decrypt method is the same one that was developed in symmetric encryption
techniques, so it will not be repeated here. The getSecretKey method is described
next. The secretkeystore.jks file that was created in symmetric encryption
techniques holds the secret key. This method uses many of the same classes that are
used in the main method of the SymmetricKeyStoreCreation class. An instance
of the KeyStore.PasswordProtection class is used to extract the secret key from
the keystore. The keystore password, keystorepassword, is hardcoded into the
application. This is not the best practice, but it simplifies the example:

 private static SecretKey getSecretKey() {
 SecretKey keyFound = null;
 try {
 File file = new File("secretkeystore.jks");
 final KeyStore keyStore =
 KeyStore.getInstance("JCEKS");
 keyStore.load(new FileInputStream(file),
 "keystorepassword".toCharArray());
 KeyStore.PasswordProtection keyPassword =
 new KeyStore.PasswordProtection(
 "keypassword".toCharArray());

Chapter 8

[223]

 KeyStore.Entry entry =
 keyStore.getEntry("secretKey", keyPassword);
 keyFound =
 ((KeyStore.SecretKeyEntry) entry).getSecretKey();
 } catch (KeyStoreException | IOException |
 NoSuchAlgorithmException |
 CertificateException ex) {
 // Handle exceptions
 } catch (UnrecoverableEntryException ex) {
 // Handle exceptions;
 }
 return keyFound;
 }

The main method is very similar to the server that was developed in Chapter 1,
Getting Started with Network Programming. The main difference is within the while
loop. Input from the client is passed to the decrypt method along with the secret
key, as shown next. The decrypted text is then displayed and returned to the client:

 String decryptedText = decrypt(inputLine,
 getSecretKey());

The main method is as follows:

 public static void main(String[] args) {
 System.out.println("Simple Echo Server");
 try (ServerSocket serverSocket = new ServerSocket(6000)) {
 System.out.println("Waiting for connection.....");

 Socket clientSocket = serverSocket.accept();
 System.out.println("Connected to client");

 try (BufferedReader br = new BufferedReader(
 new InputStreamReader(
 clientSocket.getInputStream()));
 PrintWriter out = new PrintWriter(
 clientSocket.getOutputStream(), true)) {
 String inputLine;
 while ((inputLine = br.readLine()) != null) {
 String decryptedText =
 decrypt(inputLine, getSecretKey());
 System.out.println("Client request: " +
 decryptedText);
 out.println(decryptedText;
 }

 } catch (IOException ex) {

Network Security

[224]

 // Handle exceptions
 } catch (Exception ex) {
 // Handle exceptions
 }
 } catch (IOException ex) {
 // Handle exceptions
 }
 System.out.println("Simple Echo Server Terminating");
 }

Now, let's examine the client application.

Symmetric client application
The client application is described next and is very similar to the client application
that was developed in Chapter 1, Getting Started with Network Programming. It uses the
same getSecretKey method that is used in the server. The encrypt method that was
explained in symmetric encryption techniques is used to encrypt the user's message.
Both of these methods are not duplicated here:

public class SymmetricEchoClient {
 private static Cipher cipher;

 public static String encrypt(String plainText,
 SecretKey secretKey) {
 ...
 }

 ...
 }

 public static void main(String args[]) {
 ...
 }
}

The main method differs from the version in the while loop in Chapter 1,
Getting Started with Network Programming. The following statement encrypts
the user message:

 String encryptedText = encrypt(inputLine,
 getSecretKey());

Chapter 8

[225]

The main method is as follows:

 public static void main(String args[]) {
 System.out.println("Simple Echo Client");

 try (Socket clientSocket
 = new Socket(InetAddress.getLocalHost(), 6000);
 PrintWriter out = new PrintWriter(
 clientSocket.getOutputStream(), true);
 BufferedReader br = new BufferedReader(
 new InputStreamReader(
 clientSocket.getInputStream()))) {
 System.out.println("Connected to server");
 Scanner scanner = new Scanner(System.in);

 while (true) {
 System.out.print("Enter text: ");
 String inputLine = scanner.nextLine();
 if ("quit".equalsIgnoreCase(inputLine)) {
 break;
 }
 String encryptedText =
 encrypt(inputLine, getSecretKey());
 System.out.println(
 "Encrypted Text After Encryption: "
 + encryptedText);
 out.println(encryptedText);

 String response = br.readLine();
 System.out.println(
 "Server response: " + response);
 }
 } catch (IOException ex) {
 // Handle exceptions
 } catch (Exception ex) {
 // Handle exceptions
 }
 }

We are now ready to see how the client and server interact.

Network Security

[226]

Symmetric client/server in action
The applications behave the same way that they did in Chapter 1, Getting Started with
Network Programming. The only difference is that the message sent to the server is
encrypted. This encryption is not visible in the application's output other than the
display of the encrypted text on the client side. One possible interaction is as follows.
The server output is shown first:

Simple Echo Server

Waiting for connection.....

Connected to client

Client request: The first message

Client request: The second message

Simple Echo Server Terminating

The following is the client's application output:

Simple Echo Client

Connected to server

Enter text: The first message

Encrypted Text After Encryption:
drkvP3bhnfMXrZluFiqKb0RgjoDqFIJMCo97YqqgNuM=

Server response: drkvP3bhnfMXrZluFiqKb0RgjoDqFIJMCo97YqqgNuM=

Enter text: The second message

Encrypted Text After Encryption: fp9g+AqsVqZpxKMVNx8IkNdDcr9IGHb/
qv0qrFinmYs=

Server response: fp9g+AqsVqZpxKMVNx8IkNdDcr9IGHb/qv0qrFinmYs=

Enter text: quit

We will now duplicate this functionality using asymmetric keys.

Chapter 8

[227]

Asymmetric encryption client/server
The AsymmetricKeyUtility class developed in asymmetric encryption techniques
is used to support the client and server applications. We will use it's encrypt and
decrypt methods. The structure of the client and server applications is similar to
what was used in previous sections. The client will send the server an encrypted
message, which the server will decrypt and then respond to with plain text.

Asymmetric server application
The AsymmetricEchoServer class, as declared next, is used for the server. The main
method is its only method. A server socket is created, which blocks at the accept
method waiting for client request:

public class AsymmetricEchoServer {

 public static void main(String[] args) {
 System.out.println("Simple Echo Server");
 try (ServerSocket serverSocket = new ServerSocket(6000)) {
 System.out.println("Waiting for connection.....");
 Socket clientSocket = serverSocket.accept();
 System.out.println("Connected to client");
 ...

 } catch (IOException | NoSuchAlgorithmException |
 NoSuchPaddingException ex) {
 // Handle exceptions
 }
 System.out.println("Simple Echo Server Terminating");
 }
}

Upon the acceptance of a client connection IO, streams are established and an
inputLine byte array is instantiated with a size of 171. This is the size of the
message that is being sent, and using this value will avoid various exceptions:

 try (DataInputStream in = new DataInputStream(
 clientSocket.getInputStream());
 PrintWriter out = new PrintWriter(
 clientSocket.getOutputStream(), true);) {
 byte[] inputLine = new byte[171];
 ...
 }
 } catch (IOException ex) {
 // Handle exceptions

Network Security

[228]

 } catch (Exception ex) {
 // Handle exceptions
 }

To perform the decryption, we need a private key. This is obtained using the
getPrivateKey method:

 PrivateKey privateKey =
 AsymmetricKeyUtility.getPrivateKey();

A while loop will read in an encrypted message from the client. The decrypt method is
called with the message and the private key. The decrypted message is then displayed
and sent back to the client. If the message was quit, then the server terminates:

 while (true) {
 int length = in.read(inputLine);
 String buffer = AsymmetricKeyUtility.decrypt(
 privateKey, inputLine);
 System.out.println(
 "Client request: " + buffer);

 if ("quit".equalsIgnoreCase(buffer)) {
 break;
 }
 out.println(buffer);

Now, let's examine the client application.

Asymmetric client application
The client application is found in the AsymmetricEchoClient class, as shown next.
It also possesses only a single main method. Once the server connection has been
made, IO streams are established:

public class AsymmetricEchoClient {

 public static void main(String args[]) {
 System.out.println("Simple Echo Client");

 try (Socket clientSocket
 = new Socket(InetAddress.getLocalHost(), 6000);
 DataOutputStream out = new DataOutputStream(
 clientSocket.getOutputStream());
 BufferedReader br = new BufferedReader(
 new InputStreamReader(
 clientSocket.getInputStream()));

Chapter 8

[229]

 DataInputStream in = new DataInputStream(
 clientSocket.getInputStream())) {
 System.out.println("Connected to server");
 ...
 }
 } catch (IOException ex) {
 // Handle exceptions
 } catch (Exception ex) {
 // Handle exceptions
 }
 }
}

The Scanner class is used to get user input. A public key is used to encrypt the
user messages and is obtained using the AsymmetricKeyUtility class's
getPublicKey method:

 Scanner scanner = new Scanner(System.in);
 PublicKey publicKey =
 AsymmetricKeyUtility.getPublicKey();

In the following while loop, the user is prompted for a message, which is encrypted
using the encrypt method. The encrypted message is then sent to the server. If the
message was quit, then the program terminates:

 while (true) {
 System.out.print("Enter text: ");
 String inputLine = scanner.nextLine();

 byte[] encodedData =
 AsymmetricKeyUtility.encrypt(
 publicKey, inputLine);
 System.out.println(encodedData);

 out.write(encodedData);
 if ("quit".equalsIgnoreCase(inputLine)) {
 break;
 }
 String message = br.readLine();
 System.out.println("Server response: " + message);

Now, we can use these applications together.

Network Security

[230]

Asymmetric client/server in action
Start the server and then the client. The client will prompt for a series of messages.
The following shows the output of one possible interchange. The server side is
shown first:

Simple Echo Server

Waiting for connection.....

Connected to client

Client request: The first message

Client request: The second message

Client request: quit

Simple Echo Server Terminating

The following shows the client interaction:

Simple Echo Client

Connected to server

Enter text: The first message

[B@6bc168e5

Server response: The first message

Enter text: The second message

[B@7b3300e5

Server response: The second message

Enter text: quit

[B@2e5c649

TLS/SSL
TLS/SSL is a set of protocols that is used to secure many servers on the Internet. SSL
is the successor to TLS. However, they are not always interchangeable. SSL uses the
Message Authentication Code (MAC) algorithm, while TLS uses the Hashing for
Message Authentication Code (HMAC) algorithm.

Chapter 8

[231]

SSL is often used with a number of other protocols, including File Transfer Protocol
(FTP), Telnet, Net News Transfer Protocol (NNTP), Lightweight Directory Access
Protocol (LDAP), and Interactive Message Access Protocol (IMAP).

TLS/SSL does incur a performance hit in providing these capabilities. However, as
internet speeds increase, the hit is not usually significant.

When the HTTPS protocol is used, a user will know because the protocol is normally
present in the address field of a browser. It is even used in places where you may not
expect it, such as in the following Google URL:

We will not delve into the details of how the SSL protocol works. However, a
brief discussion of this protocol can be found at http://www.javacodegeeks.
com/2013/04/understanding-transport-layer-security-secure-socket-
layer.html. In this section, we will illustrate how to create and use an SSL server
and the Java classes that are used to support this protocol.

To simplify the applications, the client sends a message to the server, which
then displays it. No response is sent back to the client. The client connects to and
communicates with the server using SSL. Returning the message to the client using
SSL is left as an exercise for the reader.

SSL server
The server is implemented in the following SSLServer class. All of the code is found
in the main method. We will use the keystore.jks keystore to access a secret key that
was created in symmetric encryption techniques. To provide access to the keystore, a
Provider instance is used to specify the keystore and its password. Hardcoding the
password in code is not a good idea, but it is used to simplify this example:

public class SSLServer {

 public static void main(String[] args) throws Exception {
 System.out.println("SSL Server Started");

http://www.javacodegeeks.com/2013/04/understanding-transport-layer-security-secure-socket-layer.html
http://www.javacodegeeks.com/2013/04/understanding-transport-layer-security-secure-socket-layer.html
http://www.javacodegeeks.com/2013/04/understanding-transport-layer-security-secure-socket-layer.html

Network Security

[232]

 Security.addProvider(new Provider());
 System.setProperty("javax.net.ssl.keyStore",
 "keystore.jks");
 System.setProperty("javax.net.ssl.keyStorePassword",
 "password");
 ...

 }

}

An instance of the SSLServerSocket class is used to establish communications
between a client and a server. This instance is created using the
SSLServerSocketFactory class's getDefault method. Similar to previous server
sockets, the accept method blocks until a client connection is established:

 SSLServerSocketFactory sslServerSocketfactory =
 (SSLServerSocketFactory)
 SSLServerSocketFactory.getDefault();
 SSLServerSocket sslServerSocket = (SSLServerSocket)
 sslServerSocketfactory.createServerSocket(5000);
 System.out.println("Waiting for a connection");
 SSLSocket sslSocket =
 (SSLSocket) sslServerSocket.accept();
 System.out.println("Connection established");

A BufferedReader instance is then created from the socket's output stream:

 PrintWriter pw =
 new PrintWriter(sslSocket.getOutputStream(), true);
 BufferedReader br = new BufferedReader(
 new InputStreamReader(sslSocket.getInputStream()));

The following while loop reads the client request and displays it. If the message is
quit, then the server terminates:

 String inputLine;
 while ((inputLine = br.readLine()) != null) {
 pw.println(inputLine);
 if ("quit".equalsIgnoreCase(inputLine)) {
 break;
 }
 System.out.println("Receiving: " + inputLine);
 }

Chapter 8

[233]

The SSL socket automatically handles encryption and decryption.

On a Mac, the server may throw exceptions when executed.
This can be avoided by creating a PKCS12 keystore and
using the -Djavax.net.ssl.keyStoreType=pkcs12
VM option.

SSL client
The SSLClient class implements the client application, as shown next. It uses
essentially the same process as the server. The while loop handles user input in
the same way that was performed in previous client applications:

public class SSLClient {

 public static void main(String[] args) throws Exception {
 System.out.println("SSL Client Started");
 Security.addProvider(new Provider());
 System.setProperty("javax.net.ssl.trustStore",
 "keystore.jks");
 System.setProperty("javax.net.ssl.trustStorePassword",
 "password");

 SSLSocketFactory sslsocketfactory = (SSLSocketFactory)
 SSLSocketFactory.getDefault();
 SSLSocket sslSocket = (SSLSocket)
 sslsocketfactory.createSocket("localhost", 5000);
 System.out.println(
 "Connection to SSL Server Established");

 PrintWriter pw =
 new PrintWriter(sslSocket.getOutputStream(), true);
 BufferedReader in = new BufferedReader(
 new InputStreamReader(sslSocket.getInputStream()));

 Scanner scanner = new Scanner(System.in);
 while (true) {
 System.out.print("Enter a message: ");
 String message = scanner.nextLine();
 pw.println(message);
 System.out.println("Sending: " + in.readLine());
 if ("quit".equalsIgnoreCase(message)) {
 break;

Network Security

[234]

 }
 }
 pw.close();
 in.close();
 sslSocket.close();
 }
}

Let's see how they interact.

SSL client/server in action
Start the server and then the client. In the following output, three messages are sent
to the server and then displayed:

SSL Server Started

Waiting for a connection

Connection established

Receiving: The first message

Receiving: The second message

The client input is shown here:

SSL Client Started

Connection to SSL Server Established

Enter a message: The first message

Sending: The first message

Enter a message: The second message

Sending: The second message

Enter a message: quit

Sending: quit

The SSLServerSocket class provides a simple way of implementing SSL-enabled
servers.

Chapter 8

[235]

Secure hash functions
A secure hash function will generate a large number, called the hash value, when
given a document of some sort. This document can be of almost any type. We will be
using simple strings in our examples.

The function is a one-way hash function, which means that it is effectively impossible
to recreate the document when given a hash value. When used in conjunction with
asymmetric keys, it allows the transmission of a document with the guarantee that
the document has not been altered.

The sender of a document will use a secure hash function to generate the hash
value for a document. The sender will encrypt this hash value with their private key.
The document and the key are then combined and sent to a receiver. The document
is not encrypted.

Upon receiving the document, the receiver will use the sender's public key to decrypt
the hash value. The receiver will then use the same secure hash function against
the document to obtain a hash value. If this hash value matches the decrypted hash
value, then the receiver is guaranteed that the document has not been modified.

The intent is not to encrypt the document. While possible, this approach is useful
when it is not important to hide the document from third parties but to only provide
a guarantee that the document has not been modified.

Java supports the following hashing algorithms:

• MD5: The default size is 64 bytes
• SHA1: The default size is 64 bytes

We will use the SHA hash function for our examples. This series of functions was
developed by the National Security Agency (NSA). There are three versions of this
hash function: SHA-0, SHA-1, and SHA-2. The SHA-2 is the more secure algorithm
and uses variable digest sizes: SHA-224, SHA-256, SHA-384, and SHA-512.

The MessageDigest class works with arbitrary-sized data producing a fixed size
hash value. There are no public constructors for this class. The getInstance method
returns an instance of the class when given the name of the algorithm. Valid names
are found at http://docs.oracle.com/javase/8/docs/technotes/guides/
security/StandardNames.html#MessageDigest. In this example, we use SHA-256:

 MessageDigest messageDigest =
 MessageDigest.getInstance("SHA-256");
 messageDigest.update(message.getBytes());

http://docs.oracle.com/javase/8/docs/technotes/guides/security/StandardNames.html#MessageDigest
http://docs.oracle.com/javase/8/docs/technotes/guides/security/StandardNames.html#MessageDigest

Network Security

[236]

The complete example, which is adapted from http://www.mkyong.com/java/
java-sha-hashing-example/, is shown next. The displayHashValue method
extracts individual hash value bytes and converts them to a printable format:

public class SHAHashingExample {

 public static void main(String[] args) throws Exception {
 SHAHashingExample example = new SHAHashingExample();
 String message = "This is a simple text message";
 byte hashValue[] = example.getHashValue(message);
 example.displayHashValue(hashValue);
 }

 public void displayHashValue(byte hashValue[]) {
 StringBuilder builder = new StringBuilder();
 for (int i = 0; i < hashValue.length; i++) {
 builder.append(Integer.toString((hashValue[i] & 0xff)
 + 0x100, 16).substring(1));
 }
 System.out.println("Hash Value: " + builder.toString());
 }

 public byte[] getHashValue(String message) {
 try {
 MessageDigest messageDigest =
 MessageDigest.getInstance("SHA-256");
 messageDigest.update(message.getBytes());
 return messageDigest.digest();
 } catch (NoSuchAlgorithmException ex) {
 // Handle exceptions
 }
 return null;
 }
}

Execute the program. This will produce the following output:

Hash Value: 83c660972991049c25e6cad7a5600fc4d7c062c097b9a75c1c4f13238375c26c

A more detailed examination of secure hashing functions that are implemented in
Java can be found at http://howtodoinjava.com/2013/07/22/how-to-generate-
secure-password-hash-md5-sha-pbkdf2-bcrypt-examples/.

http://www.mkyong.com/java/java-sha-hashing-example/
http://www.mkyong.com/java/java-sha-hashing-example/
http://howtodoinjava.com/2013/07/22/how-to-generate-secure-password-hash-md5-sha-pbkdf2-bcrypt-examples/
http://howtodoinjava.com/2013/07/22/how-to-generate-secure-password-hash-md5-sha-pbkdf2-bcrypt-examples/

Chapter 8

[237]

Summary
In this chapter, we introduced several Java approaches to secure communications
between applications. We started with a brief introduction to security-related terms
and followed the introduction with a more detailed discussion later.

There are two common encryption/decryption approaches that are used today. The
first is symmetric key encryption, which uses a single key that is shared between
the applications. This approach requires that the key be transmitted between the
applications in a secure fashion.

The second approach uses asymmetric encryption. This technique uses a private and
a public key. A message encrypted with one of these keys can be decrypted with the
other key. Normally, the public key is distributed using a certificate from a trusted
source. The holder of the private key needs to secure it so that no one else has access
to it. The public key is freely shared with anyone who needs it.

Cryptographic keys are usually stored in a keystore that permit programmatic access
to the keys. The keystore is created and maintained with the keytool application. We
demonstrated the creation and use of a keystore in several of our applications. In
addition, we used both a symmetric key and an asymmetric key pair to support an
echo client/server application.

A more common way of creating secure clients and servers uses the
SSLServerSocket class. This performs the automatic encryption and decryption of
data based on a secret key found in a keystore. We demonstrated how the class can
be used in a server and client application.

We also examined the use of secure hash functions. This technique allows
unencrypted data to be transferred and guarantees that it has not been modified.
An asymmetric key pair is used to encrypt the hash value. We provided a simple
example of this process.

In the next chapter, we will investigate the various factors that affect the interaction
between distributed applications.

[239]

Network Interoperability
Network interoperability refers to the ability of systems that differ in implementation
technology to reliably and accurately interchange information. This means that the
factors, such as the underlying hardware, operating system, and implementation
language, may differ between platforms, yet they will not adversely affect the ability
of these systems to communicate.

There are several factors that can impact interoperability. These range from low-level
issues, such as the byte order that is used by primitive data types, to higher-level
technologies, such as web services that largely hide much of their implementation
details. In this chapter, we will explore many of these factors.

We start with a discussion of the byte order that is used to support primitive data
types. This is fundamental to the transfer of data. Different byte orders will result in
significant differences in how information is interpreted.

Next, we will discuss how Java applications can interact with applications that are
written in different languages. These may be JVM-based languages or languages that
are radically different from Java.

The fundamental network communication construct is the socket. This entity
typically functions in a TCP/IP environment. We will demonstrate how Java sockets
can interact with sockets that are written in different languages, specifically C#.

The most significant support for interoperability exists in the form of
communications standards that are typified by web services. These applications
support communication between disparate systems using standardized
middleware. Much of the details of communication are hidden by these middleware
implementations.

Network Interoperability

[240]

We will investigate the following interoperability topics:

• How Java handles byte order
• Interfacing with other languages
• Communicating with sockets
• Using middleware to achieve interoperability

So, let's start with a discussion of byte order and how it can impact interoperability.

Byte order in Java
There are two types of byte order: big endian, and little endian. These terms refer to
the order that a multi-byte quantity is stored in memory. To illustrate this, consider
how an integer is stored in memory. As an integer consists of 4 bytes, these bytes
are assigned to a 4-byte region of memory. However, these bytes can be stored in
different ways. Big endian places the most significant byte first, while little endian
places the least significant byte first.

Consider the following declaration and initialization of an integer:

 int number = 0x01234567;

In the following example, the four bytes of memory are shown using big endian,
assuming that the integer has been allocated to address 1000:

Address Byte
1000 01
1001 23
1002 45
1003 67

The following table shows how the integer will be stored using little endian:

Address Byte
1000 67
1001 45
1002 23
1003 01

Chapter 9

[241]

The endianness varies by machines in the following ways:

• Intel-based processors uses little endian
• ARM processors may use little endian or big endian
• Motorola 68K processors use big endian
• Motorola PowerPC use big endian
• Sun SPARK processors use big endian

Sending data, such as ASCII strings, is not an issue because these bytes are stored in
consecutive order. For other data types, such as floats, and longs, it can be an issue.

If we need to know which representation the current machine supports, the
ByteOder class in the java.nio package can determine the current byte order.
The following statement will display the endianness for the current platform:

 System.out.println(ByteOrder.nativeOrder());

For a Windows platform, it will display the following:

LITTLE_ENDIAN

The DataOutputStream class's methods automatically use big endian. The
ByteBuffer class also uses big endian by default. However, as shown next,
the order can be specified:

 ByteBuffer buffer = ByteBuffer.allocate(4096);
 System.out.println(buffer.order());
 buffer.order(ByteOrder.LITTLE_ENDIAN);
 System.out.println(buffer.order());

This will display the following:

BIG_ENDIAN

LITTLE_ENDIAN

Once established, other methods, such as the slice method, do not change the byte
order that is used, as demonstrated here:

 buffer.order(ByteOrder.LITTLE_ENDIAN);
 ByteBuffer slice = buffer.slice();
 System.out.println(buffer.order());

The output will be as follows:

LITTLE_ENDIAN

Network Interoperability

[242]

The endianness is normally handled automatically on a machine. However, when
we transfer data between machines that use different endianness, we can have a
problem. It is possible that the bytes transferred will be in the wrong order at their
destination.

Networks typically use big endian, which is also known as network byte order.
Any data sent through a socket should use big endian. When sending information
between Java applications, the endianness is not normally an issue. However, the
endianness is more significant when interacting with non-Java technologies.

Interfacing with other languages
Sometimes, it is necessary to access libraries that are written in a different language.
While this is not exclusively a network issue, Java provides support in a number
of ways. Direct interface with other languages does not take place across a network,
but rather occurs on the same machine. We will briefly examine some of these
interface issues.

If we are using another Java library, then we simply need to load the classes. If we
need to interface with non-Java languages, then we can use the Java Native Interface
(JNI) API or some other library. However, if this language is a JVM-based language,
then the process is much easier.

Interfacing with JVM based languages
The Java Virtual Machine (JVM) executes Java byte codes. However, this is not the
only language that uses a JVM. Other languages include the following ones:

• Nashorn: This uses JavaScript
• Clojure: This is a Lisp dialect
• Groovy: This is a scripting language
• Scala: This combines the object-oriented and functional programming

approaches
• JRuby: This is the Java implementation of Ruby
• Jthon: This is the Java implementation of Python
• Jacl: This is the Java implementation of Tcl
• TuProlog: This is the Java-based implementation of Prolog

Chapter 9

[243]

A more complete list of JVM-based languages can be found at https://
en.wikipedia.org/wiki/List_of_JVM_languages. Using the same JVM base
will facilitate the sharing of code and libraries. Often, it is possible to not only use
libraries that were developed in a different JVM-based language, but to also derive
from classes that were developed in different languages.

Many languages have been ported to JVM because it is easier to use the JVM than
create multiple compilers or interpreters for different platforms. For example, Ruby
and Python have JVM implementations for this reason. These languages can take
advantage of the JVM's portability and its Just-In-Time (JIT) compilation process.
In addition to this, the JVM has a large library of well-tested code to build upon.

Nashorn is a JavaScript engine that is built on top of the JVM and was added in Java
8. This allows JavaScript code to be readily integrated into a Java application. The
following code sequence illustrates this process. An instance of the JavaScript engine
is obtained and then JavaScript code is executed:

 try {
 ScriptEngine engine =
 new ScriptEngineManager().getEngineByName("nashorn");
 engine.eval("print('Executing JavaScript code');");
 } catch (ScriptException ex) {
 // Handle exceptions
 }

The output of this sequence is as follows:

Executing JavaScript code

More sophisticated JavaScript processing is possible. More details about this
technology can be found at https://docs.oracle.com/javase/8/docs/
technotes/guides/scripting/nashorn/.

Interfacing with non-JVM languages
A common technique to access code in a different language is through the JNI
API. This API provides a means of accessing C/C++ code. This approach is well
documented and will not be demonstrated here. However, a good introduction to
this API can be found at http://www.ibm.com/developerworks/java/tutorials/
j-jni/j-jni.html.

It is possible to access .NET code from Java. One technique uses JNI to access C#. An
example of how to access C++, managed C++, and C# code is found at http://www.
codeproject.com/Articles/13093/C-method-calls-within-a-Java-program.

https://en.wikipedia.org/wiki/List_of_JVM_languages
https://en.wikipedia.org/wiki/List_of_JVM_languages
https://docs.oracle.com/javase/8/docs/technotes/guides/scripting/nashorn/
https://docs.oracle.com/javase/8/docs/technotes/guides/scripting/nashorn/
http://www.ibm.com/developerworks/java/tutorials/j-jni/j-jni.html
http://www.ibm.com/developerworks/java/tutorials/j-jni/j-jni.html
http://www.codeproject.com/Articles/13093/C-method-calls-within-a-Java-program
http://www.codeproject.com/Articles/13093/C-method-calls-within-a-Java-program

Network Interoperability

[244]

Communication through simple sockets
It is possible to transfer information between applications that are written in
different languages using sockets. The socket concept is not unique to Java and has
been implemented in many languages. As sockets work at the TCP/IP level, they can
communicate without much effort.

The primary interoperability consideration concerns the data that is transmitted.
Incompatibilities can occur when the internal representation of data differs
significantly between two different languages. This may be due to the use of big
endian versus little endian in how a data type is represented internally, and whether
a particular data type even exists in another language. For example, in C there is no
distinct Boolean data type. It is represented using an integer.

In this section, we will develop a server in Java and a client in C#. To demonstrate
the use sockets, a string will be transferred between these two applications. We will
find that transferring even a simple data type, such as strings, can be more difficult
than it seems.

The Java server
The server is declared in the JavaSocket class, as shown next. It looks very similar to
previous versions of the echo server that was developed in this book. A server socket
is created and then blocks until the accept method returns with a socket connected
to a client:

public class JavaSocket {

 public static void main(String[] args) {
 System.out.println("Server Started");
 try (ServerSocket serverSocket = new ServerSocket(5000)) {
 Socket socket = serverSocket.accept();
 System.out.println("Client connection completed");
 ...
 socket.close();
 } catch (IOException ex) {
 // Handle exceptions
 }
 System.out.println("Server Terminated");
 }
}

Chapter 9

[245]

The Scanner class is used to read messages that are sent from a client.
A PrintWriter instance is used to reply to the client:

 Scanner scanner =
 new Scanner(socket.getInputStream());
 PrintWriter pw = new PrintWriter(
 socket.getOutputStream(), true);

The nextLine method retrieves a message, which is displayed and sent back
to the client:

 String message = scanner.nextLine();
 System.out.println("Server received: " + message);
 pw.println(message);
 System.out.println("Server sent: " + message);

The server will then terminate.

Now, let's examine the C# application.

The C# client
The CSharpClient class, as shown next, implements the client. C# is similar in form
and syntax to Java, though the class libraries are often different. We will not provide
a detailed explanation of the code, but we will cover the important features of the
application.

The using statement corresponds to the import statement in Java. Similar to Java, the
first method to execute is the Main method. C# typically uses a different indention
style and name convention than Java:

using System;
using System.Net;
using System.Net.Sockets;

namespace CSharpSocket
{
 class CSharpClient
 {
 public static void Main(string[] args)
 {
 Console.WriteLine("Client Started");
 ...
 }
 }
}

Network Interoperability

[246]

The IPEndPoint variable represents an Internet address, and the Socket class, as
you may expect, represents a socket. The Connect method connects to the server:

 IPEndPoint serverAddress =
 new IPEndPoint(IPAddress.Parse("127.0.0.1"), 5000);
 Socket clientSocket =
 new Socket(AddressFamily.InterNetwork,
 SocketType.Stream, ProtocolType.Tcp);
 clientSocket.Connect(serverAddress);

The Console class's Write method displays information in a command window.
Here, the user is prompted for a message to send to the server. The ReadLine
method reads in the user input:

 Console.Write("Enter message: ");
 String message = Console.ReadLine();

The Send method will transmit data to the server. However, it requires the data to
be placed into a byte buffer, as shown next. The message and an appended carriage
return/line feed character is encoded and inserted into the buffer. The appended
character is needed so that the server can read the string correctly and know when
the string is terminated:

 byte[] messageBuffer;
 messageBuffer = System.Text.Encoding.ASCII.GetBytes(
 message + "\n");
 clientSocket.Send(messageBuffer);

The Receive method reads the server's response. Similar to the Send method, it
requires a byte buffer. This buffer was created with a size of 32 bytes. This limits the
size of the message, but we will discuss how to overcome this limitation shortly:

 byte[] receiveBuffer = new byte[32];
 clientSocket.Receive(receiveBuffer);

The receiving buffer is converted into a string and displayed. The beginning and
closing brackets are used to clearly delineate the buffer:

 String recievedMessage =
 System.Text.Encoding.ASCII.GetString(
 receiveBuffer);
 Console.WriteLine("Client received: [" +
 recievedMessage + "]");

The socket is closed and the application terminates:

 clientSocket.Close();
 Console.WriteLine("Client Terminated");

Chapter 9

[247]

The client/server in action
Start the server and then the client. The client's user will be prompted for a message.
Enter a message. The message will be sent and the response will be displayed in the
client window.

The server output is displayed here:

Server Started

Client connection completed

Server received: The message

Server sent: The message

Server Terminated

The client side appears as follows:

Client Started

Enter message: The message

Client received: [The message

]

Client Terminated

Press any key to continue . . .

You will note that the received message is larger than expected. This is because the
client's receive byte buffer was 32 bytes long. This implementation used a fixed-size
buffer. As the size of the response from the server may not always be known, the
buffer needs to be large enough to hold responses. A size of 32 was used to limit the
server's output.

This limitation can be overcome in a number of ways. One approach appends a
special character at the end of the string and then uses this marker to construct the
response. Another approach sends the length of the response first, followed by the
response. The receiving buffer can be allocated based on the response's length.

Sending a string is useful to transmit formatted information. For example, the
message that was sent could have been an XML or JSON document. This will
facilitate the transmission of more sophisticated content.

Network Interoperability

[248]

Interoperability through middleware
Network technologies have evolved considerably over the last 20 years. Low-level
socket support provides the foundation for most of these technologies. However,
they are hidden from the user through multiple layers of software. These layers are
referred to as middleware.

Interoperability is achieved through middleware, such as JMI, SOAP, and JAX-
WS—to mention a few. The Java EE edition is aimed primarily at supporting these
middleware-type technologies. Java EE started with servlets, a Java application that
was used to support web pages. It has evolved to include Java Server Pages (JSP)
and eventually to Faclets both of which hide underlying Servlets.

These technologies are concerned with providing services to users whether they are
a human at a browser or another application. The users are not necessarily aware of
how the service is implemented. Communication is achieved through a number of
different standards and data is frequently encapsulated in language neutral XML
documents. Thus, a server and a client can be written in different languages and run
in different execution environments promoting interoperability.

While there are a number of technologies that are available, there are two common
approaches that are used: RESTful Web Services, and SOAP-based Web Services.
REpresentational State Transfer Web Services (RESTful Web Services) use HTTP
and the standard commands (PUT, POST, GET, DELETE) to support the distribution of
web pages and other resources. Its intent is to simplify how these types of services can
be created. The interaction between the client and the server is stateless. That is, what
was previously processed will not affect how the current request will be handled.

SOAP-based Web Services uses the Simple Object Access Protocol (SOAP) to
exchange structured information. It uses application layer protocols, such as HTTP,
and SMTP, and communicates using XML. We will focus on JAX-RS.

The Java API for RESTful Web Services (JAX-RS) is an API supporting the
development of RESTful services. It uses a series of annotations to map resources to
Java implementations. To demonstrate how this technology works, we will create a
simple RESTful application using NetBeans.

Chapter 9

[249]

Creating a RESTful service
We will create the server first and then a simple console-based application to access
the server. We will use NetBeans IDE 8.0.2 to develop this service. NetBeans can be
downloaded from https://netbeans.org/downloads/. Choose the Java EE Edition.

Once NetBeans has been installed, start it and then create a new project from the
File | New Project… menu item. This will bring up the New Project dialog box, as
shown next. Select the Java Web category and the Web Application project. Then,
select the Next button:

https://netbeans.org/downloads/

Network Interoperability

[250]

Give the project a name. In the following figure, we used SimpleRestfulService as
its name. Choose an appropriate location to save the project and then select Next:

In the Server and Settings step, choose the GlassFish server and Java EE7 Web.
GlassFish is a web server that we will use to host the service. The Context Path field
will become part of the URL passed to the server. Click on Next again:

Chapter 9

[251]

We can choose from one of three design patterns to create our RESTful service. For
this example, choose the first one, Simple Root Resource, and then click on Next:

Network Interoperability

[252]

In the Specify Resource Classes step, complete the dialog box, as shown next. The
resource package is where the Java classes will be placed. The path is used to identify
the resource to the user. The class name field will be the name of the Java class
supporting the resource. When done, click on Finish:

The IDE will then generate the files, including the ApplicationConfig.java and
SimpleRestfulService.java files. The ApplicationConfig.java file is used to
configure the service. Our main interest is the SimpleRestfulService.java file.

In the SimpleRestfulService class is the getHtml method, as duplicated next.
Its purpose is to generate a response to the GET command. The first annotation
designates this method as the method to call when the HTTP GET command is used.
The second annotation specifies that the intended output of this method is HTML
text. The return statement that is generated by the IDE has been replaced with a
simple HTML response:

 @GET
 @Produces("text/html")
 public String getHtml() {
 return
 "<html><body><h1>Hello, World!!</body></h1></html>";
 }

Chapter 9

[253]

When the service is requested with a GET command, the HTML text will be returned.
All of the intermediate steps, including the use of sockets, are hidden, simplifying
the development process.

Testing the RESTful service
We will develop a client application to access this resource. However, we can test the
resource using built-in facilities. To test the service, right-click on the project's name
in the Project Explorer window and select the Test RESTful Web Services menu
item. This will bring up the following window. Click on OK:

Network Interoperability

[254]

You may receive a security alert on Windows as follows. Select the Allow access
button if this occurs:

Your default browser will display the test page, as shown next. Select the packt node:

The resource will then appear on the right-hand side, as shown next. This allows us
to select the test method. As the GET command has been chosen by default, click on
the Test button:

Chapter 9

[255]

The GET command is then sent to the server and the response is displayed, as
shown next.

Network Interoperability

[256]

More sophisticated processing can be performed using JAX_RS. However, this
illustrates the basic approach.

Creating a RESTful client
The RESTful service can be called by any number of applications that are written in
various languages. Here, we will create a simple Java client to access this service.

Create a new project and select the RESTful Java Client option from the Web
Services category, as shown next. Then click on Next:

Chapter 9

[257]

The Name and Location step dialog box will appear, as shown in the following
screenshot. We need to select the RESTful resource. We can perform this by clicking
on the Browse… button:

Network Interoperability

[258]

The Available REST Resources dialog will appear, as shown next. Expand our
RESTful project and select the resource, as shown in the next screenshot, and then
click on OK:

Chapter 9

[259]

The completed dialog box should appear as follows. Click on Finish:

The RestfulClient class is then generated. We are interested in the getHtml
method, as shown next. This will return the HTML text from the service:

 public String getHtml() throws ClientErrorException {
 WebTarget resource = webTarget;
 return resource.
 request(javax.ws.rs.core.MediaType.TEXT_HTML).
 get(String.class);
 }

To test the application, add the following main met`hod, which invokes the
getHtml method:

 public static void main(String[] args) {
 RestfulClient restfulClient = new RestfulClient();
 System.out.println(restfulClient.getHtml());
 }

Network Interoperability

[260]

Make sure that the GlassFish server is running, and execute the program. The output
will be as follows:

<html><body><h1>Simple Restful Example</body></h1></html>

While we will not normally display HTML text in a console, this illustrated the
process that we use to obtain information from a RESTful service.

Summary
In this chapter, we explored many of the factors that impact network interoperability.
At a low-level, the byte order becomes important. We learned that systems either
use a big endian or a little endian byte order. The order can be determined and
controlled by Java applications. Network communication normally uses big endian
when transferring data.

If we need to communicate with other languages, we found that JVM-based
languages are easier to work with because they share the same byte code base. If we
need to work with other languages, then JNI is commonly used.

A socket is not a Java-unique concept. It normally is used in a TCP/IP environment,
which implies that a socket that is written in one language can easily communicate
with a socket that is written in a different language. We demonstrated this ability
using a Java server and a C# client.

We also explored how middleware can support interoperability by abstracting much
of the low-level communication detail. Using concepts, such as web services, we
learned that the details of low-level socket interactions are hidden. We demonstrated
this using JAX-RS, which supports a RESTful approach where HTTP commands,
such as GET, and POST, are mapped to specific Java functionality.

Network interoperability is an important consideration in enterprise-level
applications where the enterprise's functionality is distributed using various
technologies. This interoperability is possible through the use of standard
middleware protocols and products.

[261]

Index
A
asymmetric client/server 230
asymmetric encryption

about 201, 206, 207
asymmetric keys, generating 208, 209
asymmetric keys, saving 208, 209
asymmetric keys, saving to file 210-212
text, decrypting with asymmetric

key 209, 210
text, encrypting with asymmetric

key 209, 210
asymmetric encryption client/server

about 227
asymmetric client application 228, 229
asymmetric server application 227, 228

AsynchronousSocketChannel class
SO_KEEPALIVE option 87
SO_RCVBUF option 87
SO_REUSEADDR option 87
SO_SNDBUF option 87
TCP_NODELAY option 87

asynchronous socket channels
about 78
classes 78
client, creating 81-83
handling 78
server, creating 79, 80

authentication 202, 203
authorization 202, 203

B
big endian 240
buffer operations

about 83
bulk data transfer 83-85
read-only buffers, using 86
view, using 85

buffers
about 59, 60
capacity method 59
direct buffer 59
limit method 59
list 58
non-direct buffer 59
position method 59

bulk transfer 83-85
byte order

about 240, 241
big endian 240
little endian 240

C
Callable interface

using 186-188
using, with thread pools 186

C# client
using 245, 246

certificate 202, 203
certificate chain 203

[262]

channels
AsynchronousSocketChannel 58
DatagramChannel 58
FileChannel 58
NetworkChannel 58
ServerSocketChannel 58
SocketChannel 58
using, with time server 60

channel support, UDP
about 148
echo client application 150-152
echo client/server, using 152
echo server application 148-150

chat server/client applications
about 63, 64
chat client 66, 67
chat server 64, 65
interaction 67, 68
running 71

Classless Inter-Domain Routing (CIDR) 50
client/server application

architecture 7, 8
developing, standard Java classes used 102
HTTPServer class, using 106-108
HttpURLConnection class, using 102-105

Clojure 242
command keytool arguments 216-218
com.sun.net.httpserver package

classes 107
URL 106

cookies
handling 116, 117

D
digital signatures 202
direct buffer 59
Distributed Hash Table (DHT)

about 123, 124
components 124, 125
implementations 126
Java Distributed Hash Table

(JDHT) 126, 127
Domain KeyStore (DKS) 213
Domain Name System (DNS) 28, 139

Dynamic Host Configuration Protocol
(DHCP) 28

dynamic IP address 28

E
encryption

about 201-203
asymmetric encryption 206, 207
symmetric encryption 204

event types
accept 191
connect 191
read 192
write 192

F
Faclets 248
File Transfer Protocol (FTP) 32, 231
Freenet

about 124
URL 124

FreePastry
applications 129
components 129
demonstration 129
FreePastryApplication class 131-135
FreePastryExample class 129-131
message, sending to specific node 135, 136
URL 128
using 128, 129

Fully Qualified Domain Name (FQDN) 46
Future interface

using 188, 189

G
Gemini

URL 90
GET method 92
Globally Unique Identifier (GUID) 121
Gnutella

about 124
URL 124

Groovy 242

[263]

H
hashing algorithms

about 202, 203
MD5 235
SHA1 235

Hashing for Message Authentication
Code (HMAC) 230

HelperMethods class
about 68
used, for handling variable length

messages 69, 70
host 29
HTTP client/server applications

HTTP client, building 100-102
HTTP server, building 96-99
with Java socket support 95

HttpExchange class
getRequestBody method 107
getRequestHeaders method 107
getRequestMethod method 107
getResponseBody method 107
getResponseHeaders method 107
sendResponseHeaders method 107

HTTP messages
client/server interaction example 95
format 91
headers lines 94
initial request line format 92, 93
message body 94
status code 93
URL, for methods 92

HTTP protocol
structure 89-91

HTTP proxy 116
HTTPServer class

implementing 108-111
response headers, managing 112, 113
URL 108
using 106-108

HttpServer executor
using 189, 190

HttpURLConnection class
URL, encoding 105, 106
using 102-105

HyperText Markup Language (HTML) 89
Hypertext Transfer Protocol (HTTP) 7

I
Inet4Address

about 49
IPv4, address types 50
IPv4, private addresses 50

Inet6Address class
about 52, 53
IPv6, private addresses 52

InetAddress class
and IP Addresses 45
isAnyLocalAddress method 47
isLinkLocalAddress method 47
isLoopbackAddress method 47
isMCGlobal method 48
isMCLinkLocal method 48
isMCNodeLocal method 48
isMCOrgLocal method 48
isMCSiteLocal method 48
isMulticastAddress method 48
isSiteLocalAddress method 48
used, for network addressing 3, 4

Interactive Message Access Protocol
(IMAP) 231

interfacing
with JVM based languages 243
with non-JVM languages 243
with other languages 242

Internet Assigned Numbers Authority
(IANA) 28

Internet of Things (IoT) 1
Internet Protocol (IP) address

about 2
and InetAddress class 45
information, obtaining 45, 46
IPv4-compatible IPv6 addresses,

using 54, 55
reachability, testing 48, 49
scoping issues 47
testing 53

Internet Service Providers (ISP) 28

[264]

Internet Stream Protocol 45
Internetwork Packet Exchange (IPX)

protocol 37
IP protocol

publications 29
IPv4

address types 50
private addresses 50
special addresses 51

IPv4 addresses
loopback address 51
unspecified IPv4 address 51

IPv4 address types
broadcast 50
multicast 50
unicast 50

IPv6
private addresses 52
special addresses 53

IPv6 address types
anycast 52
multicast 52
unicast 52

J
Jacl 242
Java

keystores, creating with 219, 220
keystores, maintaining with 219, 220
server, using 244, 245

Java 8
used, for supporting echo server

and client 12, 13
Java API for RESTful Web Services

(JAX-RS) 248
Java Cryptography Extension KeyStore

(JCEKS) 213
Java Distributed Hash Table (JDHT)

about 126
using 126, 127

Java KeyStore (JKS) 213
Java Native Interface (JNI) 242

Java New IO (Java NIO)
about 57, 58
Buffer class 57
Channel class 57
core classes 57
Selector class 57

JavaServer Faces (JSF) 114
Java Server Pages (JSP) 248
Java Virtual Machine (JVM) 242
javax.sound.sampled package

AudioFormat class 163
AudioInputStream class 163
AudioSystem class 163
DataLine class 163
SourceDataLine class 163
TargetDataLine class 163

JRuby 242
Jthon 242
Just-In-Time (JIT) 243
JVM based languages

interfacing with 242, 243
reference link 243

K
keyspace

about 124
partitioning 124

keystores
about 201
creating, with Java 219, 220
creating, with keytool 213-215
Domain KeyStore (DKS) 213
Java Cryptography Extension KeyStore

(JCEKS) 213
Java KeyStore (JKS) 213
maintaining, with Java 219, 220
maintaining, with keytool 213-215
PKCS11 213
PKCS12 213

L
leaf sets 128

[265]

Lightweight Directory Access Protocol
(LDAP) 231

little endian 240
localhost 10

M
Media Access Control (MAC) address

about 35
multiple address, obtaining 36, 37
specific address, obtaining 35, 36

middleware
about 248
interoperability, achieving 248
RESTful client, creating 256-260
RESTful service, creating 249-253
RESTful service, testing 253-256

multicast client
creating 15-17

Multicast DNS (mDNS) 141
multicasting

about 14
using, with UDP 14

multicast server
creating 14, 15

multiple clients
handling 72
parts client 75
parts client handler 74
parts client/server, running 76, 77
parts server 72, 73

multithreaded server
advantage 170
overview 171, 172
threads, configuring 170

N
Napster

about 124
URL 124

Nashorn
about 242, 243
URL 243

National Security Agency (NSA) 235

Net News Transfer Protocol (NNTP) 231
network

about 29
architectures 30-32
byte order 242
interface 32
interoperability 239
protocols 30-32
programming 1-3
properties, controlling 56
protocols 30-32
scalability 169, 170
timeouts, handling 199

network addressing
concepts 37
Inet4Address 49
Inet6Address class 52
InetAddress class 45
IP addresses 45
testing, for IP address type 53-55
URI 37-39
URL 37-39
URN 37-39

Network Address Translation (NAT) 30
networking 27
NetworkInterface class

about 32
getByInetAddress method 32
getByName method 32
getNetworkInterfaces method 32
Media Access Control (MAC) address,

obtaining 35
using 32-34

Network Interface Controllers (NIC) 29
Network Time Protocol (NTP) 139
NIO package

about 5
buffer 5
channel 5
primary channels 5
selector 5
URLConnection class, using 5, 6
URLConnection class, using

with buffers 6, 7
URLConnection class, using

with channels 6, 7

[266]

node 29
non-direct buffer 59
non-JVM languages

interfacing with 243

O
octet 50
open source Java HTTP servers

about 113, 114
reference link 113, 114

Open Systems Interconnection (OSI)
about 30
URL 31

P
peer-to-peer (P2P) network

about 119
applications 122
centralized 119
characteristics 120, 121
distributed 119
functions 120, 121
Java support 123
local 119

plain text 205
port number, UDP

dynamic/private ports 140
registered ports 140
URL 141
well known ports 140

POST command 92
Precision Time Protocol (PTP) 141
primary channels, NIO package

DatagramChannel 5
FileChannel 5
ServerSocketChannel 5
SocketChannel 5

properties, SelectionKey
attached objects 192
channel 192
interest set 192
ready set 192
selector 192

protocols, UDP
Domain Name System (DNS) 139
Network Time Protocol (NTP) 139
Real Time Streaming Protocol (RTSP) 139
Routing Information Protocol (RIP) 139

R
read-only buffers

using 86
Real-time Transport Protocol (RTP)

URL 167
Regional Internet Registries (RIRs) 28
RESTful client

creating 256-260
RESTful service

creating 249-253
testing 253-256

robots
about 91
URL 91

Routing Information Protocol (RIP) 141
routing overlays 121

S
Scala 242
schemes, URI class

file 39
FTP 39
HTTP 39
mailto 39
urn 39

scopes
global 47
link-local 47
site-local 47

secure commerce 202
secure communication terminology

authentication 202
authorization 202
certificates 202
digital signatures 202
encryption 202
hashing algorithms 202

[267]

Secure Hash Algorithm (SHA-1)
about 124
URL 124

secure hash functions 235, 236
secure keys

generating 23-25
Secure Socket Level (SSL) 3
security 21, 201, 202
selector

channel, registering 191-193
creating 191
primary classes 190
used, for supporting time client/server 193
using 190

server configuration 115, 116
ServerSocketChannel class

SO_RCVBUF option 86
SO_REUSEADDR option 86

servlets 248
simple echo server

creating 8-12
supporting, with Java 8 12-14

Simple Mail Transfer Protocol (SMTP) 32
Simple Network Management Protocol

(SNMP) 141
Simple Object Access Protocol (SOAP) 248
SocketChannel class

SO_KEEPALIVE option 86
SO_LINGER option 86
SO_RCVBUF option 86
SO_REUSEADDR option 86
SO_SNDBUF option 86
TCP_NODELAY option 86

sockets
C# client, using 245, 246
client/server, executing 247
Java server, using 244, 245
options, controlling 86, 87
used, for communication 244

spiders 91
SSL client

about 233
creating 22, 23

SSL client/server
working with 234

SSL server
about 231-233
creating 21

SSLServerSocketFactory class 21
static IP address 28
symmetric encryption client/server

about 221
symmetric client application 224, 225
symmetric server application 222-224

symmetric encryption techniques
about 204
key, generating 204
text, decrypting 206
text, encrypting with symmetric key 205

T
Target Communication

Framework (TCF)
about 141
versus UDP 142

thread
about 18
using 169

threaded server
creating 17, 18
using 19, 20

thread-per-connection approach
about 178
client 179
server 178
using 179

thread-per-request approach
about 172
client 175
server 173, 174
using 175-178

thread pools
about 180, 181
client/server, using 185, 186
simple client 184
simple server 182-184
ThreadPoolExecutor class,

characteristics 181
using, with Callable interface 186
using, with Future interface 186-189

[268]

time client
creating 62, 63

time client/server
channel time server 193-196
date and time client application 197
date and time server/client

in action 197, 198
supporting, with selector 193

time server
channels, using with 60
creating 61, 62

TLS/SSL
about 230
SSL client 233
SSL client/server 234
SSL server 231-233

Transmission Control Protocol (TCP) 2
Transport Layer Security (TLS) 202
TuProlog 242

U
UDP channel multicast client/server

multicast client 160, 161
multicast server 159
using 162

UDP client/server applications
about 142
client application 145, 146
server application 143, 144
using 146, 147

UDP echo client/server application
echo client application 150-152
echo server application 148-150
using 152

UDP multicast client/server application
multicast client 154, 155
multicast server 153, 154
using 156

UDP multicasting, with channels
about 153-158
channel multicast client 160, 162
channel multicast client/server, using 162
channel multicast server 159

UDP streaming
about 162
audio client implementation 165, 167
audio server implementation 163-165

Uniform Resource Identifier (URI)
about 37, 38
instances, creating 39
schemas 39
splitting 40, 41
URL 40
using 39

Uniform Resource Locator (URL)
about 4, 37, 38, 89
encoding 105, 106
instances, creating 42
splitting 42-45

Uniform Resource Name (URN) 37, 38
Unique Local (UL) addresses 52
URL class

getAuthority method 40-42
getDefaultPort method 42
getFile method 42
getFragment method 40
getHost method 40-42
getPath method 40-42
getPort method 42
getProtocol method 42
getQuery method 40-42
getRef method 42
getScheme method 40
getSchemeSpecificPart method 40
getUserInfo method 40-42
normalize method 40

URLConnection class
reference link 105
using, with buffers 6, 7
using, with channels 6, 7

User Datagram Protocol (UDP)
about 2, 139, 140
channel support 148
Java support 140, 141
multicasting 153
port number 140
protocols 139
streaming 163
versus TCP 142

[269]

V
view

about 60
using 85

VLAN Query Protocol (VQP) 141
Voice Over IP (VOIP) 32, 139

W
Wide Area Network (WAN) 37
World Wide Web (WWW) 89

Thank you for buying
Learning Network Programming with Java

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Boost.Asio C++ Network
Programming
ISBN: 978-1-78216-326-8 Paperback: 156 pages

Enhance your skills with practical examples for C++
network programming

1. Augment your C++ network programming
using Boost.Asio.

2. Discover how Boost.Asio handles synchronous
and asynchronous programming models.

3. Practical examples of client/server applications.

4. Learn how to deal with threading when writing
network applications.

Learning Python Network
Programming
ISBN: 978-1-78439-600-8 Paperback: 320 pages

Utilize Python 3 to get network applications up and
running quickly and easily

1. Leverage your Python programming skills to
build powerful network applications.

2. Explore steps to interact with a wide range of
network services.

3. Design multithreaded and event-driven
architectures for echo and chat servers.

Please check www.PacktPub.com for information on our titles

iOS and OS X Network
Programming Cookbook
ISBN: 978-1-84969-808-5 Paperback: 300 pages

Over 50 recipes to develop network applications in
both the iOS and OS X environment

1. Use several Apple and third-party APIs to
develop both server and client networked
applications.

2. Shows you how to integrate all of the
third-party libraries and APIs with
your applications.

3. Includes sample projects for both iOS and OS X
environments.

Boost.Asio C++ Network
Programming
Second Edition
ISBN: 978-1-78528-307-9 Paperback: 200 pages

Learn effective C++ network programming with
Boost.Asio and become a proficient C++ network
programmer

1. Learn efficient C++ network programming with
minimum coding using Boost.Asio.

2. Your one-stop destination to everything related
to the Boost.Asio library.

3. Explore the fundamentals of networking to
choose designs with more examples, and learn
the basics of Boost.Asio.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with
Network Programming
	Network addressing using the InetAddress class
	NIO support
	Using the URLConnection class
	Using the URLConnection class with buffers and channels

	The client/server architecture
	Creating a simple echo server
	Creating a simple echo client
	Using Java 8 to support the echo server
and client

	UDP and multicasting
	Creating a multicast server
	Creating the multicast client

	Scalability
	Creating a threaded server
	Using the threaded server

	Security
	Creating a SSL server
	Creating an SSL client
	Generating secure keys

	Summary

	Chapter 2: Network Addressing
	Networking basics
	Understanding network basics
	Network architectures and protocols

	Using the NetworkInterface class
	Getting a MAC address
	Getting a specific MAC address
	Getting multiple MAC addresses

	Network addressing concepts
	URL/URI/URN
	Using the URI class
	Creating URI instances
	Splitting apart a URI

	Using the URL class
	Creating URL instances
	Splitting apart a URL

	IP addresses and the InetAddress class
	Obtaining information about an address
	Address scoping issues
	Testing reachability

	Introducing the Inet4Address
	Private addresses in IPv4
	IPv4 address types
	The Inet4Address class
	Special IPv4 addresses

	Introducing the Inet6Address class
	Private addresses in IPv6
	The Inet6Address class
	Special IPv6 addresses

	Testing for the IP address type
	Using IPv4-compatible IPv6 addresses

	Controlling network properties
	Summary

	Chapter 3: NIO Support for Networking
	Java NIO
	Introduction to buffers
	Using channels with a time server
	Creating a time server
	Creating a time client

	The chat server/client applications
	The chat server
	The chat client
	Server/client interaction
	The HelperMethods class
	Handling variable length messages

	Running the chat server/client application

	Handling multiple clients
	The parts server
	The parts client handler
	The parts client
	Running the parts client/server

	Asynchronous socket channels
	Creating the asynchronous server socket channel server
	Creating the asynchronous socket
channel client

	Other buffer operations
	Bulk data transfer
	Using a view
	Using read-only buffers

	Controlling socket options
	Summary

	Chapter 4: Client/Server Development
	The HTTP protocol structure
	The nature of HTTP messages
	Initial request line format
	Header lines
	Message body
	Client/Server interaction example

	Java socket support for HTTP client/server applications
	Building a simple HTTP server
	Building a simple HTTP client

	Client/server development using standard Java classes
	Using the HttpURLConnection class
	URL encoding

	Using the HTTPServer class
	Implementing a simple HTTPServer class
	Managing response headers

	Open source Java HTTP servers
	Server configuration
	Handling cookies
	Summary

	Chapter 5: Peer-to-Peer Networks
	P2P functions/characteristics
	Applications-based P2P networks
	Java support for P2P applications
	Distributed hash tables
	DHT components
	DHT implementations
	Using JDHT

	Using FreePastry
	The FreePastry demonstration
	Understanding the FreePastryExample class
	Understanding the FreePastryApplication class
	Sending a message to a specific node

	Summary

	Chapter 6: UDP and Multicasting
	Java support for UDP
	TCP versus UDP
	UDP client/server
	The UDP server application
	The UDP client application
	The UDP client/server in action

	Channel support for UDP
	The UDP echo server application
	The UDP echo client application
	The UDP echo client/server in action

	UDP multicasting
	The UDP multicast server
	The UDP multicast client
	The UDP multicast client/server in action

	UDP multicasting with channels
	The UDP channel multicast server
	The UDP channel multicast client
	The UDP channel multicast client/server
in action

	UDP streaming
	The UDP audio server implementation
	The UDP audio client implementation

	Summary

	Chapter 7: Network Scalability
	Multithreaded server overview
	The thread-per-request approach
	The thread-per-request server
	The thread-per-request client
	The thread-per-request applications in action

	Thread-per-connection approach
	The thread-per-connection server
	The thread-per-connection client
	The thread-per-connection applications in action

	Thread pools
	The ThreadPoolExecutor class characteristics
	Simple thread pool server
	Simple thread pool client
	The thread pool client/server in action
	Thread pool with Callable
	Using a Callable
	Using a Future

	Using the HttpServer executor
	Using a selector
	Creating the selector
	Registering a channel
	Using the selector to support a time
client/server
	The channel time server
	The date and time client application
	The date and time server/client in action

	Handling network timeouts
	Summary

	Chapter 8: Network Security
	Security
	Secure communication terminology

	Encryption basics
	Symmetric encryption techniques
	Generating a key
	Encrypting text using a symmetric key
	Decrypting text

	Asymmetric encryption techniques
	Generating and saving asymmetric keys
	Encrypting/decrypting text using an asymmetric key
	Saving asymmetric keys to a file

	Creating a keystore
	Creating and maintaining a keystore with keytool
	Keytool command-line arguments
	Creating and maintaining a keystore with Java

	Symmetric encryption client/server
	Symmetric server application
	Symmetric client application
	Symmetric client/server in action

	Asymmetric encryption client/server
	Asymmetric server application
	Asymmetric client application
	Asymmetric client/server in action

	TLS/SSL
	SSL server
	SSL client
	SSL client/server in action

	Secure hash functions
	Summary

	Chapter 9: Network Interoperability
	Byte order in Java
	Interfacing with other languages
	Interfacing with JVM based languages
	Interfacing with non-JVM languages

	Communication through simple sockets
	The Java server
	The C# client
	The client/server in action

	Interoperability through middleware
	Creating a RESTful service
	Testing the RESTful service
	Creating a RESTful client

	Summary

	Index

